WO2020151535A1 - 一种信号传输、检测方法及装置 - Google Patents

一种信号传输、检测方法及装置 Download PDF

Info

Publication number
WO2020151535A1
WO2020151535A1 PCT/CN2020/072093 CN2020072093W WO2020151535A1 WO 2020151535 A1 WO2020151535 A1 WO 2020151535A1 CN 2020072093 W CN2020072093 W CN 2020072093W WO 2020151535 A1 WO2020151535 A1 WO 2020151535A1
Authority
WO
WIPO (PCT)
Prior art keywords
reference signal
dedicated reference
signal sequence
base station
frequency
Prior art date
Application number
PCT/CN2020/072093
Other languages
English (en)
French (fr)
Inventor
陈先国
Original Assignee
大唐移动通信设备有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 大唐移动通信设备有限公司 filed Critical 大唐移动通信设备有限公司
Priority to EP20745023.0A priority Critical patent/EP3917200A4/en
Priority to US17/424,893 priority patent/US11411703B2/en
Publication of WO2020151535A1 publication Critical patent/WO2020151535A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/0001Systems modifying transmission characteristics according to link quality, e.g. power backoff
    • H04L1/0036Systems modifying transmission characteristics according to link quality, e.g. power backoff arrangements specific to the receiver
    • H04L1/0038Blind format detection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L1/00Arrangements for detecting or preventing errors in the information received
    • H04L1/08Arrangements for detecting or preventing errors in the information received by repeating transmission, e.g. Verdan system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT

Definitions

  • This application relates to the field of communication technology, and in particular to a method and device for signal transmission and detection.
  • the radio waves form super-refraction propagation, the propagation loss is small, and the ultra-long distance propagation can be realized.
  • Most of the radio wave radiation is Confined within this layer, similar to propagation in a waveguide, this phenomenon is called the atmospheric waveguide propagation of electromagnetic waves.
  • the downlink signal of the remote base station When an atmospheric duct occurs in a Time Division Duplexing (TDD) wireless network, the downlink signal of the remote base station still has a high intensity after being transmitted over a distance of tens or hundreds of kilometers, and the signal propagation delay exceeds the uplink
  • the guard period (Guard Period, GP) length of the time slot falls into the uplink subframe of the near-end base station, causing serious uplink interference. This interference is called far-end interference or atmospheric duct interference.
  • the embodiments of the application provide a signal transmission and detection method and device to solve the problem of the high complexity of the remote interference detection algorithm in the prior art, the non-real-time detection, and the central frequency and bandwidth requirements of the victim station and the interference station. Exactly the same problem.
  • the dedicated reference signal sequence is sent in the time-frequency resource, where the time-frequency resource includes: a special time slot of a downlink radio frame in the time domain and a frequency subband obtained by dividing the maximum frequency bandwidth available to the base station in the frequency domain ; Identify remote interference by detecting the dedicated reference signal sequence.
  • the dedicated reference signal sequence is sent through a signal transmission method approved by this application.
  • the symbols in the detection window of the receiving end and the received reference signal symbols are generally not aligned in the time domain.
  • the signal transmission method provided by the embodiments of this application can ensure that regardless of the propagation delay Changes can allow the receiving end to detect the complete reference signal symbol, thereby ensuring detection performance.
  • the dedicated reference signal sequence is sent in a special time slot in a radio frame determined based on the base station ID.
  • the base station sends a dedicated reference signal at a set period on the radio frame, set time slot and symbol related to the base station ID.
  • the reference signal sequence can be a Gold sequence, a ZC (Zadoff-Chu) sequence or other pseudo-random sequences.
  • the wireless frame is determined by one of two methods including but not limited to:
  • Method 1 According to the base station ID, query the mapping table between the base station ID and the system frame number of the radio frame where the dedicated reference signal sequence is located, and determine the system frame number of the radio frame:
  • n SFN map_talble(n NBID );
  • Method 2 Calculate and determine the system frame number of the wireless frame according to the following formula:
  • n SFN is the system frame number of the radio frame
  • n NBID is the base station ID
  • map_talble is a mapping table between the base station ID and the system frame number of the radio frame where the dedicated reference signal sequence is located.
  • method 1 is used to determine the system frame number of the wireless frame.
  • the method for determining wireless frames provided in this application can ensure that different base stations send reference signals on different wireless frames as much as possible, and avoid the non-aligned superposition of the same reference signals on the same symbols at the receiving end, resulting in higher false detection rates and missed detections Rate, thereby improving detection performance.
  • Method 2 is simple to implement.
  • Method 1 can customize the mapping table between the base station ID and the system frame number of the radio frame where the reference signal is sent according to the range of the remote interference occurrence area of the live network or design a specific mapping formula.
  • the solution is more flexible and can be Fully ensure that different base stations send reference signals on different wireless frames.
  • the OAM configures in which next uplink switching cycle the dedicated reference signal sequence is sent in the radio frame, and the time interval between the dedicated reference signal sequence sent twice adjacently must meet the maximum propagation distance requirement of far-end interference.
  • the dedicated reference signal sequence is located after the downlink symbol of the special time slot and before the guard time slot GP.
  • the dedicated reference signal sequence occupies two consecutive Orthogonal Frequency Division Multiplexing (OFDM) symbols in the time domain, and the dedicated reference signal sequences on the two OFDM symbols are the same,
  • the front of the first OFDM symbol and the rear of the second OFDM symbol are respectively provided with a common prefix CP.
  • the symbols in the detection window of the receiving end and the received reference signal symbols are generally not aligned in the time domain.
  • the time domain format of the reference signal provided in this application can guarantee that regardless of the propagation delay Changes can allow the receiving end to detect the complete reference signal symbol, thereby ensuring detection performance.
  • the period at which the base station sends the dedicated reference signal sequence is determined by the configuration of the operation, administration, and maintenance function (Operation, Administration, Maintenance, OAM for short).
  • the period of the dedicated reference signal sequence is configured to be the same as the system frame period. the same.
  • the dedicated reference signal sequence sent by the base station must be one of all dedicated reference signal sequences configured by OAM, and all dedicated reference signal sequences configured by OAM are references available to all base stations within the network managed by OAM Signal sequence.
  • the OAM configures one or more dedicated reference signal sequences
  • the base station selects a dedicated reference signal sequence from all dedicated reference signal sequences configured by the OAM based on the base station ID as the reference signal sequence to be sent by the base station.
  • the decimal value of the fixed segment bit value of the base station ID is determined as the dedicated reference signal sequence ID sent by the base station, or according to the fixed bit segment of the base station ID
  • the mapping table between the decimal value and the dedicated reference signal sequence ID determines the dedicated reference signal sequence ID sent by the base station; when the reference signal sequence configured by OAM is a subset of the reference signal sequence set, the fixed bit segment of the base station ID
  • the mapping table between the decimal value of and the dedicated reference signal sequence ID determines the dedicated reference signal sequence ID sent by the base station.
  • the fixed bit segment of the base station ID is determined according to a preset rule according to the number of dedicated reference signal sequences configured by the OAM and the number of wireless frames in the dedicated reference signal transmission period.
  • the maximum number of wireless frames in the dedicated reference signal transmission period configured for OAM, and N RS is the number of dedicated reference signal sequences included in the range configured for OAM.
  • all base stations can be configured to send a fixed reference signal sequence, so that the base station does not need to blindly detect multiple reference signal sequences, which can greatly reduce the complexity of the detection algorithm.
  • the remote interference occurs on a large scale, because the maximum base station ID is generally much larger than the system frame period value, the probability that the same reference signal is superimposed on the same symbol at the receiving end is relatively high, which will cause a higher false detection rate or missed detection rate.
  • OAM configures multiple reference signal sequences for all base stations to use, and all reference signal sequences available for use by the system constitute a complete set of reference signal sequences. These reference signal sequences must have good autocorrelation and cross-correlation.
  • the reference signal sequence configured by the OAM can be a subset of the full set of reference signal sequences, or the full set. Which reference signal sequence each base station uses is determined by the base station ID.
  • the frequency subband is obtained by continuously dividing the maximum frequency bandwidth usable by the base station according to the frequency subband size uniformly configured by OAM.
  • One reference signal sequence uses one frequency subband resource in the frequency domain. For a base station, the reference signal sequences sent on different frequency subbands are the same.
  • the available frequency and bandwidth ranges of base stations under 5G are generally large. Near-end base stations and remote base stations may use different frequency ranges and bandwidths.
  • this application sends the same dedicated reference signal sequence on each frequency subband in the frequency domain, where the frequency subband is the size of the frequency subband uniformly configured according to the maximum frequency bandwidth that the local base station can use It is obtained by dividing.
  • the base station detects the reference signal, it needs to blindly detect the reference signal on each frequency subband within the full bandwidth of the base station.
  • the reference signals can be detected each other, thereby supporting remote interference detection between base stations with different frequencies and different bandwidths.
  • the frequency subbands in the same frequency band have the same size, and the frequency subbands of different frequency bands are not limited; if the bandwidth of a frequency subband divided by the base station is smaller than the frequency subband, it is not used as a frequency subband. No dedicated reference signal is sent on this frequency resource.
  • an embodiment of the present application provides a signal detection method, including:
  • the dedicated reference signal sequence is sent;
  • An embodiment of the present application provides a signal transmission device, which includes:
  • the determining unit is used to determine the time-frequency resource for sending the dedicated reference signal sequence
  • the sending unit is configured to send a dedicated reference signal sequence on the time-frequency resource, where the time-frequency resource includes:
  • the remote interference is identified by detecting the dedicated reference signal sequence.
  • the dedicated reference signal sequence is sent in a special time slot in a radio frame determined based on the base station ID.
  • one of two methods including but not limited to the following is used to determine the radio frame:
  • Method 1 According to the base station ID, query the mapping table between the base station ID and the system frame number of the radio frame where the dedicated reference signal sequence is located, and determine the system frame number of the radio frame:
  • n SFN map_talble(n NBID );
  • Method 2 Calculate and determine the system frame number of the wireless frame according to the following formula:
  • n SFN is the system frame number of the radio frame
  • n NBID is the base station ID
  • map_talble is a mapping table between the base station ID and the system frame number of the radio frame where the dedicated reference signal sequence is located.
  • method 1 is used to determine the system frame number of the wireless frame.
  • the OAM configures in which next uplink switching cycle the dedicated reference signal sequence is sent in the radio frame, and the time interval between the dedicated reference signal sequence sent twice adjacently must meet the maximum propagation distance requirement of far-end interference.
  • the dedicated reference signal sequence is located after the downlink symbol of the special time slot and before the guard time slot GP.
  • the dedicated reference signal sequence occupies two consecutive OFDM symbols in the time domain, and the dedicated reference signal sequences on the two OFDM symbols are the same, where the first OFDM symbol is the first and the second OFDM symbol
  • the common prefix CP is respectively set on the last.
  • the period at which the base station sends the dedicated reference signal sequence is determined by the OAM configuration.
  • the period of the dedicated reference signal sequence is configured to be the same as the system frame period.
  • the dedicated reference signal sequence sent by the base station must be one of all dedicated reference signal sequences configured by OAM, and all dedicated reference signal sequences configured by OAM are references available to all base stations within the network managed by OAM Signal sequence.
  • the OAM configures one or more dedicated reference signal sequences
  • the base station selects a dedicated reference signal sequence from all dedicated reference signal sequences configured by the OAM based on the base station ID as the reference signal sequence to be sent by the base station.
  • the decimal value of the fixed segment bit value of the base station ID is determined as the transmitted dedicated reference signal sequence ID, or according to the decimal value of the fixed bit segment of the base station ID
  • the mapping table with the dedicated reference signal sequence ID determines the sent dedicated reference signal sequence ID; when the reference signal sequence configured by OAM is a subset of the full set of reference signal sequences, the decimal value of the fixed bit segment of the base station ID is compared with The mapping table between the dedicated reference signal sequence IDs determines the transmitted dedicated reference signal sequence ID.
  • the fixed bit segment of the base station ID is determined according to a preset rule according to the number of dedicated reference signal sequences configured by the OAM and the number of wireless frames in the dedicated reference signal transmission period.
  • the frequency subband is obtained by continuously dividing the maximum frequency bandwidth usable by the base station according to the frequency subband size uniformly configured by OAM.
  • One reference signal sequence uses one frequency subband resource in the frequency domain. For a base station, the reference signal sequences sent on different frequency subbands are the same.
  • the frequency subbands in the same frequency band have the same size, and the frequency subbands of different frequency bands are not limited; if the bandwidth of a frequency subband divided by the base station is smaller than the frequency subband, it is not used as a frequency subband. No dedicated reference signal is sent on this frequency resource.
  • an embodiment of the present application provides a signal detection device, including:
  • the first unit is used for judging the need to send a dedicated reference signal based on the remote interference characteristics
  • the second unit is used to detect the dedicated reference signal sequence sent by the opposite end on the special time slot
  • the third unit is configured to determine that there is remote interference according to the dedicated reference signal sequence.
  • the dedicated reference signal sequence is sent;
  • the base station of this application detects suspected remote interference based on the remote interference characteristics, it sends a dedicated reference signal sequence on a specific radio frame. After the base station detects the dedicated reference signal sequence, the base station detects the remote interference based on mutual interference. It is easy to determine that a certain remote interference is detected;
  • this application provides innovative technical solutions for the time-frequency domain format of the reference signal and the position, time and period of the reference signal, which can significantly reduce the complexity of the detection algorithm and reduce the false detection rate and the missed detection rate. It can support the detection of remote interference between base stations of different frequencies and different bandwidths;
  • this application provides a reference signal-based remote interference detection mechanism and detection algorithm.
  • Another embodiment of the present application provides a computing device, which includes a memory and a processor, wherein the memory is used to store program instructions, and the processor is used to call the program instructions stored in the memory, according to the obtained program Perform any of the above methods.
  • Another embodiment of the present application provides a computer storage medium that stores computer-executable instructions, and the computer-executable instructions are used to make the computer execute any of the above methods.
  • FIG. 1 is a schematic diagram of the position of a reference signal on a radio frame provided by an embodiment of the application
  • FIG. 2 is a schematic diagram of a time domain format of a reference signal provided by an embodiment of the application
  • FIG. 3 is a schematic diagram of a frequency domain format of a reference signal sequence provided by an embodiment of the application.
  • FIG. 4 is a schematic flowchart of a signal transmission method provided by an embodiment of this application.
  • FIG. 5 is a schematic flowchart of a signal detection method provided by an embodiment of this application.
  • FIG. 6 is a schematic structural diagram of a signal transmission device provided by an embodiment of this application.
  • FIG. 7 is a schematic structural diagram of a signal detection device provided by an embodiment of the application.
  • FIG. 8 is a schematic structural diagram of another signal transmission and detection device provided by an embodiment of the application.
  • the embodiments of the application provide a signal transmission and detection method and device to solve the problem of the high complexity of the remote interference detection algorithm in the prior art, the non-real-time detection, and the central frequency and bandwidth requirements of the victim station and the interference station. Exactly the same problem.
  • the method and the device are based on the same application concept. Since the method and the device have similar principles for solving the problem, the implementation of the device and the method can be referred to each other, and the repetition will not be repeated.
  • the applicable system can be the global system of mobile communication (GSM) system, code division multiple access (CDMA) system, and wideband code division multiple access (WCDMA) general packet Wireless service (general packet radio service, GPRS) system, long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD), general Mobile system (universal mobile telecommunication system, UMTS), worldwide interoperability for microwave access (WiMAX) system, 5G system, 5G NR system, etc.
  • GSM global system of mobile communication
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • General packet Wireless service general packet radio service
  • GPRS general packet Radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD LTE time division duplex
  • UMTS general Mobile system
  • WiMAX worldwide interoperability for microwave access
  • the terminal device involved in the embodiment of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal device may be different.
  • the terminal device may be referred to as user equipment (UE).
  • the wireless terminal device can communicate with one or more core networks via the RAN.
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (or called a "cellular" phone) and a computer with a mobile terminal device, for example, a portable , Pocket, handheld, computer built-in or vehicle-mounted mobile devices that exchange language and/or data with the wireless access network.
  • Wireless terminal equipment can also be referred to as system, subscriber unit, subscriber station, mobile station, mobile station, remote station, and access point , Remote terminal equipment (remote terminal), access terminal equipment (access terminal), user terminal equipment (user terminal), user agent (user agent), user device (user device), which are not limited in the embodiments of the present application.
  • the network device involved in the embodiment of the present application may be a base station, and the base station may include multiple cells.
  • a base station may also be called an access point, or may refer to a device that communicates with a wireless terminal device through one or more sectors on an air interface in an access network, or other names.
  • the network device can be used to convert the received air frame and the Internet protocol (IP) packet to each other, as a router between the wireless terminal device and the rest of the access network, where the rest of the access network can include the Internet Protocol (IP) communication network.
  • IP Internet Protocol
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment involved in the embodiment of this application may be a network equipment (base transmitter station, BTS) in the global system for mobile communications (GSM) or code division multiple access (CDMA). ), it can also be a network device (NodeB) in wide-band code division multiple access (WCDMA), or an evolved network device in a long-term evolution (LTE) system (evolutional node B, eNB or e-NodeB), 5G base station in the 5G network architecture (next generation system), or home evolved node B (HeNB), relay node (relay node), home base station ( Femto), pico base station (pico), etc. are not limited in the embodiment of the present application.
  • BTS network equipment
  • GSM global system for mobile communications
  • CDMA code division multiple access
  • NodeB wide-band code division multiple access
  • LTE long-term evolution
  • 5G base station in the 5G network architecture next generation system
  • HeNB home evolved node B
  • relay node relay node
  • Femto home base
  • the base station needs to perform a large number of blind detections for each symbol and each feature sequence in the detection window, and the complexity of the detection algorithm is too high, which consumes a lot of resources of the base station equipment;
  • the base station needs to detect and identify all remote interference sources, which leads to too long detection period and cannot be detected in real time, which affects the timeliness of interference avoidance;
  • the base station Since the characteristic sequence is full bandwidth, the base station must detect the characteristic sequence within the full bandwidth. This requires that the center frequency and bandwidth of the victim station and the disturbing station must be exactly the same in order to detect the characteristic sequence and perform interference avoidance, which greatly limits The application scenario of the program.
  • the present application provides a signal transmission and detection method and device.
  • a signal transmission and detection method and device For specific implementation, refer to the following embodiments.
  • the base station sends a dedicated reference signal sequence at a set period on the radio frame, set time slot and symbol related to the base station ID.
  • the reference signal sequence can be Gold sequence, ZC (Zadoff-Chu) sequence or other pseudo-random sequence.
  • the system frame number of the radio frame in which the base station sends the reference signal sequence is determined by the base station ID, which can be determined by one of the following two schemes:
  • Solution 1 Use a formula to calculate the system frame number of the wireless frame.
  • the frame number of the radio frame where the base station sends the reference signal sequence is determined by the base station ID, and is calculated by the following formula:
  • n SFN is the frame number of the radio frame where the reference signal is sent
  • n NBID is the base station ID (used to uniquely identify a base station);
  • the second scheme is to use the mapping mechanism to obtain the system frame number of the wireless frame.
  • the frame number of the radio frame where the base station sends the reference signal sequence can also be obtained by the following formula:
  • n SFN map_talble(n NBID );
  • n SFN is the frame number of the radio frame where the reference signal is sent
  • n NBID is the base station ID (used to uniquely identify a base station)
  • map_talble is the mapping table between the base station ID and the system frame number of the radio frame where the reference signal is sent Or a specific mapping formula.
  • Scheme 1 is simple to implement, but it can only guarantee a low base station ID Base stations with different bits send reference signals on different wireless frames, otherwise, the same reference signal will be unaligned and superimposed at the receiving end; solution two can customize the base station ID and the wireless frame where the reference signal is sent according to the range of the remote interference on the live network
  • mapping table between the system frame numbers or the design of a specific mapping formula is more flexible and can fully ensure that different base stations send reference signals on different wireless frames.
  • the mapping table is too large, the base station resources are expensive and require maintenance. Therefore, it is more difficult to implement relative program 1.
  • the reference signal is sent is determined by the operation management and maintenance (Operation Administration and Maintenance, OAM) configuration.
  • OAM Opera Management and Maintenance
  • the configuration principle is: the length of the uplink detection window must be To meet the required maximum propagation distance of far-end interference, a specific implementation may be:
  • the RS in Figure 1 is a reference signal symbol, and both RS and GP are the "F" symbols specified in the slot format in the 5G NR protocol. In this way, the terminal does not need to know the RS symbol, thereby ensuring the compatibility of the terminal after adding the RS symbol.
  • the time-domain format of the reference signal is shown in Figure 2.
  • the reference signal occupies two consecutive OFDM symbols, and a common prefix (CP) is added at the front of the first symbol and at the end of the second symbol.
  • CP common prefix
  • the symbols in the detection window of the receiving end and the received reference signal symbols are generally not aligned in the time domain.
  • This reference signal time domain format can ensure that no matter how the propagation delay changes. Let the receiving end detect the complete reference signal symbol to ensure detection performance.
  • the period for the base station to send the reference signal is determined by the OAM configuration. It is preferably configured as the period for the base station to send the reference signal as the system frame period, that is, the base station only sends the reference signal once in the system frame period.
  • Which reference signal sequence the base station sends on a specific radio frame is determined by the OAM configuration strategy. If the scale of remote interference is small (the scale of remote interference is mainly judged according to the area size of the cell affected by the remote interference), all base stations can be configured to send a fixed reference signal sequence, so that the base station does not need to Blind detection of the reference signal sequence can greatly reduce the complexity of the detection algorithm. If the remote interference occurs on a large scale, because the maximum base station ID is generally much larger than the system frame period value, the probability that the same reference signal is superimposed on the same symbol at the receiving end is relatively high, which will cause a higher false detection rate or missed detection rate.
  • OAM configures multiple reference signal sequences for all base stations to use, and all reference signal sequences available for use by the system constitute a complete set of reference signal sequences. These reference signal sequences must have good autocorrelation and cross-correlation.
  • the reference signal sequence configured by the OAM can be a subset of the full set of reference signal sequences, or the full set. Which reference signal sequence each base station uses is determined by the base station ID.
  • the specific method is: OAM assigns a uniquely identifying sequence ID to each reference signal sequence. When the base station selects the reference signal sequence, the reference signal sequence ID is fixed by the base station ID. The mapping is obtained, and the specific implementation can adopt one of the following two schemes:
  • Solution 1 Use the mapping table to map.
  • the mapping table between the fixed bit segment value of the base station ID and the reference signal sequence ID value is checked to obtain the reference signal sequence ID value.
  • Solution 2 Fix the bit segment value according to the base station ID.
  • the decimal value of the binary fixed bit segment of the base station ID is used as the reference signal sequence ID value. For example, if the number of wireless frames in the dedicated reference signal transmission period is The number of reference signal sequences is N RS , then the binary value of the sequence ID of the reference signal sent by the base station is taken as the range of the base station ID bits from low to high: Converting the binary value of the reference signal sequence ID to a decimal value is the reference signal sequence ID value.
  • the mapping scheme between the reference signal sequence ID and the fixed bit segment of the base station ID can adopt either of the above two schemes; if the reference signal sequence configured by the OAM is For a subset of the full set of reference signal sequences, solution one must be adopted. Solution one must provide a mapping table between the reference signal sequence ID and the fixed bit segment of the base station ID for each subset or full set of reference signal sequences that can be configured. Therefore, scheme one is more versatile and flexible than scheme two.
  • the above method can further reduce the probability of non-aligned superposition of the same reference signal sequence on the same symbol at the receiving end, thereby improving detection performance.
  • the available frequency and bandwidth range of the base station is generally large.
  • the near-end base station and the far-end base station may use different frequency ranges and bandwidths.
  • the embodiment of this application designs a frequency domain format of the reference signal sequence in the dedicated reference signal sequence sent by the base station, which is specifically as follows:
  • the base station divides the available maximum frequency bandwidth into several continuous sub-frequency bands according to the specified sub-band size, and each sub-frequency band is called a frequency sub-band;
  • the frequency subband size is specified by the unified configuration of OAM. The minimum continuous bandwidth actually used by the existing network needs to be considered.
  • the frequency subband size of each frequency band can be different. For the same frequency band, each frequency subband divided by each base station The frequency range does not require alignment, but the frequency sub-band size must be the same;
  • frequency resources are allocated to reference signal symbols with the granularity of frequency subbands.
  • a reference signal symbol uses subcarrier resources of one frequency subband in the frequency domain, and the reference signal sequence sent on each frequency subband Must be exactly the same. If the bandwidth of a certain frequency segment divided by the base station is smaller than the frequency subband, it is not regarded as a frequency subband, and no reference signal is sent on the frequency resource.
  • a specific reference signal sequence frequency domain format is shown in Figure 3.
  • the base station can be divided into 5 frequency subbands .
  • the frequency ranges and bandwidths of the two base stations are not the same, the frequency ranges of each frequency subband divided by the two base stations may not be aligned. However, because the transmitting base station sends the same reference signal on each frequency subband, Therefore, a frequency subband frequency domain data extracted in the detection window at the receiving end is still a complete reference signal frequency domain data, and therefore, the reference signal can be detected normally.
  • the base station blindly detects the reference signal sequence on all uplink symbols in the detection window; in the frequency domain, blindly detects the reference signal sequence on all frequency subbands within the full bandwidth; in the code domain, if OAM Multiple reference signal sequences are configured, and all reference signal sequences need to be traversed blindly detected.
  • the base station detects remote interference based on remote interference characteristics and reference signals, and the specific implementation is as follows:
  • the base station detects suspected far-end interference based on the far-end interference characteristics within the set T1 time (that is, it is determined that a dedicated reference signal needs to be sent based on the far-end interference characteristics), or it continuously detects the reference signal sequence of the far-end base station, then the reference is started Signal sequence transmission;
  • the base station continuously detects the reference signal sequence within the set T2 time, it is determined that a certain remote interference is detected;
  • the base station continues to fail to detect the reference signal sequence within the set T3 time and no suspected remote interference is detected, it is determined that the remote interference has disappeared and stops sending the reference signal sequence.
  • an embodiment of the present application provides a signal transmission method, referring to FIG. 4, which includes:
  • the remote interference is identified by detecting the dedicated reference signal sequence.
  • the dedicated reference signal sequence For example, the specific implementation of the sending part of the reference signal sequence in the embodiment of this application.
  • the embodiment of the present application provides a signal detection method at the receiving end, referring to FIG. 5, including:
  • S203 Determine that there is far-end interference according to the dedicated reference signal sequence. For specific implementation, refer to the part of detecting remote interference in the embodiment of this application.
  • an embodiment of the present application provides a signal transmission device, referring to FIG. 6, which includes:
  • the determining unit 11 is configured to determine the time-frequency resource for sending the dedicated reference signal sequence
  • the sending unit 12 is configured to send a dedicated reference signal sequence on the time-frequency resource, where the time-frequency resource includes: a special time slot of a downlink radio frame in the time domain and a maximum frequency bandwidth available to the base station in the frequency domain.
  • the frequency sub-bands obtained by the division; the remote interference is identified by detecting the dedicated reference signal sequence.
  • an embodiment of the present application provides a signal detection device, referring to FIG. 7, including:
  • the first unit 21 is used for judging that a dedicated reference signal needs to be sent based on the remote interference characteristics
  • the second unit 22 is configured to detect the dedicated reference signal sequence sent by the opposite end on the special time slot;
  • the third unit 23 is configured to determine that there is far-end interference according to the dedicated reference signal sequence.
  • the division of units in the embodiments of the present application is illustrative, and is only a logical function division, and there may be other division methods in actual implementation.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above-mentioned integrated unit can be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , Including a number of instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor to execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • the embodiment of the present application provides a computing device, and the computing device may specifically be a desktop computer, a portable computer, a smart phone, a tablet computer, a personal digital assistant (Personal Digital Assistant, PDA), etc.
  • the computing device may include a central processing unit (CPU), memory, input/output devices, etc.
  • the input device may include a keyboard, a mouse, a touch screen, etc.
  • the output device may include a display device, such as a liquid crystal display (Liquid Crystal Display, LCD), Cathode Ray Tube (CRT), etc.
  • the memory may include read only memory (ROM) and random access memory (RAM), and provides the processor with program instructions and data stored in the memory.
  • ROM read only memory
  • RAM random access memory
  • the memory may be used to store the program of any of the methods provided in the embodiment of the present application.
  • the processor calls the program instructions stored in the memory, and the processor is configured to execute any of the methods provided in the embodiments of the present application according to the obtained program instructions.
  • the embodiment of the present application provides a signal transmission device, referring to FIG. 8, including:
  • the processor 500 is configured to read a program in the memory 520 and execute the following process:
  • the dedicated reference signal sequence is sent on the time-frequency resource through the transceiver 510, where the time-frequency resource includes: a special time slot of a downlink radio frame in the time domain and a frequency domain obtained by dividing the maximum frequency bandwidth available to the base station Frequency sub-bands; identify far-end interference by detecting the dedicated reference signal sequence.
  • the processor 500 transmits a dedicated reference signal sequence in a special time slot in a wireless frame determined based on the base station ID through the transceiver 510.
  • the processor 500 uses one of the following two methods to determine the radio frame:
  • Method 1 According to the base station ID, query the mapping table between the base station ID and the system frame number of the radio frame where the dedicated reference signal sequence is located, and determine the system frame number of the radio frame:
  • n SFN map_talble(n NBID );
  • Method 2 Calculate and determine the system frame number of the wireless frame according to the following formula:
  • n SFN is the system frame number of the radio frame
  • n NBID is the base station ID
  • map_talble is a mapping table between the base station ID and the system frame number of the radio frame where the dedicated reference signal sequence is located.
  • method 1 is used to determine the system frame number of the wireless frame.
  • the OAM configures in which next uplink switching cycle the dedicated reference signal sequence is sent in the radio frame, and the time interval between the dedicated reference signal sequence sent twice adjacently must meet the maximum propagation distance requirement of far-end interference.
  • the dedicated reference signal sequence is located after the downlink symbol of the special time slot and before the guard time slot GP.
  • the dedicated reference signal sequence occupies two consecutive OFDM symbols in the time domain, and the dedicated reference signal sequences on the two OFDM symbols are the same, where the first OFDM symbol is the first and the second OFDM symbol
  • the common prefix CP is respectively set on the last.
  • the period at which the base station sends the dedicated reference signal sequence is determined by the OAM configuration.
  • the period of the dedicated reference signal sequence is configured to be the same as the system frame period.
  • the dedicated reference signal sequence sent by the base station must be one of all dedicated reference signal sequences configured by OAM, and all dedicated reference signal sequences configured by OAM are references available to all base stations within the network managed by OAM Signal sequence.
  • the OAM configures one or more dedicated reference signal sequences
  • the base station selects a dedicated reference signal sequence from all dedicated reference signal sequences configured by the OAM based on the base station ID as the reference signal sequence to be sent by the base station.
  • the decimal value of the fixed segment bit value of the base station ID is determined as the transmitted dedicated reference signal sequence ID, or according to the decimal value of the fixed bit segment of the base station ID
  • the mapping table with the dedicated reference signal sequence ID determines the sent dedicated reference signal sequence ID; when the reference signal sequence configured by OAM is a subset of the full set of reference signal sequences, the decimal value of the fixed bit segment of the base station ID is compared with The mapping table between the dedicated reference signal sequence IDs determines the transmitted dedicated reference signal sequence ID.
  • the fixed bit segment of the base station ID is determined according to a preset rule according to the number of dedicated reference signal sequences configured by the OAM and the number of wireless frames in the dedicated reference signal transmission period.
  • the number of wireless frames in the dedicated reference signal transmission period configured for OAM, and N RS is the number of dedicated reference signal sequences included in the range configured for OAM.
  • the frequency subband is obtained by continuously dividing the maximum frequency bandwidth usable by the base station according to the frequency subband size uniformly configured by OAM.
  • One reference signal sequence uses one frequency subband resource in the frequency domain. For a base station, the reference signal sequences sent on different frequency subbands are the same.
  • the size of the frequency subbands in the same frequency band is the same, and the size of the frequency subbands of different frequency bands may be different without limitation. If the bandwidth of a certain frequency sub-segment divided by the base station is smaller than the frequency sub-band, it is not regarded as a frequency sub-band, and no dedicated reference signal is sent on the frequency resource.
  • the processor 500 may perform the following process:
  • the processor 500 determines that a dedicated reference signal needs to be sent based on the remote interference characteristics within the first preset time, or the number of times the dedicated reference signal sequence is detected is greater than N1, then the dedicated reference signal sequence is sent;
  • the transceiver 510 is configured to receive and send data under the control of the processor 500.
  • the bus architecture may include any number of interconnected buses and bridges. Specifically, one or more processors represented by the processor 500 and various circuits of the memory represented by the memory 520 are linked together.
  • the bus architecture can also link various other circuits such as peripherals, voltage regulators, power management circuits, etc., which are all known in the art, and therefore, no further description will be given herein.
  • the bus interface provides the interface.
  • the transceiver 510 may be a plurality of elements, that is, including a transmitter and a transceiver, providing a unit for communicating with various other devices on a transmission medium.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 can store data used by the processor 500 when performing operations.
  • the processor 500 may be a central embedded device (CPU), an application specific integrated circuit (ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA) or a complex programmable logic device (Complex Programmable Logic Device). , CPLD).
  • CPU central embedded device
  • ASIC application specific integrated circuit
  • FPGA field programmable gate array
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • the embodiment of the present application provides a computer storage medium for storing computer program instructions used by the device provided in the foregoing embodiment of the present application, which includes a program for executing any method provided in the foregoing embodiment of the present application.
  • the computer storage medium may be any available medium or data storage device that the computer can access, including but not limited to magnetic storage (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)), etc.
  • magnetic storage such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state drive (SSD)
  • the method provided in the embodiments of the present application can be applied to terminal equipment, and can also be applied to network equipment.
  • the terminal equipment can also be called User Equipment (User Equipment, referred to as "UE"), Mobile Station (Mobile Station, referred to as “MS”), Mobile Terminal (Mobile Terminal), etc.
  • UE User Equipment
  • MS Mobile Station
  • Mobile Terminal Mobile Terminal
  • the terminal can It has the ability to communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the terminal can be a mobile phone (or called a "cellular" phone) or a mobile computer, etc.
  • the terminal may also be a portable, pocket-sized, handheld, built-in computer or vehicle-mounted mobile device.
  • the network device may be a base station (for example, an access point), which refers to a device that communicates with wireless terminals through one or more sectors on the air interface in the access network.
  • the base station can be used to convert received air frames and IP packets into each other, and act as a router between the wireless terminal and the rest of the access network, where the rest of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate the attribute management of the air interface.
  • the base station can be a base station (BTS, Base Transceiver Station) in GSM or CDMA, a base station (NodeB) in WCDMA, or an evolved base station (NodeB or eNB or e-NodeB, evolutional NodeB) in LTE. B), or gNB in the 5G system, etc.
  • BTS Base Transceiver Station
  • NodeB base station
  • eNB evolved base station
  • gNB evolutional NodeB
  • the processing flow of the above method can be implemented by a software program, which can be stored in a storage medium, and when the stored software program is called, the above method steps are executed.
  • the detection period of the prior art scheme is too long, and the real-time detection is poor, which affects the effectiveness of interference avoidance.
  • This application only requires the detection of remote interference, without detecting and identifying all remote interference sources. Therefore, the transmission period and detection period of the reference signal are the system frame period, and the detection is relatively real-time, so that interference avoidance is real-time;
  • the detection algorithm of the prior art solution is too complex and consumes a lot of resources of the base station equipment.
  • the technical solution of the present application is that the base station only needs to detect the reference signal sequence in one downlink and uplink switching period in the radio frame according to the OAM configuration, and does not need to traverse all downlink and uplink switching periods, and the reference signal sequence to be detected is configurable. To reduce the complexity of the detection algorithm, fewer or even a reference signal sequence can be configured, which will not significantly affect the detection result, but can greatly reduce the complexity of the detection algorithm;
  • the existing technical solutions do not support remote interference detection and interference avoidance between base stations with different central frequencies and different bandwidths, which greatly limits its application scenarios.
  • This application proposes the concept and technical solution of frequency subbands.
  • the base station detects remote interference in the frequency domain with frequency subband as the granularity, so as to support remote interference detection between base stations with different frequency points and different bandwidths.
  • the embodiments of the present invention may be provided as methods, systems, or computer program products. Therefore, the present invention may adopt the form of a complete hardware embodiment, a complete software embodiment, or an embodiment combining software and hardware. Moreover, the present invention may be in the form of a computer program product implemented on one or more computer-usable storage media (including but not limited to disk storage, CD-ROM, optical storage, etc.) containing computer-usable program codes.
  • a computer-usable storage media including but not limited to disk storage, CD-ROM, optical storage, etc.
  • These computer program instructions can also be stored in a computer-readable memory that can direct a computer or other programmable data processing equipment to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including the instruction device.
  • the device implements the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.
  • These computer program instructions can also be loaded on a computer or other programmable data processing equipment, so that a series of operation steps are executed on the computer or other programmable equipment to produce computer-implemented processing, so as to execute on the computer or other programmable equipment.
  • the instructions provide steps for implementing the functions specified in one process or multiple processes in the flowchart and/or one block or multiple blocks in the block diagram.

Abstract

本申请公开了一种信号传输、检测方法及装置,用以解决现有技术中远端干扰检测算法复杂度高、检测不实时以及受扰站和施扰站的中心频点和带宽必须完全相同的问题。本申请提供的一种信号传输方法包括:确定存在远端干扰;在特殊时隙中发送专用参考信号序列。本申请提供的一种信号检测方法包括:确定发送专用参考信号序列的时频资源;在所述时频资源发送专用参考信号序列,其中,所述时频资源包括:时域上的下行无线帧的特殊时隙和频域上的将基站可用最大频率带宽进行划分得到的频率子带;通过检测所述专用参考信号序列来识别远端干扰。

Description

一种信号传输、检测方法及装置
本申请要求在2019年1月22日提交中国专利局、申请号为201910058146.4、发明名称为“一种信号传输、检测方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种信号传输、检测方法及装置。
背景技术
在一定的气象条件下,大气对流层中存在逆温或水汽随高度急剧变小的层次,在该层中电波形成超折射传播,传播损耗很小,可实现超远距离传播,大部分电波辐射被限制在这一层内,类似于在波导中传播,这种现象称为电磁波的大气波导传播。在时分双工(Time Division Duplexing,TDD)无线网络中发生大气波导时,远端基站的下行信号经数十或数百公里的超远距离传输后仍具有较高强度,信号传播时延超过上行时隙的保护时隙(Guard Period,GP)长度,落入近端基站上行子帧内,造成严重的上行干扰,这种干扰称为远端干扰或大气波导干扰。
远端干扰在TDD无线网络广泛存在,对现网性能造成非常恶劣的影响。对于目前分时长期演进(Time Division Long Term Evolution,TD-LTE)现网,现有已实施方案是通过发送专用特征序列来检测远端干扰,需要检测出干扰源基站ID,因此,基站侧需要进行大量盲检测,检测算法复杂度过高,而且检测周期很长,检测结果不实时,从而影响干扰规避的实效性,同时,由于特征序列是全带宽的,基站必须在全带宽内检测特征序列,这要求受扰站和施扰站的中心频点和带宽必须完全相同才能检测出特征序列,而现网组网场景是复杂的,很多场景不一定满足这个要求,这给该方案的应用带来很大的局限性。
发明内容
本申请实施例提供了一种信号传输、检测方法及装置,用以解决现有技术中远端干扰检测算法复杂度高、检测不实时以及受扰站和施扰站的中心频点和带宽必须完全相同的问题。
本申请实施例提供的一种信号传输方法,包括:
确定发送专用参考信号序列的时频资源;
在所述时频资源发送专用参考信号序列,其中,所述时频资源包括:时域上的下行无线帧的特殊时隙和频域上的将基站可用最大频率带宽进行划分得到的频率子带;通过检测所述专用参考信号序列来识别远端干扰。
在基站确定需要发送专用参考信号序列的情况下(不限于是否检测到疑似远端干扰),通过本申请通过的一种信号传输方法发送专用参考信号序列。
因为大气波导传播时延是随机的,接收端的检测窗口内符号与接收到的参考信号符号在时域上一般是不对齐的,通过本申请实施例提供的信号传输方法可以保证无论传播时延怎样变化都可以让接收端检测到完整的参考信号符号,从而保证检测性能。
可选地,在基于基站ID确定的无线帧中的特殊时隙中发送专用参考信号序列。
基站在与本基站ID相关的无线帧、设定的时隙和符号上以设定的周期发送专用参考信号,参考信号序列可以是Gold序列、ZC(Zadoff-Chu)序列或其他伪随机序列。
采用包括但不限于以下两种方法之一确定所述无线帧:
方法1:根据所述基站ID查询所述基站ID与所述专用参考信号序列所在无线帧的系统帧号之间的映射表,确定所述无线帧的系统帧号:
n SFN=map_talble(n NBID);
方法2:根据如下公式计算确定所述无线帧的系统帧号:
Figure PCTCN2020072093-appb-000001
其中,n SFN为所述无线帧的系统帧号,n NBID为基站ID,
Figure PCTCN2020072093-appb-000002
为系统帧号最大值,map_talble为所述基站ID与所述专用参考信号序列所在无线帧的系统帧号之间的映射表。作为优选方案,采用方法1确定所述无线帧的系统帧号。通过本申请提供的确定无线帧的方法,可以尽量保证不同基站在不同无线帧上发送参考信号,避免相同的参考信号在接收端的相同符号上非对齐叠加而导致较高的误检率和漏检率,从而提升检测性能。
此外,方法2实施简单,方法1可以根据现网远端干扰发生区域范围定制基站ID与发送参考信号所在无线帧的系统帧号之间的映射表或设计特定的映射公式,方案比较灵活,可以充分保证不同基站在不同无线帧上发送参考信号。
可选地,由OAM配置所述专用参考信号序列在无线帧内哪一个下上行切换周期内发送,相邻两次发送的专用参考信号序列的时间间隔必须满足远端干扰最大传播距离要求。
可选地,所述专用参考信号序列位于特殊时隙的下行符号之后、保护时隙GP之前。
可选地,所述专用参考信号序列在时域上占用连续的两个正交频分复用技术(Orthogonal Frequency Division Multiplexing,OFDM)符号,所述两个OFDM符号上的专用参考信号序列相同,其中第一个OFDM符号最前面和第二个OFDM符号最后面分别设置有普通前缀CP。
因为大气波导传播时延是随机的,接收端的检测窗口内符号与接收到的参考信号符号在时域上一般是不对齐的,本申请提供的参考信号的时域格式可以保证无论传播时延怎样变化都可以让接收端检测到完整的参考信号符号,从而保证检测性能。
可选地,基站发送所述专用参考信号序列的周期由操作管理维护功能(Operation、Administration、Maintenance,简称OAM)配置决定,作为优选配置,所述专用参考信号序列的周期配置成与系统帧周期相同。
可选地,基站发送的专用参考信号序列必须是OAM配置的所有专用参考信号序列中的一条序列,所述OAM配置的所有专用参考信号序列为OAM所管理网络范围内所有基站可供使用的参考信号序列。
可选地,所述OAM配置一条或多条专用参考信号序列,基站从OAM配置的所有专用参考信号序列中基于基站ID选择一条专用参考信号序列,作为该基站所要发送的参考信号序列。
可选地,当OAM配置的参考信号序列为参考信号序列全集时,将基站ID的固定段比特值的十进制值确定为该基站发送的专用参考信号序列ID,或者根据基站ID的固定比特段的十进制值与专用参考信号序列ID之间的映射表确定该基站发送的专用参考信号序列ID;当OAM配置的参考信号序列为参考信号序列全集中的一个子集时,根据基站ID的固定比特段的十进制值与专用参考信号序列ID之间的映射表确定该基站发送的专用参考信号序列ID。
可选地,根据OAM配置的专用参考信号序列的个数和专用参考信号发送周期内的无线帧数,按照预设规则确定基站ID的固定比特段。
例如,可采用如下公式确定基站ID的固定比特段的位置范围:
Figure PCTCN2020072093-appb-000003
其中,
Figure PCTCN2020072093-appb-000004
为OAM配置的专用参考信号发送周期内的无线帧数最大值,N RS为OAM配置的所述范围中包含的专用参考信号序列个数。
如果远端干扰发生规模较小,可以配置成所有基站发送固定的某一条参考信号序列,这样基站不需要对多条参考信号序列进行盲检测,可以极大降低检测算法的复杂度。如果远端干扰发生规模较大,因为基站ID最大值一般远大于系统帧周期值,相同参考信号在接收端的相同符号上叠加的概率比较高,会造成较高的误检率或漏检率,在这种情况下,由OAM配置多条参考信号序列供所有基站使用,所有可供系统使用的参考信号序列构成一个参考信号序列全集,这些参考信号序列必须具备良好的自相关性和互相关性,而OAM配置的参考信号序列可以是参考信号序列全集中的一个子集,也可以是全集。每个基站使用哪一条参考信号序列由本基站ID决定。
可选地,所述频率子带是将基站可使用的最大频率带宽按照OAM统一配置的频率子带大小进行连续划分得到的,一个参考信号序列在频域上使用一个频率子带资源,对于同一个基站,不同频率子带上发送的参考信号序列是相同的。
在5G下基站可供使用的频率和带宽范围一般较大,近端基站和远端基站可能使用不同频率范围和带宽,为了支持不同频点、但频率存在重叠的基站之间能够相互检测到参考信号,本申请在频域上,在每个频率子带上发送相同的专用参考信号序列,其中所述频率子带是将本端基站可使用的最大频率带宽按照OAM统一配置的频率子带大小进行划分得到的。
如果近端基站和远端基站的频点错开,但频率存在部分重叠,基站检测参考信号时,需要在基站的全带宽范围内的每一个频率子带上盲检测参考信号,在本申请提供的频率子带的应用场景下,即使两端基站的频率不完全重叠,也可以相互检测到参考信号,从而支持不同频点、不同带宽的基站之间的远端干扰检测。
可选地,同一频段下的频率子带大小相同,不同频段的频率子带大小不限;如果基站划分出来的某个频率子段的带宽大小小于频率子带大小,则不作为频率子带,在该频率资源上不发送专用参考信号。
相应地,本申请实施例提供了一种信号检测方法,包括:
基于远端干扰特征判断需要发送专用参考信号;
检测对端在特殊时隙上发送的专用参考信号序列;
根据所述专用参考信号序列确定存在远端干扰。
可选地,如果在第一预设时间内基于远端干扰特征判断需要发送专用参考信号,或检测到专用参考信号序列的次数大于N1,则发送专用参考信号序列;
如果在第二预设时间内检测到专用参考信号序列的次数大于N2(N2>N1),则确定存在远端干扰;
如果在第三预设时间内检测到专用参考信号序列的次数小于N3(N3<N2),则确定不存在远端干扰。本申请实施例提供了一种信号传输装置,该装置包括:
确定单元,用于确定发送专用参考信号序列的时频资源;
发送单元,用于在所述时频资源发送专用参考信号序列,其中,所述时频资源包括:
时域上的下行无线帧的特殊时隙和频域上的将基站可用最大频率带宽进行划分得到的频率子带;
通过检测所述专用参考信号序列来识别远端干扰。
可选地,在基于基站ID确定的无线帧中的特殊时隙中发送专用参考信号序列。
可选地,采用包括但不限于以下两种方法之一确定所述无线帧:
方法1:根据所述基站ID查询所述基站ID与所述专用参考信号序列所在无线帧的系 统帧号之间的映射表,确定所述无线帧的系统帧号:
n SFN=map_talble(n NBID);
方法2:根据如下公式计算确定所述无线帧的系统帧号:
Figure PCTCN2020072093-appb-000005
其中,n SFN为所述无线帧的系统帧号,n NBID为基站ID,
Figure PCTCN2020072093-appb-000006
为系统帧号最大值,map_talble为所述基站ID与所述专用参考信号序列所在无线帧的系统帧号之间的映射表。作为优选方案,采用方法1确定所述无线帧的系统帧号。
可选地,由OAM配置所述专用参考信号序列在无线帧内哪一个下上行切换周期内发送,相邻两次发送的专用参考信号序列的时间间隔必须满足远端干扰最大传播距离要求。
可选地,所述专用参考信号序列位于特殊时隙的下行符号之后、保护时隙GP之前。
可选地,所述专用参考信号序列在时域上占用连续的两个OFDM符号,所述两个OFDM符号上的专用参考信号序列相同,其中第一个OFDM符号最前面和第二个OFDM符号最后面分别设置有普通前缀CP。可选地,基站发送所述专用参考信号序列的周期由OAM配置决定,作为优选配置,所述专用参考信号序列的周期配置成与系统帧周期相同。
可选地,基站发送的专用参考信号序列必须是OAM配置的所有专用参考信号序列中的一条序列,所述OAM配置的所有专用参考信号序列为OAM所管理网络范围内所有基站可供使用的参考信号序列。
可选地,所述OAM配置一条或多条专用参考信号序列,基站从OAM配置的所有专用参考信号序列中基于基站ID选择一条专用参考信号序列,作为该基站所要发送的参考信号序列。
可选地,当OAM配置的参考信号序列为参考信号序列全集时,将基站ID的固定段比特值的十进制值确定为发送的专用参考信号序列ID,或者根据基站ID的固定比特段的十进制值与专用参考信号序列ID之间的映射表确定发送的专用参考信号序列ID;当OAM配置的参考信号序列为参考信号序列全集中的一个子集时,根据基站ID的固定比特段的十进制值与专用参考信号序列ID之间的映射表确定发送的专用参考信号序列ID。
可选地,根据OAM配置的专用参考信号序列的个数和专用参考信号发送周期内的无线帧数,按照预设规则确定基站ID的固定比特段。
可选地,所述频率子带是将基站可使用的最大频率带宽按照OAM统一配置的频率子带大小进行连续划分得到的,一个参考信号序列在频域上使用一个频率子带资源,对于同一个基站,不同频率子带上发送的参考信号序列是相同的。
可选地,同一频段下的频率子带大小相同,不同频段的频率子带大小不限;如果基站划分出来的某个频率子段的带宽大小小于频率子带大小,则不作为频率子带,在该频率资 源上不发送专用参考信号。
相应地,本申请实施例提供了一种信号检测装置,包括:
第一单元,用于基于远端干扰特征判断需要发送专用参考信号;
第二单元,用于检测对端在特殊时隙上发送的专用参考信号序列;
第三单元,用于根据所述专用参考信号序列确定存在远端干扰。
可选地,如果在第一预设时间内基于远端干扰特征判断需要发送专用参考信号,或检测到专用参考信号序列的次数大于N1,则发送专用参考信号序列;
如果在第二预设时间内检测到专用参考信号序列的次数大于N2(N2>N1),则确定存在远端干扰;
如果在第三预设时间内检测到专用参考信号序列的次数小于N3(N3<N2),则确定不存在远端干扰。
综上所述,本申请基站基于远端干扰特征检测到疑似远端干扰后,在特定的无线帧上发送专用的参考信号序列,基站检测到专用的参考信号序列后,基于远端干扰的互易性,判定检测到确定的远端干扰;
对于专用参考信号,本申请给出了参考信号的时频域格式以及发送参考信号的位置、时刻和周期的创新技术方案,可以显著降低检测算法的复杂度以及降低误检率和漏检率,可以支持不同频点、不同带宽基站之间能够相互检测到远端干扰;
而对于远端干扰检测,本申请给出了基于参考信号的远端干扰检测机制和检测算法。
本申请另一实施例提供了一种计算设备,其包括存储器和处理器,其中,所述存储器用于存储程序指令,所述处理器用于调用所述存储器中存储的程序指令,按照获得的程序执行上述任一种方法。
本申请另一实施例提供了一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述任一种方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的参考信号在无线帧上的位置示意图;
图2为本申请实施例提供的参考信号的时域格式示意图;
图3为本申请实施例提供的参考信号序列频域格式示意图;
图4为本申请实施例提供的一种信号传输方法的流程示意图;
图5为本申请实施例提供的一种信号检测方法的流程示意图;
图6为本申请实施例提供的一种信号传输装置的结构示意图;
图7为本申请实施例提供的一种信号检测装置的结构示意图;
图8为本申请实施例提供的另一种信号传输、检测装置的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
本申请实施例提供了一种信号传输、检测方法及装置,用以解决现有技术中远端干扰检测算法复杂度高、检测不实时以及受扰站和施扰站的中心频点和带宽必须完全相同的问题。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G系统以及5G NR系统等。这多种系统中均包括终端设备和网络设备。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(user equipment,UE)。无线终端设备可以经RAN与一个或多个核心网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS) 电话、无绳电话、会话发起协议(session initiated protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的网络设备,可以是基站,该基站可以包括多个小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。网络设备可用于将收到的空中帧与网际协议(internet protocol,IP)分组进行相互转换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)通信网络。网络设备还可协调对空中接口的属性管理。例如,本申请实施例涉及的网络设备可以是全球移动通信系统(global system for mobile communications,GSM)或码分多址接入(code division multiple access,CDMA)中的网络设备(base transceiver station,BTS),也可以是带宽码分多址接入(wide-band code division multiple access,WCDMA)中的网络设备(NodeB),还可以是长期演进(long term evolution,LTE)系统中的演进型网络设备(evolutional node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站,也可是家庭演进基站(home evolved node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微微基站(pico)等,本申请实施例中并不限定。
下面结合说明书附图对本申请各个实施例进行详细描述。需要说明的是,本申请实施例的展示顺序仅代表实施例的先后顺序,并不代表实施例所提供的技术方案的优劣。
由于现有技术存在如下问题:
基站需要对检测窗口内的每个符号和每个特征序列进行大量的盲检测,检测算法的复杂度过高,对基站设备的资源消耗很大;
基站要检测和识别所有的远端干扰源,导致检测周期太长,无法实时检测,影响了干扰规避的时效性;
由于特征序列是全带宽的,基站必须在全带宽内检测特征序列,这要求受扰站和施扰站的中心频点和带宽必须完全相同,才能检测出特征序列和进行干扰规避,极大限制方案的应用场景。
基于上述现有技术存在的问题,本申请提供了一种信号传输、检测方法及装置,具体实施参考以下实施例。
1、参考信号序列的发送。
基站在与本基站ID相关的无线帧、设定的时隙和符号上,以设定的周期发送专用参考 信号序列,参考信号序列可以是Gold序列、ZC(Zadoff-Chu)序列或其他伪随机序列。
基站发送参考信号序列所在的无线帧的系统帧号由本基站ID确定,可采用以下两种方案中其中一种方案确定:
方案一、采用公式计算无线帧的系统帧号。
基站发送参考信号序列所在的无线帧的帧号由本基站ID确定,由如下公式计算而得:
Figure PCTCN2020072093-appb-000007
其中,n SFN为发送参考信号所在的无线帧的帧号,
Figure PCTCN2020072093-appb-000008
为系统帧号最大值,n NBID为基站ID(用于唯一标识一个基站);
方案二、采用映射机制得到无线帧的系统帧号。
基站发送参考信号序列所在的无线帧的帧号也可以由如下公式而得:
n SFN=map_talble(n NBID);
其中,n SFN为发送参考信号所在的无线帧的帧号,n NBID为基站ID(用于唯一标识一个基站),map_talble为基站ID与发送参考信号所在无线帧的系统帧号之间的映射表或特定的映射公式。
上述两种方案的目的均为尽量保证不同基站在不同无线帧上发送参考信号,避免相同的参考信号在接收端的相同符号上非对齐叠加而导致较高的误检率,从而提升检测性能。方案一实施简单,但只能保证基站ID低
Figure PCTCN2020072093-appb-000009
个比特不同的基站在不同无线帧上发送参考信号,否则,接收端会出现相同参考信号非对齐叠加;方案二可以根据现网远端干扰发生区域范围定制基站ID与发送参考信号所在无线帧的系统帧号之间的映射表或设计特定的映射公式,更加灵活,可充分保证不同基站在不同无线帧上发送参考信号,但由于映射表太大,对基站资源开销较大,且需要维护,因此,相对方案一实施起来较困难。
一个无线帧内一般存在多个下上行切换点,在哪一个下上行切换周期内发送参考信号由操作管理和维护(Operation Administration and Maintenance,OAM)配置决定,其配置原则是:上行检测窗口长度必须满足要求的远端干扰最大传播距离要求,一种具体的实施方式可以是:
对于5G NR,如果配置的帧结构中存在DDSUU(D表示下行时隙,U表示上行时隙,S表示下上行切换时隙)切换周期,那么选择该周期内的S时隙发送参考信号是合适的,因为检测窗口长度为2*14+x个OFDM符号,其中x为S时隙内的上行符号数和GP符号数之和,对于30kHz子载波间隔,假设S时隙格式为6:6:2,那么可以检测到的远端干扰源的最大距离为386km,基本可以满足远端干扰最大传播距离要求。参考信号在无线帧上的位置如图1所示。
图1中的RS为参考信号符号,RS和GP均为5G NR协议中时隙格式规定的“F”符号, 这样终端无需知道RS符号,从而保证增加RS符号后对终端的兼容性。
参考信号的时域格式如图2所示,参考信号占用连续的两个OFDM符号,在第一个符号最前面和第二个符号最后面分别添加普通前缀(Common Prefix,CP)。
因为大气波导传播时延是随机的,接收端的检测窗口内符号与接收到的参考信号符号在时域上一般是不对齐的,这种参考信号时域格式可以保证无论传播时延怎样变化都可以让接收端检测到完整的参考信号符号,从而保证检测性能。
基站发送参考信号的周期由OAM配置决定,优选配置为基站发送参考信号的周期为系统帧周期,即基站在系统帧周期内只发送一次参考信号。
基站在特定无线帧上发送哪一条参考信号序列,由OAM配置策略决定。如果远端干扰发生规模较小(主要根据受远端干扰影响的成片小区的区域大小判断远端干扰发生规模),可以配置成所有基站发送固定的参考信号序列,这样基站不需要对多条参考信号序列进行盲检测,可以极大降低检测算法的复杂度。如果远端干扰发生规模较大,因为基站ID最大值一般远大于系统帧周期值,相同参考信号在接收端的相同符号上叠加的概率比较高,会造成较高的误检率或漏检率,在这种情况下,由OAM配置多条参考信号序列供所有基站使用,所有可供系统使用的参考信号序列构成一个参考信号序列全集,这些参考信号序列必须具备良好的自相关性和互相关性,而OAM配置的参考信号序列可以是参考信号序列全集中的一个子集,也可以是全集。每个基站使用哪一条参考信号序列由本基站ID决定,具体方法为:OAM给每一个参考信号序列分配一个唯一识别的序列ID,基站选取参考信号序列时,参考信号序列ID由基站ID固定比特段映射得到,具体实施可采用以下两种方案之一:
方案一、采用映射表映射。
根据本基站ID二进制固定比特段的十进制值,查基站ID固定比特段值与参考信号序列ID值的映射表,得到参考信号序列ID值。
方案二、根据基站ID固定比特段值。
将本基站ID二进制固定比特段的十进制值作为参考信号序列ID值。例如,如果专用参考信号发送周期内的无线帧数为
Figure PCTCN2020072093-appb-000010
参考信号序列个数为N RS,则基站发送的参考信号的序列ID二进制值取为基站ID比特位从低到高的比特段位置范围:
Figure PCTCN2020072093-appb-000011
Figure PCTCN2020072093-appb-000012
将该参考信号序列ID二进制值转换十进制值,即为参考信号序列ID值。
如果OAM配置的参考信号序列为参考信号序列全集,则参考信号序列ID与基站ID固定比特段之间的映射方案可采用上述两种方案中的任一种方案;如果OAM配置的参考信号序列为参考信号序列全集中的一个子集,则必须采用方案一。方案一必须针对每一种可供配 置的参考信号序列子集或全集提供参考信号序列ID与基站ID固定比特段之间的映射表。因此,方案一较方案二来说更为通用和灵活。
不同基站可以发送不同参考信号序列,因此,采用上述方式可以进一步降低相同参考信号序列在接收端的相同符号上非对齐叠加的概率,从而提升检测性能。
2、参考信号序列的频域格式。
对于5G,基站可供使用的频率和带宽范围一般较大,近端基站和远端基站可能使用不同频率范围和带宽,为了支持不同频点、但频率存在重叠的基站之间能够相互检测到参考信号,本申请实施例在基站发送专用参考信号序列中设计了一种参考信号序列的频域格式,具体如下:
基站将可供使用的最大频率带宽按照规定的子带大小划分成几个连续的子频率段,每个子频率段称为一个频率子带;
频率子带大小由OAM统一配置规定,需要考虑现网实际使用的最小连续带宽大小,每个频段的频率子带大小可以不一样,对于相同频段,每个基站划分出来的每个频率子带的频率范围不要求对齐,但频率子带大小必须相同;
在频域上,以频率子带为粒度给参考信号符号分配频率资源,一个参考信号符号在频域上固定使用一个频率子带的子载波资源,且每个频率子带上发送的参考信号序列必须完全相同。如果基站划分出来的某个频率段的带宽大小小于频率子带大小,则不作为频率子带,在该频率资源上不发送参考信号。
一种具体的参考信号序列频域格式参见图3,例如,对于5G,如果OAM配置某个频段的频率子带大小为20MHz,基站可使用100MHz带宽,则该基站可以划分为5个频率子带。
如果两个基站的频率范围和带宽不一样,这两个基站划分出来的每个频率子带的频率范围可能不对齐,但是,因为发送端基站在每个频率子带上发送相同的参考信号,因此在接收端检测窗口内提取的一个频率子带频域数据仍然是一个完整的参考信号频域数据,因此,可以正常检测出参考信号。
如果近端基站和远端基站的频点错开,但频率存在部分重叠,且基站检测参考信号时,需要在基站的全带宽范围内的每一个频率子带上盲检测参考信号,则采用本申请实施例所设计的参考信号序列的频域格式时,即使两端基站的频率不完全重叠,也可以相互检测到参考信号,从而支持不同频点、不同带宽的基站之间的远端干扰检测。
3、远端干扰的检测。
在时域上,基站在检测窗口内的所有上行符号上盲检测参考信号序列;在频域上,在全带宽范围内的所有频率子带上盲检测参考信号序列;在码域上,如果OAM配置了多条参考信号序列,需要遍历盲检测所有参考信号序列。
基站基于远端干扰特征和参考信号检测远端干扰,具体实施如下:
如果基站在设定的T1时间内基于远端干扰特征检测到疑似远端干扰(即基于远端干扰特征判断需要发送专用参考信号),或者持续检测到远端基站的参考信号序列,则启动参考信号序列的发送;
如果基站在设定的T2时间内持续检测到参考信号序列,则判定检测到确定的远端干扰;
如果基站在设定的T3时间内持续检测不到参考信号序列且检测不到疑似远端干扰,则判定远端干扰已消失,停止发送参考信号序列。
综上所述,在发送端,本申请实施例提供了一种信号传输方法,参见图4,包括:
S101、确定发送专用参考信号序列的时频资源;
S102、在所述时频资源发送专用参考信号序列,其中,所述时频资源包括:
时域上的下行无线帧的特殊时隙和频域上的将基站可用最大频率带宽进行划分得到的频率子带;
通过检测所述专用参考信号序列来识别远端干扰。例如本申请实施例中参考信号序列的发送部分的具体实施方式。
本申请实施例在接收端提供了一种信号检测方法,参见图5,包括:
S201、基于远端干扰特征判断需要发送专用参考信号;
S202、检测对端在特殊时隙上发送的专用参考信号序列;
S203、根据所述专用参考信号序列确定存在远端干扰。具体实施参见本申请实施例中远端干扰的检测部分。
在发送端实体侧,本申请实施例提供了一种信号传输装置,参见图6,包括:
确定单元11,用于确定发送专用参考信号序列的时频资源;
发送单元12,用于在所述时频资源发送专用参考信号序列,其中,所述时频资源包括:时域上的下行无线帧的特殊时隙和频域上的将基站可用最大频率带宽进行划分得到的频率子带;通过检测所述专用参考信号序列来识别远端干扰。
相应地,在接收端实体侧,本申请实施例提供了一种信号检测装置,参见图7,包括:
第一单元21,用于基于远端干扰特征判断需要发送专用参考信号;
第二单元22,用于检测对端在特殊时隙上发送的专用参考信号序列;
第三单元23,用于根据所述专用参考信号序列确定存在远端干扰。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可 以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
本申请实施例提供了一种计算设备,该计算设备具体可以为桌面计算机、便携式计算机、智能手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)等。该计算设备可以包括中央处理器(Center Processing Unit,CPU)、存储器、输入/输出设备等,输入设备可以包括键盘、鼠标、触摸屏等,输出设备可以包括显示设备,如液晶显示器(Liquid Crystal Display,LCD)、阴极射线管(Cathode Ray Tube,CRT)等。
存储器可以包括只读存储器(ROM)和随机存取存储器(RAM),并向处理器提供存储器中存储的程序指令和数据。在本申请实施例中,存储器可以用于存储本申请实施例提供的任一所述方法的程序。
处理器通过调用存储器存储的程序指令,处理器用于按照获得的程序指令执行本申请实施例提供的任一所述方法。
本申请实施例提供了一种信号传输装置,参见图8,包括:
处理器500,用于读取存储器520中的程序,执行下列过程:
确定发送专用参考信号序列的时频资源;
通过收发机510在所述时频资源发送专用参考信号序列,其中,所述时频资源包括:时域上的下行无线帧的特殊时隙和频域上的将基站可用最大频率带宽进行划分得到的频率子带;通过检测所述专用参考信号序列来识别远端干扰。
可选地,处理器500通过收发机510在基于基站ID确定的无线帧中的特殊时隙中发送专用参考信号序列。
可选地,处理器500采用以下两种方法之一确定所述无线帧:
方法1:根据所述基站ID查询所述基站ID与所述专用参考信号序列所在无线帧的系统帧号之间的映射表,确定所述无线帧的系统帧号:
n SFN=map_talble(n NBID);
方法2:根据如下公式计算确定所述无线帧的系统帧号:
Figure PCTCN2020072093-appb-000013
其中,n SFN为所述无线帧的系统帧号,n NBID为基站ID,
Figure PCTCN2020072093-appb-000014
为系统帧号最大值,map_talble为所述基站ID与所述专用参考信号序列所在无线帧的系统帧号之间的映射表。 作为优选方案,采用方法1确定所述无线帧的系统帧号。
可选地,由OAM配置所述专用参考信号序列在无线帧内哪一个下上行切换周期内发送,相邻两次发送的专用参考信号序列的时间间隔必须满足远端干扰最大传播距离要求。
可选地,所述专用参考信号序列位于特殊时隙的下行符号之后、保护时隙GP之前。
可选地,所述专用参考信号序列在时域上占用连续的两个OFDM符号,所述两个OFDM符号上的专用参考信号序列相同,其中第一个OFDM符号最前面和第二个OFDM符号最后面分别设置有普通前缀CP。可选地,基站发送所述专用参考信号序列的周期由OAM配置决定,作为优选配置,所述专用参考信号序列的周期配置成与系统帧周期相同。
可选地,基站发送的专用参考信号序列必须是OAM配置的所有专用参考信号序列中的一条序列,所述OAM配置的所有专用参考信号序列为OAM所管理网络范围内所有基站可供使用的参考信号序列。
可选地,所述OAM配置一条或多条专用参考信号序列,基站从OAM配置的所有专用参考信号序列中基于基站ID选择一条专用参考信号序列,作为该基站所要发送的参考信号序列。
可选地,当OAM配置的参考信号序列为参考信号序列全集时,将基站ID的固定段比特值的十进制值确定为发送的专用参考信号序列ID,或者根据基站ID的固定比特段的十进制值与专用参考信号序列ID之间的映射表确定发送的专用参考信号序列ID;当OAM配置的参考信号序列为参考信号序列全集中的一个子集时,根据基站ID的固定比特段的十进制值与专用参考信号序列ID之间的映射表确定发送的专用参考信号序列ID。
可选地,根据OAM配置的专用参考信号序列的个数和专用参考信号发送周期内的无线帧数,按照预设规则确定基站ID的固定比特段。
具体地,可采用如下公式确定基站ID的固定比特段的位置范围:
Figure PCTCN2020072093-appb-000015
其中,
Figure PCTCN2020072093-appb-000016
为OAM配置的专用参考信号发送周期内的无线帧数,N RS为OAM配置的所述范围中包含的专用参考信号序列个数。
可选地,所述频率子带是将基站可使用的最大频率带宽按照OAM统一配置的频率子带大小进行连续划分得到的,一个参考信号序列在频域上使用一个频率子带资源,对于同一个基站,不同频率子带上发送的参考信号序列是相同的。
可选地,同一频段下的频率子带大小相同,不同频段的频率子带大小可以不一样不限。如果基站划分出来的某个频率子段的带宽大小小于频率子带大小,则不作为频率子带,在该频率资源上不发送专用参考信号。
在接收端,处理器500可执行下列过程:
基于远端干扰特征判断需要发送专用参考信号;
检测对端在特殊时隙上发送的专用参考信号序列;
根据所述专用参考信号序列确定存在远端干扰。
可选地,处理器500如果在第一预设时间内基于远端干扰特征判断需要发送专用参考信号,或检测到专用参考信号序列的次数大于N1,则发送专用参考信号序列;
如果在第二预设时间内检测到专用参考信号序列的次数大于N2(N2>N1),则确定存在远端干扰;
如果在第三预设时间内检测到专用参考信号序列的次数小于N3(N3<N2),则确定不存在远端干扰。
收发机510,用于在处理器500的控制下接收和发送数据。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件,即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
处理器500可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
本申请实施例提供了一种计算机存储介质,用于储存为上述本申请实施例提供的装置所用的计算机程序指令,其包含用于执行上述本申请实施例提供的任一方法的程序。
所述计算机存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本申请实施例提供的方法可以应用于终端设备,也可以应用于网络设备。
其中,终端设备也可称之为用户设备(User Equipment,简称为“UE”)、移动台(Mobile Station,简称为“MS”)、移动终端(Mobile Terminal)等,可选的,该终端可以具备经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信的能力,例如,终端可以是移动电话(或称为“蜂窝”电话)、或具有移动性质的计算机等,例如,终端还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
网络设备可以为基站(例如,接入点),指接入网中在空中接口上通过一个或多个扇 区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以是5G系统中的gNB等。本申请实施例中不做限定。
上述方法处理流程可以用软件程序实现,该软件程序可以存储在存储介质中,当存储的软件程序被调用时,执行上述方法步骤。
综上所述,与现有技术方案相比,本申请具有如下优点:
现有技术方案检测周期太长,检测的实时性较差,影响干扰规避的实效性。本申请只要求检测到远端干扰,无需检测和识别所有远端干扰源,因此,参考信号的发送周期和检测周期为系统帧周期,检测比较实时,从而使得干扰规避具备实时性;
现有技术方案的检测算法的复杂度过高,对基站设备的资源消耗很大。本申请的技术方案为:基站根据OAM配置只需在无线帧内的一个下上行切换周期内检测参考信号序列,无需遍历所有下上行切换周期,而且需要检测的参考信号序列是可配置的,为了降低检测算法的复杂度,可以配置较少的、甚至一条参考信号序列,不会明显影响检测结果,但可以大幅降低检测算法的复杂度;
现有技术方案不支持不同中心频点、不同带宽的基站之间的远端干扰检测和干扰规避,这极大限制了其应用场景。本申请提出了频率子带的概念和技术方案,基站在频域上以频率子带为粒度检测远端干扰,从而可以支持不同频点、不同带宽的基站之间的远端干扰检测。
本领域内的技术人员应明白,本发明的实施例可提供为方法、系统、或计算机程序产品。因此,本发明可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本发明可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器、CD-ROM、光学存储器等)上实施的计算机程序产品的形式。
本发明是参照根据本发明实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本发明的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本发明范围的所有变更和修改。
显然,本领域的技术人员可以对本发明实施例进行各种改动和变型而不脱离本发明实施例的精神和范围。这样,倘若本发明实施例的这些修改和变型属于本发明权利要求及其等同技术的范围之内,则本发明也意图包含这些改动和变型在内。

Claims (28)

  1. 一种信号传输方法,其特征在于,该方法包括:
    确定发送专用参考信号序列的时频资源;
    在所述时频资源发送专用参考信号序列,其中,所述时频资源包括:
    时域上的下行无线帧的特殊时隙和频域上的将基站可用最大频率带宽进行划分得到的频率子带;
    通过检测所述专用参考信号序列来识别远端干扰。
  2. 根据权利要求1所述的方法,其特征在于,在基于基站ID确定的无线帧的特殊时隙中发送专用参考信号序列。
  3. 根据权利要求2所述的方法,其特征在于,采用包括但不限于以下两种方法之一确定所述无线帧:
    方法1:根据所述基站ID查询所述基站ID与所述专用参考信号序列所在无线帧的系统帧号之间的映射表,确定所述无线帧的系统帧号:
    n SFN=map_talble(n NBID);
    方法2:根据如下公式计算确定所述无线帧的系统帧号:
    Figure PCTCN2020072093-appb-100001
    其中,n SFN为所述无线帧的系统帧号,n NBID为基站ID,
    Figure PCTCN2020072093-appb-100002
    为系统帧号最大值,map_talble为所述基站ID与所述专用参考信号序列所在无线帧的系统帧号之间的映射表,作为优选方案,采用方法1确定所述无线帧的系统帧号。
  4. 根据权利要求1所述的方法,其特征在于,由操作管理维护功能OAM配置所述专用参考信号序列在无线帧内哪一个下上行切换周期内发送,相邻两次发送的专用参考信号序列的时间间隔必须满足远端干扰最大传播距离要求。
  5. 根据权利要求1所述的方法,其特征在于,所述专用参考信号序列位于特殊时隙的下行符号之后、保护时隙GP之前。
  6. 根据权利要求5所述的方法,其特征在于,所述专用参考信号序列在时域上占用连续的两个正交频分复用OFDM符号,所述两个OFDM符号上的专用参考信号序列相同,其中第一个OFDM符号最前面和第二个OFDM符号最后面分别设置有普通前缀CP。
  7. 根据权利要求1所述的方法,其特征在于,基站发送所述专用参考信号序列的周期由OAM配置决定,作为优选配置,所述专用参考信号序列的周期配置成与系统帧周期相同。
  8. 根据权利要求1所述的方法,其特征在于,基站发送的专用参考信号序列必须是OAM配置的所有专用参考信号序列中的一条序列,所述OAM配置的所有专用参考信号序 列为OAM所管理网络范围内所有基站可供使用的参考信号序列。
  9. 根据权利要求8所述的方法,其特征在于,所述OAM配置一条或多条专用参考信号序列,基站从OAM配置的所有专用参考信号序列中基于基站ID选择一条专用参考信号序列,作为该基站所要发送的参考信号序列。
  10. 根据权利要求9所述的方法,其特征在于,当OAM配置的参考信号序列为参考信号序列全集时,将基站ID的固定段比特值的十进制值确定为该基站发送的专用参考信号序列ID,或者根据基站ID的固定比特段的十进制值与专用参考信号序列ID之间的映射表确定该基站发送的专用参考信号序列ID;当OAM配置的参考信号序列为参考信号序列全集中的一个子集时,根据基站ID的固定比特段的十进制值与专用参考信号序列ID之间的映射表确定该基站发送的专用参考信号序列ID。
  11. 根据权利要求10所述的方法,其特征在于,根据OAM配置的专用参考信号序列的个数和专用参考信号发送周期内的无线帧数,按照预设规则确定基站ID的固定比特段。
  12. 根据权利要求1所述的方法,其特征在于,所述频率子带是将基站可使用的最大频率带宽按照OAM统一配置的频率子带大小进行连续划分得到的,一个参考信号序列在频域上使用一个频率子带资源,对于同一个基站,不同频率子带上发送的参考信号序列是相同的。
  13. 根据权利要求12所述的方法,其特征在于,同一频段下的频率子带大小相同,不同频段的频率子带大小不限;如果基站划分出来的某个频率子段的带宽大小小于频率子带大小,则不作为频率子带,在该频率资源上不发送专用参考信号。
  14. 一种信号检测方法,其特征在于,该方法包括:
    基于远端干扰特征判断需要发送专用参考信号;
    检测对端在特殊时隙上发送的专用参考信号序列;
    根据所述专用参考信号序列确定存在远端干扰。
  15. 根据权利要求14所述的方法,其特征在于,
    如果在第一预设时间内基于远端干扰特征判断需要发送专用参考信号,或检测到专用参考信号序列的次数大于N1,则发送专用参考信号序列;
    如果在第二预设时间内检测到专用参考信号序列的次数大于N2(N2>N1),则确定存在远端干扰;
    如果在第三预设时间内检测到专用参考信号序列的次数小于N3(N3<N2),则确定不存在远端干扰。
  16. 一种信号传输装置,其特征在于,该装置包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,执行以下操作:
    确定发送专用参考信号序列的时频资源;
    在所述时频资源发送专用参考信号序列,其中,所述时频资源包括:
    时域上的下行无线帧的特殊时隙和频域上的将基站可用最大频率带宽进行划分得到的频率子带;
    通过检测所述专用参考信号序列来识别远端干扰。
  17. 根据权利要求16所述的信号传输装置,其特征在于,所述处理器具体用于:在基于基站ID确定的无线帧的特殊时隙中发送专用参考信号序列。
  18. 根据权利要求17所述的信号传输装置,其特征在于,所述处理器采用包括但不限于以下两种方案之一确定所述无线帧:
    方案1:根据所述基站ID查询所述基站ID与所述专用参考信号序列所在无线帧的系统帧号之间的映射表,确定所述无线帧的系统帧号:
    n SFN=map_talble(n NBID);
    方案2:根据如下公式计算确定所述无线帧的系统帧号:
    Figure PCTCN2020072093-appb-100003
    其中,n SFN为所述无线帧的系统帧号,n NBID为基站ID,
    Figure PCTCN2020072093-appb-100004
    为系统帧号最大值,map_talble为所述基站ID与所述专用参考信号序列所在无线帧的系统帧号之间的映射表,作为优选方案,采用信号传输装置1确定所述无线帧的系统帧号。
  19. 根据权利要求16所述的信号传输装置,其特征在于,由操作管理维护功能OAM配置所述专用参考信号序列在无线帧内哪一个下上行切换周期内发送,相邻两次发送的专用参考信号序列的时间间隔必须满足远端干扰最大传播距离要求。
  20. 根据权利要求16所述的信号传输装置,其特征在于,所述专用参考信号序列位于特殊时隙的下行符号之后、保护时隙GP之前。
  21. 根据权利要求20所述的信号传输装置,其特征在于,所述专用参考信号序列在时域上占用连续的两个正交频分复用OFDM符号,所述两个OFDM符号上的专用参考信号序列相同,其中第一个OFDM符号最前面和第二个OFDM符号最后面分别设置有普通前缀CP。
  22. 根据权利要求16所述的信号传输装置,其特征在于,所述处理器发送所述专用参考信号序列的周期由OAM配置决定,作为优选配置,所述专用参考信号序列的周期配置成与系统帧周期相同。
  23. 根据权利要求16所述的信号传输装置,其特征在于,所述处理器发送的专用参考信号序列必须是OAM配置的所有专用参考信号序列中的一条序列,所述OAM配置的所有专用参考信号序列为OAM所管理网络范围内所有基站可供使用的参考信号序列。
  24. 根据权利要求23所述的信号传输装置,其特征在于,所述OAM配置一条或多条 专用参考信号序列,所述处理器从OAM配置的所有专用参考信号序列中基于所述基站ID选择一条专用参考信号序列,作为所述处理器所要发送的参考信号序列。
  25. 根据权利要求24所述的信号传输装置,其特征在于,当OAM配置的参考信号序列为参考信号序列全集时,所述处理器将基站ID的固定段比特值的十进制值确定为所述处理器发送的专用参考信号序列ID,或者根据基站ID的固定比特段的十进制值与专用参考信号序列ID之间的映射表确定所述处理器发送的专用参考信号序列ID;当OAM配置的参考信号序列为参考信号序列全集中的一个子集时,根据基站ID的固定比特段的十进制值与专用参考信号序列ID之间的映射表确定所述处理器发送的专用参考信号序列ID。
  26. 根据权利要求25所述的信号传输装置,其特征在于,所述处理器根据OAM配置的专用参考信号序列的个数和专用参考信号发送周期内的无线帧数,按照预设规则确定基站ID的固定比特段。
  27. 根据权利要求16所述的信号传输装置,其特征在于,所述频率子带是将所述处理器可使用的最大频率带宽按照OAM统一配置的频率子带大小进行连续划分得到的,一个参考信号序列在频域上使用一个频率子带资源,对于同一个所述信号传输装置,不同频率子带上发送的参考信号序列是相同的。
  28. 根据权利要求27所述的信号传输装置,其特征在于,同一频段下的频率子带大小相同,不同频段的频率子带大小不限;如果所述处理器划分出来的某个频率子段的带宽大小小于频率子带大小,则不作为频率子带,在该频率资源上不发送专用参考信号。
PCT/CN2020/072093 2019-01-22 2020-01-14 一种信号传输、检测方法及装置 WO2020151535A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP20745023.0A EP3917200A4 (en) 2019-01-22 2020-01-14 METHOD AND DEVICE FOR DETECTION AND TRANSMISSION OF SIGNALS
US17/424,893 US11411703B2 (en) 2019-01-22 2020-01-14 Signal transmission and detection method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910058146.4 2019-01-22
CN201910058146.4A CN111464261B (zh) 2019-01-22 2019-01-22 一种信号传输、检测方法及装置

Publications (1)

Publication Number Publication Date
WO2020151535A1 true WO2020151535A1 (zh) 2020-07-30

Family

ID=71678924

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/072093 WO2020151535A1 (zh) 2019-01-22 2020-01-14 一种信号传输、检测方法及装置

Country Status (4)

Country Link
US (1) US11411703B2 (zh)
EP (1) EP3917200A4 (zh)
CN (1) CN111464261B (zh)
WO (1) WO2020151535A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111385829B (zh) * 2018-12-27 2021-10-29 大唐移动通信设备有限公司 一种远端干扰的规避方法、系统及装置
US20210112550A1 (en) * 2019-10-10 2021-04-15 T-Mobile Usa, Inc. Detecting interference between base stations and microwave backhaul transceivers
CN111769885B (zh) * 2020-06-29 2022-02-11 北京小米移动软件有限公司 一种超声数据传输方法、装置、系统、终端设备及介质
CN114257319B (zh) * 2020-09-23 2023-09-05 中国移动通信集团湖北有限公司 大气波导干扰定位方法、装置、计算设备及存储介质
CN112530154B (zh) 2020-11-13 2022-07-01 北京小米移动软件有限公司 信息传输方法、信息传输装置、以及电子设备

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101267611A (zh) * 2007-03-12 2008-09-17 大唐移动通信设备有限公司 一种在时分双工系统中实现功率调度的方法及基站
CN102655652A (zh) * 2012-01-05 2012-09-05 电信科学技术研究院 一种远端干扰的检测方法和设备
WO2014079052A1 (en) * 2012-11-26 2014-05-30 Telefonaktiebolaget L M Ericsson (Publ) Methods and radio network nodes for measuring interference
CN107343292A (zh) * 2016-04-28 2017-11-10 大唐移动通信设备有限公司 一种td-lte系统干扰判断方法及装置
CN108964856A (zh) * 2017-05-27 2018-12-07 中兴通讯股份有限公司 一种参考信号配置信息的应用方法及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105828349B (zh) * 2015-01-04 2019-04-23 中国移动通信集团公司 一种基于td-lte系统的远端干扰检测方法及装置
US9904874B2 (en) * 2015-11-05 2018-02-27 Microsoft Technology Licensing, Llc Hardware-efficient deep convolutional neural networks
CN107801199B (zh) * 2016-09-07 2022-04-29 中兴通讯股份有限公司 一种定位干扰源小区的方法、装置和系统
CN108243444B (zh) * 2016-12-26 2020-07-10 大唐移动通信设备有限公司 一种干扰检测的方法及装置
BR112019015126A2 (pt) * 2017-01-23 2020-03-24 Huawei Technologies Co., Ltd. Método de comunicação sem fio, aparelho, e meio de armazenamento legível por computador
CN108574956B (zh) * 2017-03-07 2020-11-03 大唐移动通信设备有限公司 一种特征序列的优选方法和装置
CN110011771B (zh) * 2018-01-05 2020-07-10 中国移动通信有限公司研究院 一种信息传输方法、基站及网络管理单元
CN110768761B (zh) * 2018-07-26 2022-07-15 中兴通讯股份有限公司 定位参考信号生成方法、装置、基站及可读存储介质
JP7173715B2 (ja) * 2018-08-09 2022-11-16 テレフオンアクチーボラゲット エルエム エリクソン(パブル) Tddネットワークにおける基地局間干渉の最小化
BR112021005962A2 (pt) * 2018-09-27 2021-06-29 Telefonaktiebolaget Lm Ericsson (Publ) codificação de identificador (id) de sinal de referência (rs) de gerenciamento de interferência remota (rim)
WO2020062021A1 (en) * 2018-09-28 2020-04-02 Qualcomm Incorporated Enhancement by aggressor victim relation
US11296851B2 (en) * 2018-09-28 2022-04-05 Qualcomm Incorporated Remote interference management reference signal transmission
CN112806084A (zh) * 2018-10-08 2021-05-14 瑞典爱立信有限公司 大气信道驱动的干扰处理
EP3874666A4 (en) * 2018-11-02 2022-07-20 Apple Inc. REFERENCE SIGNAL FOR REMOTE INTERFERENCE MANAGEMENT
KR102572470B1 (ko) * 2018-11-02 2023-08-29 지티이 코포레이션 무선 시스템에서의 간섭 관리
JP7195442B2 (ja) * 2019-01-11 2022-12-23 中興通訊股▲ふん▼有限公司 遠隔干渉軽減リソース構成
CN116669196A (zh) * 2019-02-15 2023-08-29 华为技术有限公司 一种通信方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101267611A (zh) * 2007-03-12 2008-09-17 大唐移动通信设备有限公司 一种在时分双工系统中实现功率调度的方法及基站
CN102655652A (zh) * 2012-01-05 2012-09-05 电信科学技术研究院 一种远端干扰的检测方法和设备
WO2014079052A1 (en) * 2012-11-26 2014-05-30 Telefonaktiebolaget L M Ericsson (Publ) Methods and radio network nodes for measuring interference
CN107343292A (zh) * 2016-04-28 2017-11-10 大唐移动通信设备有限公司 一种td-lte系统干扰判断方法及装置
CN108964856A (zh) * 2017-05-27 2018-12-07 中兴通讯股份有限公司 一种参考信号配置信息的应用方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
See also references of EP3917200A4
ZTE MICROELECTRONICS: "3GPP TSG RAN WG1 Meeting #88bis, Spokane, Washington, USA, 3rd-7th April 2017", R1-1704434 DISCUSSION ON MEASUREMENTS AND RS DESIGN FOR CLI MITIGATION, 7 April 2017 (2017-04-07), XP051242581, DOI: 20200329144842A *

Also Published As

Publication number Publication date
US11411703B2 (en) 2022-08-09
US20220085941A1 (en) 2022-03-17
CN111464261B (zh) 2021-07-23
EP3917200A4 (en) 2022-07-27
CN111464261A (zh) 2020-07-28
EP3917200A1 (en) 2021-12-01

Similar Documents

Publication Publication Date Title
WO2020151535A1 (zh) 一种信号传输、检测方法及装置
WO2021000872A1 (zh) 信号传输方法及装置
WO2022151868A1 (zh) 一种dmrs绑定窗口确定方法、装置及存储介质
WO2020029983A1 (zh) 发送和接收随机接入前导的方法以及通信装置
WO2019063007A1 (zh) 随机接入方法及装置
WO2019028771A1 (zh) 传输数据的方法和终端设备
WO2018045516A1 (zh) 一种通信方法及基站
WO2019024756A1 (zh) 通信方法、网络设备和中继设备
WO2020119207A1 (zh) 一种数据传输方法及装置
WO2021027822A1 (zh) 应用pdsch的处理时长的方法和装置
WO2017215642A1 (zh) 一种资源分配方法、网络设备及终端设备
US11064502B2 (en) Method for sending information, method for receiving information, network device, and terminal device
EP4152811A1 (en) Cache determining method and apparatus
WO2021083249A1 (zh) 基于序列的信号传输的方法和通信装置
WO2020134122A1 (zh) 一种远端干扰的规避方法、系统及装置
WO2022027507A1 (zh) 一种参考信号序列生成方法及装置
TW201919359A (zh) 無線通訊方法、網路設備和終端設備
WO2021203374A1 (zh) 传输随机接入信号的方法和装置
WO2019028842A1 (zh) 通信方法、终端设备及网络设备
WO2019024901A1 (zh) 一种资源分配方法及装置
WO2020029837A1 (zh) 一种同步广播信息的发送、检测方法及装置
CN111800808B (zh) 一种远端干扰源的检测方法及装置
WO2019237310A1 (zh) 一种信息传输方法及装置、终端设备、网络设备
WO2021017604A1 (zh) 资源确定方法及装置
WO2021078007A1 (zh) 信道选择、配置方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20745023

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020745023

Country of ref document: EP

Effective date: 20210823