WO2019015290A1 - 液晶显示器 - Google Patents

液晶显示器 Download PDF

Info

Publication number
WO2019015290A1
WO2019015290A1 PCT/CN2018/074124 CN2018074124W WO2019015290A1 WO 2019015290 A1 WO2019015290 A1 WO 2019015290A1 CN 2018074124 W CN2018074124 W CN 2018074124W WO 2019015290 A1 WO2019015290 A1 WO 2019015290A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantum rod
liquid crystal
quantum
unit
crystal display
Prior art date
Application number
PCT/CN2018/074124
Other languages
English (en)
French (fr)
Inventor
潘彪
Original Assignee
武汉华星光电技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 武汉华星光电技术有限公司 filed Critical 武汉华星光电技术有限公司
Priority to US16/035,761 priority Critical patent/US20190025625A1/en
Publication of WO2019015290A1 publication Critical patent/WO2019015290A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133617Illumination with ultraviolet light; Luminescent elements or materials associated to the cell
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/13362Illuminating devices providing polarized light, e.g. by converting a polarisation component into another one
    • GPHYSICS
    • G02OPTICS
    • G02BOPTICAL ELEMENTS, SYSTEMS OR APPARATUS
    • G02B5/00Optical elements other than lenses
    • G02B5/30Polarising elements
    • G02B5/3016Polarising elements involving passive liquid crystal elements
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133509Filters, e.g. light shielding masks
    • G02F1/133514Colour filters
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/133528Polarisers
    • G02F1/133538Polarisers with spatial distribution of the polarisation direction
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F1/00Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics
    • G02F1/01Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour 
    • G02F1/13Devices or arrangements for the control of the intensity, colour, phase, polarisation or direction of light arriving from an independent light source, e.g. switching, gating or modulating; Non-linear optics for the control of the intensity, phase, polarisation or colour  based on liquid crystals, e.g. single liquid crystal display cells
    • G02F1/133Constructional arrangements; Operation of liquid crystal cells; Circuit arrangements
    • G02F1/1333Constructional arrangements; Manufacturing methods
    • G02F1/1335Structural association of cells with optical devices, e.g. polarisers or reflectors
    • G02F1/1336Illuminating devices
    • G02F1/133614Illuminating devices using photoluminescence, e.g. phosphors illuminated by UV or blue light
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2201/00Constructional arrangements not provided for in groups G02F1/00 - G02F7/00
    • G02F2201/50Protective arrangements
    • G02F2201/501Blocking layers, e.g. against migration of ions
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/02Materials and properties organic material
    • G02F2202/022Materials and properties organic material polymeric
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/10Materials and properties semiconductor
    • G02F2202/108Materials and properties semiconductor quantum wells
    • GPHYSICS
    • G02OPTICS
    • G02FOPTICAL DEVICES OR ARRANGEMENTS FOR THE CONTROL OF LIGHT BY MODIFICATION OF THE OPTICAL PROPERTIES OF THE MEDIA OF THE ELEMENTS INVOLVED THEREIN; NON-LINEAR OPTICS; FREQUENCY-CHANGING OF LIGHT; OPTICAL LOGIC ELEMENTS; OPTICAL ANALOGUE/DIGITAL CONVERTERS
    • G02F2202/00Materials and properties
    • G02F2202/36Micro- or nanomaterials

Definitions

  • the present invention relates to the field of liquid crystal display technologies, and in particular, to a liquid crystal display.
  • the liquid crystal display includes a liquid crystal panel and a backlight module, and a lower polarizer is further disposed between the liquid crystal panel and the backlight module to inject the backlight generated by the backlight module into the laser in a certain polarization direction.
  • the lower polarizer is generally an absorbing polarizer.
  • the transmittance of the backlight generated by the lower polarizer to the backlight module is theoretically not more than 50%.
  • the quantum rod is a nano-scale conductor material, and the shape belongs to a one-dimensional structure. Unlike a general absorption type polarizing plate that absorbs unpolarized light and radiates heat, the quantum rod absorbs unpolarized light, and its long axis direction can excite the original. A polarized light with a longer wavelength at the incident source. Further, the quantum rod has a high internal quantum efficiency, and is capable of converting a large amount of unpolarized light into polarized light having the same axial alignment direction.
  • the invention provides a liquid crystal display to improve the utilization rate of the backlight.
  • the liquid crystal display includes a backlight module and a quantum rod film, a lower polarizer and a liquid crystal panel which are sequentially stacked on the backlight module;
  • the lower polarizer is provided with a plurality of arrayed polarization axes
  • the quantum rod film comprises a plurality of quantum rod membrane units arranged in an array, each of the quantum rod membrane units corresponding to one of the polarization axes, wherein at least a part of the plurality of quantum rod membrane units are provided with quantum rods
  • the other quantum rod film unit is provided with liquid crystal molecules, and the quantum rods in the quantum rod film unit have the same alignment direction as the corresponding polarization axis.
  • the liquid crystal panel includes a plurality of red sub-pixel units arranged in an array, a plurality of blue sub-pixel units, and a plurality of green sub-pixel units, wherein the plurality of quantum rod film units are divided into a plurality of red quantum rod film units, a plurality of blue quantum rod film units and a plurality of green quantum rod film units, wherein the red quantum rod film unit is in one-to-one correspondence with the red sub-pixel unit, the blue quantum rod film unit and the blue sub-pixel
  • the cells are in one-to-one correspondence, and the green quantum rod film unit is in one-to-one correspondence with the green sub-pixel unit.
  • the backlight generated by the backlight module is blue light.
  • a quantum rod is disposed in a part of the plurality of quantum rod membrane units, and liquid crystal molecules are disposed in another portion, and the red quantum rod membrane unit and the green quantum rod membrane unit each include a plurality of A quantum rod, the blue quantum rod membrane unit comprising a plurality of liquid crystal molecules.
  • the quantum rod includes one or more elements of the group III-V, II-VI, and IV-VI of the periodic table.
  • the quantum rod has a length of 10 nm to 50 nm and an aspect ratio of 5-10.
  • the quantum rod film has a thickness of 0.5 ⁇ m to 2 ⁇ m.
  • the first barrier layer and the second barrier layer are respectively stacked on both sides of the quantum rod film.
  • the material of the first barrier layer and the second barrier layer is a polyethylene terephthalate polymer, a polymethyl methacrylate polymer, an epoxy resin polymer, a polysiloxane polymer, Any one of a fluororesin polymer or an organic/inorganic composite film containing a metal oxide.
  • each two adjacent quantum rod film units are separated by a spacer layer, and the spacer layer is a light shielding material.
  • the liquid crystal display provided by the present invention provides a quantum rod film between the lower polarizer and the backlight module.
  • the backlight generated by the backlight module is first absorbed by a quantum rod on the quantum rod film, and then polarized light having the same alignment direction as the quantum rod is emitted. Since the alignment direction of the quantum rod is the same as the polarization axis direction of the lower polarizer, so that the backlight passing through the quantum rod film can transmit a large amount of the lower polarizer, thereby reducing the lower polarizer.
  • the absorbed light increases the transmittance of the backlight generated by the lower polarizer to the backlight module, thereby improving the brightness of the liquid crystal display and improving the backlight utilization rate.
  • FIG. 1 is a schematic cross-sectional view of a liquid crystal display according to an embodiment of the present invention.
  • FIG. 2 is a schematic cross-sectional view of the quantum rod film according to an embodiment of the present invention.
  • the present invention provides a liquid crystal display 100.
  • the liquid crystal display 100 includes a backlight module 10, a quantum rod film 20, a lower polarizer 30, a liquid crystal panel 40, and an upper polarizer 50 which are sequentially stacked.
  • the quantum rod film 20 is located between the lower polarizer 30 and the backlight module 10 .
  • the backlight generated by the backlight module 10 is incident on the liquid crystal panel 40 through the quantum rod film 20 and the lower polarizer 30, and is then emitted through the upper polarizer 50, thereby completing the liquid crystal display 100. Display.
  • the more light that is emitted from the upper polarizer 50 the higher the display brightness of the liquid crystal display 100.
  • the amount of light in the upper polarizer 50 is increased by increasing the light incident into the liquid crystal panel 40.
  • the backlight module 10 includes a backlight, a light guide plate, and the like.
  • the backlight emitted by the backlight module 10 is generally unpolarized.
  • the backlight generated by the backlight of the backlight module 10 is blue light.
  • the blue light has a short wavelength, and when the quantum rod is passed, it can excite green light or red light longer than the original blue light wavelength, thereby satisfying the needs of the liquid crystal display 100 screen display.
  • the backlight is a blue LED lamp. Compared with the white LED lamp which is commonly used in the prior art (generally, the blue LED chip and the yellow phosphor are white light), the blue LED lamp in this embodiment does not carry the phosphor. Thereby, the absorption of the light energy by the phosphor is reduced, the photoelectric conversion efficiency of the backlight module 10 is increased, and the color saturation (NTSC) of the liquid crystal display 100 is further improved.
  • NTSC color saturation
  • the quantum rod film 20 includes a plurality of quantum rod film units 21 arranged in an array.
  • the plurality of quantum rod film units 21 are divided into a plurality of red quantum rod film units 211, a plurality of blue quantum rod film units 212, and a plurality of green quantum rod film units 213.
  • the sum of the number of the plurality of red quantum rod film units 211, the plurality of blue quantum rod film units 212, and the plurality of green quantum rod film units 213 is the number of the quantum rod film units 21.
  • the red quantum rod film unit 211, the blue quantum rod film unit 212, and the green quantum rod film unit 213 are alternately arranged.
  • the quantum rod film 20 further includes a spacer layer, and each two adjacent quantum rod film units 21 are separated by the spacer layer.
  • the spacer layer is a light shielding material.
  • the spacer layer is a mixture (BM) of Cr/propylene resin and black pigment.
  • the quantum rod film layer 20 has a thickness of 0.5 ⁇ m to 2 ⁇ m to ensure the function of the quantum rod film 20 in a thickness range as small as possible.
  • the first barrier layer 23 and the second barrier layer 24 are also laminated on both sides of the quantum rod film layer 20, respectively. The quantum rod film layer 20 is protected by the first barrier layer 23 and the second barrier layer 24 to achieve waterproofing, corrosion prevention, and the like of the quantum rod film layer 20.
  • the first barrier layer 23 and the second barrier layer 24 are transparent film layers, so that the backlight can easily pass through the first barrier layer 23 and the second barrier layer 24 .
  • the material of the first barrier layer 23 and the second barrier layer 24 may be ethylene terephthalate polymer, polymethyl methacrylate polymer, epoxy resin polymer, polysiloxane polymer. Any one of a fluororesin polymer or an organic/inorganic composite film containing a metal oxide.
  • the first barrier layer 23 and the second barrier layer 24 are PET (polyethylene terephthalate) film layers, which are good for achieving the quantum rod film layer 20. At the same time as the protection, the high transmittance of the backlight is achieved.
  • a quantum rod is disposed in at least a part of the plurality of quantum rod membrane units 21, and liquid crystal molecules are disposed in the other quantum rod membrane unit 21.
  • a plurality of quantum rod membrane units 21 are provided with quantum rods in a part of the quantum rod membrane unit 21, and liquid crystal molecules are disposed in the other part.
  • a quantum rod is disposed in each of the quantum rod membrane units 21.
  • an alignment direction of the quantum rod or the liquid crystal molecules in the quantum rod film unit 21 is the same as a direction of the polarization axis corresponding to the quantum rod film unit 21.
  • the red quantum rod film unit 211 and the green quantum rod film unit 213 each include a plurality of quantum rods
  • the blue quantum rod film unit 312 includes a plurality of liquid crystal molecules.
  • the quantum rods in the red quantum rod film unit 211 and the green quantum rod film unit 213 and the liquid crystal molecules in the blue quantum rod film unit 312 have a certain alignment direction.
  • the alignment of the quantum rods can be achieved by the alignment of the liquid crystal molecules in the prior art, and will not be described herein.
  • the quantum rods in the red quantum rod film unit 211 and the quantum rods in the green quantum rod film unit 213 have different composition components or sizes, thereby further causing the backlight module 10
  • the generated blue backlight is absorbed by the quantum rods in the red quantum rod film unit 211 to excite red polarized light; the blue backlight generated by the backlight module 10 passes through the green quantum rod film unit 213 After absorption by the quantum rod, green polarized light is excited.
  • a polarization direction of the red polarized light is the same as an alignment direction of the quantum rods in the red quantum rod film unit 211, and a polarization direction of the green polarized light and a quantum rod in the green quantum rod film unit 213 The alignment direction is the same.
  • the liquid crystal molecules are provided in the blue quantum rod film unit 212, the wavelength of the blue light passing through the blue quantum rod film unit 212 is not changed, so that the light energy can be prevented from being lost. And, the blue light entering the blue quantum rod film unit 212 is optically aligned by the liquid crystal molecules to generate blue polarized light after passing through the blue quantum rod film unit 212, and the blue polarized light The polarization angle of the light is the same as the alignment angle of the liquid crystal molecules.
  • the quantum rod is a semiconductor material
  • the semiconductor material is a compound composed of one or more elements of Groups III-V, II-VI, and IV-VI of the periodic table.
  • the quantum rods in the red quantum rod film unit 211 are formed by using a CdSe/CdS material
  • the quantum rods in the green quantum rod film unit 213 are formed by using a CdSe/InP material.
  • the quantum rod has a length of 10 nm to 50 nm and an aspect ratio of 5-10. It can be understood that the length and aspect ratio of the quantum rod can be changed according to actual needs.
  • the lower polarizer 30 is provided with a plurality of polarization axes arranged in an array.
  • the polarization axes of the array arrangement are in one-to-one correspondence with the array of quantum rod membrane units 21, that is, each of the quantum rod membrane units 21 corresponds to one of the polarization axes, and the quantum rod membrane unit
  • the alignment direction of the quantum rod or the liquid crystal molecules in 21 is the same as the direction of the polarization axis corresponding to the quantum rod film unit 21. Since the polarization direction of the red polarized light emitted through the red quantum rod film unit 211 is the same as the alignment direction of the quantum rods in the red quantum rod film unit 211, the green quantum rod film unit 213 is emitted.
  • the polarization direction of the green polarized light is the same as the alignment direction of the quantum rods in the green quantum rod film unit 213, and the polarization angle of the blue polarized light emitted by the liquid crystal molecules in the blue quantum rod film unit 212 is
  • the alignment angle of the liquid crystal molecules is the same, that is, the polarization direction of the red polarized light emitted through the red quantum rod film unit 211 is the same as the polarization axis direction corresponding to the red quantum rod film unit 211, and the green quantum is
  • the polarization direction of the green polarized light emitted from the rod film unit 213 is the same as the polarization axis direction of the green quantum rod film unit 213, and the blue polarization emitted by the liquid crystal molecules in the blue quantum rod film unit 212
  • the polarization angle of the light is the same as the polarization axis angle of the blue quantum rod film unit 212.
  • the polarized light in the direction of the polarization axis is substantially transparent to the lower polarizing plate 30, and therefore passes through the red quantum rod film unit 211, the blue quantum rod film unit 212, and the The red polarized light, the blue polarized light, and the green polarized light emitted from the green quantum rod film unit 213 can be mostly transmitted through the lower polarizing plate 30.
  • the lower polarizer of the prior art has a theoretical transmittance of the backlight generated by the backlight module of not more than 50%.
  • the transmittance of the backlight generated by the lower polarizer 30 to the backlight module 10 is greatly improved. It is found that in the embodiment, the transmittance of the backlight generated by the lower polarizer to the backlight module reaches 80%.
  • the liquid crystal panel 40 includes a plurality of red sub-pixel units arranged in an array, a plurality of blue sub-pixel units, and a plurality of green sub-pixel units (not shown).
  • the red sub-pixel unit, the blue sub-pixel unit, and the green sub-pixel unit are alternately arranged.
  • the red quantum rod film unit 211 is in one-to-one correspondence with the red sub-pixel unit, and the red polarized light emitted through the red quantum rod film unit 211 is incident on the red sub-pixel through the lower polarizer 30. Unit area.
  • the blue quantum rod film unit 212 is in one-to-one correspondence with the blue sub-pixel unit, and the blue polarized light emitted through the blue quantum rod film unit 212 is incident on the lower polarizer 30 through the lower polarizer 30 Blue sub-pixel unit area.
  • the green quantum rod film unit 213 is in one-to-one correspondence with the green sub-pixel unit, and the green polarized light emitted through the green quantum rod film unit 213 is incident on the green sub-pixel unit through the lower polarizer 30. region.
  • a color film substrate is disposed on a side of the liquid crystal panel 40 facing the light emitting surface, and light in the liquid crystal panel 40 is emitted through the color filter substrate.
  • the color film substrate comprises a plurality of arrays of red color film regions, blue color film regions and green color film regions, the red color film regions corresponding to the red sub-pixel units, the blue color film regions and Corresponding to the blue sub-pixel unit, the green color film area corresponds to the green sub-pixel unit.
  • different color film regions of the color filter substrate filter out light of different colors and emit the same color, thereby displaying three primary colors of red, blue and green on the liquid crystal panel, thereby The LCD panel can display a colorful effect.
  • the backlight is generally white light, that is, light entering the color film region of the color filter substrate contains light of various colors, and therefore, most of the light is filtered by the color filter substrate.
  • the quantum rod film unit 20 has different quantum rod film units 21 corresponding to the sub-pixels of the same color, that is, the light entering the color film area of the color film substrate is the same as the color film substrate color film. The area has the same color of light. Therefore, the light filtered by the color filter substrate is greatly reduced, thereby further increasing the color saturation (NTSC) of the liquid crystal display 100.
  • the red quantum rod film unit 211 corresponds to the red sub-pixel and corresponds to a red color film area on the color film substrate.
  • the blue backlight is excited into red polarized light by a quantum rod in the red quantum rod film unit 211, and is incident on a red color film region on the color filter substrate. Since the red polarized light is the same as the color of the red color film area on the color filter substrate, the light filtered by the color filter substrate is greatly reduced, thereby further improving the color saturation of the liquid crystal display 100. Degree (NTSC).
  • a quantum rod film 20 is disposed between the lower polarizer 30 and the backlight module 10.
  • the backlight generated by the backlight module 10 is first absorbed by the quantum rods on the quantum rod film 20, and then polarized light having the same alignment direction as the quantum rods is emitted. Since the alignment direction of the quantum rod is the same as the polarization axis direction of the lower polarizer 30, the backlight passing through the quantum rod film can pass through the lower polarizer 30 in a large amount, thereby reducing the The light absorbed by the polarizer 30 increases the transmittance of the backlight generated by the lower polarizer 30 to the backlight module 10, thereby improving the brightness of the liquid crystal display 100 and improving the backlight utilization.
  • the light source is a blue LED or the like that does not carry phosphors, thereby greatly improving the photoelectric conversion rate of the backlight, reducing the power consumption of the backlight, thereby improving the liquid crystal.
  • the quantum rods in the quantum rod film 20 excite blue light incident to different quantum rod film units 21 into light of a color corresponding to different color sub-pixels corresponding to the quantum rod film unit, thereby reducing the
  • the filtering effect of the color filter substrate on the light in the liquid crystal panel 40 further increases the color saturation (NTSC) of the liquid crystal display 100.

Landscapes

  • Physics & Mathematics (AREA)
  • Nonlinear Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • General Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Mathematical Physics (AREA)
  • Polarising Elements (AREA)
  • Liquid Crystal (AREA)

Abstract

一种液晶显示器(100),在下偏光片(30)与背光模组(10)之间设置一量子棒膜(20),通过量子棒膜(20)上的量子棒将背光模组(10)产生的背光先进行吸收,再出射与量子棒的配向方向相同的偏振光。由于量子棒的配向方向与下偏光片(30)的偏光轴方向相同,从而使得经过量子棒膜(20)的背光能够大量的透过下偏光片(30),减少被下偏光片(30)所吸收的光线,增加下偏光片(30)对背光模组(10)产生的背光的透光度,提高背光利用率,进而提高液晶显示器(100)的亮度。

Description

液晶显示器 技术领域
本发明涉及液晶显示技术领域,尤其涉及一种液晶显示器。
背景技术
液晶显示器包括层叠设置的液晶面板和背光模块,并且,所述液晶面板与所述背光模块之间还设有下偏光片,以将所述背光模块产生的背光按一定的偏振方向入射至所述液晶面板中。现有技术中,所述下偏光片一般为吸收型的偏光板,背光源所发出的非偏振光线穿过下偏光片时,在下偏光片的吸收轴方向上的分量会被吸收而无法通过,因此,所述下偏光片对所述背光模组产生的背光的透光度理论上不超过50%,光线再经过液晶面板后,使用者实际可见所述液晶显示器的亮度一般不超过所述背光模组发出背光的亮度的10%,使得背光利用率相当低而造成能源的浪费。
量子棒为纳米级导体材料,形状属于一维结构,与一般吸收型偏光板吸收非偏振光而放热的形式不同的是,量子棒吸收非偏振光线后,其长轴方向可激发出比原入射光源波长较长的偏振光线。并且,所述量子棒的内部量子效率高,能够将大量的非偏振光转换为与其轴向配向方向相同的偏振光。
发明内容
本发明提供一种液晶显示器,提高所述背光的利用率。
所述液晶显示器包括背光模组以及依次层叠于背光模组上的量子棒膜、下偏光片及液晶面板;所述下偏光片上设有多个阵列排布的偏光轴,所述量子棒膜包括阵列排布的多个量子棒膜单元,每个所述量子棒膜单元与一个所述偏光轴相对应,多个所述量子棒膜单元中至少部分所述量子棒膜单元内设有量子棒,其它所述量子棒膜单元内设有液晶分子,所述量子棒膜单元内的所述量子棒的配向方向与其所对应的所述偏光轴的方向相同。
其中,所述液晶面板包括阵列排布的多个红色子像素单元、多个蓝色子像素单元及多个绿色子像素单元,所述多个量子棒膜单元分为数个红色量子棒膜 单元、数个蓝色量子棒膜单元及数个绿色量子棒膜单元,所述红色量子棒膜单元与所述红色子像素单元一一对应,所述蓝色量子棒膜单元与所述蓝色子像素单元一一对应,所述绿色量子棒膜单元与所述绿色子像素单元一一对应。
其中,所述背光模组产生的背光为蓝色光。
其中,多个所述量子棒膜单元中部分量子棒膜单元内设有量子棒,另一部分内设有液晶分子,并且所述红色量子棒膜单元及所述绿色量子棒膜单元均包括多个量子棒,所述蓝色量子棒膜单元包括多个液晶分子。
其中,所述量子棒中包括元素周期表中III-V族、II-VI族、IV-VI族中一种或几种元素。
其中,所述量子棒的长度为10nm-50nm,其长径比为5-10。
其中,所述量子棒膜的厚度为0.5μm-2μm。
其中,所述量子棒膜两侧分别层叠有第一阻隔层及第二阻隔层。
其中,所述第一阻隔层及所述第二阻隔层的材料为对苯二甲酸乙二酯聚合物、聚甲基丙烯酸甲酯聚合物、环氧树脂聚合物、聚硅氧烷聚合物、氟树脂聚合物或包含金属氧化物的有机/无机复合薄膜中任意一种。
其中,每两个相邻的所述量子棒膜单元通过间隔层分隔,所述间隔层为遮光材料。
本发明提供的液晶显示器,通过在所述下偏光片与所述背光模组之间设置一量子棒膜。通过所述量子棒膜上的量子棒将所述背光模组产生的背光先进行吸收,再出射与所述量子棒的配向方向相同的偏振光。由于所述量子棒的配向方向与所述下偏光片的偏光轴方向相同,从而使得经过所述量子棒膜的所述背光能够大量的透过所述下偏光片,减少被所述下偏光片所吸收的光线,增加所述下偏光片对所述背光模组产生的背光的透光度,进而提高所述液晶显示器的亮度,提高背光利用率。
附图说明
为了更清楚地说明本发明实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付 出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例所述液晶显示器的截面示意图;
图2是本发明实施例的所述量子棒膜截面示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
请参阅图1,本发明提供一种液晶显示器100。所述液晶显示器100包括依次层叠的背光模组10、量子棒膜20、下偏光片30、液晶面板40及上偏光片50。所述量子棒膜20位于所述下偏光片30及所述背光模组10之间。所述背光模组10产生的背光通过所述量子棒膜20及所述下偏光片30入射至所述液晶面板40中,再经过所述上偏光片50进行出光,从而完成所述液晶显示器100的显示。所述上偏光片50中出射光线越多,则所述液晶显示器100的显示亮度越高。本实施例中,通过增加入射至所述液晶面板40中的光亮以增加所述上偏光片50中的光量。
所述背光模组10包括背光源、导光板等。所述背光模组10出射的背光一般为非偏振光。本发明中,所述背光模组10的背光源产生的背光为蓝色光。蓝色光线的波长较短,经过所量子棒时能够激发出比原来的蓝色光波长更长的绿光或红光,从而满足所述液晶显示器100画面显示的需要。本实施例中,所述背光源蓝色LED灯。相对于现有技术中较常使用的白光LED灯(一般通过蓝色的LED芯片加黄色的荧光粉,配成白光)来说,本实施例中的所述蓝色LED灯中不搭载荧光粉,从而减少荧光粉对所述光能的吸收,增加了所述背光模组10的光电转化效率,进而提高所述液晶显示器100的色彩饱和度(NTSC)。
请一并参阅图1及图2,所述量子棒膜20包括阵列排布的多个量子棒膜单元21。所述多个量子棒膜单元21分为数个红色量子棒膜单元211、数个蓝色量子棒膜单元212及数个绿色量子棒膜单元213。其中,数个红色量子棒膜 单元211、数个蓝色量子棒膜单元212及数个绿色量子棒膜单元213的数量之和为所述量子棒膜单元21的数量。并且,所述红色量子棒膜单元211、所述蓝色量子棒膜单元212及所述绿色量子棒膜单元213交替排列。本发明中,所述量子棒膜20还包括间隔层,每两个相邻的所述量子棒膜单元21通过所述间隔层分隔。所述间隔层为遮光材料。本实施例中,所述间隔层为Cr/丙烯树脂与黑色颜料组成的混合物(BM)。本实施例中,所述量子棒膜层20的厚度为0.5μm-2μm,以在尽量薄的厚度范围内保证所述量子棒膜20功能的实现。所述量子棒膜层20的两侧还分别层叠有第一阻隔层23及第二阻隔层24。通过所述第一阻隔层23及所述第二阻隔层24保护所述量子棒膜层20,实现所述量子棒膜层20的防水、防腐蚀等。所述第一阻隔层23及所述第二阻隔层24为透明薄膜层,使得背光能够容易的透过所述第一阻隔层23及所述第二阻隔层24。所述第一阻隔层23及所述第二阻隔层24的材料可以为对苯二甲酸乙二酯聚合物、聚甲基丙烯酸甲酯聚合物、环氧树脂聚合物、聚硅氧烷聚合物、氟树脂聚合物或包含金属氧化物的有机/无机复合薄膜中任意一种。本实施例中,所述述第一阻隔层23及所述第二阻隔层24为PET(聚对苯二甲酸乙二醇酯)薄膜层,在实现对所述量子棒膜层20起到良好的保护作用的同时,实现背光的高透过率。
多个所述量子棒膜单元21中至少部分所述量子棒膜单元内设有量子棒,其它所述量子棒膜单元21内设有液晶分子。具体的,多个所述量子棒膜单元21中部分量子棒膜单元21内设有量子棒,另一部分内设有液晶分子。或者,每个所述量子棒膜单元21内均设有量子棒。并且,所述量子棒膜单元21内的所述量子棒或所述液晶分子的配向方向与所述量子棒膜单元21所对应的所述偏光轴的方向相同。本实施例中,所述红色量子棒膜单元211及绿色量子棒膜单元213内均包括多个量子棒,所述蓝色量子棒膜单元312包括多个液晶分子。所述红色量子棒膜单元211及绿色量子棒膜单元213内的所述量子棒及所述蓝色量子棒膜单元312内的液晶分子均有一定的配向方向。所述量子棒的配向可以通过现有技术中液晶分子的配向方式来实现,在此不进行赘述。
进一步的,本实施例中,所述红色量子棒膜单元211内的所述量子棒及绿色量子棒膜单元213内的所述量子棒的组成成分或大小不同,进而使得所述背 光模组10产生的蓝色的背光经所述红色量子棒膜单元211内的量子棒吸收后,激发出红色偏振光;所述背光模组10产生的蓝色的背光经所述绿色量子棒膜单元213内的量子棒吸收后,激发出绿色偏振光。并且,所述红色的偏振光的偏振方向与所述红色量子棒膜单元211内的量子棒的配向方向相同,所述绿色偏振光的偏振方向与所述绿色量子棒膜单元213内的量子棒的配向方向相同。由于所述蓝色量子棒膜单元212内设液晶分子,不会对穿过所述蓝色量子棒膜单元212的蓝色光的波长产生改变,从而能够保证光能不会进行损耗。并且,通过所述液晶分子对进入所述蓝色量子棒膜单元212内的蓝色光进行光配向,使经过所述蓝色量子棒膜单元212后产生蓝色偏振光,且所述蓝色偏振光的偏振角度与所述液晶分子的配向角度相同。
本发明中,所述量子棒为半导体材料,所述半导体材料为元素周期表中III-V族、II-VI族、IV-VI族中一种或几种元素组成的化合物。本实施例中,所述红色量子棒膜单元211内的量子棒采用CdSe/CdS材料形成,所述绿色量子棒膜单元213内的量子棒是采用CdSe/InP材料形成。进一步的,所述量子棒的长度为10nm-50nm,其长径比为5-10。可以理解的是,所述量子棒的长度及长径比能够根据实际需要进行变化。
所述下偏光片30上设有多个阵列排布的偏光轴。阵列排布的所述偏光轴与阵列排布的所述量子棒膜单元21一一对应,即每个所述量子棒膜单元21与一个所述偏光轴相对应,且所述量子棒膜单元21内的所述量子棒或所述液晶分子的配向方向均与所述量子棒膜单元21对应的所述偏光轴的方向相同。由于经过所述红色量子棒膜单元211出射的所述红色偏振光的偏振方向与所述红色量子棒膜单元211内的量子棒的配向方向相同,经过所述绿色量子棒膜单元213出射的所述绿色偏振光的偏振方向与所述绿色量子棒膜单元213内的量子棒的配向方向相同,通过所述蓝色量子棒膜单元212内所述液晶分子出射的蓝色偏振光的偏振角度与所述液晶分子的配向角度相同,即经过所述红色量子棒膜单元211出射的所述红色偏振光的偏振方向与所述红色量子棒膜单元211对应的偏光轴方向相同,经过所述绿色量子棒膜单元213出射的所述绿色偏振光的偏振方向与所述绿色量子棒膜单元213对应的偏光轴方向相同,通过所述蓝色量子棒膜单元212内所述液晶分子出射的蓝色偏振光的偏振角度与 所述蓝色量子棒膜单元212对应的偏光轴角度相同。一般来说,沿所述偏光轴方向的所述偏振光基本能够透过所述下下偏光片30,因此,经过所述红色量子棒膜单元211、所述蓝色量子棒膜单元212及所述绿色量子棒膜单元213出射的所述红色的偏振光、所述蓝色的偏振光及所述绿色的偏振光均能够大部分透过所述下下偏光片30。相对于现有技术的所述下偏光片对所述背光模组产生的背光的透光度理论上不超过50%的情况来说。本发明中,通过在所述背光模组及所述下偏光片之间设置量子棒膜,大大提高了所述下偏光片30对所述背光模组10产生的背光的透光度。经测试发现,本实施例中,所述下偏光片对所述背光模组产生的背光的透光度达到80%。
所述液晶面板40包括阵列排布的多个红色子像素单元、多个蓝色子像素单元及多个绿色子像素单元(图中未示出)。所述红色子像素单元、蓝色子像素单元及绿色子像素单元交替排列。所述红色量子棒膜单元211与所述红色子像素单元一一对应,经过所述红色量子棒膜单元211出射的所述红色的偏振光经过所述下偏光片30射入所述红色子像素单元区域。所述蓝色量子棒膜单元212与所述蓝色子像素单元一一对应,经过所述蓝色量子棒膜单元212出射的所述蓝色偏振光经过所述下偏光片30射入所述蓝色子像素单元区域。所述绿色量子棒膜单元213与所述绿色子像素单元一一对应,经过所述绿色量子棒膜单元213出射的所述绿色偏振光经过所述下偏光片30射入所述绿色子像素单元区域。
所述液晶面板40朝向出光面的一侧设有彩膜基板,所述液晶面板40内的光线经过所述彩膜基板进行出光。所述彩膜基板上包括多个阵列的红色彩膜区、蓝色彩膜区及绿色彩膜区,所述红色彩膜区与所述红色子像素单元相对应,所述蓝色彩膜区与所述蓝色子像素单元相对应,所述绿色彩膜区与所述绿色子像素单元相对应。一般情况下,所述彩膜基板的不同彩膜区会过滤掉与其颜色不同的光线,并使与其相同的颜色出射,从而在所述液晶面板上显示出红、蓝、绿三种三原色,从而使液晶面板能够显示出丰富多彩的效果。现有技术中,所述背光一般为白光,即进入所述彩膜基板的彩膜区的光包含有各种颜色的光,因此,会被所述彩膜基板过滤掉大部分的光。而本发明中,所述量子棒膜20不同量子棒膜单元21分别对应颜色相同的所述子像素,即进入所述彩膜基板 的彩膜区的光均为与所述彩膜基板彩膜区颜色相同的光。因此,所述彩膜基板所过滤掉的光大大的减少,从而进一步提高所述液晶显示器100的色彩饱和度(NTSC)。例如,所述红色量子棒膜单元211对应于所述红色子像素,并对应与所述彩膜基板上红色彩膜区。通过所述红色量子棒膜单元211中的量子棒将所述蓝色的背光激发为红色偏振光,并入射至所述彩膜基板上的红色彩膜区。由于所述红色偏振光与所述彩膜基板上的红色彩膜区的颜色形同,因此,所述彩膜基板所过滤掉的光大大的减少,从而进一步提高所述液晶显示器100的色彩饱和度(NTSC)。
本发明提供的液晶显示器100,通过在所述下偏光片30与所述背光模组10之间设置一量子棒膜20。通过所述量子棒膜20上的量子棒将所述背光模组10产生的背光先进行吸收,再出射与所述量子棒的配向方向相同的偏振光。由于所述量子棒的配向方向与所述下偏光片30的偏光轴方向相同,从而使得经过所述量子棒膜的所述背光能够大量的透过所述下偏光片30,减少被所述下偏光片30所吸收的光线,增加所述下偏光片30对所述背光模组10产生的背光的透光度,进而提高所述液晶显示器100的亮度,提高背光利用率。并且,本发明中所述背光模组10的所述光源为不搭载荧光粉的蓝色LED等,大大提高所述背光源的光电转化率,降低所述背光的功耗,从而提高所述液晶显示器100的色彩饱和度(NTSC)。并且,所述量子棒膜20中的量子棒将入射至不同所述量子棒膜单元21的蓝光激发为与所述量子棒膜单元对应的不同颜色子像素对应颜色的光,从而减小所述液晶面板40中彩膜基板对光的过滤作用,进一步增加提高所述液晶显示器100的色彩饱和度(NTSC)。
以上所揭露的仅为本发明一种较佳实施例而已,当然不能以此来限定本发明之权利范围,本领域普通技术人员可以理解实现上述实施例的全部或部分流程,并依本发明权利要求所作的等同变化,仍属于发明所涵盖的范围。

Claims (10)

  1. 一种液晶显示器,其中,包括背光模组以及依次层叠于背光模组上的量子棒膜、下偏光片及液晶面板;所述下偏光片上设有多个阵列排布的偏光轴,所述量子棒膜包括阵列排布的多个量子棒膜单元,每个所述量子棒膜单元与一个所述偏光轴相对应,多个所述量子棒膜单元中至少部分所述量子棒膜单元内设有量子棒,其它所述量子棒膜单元内设有液晶分子,所述量子棒膜单元内的所述量子棒或所述液晶分子的配向方向与所述量子棒膜单元所对应的所述偏光轴的方向相同。
  2. 如权利要求1所述的液晶显示器,其中,所述液晶面板包括阵列排布的多个红色子像素单元、多个蓝色子像素单元及多个绿色子像素单元,所述多个量子棒膜单元分为数个红色量子棒膜单元、数个蓝色量子棒膜单元及数个绿色量子棒膜单元,所述红色量子棒膜单元与所述红色子像素单元一一对应,所述蓝色量子棒膜单元与所述蓝色子像素单元一一对应,所述绿色量子棒膜单元与所述绿色子像素单元一一对应。
  3. 如权利要求2所述的液晶显示器,其中,所述背光模组产生的背光为蓝色光。
  4. 如权利要求3所述的液晶显示器,其中,多个所述量子棒膜单元中部分所述量子棒膜单元内设有量子棒,另一部分所述量子棒膜单元内设有液晶分子,并且所述红色量子棒膜单元及所述绿色量子棒膜单元均包括多个量子棒,所述蓝色量子棒膜单元包括多个液晶分子。
  5. 如权利要求2所述的液晶显示器,其中,所述量子棒中包括元素周期表中III-V族、II-VI族、IV-VI族中一种或几种元素。
  6. 如权利要求2所述的液晶显示器,其中,所述量子棒的长度为10nm-50nm,其长径比为5-10。
  7. 如权利要求6所述的液晶显示器,其中,所述量子棒膜的厚度为0.5μm-2μm。
  8. 如权利要求1所述的液晶显示器,其中,所述量子棒膜两侧分别层叠有第一阻隔层及第二阻隔层。
  9. 如权利要求8所述的液晶显示器,其中,所述第一阻隔层及所述第二阻隔层的材料为对苯二甲酸乙二酯聚合物、聚甲基丙烯酸甲酯聚合物、环氧树脂聚合物、聚硅氧烷聚合物、氟树脂聚合物或包含金属氧化物的有机/无机复合薄膜中任意一种。
  10. 如权利要求1所述的液晶显示器,其中,所述量子棒膜还包括间隔层,每两个相邻的所述量子棒膜单元通过所述间隔层分隔,所述间隔层为遮光材料。
PCT/CN2018/074124 2017-07-20 2018-01-25 液晶显示器 WO2019015290A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
US16/035,761 US20190025625A1 (en) 2017-07-20 2018-07-16 Liquid crystal display

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710599945.3 2017-07-20
CN201710599945.3A CN107153304A (zh) 2017-07-20 2017-07-20 液晶显示器

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/035,761 Continuation US20190025625A1 (en) 2017-07-20 2018-07-16 Liquid crystal display

Publications (1)

Publication Number Publication Date
WO2019015290A1 true WO2019015290A1 (zh) 2019-01-24

Family

ID=59796856

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/074124 WO2019015290A1 (zh) 2017-07-20 2018-01-25 液晶显示器

Country Status (3)

Country Link
US (1) US20190025625A1 (zh)
CN (1) CN107153304A (zh)
WO (1) WO2019015290A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10210799B2 (en) 2017-06-28 2019-02-19 Wuhan China Star Optoelectronics Semiconductor Display Technology Co., Ltd. Pixel compensation circuit and display device
CN107153304A (zh) * 2017-07-20 2017-09-12 武汉华星光电技术有限公司 液晶显示器
CN108983485A (zh) * 2018-08-17 2018-12-11 京东方科技集团股份有限公司 一种显示面板及其制作方法、显示装置
CN109445174B (zh) * 2019-01-02 2022-04-29 京东方科技集团股份有限公司 一种显示面板及其制备方法、显示装置
CN110045552B (zh) * 2019-04-29 2022-04-19 京东方科技集团股份有限公司 阵列基板、液晶显示面板及液晶显示装置
CN111290160B (zh) * 2020-03-31 2023-05-30 Tcl华星光电技术有限公司 一种显示结构和显示装置
CN111580209A (zh) * 2020-05-20 2020-08-25 Tcl华星光电技术有限公司 偏光片、光学薄膜及其制备方法

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105259700A (zh) * 2015-10-27 2016-01-20 深圳市华星光电技术有限公司 液晶显示装置及电子设备
CN105404047A (zh) * 2015-12-04 2016-03-16 深圳市华星光电技术有限公司 Coa型液晶显示面板的制作方法及coa型液晶显示面板
CN106597748A (zh) * 2017-01-03 2017-04-26 京东方科技集团股份有限公司 一种显示用基板、液晶显示面板及液晶显示装置
US20170146859A1 (en) * 2015-11-20 2017-05-25 A. U. Vista, Inc. Quantum-dot embedded polarizer component and display device using same
CN107153304A (zh) * 2017-07-20 2017-09-12 武汉华星光电技术有限公司 液晶显示器

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN203275836U (zh) * 2013-06-25 2013-11-06 京东方科技集团股份有限公司 显示装置
JP2016012047A (ja) * 2014-06-30 2016-01-21 富士フイルム株式会社 液晶表示装置
CN204389849U (zh) * 2014-12-30 2015-06-10 乐视致新电子科技(天津)有限公司 一种量子点液晶模组及显示装置
CN104880849A (zh) * 2015-06-01 2015-09-02 武汉华星光电技术有限公司 一种显示面板及液晶显示装置
CN104932136B (zh) * 2015-07-01 2018-01-26 合肥鑫晟光电科技有限公司 彩膜基板及其制作方法、显示面板和显示装置
CN105093677B (zh) * 2015-08-11 2019-05-07 深圳市华星光电技术有限公司 液晶显示器及其液晶显示模组
CN105425540B (zh) * 2016-01-04 2019-11-05 京东方科技集团股份有限公司 量子点膜及其制备方法、量子点膜的图案化方法及显示器
CN105511150A (zh) * 2016-02-01 2016-04-20 京东方科技集团股份有限公司 一种量子棒、量子棒制作方法和显示面板
CN106773243A (zh) * 2016-12-21 2017-05-31 武汉华星光电技术有限公司 彩膜基板、液晶面板及液晶显示屏

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105259700A (zh) * 2015-10-27 2016-01-20 深圳市华星光电技术有限公司 液晶显示装置及电子设备
US20170146859A1 (en) * 2015-11-20 2017-05-25 A. U. Vista, Inc. Quantum-dot embedded polarizer component and display device using same
CN105404047A (zh) * 2015-12-04 2016-03-16 深圳市华星光电技术有限公司 Coa型液晶显示面板的制作方法及coa型液晶显示面板
CN106597748A (zh) * 2017-01-03 2017-04-26 京东方科技集团股份有限公司 一种显示用基板、液晶显示面板及液晶显示装置
CN107153304A (zh) * 2017-07-20 2017-09-12 武汉华星光电技术有限公司 液晶显示器

Also Published As

Publication number Publication date
US20190025625A1 (en) 2019-01-24
CN107153304A (zh) 2017-09-12

Similar Documents

Publication Publication Date Title
WO2019015290A1 (zh) 液晶显示器
WO2020113913A1 (zh) 一种显示面板及显示装置
US10168464B2 (en) Lighting device, display device, and television device
US9841628B2 (en) Liquid crystal display device and electronic equipment
TWI336013B (en) Color liquid crystal display
JP6554534B2 (ja) 照明装置、表示装置、及びテレビ受信装置
TWI587037B (zh) 液晶顯示裝置
WO2017107272A1 (zh) 反射式液晶面板以及显示装置
JP2017015973A (ja) 波長変換装置およびそれを用いた表示装置
JP2016142894A (ja) 表示装置
KR102520111B1 (ko) 편광 발광판 및 이를 포함하는 액정 표시 장치
EP3273141A1 (en) Illumination device, display device, and television receiving device
US10203439B2 (en) Double-side liquid crystal display device and backlight module thereof
TWI594027B (zh) 偏光板
TWI564603B (zh) 量子棒膜
TWI557482B (zh) 量子棒膜
CN108828831B (zh) 量子点偏光片、显示装置及量子点偏光片的制作方法
JP2016142845A (ja) 表示装置
JP2015225114A (ja) 表示装置及び液晶表示装置
WO2019227669A1 (zh) 显示面板及显示装置
US11215746B2 (en) Dual display device
CN208110210U (zh) 显示装置
US20090015758A1 (en) Polarized light-emitting device
WO2019109603A1 (zh) 量子点面板及显示装置
TWI550326B (zh) 量子棒背光模組

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18834999

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18834999

Country of ref document: EP

Kind code of ref document: A1