WO2020029983A1 - 发送和接收随机接入前导的方法以及通信装置 - Google Patents

发送和接收随机接入前导的方法以及通信装置 Download PDF

Info

Publication number
WO2020029983A1
WO2020029983A1 PCT/CN2019/099535 CN2019099535W WO2020029983A1 WO 2020029983 A1 WO2020029983 A1 WO 2020029983A1 CN 2019099535 W CN2019099535 W CN 2019099535W WO 2020029983 A1 WO2020029983 A1 WO 2020029983A1
Authority
WO
WIPO (PCT)
Prior art keywords
random access
access resource
access preamble
resource
subcarrier interval
Prior art date
Application number
PCT/CN2019/099535
Other languages
English (en)
French (fr)
Inventor
邵华
黄煌
高宽栋
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2020029983A1 publication Critical patent/WO2020029983A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/046Wireless resource allocation based on the type of the allocated resource the resource being in the space domain, e.g. beams
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA

Definitions

  • the present application relates to the field of wireless communication technology, and more particularly, to a method and a communication device for sending a random access preamble, and a method and a communication device for receiving a random access preamble.
  • the purpose of random access is to enable terminal equipment to access the network and obtain uplink synchronization.
  • the terminal device accesses the network through the random access process, in some scenarios, for example, the terminal device moves outside the coverage area of the antenna beam, or due to the presence of an obstruction, or the direction in which the terminal receives the beam and the direction in which the network equipment sends the beam
  • BFR beam failure recovery
  • a media access control (MAC) entity of the terminal device configures a beam failure recovery process through a radio resource control (radio resource control (RRC) protocol).
  • RRC radio resource control
  • SSB synchronized signal block
  • CSI-RS channel state information reference signal
  • DMRS demodulation reference signal
  • the terminal device indicates a new SSB / CSI-RS / other reference signal beam to the serving base station.
  • Beam failure detection is a low-level (eg, physical layer) indication to the MAC layer beam failure event. If the number of times that the MAC layer receives an indication of a beam failure event exceeds a certain threshold, it is considered that a beam failure is detected, and a beam failure recovery process is performed. After the beam failure is successfully recovered, the terminal device communicates with the network side based on the new beam direction.
  • the industry has proposed beam recovery based on the physical random access channel (PRACH). That is to say, when performing beam recovery, the terminal device feeds back the candidate beams that meet the conditions to the network side based on the PRACH resource.
  • PRACH physical random access channel
  • the NR standard supports the use of short sequences for the random access preamble sequence of the BFR, and the protocol stipulates that the random access resources used by the terminal device for the BFR and the random access resources used when the terminal device initially accesses the network adopt the same configuration.
  • the random access resource used when the terminal device initially accesses the network supports the terminal device to access the network through a long sequence or a short sequence random access preamble sequence.
  • the current protocol stipulates that the random access preamble sequence used for BFR only supports short sequences. For this reason, if the configuration of the random access resources used for BFR directly adopts the configuration of the random access resources used in the initial access by the terminal device, there will be some contradictions and inapplicability.
  • the random access resources used for BFR also include many specific configurations, and the industry has not yet provided a configuration solution.
  • the present application provides a method and device for sending and receiving a random access preamble sequence, and provides a feasible configuration scheme for a random access resource used for BFR.
  • the present application provides a method for sending a random access preamble, the method comprising: a terminal device obtaining configuration information of a first random access resource from a network device, and a first random access in the first random access resource
  • the preamble is used by the terminal device to recover from a beam failure.
  • the terminal device detects a beam failure, the terminal device sends a first random access preamble to the network device to perform beam recovery.
  • the beam failure recovery is also referred to as beam recovery, or failure recovery.
  • the first random access preamble is used to perform beam failure recovery.
  • the first random access resource is a random access resource configured by the network device for the terminal device to send the first random access preamble.
  • the configuration information of the first random access resource may be obtained periodically from a network device.
  • the configuration information of the first random access resource may also be pre-configured on the network side and stored on the terminal device side, which is not limited in this application.
  • the terminal device may obtain configuration information of the first random access resource in advance. Subsequently, when a beam failure is detected, a first random access preamble is sent to the network device to recover the beam failure. Alternatively, the terminal device may also obtain configuration information of the first random access resource after detecting that the beam fails. After obtaining the configuration information of the first random access resource, the first random access preamble is sent to the network device to perform beam failure recovery.
  • the configuration information of the first random access resource is used to indicate the configuration of the first random access resource, for example, the first random access preamble, the time domain location and / or the frequency domain of the first random access resource.
  • the method before the terminal device sends the first random access preamble to the network device, the method further includes: the terminal device determines the first random access resource according to the configuration information of the first random access resource. A subcarrier interval of a random access preamble; or, the terminal device obtains configuration information of the second random access resource, and determines the subcarrier interval of the first random access preamble according to the configuration information of the second random access resource.
  • the configuration information of the second random access resource is used to indicate the configuration of the second random access resource.
  • the second random access resource is a random access resource used to send a random access preamble when the terminal device initially accesses.
  • the configuration of the second random access resource includes a second random access preamble, a subcarrier interval of the second random access preamble, a time domain position and / or a frequency domain position of the second random access resource, and a second random access resource. Period, the number of random access opportunities RO in the second random access resource period, the association relationship between the SSB and the RO, the format of the second random access preamble, and the like.
  • the second random access preamble in the second random access resource is used for initial access of the terminal device (that is, the initial access network), and the subcarrier interval of the second random access preamble is based on the second random access.
  • the configuration information of the resource is determined.
  • the terminal device determines the subcarrier interval of the first random access preamble according to the configuration information of the second random access resource, including one or more of the following situations : In the case where the second random access preamble in the second random access resource uses the first length, the subcarrier interval of the first random access preamble is equal to the subcarrier interval of the second random access preamble; When the second random access preamble in the random access resource uses the second length, the subcarrier interval of the first random access preamble is indicated by the first indication information, and the first indication information is the second random access resource.
  • the first random access resource is configured as Invalid or not used or sent.
  • the first length is equal to 139 or 127
  • the second length and / or the third length is equal to 839.
  • the subcarrier interval of the first random access preamble may be one or more of 15KHz, 30KHz, 60KH, 120KHz, 240KHz, and 480KHz.
  • the first random access resource is configured as invalid or not used or not sent, that is, the first random access All related parameters of the resource are invalid, including the subcarrier interval of the first random access preamble.
  • the method further includes: determining, by the terminal device, the first random access according to the configuration information of the first random access resource and the configuration information of the second random access resource.
  • the guard interval of the resource wherein the guard interval of the first random access resource is configured according to one or more of the following parameters; the guard interval of the second random access resource and the subcarrier of the second random access preamble The interval and the subcarrier interval of the first random access preamble.
  • the configuration information of the first random access resource further includes one or more of the following information: the format of the first random access preamble, the first random access The period of incoming resources, the time slot where the first random access resource is located, the number of random access opportunities RO in the time slot where the first random access resource is located, the index of the first random access resource, and the synchronization signal block SSB associated with The number of ROs.
  • the configuration information of the first random access resource is invalid.
  • the first random access resource is used by the terminal device to send a first random access preamble to perform beam recovery in the case of a beam failure.
  • the configuration information of the first random access resource is invalid, which means that the terminal device configured on the network side does not perform beam failure recovery when a beam failure occurs.
  • the random access sequence used for beam failure recovery that is, the first random access preamble
  • the present application provides a method for receiving a random access preamble.
  • the method includes: a network device generates configuration information of a first random access resource, and the first random access preamble in the first random access resource is used for The terminal device performs beam failure recovery; the network device sends the configuration information of the first random access resource to the terminal device; the network device receives the first random access preamble from the terminal device, and the first random access preamble is when the terminal device detects the beam Sent in case of failure.
  • the method further includes: the network device sends configuration information of the second random access resource to the terminal device, and the configuration information of the second random access resource is used for the terminal device Determine the subcarrier interval of the first random access preamble.
  • the second random access preamble in the second random access resource is used for initial access of the terminal device, and the subcarrier interval of the second random access preamble is based on The configuration information of the second random access resource is determined.
  • the configuration information of the second random access resource is used by the terminal device to determine the subcarrier interval of the first random access preamble, including one or more of the following situations Kind:
  • the subcarrier interval of the first random access preamble may be 15KHz, 30KHz, 60KH, 120KHz, 240KHz, 480KHz
  • the sequence length of the second random access preamble in the second random access resource is 839
  • the subcarrier interval of the first random access preamble is indicated by the first indication information
  • the first indication information is carried in a field indicating the subcarrier interval of the second random access preamble in the configuration information of the second random access preamble.
  • the configuration information of the first random access resource includes a guard interval of the first random access resource, where the guard interval of the first random access resource is based on the following One or more of the parameters are configured: a guard interval of the second random access resource, a subcarrier interval of the second random access preamble, and a subcarrier interval of the first random access preamble.
  • the guard interval of the first random access resource refers to a smallest sub-carrier interval between a subcarrier interval of the second random access preamble and a subcarrier interval of the first random access preamble. Carrier interval.
  • the guard interval of the first random access resource, the guard interval of the second random access resource, the subcarrier interval of the second random access preamble, and the first random access The following expressions are satisfied between the leading subcarrier intervals: among them, Indicates the guard interval of the first random access resource, N gap indicates the guard interval of the second random access resource, u bfr indicates the subcarrier interval index of the first random access preamble, and u PRACH indicates the subcarrier interval of the second random access preamble. Carrier interval index.
  • the subcarrier interval of the second random access preamble may be one or more of the following subcarrier intervals: maximum uplink BWP subcarrier interval, minimum uplink BWP subcarrier interval , Normal uplink subcarrier interval, next largest uplink subcarrier interval, subcarrier interval of random access preamble of primary cell, subcarrier interval of random access preamble of secondary cell, maximum subcarrier interval in multiple BWPs, multiple Minimum subcarrier spacing in BWP.
  • the subcarrier interval of the first random access preamble, the subcarrier interval of the second random access preamble, and the guard interval of the first random access resource satisfy the following table: One or more of 1:
  • the configuration information of the second random access resource further includes one or more of the following information: a format of the second random access preamble, and a second random access resource. Cycle of the second random access resource, the number of random access opportunities RO on the second random access resource, the index of the second random access resource, the number of ROs associated with the synchronization signal block SSB, The configuration of one random access resource is the same as the configuration information of the second random access resource.
  • the first random access resource and the second random access resource use exactly the same PRACH-ConfigIndex.
  • the format of the random access preamble, the subcarrier interval of the random access preamble, the period of the random access resource, the pattern of the random access resource in the time domain, the number of ROs included in the random access resource in the frequency domain, etc. are identical to the same PRACH-ConfigIndex.
  • the first random access resource and the second random access resource may be configured with the same SSB-Per RACH-occasion association relationship. This configuration allows the network device to receive the first random access resource and the second random access resource at the same time even when the network device has only one analog beam, which can reduce scheduling complexity.
  • the configuration information of the second random access resource is different from at least one of the configuration information of the first random access resource.
  • ROs include valid ROs and invalid ROs.
  • the time unit here may be the second random access.
  • the first random access resource and the second random access resource use different PRACH-ConfigIndex, that is, the first random access resource and the second random access resource have different patterns.
  • the first random access resource is valid only at the time corresponding to the effective RO in the second random access resource.
  • the time corresponding to the effective RO in the second random access resource mentioned herein may be an OFDM symbol, a RACH slot, or a random access subframe in which the second random access resource is located.
  • a valid RO in the first random access resource is configured to be invalid after being associated with an integer number of SSB cycles. That is to say, the effective ROs in the first random access resource and the remaining ROs after being associated with an integer number of SSB cycles are not used for beam failure recovery.
  • the present application provides a communication device having the function of a terminal device in the foregoing first aspect or a method of any possible implementation manner of the first aspect.
  • These functions can be implemented by hardware, or they can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to these functions.
  • the communication device may be a terminal device, or may also be a chip configured in the terminal device.
  • the present application provides a communication device having the function of a network device in the foregoing second aspect or the method in any possible implementation manner of the second aspect.
  • These functions can be implemented by hardware, or they can also be implemented by hardware executing corresponding software.
  • the hardware or software includes one or more units corresponding to these functions.
  • the communication apparatus may be a network device, or may also be a chip or an integrated circuit configured in the network device.
  • the present application provides a terminal device including a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store the computer program
  • the processor is used to call and run the computer program stored in the memory, so that the terminal device performs the method in the first aspect and any possible implementation manner of the first aspect.
  • the present application provides a network device, including a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store the computer program
  • the processor is used to call and run the computer program stored in the memory, so that the network device executes the method in the second aspect and any possible implementation manner of the second aspect.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores instructions. When the instructions are run on a computer, the computer is caused to execute the first aspect or any possible implementation of the first aspect. Way in the way.
  • the present application provides a computer-readable storage medium, where the computer-readable storage medium stores instructions, and when the instructions are run on the computer, the computer is caused to execute the second aspect or any possible implementation of the second aspect. Way in the way.
  • the present application provides a chip provided in the present application, including a memory and a processor.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory to execute the first aspect and the above. Method in any possible implementation manner of the first aspect.
  • the present application provides a chip provided by the present application, including a memory and a processor.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory to execute the second aspect and the foregoing.
  • the method in any one of the possible implementation manners of the second aspect.
  • the foregoing memory and the memory may be physically independent units, or the memory may be integrated with the processor.
  • the present application provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer causes the computer to execute the first aspect and any one of the possible implementation manners. Methods.
  • the present application provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program code runs on a computer, the computer executes the second aspect and any possible implementation of the second aspect. Way in the way.
  • the technical solution of the present application provides a feasible configuration solution for the random access resources when the terminal device recovers from a beam failure.
  • FIG. 1 is an architecture diagram of a wireless communication system 100 applicable to the present application.
  • FIG. 2 is a flowchart of a method for sending and receiving a random access preamble provided by the present application.
  • FIG. 3 is a schematic diagram of insufficient protection intervals of BFR RACH resources.
  • FIG. 4 is a configuration scheme of the association relationship between the SSB and the RO in the first random access resource.
  • FIG. 5 is a configuration scheme of an effective RO in the first random access resource.
  • FIG. 6 is an example of a method for sending and receiving a random access preamble provided by the present application.
  • FIG. 7 is a schematic structural block diagram of a communication device 500 provided in the present application.
  • FIG. 8 is a schematic structural block diagram of a communication device 600 provided in the present application.
  • FIG. 9 is a schematic structural diagram of a terminal device 700 provided in the present application.
  • FIG. 10 is a schematic structural diagram of a network device 3000 provided in the present application.
  • FIG. 1 is a structural diagram of a wireless communication system 100 applicable to an embodiment of the present application.
  • the wireless communication system 100 may include at least one network device and one or more terminal devices.
  • the network device (such as 101 shown in FIG. 1) can perform unlimited communication with the one or more terminal devices (such as 102 and 103 shown in FIG. 1).
  • the wireless communication system involved in this application includes, but is not limited to, a global mobile communications (GSM) system, a code division multiple access (CDMA) system, and a wideband code division multiple access (wideband code division).
  • GSM global mobile communications
  • CDMA code division multiple access
  • WCDMA wideband code division multiple access
  • GPRS general packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • TDD time division duplex
  • TDD time division duplex
  • TDD time division
  • UMTS universal mobile communication system
  • WiMAX worldwide interoperability for microwave communication
  • next-generation 5G mobile communication system Namely enhanced mobile bandwidth (eMBB), high reliability, low latency communication (ultra low latency communication, URLLC), and enhanced mass machine type communication (eMTC) or new communication systems that will appear in the future .
  • eMBB enhanced mobile bandwidth
  • URLLC ultra low latency communication
  • eMTC enhanced mass machine type communication
  • the technical solution provided in this application can be applied to scenarios such as beam failure recovery, positioning, and system information request (SI request) in the wireless communication system.
  • the terminal device needs to send a random access request through a random access channel.
  • SI request system information request
  • the embodiments of the present application only use beam failure recovery as an example for description, and the applications in other scenarios are similar.
  • the terminal equipment involved in the embodiment of the present application may refer to user equipment (UE), terminal, access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user Terminal, terminal, wireless communication device, user agent, or user device.
  • Terminal equipment can also be cellular phones, cordless phones, session initiation protocol (SIP) phones, wireless local loop (WLL) stations, personal digital processing (PDA), and wireless communication Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, terminal devices in the future 5G network, or public land mobile network (PLMN) in future evolution Terminal equipment and the like are not limited in this application.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital processing
  • PLMN public land mobile network
  • the network device involved in the embodiment of the present application may be a device for communicating with a terminal device, and the network device may be a Global System for Mobile Communication (GSM) system or a Code Division Multiple Access (CDMA) system.
  • the base station base transceiver station, BTS
  • BTS can also be a base station (nodeB, NB) in a wideband code division multiple access (WCDMA) system, or an evolutionary base station (evolutional base station) in an LTE system.
  • nodeB can also be a wireless controller in a cloud radio access network (CRAN) scenario, or the network device can also be a relay station, access point, in-vehicle device, wearable device, and
  • CRAN cloud radio access network
  • the network equipment and the like in the future 5G network are not limited in this embodiment of the present application.
  • the purpose of random access is to enable terminal equipment to access the network and obtain uplink synchronization.
  • the random access process can be divided into contention-based and non-contention-based.
  • the contention-based random access process mainly includes the following processes: 1.
  • the terminal device sends a random access preamble sequence at a specific time-frequency position.
  • the specific time-frequency position is also referred to as a random access channel occasion (RO), and a random access preamble sequence sent is also referred to as a message 1 (message 1).
  • RO random access channel occasion
  • the network device After detecting the random access preamble sequence, the network device feeds back a random access response to the terminal device. 3.
  • the terminal device sends a message 3 (message 3) to the network device.
  • the message 3 carries identification information of the terminal device, for example, a user equipment identifier (UE ID), a cell wireless network temporary identifier (C-RNTI), and a random number.
  • UE ID user equipment identifier
  • C-RNTI cell wireless network temporary identifier
  • the network device sends a message 4 (message 4) to the terminal device, indicating the terminal device that has won the conflict resolution.
  • the configuration information mainly includes: (1) the subcarrier interval used by message 1.
  • the low-frequency short sequence can use 15KHz or 30KHz
  • the high-frequency short sequence can use 60KHz or 120KHz, or 240KHz, 480KHz.
  • message 1 can also use a long sequence, and the subcarrier interval used by the long sequence is 1.25KHz or 5KHz, and configured in the physical random access channel (physical random access channel (PRACH) configuration index).
  • PRACH physical random access channel
  • PRACH ConfigIndex the configuration is a value of 0-255, each value corresponds to a row in the PRACH index table, the configuration of each row includes the format of the random access preamble, the system frame number (system frame number, SFN), the period of the RO, the specific time slot position of the RO in the system frame where it is located, and the number of ROs contained in a random access slot (RACH slot).
  • the PRACH ConfigIndex defines a pattern of random access resources that appear periodically.
  • SSB synchronous signal block
  • RACH Occasion the association relationship between SSB and random access resources.
  • the association mentioned here means that if the terminal device selects an SSB for random access, it will send a random access preamble sequence on the RO associated with the SSB.
  • the order of RO correlation is first in the frequency domain, from low frequency to high frequency, and then in the time domain, from back to back.
  • multiple random access resource periods are used for splicing, and the optional value of splicing is ⁇ 1,2,4,8,16 ⁇ . That is, the maximum number of splicing of multiple random access resources in an association period is 160ms.
  • the PRACH ConfigIndex defines a pattern of random access resources, but not all ROs can be used for random access, or in other words, not all ROs can be associated with the SSB. Some ROs in this pattern may collide with downlink signals.
  • the downlink signals mentioned here can be downlink (DL) and SSB.
  • DL downlink
  • SSB SSB
  • the time domain may be divided into DL resources, flexible resources, and UL resources, and flexible resources may also be represented as X. Therefore, the resource form in the time domain is DL-X-UL. If the RO in the pattern falls in the DL resource, it is an invalid RO. If it falls in the UL resource, it is a valid RO.
  • the reference subcarrier interval of the two OFDM symbols is the subcarrier interval of message 1.
  • BF beam forming
  • Beamforming technology is to limit the energy of the transmitted signal to a certain beam direction, thereby increasing the signal-to-noise ratio when transmitting signals in this beam direction.
  • the beamforming technology is mostly used in high-frequency scenarios. Because the beam is narrow, beam failure often occurs due to occlusion and other factors, causing communication between the terminal device and the base station to be interrupted.
  • Beam failure recovery is mainly used to quickly recover a service beam from a candidate beam after the current service beam fails.
  • Wave speed failure can also be called link failure (RLF), link failure (RLF), and beam failure recovery can also be called link failure recovery (RLFR).
  • the BFR process mainly includes: 1. Beam failure detection (BFD).
  • the terminal device detects a physical downlink control channel (PDCCH) of a service beam, or detects a beam having a quasi co-location (QCL) with a demodulation reference signal (DMRS) of a PDCCH, If the equivalent block error rate (BLER) is less than a predefined threshold, a beam failure event (beam failure) is considered to have occurred.
  • PDCCH physical downlink control channel
  • DMRS demodulation reference signal
  • the MAC receives the number of beam failure events indicated by the bottom layer exceeding a certain threshold, it considers that beam failure has been detected. If a PRACH resource for beam failure recovery is configured, the beam failure recovery process starts. 2. The terminal device searches for a candidate beam that satisfies a condition from a candidate beam set configured by the base station. For example, the selection condition may be greater than a reference signal receiving power (RSRP) threshold.
  • the candidate beam is an SSB and / or channel state information reference signal (CSI-RS) set configured by the base station for the terminal device. 3.
  • the terminal device initiates non-competitive random access on the PRACH resources corresponding to the SSB and / or CSI-RS. If the terminal device receives the random access procedure message 2 (message 2) fed back by the base station, it considers that the beam recovery is successful and the beam direction can communicate.
  • RSRP reference signal receiving power
  • CSI-RS channel state information reference signal
  • BFR new radio
  • the terminal device selects a candidate beam that meets the conditions, it sends a random access preamble sequence to the base station on the RACH resource. It is also stipulated that the BFR random access preamble sequence can only adopt a short sequence.
  • BACH RACH resources such as the period of RACH resources, the number of ROs in a RACH resource period, the guard interval of RACH resources, etc.
  • the protocol only stipulates that the random access resources used when the terminal device initially accesses the network The same configuration.
  • the random access preamble sequence (also referred to as a random access preamble) includes four formats, namely format 0, format 1, format 2, and format 3.
  • the sequence length of the random access preamble corresponding to format 0, format 1, and format 2 is 839
  • the sequence length of the random access preamble corresponding to format 4 is 139. Therefore, a random access preamble with a sequence length of 839 is called a long sequence, and a random access preamble with a sequence length of 139 is called a short sequence.
  • This application relates to a random access resource applicable when a terminal device initially accesses a network and a random access resource applicable when a terminal device performs BFR.
  • the random access resources used when the terminal device initially accesses the network are referred to as IAM RACH resources
  • the random access resources used when the terminal device performs beam failure recovery are referred to as BFR RACH resources.
  • the terminal device accesses the network by sending a random access preamble sequence to the network device. Therefore, in other words, the IAM RACH resource is used to send the random access preamble sequence to the network device when the terminal device performs initial access, and The BFR RACH resource is used by a terminal device to send a random access preamble sequence to a network device when performing a BFR.
  • the terminal device is sent during the BFR
  • the random access preamble sequence is called a first random access preamble sequence
  • the random access preamble sequence sent by the terminal device during initial access is called a second random access preamble sequence.
  • the random access resource used to send the first random access preamble sequence may also be referred to as the first random access resource
  • the random access resource used to send the second random access preamble sequence may be referred to as the second Random access resources.
  • the first random access resource is also referred to as a BFR RACH resource
  • the second random access resource is also referred to as an IAM RACH resource.
  • the random access preamble sequence can support the long sequence with a sequence length of 839 and the short sequence with a sequence length of 139.
  • the frequency is divided into two parts: less than 6GHz is low frequency, and higher than 6GHz is high frequency. Among them, high frequencies only support short sequences, and low frequencies can support long sequences and short sequences.
  • the subcarrier spacing of the high-frequency short sequence can be 60KHz and 120KHz.
  • the subcarrier interval of the low-frequency short sequence can be 15KHz and 30KHz, and the subcarrier interval of the low-frequency long sequence can be 1.25KHz and 5KHz.
  • the current protocol stipulates that the random access preamble sequence used for BFR uses only short sequences, and it also stipulates that the BFR RACH resource uses the same configuration as the IAM RACH resource. Then, when the initial access uses a long sequence, that is, when the subcarrier interval of the random access preamble sequence at the initial access is 1.25KHz and 5KHz, the subcarriers of the random access preamble sequence for BFR The interval cannot be determined. Because when the random access preamble sequence of the BFR is a short sequence, it cannot support the subcarrier interval of 1.25KHz and 5KHz.
  • BFR RACH resources have not been provided, for example, the period of BFR RACH resources, the guard interval of BFR RACH resources, the effective RO on BFR RACH resources, the association relationship between SSB and RO, and so on.
  • this application proposes a method and device for sending and receiving a random access preamble sequence, and provides a feasible configuration scheme for BFR RACH resources.
  • the random access preamble sequence may also be referred to as a preamble sequence, a random access preamble, a random access preamble, a preamble, and a random access process message 1 or message 1.
  • the preamble subcarrier interval can also be referred to as the preamble subcarrier interval, and the random access process message 1 subcarrier interval.
  • Random access can also be called RACH, random access process can also be called RACH process, and random access resources are also called RACH resources.
  • a high frequency refers to a case where the frequency range is greater than 6 GHz
  • a low frequency refers to a case where the frequency range is less than 6 GHz.
  • FIG. 2 is a flowchart of a method for sending and receiving a random access preamble sequence according to the present application.
  • the network device generates configuration information of the first random access resource.
  • the configuration information of the first random access resource is used to indicate the configuration of the first random access resource.
  • the first random access preamble in the first random access resource is used for the terminal device to perform beam failure recovery.
  • the configuration information of the first random access resource is used to indicate the configuration of the first random access resource.
  • the configuration of the first random access resource includes at least a subcarrier interval of the first random access preamble.
  • the subcarrier interval of the first random access preamble may be configured according to the sequence length of the second random access preamble that the terminal device initially accesses the network device, or the subcarrier of the first random access preamble The interval may also be configured independently of the sequence length of the second random access preamble.
  • the first random access resource is used by the terminal device to send the first random access preamble sequence to the network device.
  • the first random access preamble sequence is a random access preamble sequence sent by the terminal device to the network device when performing the BFR.
  • the first random access preamble is used by the terminal device for beam failure reply.
  • the first random access resource may be the BFR RACH resource described above.
  • the configuration information of the second random access resource mentioned below is used to indicate the configuration of the second random access resource.
  • the configuration of the second random access resource includes at least a second random access preamble, and the second random access preamble is used. Perform initial access at the terminal device.
  • the second random access resource may be the IAM RACH resource (initial access RACH resource) mentioned above.
  • the configuration scheme of the random access resource (that is, the first random access resource in this document) for the BFR proposed in this application is described below.
  • the following respectively configures the subcarrier interval of the first random access preamble in the first random access resource, the guard interval of the first random access resource, the effective RO in the first random access resource, and the association relationship between the SSB and the RO.
  • the subcarrier interval of the first random access preamble may be determined by the terminal device according to the obtained configuration information of the first random access resource.
  • the terminal device may also obtain configuration information of the second random access resource from the network device, and then determine the configuration information according to the configuration information of the second random access resource.
  • the network device may use a long sequence and a short sequence to configure the subcarrier interval of the first random access preamble according to the second random access preamble in the second random access resource.
  • the second random access preamble sequence can support short and long sequences.
  • the present application configures a subcarrier interval of the first random access preamble for a case where the second random access preamble uses a long sequence and a short sequence, respectively.
  • the first random access preamble sequence and the second random access preamble sequence use the same subcarrier interval.
  • the first random access preamble sequence may use a subcarrier interval of 60KH, or 120KHz, or 240KHz, or 480KHz.
  • the first random access preamble sequence may use a subcarrier interval of 15KHz or 30KHz.
  • the first random access resource also uses the same PRACH configuration index as the second random access resource, that is, the same PRACH ConfigIndex, including the same random access preamble format and RO resource pattern. And random access resource configuration cycles.
  • the following configurations of the first random access resource and the second random access resource are also the same:
  • the format of the random access preamble sequence, the period of the random access resource, the time and / or frequency domain location where the random access resource is located, the time slot where the random access resource is located, and the time when the first random access resource is located The number of ROs in the slot, the index of the first random access resource, the association relationship between the SSB and the RO, and so on.
  • the BFR RACH resources and IAM RACH resources are completely coincident in the time domain, which can facilitate the network side for scheduling. At the same time, it can also improve resource utilization and reduce system overhead for random access resources.
  • the first random access resource configuration is invalid.
  • the first random access resource is configured to be invalid or not used or not transmitted.
  • the first random access resource configuration is invalid, that is, the first random access resource is unavailable, or the terminal device does not use the first random access resource for beam failure recovery.
  • the solution 2 actually means that if the terminal equipment uses a long sequence when initially accessing the network, then after the beam fails, the beam failure recovery is not performed.
  • the first random access resource is configured independently of the second random access resource.
  • the first random access resource is independent of the second random access resource configuration, which means that the configuration of the first random access resource and the configuration of the second random access resource are independent of each other.
  • Subcarrier interval of the first random access preamble sequence, the first random access resource index (PRACH ConfigIndex), the format of the first random access preamble sequence, the period of the first random access resource, and the location of the first random access resource One or more of the time domain location of the UE, the number of ROs in the time slot where the first random access resource is located, and the association relationship between the SSB and the RO are independently configured.
  • the subcarrier interval of the first random access preamble sequence is indicated by the first indication information, and the first indication information is carried in a field indicating the subcarrier interval of the second random access preamble sequence in the configuration information of the second random access resource.
  • the configuration information of the second random access resource includes 1-bit subcarrier interval indication information.
  • the 1-bit subcarrier interval indication information is used to indicate the second The subcarrier interval of the random access preamble sequence.
  • the 1-bit subcarrier interval indication information is unconfigured or unused. .
  • the 1-bit subcarrier interval indication information in the configuration information of the second random access resource is used to indicate the first random access The subcarrier spacing of the preamble.
  • the first The subcarrier interval of a random access preamble sequence and the subcarrier interval of a second random access preamble sequence are inconsistent, which may cause a problem that the guard interval after the DL resource or the SS / PBCH block is insufficient.
  • FIG. 3 is a schematic diagram of insufficient guard intervals after DL resources.
  • the second random access preamble sequence uses the A1 format, and the subcarrier interval uses 15 KHz (such as IAM RACH, A1-15 KHz shown in FIG. 3).
  • the first random access preamble sequence adopts A1 format, and the subcarrier interval adopts 30KHz (such as BFR RACH, A1-30KHz shown in FIG. 3).
  • Random access resources located after the downlink symbol DL and / or random access resources located in the flexible symbol after the downlink symbol DL require 2 OFDM symbols as a guard interval to avoid inter-cell interference.
  • the absolute time lengths of the two OFDM symbols are inconsistent.
  • the IAM RACH guard interval is BFR RACH 2 times, making the BFR guard interval insufficient and bringing interference to neighboring cells.
  • guard interval refers to a valid random access resource located behind a DL symbol and / or among flexible resources and / or UL resources, and the last symbol of the preceding DL or SS / PBCH block. Time interval. That is, the guard interval refers to:
  • guard interval of the random access resources refers to the time and / or frequency domain random access resources are invalid, or the terminal and / or the base station are not used, or the terminal does not send, or the base station Not receiving, or idle / vacant.
  • the random access resources overlapping or partially overlapping the guard interval are invalid, or the terminal and / or the base station are not used, or the terminal does not send, or the base station does not receive, or is idle / vacant.
  • Random access preamble subcarrier interval N gap 1.25kHz or 5kHz 0 15kHz or 30kHz or 60kHz or 120kHz 2
  • N gap 0.
  • the validity rule of the first random access resource is the same as the validity rule of the second random access resource.
  • the RO in the first random access resource located on the uplink (UL) resource is valid, and / or,
  • the first random access resource located in the downlink (DL) resource is invalid, and / or,
  • the first random access resource located in the flexible resource needs to set a guard interval with the last downlink symbol or the last OFDM symbol of the SS / PBCH block in the first random access resource.
  • the value is any one of 0,1,2,3,4,5,6, and the unit is OFDM symbol.
  • the RO within this guard interval is invalid.
  • the first random access resource RO located in the flexible resource if there is a downlink resource in the time slot, the RO located before the downlink resource is invalid.
  • the downlink resources include DL and / or SSB and / or RMSI CORESET.
  • the flexible resources include resources that are flexible, or unknown, or reserved as indicated by the system message or the base station.
  • the guard interval is 0.
  • the guard interval of the first random access resource may be configured according to one or more of a guard interval of the second random access resource, a second random access preamble subcarrier interval, and a first random access preamble subcarrier interval.
  • the guard interval of the first random access resource can be configured according to the following formula (1):
  • N gap indicates the guard interval of the second random access resource
  • u bfr indicates the subcarrier interval index of the first random access preamble sequence
  • u PRACH indicates the second random access preamble sequence Index of the subcarrier interval.
  • the guard interval of the first random access resource refers to the smallest subcarrier interval among the subcarrier interval of the second random access preamble and the subcarrier interval of the first random access preamble.
  • guard interval of the first random access resource may be configured according to the following formula (2):
  • min ( ⁇ bfr , ⁇ PRACH )
  • N gap indicates the guard interval index of the second random access resource
  • u bfr indicates the subcarrier interval index of the first random access preamble
  • U PRACH represents the subcarrier interval index of the second random access preamble
  • min () represents the operation of taking the minimum value.
  • the first random access resource guard interval is determined according to the subcarrier interval of the second random access preamble sequence and the first random access preamble subcarrier interval:
  • N gap is an OFDM symbol, and its subcarrier interval refers to the minimum / maximum value of the first random access preamble subcarrier interval and the second random access preamble subcarrier interval.
  • the candidate value of N gap can be ⁇ 0,1,2,3,4,5,6,7,8 ⁇ , or the guard interval of the second random access preamble.
  • N gap is 0.
  • the foregoing N gap represents an absolute time length, that is, a protection interval between the first random access resource and the protection between the second random access resource has the same length of time.
  • the guard interval of the first random access resource is based on the guard interval of the second random access resource and the subcarrier interval of the first random access preamble sequence:
  • the guard interval of the first random access resource may be 0.
  • subcarrier interval and the subcarrier interval index may be replaced equivalently, and the corresponding relationship between the subcarrier interval index and the subcarrier interval is shown in Table B below.
  • the guard interval of the first random access resource and the guard interval of the second random access resource are configured separately.
  • the guard interval of the first random access resource may be configured as two OFDM symbols, and the reference subcarrier interval of the two OFDM symbols may be the subcarrier interval of the first random access preamble sequence.
  • the guard interval of the first random access resource is based on the guard interval of the second random access resource, the subcarrier interval of the second random access preamble sequence, and the subcarrier interval of the first random access preamble sequence. For one or more configurations, this is the same as scenario 2.
  • scheme 4 the second random access preamble sequence may be configured with multiple subcarrier intervals. Therefore, if the guard interval of the second random access resource is configured according to formula (1) in scheme 1, the parameter u PRACH in formula (1) will have multiple values. In the case where u PRACH takes different values, the calculated guard interval of the first random access resource is also different.
  • u PRACH may be one or more of the following subcarrier intervals:
  • UL subcarrier interval minimum UL subcarrier interval, normal UL subcarrier spacing (NUL-SCS), sub-uplink subcarrier spacing (SUL-SCS) 1.
  • NUL-SCS normal UL subcarrier spacing
  • SUL-SCS sub-uplink subcarrier spacing
  • the bandwidth of the terminal device and the system bandwidth remain the same. After the terminal device decodes the master information block (MIB) information and obtains the bandwidth configured on the network side, it remains unchanged.
  • MIB master information block
  • the bandwidth of terminal equipment can change dynamically. For example, at time T1, the service volume of the terminal device is large, and the system configures a larger bandwidth for the terminal device (referred to as BWP1). At T2, the service volume of the terminal equipment is small. The system reconfigures the terminal equipment with a smaller bandwidth (referred to as BWP2) to meet the basic communication requirements.
  • the system finds that there is a wide range of frequency selective fading in the bandwidth where BWP1 is located, or the resources in the frequency range where BWP1 is in short supply, so it will reconfigure a new bandwidth for the terminal device (referred to as BWP3). It can be seen that during this process, there will be multiple BWPs. These are the multiple BWPs mentioned above.
  • the subcarrier interval of the first random access preamble, the subcarrier interval of the second random access preamble, and the guard interval of the first random access resource in the embodiments of the present application may meet the requirements in Table C below. One or more of them.
  • the reference subcarrier interval of the guard interval of the first random access resource in the third column in Table C is the subcarrier interval of the first random access preamble.
  • the first column in Table C is all optional reference subcarrier intervals in the solution 3.
  • the following describes the configuration of the effective RO on the first random access resource and the configuration of the association relationship between the SSB and the RO.
  • a valid RO in the first random access resource is only valid at a time position corresponding to the RO in the second random access resource.
  • the time position corresponding to the RO in the second random access resource includes one or more of the following:
  • the ROs having an association relationship with the SSB.
  • the RO that is not associated with the SS / PBCH is not used as the first random access effective resource.
  • the first random access resource and the second random access resource are configured with the same random access resource index (PRACH ConfigIndex) and / or the subcarrier interval of the random access preamble sequence. That is, configure one or more of the following parameters to be the same:
  • Random access preamble format subcarrier interval of random access preamble sequence, time domain location information of random access resources, frequency domain location information of random access resources, period of random access resources, number of ROs associated with SSB, and The number of frequency division multiplexed ROs in the frequency domain.
  • This configuration scheme can effectively compress the resources occupied by the first random access resource and the second random access resource in the time domain.
  • the first random access resource and the second random access resource may also be configured with the same SSB-per RACH-occasion association relationship, that is, the association relationship between the SSB and the RO is the same.
  • FIG. 4 is a configuration scheme of an association relationship between an SSB and an RO in a first random access resource.
  • the first random access resource and the second random access resource are configured with exactly the same SSB-per RACH-occasion association relationship.
  • SSB1 is associated with RO1 and RO2
  • SSB2 is associated with RO3 and RO4.
  • IAM RO in FIG. 4 represents the RO of the IAM RACH resource (that is, the second random access resource)
  • BFR RO represents the RO of the BFR RACH resource (that is, the first random access resource).
  • This configuration allows the network device to receive the first random access resource and the second random access resource at the same time even when the network device has only one analog beam, which can reduce scheduling complexity.
  • the first random access resource and the second random access resource are configured with different PRACH ConfigIndex and / or random access preamble subcarrier intervals.
  • the patterns of the first random access resource and the second random access resource are different.
  • the first random access resource is configured to be effective only in a time unit where a valid RO of the second random access resource is located.
  • the time unit referred to herein may refer to one or more of an OFDM symbol, a time slot, and a random access subframe in which an effective RO of the second random access resource is located.
  • FIG. 5 is a configuration scheme of an effective RO in the first random access resource.
  • the RO in the first random access resource is valid only in a time unit where a valid RO in the second random access resource is located.
  • the RO in the first random access resource is valid only at the time position corresponding to the valid RO in the second random access resource.
  • the first random access resource and the second random access resource have different PRACH ConfigIndex configurations, but the same random access preamble format is configured.
  • the length of the random access preamble format of the first random access resource configuration is less than or equal to the length of the random access preamble format of the second random access resource configuration.
  • the second random access resource is configured in a random access preamble format A2, and the first random access resource is configured in a random access preamble format A1, B1, or A1 / B1.
  • the length of the random access preamble format configured by the first random access resource is less than or equal to the length of the random access preamble format configured by the second random access resource, so that one RO in the second random access resource is configured. It can accommodate at least one RO in the first random access resource.
  • the remaining RO configuration after being associated with an integer number of SSBs is invalid. That is, these remaining ROs are not used for BFR.
  • RO5 shown in FIG. 5.
  • the network device sends configuration information of the first random access resource to the terminal device.
  • the terminal device acquires the configuration information of the first random access resource from the network device.
  • the network device sends the configuration information of the first random access resource configured for the BFR to the terminal device to the terminal device.
  • the terminal device acquires the configuration information of the first random access resource from the network device.
  • the network device may deliver the configuration information of the first random access resource when the terminal device initially accesses.
  • the terminal device may also be delivered after accessing the network.
  • the terminal device detects a beam failure, it requests the network device to deliver the configuration information of the first random access resource.
  • the terminal device When the terminal device detects a beam failure, it sends a first random access preamble to the network device to perform beam recovery.
  • the terminal device can obtain the configuration information of the first random access resource according to the configuration information of the first random access resource obtained in step 230, which includes the first random access preamble. Subsequently, when the terminal device detects that the service beam fails, the terminal device sends the first random access preamble to the network device on the first random access resource to recover the beam failure.
  • the terminal device when the terminal device sends the first random access preamble to the network device, it needs to know the format of the first random access preamble, the subcarrier interval of the first random access preamble, and the guard interval of the first random access resource. These pieces of information may be determined through configuration information of the first random access resource.
  • the subcarrier interval of the first random access preamble may also be determined through configuration information of the second random access resource.
  • the terminal device needs to first obtain configuration information of the second random access resource.
  • the terminal device may determine a subcarrier interval of the first random access preamble.
  • the terminal device may determine the subcarrier interval of the first random access preamble according to the subcarrier interval of the second random access preamble in the second random access resource. For details, refer to the description of The description of the configuration scheme of the subcarrier interval of a random access preamble is not repeated here.
  • the network device After the terminal device sends the first random access preamble sequence to the network device, if the network device detects the first random access preamble sequence sent by the terminal device on the first random access resource, the network device sends the first random access preamble sequence to the terminal device.
  • the random access response is fed back, indicating that the beam failure recovery of the terminal device is successful.
  • FIG. 6 is an example of beam failure recovery according to the method for sending and receiving a random access preamble provided in the present application.
  • a network device sends system information and configuration information of random access resources to a terminal device.
  • the random access configuration information includes one or more of a format of a random access preamble sequence, a period of the random access resource, a time position of the random access resource, a position of sending an SSB, and a random access SSB RSRP threshold.
  • the random access resource mentioned in step 301 refers to a random access resource required when the terminal device initially accesses the network. Therefore, for the random access preamble sequence in step 301, reference may be made to the second random access preamble sequence described above.
  • the terminal device performs random access according to system information and random access configuration information, and accesses the network.
  • the network device configures service beam and / or candidate beam information for the terminal device, and sends the beam failure recovery configuration information to the terminal device.
  • the serving beam and / or candidate beam information may be SSB or CSI-RS, for example.
  • the beam failure recovery configuration information may include random access resources associated with SSB / CSI-RS. For example, the period of the random access resource, the time and / or frequency domain position of the random access resource, the association relationship between the SSB and the RO in the random access resource, and the like.
  • the network device sends the configuration information of the random access resource used for the initial access of the terminal device and the configuration information of the beam failure recovery used for the BFR respectively.
  • the network device may also send the beam recovery configuration information in step 301, which is not limited in this application.
  • the configuration of the IAM RACH resource includes the subcarrier interval and the PRACH ConfigIndex of the random access preamble sequence configured by the network device for the terminal device for initial random access.
  • PRACH ConfigIndex is used to indicate at least one of the following information:
  • the format of the random access preamble sequence used by the terminal device for initial random access information on the time domain position and / or frequency domain position of the random access resource used by the terminal device for initial random access, the number of ROs associated with the SSB, and The number of frequency division multiplexed ROs in the frequency domain.
  • the configuration of the BFR RACH resource includes a subcarrier interval and a PRACH ConfigIndex configured by the network device for the terminal device to perform a random access preamble sequence of the BFR.
  • PRACH ConfigIndex is used to indicate at least one of the following information:
  • the format of the random access preamble sequence used by the terminal device for BFR, the time domain position and / or frequency domain position information of the terminal device used for the BFR random access resource, the number of ROs associated with the SSB, and frequency division multiplexing in the frequency domain The number of ROs used.
  • the terminal device detects that the service beam fails.
  • the terminal device After the terminal device accesses the network device through step 302, it can detect the service beam, or detect a beam having a QCL relationship with the service beam. If the block error rate (BLER) of the detected beam is less than a predefined threshold, the terminal device considers that the service beam has failed and needs to perform beam failure recovery.
  • BLER block error rate
  • the terminal device detects a candidate beam, and sends a random access preamble sequence to the network device for beam failure recovery.
  • step 305 the terminal device sends a random access preamble sequence on the access resources configured for network recovery by the network device to perform beam recovery according to the beam failure recovery configuration information received from the network device in step 303.
  • the random access preamble sequence in step 305 reference may be made to the first random access preamble sequence described above.
  • a terminal device Before a terminal device sends a random access preamble sequence for beam failure recovery to a network device, it needs to determine an effective RO configured by the network device for BFR.
  • the beam failure recovery configuration information issued by the network device also carries the reference subcarrier interval and period of the DL-X-UL pattern.
  • the terminal device determines the effective RO of the random access resource for the BFR according to the method for determining the effective RO in the first random access resource described above.
  • the effective RO located in UL and / or X has a guard interval from the previous DL or SSB.
  • the guard interval specifically includes several OFDM symbols, which can be determined according to the method for determining a guard interval of the first random access resource introduced above.
  • the RO in the random access resource is before the SSB, the RO is invalid.
  • Valid RO as determined by the terminal. Determine the SSB associated with this valid RO.
  • the terminal device performs BFR, it sends a random access preamble sequence for performing BFR on the effective RO associated with the SSB, and starts the BFR process.
  • the network device After detecting the random access preamble sequence sent by the terminal device, the network device feeds back a random access response to the terminal device.
  • the terminal equipment beam recovery is successful.
  • the terminal device selects candidate beams that meet the conditions from the set of candidate beams configured by the base station (that is, step 2 in the BFR process described above).
  • This application provides some networks.
  • the device eg, base station
  • the network device may modify the reference signal resource and / or the synchronization signal block resource in the candidate beam set q1 through the MAC-CE message.
  • the MAC-CE message may include one or more of the following information: addition / deletion indication, resource type indication, carrier component component (CC) / BWP where the candidate beam set is located, reference signal resources, and / or synchronization signals CC / BWP of block resources, reference signal resources and / or synchronization signal block resources that need to be added to q1, reference signal resources and / or synchronization signal block resources that need to be replaced in q1, beam failure detection and restoration configuration that requires updating.
  • the reference signal resource and / or the synchronization signal block resource may be embodied in the form of a resource index.
  • a possible implementation manner is that the network device configures a set Q including N1 reference signal resource indexes (for example, CSI-RS resources) and / or synchronization signal block resource indexes. Then, using the MAC-CE message, N2 are selected from the set Q to be included in q1 as reference signal resources in the candidate beam set. Among them, N2 may be equal to the number of resources in the current q1 set.
  • N1 reference signal resource indexes for example, CSI-RS resources
  • / or synchronization signal block resource indexes for example, CSI-RS resources
  • the MAC-CE message may include a bitmap (length N1) of 0 and 1 and each bit corresponds to a reference signal resource or a synchronization signal block resource. If the bit is set to 1, the reference signal resource or synchronization signal block resource indicating the corresponding position in Q needs to be included in q1. For example, if the second bit in the bitmap is set to 1, it means that the second resource in the resource set Q should be included in q1.
  • the base station may configure a set including a set of CSI-RS resources and a set of SSB resources, respectively.
  • MAC-CE is then used to indicate the reference signal or synchronization signal block resources that need to be included in each set.
  • the MAC-CE message may include resource type indication information (for example, 1 bit) to distinguish whether the message is a set of corresponding CSI-RS resources or a set of SSB resources.
  • the MAC-CE message may include an addition and deletion indication.
  • the adding instruction information is specifically a deletion state, it indicates that the MAC-CE message carries information of reference signal resources or synchronization signal resources that should be deleted from the current q1 set.
  • the adding and deleting indication information is specifically an adding state, it indicates that the MAC-CE message carries reference signal resource or synchronization signal resource information that should be included in the q1 set.
  • a MAC-CE message indicating deletion of a candidate beam resource may include a bitmap, and each bit corresponds to a reference signal resource or a synchronization signal block resource in the current q1. If the bit is set to 1 (it can be expanded naturally) To 0), it means to remove the reference signal resource or synchronization signal block resource at the corresponding position in the current q1 set.
  • the MAC-CE signaling may also directly include identification information of reference signal resources or synchronization signal block resources that need to be added or deleted, such as CSI-RS resource ID or communication signal block index (SSB index).
  • identification information of reference signal resources or synchronization signal block resources that need to be added or deleted such as CSI-RS resource ID or communication signal block index (SSB index).
  • the network device may configure multiple sets of q1 sets for the base station, and then select one of them to activate through a MAC-CE message.
  • the network device may configure a maximum of N3 sets of q1 sets for each BWP or CC, and N3 may be agreed by the protocol (for example, N3 is equal to 4), or may be determined by the reported terminal device capabilities.
  • a network device can activate one of them through a MAC-CE message. Before the MAC-CE is activated, the terminal device should assume that one of the following specified sets of q1 is used by default: the lowest ID, the highest order, the first configured q1, and so on.
  • the terminal device after receiving the MAC-CE message that the network device changes q1, the terminal device should update the q1 set according to the timing. For example, after receiving the MAC-CE message for modifying the candidate beam set q1, the terminal device feeds back the ACK / NACK of the PDSCH carrying the MAC-CE message in the T slot, the terminal device should apply after T + T1 slots Modifications of this MAC-CE message.
  • T1 can be the time stipulated in the protocol, the time configured by the network equipment, or the time reported by the terminal capability.
  • the apparatus, terminal device, and network device for sending and receiving a random access preamble sequence proposed in the present application are described below with reference to FIGS. 7 to 10.
  • FIG. 7 is a schematic structural block diagram of a communication device 500 provided by the present application.
  • the apparatus 500 includes a processing unit 510 and a communication unit 520.
  • a communication unit 510 configured to obtain configuration information of a first random access resource from a network device, where a first random access preamble in the first random access resource is used by a terminal device for beam failure recovery;
  • a processing unit 520 configured to perform beam failure detection
  • the communication unit 510 is configured to: when the communication unit 510 detects a beam failure, send a first random access preamble to the network device to perform beam recovery.
  • the communication device 500 in the embodiment of the present application may correspond to the method 200 for sending and receiving a random access preamble sequence provided in the present application and the terminal device in each embodiment.
  • Each unit included in the communication device 500 is respectively used to implement the corresponding operation and / or process performed by the terminal device in the method 200 and its embodiments.
  • the processing unit 520 may be a processor, and the communication unit 510 may be a transceiver.
  • the transceiver may include a transmitter and a receiver, which collectively implement the function of transmitting and receiving.
  • the communication unit 510 may also be an input / input interface or an input / output circuit.
  • the processing unit 520 is further configured to determine a subcarrier interval of the first random access preamble according to the configuration information of the first random access resource; or,
  • the communication unit 510 is further configured to obtain configuration information of the second random access resource from the network device, and the processing unit 520 is further configured to determine a subcarrier interval of the first random access preamble according to the configuration information of the second random access resource.
  • the processing unit 520 is configured to determine the subcarrier interval of the first random access preamble according to the configuration information of the second random access resource, including one or more of the following situations: in the second random access resource When the sequence length of the second random access preamble is 139, the subcarrier interval of the first random access preamble may be one or more of 15KHz, 30KHz, 60KH, 120KHz, 240KHz, 480KHz; in the second When the sequence length of the second random access preamble in the random access resource is 839, the subcarrier interval of the first random access preamble is indicated by the first indication information, and the first indication information is the second random access
  • the resource configuration information is carried in a field indicating a subcarrier interval of the second random access preamble.
  • the processing unit 520 is configured to determine a guard interval of the first random access resource according to the configuration information of the first random access resource and the configuration information of the second random access resource, where the The guard interval is configured according to one or more of the following parameters; a guard interval of a second random access resource, a subcarrier interval of the second random access preamble, and a subcarrier interval of the first random access preamble .
  • the configuration information of the first random access resource further includes one or more of the following information: the format of the first random access preamble, the period of the first random access resource, and the location of the first random access resource. Timeslots, the number of random access opportunities RO in the timeslot where the first random access resource is located, the index of the first random access resource, and the number of ROs associated with the synchronization signal block SSB.
  • the configuration information of the first random access resource is invalid or not used.
  • the first random access resource is used by the terminal device to send a first random access preamble to perform beam recovery in the case of a beam failure.
  • the configuration information of the first random access resource is invalid, which means that the terminal device configured on the network side does not perform beam failure recovery when a beam failure occurs.
  • the random access sequence used for beam failure recovery that is, the first random access preamble
  • the communication device 500 may be a terminal device (for example, the terminal device 102 and / or the terminal device 103 shown in FIG. 1) in each embodiment of the method for sending and receiving a random access preamble sequence provided by the present application.
  • a terminal device for example, the terminal device 102 and / or the terminal device 103 shown in FIG. 1
  • the communication device 500 may be a terminal device (for example, the terminal device 102 and / or the terminal device 103 shown in FIG. 1) in each embodiment of the method for sending and receiving a random access preamble sequence provided by the present application.
  • Or may be a chip (or chip system) or an integrated circuit provided in the terminal device.
  • FIG. 8 is a schematic structural block diagram of a communication device 600 provided by the present application. As shown in FIG. 8, the communication device 600 includes a processing unit 610 and a communication unit 620.
  • a processing unit 610 is configured to generate configuration information of a first random access resource, where a first random access preamble in the first random access resource is used for terminal device to perform beam failure recovery;
  • the communication unit 620 is configured to send configuration information of the first random access resource to the terminal device.
  • the communication unit 620 is further configured to receive a first random access preamble sent by the terminal device on the first random access resource, where the first random access preamble is when the terminal device detects a beam failure The first random access preamble sent is used for beam failure recovery.
  • the communication unit 620 is further configured to send the configuration information of the second random access resource to the terminal device, and the second random access preamble in the second random access resource is used by the terminal device for initial access.
  • the configuration information of the second random access resource is used by the terminal device to determine the subcarrier interval of the first random access preamble, including one or more of the following situations: When the second random access preamble uses the first length, the subcarrier interval of the first random access preamble is the same as the subcarrier interval of the second random access preamble; the second random access in the second random access resource When the preamble uses the second length, the subcarrier interval of the first random access preamble is indicated by the first instruction information, and the first instruction information indicates the second random access preamble in the configuration information of the second random access preamble. Carried in the field of the subcarrier interval; in a case where the second random access preamble in the second random access resource adopts a third length, the first random access resource configuration is invalid or is not used or is not sent.
  • the first length is 139 or 127
  • the second length is 839
  • / or the third length is 839.
  • the configuration information of the first random access resource includes a guard interval of the first random access resource, wherein the guard interval of the first random access resource is configured according to one or more of the following parameters: the second The guard interval of the random access resource, the subcarrier interval of the second random access preamble, and the subcarrier interval of the first random access preamble.
  • the communication device 600 in the embodiment of the present application may correspond to the method 200 for sending and receiving a random access preamble sequence provided in the present application and the network device in each embodiment.
  • the units included in the communication device 600 are respectively used to implement the corresponding operations and / or processes performed by the network device in the method 200 and its embodiments.
  • the communication device 600 may correspond to the method 200 for sending and receiving a random access preamble sequence provided in the present application and the network device in each embodiment thereof, or may also be a chip or an integrated circuit installed in the network device.
  • the processing unit 610 may be a processor
  • the communication unit 620 may be a transceiver.
  • the transceiver may include a transmitter and a receiver, which collectively implement the function of transmitting and receiving.
  • the communication unit 620 may also be an input / input interface or an input / output circuit.
  • the second random access preamble in the second random access resource is used for the initial access of the terminal device (that is, the initial access network), and the second random access
  • the subcarrier interval of the incoming preamble is determined according to the configuration information of the second random access resource.
  • the guard interval of the first random access resource refers to the smallest subcarrier interval among the subcarrier interval of the second random access preamble and the subcarrier interval of the first random access preamble.
  • the guard interval of the first random access resource, the guard interval of the second random access resource, the subcarrier interval of the second random access preamble, and the subcarrier of the first random access preamble are satisfied between intervals:
  • N gap indicates the guard interval of the second random access resource
  • min ( ⁇ bfr , ⁇ PRACH )
  • u bfr indicates the subcarrier interval index of the first random access preamble
  • u PRACH indicates the subcarrier interval index of the second random access preamble
  • min () indicates the minimum subcarrier interval index value.
  • the guard interval of the first random access resource, the guard interval of the second random access resource, the subcarrier interval of the second random access preamble, and the subcarrier of the first random access preamble are satisfied between intervals:
  • N gap indicates the guard interval of the second random access resource
  • u bfr indicates the subcarrier interval index of the first random access preamble
  • u PRACH indicates the subcarrier interval of the second random access preamble. Carrier interval index.
  • the subcarrier interval of the second random access preamble may be one or more of the following subcarrier intervals: a maximum uplink BWP subcarrier interval, a minimum uplink BWP subcarrier interval, and a normal uplink subcarrier.
  • the subcarrier interval of the first random access preamble, the subcarrier interval of the second random access preamble, and the guard interval of the first random access resource satisfy one of the following Table D or Multiple:
  • the configuration information of the first random access resource is the same as the configuration information of the second random access resource, and the configuration information of the second random access resource further includes one or more of the following information:
  • the configuration information of the second random access resource further includes one or more of the following information:
  • a part of the ROs of the RO in the first random access resource falls within the time unit in which the valid RO in the second random access resource is located, or the RO in the first random access resource is located in the second The time bit corresponding to the effective RO in the random access resource. This part of the RO is the effective RO in the first random access resource.
  • a valid RO in the first random access resource is configured to be invalid after remaining ROs are associated with an integer number of SSB cycles.
  • the above embodiments are applicable to the embodiments of the communication device 500 and the communication device 600, and are also applicable to the terminal device and the network device.
  • the network device in each of the foregoing device embodiments corresponds exactly to the network device or terminal device in the terminal device and method embodiments, and the corresponding unit executes the corresponding steps of the method.
  • the sending unit executes the steps sent in the method embodiment
  • the receiving unit executes the steps received in the method embodiment, and other steps except sending and receiving can be performed by the processing unit.
  • the transmitting unit and the receiving unit can form a transmitting and receiving unit and realize the functions of receiving and transmitting at the same time.
  • the transmitting and receiving unit is also called a communication unit.
  • FIG. 9 is a schematic structural diagram of a terminal device 700 that sends a random access preamble sequence according to the present application.
  • the terminal device 700 includes: one or more processors 701, one or more memories 702, and one or more transceivers 703.
  • the processor 71 is used to control the transceiver 703 to send and receive signals
  • the memory 702 is used to store a computer program
  • the processor 701 is used to call and run the computer program from the memory 702 to execute the sending and receiving random access preamble provided by this application
  • the terminal device 700 may be the terminal device 102 or 103 in the wireless communication system shown in FIG. 1.
  • the processor 701 may correspond to the processing unit 520 in FIG. 7, and the transceiver 703 may correspond to the communication unit 510 shown in FIG. 7.
  • FIG. 10 is a schematic structural diagram of a network device 3000 that receives a random access preamble sequence according to the present application.
  • the network device 3000 may be applied to the wireless communication system shown in FIG. 1 described above, and performs the functions of the network device in the method embodiment of the present application.
  • the network device 3000 may be, for example, a base station.
  • the network device 3000 may include one or more radio frequency units, such as a remote radio unit (RRU) 3100 and one or more baseband units (BBU).
  • the baseband unit can also be referred to as a digital unit (DU) 3200.
  • the RRU 3100 may be referred to as a transceiver unit, and corresponds to the communication unit 620 in FIG. 8.
  • the transceiver unit 3100 may also be referred to as a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 3101 and a radio frequency unit 3102.
  • the transceiver unit 3100 may include a receiving unit and a transmitting unit.
  • the receiving unit may correspond to a receiver (or a receiver or a receiving circuit), and the transmitting unit may correspond to a transmitter (or a transmitter or a transmitting circuit).
  • the RRU 3100 part is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for sending configuration information of a first random access resource to a terminal device.
  • the BBU 3200 part is mainly used for baseband processing and controlling base stations.
  • the RRU 3100 and the BBU3200 may be physically located together or physically separated, that is, a distributed base station.
  • the BBU 3200 is the control center of the network equipment 3000, and may also be called a processing unit, which may correspond to the processing unit 610 in FIG. 8 and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spread spectrum .
  • the BBU processing unit
  • the BBU may be used to control the base station to execute the operation procedure performed by the network device in the foregoing method embodiment, for example, to generate configuration information of the first random access resource.
  • the BBU 3200 may be composed of one or more boards, and multiple boards may jointly support a wireless access network (for example, an LTE network) of a single access system, or may separately support different access systems. Wireless access network (for example, LTE network, 5G network or other network).
  • the BBU 3200 further includes a memory 3201 and a processor 3202.
  • the memory 3201 is configured to store necessary instructions and data.
  • the processor 3202 is configured to control the network device 3000 to perform necessary actions.
  • the processor 3202 is configured to control the network device 3000 to execute the operation process performed by the network device in the foregoing method embodiment.
  • the memory 3201 and the processor 3202 may serve one or more single boards. That is, the memory and processor can be set separately on each board. It is also possible that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • the network device 3000 shown in FIG. 10 can implement various processes related to the network device in the method embodiments in FIG. 1 to FIG. 6.
  • the operations and / or functions of each unit in the network device 3000 are respectively to implement corresponding processes in the method embodiments. To avoid repetition, detailed descriptions are appropriately omitted here.
  • the above BBU 3200 may be used to perform the actions implemented by the network device described in the foregoing method embodiments, for example, generating configuration information of the first random access resource.
  • the RRU 3100 can be used to perform the actions that the network device described in the foregoing method embodiment sends to or receives from the terminal device. For example, the configuration information of the first random access resource is sent to the terminal device, and the first random access preamble sent by the terminal device is received.
  • the configuration information of the first random access resource is sent to the terminal device, and the first random access preamble sent by the terminal device is received.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer instructions.
  • the computer instructions are executed on a computer, the computer is caused to execute the sending and receiving random access preambles in the embodiments of the present application. Corresponding operations and / or processes performed by the terminal device in the method 200 of the sequence.
  • the present application also provides a computer program product.
  • the computer program product includes computer program code.
  • the computer program code When the computer program code is run on a computer, the computer is caused to execute a method in the method for sending and receiving a random access preamble according to an embodiment of the present application. Appropriate actions and / or processes performed by the device.
  • the present application also provides a chip, which includes a memory and a processor.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory to execute the method for sending and receiving a random access preamble according to the embodiments of the present application. Corresponding operations and / or processes performed by the terminal device.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer instructions.
  • the computer instructions When the computer instructions are run on a computer, the computer executes the method for sending and receiving a random access preamble according to the embodiments of the present application. Corresponding operations and / or processes performed by the terminal device.
  • the present application also provides a computer program product.
  • the computer program product includes computer program code, and when the computer program code runs on a computer, the computer causes the computer to execute a method for sending and receiving a random access preamble according to an embodiment of the present application. Appropriate actions and / or processes performed by the device.
  • the present application also provides a chip, including a memory and a processor.
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory to execute the method for sending and receiving a random access preamble in the embodiment of the present application.
  • the present application provides a computer-readable storage medium.
  • the computer-readable storage medium stores computer instructions.
  • the computer instructions When the computer instructions are run on a computer, the computer executes the method for sending and receiving a random access preamble according to the embodiments of the present application. Corresponding operations and / or processes performed by network devices.
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the foregoing method embodiment may be directly embodied as being performed by a hardware processor, or may be performed by using a combination of hardware and software modules in the processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the chip described in the embodiment of the present application may be a field-programmable gate array (FPGA), an application-specific integrated circuit (ASIC), a system chip (SoC), a central Processor (central processor unit, CPU), network processor (Network processor, NP), digital signal processing circuit (digital signal processor, DSP), may also be a microcontroller (micro controller, unit, MCU, programmable controller ( programmable logic device (PLD) or other integrated chip.
  • FPGA field-programmable gate array
  • ASIC application-specific integrated circuit
  • SoC system chip
  • CPU central processor unit, CPU
  • Network processor Network processor
  • NP digital signal processing circuit
  • DSP digital signal processor
  • microcontroller microcontroller
  • MCU programmable controller
  • PLD programmable logic device
  • the processor in the embodiment of the present application may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above-mentioned processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an FPGA or other programmable logic device, a discrete gate or transistor logic device, a discrete Hardware components.
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by a hardware decoding processor, or may be performed by using a combination of hardware and software modules in the decoding processor.
  • the software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in a memory, and the processor reads the information in the memory and completes the steps of the foregoing method in combination with its hardware.
  • the memory in the embodiment of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be read-only memory (ROM), programmable read-only memory (PROM), erasable programmable read-only memory (erasable PROM, EPROM), electrical memory Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be a random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double SDRAM double SDRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced SDRAM
  • SLDRAM synchronous connection dynamic random access memory
  • direct RAMbus RAM direct RAMbus RAM
  • the foregoing memory and the memory may be physically independent units, or the memory may be integrated with the processor.
  • "at least one” means one or more, and “multiple” means two or more.
  • “And / or” describes the association relationship of the associated objects, and indicates that there can be three kinds of relationships. For example, A and / or B can indicate that A exists alone, A and B exist, and B exists alone. Where A and B can be singular or plural. The character “/” generally indicates that the related objects are an "or” relationship. "At least one item (s)” or similar expressions refers to any combination of these items, including any combination of single item (s) or plural items (s).
  • At least one of a, b, or c may represent: a, b, c, a-b, a-c, b-c, a-b-c, where a, b, and c may be single or multiple.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and / or a computer.
  • an application running on a computing device and a computing device can be components.
  • One or more components can reside in a process and / or thread of execution.
  • Components may be located on one computer and / or distributed between two or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may be based on data that has one or more data packets (e.g., data from two components that interact with another component between a local system, a distributed system, and / or a network, such as the Internet that interacts with other systems through signals)
  • the signals communicate through local and / or remote processes.
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the functions are implemented in the form of software functional units and sold or used as independent products, they can be stored in a computer-readable storage medium.
  • the technical solution of this application is essentially a part that contributes to the existing technology or a part of the technical solution can be embodied in the form of a software product.
  • the computer software product is stored in a storage medium, including Several instructions are used to cause a computer device (which may be a personal computer, a server, or a network device, etc.) to perform all or part of the steps of the method described in the embodiments of the present application.
  • At least one means one or more, and “multiple” means two or more.
  • “And / or” describes the association relationship of the associated objects, and indicates that there can be three kinds of relationships. For example, A and / or B can indicate that A exists alone, A and B exist, and B exists alone. Where A and B can be singular or plural. The character “/” generally indicates that the related objects are an "or” relationship. "At least one item (s)” or similar expressions refers to any combination of these items, including any combination of single item (s) or plural items (s).
  • At least one of a, b, or c may represent: a, b, c, a-b, a-c, b-c, a-b-c, where a, b, and c may be single or multiple.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种发送和接收随机接入前导的方法和装置,为终端设备用于进行BFR的随机接入资源提供了配置方案。该方法包括:终端设备从网络设备获取第一随机接入资源的配置信息,所述第一随机接入资源中的第一随机接入前导用于进行波束失败恢复;终端设备在检测到波束失败的情况下,向网络设备发送该第一随机接入前导,进行波束恢复。

Description

发送和接收随机接入前导的方法以及通信装置
本申请要求于2018年08月09日提交中国专利局、申请号为201810904618.9、申请名称为“发送和接收随机接入前导的方法以及通信装置”中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及无线通信技术领域,更具体地,涉及一种发送随机接入前导的方法和通信装置,以及一种接收随机接入前导的方法和通信装置。
背景技术
在无线通信技术中,随机接入的目的在于使终端设备接入网络,获取上行同步。终端设备通过随机接入过程接入网络之后,在一些场景下,例如,终端设备移动到天线波束的覆盖范围之外,或者由于阻挡物的存在,或者终端接收波束方向和网络设备发送波束方向不一致的情况下,终端设备与网络设备之间的通信将会中断,需要进行波束失败恢复(beam failure recovery,BFR)。终端设备的媒体接入控制(media access control,MAC)实体会通过无线资源控制(radio resource control,RRC)协议配置一个波束失败恢复过程。如果当前服务的同步信号块(synchronized signal block,SSB)或信道状态信息参考信号(channel state information reference signal,CSI-RS)或者其他参考信号(例如,解调参考信号(demodulation reference signal,DMRS)、跟踪参考信号(tracking reference signal,TRS)、监听参考信号(sounding reference signal,SRS))的波束失败的情况下,终端设备向服务基站指示一个新的SSB/CSI-RS/其他参考信号的波束。波束失败检测是底层(例如,物理层)指示给MAC层波束失败事件(beam failure instance)。如果MAC层收到波束失败事件指示的次数超过一定阈值,则认为检测到波束失败,进行波束失败恢复过程。波束失败恢复成功之后,终端设备基于新的波束方向与网络侧进行通信。
在新无线(new radio,NR)标准的讨论阶段,业界提出基于物理随机接入信道(physical random access channel,PRACH)进行波束恢复。即是说,在进行波束恢复时,终端设备基于PRACH资源向网络侧反馈满足条件的候选波束。目前,NR标准支持进行BFR的随机接入前导序列采用短序列,并且,协议规定终端设备用于BFR的随机接入资源和终端设备初始接入网络时使用的随机接入资源采用相同的配置。
但是,终端设备初始接入网络时使用的随机接入资源支持终端设备通过长序列或短序列的随机接入前导序列接入网络。而目前协议规定用于BFR的随机接入前导序列仅支持短序列。基于这样的原因,如果用于BFR的随机接入资源的配置直接采用终端设备进行初始接入时使用的随机接入资源的配置,会出现一些矛盾和不适用的地方。并且,用于BFR的随机接入资源还包括很多具体的配置,业界还未给出配置方案。
发明内容
本申请提供一种发送和接收随机接入前导序列的方法和装置,为用于BFR的随机接入资源提供了可行的配置方案。
第一方面,本申请提供一种发送随机接入前导的方法,该方法包括:终端设备从网络设备获取第一随机接入资源的配置信息,第一随机接入资源中的第一随机接入前导用于该终端设备进行波束失败恢复;终端设备在检测到波束失败的情况下,向网络设备发送第一随机接入前导,进行波束恢复。
在本申请实施例中,波束失败恢复又被称为波束恢复,或者失败恢复。
在本申请中,第一随机接入前导用于进行波束失败恢复。第一随机接入资源是网络设备为终端设备配置的用于发送第一随机接入前导的随机接入资源。
作为一种实现方式,第一随机接入资源的配置信息可以是从网络设备周期性获取的。或者,第一随机接入资源的配置信息也可以是网络侧预配置并保存在终端设备侧的,本申请对此不作限定。
可选地,终端设备可以预先获取第一随机接入资源的配置信息。后续,在检测到波束失败的情况下,向网络设备发送第一随机接入前导,以进行波束失败恢复。或者,终端设备也可以在检测到波束失败之后,再去获取第一随机接入资源的配置信息。获取到第一随机接入资源的配置信息之后,再向网络设备发送第一随机接入前导进行波束失败恢复。
可以理解的是,第一随机接入资源的配置信息用于指示第一随机接入资源的配置,例如,第一随机接入前导、第一随机接入资源的时域位置和/或频域位置、第一随机接入资源的周期、第一随机接入资源周期内的随机接入时机RO的数目、SSB与RO的关联关系、第一随机接入前导的格式等。因此,终端设备获取到第一随机接入资源的配置信息,即可以获知网络设备为其配置的进行波束失败恢复的上述参数,从而根据上述参数向网络设备发送第一随机接入前导,进行波束失败恢复。
结合第一方面,在第一方面的某些实现方式中,终端设备向网络设备发送第一随机接入前导之前,该方法还包括:终端设备根据第一随机接入资源的配置信息,确定第一随机接入前导的子载波间隔;或者,终端设备获取第二随机接入资源的配置信息,并根据第二随机接入资源的配置信息确定第一随机接入前导的子载波间隔。
需要说明的是,第二随机接入资源的配置信息用于指示第二随机接入资源的配置。第二随机接入资源是用于终端设备初始接入时发送随机接入前导的随机接入资源。第二随机接入资源的配置包括第二随机接入前导、第二随机接入前导的子载波间隔、第二随机接入资源的时域位置和/或频域位置、第二随机接入资源的周期、第二随机接入资源周期内的随机接入时机RO的数目、SSB与RO的关联关系、第二随机接入前导的格式等。
其中,第二随机接入资源中的第二随机接入前导用于终端设备的初始接入(也即,初始接入网络),第二随机接入前导的子载波间隔根据第二随机接入资源的配置信息确定。
结合第一方面,在第一方面的某些实现方式中,终端设备根据第二随机接入资源的配置信息确定第一随机接入前导的子载波间隔,包括如下情况中的一种或多种:在第二随机接入资源中的第二随机接入前导采用第一长度的情况下,第一随机接入前导的子载波间隔与第二随机接入前导的子载波间隔相等;在第二随机接入资源中的第二随机接入前导采用第二长度情况下,第一随机接入前导的子载波间隔是由第一指示信息指示的,第一指示信 息是第二随机接入资源的配置信息中指示第二随机接入前导的子载波间隔的字段携带的;在第二随机接入资源中的第二随机接入前导采用第三长度的情况下,第一随机接入资源配置为无效或者不使用或者不发送。
可选地,第一长度等于139或127,第二长度和/或第三长度等于839。
例如,在第二随机接入前导的序列长度为139的情况下,第一随机接入前导的子载波间隔可以为15KHz、30KHz、60KH、120KHz、240KHz、480KHz中的一种或多种。
应理解,在第二随机接入资源中的第二随机接入前导的序列长度为839的情况下,第一随机接入资源配置为无效或者不使用或者不发送,也即第一随机接入资源的相关参数都无效,包括第一随机接入前导的子载波间隔。
结合第一方面,在第一方面的某些实现方式中,该方法还包括:终端设备根据第一随机接入资源的配置信息和第二随机接入资源的配置信息,确定第一随机接入资源的保护间隔,其中,第一随机接入资源的保护间隔是根据如下参数中的一个或多个配置的;第二随机接入资源的保护间隔、所述第二随机接入前导的子载波间隔和所述第一随机接入前导的子载波间隔。
结合第一方面,在第一方面的某些实现方式中,第一随机接入资源的配置信息还包括如下信息中的一种或多种:第一随机接入前导的格式、第一随机接入资源的周期、第一随机接入资源所在的时隙、第一随机接入资源所在时隙内的随机接入时机RO的数目、第一随机接入资源的索引、同步信号块SSB关联的RO的数目。
结合第一方面,在第一方面的某些实现方式中,在第二随机接入前导序列的序列长度为839的情况下,第一随机接入资源的配置信息为无效。
应理解,第一随机接入资源是用于终端设备在波束失败的情况下发送第一随机接入前导,以进行波束恢复的。而这里,第一随机接入资源的配置信息为无效,是指网络侧配置终端设备在发生波束失败的情况下,不进行波束失败恢复。采用这种配置方式,可以在第二随机接入前导采用长序列(即,长度为839)的情况下,消除用于进行波束失败恢复的随机接入序列(即,第一随机接入前导)和用于进行初始接入的随机接入前导(即,第二随机接入前导)在序列长度配置上的不一致。
第二方面,本申请提供一种接收随机接入前导的方法,该方法包括:网络设备生成第一随机接入资源的配置信息,第一随机接入资源中的第一随机接入前导用于终端设备进行波束失败恢复;网络设备向终端设备发送第一随机接入资源的配置信息;网络设备从终端设备接收第一随机接入前导,该第一随机接入前导是终端设备在检测到波束失败的情况下发送的。
结合第二方面,在第二方面的某些实现方式中,该方法还包括:网络设备向终端设备发送第二随机接入资源的配置信息,第二随机接入资源的配置信息用于终端设备确定第一随机接入前导的子载波间隔。
结合第二方面,在第二方面的某些实现方式中,第二随机接入资源中的第二随机接入前导用于终端设备的初始接入,第二随机接入前导的子载波间隔根据第二随机接入资源的配置信息确定。
结合第二方面,在第二方面的某些实现方式中,第二随机接入资源的配置信息用于终端设备确定第一随机接入前导的子载波间隔,包括如下情况中的一种或多种:在第二随机 接入资源中的第二随机接入前导的序列长度为139的情况下,第一随机接入前导的子载波间隔可以为15KHz、30KHz、60KH、120KHz、240KHz、480KHz中的一种或多种;在第二随机接入资源中的第二随机接入前导的序列长度为839的情况下,第一随机接入前导的子载波间隔是由第一指示信息指示的,第一指示信息是第二随机接入前导的配置信息中指示第二随机接入前导的子载波间隔的字段携带的。
结合第二方面,在第二方面的某些实现方式中,第一随机接入资源的配置信息包括第一随机接入资源的保护间隔,其中,第一随机接入资源的保护间隔是根据如下参数中的一个或多个配置的:第二随机接入资源的保护间隔、第二随机接入前导的子载波间隔和第一随机接入前导的子载波间隔。
在第一方面或第二方面的一些实现方式中,第一随机接入资源的保护间隔参考第二随机接入前导的子载波间隔和第一随机接入前导的子载波间隔之中最小的子载波间隔。
在第一方面或第二方面的一些实现方式中,第一随机接入资源的保护间隔、第二随机接入资源的保护间隔、第二随机接入前导序列的子载波间隔和第一随机接入前导序列的子载波间隔之间满足如下表达式:
Figure PCTCN2019099535-appb-000001
其中,
Figure PCTCN2019099535-appb-000002
表示第一随机接入资源的保护间隔,N gap表示第二随机接入资源的保护间隔,μ=min(μ bfrPRACH),u bfr表示第一随机接入前导序列的子载波间隔索引,u PRACH表示第二随机接入前导序列的子载波间隔索引,min()表示取最小子载波间隔索引值。
在第一方面或第二方面的一些实现方式中,第一随机接入资源的保护间隔、第二随机接入资源的保护间隔、第二随机接入前导的子载波间隔和第一随机接入前导的子载波间隔之间满足如下表达式:
Figure PCTCN2019099535-appb-000003
其中,
Figure PCTCN2019099535-appb-000004
表示第一随机接入资源的保护间隔,N gap表示第二随机接入资源的保护间隔,u bfr表示第一随机接入前导的子载波间隔索引,u PRACH表示第二随机接入前导的子载波间隔索引。
在第一方面或第二方面的一些实现方式中,第二随机接入前导的子载波间隔可以为如下子载波间隔中的一个或多个:最大上行BWP子载波间隔、最小上行BWP子载波间隔、正常上行子载波间隔、次大上行子载波间隔、主小区的随机接入前导的子载波间隔、辅小区的随机接入前导的子载波间隔、多个BWP中的最大子载波间隔、多个BWP中的最小子载波间隔。
在第一方面或第二方面的某些实现方式中,第一随机接入前导的子载波间隔、第二随机接入前导的子载波间隔和第一随机接入资源的保护间隔满足如下面表1中的一项或多项:
表1
Figure PCTCN2019099535-appb-000005
Figure PCTCN2019099535-appb-000006
在第一方面或第二方面的一些实现方式中,第二随机接入资源的配置信息还包括如下信息中的一种或多种:第二随机接入前导的格式、第二随机接入资源的周期、第二随机接入资源所在的时隙、第二随机接入资源上的随机接入时机RO的数目、第二随机接入资源的索引、同步信号块SSB关联的RO的数目,第一随机接入资源的配置与第二随机接入资源的配置信息相同。
在本实施例中,第一随机接入资源和第二随机接入资源采用完全相同的PRACH-ConfigIndex。例如,随机接入前导的格式、随机接入前导的子载波间隔、随机接入资源的周期、随机接入资源在时域上的pattern、随机接入资源在频域上包括的RO的数目等。
可选地,第一随机接入资源和第二随机接入资源可以配置相同的SSB-Per RACH-occasion关联关系。这样配置,即使在网络设备只有一个模拟波束的情况下,在某一个时刻,网络设备也可以同时接收第一随机接入资源和第二随机接入资源,能够降低调度复杂度。
可选地,在第一方面或第二方面的一些实现方式中,第二随机接入资源的配置信息与第一随机接入资源的配置信息中至少有一项不同,第二随机接入资源中的RO包括有效RO和无效RO,第一随机接入资源中的RO中落在第二随机接入资源中的有效RO所在的时间单元内的RO有效,这里的时间单元可以为第二随机接入资源中的有效RO所位于的OFDM符号、时隙或随机接入子帧。
在本实施例中,第一随机接入资源和第二随机接入资源采用不同的PRACH-ConfigIndex,也即,第一随机接入资源和第二随机接入资源的pattern不同。对于第一随机接入资源,只有在第二随机接入资源中的有效RO对应的时间上,第一随机接入资源才有效。这里所说的第二随机接入资源中的有效RO对应的时间可以是第二随机接入资源所位于的OFDM符号、RACH slot或随机接入子帧等。
在第一方面或第二方面的一些实现方式中,第一随机接入资源中的有效RO与整数个SSB周期关联之后剩余的RO配置为无效。即是说,第一随机接入资源中的有效RO与整数个SSB周期关联之后剩余的RO,不用于进行波束失败恢复。
第三方面,本申请提供一种通信装置,该通信装置具有实现上述第一方面或第一方面的任意可能的实现方式的方法中终端设备的功能。这些功能可以通过硬件实现,或者也可以通过硬件执行相应的软件实现。具体地,所述硬件或软件包括一个或多个与这些功能相 对应的单元。
可选地,该通信装置可以为终端设备,或者,也可以为配置在终端设备中的芯片。
第四方面,本申请提供一种通信装置,该通信装置具有实现上述第二方面或第二方面的任意可能的实现方式中的方法中网络设备的功能。这些功能可以通过硬件实现,或者也可以通过硬件执行相应的软件实现。具体地,所述硬件或软件包括一个或多个与这些功能相对应的单元。
可选地,该通信装置可以为网络设备,或者,也可以为配置在网络设备中的芯片或集成电路。
第五方面,本申请提供一种终端设备,包括收发器、处理器和存储器。处理器用于控制收发器收发信号,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,使得终端设备执行第一方面及其第一方面任意可能的实现方式中的方法。
第六方面,本申请提供一种网络设备,包括收发器、处理器和存储器。处理器用于控制收发器收发信号,存储器用于存储计算机程序,处理器用于调用并运行存储器中存储的计算机程序,使得网络设备执行第二方面及其第二方面任意可能的实现方式中的方法。
第七方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第八方面,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有指令,当指令在计算机上运行时,使得计算机执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第九方面,本申请提供一种本申请提供一种芯片,包括存储器和处理器,存储器用于存储计算机程序,处理器用于从存储器中调用并运行该计算机程序,以执行上述第一方面及其第一方面任意一种可能的实现方式中的方法。
第十方面,本申请提供一种本申请提供一种芯片,包括存储器和处理器,存储器用于存储计算机程序,处理器用于从存储器中调用并运行该计算机程序,以执行上述第二方面及其第二方面任意一种可能的实现方式中的方法。
可选的,上述的存储器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
第十一方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行上述第一方面及其任意一种可能的实现方式中的方法。
第十二方面,本申请提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当计算机程序代码在计算机上运行时,使得计算机执行上述第二方面及其第二方面的任意可能的实现方式中的方法。
本申请的技术方案,为终端设备进行波束失败恢复时的随机接入资源提供了可行的配置方案。
附图说明
图1是适用于本申请的无线通信系统100的架构图。
图2是本申请提供的发送和接收随机接入前导的方法的流程图。
图3是BFR RACH资源的保护间隔不够用的示意图。
图4是SSB和第一随机接入资源中的RO的关联关系的一种配置方案。
图5是第一随机接入资源中的有效RO的一种配置方案。
图6是本申请提供的发送和接收随机接入前导的方法的一个示例。
图7是本申请提供的通信装置500的示意性结构框图。
图8是本申请提供的通信装置600的示意性结构框图。
图9是本申请提供的终端设备700的示意性结构图。
图10是本申请提供的网络设备3000的示意性结构图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
参见图1,图1是适用于本申请实施例的无线通信系统100的架构图。如图1所示。该无线通信系统100中可以包括至少一个网络设备、一个或多个终端设备。网络设备(如图1中所示的101)可以与该一个或多个终端设备(如图1中所示的102和103)进行无限通信。
本申请中涉及的无线通信系统,包括但不限于全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(wideband code division multiple access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)、长期演进(long term evolution,LTE)系统、LTE的频分双工(frequency division duplex,FDD)系统、LTE的时分双工(time division duplex,TDD)、通用移动通信系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统、下一代5G移动通信系统的三大应用场景,即增强移动带宽(enhance mobile broadband,eMBB),高可靠性低延迟通信(ultra reliable low latency communication,URLLC)和增强海量机器连接通信(massive machine type communication,eMTC)或者将来出现的新的通信系统等。
本申请提供的技术方案可以应用在上述无线通信系统中发生波束失败恢复、定位(positioning),系统消息请求(system information request,SI request)等场景。在这些场景下,终端设备均需要通过随机接入信道发送随机接入请求。应理解,本申请实施例仅以波束失败恢复为例进行说明,在其它场景下的应用都是类似的。
本申请实施例涉及的终端设备可以指用户设备(user equipment,UE)、终端(terminal)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。终端设备还可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请对此不作限定。
本申请实施例涉及的网络设备可以是用于与终端设备通信的设备,该网络设备可以是 全球移动通讯(global system of mobile communication,GSM)系统或码分多址(code division multiple access,CDMA)中的基站(base transceiver station,BTS),也可以是宽带码分多址(wideband code division multiple access,WCDMA)系统中的基站(nodeB,NB),还可以是LTE系统中的演进型基站(evolutional nodeB,eNB或eNodeB),还可以是云无线接入网络(cloud radio access network,CRAN)场景下的无线控制器,或者该网络设备还可以为中继站、接入点、车载设备、可穿戴设备以及未来5G网络中的网络设备等,本申请实施例对此不作限定。
下面对本申请涉及的相关技术进行简单介绍。
随机接入的目的是使得终端设备接入网络,获得上行同步。随机接入过程可以分为基于竞争的和基于非竞争的。基于竞争的随机接入过程主要包括如下流程:1、终端设备在特定的时频位置发送随机接入前导序列。其中,该特定的时频位置也称为随机接入信道时机(random access channel occasion,RO),发送的随机接入前导序列也称为消息1(message1)。2、网络设备在检测到随机接入前导序列之后,向终端设备反馈随机接入响应。3、终端设备向网络设备发送消息3(message 3)。其中,消息3中携带终端设备的标识信息,例如,用户设备标识(user equipment identifier,UE ID)、小区无线网络临时标识(cell radio network temporary identifier,C-RNTI)、随机数等,用于进行冲突解决。4、网络设备向终端设备发送消息4(message 4),指示在冲突解决中胜出的终端设备。
如果是基于非竞争的随机结果过程只包括上述流程中的步骤1和2,也即,不包括冲突解决的步骤3和4。
在随机接入之前,系统会在系统信息块(system information block,SIB)中通知与随机接入信道(random access channel,RACH)相关的配置信息。该配置信息主要包括:(1)消息1使用的子载波间隔。其中,低频短序列可以采用15KHz或30KHz,高频短序列可以采用60KHz或120KHz,或者240KHz、480KHz。另外,消息1还可以使用长序列,长序列采用的子载波间隔为1.25KHz或5KHz,在物理随机接入信道(physical random access channel,PRACH)配置索引(ConfigIndex)中进行配置。(2)PRACH ConfigIndex,该配置为一个0-255的数值,每个数值对应PRACH索引表格中的一行,每一行的配置包括随机接入前导的格式、RO所在的系统帧号(system frame number,SFN)、RO的周期、RO在所在系统帧中具体的时隙位置以及一个随机接入时隙(RACH slot)中包含的RO数目等。换句话说,PRACH ConfigIndex定义了一个周期出现的随机接入资源的模式(pattern)。(3)同步信号块(synchronous signal block,SSB)和随机接入资源的关联关系,这种关联关系可以表示为SSB-per RACH occasion,可选的值为{1/8,1/4,1/2,1,2,4,8,16},表示一个SSB关联到RO的数目。例如,SSB-per RACH occasion=1/8的情况,表示一个SSB关联了8个RO,SSB-per RACH occasion=16的情况,表示16个SSB关联到一个RO。这里所说的关联是指,如果终端设备选择了一个SSB进行随机接入,则会在SSB关联的RO上发送随机接入前导序列。RO关联的顺序为先频域,从低频到高频,再时域,从前往后。对于一个随机资源周期内RO数目不够的情况,则采用将多个随机接入资源周期进行拼,拼接的可选值为{1,2,4,8,16}。也即,一个关联周期为多个随机接入资源的配置的拼接,最大不超过160ms。
进一步地,如上文所述,PRACH ConfigIndex定义了一个随机接入资源的pattern,但 并非所有的RO都可以用于随机接入,或者说,并非所有的RO都可以关联到SSB。该pattern中的某些RO可能和下行信号冲突。这里所说的下行信号可以是下行链路(downlink,DL)和SSB。例如,在时分复用(time division duplex,TDD)中,时域上可能分为DL资源、灵活(flexible)资源和UL资源,灵活资源也可以表示为X。因此,时域上的资源形式为DL-X-UL。如果pattern中的RO落在DL资源中,为无效RO,落在UL资源中,才为有效RO。如果一些RO落在灵活资源中,且前一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号为DL或SSB,则该DL或SSB之后的2个OFDM符号也无效(用作保护间隔),其余的RO为有效RO。并且,这2个OFDM符号的参考子载波间隔为消息1的子载波间隔。同时,对于一个flexible的RACH slot,如果其中包括SSB,则SSB之前的OFDM符号不能作为RO。
另外,本领域技术人员公知,由于电磁波的传播特性,处于小区边缘的终端设备接收到的信号往往会比较弱。为了解决这个问题,可以采用波束赋形(beam forming,BF)技术来提高边缘的终端设备接收信号的信噪比。波束赋形技术是将传输的信号的能量限制在某个波束方向内,从而可以增加在这个波束方向传输信号时的信噪比。而波束赋形技术大多用于高频场景,由于波束较窄,所以经常会由于遮挡等因素发生波束失败,造成终端设备与基站之间的通信中断。
波束失败恢复(beam failure recovery,BFR)主要用于当前的服务波束失败之后,快速从候选的波束中恢复服务波束。波速失败也可以被称为链路失败(radio link failure,RLF)、链路失败(radio link,RL),波束失败恢复也可以被称为链路失败恢复(radio link failure recovery,RLFR)。BFR的过程主要包括:1、波束失败检测(beam failure detection,BFD)。终端设备检测服务波束的物理下行控制信道(physical downlink control channel,PDCCH),或者检测与PDCCH的解调参考信号(demodulation reference signal,DMRS)具有准共址(quasi co-location,QCL)的波束,如果等效的块差错率(block error rate,BLER)小于预定义阈值,则认为发生了一次波束失败事件(beam failure instance)。如果MAC接收到底层指示的波束失败事件数目超过一定阈值,则认为检测到了波束失败。如果配置了用于波束失败恢复的PRACH资源,则开始进行波束失败恢复过程。2、终端设备从基站配置的候选波束集合中,寻找满足条件的候选波束,例如,选择条件可以是大于某个参考信号接收功率(reference signal receiving power,RSRP)阈值。该候选波束是基站为终端设备配置的SSB和/或信道状态信息参考信号(channel state information reference signal,CSI-RS)集合。3、终端设备在该SSB和/或CSI-RS所对应的PRACH资源上发起非竞争的随机接入。如果终端设备接收到基站反馈的随机接入过程消息2(message 2),则认为波束恢复成功,该波束方向可以通信。
目前,在新无线(new radio,NR)标准的制定过程中,讨论决定支持基于PRACH进行BFR。也即,终端设备选择满足条件的候选波束之后,在RACH资源上向基站发送随机接入前导序列。同时规定,进行BFR的随机接入前导序列只能采用短序列。对于进行BFR的RACH资源的其它配置,例如,RACH资源的周期、一个RACH资源周期内的RO数目、RACH资源的保护间隔等,协议只规定和终端设备初始接入网络时的随机接入资源采用相同的配置。
需要说明的是,随机接入前导序列(也称,随机接入前导码)包括4种格式,分别为 格式0、格式1、格式2和格式3。其中,格式0、格式1和格式2对应的随机接入前导码的序列长度均为839,而格式4对应的随机接入前导码的序列长度为139。因此,将序列长度为839的随机接入前导码称为长序列,将序列长度为139的随机接入前导码称为短序列。
在本申请中,涉及到终端设备初始接入网络时适用的随机接入资源和终端设备进行BFR时适用的随机接入资源。为了描述上的简洁,以下将终端设备初始接入网络时使用的随机接入资源称作IAM RACH资源,而将终端设备进行波束失败恢复时使用的随机接入资源称为BFR RACH资源。
如上文所述,终端设备通过向网络设备发送随机接入前导序列接入网络,因此,换句话说,IAM RACH资源用于终端设备进行初始接入时向网络设备发送随机接入前导序列,而BFR RACH资源用于终端设备在进行BFR时向网络设备发送随机接入前导序列。
为了将终端设备初始接入时向网络设备发送的随机接入前导序列和终端设备在进行BFR时向网络设备发送的随机接入前导序列进行区分,在本申请中,将终端设备进行BFR时发送的随机接入前导序列称为第一随机接入前导序列,将终端设备进行初始接入时发送的随机接入前导序列称为第二随机接入前导序列。类似的,也可以将用于发送第一随机接入前导序列的随机接入资源称为第一随机接入资源,将用于发送第二随机接入前导序列的随机接入资源称为第二随机接入资源。在以下各实施例中,第一随机接入资源也称为BFR RACH资源,第二随机接入资源也称为IAM RACH资源。
BFR RACH资源和IAM RACH资源可以采用相同的配置,但是,这可能存在下面的一些问题。
1、终端设备初始接入网络时,随机接入前导序列可以支持上述序列长度为839的长序列和序列长度为139的短序列。在NR中,频点分为两部分:小于6GHz为低频,高于6GHz为高频。其中,高频仅支持短序列,低频可以支持长序列和短序列。高频短序列的子载波间隔可以为60KHz和120KHz。低频短序列的子载波间隔可以为15KHz和30KHz,低频长序列的子载波间隔可以为1.25KHz和5KHz。但是,目前的协议中规定用于BFR的随机接入前导序列只采用短序列,同时规定,BFR RACH资源采用和IAM RACH资源相同的配置。那么,在初始接入采用长序列的情况下,也即初始接入时的随机接入前导序列的子载波间隔为1.25KHz和5KHz的情况下,用于BFR的随机接入前导序列的子载波间隔无法确定。因为,BFR的随机接入前导序列为短序列时,无法支持1.25KHz和5KHz的子载波间隔。
2、在NR标准的讨论中,BFR RACH资源的其它配置还没有提供,例如,BFR RACH资源的周期、BFR RACH资源的保护间隔、BFR RACH资源上的有效RO、SSB与RO的关联关系等。
但是,考虑到如果BFR RACH资源采用和IAM RACH资源相同的配置,会出现一些矛盾和不适用的配置,并且NR对于BFR RACH资源的很多细节配置也没有给出。
因此,本申请提出一种发送和接收随机接入前导序列的方法和装置,为BFR RACH资源提供可行的配置方案。
首先需要说明的是,在本申请实施例中,随机接入前导序列也可以被称为前导序列、随机接入前导码、随机接入前导、前导、随机接入过程消息1或消息1,以上几种称谓可 以等价替换。前导序列子载波间隔,也可以被称为前导子载波间隔,随机接入过程消息1子载波间隔。随机接入也可被称为RACH,随机接入过程也可以被称为RACH过程,随机接入资源也被称为RACH资源。
另外,在本申请实施例中,高频指频率范围大于6GHz的情况,低频指频率范围小于6GHz的情况。
参见图2,图2为本申请提出的发送和接收随机接入前导序列的方法的流程图。
210、网络设备生成第一随机接入资源的配置信息。
第一随机接入资源的配置信息用于指示第一随机接入资源的配置。第一随机接入资源中的第一随机接入前导用于终端设备进行波束失败恢复。
其中,第一随机接入资源的配置信息用于指示第一随机接入资源的配置。第一随机接入资源的配置至少包括第一随机接入前导的子载波间隔。在本申请实施例中,第一随机接入前导的子载波间隔可以根据终端设备初始接入网络设备的第二随机接入前导的序列长度来配置,或者,第一随机接入前导的子载波间隔也可以独立于第二随机接入前导的序列长度配置。
应理解,第一随机接入资源用于终端设备向网络设备发送第一随机接入前导序列。第一随机接入前导序列是终端设备在进行BFR时向网络设备发送的随机接入前导序列。换句话说,第一随机接入前导用于终端设备进行波束失败回复。第一随机接入资源可以是上文所述的BFR RACH资源。
另外,下文涉及的第二随机接入资源的配置信息用于指示第二随机接入资源的配置,第二随机接入资源的配置至少包括第二随机接入前导,第二随机接入前导用于终端设备进行初始接入。第二随机接入资源可以是上文所说的IAM RACH资源(初始接入RACH资源)。
下面对本申请提出的用于BFR的随机接入资源(也即本文中的第一随机接入资源)的配置方案进行说明。以下分别第一随机接入资源中的第一随机接入前导的子载波间隔、第一随机接入资源的保护间隔、第一随机接入资源中的有效RO以及SSB和RO的关联关系的配置几个方面进行说明。
1、第一随机接入前导序列的子载波间隔的配置。
在本申请实施例中,第一随机接入前导的子载波间隔,终端设备可以根据获取的第一随机接入资源的配置信息来确定。或者,终端设备也可以从网络设备获取第二随机接入资源的配置信息,再根据第二随机接入资源的配置信息来确定。而网络设备可以根据第二随机接入资源中的第二随机接入前导分别采用长序列和短序列来配置第一随机接入前导的子载波间隔。
如上文所示,第二随机接入前导序列可以支持短序列和长序列。本申请针对第二随机接入前导分别采用长序列和短序列的情况,配置第一随机接入前导的子载波间隔。
方案1
在第二随机接入前导序列采用短序列的情况下,第一随机接入前导序列和第二随机接入前导序列采用相同的子载波间隔。
也即,对于高频短序列,第一随机接入前导序列可以采用60KH、或者120KHz、或者240KHz、或者480KHz的子载波间隔。对于低频短序列,第一随机接入前导序列可以 采用15KHz或者30KHz的子载波间隔。
进一步地,除了配置相同的子载波间隔,第一随机接入资源还采用和第二随机接入资源相同的PRACH配置索引,即相同的PRACH ConfigIndex,包括相同的随机接入前导格式,RO资源图样和随机接入资源配置周期。
换句话说,第一随机接入资源和第二随机接入资源的以下配置也相同:
随机接入前导码序列的格式、随机接入资源的周期、随机接入资源所在的时域位置和/或频域位置、随机接入资源所在的时隙、第一随机接入资源所在的时隙内的RO的数目、第一随机接入资源的索引、SSB和RO的关联关系等。
采用方案1,BFR RACH资源和IAM RACH资源在时域上完全重合,可以方便网络侧进行调度。同时,也可以提高资源利用率,降低随机接入资源的系统开销。
方案2
在第二随机接入前导序列采用长序列的情况下,第一随机接入资源配置为无效。
也即,在第二随机接入前导序列采用长序列的情况下,由于第一随机接入前导序列仅能采用短序列,无法和第二随机接入资源采用相同的配置。因此,在这种情况下,将第一随机接入资源配置为无效或者不使用或者不发送。第一随机接入资源配置为无效,即是说第一随机接入资源不可用,或者终端设备不使用第一随机接入资源进行波束失败恢复。
采用方案2,可以消除第二随机接入前导序列采用长序列而第一随机接入前导序列采用短序列,而第一随机接入资源无法和第二随机接入前导序列采用相同配置的问题,方便终端设备和网络侧实现。
换个角度来说,方案2实际上是指,如果终端设备在初始接入网络时采用长序列,那么在波束失败之后,不进行波束失败恢复。
方案3
第二随机接入前导序列采用长序列的情况下,第一随机接入资源独立于第二随机接入资源进行配置。
第一随机接入资源独立于第二随机接入资源配置,是指第一随机接入资源的配置和第二随机接入资源的配置不相关,各自独立配置。
在方案3中,具体可以有2种可选的实现方式。
方式1
第一随机接入前导序列的子载波间隔、第一随机接入资源索引(PRACH ConfigIndex)、第一随机接入前导序列的格式、第一随机接入资源的周期、第一随机接入资源所在的时域位置、第一随机接入资源所在时隙内的RO的数目、SSB和RO的关联关系中的一个或多个都独立配置。
方式2
第一随机接入前导序列的子载波间隔由第一指示信息指示,第一指示信息是第二随机接入资源的配置信息中指示第二随机接入前导序列的子载波间隔的字段携带的。
第二随机接入资源的配置信息中有1比特的子载波间隔指示信息,在第二随机接入前导序列采用短序列的情况下,该1比特的子载波间隔指示信息用于指示该第二随机接入前导序列的子载波间隔。但是,由于在第二随机接入前导序列采用长序列的情况下,其子载波间隔通过其它方式指示,因此,这1比特的子载波间隔指示信息是未配置的,或者说, 是未使用的。
因此,在本申请中,在第二随机接入前导序列采用长序列的情况下,将第二随机接入资源的配置信息中的这1比特子载波间隔指示信息用于指示第一随机接入前导序列的子载波间隔。
应理解,这里仅是采用1bit作为示例进行说明,也可以采用更多的比特,或者采用第二随机接入资源的配置信息中的其它字段来携带第一指示信息,本申请不作限定。
以上对第一随机接入前导序列的子载波间隔的配置方案进行了说明。
2、第一随机接入资源的保护间隔的配置。
在以上第一随机接入前导序列的子载波间隔的配置方案中,如果第一随机接入前导序列的子载波间隔与第二随机接入前导序列的子载波间隔各自独立配置,可以会出现第一随机接入前导序列的子载波间隔和第二随机接入前导序列的子载波间隔不一致,进而可能出现DL资源或SS/PBCH block之后的保护间隔不够用的问题。
参见图3,图3是DL资源之后的保护间隔不够用的示意图。如图3所示,第二随机接入前导序列采用A1格式,子载波间隔采用15KHz(如图3中所示的IAM RACH,A1-15KHz)。第一随机接入前导序列采用A1格式,子载波间隔采用30KHz(如图3中所示的BFR RACH,A1-30KHz)。位于下行符号DL之后的随机接入资源和/或位于下行符号DL之后flexible符号中的随机接入资源,需要2个OFDM symbol作为保护间隔,用以避免小区间干扰。当第一随机接入前导序列和第二随机接入前导序列采用的子载波间隔不一致的情况下,2个OFDM symbol的绝对时间长度不一致,例如,图3中,IAM RACH的保护间隔为BFR RACH的2倍,使得BFR保护间隔不够,带来邻小区干扰。
下面针对这个问题,说明第一随机接入资源的保护间隔的配置方案。
应理解,保护间隔是指位于DL符号之后,和/或位于灵活(flexible)资源和/或UL资源之中的有效(valid)随机接入资源,与前置DL或者SS/PBCH block最后一个符号之间的时间间隔。也即,保护间隔是指:
位于DL符号之后的有效(valid)随机接入资源与前置DL或者SS/PBCH block最后一个符号之间的最小时间间隔;和/或,
位于灵活(flexible)资源之中的有效(valid)随机接入资源与前置DL或者SS/PBCH block最后一个符号之间的最小时间间隔;和/或,
位于UL资源之中的有效(valid)随机接入资源与前置DL或者SS/PBCH block最后一个符号之间的最小时间间隔。
需要说明的是,随机接入资源的保护间隔是指其中的时域和/或频域上的随机接入资源无效(invalid),或者终端和/或基站不使用,或者终端不发送,或者基站不接收,或者闲置/空置。或者,与所述保护间隔重叠或部分重叠的随机接入资源无效,或者终端和/或基站不使用,或者终端不发送,或者基站不接收,或者闲置/空置。
例如,对应第二随机接入资源,其保护间隔如下表A。
表A
随机接入前导子载波间隔 N gap
1.25kHz或5kHz 0
15kHz或30kHz或60kHz或120kHz 2
可选地,对于B4的随机接入前导格式,N gap=0。
具体地,第一随机接入资源的保护间隔的配置方案也可以有多种。
方案1
第一随机接入资源的有效性规则和第二随机接入资源有效性规则相同。
例如,位于上行(UL)资源上的第一随机接入资源中的RO有效,和/或,
位于下行(DL)资源中的第一随机接入资源无效,和/或,
位于灵活资源(flexible)中的第一随机接入资源,需要与第一随机接入资源中的RO之前的最后一个下行符号或者SS/PBCH block最后一个OFDM符号设置一个保护间隔,该保护间隔可选值为0,1,2,3,4,5,6中任意一个值,单位为OFDM符号,位于该保护间隔内的RO无效。
可选地,位于灵活资源中的第一随机接入资源RO,如果该时隙中具有下行资源,则位于该下行资源之前的RO无效。
进一步地,该下行资源包括DL和/或SSB和/或RMSI CORESET。
该灵活资源包括系统消息或者基站指示的为flexible,或者unknown,或者reserved的资源。
可选地,对于第一随机接入前导格式为B4的情况,保护间隔为0。
方案2
第一随机接入资源的保护间隔可以根据第二随机接入资源的保护间隔、第二随机接入前导子载波间隔和第一随机接入前导子载波间隔中的一个或多个配置的。
例如,第一随机接入资源的保护间隔可以根据如下公式(1)来配置:
Figure PCTCN2019099535-appb-000007
其中,公式(1)中,
Figure PCTCN2019099535-appb-000008
表示第一随机接入资源的保护间隔,N gap表示第二随机接入资源的保护间隔,u bfr表示第一随机接入前导序列的子载波间隔索引,u PRACH表示第二随机接入前导序列的子载波间隔索引。
可选地,第一随机接入资源的保护间隔参考第二随机接入前导的子载波间隔和第一随机接入前导的子载波间隔之中最小的子载波间隔。
又例如,第一随机接入资源的保护间隔可以根据如下公式(2)来配置:
Figure PCTCN2019099535-appb-000009
其中,
Figure PCTCN2019099535-appb-000010
表示第一随机接入资源的保护间隔,μ=min(μ bfrPRACH),N gap表示第二随机接入资源的保护间隔索引,u bfr表示第一随机接入前导的子载波间隔索引,u PRACH表示第二随机接入前导的子载波间隔索引,min()表示取最小值的运算。
又例如,第一随机接入资源保护间隔根据第二随机接入前导序列的子载波间隔和第一随机接入前导子载波间隔确定:
Figure PCTCN2019099535-appb-000011
其中,N gap为OFDM符号,其子载波间隔参考第一随机接入前导子载波间隔和第二随机接入前导子载波间隔中最小值/最大值。N gap的候选值可以为{0,1,2,3,4,5,6,7,8},或者第二随机接入前导的保护间隔。进一步的,对于第一随机接入前导序列格式为B4的情况, N gap为0。
又例如,当第一随机接入资源保护间隔仅根据第二随机接入保护间隔确定的情况:
Figure PCTCN2019099535-appb-000012
可选地,上述N gap表示绝对时间长度,也即第一随机接入资源的保护间隔和第二随机接入资源的保护间的隔绝对时间长度相同。
又或者,第一随机接入资源的保护间隔是根据第二随机接入资源的保护间隔、第一随机接入前导序列的子载波间隔的情况:
Figure PCTCN2019099535-appb-000013
特殊地,在方案1中,由于短序列B4的时域长度较长,因此,如果第一随机接入前导序列采用B4序列时,第一随机接入资源的保护间隔可以为0。
本申请中,子载波间隔和子载波间隔索引可以等价替换,子载波间隔索引与子载波间隔对应关系如下表B。
表B
子载波索引(μ) 子载波间隔Δf=2 μ·15(kHz)
0 15
1 30
2 60
3 120
4 240
方案3
第一随机接入资源的保护间隔与第二随机接入资源的保护间隔各自单独配置。
在方案2中,作为一个实施例,第一随机接入资源的保护间隔可以配置为2个OFDM符号,这2个OFDM符号的参考子载波间隔可以为第一随机接入前导序列的子载波间隔。
方案4
在方案3中,第一随机接入资源的保护间隔是根据第二随机接入资源的保护间隔、第二随机接入前导序列的子载波间隔和第一随机接入前导序列的子载波间隔中的一个或多个配置的,这与方案2相同。
方案4与方案2区别的是,在方案4中,第二随机接入前导序列可以配置多个子载波间隔。因此,如果根据方案1中的公式(1)来配置第二随机接入资源的保护间隔,公式(1)中的参数u PRACH将会有多种取值。在u PRACH分别取不同的值的情况下,计算得到的第一随机接入资源的保护间隔也不同。
可选地,u PRACH可以是如下子载波间隔中的一种或多种:
最大上行(uplink,UL)子载波间隔、最小UL子载波间隔、正常UL子载波间隔(normal uplink subcarrier spacing,NUL-SCS)、次大上行子载波间隔(sub-uplink subcarrier spacing,SUL-SCS)、主服务小区(primary cell,PCell)上的随机接入过程中消息1的子载波间隔、从服务小区(second cell,SCell)上的随机接入过程中消息1的子载波间隔、多个部分带宽(bandwidth part,BWP)中的最小子载波间隔或最大子载波间隔。
这里,需要说明的是,在LTE中,终端设备的带宽和系统带宽是保持一致的。终端 设备解码主信息块(master information block,MIB)信息获取到网络侧配置的带宽后便保持不变。在NR中,终端设备的带宽可以动态的变化。例如,T1时刻,终端设备的业务量较大,系统给终端设备配置一个较大的带宽(记作BWP1)。T2时刻,终端设备的业务量较小,系统给终端设备重新配置一个较小的带宽(记作BWP2),满足基本的通信需求即可。T3时刻,系统发现BWP1所在带宽内有大范围频率选择性衰落,或者BWP1所在频率范围内资源较为紧缺,于是会给终端设备再重新配置一个新的带宽(记作BWP3)。可见,在这个过程中,会有多个BWP。即是上文所说的多个BWP。
综上所述,本申请实施例中的第一随机接入前导的子载波间隔、第二随机接入前导的子载波间隔和第一随机接入资源的保护间隔之间可以满足下面表C中的一项或多种。
表C
Figure PCTCN2019099535-appb-000014
需要注意的是,表C中第3列的第一随机接入资源的保护间隔的参考子载波间隔是第一随机接入前导的子载波间隔。对于方案3中的第二随机接入前导的子载波间隔有多种可能时,表C中的第1列为方案3中所有可选的参考子载波间隔。
下面说明第一随机接入资源上有效RO的配置、SSB和RO的关联关系的配置。
3、第一随机接入资源上有效RO的配置,以及SSB与RO的关联关系的配置。
方式1
第一随机接入资源中的有效的RO,仅在第二随机接入资源中的RO对应的时间位置上有效。第二随机接入资源中的RO对应的时间位置包括以下一种或多种:
根据第二随机接入资源配置索引(PRACH ConfigIndex)的资源图样(pattern)确定的RO;
根据上下行帧结构(DL-X-UL pattern)和第二随机接入资源有效性确定的有效RO;
根据上下行帧结构(DL-X-UL pattern)和第二随机接入资源有效性确定的有效RO中,且与SSB有关联关系的RO。
进一步的,第二随机接入资源中,不与SS/PBCH关联的RO也不作为第一随机接入有效资源。
方式2
第一随机接入资源和第二随机接入资源配置完全相同的随机接入资源索引(PRACH ConfigIndex)和/或随机接入前导序列的子载波间隔。也即配置以下参数中的一个或一个以上相同:
随机接入前导格式、随机接入前导序列的子载波间隔、随机接入资源的时域位置信息、随机接入资源的频域位置信息、随机接入资源的周期、SSB关联的RO的数目和频域上频分复用的RO的数目等。
这种配置方案能够有效压缩第一随机接入资源和第二随机接入资源在时域上所占用的资源。
可选地,第一随机接入资源和第二随机接入资源还可以配置相同的SSB-per RACH-occasion关联关系,也即SSB与RO的关联关系相同。
参见图4所示,图4为SSB和第一随机接入资源中的RO的关联关系的一种配置方案。如图3所示,第一随机接入资源和第二随机接入资源配置有完全相同的SSB-per RACH-occasion关联关系。如图4所示,SSB1与RO1、RO2关联,SSB2与RO3、RO4关联。其中,图4中的IAM RO表示IAM RACH资源(也即,第二随机接入资源)的RO,BFR RO表示BFR RACH资源(也即,第一随机接入资源)的RO。
这样配置,即使在网络设备只有一个模拟波束的情况下,在某一个时刻,网络设备也可以同时接收第一随机接入资源和第二随机接入资源,能够降低调度复杂度。
方式3
第一随机接入资源和第二随机接入资源配置不同的PRACH ConfigIndex和/或随机接入前导子载波间隔。
也即,第一随机接入资源和第二随机接入资源的pattern不同。此时,将第一随机接入资源配置为只在第二随机接入资源的有效RO所在的时间单元上才有效。其中,这里所说的时间单元可以指第二随机接入资源的有效RO所在的OFDM符号、时隙和随机接入子帧中的一种或多种。
参见图5,图5为第一随机接入资源中的有效RO的一种配置方案。参见图5,第一随机接入资源中的RO只在第二随机接入资源中的有效的RO所在的时间单元上才有效。换句话说,第一随机接入资源中的RO只在第二随机接入资源中的有效的RO对应的时间位置上有效。
作为一种实现方式,第一随机接入资源与第二随机接入资源配置不同的PRACH ConfigIndex,但配置相同的随机接入前导格式。
可选地,在配置相同的参考子载波的情况下,第一随机接入资源配置的随机接入前导格式的长度小于或等于第二随机接入资源配置的随机接入前导格式的长度。
例如,第二随机接入资源配置为随机接入前导格式A2,第一随机接入资源配置为随机接入前导格式A1、B1或A1/B1。
需要说明的是,第一随机接入资源配置的随机接入前导格式的长度小于或等于第二随机接入资源配置的随机接入前导格式的长度,使得第二随机接入资源中的一个RO至少能 够容纳第一随机接入资源中的一个RO。
可选地,对于采用上述方式1和/或方式2和/或方式3确定的第一随机接入资源的有效RO,与整数个SSB关联之后剩余的RO配置为无效。也即,这些剩余的RO不用于BFR。例如,图5中所示的RO5。
220、网络设备向终端设备发送第一随机接入资源的配置信息。终端设备从网络设备获取该第一随机接入资源的配置信息。
网络设备将为终端设备配置的用于进行BFR的第一随机接入资源的配置信息发送给终端设备。终端设备从网络设备获取该第一随机接入资源的配置信息。
可选地,网络设备可以在终端设备初始接入时,下发该第一随机接入资源的配置信息。或者,也可以在终端设备接入网络之后进行下发。或者,在终端设备检测到波束失败的情况下,请求网络设备下发第一随机接入资源的配置信息。
230、终端设备在检测到波束失败的情况下,向网络设备发送第一随机接入前导,进行波束恢复。
终端设备根据步骤230中获取的第一随机接入资源的配置信息,能够获知第一随机接入资源的配置信息,其中,包括第一随机接入前导。后续,终端设备在检测到服务波束失败的情况下,在第一随机接入资源上向网络设备发送该第一随机接入前导,以进行波束失败恢复。
应理解,终端设备向网络设备发送第一随机接入前导,需要知道第一随机接入前导的格式、第一随机接入前导的子载波间隔、第一随机接入资源的保护间隔等。而这些信息都可以通过第一随机接入资源的配置信息确定。
可选地,第一随机接入前导的子载波间隔也可以通过第二随机接入资源的配置信息来确定。此种情况下,终端设备需要首先获取第二随机接入资源的配置信息。根据第二随机接入资源的配置信息,终端设备可以确定第一随机接入前导的子载波间隔。具体地,终端设备可以根据第二随机接入资源中的第二随机接入前导的子载波间隔,来确定第一随机接入前导的子载波间隔,详细内容可以参见上文步骤210中对于第一随机接入前导的子载波间隔的配置方案的说明,这里不再赘述。
可选地,终端设备向网络设备发送第一随机接入前导序列之后,如果网络设备在第一随机接入资源上检测到终端设备发送的该第一随机接入前导序列,网络设备向终端设备反馈随机接入响应,表示终端设备的波束失败恢复成功。
以上对本申请提出的发送和接收随机接入前导序列的方法进行了说明,该方法为终端设备进行波束失败恢复提供了可行的方案。具体地,为终端设备进行BFR的随机接入资源提供了可行的配置方案。
参见图6,图6是根据本申请提供的发送和接收随机接入前导的方法进行波束失败恢复的一个示例。
301、网络设备向终端设备发送系统信息和随机接入资源的配置信息。
其中,随机接入配置信息包括随机接入前导序列的格式、随机接入资源的周期、随机接入资源的时间位置、发送SSB的位置和随机接入SSB RSRP阈值中的一个或多个。
这里,步骤301中所说的随机接入资源是指终端设备初始接入网络时所需的随机接入资源。因此,步骤301中的随机接入前导序列可以参考上文所述的第二随机接入前导序列。
302、终端设备根据系统信息和随机接入配置信息进行随机接入,接入网络。
303、网络设备为终端设备配置服务波束和/或候选波束信息,并向终端设备下发波束失败恢复配置信息。
服务波束和/或候选波束信息例如可以为SSB或CSI-RS。波束失败恢复配置信息可以包括SSB/CSI-RS所关联的随机接入资源。例如,随机接入资源的周期、随机接入资源的时域位置和/或频域位置、SSB和随机接入资源中的RO的关联关系等。
在本实施例中,网络设备将用于终端设备初始接入的随机接入资源的配置信息和用于进行BFR的波束失败恢复配置信息分别进行下发。
可选地,作为一个实施例,网络设备也可以将波束恢复配置信息在步骤301中下发,本申请对此不作限定。
其中,IAM RACH资源的配置包括网络设备为终端设备配置的用于进行初始随机接入的随机接入前导序列的子载波间隔和PRACH ConfigIndex。PRACH ConfigIndex用于指示如下信息中的至少一项:
终端设备进行初始随机接入的随机接入前导序列的格式、终端设备用于进行初始随机接入的随机接入资源的时域位置和/或频域位置的信息、SSB关联的RO的数目以及频域上频分复用的RO的数目。
其中,BFR RACH资源的配置包括网络设备为终端设备配置的用于进行BFR的随机接入前导序列的子载波间隔和PRACH ConfigIndex。PRACH ConfigIndex用于指示如下信息中的至少一项:
终端设备进行BFR的随机接入前导序列的格式、终端设备用于进行BFR的随机接入资源的时域位置和/或频域位置的信息、SSB关联的RO的数目以及频域上频分复用的RO的数目。
304、终端设备检测到服务波束失败。
终端设备通过步骤302接入网络设备之后,可以检测服务波束,或者检测与服务波束具有QCL关系的波束。如果被检测波束的块差错率(block error rate,BLER)小于预定义的阈值,终端设备则认为服务波束失败,需要进行波束失败恢复。
305、终端设备检测候选波束,向网络设备发送用于进行波束失败恢复的随机接入前导序列。
步骤305中,终端设备根据步骤303中从网络设备接收的波束失败恢复配置信息,在网络设备配置的用于进行波束恢复的接入资源上发送随机接入前导序列,以进行波束恢复。其中,步骤305中的随机接入前导序列可以参考上文所述的第一随机接入前导序列。
终端设备在向网络设备发送用于进行波束失败恢复的随机接入前导序列之前,需要确定网络设备配置的用于进行BFR的有效RO。
具体地,网络设备下发的波束失败恢复配置信息中还携带DL-X-UL pattern的参考子载波间隔和周期。终端设备根据上文介绍的确定第一随机接入资源中的有效RO的方法确定用于BFR的随机接入资源的有效RO。其中,位于UL和/或X中的有效RO,其起始位置距离前一个DL或SSB具有保护间隔。该保护间隔具体包括几个OFDM符号可以按照上文介绍的确定第一随机接入资源的保护间隔的方法进行确定。
可选地,如果随机接入资源中的RO位于SSB之前,则该RO无效。
终端设备确定的有效RO。确定该有效RO关联的SSB。终端设备在进行BFR时,在SSB关联的有效RO上发送用于进行BFR的随机接入前导序列,开始BFR过程。
306、网络设备检测导终端设备发送的随机接入前导序列之后,向终端设备反馈随机接入响应。
307、终端设备波束恢复成功。
以上对终端设备进行波束失败恢复的流程的进行了说明。应理解,将本申请提供的随机接入资源的配置方案应用于BFR过程仅是作为示例,也可以将本申请的技术方案应用在其它需要通过随机接入信道发送随机接入请求的场景下。
此外,针对现有技术的BFR过程中终端设备从基站配置的候选波束集合中,选择满足条件的候选波束的过程(也即,上文描述的BFR过程中的步骤2),本申请提供一些网络设备(例如,基站)配置候选波束集合的其它实现方式。
可选的,网络设备可以通过MAC-CE消息修改候选波束集合q1中的参考信号资源和/或同步信号块资源。
其中,MAC-CE消息中可以包含以下信息中的一种或多种:添加/删除指示、资源类型指示、候选波束集合所在载波(carrier component,CC)/BWP、参考信号资源和/或同步信号块资源的CC/BWP、需要添加到q1的参考信号资源和/或同步信号块资源、q1中需要被替换的参考信号资源和/或同步信号块资源、需求更新的波束失败检测与恢复配置。所述参考信号资源和/或同步信号块资源可以以资源索引形式体现。
一种可能的实现方式为,网络设备配置一个包含了N1个参考信号资源索引(例如,CSI-RS resource)和/或同步信号块资源索引的集合Q。然后使用MAC-CE消息从该集合Q中选择N2个包含到q1中作为候选波束集合中的参考信号资源。其中,N2可以等于当前q1集合中的资源个数。
可选的,MAC-CE消息中可以包含一个由0和1组成的长度为N1的位图(bitmap),每个比特位分别对应一个参考信号资源或同步信号块资源。若该比特位被置1,则表示Q中对应位置的参考信号资源或同步信号块资源需要被包含到q1中。例如,bitmap中的第2个比特被置为1,则表示资源集合Q中的第2个资源应被包括到q1中。
应理解,上述实现方式可以被自然扩展到将比特位被置0的参考信号资源或同步信号块资源包含到q1中的情况。
可选的,基站可以分别配置一个包含了CSI-RS资源的集合和SSB资源的集合。然后使用MAC-CE分别指示各个集合中需要被包括的参考信号或同步信号块资源。此时,MAC-CE消息中可以包含资源类型指示信息(例如,1bit),用于区分该消息是对应CSI-RS资源的集合还是SSB资源的集合。
可选的,MAC-CE消息可以包括一个添加删除指示。当该添加指示信息具体为删除状态时,表示该MAC-CE消息携带了应该从当前q1集合中删除的参考信号资源或同步信号资源信息。当该添加删除指示信息具体为添加状态时,表示该MAC-CE消息携带了应该包含到q1集合中的参考信号资源或同步信号资源信息。例如,一个表示删除候选波束资源的MAC-CE消息中可以包含一个bitmap,每个比特位分别对应当前q1中的一个参考信号资源或同步信号块资源,若该比特位被置1(可自然扩展到0),则表示去除当前q1集合中对应位置的参考信号资源或同步信号块资源。
可选的,MAC-CE信令中也可以直接包含需要添加或删除的参考信号资源或同步信号块资源的标识信息,例如,CSI-RS resource ID或通信信号块索引(SSB index)。
可选的,网络设备可以为基站配置多套q1集合,然后通过MAC-CE消息选择其中的一套进行激活。具体的,网络设备可以为每个BWP或CC配置最多N3套q1集合,N3可以由协议约定(例如,N3等于4),或者也可以通过上报的终端设备能力来确定。网络设备可以通过MAC-CE消息激活其中的一套。在MAC-CE激活之前,终端设备应假设默认采用以下指定的q1集合中的一种:ID最低、排序最靠前、最先配置的q1等。
可选的,终端设备收到网络设备更改q1的MAC-CE消息后,应按照时序更新q1集合。例如,终端设备收到修改候选波束集合q1的MAC-CE消息后,在T时隙反馈了携带该MAC-CE消息的PDSCH的ACK/NACK,则终端设备应在T+T1个时隙后应用该MAC-CE消息的修改内容。T1可以是协议约定的时间,也可以是网络设备配置的时间,或终端能力上报的时间。
应理解,上述实施例可以扩展到对波束检测集合q0的更新。
下面结合图7至图10,对本申请提出的发送和接收随机接入前导序列的装置、终端设备和网络设备进行说明。
参见图7,图7是本申请提供的通信装置500的示意性结构框图。如图7所示,装置500包括处理单元510和通信单元520。
通信单元510,用于从网络设备获取第一随机接入资源的配置信息,其中,第一随机接入资源中的第一随机接入前导用于终端设备进行波束失败恢复;
处理单元520,用于进行波束失败检测;
通信单元510,用于在通信单元510检测到波束失败的情况下,向网络设备发送第一随机接入前导,进行波束恢复。
本申请实施例的通信装置500可对应本申请提供的发送和接收随机接入前导序列的方法200及其各实施例中的终端设备。通信装置500包括的各单元分别为了实现方法200及其各实施例中由终端设备执行的相应操作和/或流程。
可选地,处理单元520可以为处理器,通信单元510可以为收发器。收发器可以包括发射机和接收机,共同实现收发的功能。或者,通信单元510还可以为输入/输入接口或输入/输出电路。
可选地,处理单元520,还用于根据第一随机接入资源的配置信息,确定第一随机接入前导的子载波间隔;或者,
通信单元510还用于从网络设备获取第二随机接入资源的配置信息,以及,处理单元520还用于根据第二随机接入资源的配置信息确定第一随机接入前导的子载波间隔。
可选地,处理单元520用于根据第二随机接入资源的配置信息确定第一随机接入前导的子载波间隔,包括如下情况中的一种或多种:在第二随机接入资源中的第二随机接入前导的序列长度为139的情况下,第一随机接入前导的子载波间隔可以为15KHz、30KHz、60KH、120KHz、240KHz、480KHz中的一种或多种;在第二随机接入资源中的第二随机接入前导的序列长度为839的情况下,第一随机接入前导的子载波间隔是由第一指示信息指示的,第一指示信息是第二随机接入资源的配置信息中指示第二随机接入前导的子载波间隔的字段携带的。
可选地,处理单元520用于根据第一随机接入资源的配置信息和第二随机接入资源的配置信息,确定第一随机接入资源的保护间隔,其中,第一随机接入资源的保护间隔是根据如下参数中的一个或多个配置的;第二随机接入资源的保护间隔、所述第二随机接入前导的子载波间隔和所述第一随机接入前导的子载波间隔。
可选地,第一随机接入资源的配置信息还包括如下信息中的一种或多种:第一随机接入前导的格式、第一随机接入资源的周期、第一随机接入资源所在的时隙、第一随机接入资源所在时隙内的随机接入时机RO的数目、第一随机接入资源的索引、同步信号块SSB关联的RO的数目。
可选地,在第二随机接入前导序列的序列长度为839的情况下,第一随机接入资源的配置信息为无效或者不使用。
应理解,第一随机接入资源是用于终端设备在波束失败的情况下发送第一随机接入前导,以进行波束恢复的。而这里,第一随机接入资源的配置信息为无效,是指网络侧配置终端设备在发生波束失败的情况下,不进行波束失败恢复。采用这种配置方式,可以在第二随机接入前导采用长序列(即,长度为839)的情况下,消除用于进行波束失败恢复的随机接入序列(即,第一随机接入前导)和用于进行初始接入的随机接入前导(即,第二随机接入前导)在序列长度配置上的不一致。
可选地,通信装置500可以为本申请提供的发送和接收随机接入前导序列的方法的各实施例中的终端设备(例如,图1中所示的终端设备102和/或终端设备103),或者也可以为设置在终端设备中的芯片(或芯片系统)或集成电路。
参见图8,图8是本申请提供的通信装置600的示意性结构框图。如图8所示,通信装置600包括处理单元610和通信单元620。
处理单元610,用于生成第一随机接入资源的配置信息,其中,第一随机接入资源中的第一随机接入前导用于终端设备进行波束失败恢复;
通信单元620,用于向终端设备发送第一随机接入资源的配置信息。
可选地,通信单元620,还用于接收终端设备在第一随机接入资源上发送的第一随机接入前导,其中,第一随机接入前导是终端设备在检测到波束失败的情况下发送的,第一随机接入前导用于进行波束失败恢复。
可选地,通信单元620还用于向终端设备发送第二随机接入资源的配置信息,第二随机接入资源中的第二随机接入前导用于终端设备进行初始接入。
可选地,第二随机接入资源的配置信息用于终端设备确定第一随机接入前导的子载波间隔,包括如下情况中的一种或多种:在第二随机接入资源中的第二随机接入前导采用第一长度的情况下,第一随机接入前导的子载波间隔与第二随机接入前导的子载波间隔相同;在第二随机接入资源中的第二随机接入前导采用第二长度的情况下,第一随机接入前导的子载波间隔是由第一指示信息指示的,第一指示信息是第二随机接入前导的配置信息中指示第二随机接入前导的子载波间隔的字段携带的;在第二随机接入资源中第二随机接入前导采用第三长度的情况下,第一随机接入资源配置无效或者不使用或者不发送。
可选地,第一长度为139或127,第二长度为839和/或第三长度为839。
可选地,第一随机接入资源的配置信息包括第一随机接入资源的保护间隔,其中,第一随机接入资源的保护间隔是根据如下参数中的一个或多个配置的:第二随机接入资源的 保护间隔、第二随机接入前导的子载波间隔和第一随机接入前导的子载波间隔。
本申请实施例的通信装置600可对应本申请提供的发送和接收随机接入前导序列的方法200及其各实施例中的网络设备。通信装置600包括的各单元分别为了实现方法200及其各实施例中由网络设备执行的相应操作和/或流程。
可选地,通信装置600可以对应本申请提供的发送和接收随机接入前导序列的方法200及其各实施例中的网络设备,或者也可以为安装在网络设备中的芯片或集成电路。
可选地,处理单元610可以为处理器,通信单元620可以为收发器。收发器可以包括发射机和接收机,共同实现收发的功能。或者,通信单元620还可以为输入/输入接口或输入/输出电路。
在以上通信装置500或通信装置600的实施例中,第二随机接入资源中的第二随机接入前导用于终端设备的初始接入(也即,初始接入网络),第二随机接入前导的子载波间隔根据第二随机接入资源的配置信息确定。
可选地,在一些实现方式中,第一随机接入资源的保护间隔参考第二随机接入前导的子载波间隔和第一随机接入前导的子载波间隔之中最小的子载波间隔。
可选地,在一些实现方式中,第一随机接入资源的保护间隔、第二随机接入资源的保护间隔、第二随机接入前导的子载波间隔和第一随机接入前导的子载波间隔之间满足如下表达式:
Figure PCTCN2019099535-appb-000015
其中,
Figure PCTCN2019099535-appb-000016
表示第一随机接入资源的保护间隔,N gap表示第二随机接入资源的保护间隔,μ=min(μ bfrPRACH),u bfr表示第一随机接入前导的子载波间隔索引,u PRACH表示第二随机接入前导的子载波间隔索引,min()表示取最小子载波间隔索引值。
可选地,在一些实现方式中,第一随机接入资源的保护间隔、第二随机接入资源的保护间隔、第二随机接入前导的子载波间隔和第一随机接入前导的子载波间隔之间满足如下表达式:
Figure PCTCN2019099535-appb-000017
其中,
Figure PCTCN2019099535-appb-000018
表示第一随机接入资源的保护间隔,N gap表示第二随机接入资源的保护间隔,u bfr表示第一随机接入前导的子载波间隔索引,u PRACH表示第二随机接入前导的子载波间隔索引。
可选地,在一些实现方式中,第二随机接入前导的子载波间隔可以为如下子载波间隔中的一个或多个:最大上行BWP子载波间隔、最小上行BWP子载波间隔、正常上行子载波间隔、次大上行子载波间隔、主小区的随机接入前导的子载波间隔、辅小区的随机接入前导的子载波间隔、多个BWP中的最大子载波间隔、多个BWP中的最小子载波间隔。
可选地,在一些实现方式中,第一随机接入前导的子载波间隔、第二随机接入前导的子载波间隔和第一随机接入资源的保护间隔满足如下表D中的一项或多项:
表D
Figure PCTCN2019099535-appb-000019
Figure PCTCN2019099535-appb-000020
可选地,第一随机接入资源的配置信息与所述第二随机接入资源的配置信息相同,其中,第二随机接入资源的配置信息还包括如下信息中的一种或多种:
第二随机接入前导序列的格式、第二随机接入资源的周期、第二随机接入资源所在的时隙、第二随机接入资源上的随机接入时机RO的数目、第二随机接入资源的索引、同步信号块SSB关联的RO的数目。
可选地,第二随机接入资源的配置信息还包括如下信息中的一种或多种:
第二随机接入前导序列的格式、第二随机接入资源的周期、第二随机接入资源所在的时隙、第二随机接入资源上的随机接入时机RO的数目、第二随机接入资源的索引、同步信号块SSB关联的RO的数目,其中,第二随机接入资源的配置信息与第一随机接入资源的配置信息至少有一项不同,第二随机接入资源中的RO包括有效RO和无效RO,第一随机接入资源中的RO中落在第二随机接入资源中的有效RO所在的时间单元内的RO有效,这里的时间单元可以为第二随机接入资源中的有效RO所在的OFDM符号、时隙或随机接入子帧。
需要说明的是,第一随机接入资源中的RO的一部分RO落在第二随机接入资源中的有效RO所在的时间单元内,或者说,第一随机接入资源中的RO位于第二随机接入资源中的有效RO对应的时间位,这部分RO是第一随机接入资源中的有效RO。
可选地,第一随机接入资源中的有效RO与整数个SSB周期关联之后剩余的RO配置为无效。
需要说明的是,以上这些实施例对通信装置500和通信装置600的实施例都是适用的,对于终端设备和网络设备也都是适用的。例如,第一随机接入资源的保护间隔的配置、第一随机接入前导的序列长度、第一随机接入资源中的有效RO的配置等。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应单元执行方法的相应步骤。例如,发送单元执行方法实施例中发送的步骤,接收单元执行方法实施例中接收的步骤,除发送、接收外的其它步骤可以由处理单元执行。具体单元的功能可以参考相应的方法实施例。发送单元和接收单元可以组成收发单 元,同时实现接收和发送的功能,收发单元也称为通信单元。
参见图9,图9是本申请提出的发送随机接入前导序列的终端设备700的示意性结构图。如图9所示,终端设备700包括:一个或多个处理器701,一个或多个存储器702,一个或多个收发器703。处理器71用于控制收发器703收发信号,存储器702用于存储计算机程序,处理器701用于从存储器702中调用并运行该计算机程序,以执行本申请提供的发送和接收随机接入前导的方法200以及各实施例中由终端设备执行的相应流程和/或操作。为了简洁,此处不再赘述。
例如,终端设备700可以是图1所示的无线通信系统中的终端设备102或103。例如,处理器701可以对应图7中的处理单元520,收发器703可以对应图7中所示的通信单元510。
参见图10,图10是本申请提出的接收随机接入前导序列的网络设备3000的示意性结构图。如图10所示,网络设备3000可以应用于上述图1所示的无线通信系统中,执行本申请的方法实施例中网络设备的功能。网络设备3000例如可以是基站。
网络设备3000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)3100和一个或多个基带单元(baseband unit,BBU)。基带单元也可以称为数字单元(digital unit,DU)3200。所述RRU 3100可以称为收发单元,与图8中的通信单元620对应。可选地,该收发单元3100还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线3101和射频单元3102。可选地,收发单元3100可以包括接收单元和发送单元,接收单元可以对应于接收器(或称接收机、接收电路),发送单元可以对应于发射器(或称发射机、发射电路)。所述RRU 3100部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如,用于向终端设备发送第一随机接入资源的配置信息。所述BBU 3200部分主要用于进行基带处理,对基站进行控制等。所述RRU 3100与BBU3200可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 3200为网络设备3000的控制中心,也可以称为处理单元,可以与图8中的处理单元610对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中由网络设备执行的操作流程,例如,生成第一随机接入资源的配置信息。
在一个示例中,所述BBU 3200可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(例如,LTE网),也可以分别支持不同接入制式的无线接入网(例如,LTE网、5G网或其它网)。所述BBU 3200还包括存储器3201和处理器3202。所述存储器3201用以存储必要的指令和数据。所述处理器3202用于控制网络设备3000进行必要的动作,例如,用于控制网络设备3000执行上述方法实施例中由网络设备执行的操作流程。所述存储器3201和处理器3202可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图10所示的网络设备3000能够实现图1至图6的方法实施例中涉及网络设备的各个过程。网络设备3000中的各个单元的操作和/或功能,分别为了实现方法实施例中的相应流程。为避免重复,此处适当省略详述描述。
上述BBU 3200可以用于执行前面方法实施例中描述的由网络设备内部实现的动作, 例如,生成第一随机接入资源的配置信息。而RRU 3100可以用于执行前面方法实施例中描述的网络设备向终端设备发送或从终端设备接收的动作。例如,向终端设备发送第一随机接入资源的配置信息、接收终端设备发送的第一随机接入前导等。具体请见前面方法实施例中的描述,此处不再赘述。
此外,本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,当该计算机指令在计算机上运行时,使得计算机执行本申请实施例的发送和接收随机接入前导序列的方法200中由终端设备执行的相应操作和/或流程。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行本申请实施例的发送和接收随机接入前导的方法中由终端设备执行的相应操作和/或流程。
本申请还提供一种芯片,包括存储器和处理器,存储器用于存储计算机程序,处理器用于从存储器中调用并运行该计算机程序,以执行本申请实施例的发送和接收随机接入前导的方法中由终端设备执行的相应操作和/或流程。
本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,当该计算机指令在计算机上运行时,使得计算机执行本申请实施例的发送和接收随机接入前导的方法中由终端设备执行的相应操作和/或流程。
本申请还提供一种计算机程序产品,该计算机程序产品包括计算机程序代码,当该计算机程序代码在计算机上运行时,使得计算机执行本申请实施例的发送和接收随机接入前导的方法中由网络设备执行的相应操作和/或流程。
本申请还提供一种芯片,包括存储器和处理器,存储器用于存储计算机程序,处理器用于从存储器中调用并运行该计算机程序,以执行本申请实施例的发送和接收随机接入前导的方法中由网络设备执行的相应操作和/或流程。
本申请提供一种计算机可读存储介质,该计算机可读存储介质中存储有计算机指令,当该计算机指令在计算机上运行时,使得计算机执行本申请实施例的发送和接收随机接入前导的方法中由网络设备执行的相应操作和/或流程。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述方法实施例的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中所述的芯片,可以是现场可编程门阵列(field-programmable gate array,FPGA)、专用集成芯片(application specific integrated circuit,ASIC)、系统芯片(system on chip,SoC)、中央处理器(central processor unit,CPU)、网络处理器(Network Processor,NP)、数字信号处理电路(digital signal processor,DSP),还可以是微控制器(micro controller unit,MCU、可编程控制器(programmable logic device,PLD)或其它集成芯片。
本申请实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated circuit,ASIC)、FPGA或其他可编 程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。本申请实施例公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
可选的,上述的存储器与存储器可以是物理上相互独立的单元,或者,存储器也可以和处理器集成在一起。
本申请实施例中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项,可以表示:a,b,c,a-b,a-c,b-c,a-b-c,其中a,b,c可以是单个,也可以是多个。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中。部件可位于一个计算机上和/或分布在两个或更多个计算机之间。此外,这些部件可从上面存储有各种数据结构的各种计算机可读介质执行。部件可根据具有一个或多个数据分组(例如,来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如,通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现,具体取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来 实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况。其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b或c中的至少一项,可以表示:a,b,c,a-b,a-c,b-c,a-b-c,其中a,b,c可以是单个,也可以是多个。
本申请中,编号“第一”、“第二”仅仅用于区分不同的对象,例如,区分不同的随机接入前导序列,或者区分不同的随机接入资源,不应对本申请实施例的技术方案构成限定。
以上所述,仅为本申请的具体实施方式,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可想到变化或替换都应涵盖在本申请的范围之内。本申请的保护范围应以所述权利要求的保护范围为准。

Claims (26)

  1. 一种发送随机接入前导的方法,其特征在于,包括:
    终端设备从网络设备获取第一随机接入资源的配置信息,所述第一随机接入资源中的第一随机接入前导用于进行终端设备进行波束失败恢复;
    所述终端设备在检测到波束失败的情况下,向所述网络设备发送所述第一随机接入前导,进行波束失败恢复。
  2. 根据权利要求1所述的方法,所述终端设备向所述网络设备发送所述第一随机接入前导之前,所述方法还包括:
    所述终端设备根据所述第一随机接入资源的配置信息,确定所述第一随机接入前导的子载波间隔;或者,
    所述终端设备获取第二随机接入资源的配置信息,并根据所述第二随机接入资源的配置信息确定所述第一随机接入前导的子载波间隔,其中,所述第二随机接入资源中的第二随机接入前导用于初始接入,所述第二随机接入前导的子载波间隔根据第二随机接入资源的配置信息确定。
  3. 根据权利要求2所述的方法,其特征在于,所述终端设备根据所述第二随机接入资源的配置信息确定所述第一随机接入前导的子载波间隔,包括如下情况中的一种或多种:
    在所述第二随机接入资源中的第二随机接入前导采用第一长度的情况下,所述第一随机接入前导的子载波间隔与第二随机接入前导子载波间隔相同;
    在所述第二随机接入资源中的第二随机接入前导采用第二长度的情况下,所述第一随机接入前导的子载波间隔是由第一指示信息指示的,所述第一指示信息是所述第二随机接入资源的配置信息中指示所述第二随机接入前导的子载波间隔的字段携带的;
    在所述第二随机接入资源中第二随机接入前导采用第三长度的情况下,所述第一随机接入资源配置无效或者不使用或者不发送。
  4. 根据权利要求3所述的方法,其特征在于,所述第一长度为139或者127,所述第二长度和/或所述第三长度为839。
  5. 根据权利要求1-4中任一项所述的方法,其特征在于,所述方法还包括:
    所述终端设备根据所述第一随机接入资源的配置信息和第二随机接入资源的配置信息,确定所述第一随机接入资源的保护间隔,其中,所述第一随机接入资源的保护间隔是根据如下参数中的一个或多个配置的:
    所述第二随机接入资源的保护间隔、所述第二随机接入前导的子载波间隔和所述第一随机接入前导的子载波间隔。
  6. 根据权利要求5中所述的方法,其特征在于,所述第一随机接入资源的保护间隔参考所述第二随机接入前导的子载波间隔和所述第一随机接入前导的子载波间隔之中最小的子载波间隔。
  7. 根据权利要求5所述的方法,其特征在于,所述第一随机接入资源的保护间隔、所述第二随机接入资源的保护间隔、所述第二随机接入前导的子载波间隔和所述第一随机 接入前导的子载波间隔之间满足如下表达式:
    Figure PCTCN2019099535-appb-100001
    其中,
    Figure PCTCN2019099535-appb-100002
    表示第一随机接入资源的保护间隔,N gap表示第二随机接入资源的保护间隔,u bfr表示第一随机接入前导的子载波间隔索引,u PRACH表示第二随机接入前导的子载波间隔索引。
  8. 根据权利要求5-7中任一项所述的方法,其特征在于,所述第二随机接入前导的子载波间隔为如下载波间隔中的一个或多个:
    最大上行带宽部分BWP子载波间隔、最小上行BWP子载波间隔、正常上行子载波间隔、次大上行子载波间隔、主小区的随机接入前导序列的子载波间隔、辅小区的随机接入前导序列的子载波间隔、多个BWP中的最大子载波间隔、多个BWP中的最小子载波间隔。
  9. 根据权利要求1-8中任一项所述的方法,其特征在于,所述第一随机接入序列的子载波间隔、所述第二随机接入序列的子载波间隔和第一随机接入资源的保护间隔满足如下表1中的一项或多项:
    表1
    Figure PCTCN2019099535-appb-100003
  10. 根据权利要求1-9中任一项所述的方法,其特征在于,其特征在于,所述第二随机接入资源的配置信息还包括如下信息中的一种或多种:
    所述第二随机接入前导的格式、所述第二随机接入资源的周期、所述第二随机接入资源所在的时隙、所述第二随机接入资源中的随机接入时机RO的数目、所述第二随机接入资源的索引、同步信号块SSB关联的RO的数目,
    其中,所述第二随机接入资源的配置信息与所述第一随机接入资源的配置信息至少有一项不同,所述第二随机接入资源中的RO包括有效RO和无效RO,所述第一随机接入 资源中的RO中落在所述第二随机接入资源中的有效RO所在的时间单元内的RO有效,所述时间单元可以为所述第二随机接入资源中的有效RO所在的OFDM符号、时隙或随机接入子帧。
  11. 根据权利要求10所述的方法,其特征在于,所述第一随机接入资源中的有效RO与整数个SSB周期关联之后剩余的RO配置为无效。
  12. 一种接收随机接入前导的方法,其特征在于,包括:
    网络设备生成第一随机接入资源的配置信息,所述第一随机接入资源中的第一随机接入前导用于终端设备进行波束失败恢复;
    所述网络设备向终端设备发送所述第一随机接入资源的配置信息;
    所述网络设备从所述终端设备接收所述第一随机接入前导,所述第一随机接入前导是所述终端设备在检测到波束失败的情况下发送的。
  13. 根据权利要求12所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端设备发送第二随机接入资源的配置信息,所述第二随机接入资源的配置信息用于所述终端设备确定所述第一随机接入前导的子载波间隔,其中,所述第二随机接入资源中的第二随机接入前导用于所述终端设备的初始接入,所述第二随机接入前导的子载波间隔根据第二随机接入资源的配置信息确定。
  14. 根据权利要求13所述的方法,其特征在于,所述第二随机接入资源的配置信息用于所述终端设备确定所述第一随机接入前导的子载波间隔,包括如下情况中的一种或多种:在所述第二随机接入资源中的第二随机接入前导采用第一长度的情况下,所述第一随机接入前导的子载波间隔与所述第二随机接入前导的子载波间隔相同;
    在所述第二随机接入资源中的第二随机接入前导采用第二长度的情况下,所述第一随机接入前导的子载波间隔是由第一指示信息指示的,所述第一指示信息是所述第二随机接入前导的配置信息中指示所述第二随机接入前导的子载波间隔的字段携带的;
    在所述第二随机接入资源中的第二随机接入前导采用第三长度的情况下,所述第一随机接入资源配置为无效或不使用或不发送。
  15. 根据权利要求14所述的方法,其特征在于,所述第一长度为139或者127,所述第二长度和/或所述第三长度为839。
  16. 根据权利要求12-15中任一项所述的方法,其特征在于,所述第一随机接入资源的配置信息包括所述第一随机接入资源的保护间隔,其中,所述第一随机接入资源的保护间隔是根据如下参数中的一个或多个配置的:
    第二随机接入资源的保护间隔、所述第二随机接入前导的子载波间隔和所述第一随机接入前导的子载波间隔。
  17. 根据权利要求16中所述的方法,其特征在于,所述第一随机接入资源的保护间隔参考所述第二随机接入前导的子载波间隔和所述第一随机接入前导的子载波间隔之中最小的子载波间隔。
  18. 根据权利要求16所述的方法,其特征在于,所述第一随机接入资源的保护间隔、所述第二随机接入资源的保护间隔、所述第二随机接入前导的子载波间隔和所述第一随机接入前导的子载波间隔之间满足如下表达式:
    Figure PCTCN2019099535-appb-100004
    其中,
    Figure PCTCN2019099535-appb-100005
    表示第一随机接入资源的保护间隔,N gap表示第二随机接入资源的保护间隔,u bfr表示第一随机接入前导的子载波间隔索引,u PRACH表示第二随机接入前导的子载波间隔索引。
  19. 根据权利要求16-18中任一项所述的方法,其特征在于,所述第二随机接入前导的子载波间隔是下列子载波间隔中的一个或多个:
    最大上行子载波间隔、最小上行子载波间隔、正常上行子载波间隔、次大上行子载波间隔、主小区的随机接入前导序列的子载波间隔、辅小区的随机接入前导序列的子载波间隔、多个BWP中的最大子载波间隔、多个BWP中的最小子载波间隔。
  20. 根据权利要求12-19中任一项所述的方法,其特征在于,所述第一随机接入前导的子载波间隔、所述第二随机接入前导的子载波间隔和第一随机接入资源的保护间隔满足如下表2中的一项或多项:
    表2
    Figure PCTCN2019099535-appb-100006
  21. 根据权利要求12-20中任一项所述的方法,其特征在于,其特征在于,所述第二随机接入资源的配置信息还包括如下信息中的一种或多种:
    所述第二随机接入前导的格式、所述第二随机接入资源的周期、所述第二随机接入资源所在的时隙、所述第二随机接入资源中的随机接入时机RO的数目、所述第二随机接入资源的索引、同步信号块SSB关联的RO的数目,
    其中,所述第二随机接入资源的配置信息与所述第一随机接入资源的配置信息至少有一项不同,所述第二随机接入资源中的RO包括有效RO和无效RO,所述第一随机接入资源中的RO中落在所述第二随机接入资源中的有效RO所在的时间单元内的RO有效,所述时间单元可以为所述第二随机接入资源中的有效RO所在的OFDM符号、时隙或随机接入子帧。
  22. 根据权利要求21所述的方法,其特征在于,所述第一随机接入资源中的有效RO与整数个SSB周期关联之后剩余的RO配置为无效。
  23. 一种通信装置,其特征在于,包括:
    通信单元,用于从网络设备获取第一随机接入资源的配置信息,所述第一随机接入资源中的第一随机接入前导用于终端设备进行波束失败恢复;
    处理单元,用于进行波束失败检测;
    通信单元,还用于在所述处理单元检测到波束失败的情况下,向所述网络设备发送所述第一随机接入前导,进行波束恢复。
  24. 根据权利要求23所述的通信装置,其特征在于,所述处理单元还用于根据所述通信单元获取的所述第一随机接入资源的配置信息,确定所述第一随机接入前导的子载波间隔;或者,
    所述处理单元还用于获取第二随机接入资源的配置信息,并根据所述第二随机接入资源的配置信息确定所述第一随机接入前导的子载波间隔,其中,所述第二随机接入资源中的第二随机接入前导用于所述通信装置的初始接入,所述第二随机接入前导的子载波间隔是根据第二随机接入资源的配置信息确定的。
  25. 一种通信装置,其特征在于,包括:
    处理单元,用于生成第一随机接入资源的配置信息,所述第一随机接入资源中的第一随机接入前导用于终端设备进行波束失败恢复;
    通信单元,用于将所述处理单元生成的所述第一随机接入资源的配置信息发送给终端设备;
    所述通信单元,还用于接收所述终端设备发送的所述第一随机接入前导,所述第一随机接入前导是所述终端设备在检测到波束失败的情况下发送的。
  26. 根据权利要求25所述的通信装置,其特征在于,所述通信单元还用于向所述终端设备发送第二随机接入资源的配置信息,所述第二随机接入资源的配置信息用于所述终端设备确定所述第一随机接入前导的子载波间隔,其中,所述第二随机接入资源中的第二随机接入前导用于所述终端设备的初始接入,所述第二随机接入前导的子载波间隔根据第二随机接入资源的配置信息确定。
PCT/CN2019/099535 2018-08-09 2019-08-07 发送和接收随机接入前导的方法以及通信装置 WO2020029983A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810904618.9 2018-08-09
CN201810904618.9A CN110831237B (zh) 2018-08-09 2018-08-09 发送和接收随机接入前导的方法以及通信装置

Publications (1)

Publication Number Publication Date
WO2020029983A1 true WO2020029983A1 (zh) 2020-02-13

Family

ID=69414542

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/099535 WO2020029983A1 (zh) 2018-08-09 2019-08-07 发送和接收随机接入前导的方法以及通信装置

Country Status (2)

Country Link
CN (1) CN110831237B (zh)
WO (1) WO2020029983A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021196162A1 (zh) * 2020-04-03 2021-10-07 Oppo广东移动通信有限公司 测量模式转换方法、终端设备和网络设备
WO2022021284A1 (en) * 2020-07-31 2022-02-03 Lenovo (Beijing) Limited Apparatus and methods of new beam identification for link recovery for enhanced pdcch with multiple transmissions
WO2022031113A1 (ko) * 2020-08-06 2022-02-10 엘지전자 주식회사 반이중 주파수 분할 듀플렉싱을 지원하는 무선통신 시스템에서 데이터를 송수신하는 방법 및 이를 위한 장치
CN114340028A (zh) * 2020-09-29 2022-04-12 维沃移动通信有限公司 随机接入方法、装置及相关设备
CN114599094A (zh) * 2020-12-07 2022-06-07 维沃移动通信有限公司 Ro的时域资源配置方法、装置及电子设备
CN116724652A (zh) * 2021-01-20 2023-09-08 华为技术有限公司 一种随机接入时间的配置方法及装置
CN115715017A (zh) * 2021-08-04 2023-02-24 华为技术有限公司 一种资源配置方法、装置及相关设备
CN116156629A (zh) * 2021-11-17 2023-05-23 华为技术有限公司 波束恢复方法、波束失败检测方法以及相关装置

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180138962A1 (en) * 2016-04-13 2018-05-17 Qualcomm Incorporated System and method for beam adjustment request

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107079459A (zh) * 2015-08-11 2017-08-18 瑞典爱立信有限公司 从波束故障中恢复
US10172071B2 (en) * 2016-10-21 2019-01-01 Qualcomm Incorporated Directional synchronization in assisted millimeter wave systems
CN108024344B (zh) * 2016-11-04 2022-11-25 中兴通讯股份有限公司 一种传输配置信息获取方法和装置

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20180138962A1 (en) * 2016-04-13 2018-05-17 Qualcomm Incorporated System and method for beam adjustment request

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
ERICSSON: "Signaling Of Random Access Parameters [M063]", 3GPP TSG RAN WG2 #101, R2-1803675, 16 February 2018 (2018-02-16), XP051400698 *
HUAWEI: "Remaining Issues In RACH Procedure", 3GPP TSG RAN WG1 MEETING NR#3, R1-1715387, 9 September 2017 (2017-09-09), XP051328952 *
QUALCOMM INCORPORATED: "Remaining Details On Beam Recovery Procedure", 3GPP TSG RAN WG1 MEETING AH 1801, R1-1800860, 16 January 2018 (2018-01-16), XP051385219 *

Also Published As

Publication number Publication date
CN110831237A (zh) 2020-02-21
CN110831237B (zh) 2021-12-14

Similar Documents

Publication Publication Date Title
WO2020029983A1 (zh) 发送和接收随机接入前导的方法以及通信装置
EP3913845A2 (en) Method, system and device for transmission using a plurality of wireless resources
US11575491B2 (en) Wireless resource switching
US11330634B2 (en) Method for sending random access preamble, method for receiving random access preamble, and apparatus
CN109246743B (zh) 一种波束管理方法及终端设备、网络设备
CA3114077A1 (en) Transmission configuration and timing for wireless communications
WO2020038331A1 (zh) 确定上行资源的方法与装置
WO2019062003A1 (zh) 数据传输的方法、终端设备和网络设备
WO2018028271A1 (zh) 一种控制信息传输方法、设备以及通信系统
WO2020228589A1 (zh) 通信方法和通信装置
EP3648389B1 (en) Communication method, network device, and relay device
EP3661295B1 (en) Resource scheduling method and apparatus
EP4184969A1 (en) Physical downlink control channel enhancement method, communication device, and system
US11706005B2 (en) Uplink reference signal sending method, uplink reference signal receiving method, and apparatus
EP4017177B1 (en) Resource multiplexing method and apparatus
US10819397B2 (en) Information transmission method and related device
WO2021032021A1 (zh) 一种通信方法及装置
CN108476491B (zh) 一种无线通信方法、设备及系统
US11469852B2 (en) Signal sending and receiving method, and apparatus
TW201919427A (zh) 無線通訊方法、終端和網路設備
WO2022212377A1 (en) Uplink control transmission for multi-downlink scheduling
TW201919359A (zh) 無線通訊方法、網路設備和終端設備
JP2022549691A (ja) ランダムアクセス方法、装置及び通信システム
TW202008817A (zh) 一種訊號傳輸方法及適用該方法的裝置、終端設備及網路設備
WO2023130121A1 (en) Resource grouping for transmission repetition

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19847793

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19847793

Country of ref document: EP

Kind code of ref document: A1