WO2020113913A1 - 一种显示面板及显示装置 - Google Patents

一种显示面板及显示装置 Download PDF

Info

Publication number
WO2020113913A1
WO2020113913A1 PCT/CN2019/088649 CN2019088649W WO2020113913A1 WO 2020113913 A1 WO2020113913 A1 WO 2020113913A1 CN 2019088649 W CN2019088649 W CN 2019088649W WO 2020113913 A1 WO2020113913 A1 WO 2020113913A1
Authority
WO
WIPO (PCT)
Prior art keywords
panel
display
display sub
quantum dot
light
Prior art date
Application number
PCT/CN2019/088649
Other languages
English (en)
French (fr)
Inventor
刘卫东
李富琳
高上
杨洲
Original Assignee
青岛海信电器股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 青岛海信电器股份有限公司 filed Critical 青岛海信电器股份有限公司
Publication of WO2020113913A1 publication Critical patent/WO2020113913A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133602Direct backlight
    • G02F1/133606Direct backlight including a specially adapted diffusing, scattering or light controlling members
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K59/00Integrated devices, or assemblies of multiple devices, comprising at least one organic light-emitting element covered by group H10K50/00
    • H10K59/30Devices specially adapted for multicolour light emission
    • H10K59/38Devices specially adapted for multicolour light emission comprising colour filters or colour changing media [CCM]
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133536Reflective polarizers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light

Definitions

  • the present disclosure relates to the field of display technology, and in particular, to a display panel and a display device.
  • Local dimming refers to dividing the backlight of the display panel into multiple areas.
  • the brightness of the backlight in each section is adjusted accordingly according to the needs of the display screen, so as to achieve energy saving and enhance image quality. purpose.
  • the display device used at this stage uses a direct backlight and increases the number of point light sources to increase the backlight partition, but this method is limited by the size of the point light source, but a large increase in the number of light sources will also lead to a large drive circuit The increase requires a higher level of precision, which increases the difficulty and cost of production, and increases the thickness of the machine.
  • the present disclosure provides a display panel and a display device for eliminating moiré.
  • Some embodiments of the present disclosure provide a display panel, including:
  • the first display sub-panel is used to control the backlight
  • a second display sub-panel for image display wherein the second display sub-panel is located on the light exit side of the first display sub-panel;
  • the quantum dot layer is located between the first display sub-panel and the second display sub-panel.
  • the first display sub-panel includes: a plurality of first pixel units arranged in an array; the second display sub-panel includes: a plurality of second pixel units arranged in an array.
  • the quantum dot layer is located between the first pixel unit and the second pixel unit.
  • the quantum dot layer includes a transparent matrix, quantum dot material dispersed in the transparent matrix, and scattering particles dispersed in the transparent matrix.
  • the transparent matrix is a transparent colloid.
  • the light emitted from the first pixel unit is blue light
  • the quantum dot materials include: red quantum dot materials and green quantum dot materials
  • the display panel further includes: the wavelength selection layer for transmitting blue light, reflecting red light and green light; wherein the wavelength selection layer is located on a surface of the quantum dot layer facing the first pixel unit .
  • the orthographic projection of the first pixel unit on the second display sub-panel covers at least one second pixel unit.
  • the first display sub-panel is a liquid crystal display panel
  • the first display sub-panel further includes: a first lower polarizer, a first substrate, a second substrate, and a first upper polarizer disposed in sequence along the light exit direction of the first display sub-panel; the first pixel The unit is located between the first substrate and the second substrate;
  • the quantum dot layer is located on a side of the first upper polarizer facing away from the second substrate.
  • the first lower polarizer is an absorption polarizer or a reflective polarizer
  • the first upper polarizer is a reflective polarizer
  • the first display sub-panel is an organic light-emitting diode display panel
  • the first display sub-panel further includes: a base substrate and an encapsulation layer sequentially arranged along the light exit direction of the first display sub-panel; the first pixel unit is located between the base substrate and the encapsulation layer;
  • the quantum dot layer is located on a side of the encapsulation layer facing away from the first pixel unit; or, the quantum dot layer is located inside the encapsulation layer.
  • the second display sub-panel is a liquid crystal display panel
  • the second display sub-panel includes: a second lower polarizer, a third substrate, a fourth substrate, and a second upper polarizer that are sequentially arranged along the light exit direction of the second display sub-panel; the second pixel unit Located between the third substrate and the fourth substrate.
  • the second lower polarizer is an absorption polarizer or a reflective polarizer
  • the second upper polarizer is an absorption polarizer
  • Some embodiments of the present disclosure also provide a display device, including any of the above display panels.
  • both the first display sub-panel and the second display sub-panel are liquid crystal display panels
  • the display device further includes: a location on the first display sub-panel facing away from the second display sub-panel Backlight module on one side.
  • FIG. 1 is a schematic diagram of a cross-sectional structure of a display panel provided by an embodiment of the present disclosure
  • FIG. 2 is a schematic structural diagram of a quantum dot layer provided by an embodiment of the present disclosure
  • FIG. 3 is a second schematic sectional view of a display panel provided by an embodiment of the present disclosure.
  • FIG. 5 is a second schematic sectional view of a first display sub-panel provided by an embodiment of the present disclosure.
  • FIG. 6 is a third schematic sectional view of a first display sub-panel provided by an embodiment of the present disclosure.
  • FIG. 7 is a schematic cross-sectional structure diagram of a second display sub-panel provided by an embodiment of the present disclosure.
  • FIG. 8 is a third schematic sectional view of a display panel provided by an embodiment of the present disclosure.
  • FIG. 9 is a fourth schematic diagram of a cross-sectional structure of a display panel provided by an embodiment of the present disclosure.
  • FIG. 10 is a schematic diagram of a cross-sectional structure of a display device provided by an embodiment of the present disclosure.
  • Moiré fringe is an optical phenomenon first discovered by French researcher Mr. Moir.
  • Moiré fringes are the visual result of interference between two lines or two objects at a constant angle and frequency. When the human eye cannot distinguish between these two lines or two objects, only the interfering pattern can be seen, and the pattern in this optical phenomenon is called moiré.
  • moiré fringes will be viewed in a direction perpendicular to the grating pattern. Then in the display mode in which the display panel is used as the backlight to provide backlight for the other display panel, the pixel units in the two display panels are periodically arranged to form the above-mentioned periodic raster pattern. The streak affects the display effect.
  • the display panel provided by the embodiment of the present disclosure includes: a first display sub-panel 100 located on the light emitting side of the first display sub-panel 100 Second display sub-panel 200, and the quantum dot layer 30 between the first display sub-panel 100 and the second display sub-panel 200; wherein, the first display sub-panel 100 is used to control the backlight, the second display sub-panel 200, for image display.
  • the above-mentioned display panel provided by an embodiment of the present disclosure adopts a dual-layer display panel, one of which is used to control the backlight, and the other is used for image display.
  • the first display sub-panel located below can be incident on the second display.
  • the light of the sub-panel 200 is modulated to realize high-density zone control of the backlight, thereby improving the fineness of dimming the area of the second display sub-panel, which is beneficial to further optimize the display effect.
  • the quantum dot layer 30 is provided between the first display sub-panel 100 and the second display sub-panel 200.
  • the light emitted from the first display sub-panel 100 excites the quantum dot material to generate mixed color light, and provides backlight for the second display sub-panel 200. Since the stimulated light emitted by the quantum dot material in the quantum dot layer 30 is emitted to the surroundings at various angles, changing the original propagation direction of the light, the light generated thereby can better destroy the pattern generated by the periodic grating structure, thereby eliminating Stripes.
  • the first display sub-panel 100 includes: a plurality of first pixel units 11 arranged in an array; the second display sub-panel 200 includes: a plurality of second pixel units 21 arranged in an array. It is precisely because the first pixel unit 11 and the second pixel unit 21 are periodically distributed, forming a periodic grating pattern with a similar spatial frequency, which has various effects such as shading effect, diffraction effect and interference effect on the emitted light, resulting in Moire fringes are generated during image display.
  • a quantum dot layer is provided between the first pixel unit 11 and the second pixel unit 21. The stimulated emission of quantum dot material will be emitted to the surroundings at various angles, which can change the original direction of light propagation and destroy the periodicity.
  • the graphics produced by the grating structure can achieve the effect of eliminating moiré.
  • the quantum dot layer includes: a transparent matrix 301, a quantum dot material 302 dispersed in the transparent matrix 301, and scattering particles 303 dispersed in the transparent matrix 301.
  • the quantum dot material 302 can emit light with a longer wavelength under the excitation of the outgoing light of the second pixel unit, for example, if the outgoing light of the first pixel unit is blue light, the quantum dot layer may include red quantum dot material and green quantum dot Materials, then under the excitation of blue light, the red quantum dot material emits red light, and the green quantum dot material emits green light, so that after passing through the quantum dot layer, a mixed color of red light, green light, and blue light can be generated to achieve the second
  • the display sub-panel provides white backlight.
  • the stimulated emission of the quantum dot material does not have a definite exit direction, so after the light passes through the quantum dot layer, it has a certain scattering effect, which destroys the pattern generated by the periodic grating formed by the first pixel unit and the second pixel unit. Therefore, moiré can be eliminated.
  • dispersing the scattering particles 303 in the quantum dot layer can further scatter the light emitted from the first pixel unit, increase the light incident on the quantum dot material, and thus improve the excitation efficiency of the quantum dot material.
  • the transparent substrate 301 may be a transparent colloid. After dispersing the quantum dot material 302 and the scattering particles 303, the colloid may be directly coated on the corresponding film layer for adhesion between the film layers .
  • the quantum dot material may include: red quantum dot material and green quantum dot material; at this time, as shown in FIG. 3, the display panel further includes: The wavelength selection layer 40 on the surface of the quantum dot layer 30 facing the first pixel unit 11; the wavelength selection layer 40 is used to transmit blue light and reflect red light and green light.
  • the wavelength selection layer 40 is provided on the light incident side of the quantum dot layer 30, which can transmit the blue light emitted from the first pixel unit, and reflect the stimulated red light and green light emitted from the quantum dot layer toward the light emitting side, thereby improving Light effect.
  • the wavelength selective layer 40 can utilize the thin film interference principle of light, and is set to have an anti-reflection effect for blue light and an anti-reflection effect for red light and green light.
  • the anti-reflection or anti-reflection effect for light depends on the angle of incidence of light into the film layer, the refractive index of the film layer, and the thickness of the film layer. Therefore, in the specific implementation, a material with a suitable refractive index can be used to make the wavelength selective layer 40.
  • the wavelength selection layer may include a plurality of sub-film layers, which are respectively made of materials and thicknesses with different refractive indexes for the wavelength ranges of blue light, red light, and green light.
  • a plurality of sub-film layers can be used as a group, and a plurality of groups of film layers can be stacked to improve the anti-reflection effect for blue light and the anti-reflection effect for red light and green light.
  • the blue light emitted by the first pixel unit is transmitted to the quantum dot layer as much as possible to excite the quantum dot material and improve the conversion efficiency of the quantum dot material; and the quantum dot material is stimulated to emit red light and green light Reflect as much as possible in the direction of the first pixel unit, thereby improving the utilization rate of red light and green light, thereby improving light efficiency.
  • the orthographic projection of the first pixel unit 11 on the second display sub-panel 200 covers at least one second pixel unit 21.
  • one first pixel unit 11 corresponds to one second pixel unit 21; as shown in FIG. 1, one first pixel unit 11 corresponds to three second pixel units 21, or one first pixel unit 11 corresponds to more The second pixel unit. Therefore, during display, the first pixel unit 11 can perform area dimming on the corresponding second pixel unit 21 to improve the display effect.
  • the second display sub-panel 200 is a liquid crystal display panel
  • the first display sub-panel 100 may be a transmissive display panel (for example, a liquid crystal display panel) or a self-luminous display panel .
  • a transmissive display panel for example, a liquid crystal display panel
  • a backlight module needs to be provided on the light incident side of the first display sub-panel 100 to serve as the first display sub-panel and the second display sub-panel The panel provides backlight.
  • the first display sub-panel 100 may be a liquid crystal display panel; at this time, the first display sub-panel 100 further includes: sequentially along the light exit direction of the first display sub-panel The first lower polarizer 12, the first substrate 13, the second substrate 14, and the first upper polarizer 15 are provided; the first pixel unit 11 is located between the first substrate 13 and the second substrate 14; the quantum dot layer 30 is located in the first An upper polarizer 15 faces away from the second substrate 14.
  • the first pixel unit 11 includes: a first thin film transistor 111, a first pixel electrode 112 connected to the drain of the first thin film transistor 111, a first liquid crystal layer 113 and a first common electrode 114;
  • the first lower polarizer 12 may be an absorption polarizer or a reflective polarizer
  • the first upper polarizer 15 may be a reflective polarizer.
  • absorption polarizers are used for the first lower polarizer 12 and the first upper polarizer 15, the first display sub-panel can have better contrast when performing area dimming.
  • the first lower polarizer 12 uses a reflective polarizer, the natural light emitted by the backlight module to the first lower polarizer 12 conforms to half of the polarization direction of the first lower polarizer 12 and the other half of the polarization direction can be transmitted The light with the polarization direction of the lower polarizer 12 perpendicular to the light is reflected back to the backlight module.
  • the polarization direction of this part of the light will change, and when it enters the first lower polarizer 12 again Then, the polarization direction of a part of the light will be in accordance with the polarization direction of the first lower polarizer 12, so that after multiple reflections, the light utilization rate of the backlight module can be improved.
  • the first upper polarizer 13 uses a reflective polarizer, since the light emitted by the quantum dot layer 30 is not polarized light, the stimulated radiation incident on the first upper polarizer 13 can be reduced to a certain extent. An upper polarizer 13 is reflected back in a direction away from the side of the second substrate, so that the light extraction efficiency of the stimulated radiation light of the quantum dot layer 30 can be improved.
  • the first display sub-panel 100 may be an organic light emitting diode display panel; at this time, the first display sub-panel 100 further includes: along the first display sub The base substrate 12' and the encapsulation layer 13' are arranged in this order in the light exit direction of the panel; the first pixel unit 11' is located between the base substrate 12' and the encapsulation layer 13'; as shown in FIG. 5, the quantum dot layer 30 may be Located on the side of the encapsulation layer 13' facing away from the first pixel unit 11'; or, as shown in FIG. 6, the quantum dot layer 30 may also be located inside the encapsulation layer 13'.
  • the first display sub-panel 100 adopts an organic light emitting diode display panel
  • the organic light emitting diode display panel has the advantage of small thickness, which is beneficial to reduce the overall thickness.
  • the first pixel unit 11 ′ is an organic light-emitting diode device, which may include an anode 112 ′, an organic light-emitting layer 113 ′, and a cathode 114 ′, and further include a control organic The driving thin film transistors 111' of the light emitting diode device.
  • These driving thin film transistors 111' can be formed at a time on the base substrate using the same process, and then the anode 112', the organic light emitting layer 113', and the cathode 114' are formed.
  • the cathode 114' is provided in one layer.
  • an encapsulation layer 13' needs to be formed thereon.
  • the encapsulation layer 13' can be thin-film encapsulated and is composed of organic layers and inorganic layers stacked alternately. Among them, the inorganic layer has the function of blocking water and oxygen, and the organic layer can improve the flexibility of the film layer.
  • the quantum dot layer 30 may be formed on the encapsulation layer 13', or the quantum dot layer 30 may be formed in the encapsulation layer 13' instead of one of the organic layers, so that the quantum dots
  • the layer 30 also plays a role in blocking water and oxygen to ensure that the quantum dot material is not destroyed.
  • the quantum dot material in the quantum dot layer 30 causes the light emitted by the first pixel unit 11' to be emitted in various directions after the action of the quantum dot layer 30, changing the original propagation direction of the light, so the generated light can better destroy the period
  • the pattern produced by the grating structure eliminates moiré.
  • the second display sub-panel is a liquid crystal display panel.
  • the second display sub-panel further includes: light exiting along the second display sub-panel
  • the second lower polarizer 22, the third substrate 23, the fourth substrate 24, and the second upper polarizer 25 are arranged in this order; the second pixel unit 21 is located between the third substrate 23 and the fourth substrate 24.
  • the second pixel unit 21 includes: a second thin film transistor 211, a second pixel electrode 212 connected to the drain of the second thin film transistor 211, a second liquid crystal layer 213, a second common electrode 214, and a color filter unit 215 .
  • each second pixel electrode 212 in each second pixel unit 21 can be simultaneously formed on the third substrate 23, each second pixel electrode 212 can be simultaneously formed using a patterning process, and a layer is formed on each second pixel electrode 212 Flattening layer, forming a liquid crystal alignment film and spacers for supporting on the flattening layer; forming a light-shielding layer for separating the color filter units on the fourth substrate 24, and forming different colors in areas where the light-shielding layer is not formed
  • the color film unit 215 forms a color film layer, and then an entire second common electrode 214 is formed on the color film, and a liquid crystal alignment film is formed on the second common electrode 214; after matching the third substrate 23 and the fourth substrate 24 to the cell Liquid crystal is injected to form the second display sub-panel 200.
  • the second lower polarizer 22 may be an absorbing polarizer or a reflective polarizer
  • the second upper polarizer 25 may be an absorbing polarizer.
  • the absorption polarizer is used for the second lower polarizer 22 and the second upper polarizer 25, a higher contrast of the second display sub-panel can be achieved.
  • the reflective polarizer is used for the second lower polarizer 22, only the light that conforms to the polarization direction of the second lower polarizer 22 can be transmitted through the line from the first display sub-panel 100 to the second lower polarizer 22, and another part of the light can be transmitted.
  • the second lower polarizer 22 It is reflected back to the side of the first display sub-panel by the second lower polarizer 22, and after being reflected by the reflective film layer in the first display sub-panel or the backlight module, it is incident on the second polarizer 22 again. Then, the polarization direction of a part of the light rays is transmitted in accordance with the polarization direction of the second lower polarizer 22, so that after multiple reflections, the light utilization rate can be improved. Since the second upper polarizer 25 is located at the outermost side of the display panel and the absorption polarizer is used, the reflection effect on ambient light can be reduced, which is beneficial to improve the display contrast.
  • the structure of the display panel is shown in FIG. 8.
  • the second substrate 14 of the first display sub-panel 100 and the second display sub-panel 200 The third substrate 23 forms a clamping structure for the quantum dot layer 30, which can block external water and oxygen from damaging the quantum dot material, so there is no need to provide protective layers on both sides of the quantum dot layer to block water and oxygen.
  • the structure of the display panel is shown in FIG. 9, the quantum dot layer is located inside the encapsulation layer of the organic light-emitting diode display panel, Or between the encapsulation layer and the third substrate, both can play a role in blocking water and oxygen of the quantum dot material, so there is no need to provide a protective layer for blocking water and oxygen on both sides of the quantum dot layer 30.
  • the quantum dot layer is located between the first display sub-panel and the second display sub-panel.
  • the direction of the light emitted by the quantum dot layer is uncertain, changing the original direction of light propagation, so the light generated can better destroy the periodic grating structure The resulting graphics, thereby removing moiré.
  • an embodiment of the present disclosure also provides a display device, which includes any of the above display panels.
  • a display device provided by an embodiment of the present disclosure wherein the first display sub-panel is used to control the backlight, and then the second display sub-panel is subjected to regional dimming control, and a quantum is provided between the first display sub-panel and the second display sub-panel.
  • the dot layer can effectively destroy the pattern generated by the periodic grating formed by the pixel units of the two display panels, thereby eliminating the moiré generated during display.
  • the first display sub-panel of the above display device may use a liquid crystal display panel or an organic light-emitting diode display panel; when both the first display sub-panel and the second display sub-panel are liquid crystal display modules, as shown in FIG. 10 As shown, the display device further includes: a backlight module 500 on the side of the first display sub-panel 100 facing away from the second display sub-panel 200.
  • the display device provided by the embodiment of the present disclosure includes any one of the display panels described in the above embodiments, and accordingly also has the related advantages of the above display panel. For the implementation of the display device, refer to the above embodiments of the display panel, and repeat I will not repeat them here.
  • the display panel and the display device provided by the embodiments of the present disclosure include: a first display sub-panel for controlling backlight; a second display sub-panel for image display; the second display sub-panel is located on the light emitting side of the first display sub-panel;
  • the quantum dot layer is located between the first display sub-panel and the second display sub-panel.
  • the outgoing light of the first display sub-panel excites the quantum dot layer to provide backlight for the second display sub-panel. Since the quantum dot material in the quantum dot layer is stimulated to emit light at all angles, changing the original direction of light propagation, the light generated by it can better destroy the pattern generated by the periodic grating structure, thereby eliminating the moiré stripe.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Mathematical Physics (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Devices For Indicating Variable Information By Combining Individual Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种显示面板及显示装置,包括:第一显示子面板(100),用于控制背光;第二显示子面板(200),用于图像显示;第二显示子面板(200)位于第一显示子面板(100)出光侧;量子点层(30),位于第一显示子面板(100)和第二显示子面板(200)之间。第一显示子面板(100)的出射光激发量子点层(30),为第二显示子面板(200)提供背光。由于量子点层(30)中的量子点材料受激发射的光线以各个角度向四周发射,改变光线原本的传播方向,因此其产生的光线可以较好地破坏周期性光栅结构产生的图形,从而消除莫尔条纹。

Description

一种显示面板及显示装置
相关申请的交叉引用
本申请要求在2018年12月06日提交中国专利局、申请号为201811488131.3、申请名称为“一种显示面板及显示装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本公开涉及显示技术领域,尤其涉及一种显示面板及显示装置。
背景技术
区域调光(Local Dimming)是指将显示面板的背光分为多个区域,在进行图像显示时,根据显示画面的需要相应地同时调整背光在各分区的亮度,从而达到节能以及增强画质的目的。现阶段所使用的显示装置,通过采用直下式背光,通过增加点光源数量来增加背光分区,但这种方式受限于点光源的尺寸,但是光源数量的大量增加也会导致驱动电路的大幅度增加,需要更高精度的制作水平,使得制作难度和制作成本均随之上升,也会使整机厚度增大。
发明内容
本公开提供了一种显示面板及显示装置,用以消除莫尔条纹。
本公开一些实施方式,提供一种显示面板,包括:
第一显示子面板,用于控制背光;
第二显示子面板,用于图像显示,其中所述第二显示子面板位于所述第一显示子面板的出光侧;
量子点层,位于所述第一显示子面板和所述第二显示子面板之间。
在一些实施方式中,所述第一显示子面板包括:呈阵列排布的多个第一 像素单元;所述第二显示子面板包括:呈阵列排布的多个第二像素单元。
在一些实施方式中,所述量子点层位于所述第一像素单元与所述第二像素单元之间。
在一些实施方式中,所述量子点层包括:透明基质,分散在所述透明基质中的量子点材料,以及分散在所述透明基质中的散射粒子。
在一些实施方式中,所述透明基质为透明胶体。
在一些实施方式中,所述第一像素单元的出射光为蓝色光,所述量子点材料包括:红色量子点材料和绿色量子点材料;
所述显示面板还包括:所述波长选择层,用于透射蓝色光,反射红色光和绿色光;其中,所述波长选择层位于所述量子点层面向所述第一像素单元一侧的表面。
在一些实施方式中,所述第一像素单元在所述第二显示子面板的正投影至少覆盖一个所述第二像素单元。
在一些实施方式中,所述第一显示子面板为液晶显示面板;
所述第一显示子面板还包括:沿所述第一显示子面板的光出射方向依次设置的第一下偏光片、第一基板、第二基板以及第一上偏光片;所述第一像素单元位于所述第一基板与所述第二基板之间;
所述量子点层位于所述第一上偏光片背离所述第二基板的一侧。
在一些实施方式中,所述第一下偏光片为吸收型偏光片或反射型偏光片,所述第一上偏光片为反射型偏光片。
在一些实施方式中,所述第一显示子面板为有机发光二极管显示面板;
所述第一显示子面板还包括:沿所述第一显示子面板的光出射方向依次设置的衬底基板和封装层;所述第一像素单元位于所述衬底基板与封装层之间;
所述量子点层位于所述封装层背离所述第一像素单元的一侧;或者,所述量子点层位于所述封装层内部。
在一些实施方式中,所述第二显示子面板为液晶显示面板;
所述第二显示子面板包括:沿所述第二显示子面板的光出射方向依次设置的第二下偏光片、第三基板、第四基板以及第二上偏光片;所述第二像素单元位于所述第三基板与所述第四基板之间。
在一些实施方式中,所述第二下偏光片为吸收型偏光片或反射型偏光片,所述第二上偏光片为吸收型偏光片。
本公开一些实施方式,还提供一种显示装置,包括上述任一显示面板。
在一些实施方式中,所述第一显示子面板与所述第二显示子面板均为液晶显示面板,所述显示装置还包括:位于所述第一显示子面板背离所述第二显示子面板一侧的背光模组。
附图说明
为了更清楚地说明本公开实施例的技术方案,下面将对本公开实施例中所需要使用的附图作简单地介绍,显而易见地,下面所介绍的附图仅仅是本公开的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本公开实施例提供的显示面板的截面结构示意图之一;
图2为本公开实施例提供的量子点层的结构示意图;
图3为本公开实施例提供的显示面板的截面结构示意图之二;
图4为本公开实施例提供的第一显示子面板的截面结构示意图之一;
图5为本公开实施例提供的第一显示子面板的截面结构示意图之二;
图6为本公开实施例提供的第一显示子面板的截面结构示意图之三;
图7为本公开实施例提供的第二显示子面板的截面结构示意图;
图8为本公开实施例提供的显示面板的截面结构示意图之三;
图9为本公开实施例提供的显示面板的截面结构示意图之四;
图10为本公开实施例提供的显示装置的截面结构示意图。
具体实施方式
为了使本公开的目的、技术方案和优点更加清楚,下面将结合附图对本公开作进一步地详细描述,显然,所描述的实施例仅仅是本公开一部分实施例,而不是全部的实施例。基于本公开中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其它实施例,都属于本公开保护的范围。
莫尔条纹是由法国研究人员莫尔先生首先发现的一种光学现象。莫尔条纹是两条线或两个物体之间以恒定的角度和频率发生干涉的视觉结果。当人眼无法分辨这两条线或两个物体时,则只能观看到干涉的花纹,而这种光学现象中的花纹被称之为莫尔条纹。在实际应用中,如果两个空间频率相近的周期性光栅图形叠加,则会在垂直于光栅图形的方向观看莫尔条纹。那么在采用显示面板作为背光,为另一显示面板提供背光的显示模式下,由于两个显示面板中的像素单元均周期性排布,构成上述周期性光栅图形,因此会在显示面观看到莫尔条纹,影响显示效果。
本公开实施例提供一种显示面板,用于消除莫尔条纹,如图1所示,本公开实施例提供的显示面板,包括:第一显示子面板100,位于第一显示子面板100出光侧的第二显示子面板200,以及位于第一显示子面板100和第二显示子面板200之间的量子点层30;其中,第一显示子面板100,用于控制背光,第二显示子面板200,用于图像显示。本公开实施例提供的上述显示面板采用双层显示面板,以其中一个显示面板控制背光,另一个显示面板用于图像显示的技术方案,位于下方的第一显示子面板可以对入射向第二显示子面板200的光线进行调制,实现背光的高密度分区控制,从而可以提升对第二显示子面板区域调光的精细程度,有利于进一步地优化显示效果。在第一显示子面板100与第二显示子面板200之间设置量子点层30。第一显示子面板100出射光激发量子点材料产生混色光,为第二显示子面板200提供背光。由于量子点层30中的量子点材料受激发射的光线以各个角度向四周发射,改变光线原本的传播方向,因此其产生的光线可以较好地破坏周期性光栅结构产生的图形,从而消除莫尔条纹。
如图1所示,第一显示子面板100包括:多个呈阵列排布的第一像素单元11;第二显示子面板200包括:呈阵列排布的多个第二像素单元21。正是由于第一像素单元11与第二像素单元21均呈周期性分布,形成了空间频率相近的周期性光栅图形,对出射的光线具有遮光效应、衍射效应和干涉效应等多种作用,导致了图像显示时产生莫尔条纹。而在第一像素单元11与第二像素单元21之间设置量子点层,量子点材料受激发射的光会以各种角度向四周发射,从而可以改变光线原本的传播方向,破坏了周期性光栅结构产生的图形,可以达到消除莫尔条纹的效果。
进一步地,如图2所示,量子点层包括:透明基质301,分散在透明基质301中的量子点材料302,以及分散在透明基质301中的散射粒子303。量子点材料302在第二像素单元的出射光的激发下可以发射波长更长的光,例如,如果第一像素单元的出射光为蓝色光,量子点层可以包括红色量子点材料和绿色量子点材料,那么在蓝色光的激发下红色量子点材料发射红色光,绿色量子点材料发射绿色光,由此经过量子点层之后可以产生红色光、绿色光以及蓝色光的混色光,实现对第二显示子面板提供白色背光。并且,量子点材料受激发射光并没有确定的出射方向,因此光线经过量子点层之后,具有一定的散射作用,破坏了由第一像素单元和第二像素单元形成的周期性光栅产生的图形,因此可以消除莫尔条纹。另外,在量子点层中分散散射粒子303,可将第一像素单元出射的光线进一步散射,增加入射至量子点材料的光线,从而提高量子点材料的激发效率。在实际应用中,上述透明基质301可为透明胶体,在分散了量子点材料302与散射粒子303之后,可以将胶体直接涂覆在相应的膜层之上,用于膜层之间的粘合。
在实际应用中,在上述第一像素单元11的出射光为蓝色光时,量子点材料可包括:红色量子点材料和绿色量子点材料;此时,如图3所示,显示面板还包括:位于量子点层30面向第一像素单元11一侧表面的波长选择层40;该波长选择层40,用于透射蓝色光,反射红色光和绿色光。在量子点层30的入光侧设置波长选择层40,可以将第一像素单元出射的蓝色光透过,而将量 子点层受激发射的红色光和绿色光向出光侧反射,由此提高光效。
波长选择层40可以利用光的薄膜干涉原理,被设置成对蓝色光具有增透,而对红色光和绿色光具有增反的效果。而对于光线的增反或增透作用取决于光线入射到膜层的入射角度,膜层的折射率以及膜层的厚度,因此在具体实施时可以采用折射率适合的材料来制作上述波长选择层40。该波长选择层可以包括多个子膜层,分别针对蓝色光、红色光以及绿色光的波长范围采用不同折射率的材料以及厚度进行制作。可以采用多个子膜层为一组,多组膜层层叠设置的方式来提高对蓝色光的增透作用以及对红色光和绿色光的增反作用。由此使由第一像素单元出射的蓝色光尽可能多地透射到量子点层,以激发量子点材料,提高量子点材料的转化效率;而使量子点材料受激发射的红色光和绿色光尽可能多地向第一像素单元的方向反射,从而提高红色光和绿色光的利用率,由此提高光效。
在具体实施时,如图1所示,第一像素单元11在第二显示子面板200的正投影至少覆盖一个第二像素单元21。例如,一个第一像素单元11对应一个第二像素单元21;也可以如图1所示,一个第一像素单元11对应三个第二像素单元21,或者一个第一像素单元11对应更多的第二像素单元。从而可以在显示时,使得第一像素单元11可以对对应的第二像素单元21进行区域调光,提升显示效果。而第一像素单元11对应的第二像素单元21的数量越少,则说明分区划分地越精细,则可以实现更高精度的区域调光,在实际应用中,可以根据使用需求进行设置,在此不做限定。
本公开实施例提供的上述显示面板中,第二显示子面板200为液晶显示面板,第一显示子面板100可为透射型显示面板(例如,液晶显示面板),也可为自发光型显示面板。当第一显示子面板100采用透射型显示面板(例如,液晶显示面板)时,则需要在第一显示子面板100的入光侧设置背光模组,为第一显示子面板以及第二显示子面板提供背光。
在一种可实施的方式中,如图4所示,第一显示子面板100可为液晶显示面板;此时,第一显示子面板100还包括:沿第一显示子面板的光出射方 向依次设置的第一下偏光片12、第一基板13、第二基板14以及第一上偏光片15;第一像素单元11位于第一基板13与第二基板14之间;量子点层30位于第一上偏光片15背离第二基板14的一侧。
如图4所示,在液晶显示面板中,第一像素单元11包括:第一薄膜晶体管111,连接第一薄膜晶体管111漏极的第一像素电极112,第一液晶层113以及第一公共电极114;
在具体实施时,上述第一下偏光片12可为吸收型偏光片或反射型偏光片,第一上偏光片15可为反射型偏光片。当第一下偏光片12和第一上偏光片15采用吸收型偏光片时,可使第一显示子面板进行区域调光时具有更好的对比度。当第一下偏光片12采用反射型偏光片时,背光模组向第一下偏光片12出射的自然光符合第一下偏光片12偏振方向的一半光线可以透射,而另一半偏振方向与第一下偏光片12的偏振方向相垂直的光线则被反射回背光模组,经过背光模组反射板的反射作用后这部分光线的偏振方向将会产生变化,重新向第一下偏光片12入射时,则又会有一部分光线的偏振方向符合第一下偏光片12的偏振方向,由此经过多次的反射作用,可以提高背光模组的光利用率。而当第一上偏光片13采用反射型偏光片时,由于量子点层30受激发射的光线不是偏振光,因此向第一上偏光片13入射的受激辐射光则可以一定程度地被第一上偏光片13向背离第二基板一侧的方向反射回去,因此可以提高量子点层30受激辐射光线的出光效率。
在另一种可实施的方式中,如图5和图6所示,第一显示子面板100可为有机发光二极管显示面板;此时,第一显示子面板100还包括:沿第一显示子面板的光出射方向依次设置的衬底基板12’和封装层13’;第一像素单元11’位于衬底基板12’与封装层13’之间;如图5所示,量子点层30可位于封装层13’背离第一像素单元11’的一侧;或者,如图6所示,量子点层30还可位于封装层13’内部。
第一显示子面板100采用有机发光二极管显示面板时,则不需要额外设置背光模组,且有机发光二极管显示面板具有厚度小的优势,有利于减小整 机厚度。如图5和图6所示,在采用有机发光二极管显示面板时,第一像素单元11’为有机发光二极管器件,可包括阳极112’、有机发光层113’以及阴极114’,还包括控制有机发光二极管器件的驱动薄膜晶体管111’,这些驱动薄膜晶体管111’可以在衬底基板上采用同样的工艺一次性形成,而后再形成阳极112’、有机发光层113’和阴极114’。阴极114’整层设置,在形成阴极之后需要在其上形成封装层13’,该封装层13’可采用薄膜封装,由交替堆叠的有机层和无机层构成。其中,无机层具有阻隔水氧的作用,有机层可以提高膜层的柔韧性。在形成封装层之后可在封装层13’之上形成量子点层30,或者还可以将量子点层30形成在封装层13’之中,替代其中一层有机层的位置,从而可以对量子点层30同样起到阻隔水氧的作用,以保证量子点材料不被破坏。量子点层30中的量子点材料使第一像素单元11’出射的光线经过量子点层30的作用后向各个方向发射,改变光线原本的传播方向,因此其产生的光线可以较好地破坏周期性光栅结构产生的图形,从而消除莫尔条纹。
进一步地,本公开实施例提供的上述显示面板中,第二显示子面板为液晶显示面板,此时,如图7所示,第二显示子面板还包括:沿第二显示子面板的光出射方向依次设置的第二下偏光片22、第三基板23、第四基板24以及第二上偏光片25;第二像素单元21位于第三基板23与第四基板24之间。
如图7所示,第二像素单元21包括:第二薄膜晶体管211、连接第二薄膜晶体管211漏极的第二像素电极212、第二液晶层213、第二公共电极214以及彩膜单元215。其中,各第二像素单元21中的第二薄膜晶体管211可以在第三基板23上同时形成,各第二像素电极212可采用一次构图工艺同时形成,在各第二像素电极212上形成一层平坦化层,在平坦化层上形成液晶取向膜以及起支撑作用的隔离柱;在第四基板24上形成用于间隔各彩膜单元的遮光层,并在未形成遮光层的区域形成不同颜色的彩膜单元215构成彩膜层,而后在彩膜上形成整层的第二公共电极214,在第二公共电极214上形成液晶取向膜;将第三基板23和第四基板24对盒后注入液晶以形成第二显示子面板200。
在第二显示子面板中,第二下偏光片22可为吸收型偏光片或反射型偏光片,第二上偏光片25可为吸收型偏光片。当第二下偏光片22和第二上偏光片25采用吸收型偏光片时,可以使第二显示子面板的较高对比度。当第二下偏光片22采用反射型偏光片时,由第一显示子面板100向第二下偏光片22出射的线,只有符合第二下偏光片22偏振方向光线可以透射,另一部分光线可被第二下偏光片22反射回第一显示子面板一侧,经过第一显示子面板或背光模组中的具有反射作用的膜层的反射后重新向第二偏光片22入射,此时,则又会有一部分光线的偏振方向符合第二下偏光片22的偏振方向而被透射,由此经过多次的反射作用,可以提高光利用率。而由于第二上偏光片25位于显示面板的最外侧,采用吸收型偏光片,则可以减小对环境光的反射作用,有利于提高显示对比度。
当第一显示子面板100和第二显示子面板200均采用液晶显示面板时,显示面板的结构如图8所示,第一显示子面板100的第二基板14与第二显示子面板200的第三基板23形成了对量子点层30的夹持结构,可以阻隔外部水氧破坏量子点材料,因此无需要在量子点层两侧再设置阻隔水氧的保护层。
当第一显示子面板100采用有机发光二极管显示面板,第二显示子面板200采用液晶显示面板时,显示面板的结构如图9所示,量子点层位于有机发光二极管显示面板的封装层内部,或者位于封装层与第三基板之间,均可以起到对量子点材料的阻隔水氧的作用,因此无需在量子点层30两侧再设置的阻隔水氧的保护层。
量子点层位于第一显示子面板与第二显示子面板之间,量子点层出射光线的方向不确定性,改变光线原本的传播方向,因此其产生的光线可以较好地破坏周期性光栅结构产生的图形,从而消除莫尔条纹。
另一方面,本公开实施例还提供一种显示装置,该显示装置包括上述任一显示面板。本公开实施例提供的显示装置,其中,第一显示子面板用于控制背光,进而对第二显示子面板进行区域调光控制,在第一显示子面板与第二显示子面板之间设置量子点层,可以有效破坏两个显示面板的像素单元形 成的周期性光栅产生的图形,从而消除显示时产生的莫尔条纹。
本公开实施例提供的上述显示装置的第一显示子面板可采用液晶显示面板或者有机发光二极管显示面板;当第一显示子面板与第二显示子面板均为液晶显示模组时,如图10所示,显示装置还包括:位于第一显示子面板100背离第二显示子面板200一侧的背光模组500。本公开实施例提供的显示装置包含了上述实施例中描述的任一显示面板,因此,也相应地具有上述显示面板的相关优势,该显示装置的实施可以参见上述显示面板的实施例,重复之处不再赘述。
本公开实施例提供的显示面板及显示装置,包括:第一显示子面板,用于控制背光;第二显示子面板,用于图像显示;第二显示子面板位于第一显示子面板出光侧;量子点层,位于第一显示子面板和第二显示子面板之间。第一显示子面板的出射光激发量子点层,为第二显示子面板提供背光。由于量子点层中的量子点材料受激发射的光线以各个角度向四周发射,改变光线原本的传播方向,因此其产生的光线可以较好地破坏周期性光栅结构产生的图形,从而消除莫尔条纹。
尽管已描述了本公开的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本公开范围的所有变更和修改。
显然,本领域的技术人员可以对本公开进行各种改动和变型而不脱离本公开的精神和范围。这样,倘若本公开的这些修改和变型属于本公开权利要求及其等同技术的范围之内,则本公开也意图包含这些改动和变型在内。

Claims (13)

  1. 一种显示面板,包括:
    第一显示子面板,用于控制背光;
    第二显示子面板,用于图像显示,其中所述第二显示子面板位于所述第一显示子面板的出光侧;
    量子点层,位于所述第一显示子面板和所述第二显示子面板之间。
  2. 如权利要求1所述的显示面板,所述第一显示子面板包括:呈阵列排布的多个第一像素单元;所述第二显示子面板包括:呈阵列排布的多个第二像素单元。
  3. 如权利要求2所述的显示面板,所述量子点层包括:透明基质,分散在所述透明基质中的量子点材料,以及分散在所述透明基质中的散射粒子。
  4. 如权利要求3所述的显示面板,所述透明基质为透明胶体。
  5. 如权利要求3所述的显示面板,所述第一像素单元的出射光为蓝色光,所述量子点材料包括:红色量子点材料和绿色量子点材料;
    所述显示面板还包括:所述波长选择层,用于透射蓝色光,反射红色光和绿色光;其中,所述波长选择层位于所述量子点层面向所述第一像素单元一侧的表面。
  6. 如权利要求2所述的显示面板,所述第一像素单元在所述第二显示子面板的正投影至少覆盖一个所述第二像素单元。
  7. 如权利要求1所述的显示面板,所述第一显示子面板为液晶显示面板;
    所述第一显示子面板还包括:沿所述第一显示子面板的光出射方向依次设置的第一下偏光片、第一基板、第二基板以及第一上偏光片;所述第一像素单元位于所述第一基板与所述第二基板之间;
    所述量子点层位于所述第一上偏光片背离所述第二基板的一侧。
  8. 如权利要求7所述的显示面板,所述第一下偏光片为吸收型偏光片或反射型偏光片,所述第一上偏光片为反射型偏光片。
  9. 如权利要求1所述的显示面板,所述第一显示子面板为有机发光二极管显示面板;
    所述第一显示子面板还包括:沿所述第一显示子面板的光出射方向依次设置的衬底基板和封装层;所述第一像素单元位于所述衬底基板与封装层之间;
    所述量子点层位于所述封装层背离所述第一像素单元的一侧;或者,所述量子点层位于所述封装层内部。
  10. 如权利要求1-9任一项所述的显示面板,所述第二显示子面板为液晶显示面板;
    所述第二显示子面板包括:沿所述第二显示子面板的光出射方向依次设置的第二下偏光片、第三基板、第四基板以及第二上偏光片;所述第二像素单元位于所述第三基板与所述第四基板之间。
  11. 如权利要求10所述的显示面板,所述第二下偏光片为吸收型偏光片或反射型偏光片,所述第二上偏光片为吸收型偏光片。
  12. 一种显示装置,包括如权利要求1-11任一项所述的显示面板。
  13. 如权利要求12所述的显示装置,所述第一显示子面板与所述第二显示子面板均为液晶显示面板,所述显示装置还包括:位于所述第一显示子面板背离所述第二显示子面板一侧的背光模组。
PCT/CN2019/088649 2018-12-06 2019-05-27 一种显示面板及显示装置 WO2020113913A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811488131.3 2018-12-06
CN201811488131.3A CN109471300A (zh) 2018-12-06 2018-12-06 一种显示面板及显示装置

Publications (1)

Publication Number Publication Date
WO2020113913A1 true WO2020113913A1 (zh) 2020-06-11

Family

ID=65675765

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/088649 WO2020113913A1 (zh) 2018-12-06 2019-05-27 一种显示面板及显示装置

Country Status (2)

Country Link
CN (1) CN109471300A (zh)
WO (1) WO2020113913A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113053980A (zh) * 2021-03-15 2021-06-29 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
CN114420719A (zh) * 2022-02-08 2022-04-29 厦门天马微电子有限公司 显示面板和显示装置

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109471300A (zh) * 2018-12-06 2019-03-15 青岛海信电器股份有限公司 一种显示面板及显示装置
TWI698678B (zh) 2019-04-09 2020-07-11 友達光電股份有限公司 顯示裝置
CN110361899B (zh) * 2019-06-27 2021-09-10 厦门天马微电子有限公司 一种显示装置
CN110543052A (zh) * 2019-08-28 2019-12-06 青岛海信电器股份有限公司 一种显示装置
CN112445022B (zh) 2019-08-29 2022-07-01 京东方科技集团股份有限公司 一种液晶显示面板及显示装置
CN110610973A (zh) * 2019-09-20 2019-12-24 昆山国显光电有限公司 一种显示面板和显示装置
CN110515151B (zh) * 2019-09-24 2021-10-29 京东方科技集团股份有限公司 一种导光结构及其制备方法、前置光源及显示面板
CN110646980B (zh) * 2019-09-29 2022-07-29 京东方科技集团股份有限公司 一种液晶显示器
US11106088B2 (en) 2019-10-12 2021-08-31 Shenzhen China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Display panel
CN110646993A (zh) * 2019-10-12 2020-01-03 深圳市华星光电半导体显示技术有限公司 一种显示面板
CN110596947A (zh) * 2019-10-18 2019-12-20 京东方科技集团股份有限公司 一种显示装置
CN112748605A (zh) * 2019-10-30 2021-05-04 合肥鑫晟光电科技有限公司 一种液晶显示组件及液晶显示器
CN112799244B (zh) * 2019-11-13 2023-04-21 京东方科技集团股份有限公司 一种液晶显示组件及其制备方法和液晶显示装置
CN110780488A (zh) * 2019-11-13 2020-02-11 Tcl华星光电技术有限公司 一种显示面板及显示装置
CN113009736A (zh) * 2019-12-18 2021-06-22 京东方科技集团股份有限公司 显示面板及显示装置
CN110928036A (zh) * 2019-12-25 2020-03-27 厦门天马微电子有限公司 显示装置及其显示方法、制备方法
CN111897161B (zh) * 2020-08-14 2022-08-30 合肥京东方光电科技有限公司 显示模组和显示装置
CN112631024A (zh) * 2020-12-25 2021-04-09 舟山扑浪实业有限公司 量子点彩膜基板、量子点液晶显示面板和量子点显示装置
CN113219711A (zh) * 2021-04-25 2021-08-06 北海惠科光电技术有限公司 显示面板和显示装置
CN113219712A (zh) * 2021-04-25 2021-08-06 北海惠科光电技术有限公司 显示面板和显示装置
CN113611225B (zh) * 2021-08-19 2023-03-21 业成科技(成都)有限公司 光学显示器结构
CN116339016B (zh) * 2023-05-30 2023-08-22 苏州弘德光电材料科技有限公司 一种量子点膜及显示器件

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150124199A1 (en) * 2013-11-05 2015-05-07 Chunghwa Picture Tubes, Ltd. Transparent display device
CN204439978U (zh) * 2015-03-20 2015-07-01 青岛海信电器股份有限公司 一种采用量子点的液晶模组及液晶显示装置
CN105700743A (zh) * 2016-01-06 2016-06-22 京东方科技集团股份有限公司 触摸显示屏及其制造方法、触摸显示装置
CN107643641A (zh) * 2017-10-31 2018-01-30 武汉华星光电技术有限公司 液晶透镜以及3d显示装置
CN108761886A (zh) * 2018-03-21 2018-11-06 青岛海信电器股份有限公司 一种显示装置
CN109471300A (zh) * 2018-12-06 2019-03-15 青岛海信电器股份有限公司 一种显示面板及显示装置

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8947619B2 (en) * 2006-07-06 2015-02-03 Intematix Corporation Photoluminescence color display comprising quantum dots material and a wavelength selective filter that allows passage of excitation radiation and prevents passage of light generated by photoluminescence materials
EP2702446A4 (en) * 2011-04-28 2014-10-15 Dolby Lab Licensing Corp DISPLAY WITH TWO DISPLAY TABLES AND WITH A CROSS-BEF COLLIMATOR AND A POLARIZATION-KEEPING DIFFUSER
US10132699B1 (en) * 2014-10-06 2018-11-20 National Technology & Engineering Solutions Of Sandia, Llc Electrodeposition processes for magnetostrictive resonators
CN105093677B (zh) * 2015-08-11 2019-05-07 深圳市华星光电技术有限公司 液晶显示器及其液晶显示模组
CN205809493U (zh) * 2016-07-07 2016-12-14 京东方科技集团股份有限公司 一种显示装置
CN108828831B (zh) * 2018-06-27 2021-01-01 Tcl华星光电技术有限公司 量子点偏光片、显示装置及量子点偏光片的制作方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20150124199A1 (en) * 2013-11-05 2015-05-07 Chunghwa Picture Tubes, Ltd. Transparent display device
CN204439978U (zh) * 2015-03-20 2015-07-01 青岛海信电器股份有限公司 一种采用量子点的液晶模组及液晶显示装置
CN105700743A (zh) * 2016-01-06 2016-06-22 京东方科技集团股份有限公司 触摸显示屏及其制造方法、触摸显示装置
CN107643641A (zh) * 2017-10-31 2018-01-30 武汉华星光电技术有限公司 液晶透镜以及3d显示装置
CN108761886A (zh) * 2018-03-21 2018-11-06 青岛海信电器股份有限公司 一种显示装置
CN109471300A (zh) * 2018-12-06 2019-03-15 青岛海信电器股份有限公司 一种显示面板及显示装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113053980A (zh) * 2021-03-15 2021-06-29 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
CN114420719A (zh) * 2022-02-08 2022-04-29 厦门天马微电子有限公司 显示面板和显示装置

Also Published As

Publication number Publication date
CN109471300A (zh) 2019-03-15

Similar Documents

Publication Publication Date Title
WO2020113913A1 (zh) 一种显示面板及显示装置
US11567248B2 (en) Photoluminescence device and display panel including the same
CN108196336B (zh) 一种导光板、背光模组、显示装置
CN108873465B (zh) 量子点显示基板及其制作方法、显示装置
WO2020107967A1 (zh) 一种显示面板及显示装置
KR101969462B1 (ko) 광발광 디스플레이 장치 및 그 제조방법
KR101311304B1 (ko) 투명표시소자
US20190049777A1 (en) Display panel and display device
US9995964B2 (en) Liquid crystal display panel and display device
CN105929590B (zh) 显示基板、显示装置
WO2022174611A1 (zh) 显示面板及显示装置
EP2240818A1 (en) Reflection/transmission type liquid crystal display apparatus
CN210401941U (zh) 一种显示装置
CN107450218B (zh) 光致发光显示装置及其制造方法
CN106597747A (zh) 背光源、显示基板及显示装置
WO2019015290A1 (zh) 液晶显示器
WO2019227669A1 (zh) 显示面板及显示装置
JP2018181811A (ja) 照明装置、表示装置及びテレビ受信装置
TW202037975A (zh) 顯示裝置
CN106773322B (zh) 背光模组及双面液晶显示器
WO2018056248A1 (ja) 面光源装置および液晶表示装置
TWI823910B (zh) 顯示設備及其製造方法
WO2020001612A1 (zh) 显示面板及其制造方法、显示装置
CN108279460B (zh) 一种量子点导光板、背光模组及显示装置
CN111045250A (zh) 光转换结构及显示装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19893971

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19893971

Country of ref document: EP

Kind code of ref document: A1