WO2020119207A1 - 一种数据传输方法及装置 - Google Patents

一种数据传输方法及装置 Download PDF

Info

Publication number
WO2020119207A1
WO2020119207A1 PCT/CN2019/106812 CN2019106812W WO2020119207A1 WO 2020119207 A1 WO2020119207 A1 WO 2020119207A1 CN 2019106812 W CN2019106812 W CN 2019106812W WO 2020119207 A1 WO2020119207 A1 WO 2020119207A1
Authority
WO
WIPO (PCT)
Prior art keywords
ports
sequence
orthogonal
dmrs orthogonal
occ
Prior art date
Application number
PCT/CN2019/106812
Other languages
English (en)
French (fr)
Inventor
任斌
邢艳萍
林祥利
赵铮
Original Assignee
电信科学技术研究院有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 电信科学技术研究院有限公司 filed Critical 电信科学技术研究院有限公司
Priority to KR1020217021801A priority Critical patent/KR20210100178A/ko
Priority to US17/311,691 priority patent/US20230155759A9/en
Priority to EP19895445.5A priority patent/EP3896884A4/en
Publication of WO2020119207A1 publication Critical patent/WO2020119207A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J13/00Code division multiplex systems
    • H04J13/0007Code type
    • H04J13/0055ZCZ [zero correlation zone]
    • H04J13/0059CAZAC [constant-amplitude and zero auto-correlation]
    • H04J13/0062Zadoff-Chu
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/26035Maintenance of orthogonality, e.g. for signals exchanged between cells or users, or by using covering codes or sequences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/261Details of reference signals
    • H04L27/2613Structure of the reference signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • H04L27/2627Modulators
    • H04L27/2634Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation
    • H04L27/2636Inverse fast Fourier transform [IFFT] or inverse discrete Fourier transform [IDFT] modulators in combination with other circuits for modulation with FFT or DFT modulators, e.g. standard single-carrier frequency-division multiple access [SC-FDMA] transmitter or DFT spread orthogonal frequency division multiplexing [DFT-SOFDM]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0014Three-dimensional division
    • H04L5/0016Time-frequency-code
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload

Definitions

  • This application relates to the field of communication technology, and in particular, to a data transmission method and device.
  • the fifth generation mobile communication 5G) New Radio (NR) currently supports the largest demodulation reference signal ( DeModulation, Reference, DMRS) The number of orthogonal ports is 12.
  • Discrete Fourier Transform-Extended OFDM Discrete Fourier Transform-Spread-OFDM, DFT-s-OFDM waveforms
  • the maximum number of DMRS orthogonal ports currently supported by NR is 8.
  • the typical number of DMRS orthogonal ports in the NR uplink free scheduling scenario is 24 and 48.
  • the number of DM orthogonal ports in NR cannot meet the non-orthogonal multiple access transmission requirements in the uplink free scheduling scenario.
  • Embodiments of the present application provide a data transmission method and device to better support non-orthogonal multiple access data transmission in an uplink scheduling-free scenario.
  • a data transmission method provided by an embodiment of the present application includes:
  • the DMRS orthogonal port pattern is used for data transmission.
  • the DMRS orthogonal port pattern of the demodulation reference signal of the uplink data channel is determined by this method, wherein the number of the DMRS orthogonal port is greater than 12; the DMRS orthogonal port pattern is used for data transmission, thereby Better support for non-orthogonal multiple access data transmission in the uplink scheduling-free scenario.
  • a data transmission device provided by an embodiment of the present application includes:
  • Memory used to store program instructions
  • a processor configured to call program instructions stored in the memory and execute according to the obtained program:
  • the DMRS orthogonal port pattern is used for data transmission.
  • another data transmission device provided by an embodiment of the present application includes:
  • the first unit is used to determine the DMRS orthogonal port pattern of the demodulation reference signal of the uplink data channel, wherein the number of the DMRS orthogonal ports is greater than 12;
  • the second unit is used for data transmission using the DMRS orthogonal port pattern.
  • another embodiment of the present application provides a computing device, including a memory and a processor, wherein the memory is used to store program instructions, and the processor is used to call program instructions stored in the memory, Perform any of the above methods according to the obtained procedure.
  • another embodiment of the present application provides a computer storage medium that stores computer-executable instructions, and the computer-executable instructions are used to cause the computer to perform any of the foregoing methods.
  • FIG. 1 is a schematic diagram of a configuration type 1 (2 OFDM symbols) of DMRS orthogonal ports under CP-OFDM and DFT-s-OFDM waveforms provided by an embodiment of the present application;
  • FIG. 2 is a schematic diagram of a configuration type 2 (2 OFDM symbols) of a DMRS orthogonal port under a CP-OFDM waveform provided by an embodiment of this application;
  • FIG. 3 is a schematic flowchart of a data transmission method according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a configuration type 2 (2 OFDM symbols) that supports 24 DMRS orthogonal ports under CP-OFDM and DFT-s-OFDM waveforms provided by an embodiment of the present application;
  • FIG. 5 is a schematic diagram of a configuration type 2 (4 OFDM symbols) supporting 48 DMRS orthogonal ports under a CP-OFDM waveform provided by an embodiment of this application;
  • FIG. 6 is a schematic diagram of a configuration type 1 (4 OFDM symbols) supporting 48 DMRS orthogonal ports under a DFT-s-OFDM waveform provided by an embodiment of this application;
  • FIG. 7 is a schematic structural diagram of a data transmission device according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of another data transmission device according to an embodiment of the present application.
  • 5G NR uplink non-orthogonal multiple access in the scheduling-free scenario requires a typical number of DMRS orthogonal ports of 24 and 48, and currently NR supports the maximum number of DMRS orthogonal ports Is 12, unable to meet this demand.
  • NOMA Non-Orthogonal Multiple Access
  • the embodiment of the present application provides the design of the DMRS orthogonal port pattern when the number of DMRS orthogonal ports of the upstream data channel is 24 and 48, so as to better support the non-orthogonal Address data transmission.
  • the embodiments of the present application provide a data transmission method and device to better support non-orthogonal multiple access data transmission in an uplink scheduling-free scenario.
  • the method and the device are based on the same application. Since the principles of the method and the device to solve the problem are similar, the implementation of the device and the method can be referred to each other, and the repetition is not repeated here.
  • applicable systems may be a global system of mobile (GSM) system, a code division multiple access (CDMA) system, a wideband code division multiple access (Wideband Code Division Multiple Access, WCDMA) system, General packet radio service (general packet radio service, GPRS) system, long term evolution (LTE) system, LTE frequency division duplex (FDD) system, LTE time division duplex (TDD) System, universal mobile system (universal mobile communication system, UMTS), global interconnected microwave access (worldwide interoperability for microwave access, WiMAX) system, 5G system, and 5G NR system, etc.
  • GSM global system of mobile
  • CDMA code division multiple access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General packet radio service
  • LTE long term evolution
  • FDD frequency division duplex
  • TDD time division duplex
  • UMTS universal mobile system
  • WiMAX global interconnected microwave access
  • the terminal device involved in the embodiments of the present application may be a device that provides voice and/or data connectivity to a user, a handheld device with a wireless connection function, or other processing devices connected to a wireless modem.
  • the name of the terminal device may be different.
  • the terminal device may be referred to as user equipment (UE).
  • UE user equipment
  • the wireless terminal device can communicate with one or more core networks via a radio access network (Radio Access Network, RAN).
  • the wireless terminal device can be a mobile terminal device, such as a mobile phone (or "cellular" phone) and a mobile
  • the computer of the terminal device may be, for example, a portable, pocket-sized, handheld, built-in computer or mobile device in a vehicle, which exchanges language and/or data with the wireless access network.
  • PCS personal communication service
  • SIP session initiated protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • the wireless terminal equipment may also be called a system, a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, and an access point 3.
  • Remote terminal equipment remote terminal
  • access terminal equipment access terminal
  • user terminal equipment user terminal
  • user agent user agent
  • user device user device
  • the network device involved in the embodiments of the present application may be a base station, and the base station may include multiple cells.
  • the base station may also be called an access point, or it may refer to a device that communicates with a wireless terminal device through one or more sectors on an air interface in an access network, or other names.
  • the network equipment can be used to convert received air frames and internet protocol (IP) packets to each other as a router between the wireless terminal equipment and the rest of the access network, where the rest of the access network can include IP Communications network.
  • IP internet protocol
  • the network equipment can also coordinate attribute management of the air interface.
  • the network device involved in the embodiments of the present application may be a network device (base transceiver) (BTS) in a GSM system or a CDMA system, a network device (NodeB) in a WCDMA system, or an evolution in an LTE system Type network equipment (evolutional node B, eNB or e-NodeB), 5G base station in 5G network architecture (next generation system), but also home evolution base station (home evolved node B, HeNB), relay node (relay node), Femto, pico, etc. are not limited in the embodiments of the present application.
  • BTS base transceiver
  • NodeB network device
  • LTE system Type network equipment evolutional node B, eNB or e-NodeB
  • 5G base station in 5G network architecture next generation system
  • home evolution base station home evolved node B, HeNB
  • relay node relay node
  • Femto, pico, etc. are not limited in the embodiments of the present application.
  • the maximum number of DMRS orthogonal ports currently supported by 5GNR is 12; for DFT-s-OFDM waveforms, the maximum number of DMRS orthogonal ports currently supported by NR is 8.
  • the CP-OFDM waveform and the DFT-s-OFDM waveform are introduced below.
  • the DMRS orthogonal port under the CP-OFDM waveform supports two configuration types.
  • the following takes the occupancy of 2 OFDM symbols in the time domain as an example to illustrate the configuration type 1 of the DMRS orthogonal port.
  • the maximum number of DMRS orthogonal ports (ports may be referred to as ports below) that can be supported is 8.
  • ports 0, 1, 4, and 5 share the same time-frequency resources
  • ports 2, 3, 6, and 7 share the same time-frequency resources
  • ports 0/1/4/5 and ports 2/3/ Between 6/7, frequency division multiplexing (Frequency, Division, Multiplexing, FDM) mode is used to realize different DMRS orthogonal ports.
  • FDM frequency division multiplexing
  • Frequency-domain orthogonal overlay code (Frequency-Orthogonal Cover Code, FD-OCC) represents the orthogonal spreading code used between two REs separated by a resource unit (Resource Element, RE) in the frequency domain;
  • TD-OCC Time-Domain-Orthogonal Cover Code
  • Ports 0, 1, 4, and 5 share the same time-frequency resources.
  • the frequency domain occupies an even-numbered RE in a physical resource block (Physical Resource Block, PRB), and occupies 2 OFDM symbols in the time domain.
  • PRB Physical Resource Block
  • FD-OCC sequences and TD-OCC sequences whose number (that is, sequence length) is 2 realize different DMRS orthogonal ports.
  • Port 0 FD-OCC sequence ⁇ 1,1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 1 FD-OCC sequence ⁇ 1,-1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 4 FD-OCC sequence ⁇ 1,1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Port 5 FD-OCC sequence ⁇ 1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Ports 2, 3, 6, and 7 share the same time-frequency resources.
  • the frequency domain occupies an odd number RE in the PRB, and the time domain occupies 2 OFDM symbols.
  • the FD-OCC sequence and TD-OCC with a sequence length of 2 are further used.
  • the sequence implements different DMRS orthogonal ports.
  • Port 2 FD-OCC sequence ⁇ 1,1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 3 FD-OCC sequence ⁇ 1,-1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 6 FD-OCC sequence ⁇ 1,1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Port 7 FD-OCC sequence ⁇ 1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ .
  • the following takes the occupancy of 2 OFDM symbols in the time domain as an example to describe the configuration type 2 of the DMRS orthogonal port.
  • the maximum number of DMRS orthogonal ports that can be supported is 12.
  • ports 0, 1, 6, 7 share the same time-frequency resources
  • ports 2, 3, 8, 9 share the same time-frequency resources
  • ports 4, 5, 10, 11 share the same time-frequency resources.
  • Port 0/1/6/7, port 2/3/8/9 and port 4/5/10/11 use frequency division multiplexing to achieve different DMRS orthogonal ports.
  • Ports 0,1,6,7 share the same time-frequency resources, occupying RE#0,1,6 and 7 in the PRB in the frequency domain, occupying 2 OFDM symbols in the time domain, and further passing the FD with a sequence length of 2 -The OCC sequence and the TD-OCC sequence implement different DMRS orthogonal ports.
  • Port 0 FD-OCC sequence ⁇ 1,1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 1 FD-OCC sequence ⁇ 1,-1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 6 FD-OCC sequence ⁇ 1,1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Port 7 FD-OCC sequence ⁇ 1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Ports 2, 3, 8, and 9 share the same time-frequency resources, occupying RE#2, 3, 8 and 9 in the PRB in the frequency domain, occupying 2 OFDM symbols in the time domain, and further passing the FD with a sequence length of 2 -The OCC sequence and the TD-OCC sequence implement different DMRS orthogonal ports.
  • Port 2 FD-OCC sequence ⁇ 1,1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 3 FD-OCC sequence ⁇ 1,-1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 8 FD-OCC sequence ⁇ 1,1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Port 9 FD-OCC sequence ⁇ 1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ .
  • Ports 4, 5, 10, and 11 share the same time-frequency resources, occupying RE#4, 5, 10, and 11 in the PRB in the frequency domain, occupying 2 OFDM symbols in the time domain, and further passing the FD with a sequence length of 2 -OCC sequence and TD-OCC sequence realize different DMRS orthogonal ports:
  • Port 4 FD-OCC sequence ⁇ 1,1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 5 FD-OCC sequence ⁇ 1,-1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 10 FD-OCC sequence ⁇ 1,1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Port 11 FD-OCC sequence ⁇ 1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ .
  • the DMRS orthogonal ports under the DFT-s-OFDM waveform are introduced as follows:
  • DMRS configuration type 1 Only the DMRS configuration type 1 is supported under the DFT-s-OFDM waveform.
  • the following description will take 2 OFDM symbols in the time domain as an example.
  • the maximum number of DMRS orthogonal ports that can be supported is 8. You can continue to refer to Figure 1.
  • Ports 0, 1, 4, and 5 share the same time-frequency resources, and ports 2, 3, 6, and 7 share the same time-frequency resources, ports 0/1/4/5 and port 2/ Frequency division multiplexing is used to realize different DMRS orthogonal ports between 3/6/7.
  • the DFT-s-OFDM waveform is that the physical resource mapping is the same as the CP-OFDM waveform.
  • the difference is that the DMRS sequence is generated inside the physical uplink shared channel (Physical Uplink Shared Channel, PUSCH), rather than being intercepted according to the PUSCH frequency domain position.
  • PUSCH Physical Uplink Shared Channel
  • Ports 0, 1, 4, and 5 share the same time-frequency resources.
  • the frequency domain occupies an even-numbered RE in the PRB, and the time domain occupies 2 OFDM symbols.
  • the FD-OCC sequence and TD-OCC with a sequence length of 2 are further used.
  • the sequence implements different DMRS orthogonal ports.
  • Port 0 FD-OCC sequence ⁇ 1,1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 1 FD-OCC sequence ⁇ 1,-1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 4 FD-OCC sequence ⁇ 1,1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Port 5 FD-OCC sequence ⁇ 1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Ports 2, 3, 6, and 7 share the same time-frequency resources.
  • the frequency domain occupies an odd number RE in the PRB, and the time domain occupies 2 OFDM symbols.
  • the FD-OCC sequence and TD-OCC with a sequence length of 2 are further used.
  • the sequence implements different DMRS orthogonal ports.
  • Port 2 FD-OCC sequence ⁇ 1,1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 3 FD-OCC sequence ⁇ 1,-1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 6 FD-OCC sequence ⁇ 1,1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Port 7 FD-OCC sequence ⁇ 1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ .
  • the number of DMRS orthogonal ports required is greater than 12 (for example, the typical values are 24 and 48), and the NR DMRS The number of orthogonal ports is only 12, which cannot meet this requirement.
  • the number of DMRS ports of the above-mentioned NR can be extended in a non-orthogonal manner, there is mutual interference between the non-orthogonal DMRS ports, which will cause the performance of activation detection and channel estimation based on the DMRS ports to decrease, thereby causing the overall system performance to decrease. Therefore, it is necessary to design more than 12 DMRS orthogonal ports (for example, typical values are 24 and 48).
  • the embodiment of the present application proposes a design scheme for the uplink data channel DMRS orthogonal port pattern.
  • the basic idea is to implement different DMRS orthogonal ports in orthogonal frequency domain positions based on a given frequency division multiplexing factor. Then implement different DMRS orthogonal ports for the CP-OFDM waveform through the orthogonal FD-OCC sequence, and implement different DMRS orthogonal ports for the DFT-s-OFDM waveform through the cyclic shift of the Zadoff-Chu (ZC) sequence.
  • ZC Zadoff-Chu
  • a data transmission method provided by an embodiment of the present application includes:
  • the number of DMRS orthogonal ports is 24 or 48. Of course, it can be other numbers, not limited to 24 or 48.
  • Embodiments of the present application provide a DMRS orthogonal port pattern when the number of DMRS orthogonal ports of an uplink data channel is greater than 12 (for example, 24, 48), so as to better support non-orthogonal multiple access transmission in an uplink scheduling-free scenario It can effectively meet the UE activation detection, channel estimation and data channel detection performance in the NOMA uplink free scheduling scenario, thereby better supporting non-orthogonal multiple access transmission in the uplink free scheduling scenario.
  • different DMRS orthogonal ports are implemented in orthogonal frequency domain positions based on a given frequency division multiplexing factor.
  • different DMRS orthogonal ports are further implemented through orthogonal frequency domain orthogonal superposition codes FD-OCC sequences.
  • different DMRS orthogonal ports are further implemented through cyclic shift of the ZC sequence.
  • different orthogonal ports of DMRS are further implemented through orthogonal TD-OCC sequences.
  • the number of DMRS orthogonal ports is P
  • the DMRS orthogonal port occupies M OFDM symbols in the time domain.
  • the frequency division multiplexing FDM factor in the domain is N
  • the length of the FD-OCC sequence is T
  • the length of the TD-OCC sequence is S
  • P is an integer value greater than 12
  • N the length of the TD-OCC sequence
  • the number of DMRS orthogonal ports is 24, and the DMRS orthogonal ports occupy 2 OFDM symbols in the time domain ,
  • the frequency division multiplexing FDM factor in the frequency domain is 3, the length of the FD-OCC sequence is 4, and the length of the TD-OCC sequence is 2.
  • ports 0 to 7, ports 8 to 15 and ports 16 to 23 share the same time-frequency resources respectively, between ports 0 to 7, ports 8 to 15 and ports 16 to 23 Use frequency division multiplexing FDM to achieve different DMRS orthogonal ports;
  • Ports 0-7 share the same time-frequency resources, occupying resource units RE#0, 1, 2, and 3 in the physical resource block PRB in the frequency domain, occupying 2 OFDM symbols in the time domain, and further passing the sequence length of 4 FD-OCC sequence and TD-OCC sequence with sequence length 2 realize different DMRS orthogonal ports;
  • Ports 8 to 15 share the same time-frequency resources, occupying RE#4, 5, 6 and 7 in the PRB in the frequency domain, occupying 2 OFDM symbols in the time domain, and further passing the FD-OCC sequence of sequence length 4 and The TD-OCC sequence with a sequence length of 2 realizes different DMRS orthogonal ports;
  • Ports 16 to 23 share the same time-frequency resources, occupying RE#8, 9, 10, and 11 in the PRB in the frequency domain, occupying 2 OFDM symbols in the time domain, and further passing the FD-OCC sequence with a sequence length of 4 and The TD-OCC sequence with a sequence length of 2 implements different DMRS orthogonal ports.
  • the number of DMRS orthogonal ports is 48, and the DMRS orthogonal ports occupy 4 OFDM symbols in the time domain
  • the FDM factor is 3
  • the length of the FD-OCC sequence is 4
  • the length of the TD-OCC sequence is 4.
  • ports 0 to 15, ports 16 to 31, and ports 32 to 47 share the same time-frequency resources, and between ports 0 to 15, ports 16 to 31, and ports 32 to 47 Adopt frequency division multiplexing to realize different DMRS orthogonal ports; among them,
  • Ports 0-15 share the same time-frequency resources, occupying resource units RE#0, 1, 2, and 3 in the physical resource block PRB in the frequency domain, occupying 4 OFDM symbols in the time domain, and further passing the sequence length of 4
  • the FD-OCC sequence and the TD-OCC sequence with a sequence length of 4 realize different DMRS orthogonal ports;
  • Ports 16 to 31 share the same time-frequency resources, occupying RE#4, 5, 6, and 7 in the PRB in the frequency domain, occupying 4 OFDM symbols in the time domain, and further passing the FD-OCC sequence with a sequence length of 4 and The TD-OCC sequence with a sequence length of 4 realizes different DMRS orthogonal ports;
  • Ports 32-47 share the same time-frequency resources, occupying RE#8, 9, 10, and 11 in the PRB in the frequency domain, occupying 4 OFDM symbols in the time domain, and further passing the FD-OCC sequence with a sequence length of 4 and The TD-OCC sequence with a sequence length of 4 implements different DMRS orthogonal ports.
  • the number of DMRS orthogonal ports is P, and the DMRS orthogonal ports occupy M in the time domain OFDM symbols
  • the frequency division multiplexing FDM factor in the frequency domain is N
  • the number of CSs in the code domain of the ZC sequence is R
  • the number of DMRS orthogonal ports is 24, and the DMRS orthogonal ports occupy 2 in the time domain OFDM symbols
  • the FDM factor in the frequency domain is 3
  • the number of CSs in the code domain of the ZC sequence is 4
  • the length of the TD-OCC sequence is 2.
  • ports 0 to 7, 8 to 15 and 16 to 23 share the same time-frequency resources, and ports 0 to 7, 8 to 15 and ports 16 to 23 are used.
  • Frequency division multiplexing achieves different DMRS orthogonal ports; where,
  • Ports 0-7 share the same time-frequency resources, occupying resource units RE#0, 3, 6 and 9 in the physical resource block PRB in the frequency domain, occupying 2 OFDM symbols in the time domain, and further passing the number of 4
  • the CS value of the ZC sequence and the TD-OCC sequence with a sequence length of 2 realize different DMRS orthogonal ports;
  • Ports 8 to 15 share the same time-frequency resources, occupying RE#1, 4, 7, and 10 in the PRB in the frequency domain, occupying 2 OFDM symbols in the time domain, and further passing the CS value of the ZC sequence of 4 And a TD-OCC sequence with a sequence length of 2 to realize different DMRS orthogonal ports;
  • Ports 16 to 23 share the same time-frequency resources, occupying RE#2, 5, 8, and 11 in the PRB in the frequency domain, occupying 2 OFDM symbols in the time domain, and further passing the CS value of the ZC sequence of 4
  • the TD-OCC sequence with a sequence length of 2 realizes different DMRS orthogonal ports.
  • the number of DMRS orthogonal ports is 48, and the DMRS orthogonal ports are in the time domain It occupies 4 OFDM symbols, the FDM factor is 3 in the frequency domain, the number of CSs in the code domain of the ZC sequence is 4 and the length of the TD-OCC sequence is 4.
  • ports 0 to 15, ports 16 to 31, and ports 32 to 47 share the same time-frequency resources, and between ports 0 to 15, ports 16 to 31, and ports 32 to 47 Adopt frequency division multiplexing to realize different DMRS orthogonal ports; among them,
  • Ports 0-15 share the same time-frequency resources, occupying resource units RE#0, 3, 6 and 9 in the physical resource block PRB in the frequency domain, occupying 4 OFDM symbols in the time domain, and further passing the number of 4
  • the CS value of the ZC sequence and the TD-OCC sequence with a sequence length of 4 realize different DMRS orthogonal ports;
  • Ports 16 to 31 share the same time-frequency resources, occupying RE#1, 4, 7, and 10 in the PRB in the frequency domain, occupying 4 OFDM symbols in the time domain, and further passing the CS value of the ZC sequence of 4 And a TD-OCC sequence of length 4 to implement different DMRS orthogonal ports;
  • Ports 32-47 share the same time-frequency resources, occupying RE#2, 5, 8, and 11 in the PRB in the frequency domain, occupying 4 OFDM symbols in the time domain, and further passing the CS value of the ZC sequence of 4 And the TD-OCC sequence of length 4 realizes different DMRS orthogonal ports.
  • the embodiment of the present application supports 24 DMRS orthogonal ports under the CP-OFDM waveform, and the configuration type 2 is provided.
  • the maximum number of DMRS orthogonal ports P supported by the embodiment of the present application is 24.
  • Occupies 2 OFDM symbols in the time domain (in FIG. 4, OFDM symbol #2 and symbol #3 in the time domain (abscissa)), and the frequency division multiplexing (FDM) factor in the frequency domain is 3 (in FIG. 4, In the frequency domain (ordinate), the 12 REs included in a PRB are divided into 3 groups.
  • the first group includes RE#0, 1, 2 and 3; the second group includes RE#4, 5, 6 and 7; the third The group includes RE#8, 9, 10 and 11), the length of the FD-OCC sequence is 4 (see the introduction of each port for the specific sequence value), and the length of the TD-OCC sequence is 2 (see the following for the specific sequence value Introduction of the port).
  • the advantage of the embodiment of the present application is that based on the configuration type 2 of the CP-OFDM waveform, an orthogonal cover code with a length of 4 is used for frequency domain multiplexing on four consecutive REs in the frequency domain, which can basically guarantee the frequency on the four REs The domain channel response is unchanged, thus ensuring the accuracy performance of channel estimation.
  • the configuration type 1 is based on the CP-OFDM waveform
  • the total frequency domain bandwidth of the frequency domain multiplexing using orthogonal cover codes of length 4 on the 4 REs with a frequency domain interval of 2 is 8 REs.
  • the frequency domain channel response on the 4 REs of the OCC may change, thereby reducing the accuracy performance of channel estimation. Therefore, the embodiments of the present application can provide higher channel estimation accuracy performance.
  • ports 0-7, ports 8-15, and ports 16-23 share the same time-frequency resources, and frequency division multiplexing FDM is used between ports 0-7, ports 8-15, and ports 16-23. Way to achieve different DMRS orthogonal ports.
  • Ports 0-7 share the same time-frequency resources, occupying RE#0, 1, 2, and 3 in the PRB in the frequency domain, occupying 2 OFDM symbols in the time domain, and further passing the FD-OCC sequence and sequence of length 4
  • the TD-OCC sequence of length 2 realizes different DMRS orthogonal ports.
  • Port 0 FD-OCC sequence ⁇ 1,1,1,1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 1 FD-OCC sequence ⁇ 1,1,-1,-1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 2 FD-OCC sequence ⁇ 1,-1,-1,1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 3 FD-OCC sequence ⁇ 1,-1,1,-1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 4 FD-OCC sequence ⁇ 1,1,1,1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Port 5 FD-OCC sequence ⁇ 1,1,-1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Port 6 FD-OCC sequence ⁇ 1,-1,-1,1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Port 7 FD-OCC sequence ⁇ 1,-1,1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Ports 8 to 15 share the same time-frequency resources, occupying RE#4, 5, 6 and 7 in the PRB in the frequency domain, occupying 2 OFDM symbols in the time domain, and further passing the FD-OCC sequence of sequence length 4 and The TD-OCC sequence with a sequence length of 2 implements different DMRS orthogonal ports.
  • Port 8 FD-OCC sequence ⁇ 1,1,1,1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 9 FD-OCC sequence ⁇ 1,1,-1,-1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 10 FD-OCC sequence ⁇ 1,-1,-1,1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 11 FD-OCC sequence ⁇ 1,-1,1,-1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 12 FD-OCC sequence ⁇ 1,1,1,1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Port 13 FD-OCC sequence ⁇ 1,1,-1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Port 14 FD-OCC sequence ⁇ 1,-1,-1,1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Port 15 FD-OCC sequence ⁇ 1,-1,1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Ports 16 to 23 share the same time-frequency resources, occupying RE#8, 9, 10, and 11 in the PRB in the frequency domain, occupying 2 OFDM symbols in the time domain, and further passing the FD-OCC sequence with a sequence length of 4 and The TD-OCC sequence with a sequence length of 2 implements different DMRS orthogonal ports.
  • Port 16 FD-OCC sequence ⁇ 1,1,1,1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 17 FD-OCC sequence ⁇ 1,1,-1,-1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 18 FD-OCC sequence ⁇ 1,-1,-1,1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 19 FD-OCC sequence ⁇ 1,-1,1,-1 ⁇ +TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 20 FD-OCC sequence ⁇ 1,1,1,1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Port 21 FD-OCC sequence ⁇ 1,1,-1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Port 22 FD-OCC sequence ⁇ 1,-1,-1,1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Port 23 FD-OCC sequence ⁇ 1,-1,1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1 ⁇ .
  • the embodiment of the present application supports 48 DMRS orthogonal ports under the CP-OFDM waveform, and the configuration type 2 is provided.
  • the maximum number of DMRS orthogonal ports P supported by the embodiment of the present application is 48.
  • Four OFDM symbols are occupied in the time domain, the FDM factor is 3 in the frequency domain, the FD-OCC sequence length is 4, and the TD-OCC sequence length is 4.
  • ports 0-15, ports 16-31, and ports 32-47 share the same time-frequency resources, and frequency division multiplexing FDM is used between ports 0-15, ports 16-31, and ports 32-47.
  • FDM frequency division multiplexing
  • Ports 0 to 15 share the same time-frequency resources, occupying RE#0, 1, 2, and 3 in the PRB in the frequency domain, occupying 4 OFDM symbols in the time domain, and further through the FD-OCC sequence of sequence length 4 and The TD-OCC sequence with a sequence length of 4 implements different DMRS orthogonal ports.
  • Port 0 FD-OCC sequence ⁇ 1,1,1,1 ⁇ +TD-OCC sequence ⁇ 1,1,1,1 ⁇ ;
  • Port 1 FD-OCC sequence ⁇ 1,1,-1,-1 ⁇ +TD-OCC sequence ⁇ 1,1,1,1 ⁇ ;
  • Port 2 FD-OCC sequence ⁇ 1,-1,-1,1 ⁇ +TD-OCC sequence ⁇ 1,1,1,1 ⁇ ;
  • Port 3 FD-OCC sequence ⁇ 1,-1,1,-1 ⁇ +TD-OCC sequence ⁇ 1,1,1,1 ⁇ ;
  • Port 4 FD-OCC sequence ⁇ 1,1,1,1 ⁇ +TD-OCC sequence ⁇ 1,1,-1,-1 ⁇ ;
  • Port 5 FD-OCC sequence ⁇ 1,1,-1,-1 ⁇ +TD-OCC sequence ⁇ 1,1,-1,-1 ⁇ ;
  • Port 6 FD-OCC sequence ⁇ 1,-1,-1,1 ⁇ +TD-OCC sequence ⁇ 1,1,-1,-1 ⁇ ;
  • Port 7 FD-OCC sequence ⁇ 1,-1,1,-1 ⁇ +TD-OCC sequence ⁇ 1,1,-1,-1 ⁇ ;
  • Port 8 FD-OCC sequence ⁇ 1,1,1,1 ⁇ +TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 9 FD-OCC sequence ⁇ 1,1,-1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 10 FD-OCC sequence ⁇ 1,-1,-1,1 ⁇ +TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 11 FD-OCC sequence ⁇ 1,-1,1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 12 FD-OCC sequence ⁇ 1,1,1,1 ⁇ +TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ ;
  • Port 13 FD-OCC sequence ⁇ 1,1,-1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ ;
  • Port 14 FD-OCC sequence ⁇ 1,-1,-1,1 ⁇ +TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ ;
  • Port 15 FD-OCC sequence ⁇ 1,-1,1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ ;
  • Ports 16 to 31 share the same time-frequency resources, occupying RE#4, 5, 6, and 7 in the PRB in the frequency domain, occupying 4 OFDM symbols in the time domain, and further passing the FD-OCC sequence of sequence length 4 and The TD-OCC sequence with a sequence length of 4 implements different DMRS orthogonal ports.
  • Port 16 FD-OCC sequence ⁇ 1,1,1,1 ⁇ +TD-OCC sequence ⁇ 1,1,1,1 ⁇ ;
  • Port 17 FD-OCC sequence ⁇ 1,1,-1,-1 ⁇ +TD-OCC sequence ⁇ 1,1,1,1 ⁇ ;
  • Port 18 FD-OCC sequence ⁇ 1,-1,-1,1 ⁇ +TD-OCC sequence ⁇ 1,1,1,1 ⁇ ;
  • Port 19 FD-OCC sequence ⁇ 1,-1,1,-1 ⁇ +TD-OCC sequence ⁇ 1,1,1,1 ⁇ ;
  • Port 20 FD-OCC sequence ⁇ 1,1,1,1 ⁇ +TD-OCC sequence ⁇ 1,1,-1,-1 ⁇ ;
  • Port 21 FD-OCC sequence ⁇ 1,1,-1,-1 ⁇ +TD-OCC sequence ⁇ 1,1,-1,-1 ⁇ ;
  • Port 22 FD-OCC sequence ⁇ 1,-1,-1,1 ⁇ +TD-OCC sequence ⁇ 1,1,-1,-1 ⁇ ;
  • Port 23 FD-OCC sequence ⁇ 1,-1,1,-1 ⁇ +TD-OCC sequence ⁇ 1,1,-1,-1 ⁇ ;
  • Port 24 FD-OCC sequence ⁇ 1,1,1,1 ⁇ +TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 25 FD-OCC sequence ⁇ 1,1,-1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 26 FD-OCC sequence ⁇ 1,-1,-1,1 ⁇ +TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 27 FD-OCC sequence ⁇ 1,-1,1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 28 FD-OCC sequence ⁇ 1,1,1,1 ⁇ +TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ ;
  • Port 29 FD-OCC sequence ⁇ 1,1,-1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ ;
  • Port 30 FD-OCC sequence ⁇ 1,-1,-1,1 ⁇ +TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ ;
  • Port 31 FD-OCC sequence ⁇ 1,-1,1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ ;
  • Ports 32-47 share the same time-frequency resources, occupying RE#8, 9, 10, and 11 in the PRB in the frequency domain, occupying 4 OFDM symbols in the time domain, and further passing the FD-OCC sequence with a sequence length of 4 and The TD-OCC sequence with a sequence length of 4 implements different DMRS orthogonal ports.
  • Port 32 FD-OCC sequence ⁇ 1,1,1,1 ⁇ +TD-OCC sequence ⁇ 1,1,1,1 ⁇ ;
  • Port 33 FD-OCC sequence ⁇ 1,1,-1,-1 ⁇ +TD-OCC sequence ⁇ 1,1,1,1 ⁇ ;
  • Port 34 FD-OCC sequence ⁇ 1,-1,-1,1 ⁇ +TD-OCC sequence ⁇ 1,1,1,1 ⁇ ;
  • Port 35 FD-OCC sequence ⁇ 1,-1,1,-1 ⁇ +TD-OCC sequence ⁇ 1,1,1,1 ⁇ ;
  • Port 36 FD-OCC sequence ⁇ 1,1,1,1 ⁇ +TD-OCC sequence ⁇ 1,1,-1,-1 ⁇ ;
  • Port 37 FD-OCC sequence ⁇ 1,1,-1,-1 ⁇ +TD-OCC sequence ⁇ 1,1,-1,-1 ⁇ ;
  • Port 38 FD-OCC sequence ⁇ 1,-1,-1,1 ⁇ +TD-OCC sequence ⁇ 1,1,-1,-1 ⁇ ;
  • Port 39 FD-OCC sequence ⁇ 1,-1,1,-1 ⁇ +TD-OCC sequence ⁇ 1,1,-1,-1 ⁇ ;
  • Port 40 FD-OCC sequence ⁇ 1,1,1,1 ⁇ +TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 41 FD-OCC sequence ⁇ 1,1,-1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 42 FD-OCC sequence ⁇ 1,-1,-1,1 ⁇ +TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 43 FD-OCC sequence ⁇ 1,-1,1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 44 FD-OCC sequence ⁇ 1,1,1,1 ⁇ +TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ ;
  • Port 45 FD-OCC sequence ⁇ 1,1,-1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ ;
  • Port 46 FD-OCC sequence ⁇ 1,-1,-1,1 ⁇ +TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ ;
  • Port 47 FD-OCC sequence ⁇ 1,-1,1,-1 ⁇ +TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ .
  • the maximum number of DMRS orthogonal ports P under the DFT-s-OFDM waveform that the embodiment of the present application can support is 24. 2 OFDM symbols are occupied in the time domain, the FDM factor is 3 in the frequency domain, the number of cyclic shifts (CS) in the code domain of the ZC sequence is 4, and the length of the TD-OCC sequence is 2.
  • the advantage of the embodiment of the present application is that frequency division multiplexing (Frequency Division Multiplexing, FDM) with a multiplexing factor of 3 is performed at a frequency domain interval of 3 REs, based on 4 code domains CS of ZC sequence (for example: CS value 0, 3,6,9) to support four orthogonal DMRS ports, because the ZC sequence has an ideal periodic autocorrelation performance under synchronization, so it can guarantee the accuracy performance of channel estimation.
  • FDM Frequency Division Multiplexing
  • ZC sequence for example: CS value 0, 3,6,9
  • the frequency domain channel response on 4 REs where the frequency domain interval of the FD-OCC is 3 REs may change, thereby reducing the accuracy performance of channel estimation. Therefore, the embodiments of the present application can provide higher channel estimation accuracy performance.
  • ports 0-7, 8-15 and 16-23 share the same time-frequency resources, and ports 0-7, 8-15 and ports 16-23 use frequency division multiplexing to achieve different DMRS orthogonal port.
  • CS represents the code domain CS for the ZC sequence.
  • Ports 0-7 share the same time-frequency resources, occupying RE#0, 3, 6 and 9 in the PRB in the frequency domain, occupying 2 OFDM symbols in the time domain, and further passing the CS value of the ZC sequence of 4
  • the TD-OCC sequence with a sequence length of 2 realizes different DMRS orthogonal ports.
  • Port 0 CS value of ZC sequence 0 + TD-OCC sequence ⁇ 1, 1 ⁇ ;
  • Port 1 CS value of ZC sequence 3 + TD-OCC sequence ⁇ 1, 1 ⁇ ;
  • Port 2 CS value of ZC sequence 6 + TD-OCC sequence ⁇ 1, 1 ⁇ ;
  • Port 3 CS value of ZC sequence 9 + TD-OCC sequence ⁇ 1, 1 ⁇ ;
  • Port 4 CS value of ZC sequence 0+TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Port 5 CS value of ZC sequence 3 + TD-OCC sequence ⁇ 1, -1 ⁇ ;
  • Port 6 CS value of ZC sequence 6 + TD-OCC sequence ⁇ 1, -1 ⁇ ;
  • Port 7 CS value of ZC sequence 9 + TD-OCC sequence ⁇ 1, -1 ⁇ ;
  • Ports 8-15 share the same time-frequency resources, occupying RE#1, 4, 7 and 10 in the PRB in the frequency domain, occupying 2 OFDM symbols in the time domain, and further passing the CS value of the ZC sequence of 4
  • the TD-OCC sequence with a sequence length of 2 realizes different DMRS orthogonal ports.
  • Port 8 CS value of ZC sequence 0+TD-OCC sequence ⁇ 1,1 ⁇ ;
  • Port 9 CS value of ZC sequence 3 + TD-OCC sequence ⁇ 1, 1 ⁇ ;
  • Port 10 CS value of ZC sequence 6 + TD-OCC sequence ⁇ 1, 1 ⁇ ;
  • Port 11 CS value of ZC sequence 9 + TD-OCC sequence ⁇ 1, 1 ⁇ ;
  • Port 12 CS value of ZC sequence 0+TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Port 13 CS value of ZC sequence 3 + TD-OCC sequence ⁇ 1, -1 ⁇ ;
  • Port 14 CS value of ZC sequence 6 + TD-OCC sequence ⁇ 1, -1 ⁇ ;
  • Port 15 CS value of ZC sequence 9 + TD-OCC sequence ⁇ 1, -1 ⁇ ;
  • Ports 16 to 23 share the same time-frequency resources, occupying RE#2, 5, 8, and 11 in the PRB in the frequency domain, occupying 2 OFDM symbols in the time domain, and further passing the CS value of the ZC sequence of 4
  • the TD-OCC sequence with a sequence length of 2 realizes different DMRS orthogonal ports.
  • Port 16 CS value of ZC sequence 0 + TD-OCC sequence ⁇ 1, 1 ⁇ ;
  • Port 17 CS value of ZC sequence 3 + TD-OCC sequence ⁇ 1, 1 ⁇ ;
  • Port 18 CS value of ZC sequence 6 + TD-OCC sequence ⁇ 1, 1 ⁇ ;
  • Port 19 CS value of ZC sequence 9 + TD-OCC sequence ⁇ 1, 1 ⁇ ;
  • Port 20 CS value of ZC sequence 0+TD-OCC sequence ⁇ 1,-1 ⁇ ;
  • Port 21 CS value of ZC sequence 3 + TD-OCC sequence ⁇ 1, -1 ⁇ ;
  • Port 22 CS value of ZC sequence 6 + TD-OCC sequence ⁇ 1, -1 ⁇ ;
  • Port 23 CS value of ZC sequence 9 + TD-OCC sequence ⁇ 1, -1 ⁇ .
  • the maximum number of DMRS orthogonal ports P in the embodiment of the present application that can support DFT-s-OFDM waveform is 48.
  • the FDM factor is 3 in the frequency domain
  • the number of CS domains in the ZC sequence is 4
  • the length of the TD-OCC sequence is 4.
  • ports 0-15, ports 16-31, and ports 32-47 share the same time-frequency resources, and frequency division multiplexing is used between ports 0-15, ports 16-31, and ports 32-47. Realize different DMRS orthogonal ports.
  • CS represents the cyclic shift of the code domain for the ZC sequence.
  • Ports 0-15 share the same time-frequency resources, occupying RE#0, 3, 6 and 9 in the PRB in the frequency domain, occupying 4 OFDM symbols in the time domain, and further passing the CS value of the ZC sequence of 4
  • the TD-OCC sequence with a sequence length of 4 realizes different DMRS orthogonal ports.
  • Port 0 CS value of ZC sequence 0+TD-OCC sequence ⁇ 1,1,1,1 ⁇ ;
  • Port 1 CS value of ZC sequence 3 + TD-OCC sequence ⁇ 1, 1, 1, 1 ⁇ ;
  • Port 2 CS value of ZC sequence 6 + TD-OCC sequence ⁇ 1, 1, 1, 1 ⁇ ;
  • Port 3 CS value of ZC sequence 9 + TD-OCC sequence ⁇ 1, 1, 1, 1 ⁇ ;
  • Port 4 CS value of ZC sequence 0+TD-OCC sequence ⁇ 1,1,-1,-1 ⁇ ;
  • Port 5 CS value of ZC sequence 3 + TD-OCC sequence ⁇ 1, 1, -1, -1 ⁇ ;
  • Port 6 CS value of ZC sequence 6+TD-OCC sequence ⁇ 1,1,-1,-1 ⁇ ;
  • Port 7 CS value 9 of ZC sequence + TD-OCC sequence ⁇ 1, 1, -1, -1 ⁇ ;
  • Port 8 CS value of ZC sequence 0+TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 9 CS value of ZC sequence 3 + TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 10 CS value of ZC sequence 6 + TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 11 CS value of ZC sequence 9 + TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 12 CS value of ZC sequence 0+TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ ;
  • Port 13 CS value of ZC sequence 3 + TD-OCC sequence ⁇ 1, -1, 1, -1 ⁇ ;
  • Port 14 CS value of ZC sequence 6 + TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ ;
  • Port 15 CS value of ZC sequence 9 + TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ ;
  • Ports 16 to 31 share the same time-frequency resources, occupying RE#1, 4, 7, and 10 in the PRB in the frequency domain, occupying 4 OFDM symbols in the time domain, and further passing the CS value of the ZC sequence of 4
  • the TD-OCC sequence with a sequence length of 4 realizes different DMRS orthogonal ports.
  • Port 16 CS value of ZC sequence 0+TD-OCC sequence ⁇ 1,1,1,1 ⁇ ;
  • Port 17 CS value of ZC sequence 3 + TD-OCC sequence ⁇ 1, 1, 1, 1 ⁇ ;
  • Port 18 CS value of ZC sequence 6 + TD-OCC sequence ⁇ 1,1,1,1 ⁇ ;
  • Port 19 CS value 9 of ZC sequence + TD-OCC sequence ⁇ 1, 1, 1, 1 ⁇ ;
  • Port 20 CS value of ZC sequence 0+TD-OCC sequence ⁇ 1,1,-1,-1 ⁇ ;
  • Port 21 CS value of ZC sequence 3 + TD-OCC sequence ⁇ 1, 1, -1, -1 ⁇ ;
  • Port 22 CS value of ZC sequence 6 + TD-OCC sequence ⁇ 1, 1, -1, -1 ⁇ ;
  • Port 23 CS value of ZC sequence 9+TD-OCC sequence ⁇ 1,1,-1,-1 ⁇ ;
  • Port 24 CS value of ZC sequence 0+TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 25 CS value of ZC sequence 3 + TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 26 CS value of ZC sequence 6 + TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 27 CS value of ZC sequence 9 + TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 28 CS value of ZC sequence 0+TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ ;
  • Port 29 CS value of ZC sequence 3+TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ ;
  • Port 30 CS value of ZC sequence 6 + TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ ;
  • Port 31 CS value of ZC sequence 9 + TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ ;
  • Ports 32-47 share the same time-frequency resources, occupying RE#2, 5, 8, and 11 in the PRB in the frequency domain, occupying 4 OFDM symbols in the time domain, and further passing the CS value of the ZC sequence of 4
  • the TD-OCC sequence with a sequence length of 4 realizes different DMRS orthogonal ports.
  • Port 32 CS value of ZC sequence 0+TD-OCC sequence ⁇ 1,1,1,1 ⁇ ;
  • Port 33 CS value of ZC sequence 3 + TD-OCC sequence ⁇ 1, 1, 1, 1 ⁇ ;
  • Port 34 CS value of ZC sequence 6 + TD-OCC sequence ⁇ 1, 1, 1, 1 ⁇ ;
  • Port 35 CS value of ZC sequence 9 + TD-OCC sequence ⁇ 1,1,1,1 ⁇ ;
  • Port 36 CS value of ZC sequence 0+TD-OCC sequence ⁇ 1,1,-1,-1 ⁇ ;
  • Port 37 CS value of ZC sequence 3 + TD-OCC sequence ⁇ 1, 1, -1, -1 ⁇ ;
  • Port 38 CS value of ZC sequence 6+TD-OCC sequence ⁇ 1,1,-1,-1 ⁇ ;
  • Port 39 CS value of ZC sequence 9 + TD-OCC sequence ⁇ 1, 1, -1, -1 ⁇ ;
  • Port 40 CS value of ZC sequence 0+TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 41 CS value of ZC sequence 3 + TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 42 CS value of ZC sequence 6 + TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 43 CS value of ZC sequence 9 + TD-OCC sequence ⁇ 1,-1,-1,1 ⁇ ;
  • Port 44 CS value of ZC sequence 0+TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ ;
  • Port 45 CS value of ZC sequence 3 + TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ ;
  • Port 46 CS value of ZC sequence 6+TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ ;
  • Port 47 CS value of ZC sequence 9+TD-OCC sequence ⁇ 1,-1,1,-1 ⁇ .
  • a data transmission device provided by an embodiment of the present application includes:
  • the first unit 11 is used to determine the DMRS orthogonal port pattern of the demodulation reference signal of the uplink data channel, where the number of DMRS orthogonal ports is greater than 12.
  • the second unit 12 is used for data transmission using the DMRS orthogonal port pattern.
  • different DMRS orthogonal ports are implemented in orthogonal frequency domain positions based on a given frequency division multiplexing factor.
  • different DMRS orthogonal ports are further implemented through orthogonal frequency domain orthogonal superposition codes FD-OCC sequences.
  • different DMRS orthogonal ports are further implemented through cyclic shift of the ZC sequence.
  • different orthogonal ports of DMRS are further implemented through orthogonal TD-OCC sequences.
  • the division of the units in the embodiments of the present application is schematic, and is only a division of logical functions. In actual implementation, there may be another division manner.
  • the functional units in the embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the above integrated unit may be implemented in the form of hardware or software functional unit.
  • the integrated unit is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer-readable storage medium.
  • the technical solution of the present application essentially or part of the contribution to the existing technology or all or part of the technical solution can be embodied in the form of a software product, the computer software product is stored in a storage medium , Including several instructions to enable a computer device (which may be a personal computer, a server, or a network device, etc.) or a processor (processor) to perform all or part of the steps in the embodiments of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .
  • another data transmission device provided by an embodiment of the present application includes:
  • the memory 520 is used to store program instructions
  • the processor 500 is used to call program instructions stored in the memory and execute according to the obtained program:
  • DMRS orthogonal port pattern is used for data transmission.
  • data transmission may be performed through the transceiver 510.
  • different DMRS orthogonal ports are implemented in orthogonal frequency domain positions based on a given frequency division multiplexing factor.
  • different DMRS orthogonal ports are further implemented through orthogonal frequency domain orthogonal superposition codes FD-OCC sequences.
  • different DMRS orthogonal ports are further implemented through cyclic shift of the ZC sequence.
  • different orthogonal ports of DMRS are further implemented through orthogonal TD-OCC sequences.
  • the number of DMRS orthogonal ports is P
  • the DMRS orthogonal port occupies M OFDM symbols in the time domain.
  • the frequency division multiplexing FDM factor in the domain is N
  • the length of the FD-OCC sequence is T
  • the length of the TD-OCC sequence is S
  • N N
  • T Sum S is an integer value greater than or equal to 1.
  • the number of DMRS orthogonal ports is 24, and the DMRS orthogonal ports occupy 2 OFDM symbols in the time domain.
  • the frequency division multiplexing FDM factor in the domain is 3, the length of the FD-OCC sequence is 4, and the length of the TD-OCC sequence is 2.
  • ports 0 to 7, ports 8 to 15 and ports 16 to 23 share the same time-frequency resources respectively, between ports 0 to 7, ports 8 to 15 and ports 16 to 23 Use frequency division multiplexing FDM to achieve different DMRS orthogonal ports;
  • Ports 0-7 share the same time-frequency resources, occupying resource units RE#0, 1, 2, and 3 in the physical resource block PRB in the frequency domain, occupying 2 OFDM symbols in the time domain, and further passing the sequence length of 4 FD-OCC sequence and TD-OCC sequence with sequence length 2 realize different DMRS orthogonal ports;
  • Ports 8 to 15 share the same time-frequency resources, occupying RE#4, 5, 6 and 7 in the PRB in the frequency domain, occupying 2 OFDM symbols in the time domain, and further passing the FD-OCC sequence of sequence length 4 and The TD-OCC sequence with a sequence length of 2 realizes different DMRS orthogonal ports;
  • Ports 16 to 23 share the same time-frequency resources, occupying RE#8, 9, 10, and 11 in the PRB in the frequency domain, occupying 2 OFDM symbols in the time domain, and further passing the FD-OCC sequence with a sequence length of 4 and The TD-OCC sequence with a sequence length of 2 implements different DMRS orthogonal ports.
  • the number of DMRS orthogonal ports is 48, and the DMRS orthogonal ports occupy 4 OFDM symbols in the time domain.
  • the FDM factor in the domain is 3, the length of the FD-OCC sequence is 4, and the length of the TD-OCC sequence is 4.
  • ports 0 to 15, ports 16 to 31, and ports 32 to 47 share the same time-frequency resources, and between ports 0 to 15, ports 16 to 31, and ports 32 to 47 Adopt frequency division multiplexing to realize different DMRS orthogonal ports; among them,
  • Ports 0-15 share the same time-frequency resources, occupying resource units RE#0, 1, 2, and 3 in the physical resource block PRB in the frequency domain, occupying 4 OFDM symbols in the time domain, and further passing the sequence length of 4
  • the FD-OCC sequence and the TD-OCC sequence with a sequence length of 4 realize different DMRS orthogonal ports;
  • Ports 16 to 31 share the same time-frequency resources, occupying RE#4, 5, 6, and 7 in the PRB in the frequency domain, occupying 4 OFDM symbols in the time domain, and further passing the FD-OCC sequence with a sequence length of 4 and The TD-OCC sequence with a sequence length of 4 realizes different DMRS orthogonal ports;
  • Ports 32-47 share the same time-frequency resources, occupying RE#8, 9, 10, and 11 in the PRB in the frequency domain, occupying 4 OFDM symbols in the time domain, and further passing the FD-OCC sequence with a sequence length of 4 and The TD-OCC sequence with a sequence length of 4 implements different DMRS orthogonal ports.
  • the number of DMRS orthogonal ports is P
  • the DMRS orthogonal ports are occupied in the time domain M OFDM symbols
  • the frequency division multiplexing FDM factor in the frequency domain is N
  • the number of CS cyclic shifts in the ZC sequence is R
  • the length of the TD-OCC sequence is S
  • the number of DMRS orthogonal ports is 24, and the DMRS orthogonal ports are occupied in the time domain
  • the FDM factor in the frequency domain is 3
  • the number of CSs in the code domain of the ZC sequence is 4
  • the length of the TD-OCC sequence is 2.
  • ports 0-7, 8-15 and 16-23 share the same time-frequency resources respectively, and frequency division is adopted between ports 0-7, 8-15 and ports 16-23 Multiplexing to achieve different DMRS orthogonal ports; among them,
  • Ports 0-7 share the same time-frequency resources, occupying resource units RE#0, 3, 6 and 9 in the physical resource block PRB in the frequency domain, occupying 2 OFDM symbols in the time domain, and further passing the number of 4
  • the CS value of the ZC sequence and the TD-OCC sequence with a sequence length of 2 realize different DMRS orthogonal ports;
  • Ports 8 to 15 share the same time-frequency resources, occupying RE#1, 4, 7, and 10 in the PRB in the frequency domain, occupying 2 OFDM symbols in the time domain, and further passing the CS value of the ZC sequence of 4 And a TD-OCC sequence with a sequence length of 2 to realize different DMRS orthogonal ports;
  • Ports 16 to 23 share the same time-frequency resources, occupying RE#2, 5, 8, and 11 in the PRB in the frequency domain, occupying 2 OFDM symbols in the time domain, and further passing the CS value of the ZC sequence of 4
  • the TD-OCC sequence with a sequence length of 2 realizes different DMRS orthogonal ports.
  • the number of DMRS orthogonal ports is 48, and the DMRS orthogonal ports are occupied in the time domain
  • the FDM factor in the frequency domain is 3
  • the number of CSs in the code domain of the ZC sequence is 4
  • the length of the TD-OCC sequence is 4.
  • ports 0 to 15, ports 16 to 31, and ports 32 to 47 share the same time-frequency resources, and between ports 0 to 15, ports 16 to 31, and ports 32 to 47 Adopt frequency division multiplexing to realize different DMRS orthogonal ports; among them,
  • Ports 0-15 share the same time-frequency resources, occupying resource units RE#0, 3, 6 and 9 in the physical resource block PRB in the frequency domain, occupying 4 OFDM symbols in the time domain, and further passing the number of 4
  • the CS value of the ZC sequence and the TD-OCC sequence with a sequence length of 4 realize different DMRS orthogonal ports;
  • Ports 16 to 31 share the same time-frequency resources, occupying RE#1, 4, 7, and 10 in the PRB in the frequency domain, occupying 4 OFDM symbols in the time domain, and further passing the CS value of the ZC sequence of 4 And a TD-OCC sequence of length 4 to implement different DMRS orthogonal ports;
  • Ports 32-47 share the same time-frequency resources, occupying RE#2, 5, 8, and 11 in the PRB in the frequency domain, occupying 4 OFDM symbols in the time domain, and further passing the CS value of the ZC sequence of 4 And the TD-OCC sequence of length 4 realizes different DMRS orthogonal ports.
  • the transceiver 510 is used to receive and send data under the control of the processor 500.
  • the bus architecture may include any number of interconnected buses and bridges, specifically one or more processors represented by the processor 500 and various circuits of the memory represented by the memory 520 are linked together.
  • the bus architecture can also link various other circuits such as peripheral devices, voltage regulators, and power management circuits, etc., which are well known in the art, and therefore, they will not be further described in this article.
  • the bus interface provides an interface.
  • the transceiver 510 may be a plurality of elements, including a transmitter and a transceiver, and provides a unit for communicating with various other devices on a transmission medium.
  • the processor 500 is responsible for managing the bus architecture and general processing, and the memory 520 may store data used by the processor 500 when performing operations.
  • the processor 500 may be a central embedded device (CPU), an application specific integrated circuit (Application Specific Integrated Circuit, ASIC), a field programmable gate array (Field-Programmable Gate Array, FPGA), or a complex programmable logic device (Complex Programmable Logic Device) , CPLD).
  • CPU central embedded device
  • ASIC Application Specific Integrated Circuit
  • FPGA field programmable gate array
  • CPLD complex programmable logic device
  • the data transmission apparatus may be a user terminal or a network-side device, such as a base station.
  • a user terminal When used as a user terminal, there can also be user interface and other related devices.
  • the user interface can be an interface that can be externally connected to the required equipment.
  • the connected equipment includes but is not limited to a keypad, display, speaker, microphone, Joystick, etc.
  • An embodiment of the present application further provides a computing device, which may specifically be a desktop computer, a portable computer, a smart phone, a tablet computer, a personal digital assistant (Personal Digital Assistant, PDA), and so on.
  • the computing device may include a central processing unit (CPU), memory, input/output devices, etc.
  • the input device may include a keyboard, mouse, touch screen, etc.
  • the output device may include a display device, such as a liquid crystal display (Liquid Crystal Display, LCD), cathode ray tube (Cathode Ray Tube, CRT), etc.
  • the memory may include a read only memory (ROM) and a random access memory (RAM), and provide the processor with program instructions and data stored in the memory.
  • ROM read only memory
  • RAM random access memory
  • the memory may be used to store the program of any method provided in the embodiment of the present application.
  • the processor calls the program instructions stored in the memory, and the processor is used to execute any method provided in the embodiments of the present application according to the obtained program instructions.
  • An embodiment of the present application provides a computer storage medium for storing computer program instructions for the device provided by the embodiment of the present application, which includes a program for executing any method provided by the embodiment of the present application.
  • the computer storage medium may be any available medium or data storage device that can be accessed by the computer, including but not limited to magnetic storage (such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.), optical storage (such as CD, DVD, BD, HVD, etc.), and semiconductor memory (such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state hard disk (SSD)), etc.
  • magnetic storage such as floppy disk, hard disk, magnetic tape, magneto-optical disk (MO), etc.
  • optical storage such as CD, DVD, BD, HVD, etc.
  • semiconductor memory such as ROM, EPROM, EEPROM, non-volatile memory (NAND FLASH), solid state hard disk (SSD)
  • the method provided in the embodiments of the present application may be applied to terminal devices or network devices.
  • the terminal equipment can also be called user equipment (User Equipment, referred to as "UE"), mobile station (Mobile Station, referred to as “MS”), mobile terminal (Mobile Terminal), etc.
  • UE User Equipment
  • MS Mobile Station
  • Mobile Terminal mobile terminal
  • the terminal can Possess the ability to communicate with one or more core networks via Radio Access Network (RAN), for example, the terminal can be a mobile phone (or “cellular” phone), or a mobile computer, etc.,
  • the terminal may also be a portable, pocket-sized, handheld, built-in computer, or vehicle-mounted mobile device.
  • the network device may be a base station (for example, an access point), which refers to a device that communicates with a wireless terminal through one or more sectors on an air interface in an access network.
  • the base station can be used to convert received air frames and IP packets to each other as a router between the wireless terminal and the rest of the access network, where the rest of the access network can include an Internet Protocol (IP) network.
  • IP Internet Protocol
  • the base station can also coordinate attribute management of the air interface.
  • the base station may be a base station (BTS, Base Transceiver Station) in GSM or CDMA, a base station (NodeB) in WCDMA, or an evolved base station (NodeB or eNB or e-NodeB, evolutional Node) in LTE B), or may be gNB in the 5G system. It is not limited in the embodiments of the present application.
  • the processing flow of the above method can be implemented by a software program, which can be stored in a storage medium, and when the stored software program is called, the above method steps are executed.
  • the embodiments of the present application solve the DMRS orthogonal port pattern design method when the number of orthogonal ports of the demodulation reference signal (DMRS) of the upstream data channel is 24 and 48, so as to better support Non-orthogonal multiple access transmission in the uplink scheduling-free scenario.
  • the embodiments of the present application can effectively meet the UE activation detection, channel estimation, and data channel detection performance in the NOMA uplink free scheduling scenario, thereby better supporting non-orthogonal multiple access transmission in the uplink free scheduling scenario.
  • the embodiments of the present application may be provided as methods, systems, or computer program products. Therefore, the present application may take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment combining software and hardware. Moreover, the present application may take the form of a computer program product implemented on one or more computer usable storage media (including but not limited to disk storage and optical storage, etc.) containing computer usable program code.
  • a computer usable storage media including but not limited to disk storage and optical storage, etc.
  • These computer program instructions may also be stored in a computer-readable memory that can guide a computer or other programmable data processing device to work in a specific manner, so that the instructions stored in the computer-readable memory produce an article of manufacture including an instruction device, the instructions
  • the device implements the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device, so that a series of operating steps are performed on the computer or other programmable device to produce computer-implemented processing, which is executed on the computer or other programmable device
  • the instructions provide steps for implementing the functions specified in one block or multiple blocks of the flowchart one flow or multiple flows and/or block diagrams.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Power Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Discrete Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Mathematical Physics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请公开了一种数据传输方法及装置,涉及通信技术领域,用以更好地支持上行免调度场景下的非正交多址数据传输。所述数据传输方法包括:确定上行数据信道的解调参考信号DMRS正交端口图样,其中,所述DMRS正交端口的个数大于12;采用所述DMRS正交端口图样进行数据传输。

Description

一种数据传输方法及装置
相关申请的交叉引用
本申请要求在2018年12月14日提交中国专利局、申请号为201811535526.4、发明名称为“一种数据传输方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种数据传输方法及装置。
背景技术
针对循环前缀-正交频分复用(Cyclic Prefix-Orthogonal Frequency Division Multiplex,CP-OFDM)波形,第五代移动通信(5G)新空口(New Radio,NR)目前支持的最大解调参考信号(DeModulation Reference Signal,DMRS)正交端口个数为12。
针对离散傅里叶变换-扩展OFDM(Discrete Fourier Transform-Spread-OFDM,DFT-s-OFDM)波形,NR目前支持的最大DMRS正交端口个数8个。
NR上行免调度场景下典型的DMRS正交端口个数为24和48个,目前NR现有的DMRS正交端口个数无法满足上行免调度场景下的非正交多址传输需求。
发明内容
本申请实施例提供了一种数据传输方法及装置,用以更好地支持上行免调度场景下的非正交多址数据传输。
第一方面,本申请实施例提供的一种数据传输方法包括:
确定上行数据信道的解调参考信号DMRS正交端口图样,其中,所述 DMRS正交端口的个数大于12;
采用所述DMRS正交端口图样进行数据传输。
本申请实施例通过该方法,确定上行数据信道的解调参考信号DMRS正交端口图样,其中,所述DMRS正交端口的个数大于12;采用所述DMRS正交端口图样进行数据传输,从而更好地支持上行免调度场景下的非正交多址数据传输。
第二方面,本申请实施例提供的一种数据传输装置,包括:
存储器,用于存储程序指令;
处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
确定上行数据信道的解调参考信号DMRS正交端口图样,其中,所述DMRS正交端口的个数大于12;
采用所述DMRS正交端口图样进行数据传输。
第三方面,本申请实施例提供的另一种数据传输装置,包括:
第一单元,用于确定上行数据信道的解调参考信号DMRS正交端口图样,其中,所述DMRS正交端口的个数大于12;
第二单元,用于采用所述DMRS正交端口图样进行数据传输。
第四方面,本申请另一实施例提供了一种计算设备,其包括存储器和处理器,其中,所述存储器用于存储程序指令,所述处理器用于调用所述存储器中存储的程序指令,按照获得的程序执行上述任一种方法。
第五方面,本申请另一实施例提供了一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行上述任一种方法。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简要介绍,显而易见地,下面描述中的附图仅是本申请的一些实施例,对于本领域的普通技术人员来讲,在不付出创造性劳动的前 提下,还可以根据这些附图获得其他的附图。
图1为本申请实施例提供的CP-OFDM、DFT-s-OFDM波形下DMRS正交端口的配置类型1示意图(2个OFDM符号);
图2为本申请实施例提供的CP-OFDM波形下DMRS正交端口的配置类型2示意图(2个OFDM符号);
图3为本申请实施例提供的一种数据传输方法的流程示意图;
图4为本申请实施例提供的CP-OFDM、DFT-s-OFDM波形下支持24个DMRS正交端口的配置类型2示意图(2个OFDM符号);
图5为本申请实施例提供的CP-OFDM波形下支持48个DMRS正交端口的配置类型2示意图(4个OFDM符号);
图6为本申请实施例提供的DFT-s-OFDM波形下支持48个DMRS正交端口的配置类型1示意图(4个OFDM符号);
图7为本申请实施例提供的一种数据传输装置的结构示意图;
图8为本申请实施例提供的另一种数据传输装置的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,并不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
5G NR上行非正交多址接入(Non-Orthogonal Multiple Access,NOMA)在免调度场景下需要的典型DMRS正交端口个数为24和48,而目前NR最大支持的DMRS正交端口个数为12,无法满足该需求。
针对该需求,本申请实施例中给出了上行数据信道的DMRS正交端口个数为24和48时的DMRS正交端口图样设计,从而更好地支持上行免调度场景下的非正交多址数据传输。
因此,本申请实施例提供了一种数据传输方法及装置,用以更好地支持 上行免调度场景下的非正交多址数据传输。
其中,方法和装置是基于同一申请构思的,由于方法和装置解决问题的原理相似,因此装置和方法的实施可以相互参见,重复之处不再赘述。
本申请实施例提供的技术方案可以适用于多种系统,尤其是5G系统。例如适用的系统可以是全球移动通讯(global system of mobile communication,GSM)系统、码分多址(code division multiple access,CDMA)系统、宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统、通用分组无线业务(general packet radio service,GPRS)系统、长期演进(long term evolution,LTE)系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)系统、通用移动系统(universal mobile telecommunication system,UMTS)、全球互联微波接入(worldwide interoperability for microwave access,WiMAX)系统、5G系统以及5G NR系统等。这多种系统中均包括终端设备和网络设备。
本申请实施例涉及的终端设备,可以是指向用户提供语音和/或数据连通性的设备,具有无线连接功能的手持式设备、或连接到无线调制解调器的其他处理设备。在不同的系统中,终端设备的名称可能也不相同,例如在5G系统中,终端设备可以称为用户设备(user equipment,UE)。
无线终端设备可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,无线终端设备可以是移动终端设备,如移动电话(或称为“蜂窝”电话)和具有移动终端设备的计算机,例如,可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置,它们与无线接入网交换语言和/或数据。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiated protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)等设备。无线终端设备也可以称为系统、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点(access point)、远程终端设备(remote terminal)、 接入终端设备(access terminal)、用户终端设备(user terminal)、用户代理(user agent)、用户装置(user device),本申请实施例中并不限定。
本申请实施例涉及的网络设备,可以是基站,该基站可以包括多个小区。根据具体应用场合不同,基站又可以称为接入点,或者可以是指接入网中在空中接口上通过一个或多个扇区与无线终端设备通信的设备,或者其它名称。
网络设备可用于将收到的空中帧与网际协议(internet protocol,IP)分组进行相互转换,作为无线终端设备与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP通信网络。网络设备还可协调对空中接口的属性管理。
例如,本申请实施例涉及的网络设备可以是GSM系统或CDMA系统中的网络设备(base transceiver station,BTS),也可以是WCDMA系统中的网络设备(NodeB),还可以是LTE系统中的演进型网络设备(evolutional node B,eNB或e-NodeB)、5G网络架构(next generation system)中的5G基站,也可是家庭演进基站(home evolved node B,HeNB)、中继节点(relay node)、家庭基站(femto)、微基站(pico)等,本申请实施例中并不限定。
下面结合说明书附图对本申请各个实施例进行详细描述。需要说明的是,本申请实施例的展示顺序仅代表实施例的先后顺序,并不代表实施例所提供的技术方案的优劣。
针对CP-OFDM波形,5G NR目前支持的最大DMRS正交端口个数为12;针对DFT-s-OFDM波形,NR目前支持的最大DMRS正交端口个数8个。下面分别对CP-OFDM波形和DFT-s-OFDM波形进行介绍。
CP-OFDM波形下的DMRS正交端口:
CP-OFDM波形下的DMRS正交端口支持两种配置类型。
配置类型1:
下面以时域上占用2个OFDM符号为例,说明DMRS正交端口的配置类型1,此时,最大可支持的DMRS正交端口(下面可简称端口)个数是8。如图1所示,端口0,1,4,5共享相同的时频资源,端口2,3,6,7共享相同的时 频资源,端口0/1/4/5和端口2/3/6/7之间采用频分复用(Frequency Division Multiplexing,FDM)方式实现不同的DMRS正交端口。频域正交叠加码(Frequency Domain-Orthogonal Cover Code,FD-OCC)表示在频域上间隔一个资源单元(Resource Element,RE)的两个RE之间采用的正交扩频码;时域正交叠加码(Time Domain-Orthogonal Cover Code,TD-OCC)表示在时域上相邻的两个OFDM符号之间采用的正交扩频码。
端口0,1,4,5共享相同的时频资源,频域占用一个物理资源块(Physical Resource Block,PRB)内的偶数号RE,时域上占用2个OFDM符号,进一步通过序列包含的元素个数(即序列长度)为2的FD-OCC序列和TD-OCC序列实现不同的DMRS正交端口。
端口0:FD-OCC序列{1,1}+TD-OCC序列{1,1};
端口1:FD-OCC序列{1,-1}+TD-OCC序列{1,1};
端口4:FD-OCC序列{1,1}+TD-OCC序列{1,-1};
端口5:FD-OCC序列{1,-1}+TD-OCC序列{1,-1};
其中,FD-OCC序列{1,1}表示FD-OCC序列={1,1};TD-OCC序列{1,1}表示TD-OCC序列={1,1},其他类似描述同理,不再赘述。
端口2,3,6,7共享相同的时频资源,频域占用一个PRB内的奇数号RE,时域上占用2个OFDM符号,进一步通过序列长度为2的FD-OCC序列和TD-OCC序列实现不同的DMRS正交端口。
端口2:FD-OCC序列{1,1}+TD-OCC序列{1,1};
端口3:FD-OCC序列{1,-1}+TD-OCC序列{1,1};
端口6:FD-OCC序列{1,1}+TD-OCC序列{1,-1};
端口7:FD-OCC序列{1,-1}+TD-OCC序列{1,-1}。
配置类型2:
下面以时域上占用2个OFDM符号为例说明DMRS正交端口的配置类型2,此时,最大可支持的DMRS正交端口个数是12。如图2所示,端口0,1,6,7共享相同的时频资源,端口2,3,8,9共享相同的时频资源,端口4,5,10,11 共享相同的时频资源,端口0/1/6/7、端口2/3/8/9和端口4/5/10/11之间采用频分复用方式实现不同的DMRS正交端口。
端口0,1,6,7共享相同的时频资源,频域上占用一个PRB内的RE#0,1,6和7,时域上占用2个OFDM符号,进一步通过序列长度为2的FD-OCC序列和TD-OCC序列实现不同的DMRS正交端口。
端口0:FD-OCC序列{1,1}+TD-OCC序列{1,1};
端口1:FD-OCC序列{1,-1}+TD-OCC序列{1,1};
端口6:FD-OCC序列{1,1}+TD-OCC序列{1,-1};
端口7:FD-OCC序列{1,-1}+TD-OCC序列{1,-1};
端口2,3,8,9共享相同的时频资源,频域上占用一个PRB内的RE#2,3,8和9,时域上占用2个OFDM符号,进一步通过序列长度为2的FD-OCC序列和TD-OCC序列实现不同的DMRS正交端口。
端口2:FD-OCC序列{1,1}+TD-OCC序列{1,1};
端口3:FD-OCC序列{1,-1}+TD-OCC序列{1,1};
端口8:FD-OCC序列{1,1}+TD-OCC序列{1,-1};
端口9:FD-OCC序列{1,-1}+TD-OCC序列{1,-1}。
端口4,5,10,11共享相同的时频资源,频域上占用一个PRB内的RE#4,5,10和11,时域上占用2个OFDM符号,进一步通过序列长度为2的FD-OCC序列和TD-OCC序列实现不同的DMRS正交端口:
端口4:FD-OCC序列{1,1}+TD-OCC序列{1,1};
端口5:FD-OCC序列{1,-1}+TD-OCC序列{1,1};
端口10:FD-OCC序列{1,1}+TD-OCC序列{1,-1};
端口11:FD-OCC序列{1,-1}+TD-OCC序列{1,-1}。
关于DFT-s-OFDM波形下的DMRS正交端口介绍如下:
DFT-s-OFDM波形下只支持DMRS配置类型1,下面以时域上占用2个OFDM符号为例进行说明,此时,最大可支持的DMRS正交端口个数是8。可以继续参见图1所示,端口0,1,4,5共享相同的时频资源,端口2,3,6,7 共享相同的时频资源,端口0/1/4/5和端口2/3/6/7之间采用频分复用方式实现不同的DMRS正交端口。DFT-s-OFDM波形在于物理资源映射同CP-OFDM波形,差异在于DMRS序列在物理上行共享信道(Physical Uplink Shared Channel,PUSCH)内部产生,而非根据PUSCH频域位置截取。
端口0,1,4,5共享相同的时频资源,频域占用一个PRB内的偶数号RE,时域上占用2个OFDM符号,进一步通过序列长度为2的FD-OCC序列和TD-OCC序列实现不同的DMRS正交端口。
端口0:FD-OCC序列{1,1}+TD-OCC序列{1,1};
端口1:FD-OCC序列{1,-1}+TD-OCC序列{1,1};
端口4:FD-OCC序列{1,1}+TD-OCC序列{1,-1};
端口5:FD-OCC序列{1,-1}+TD-OCC序列{1,-1};
端口2,3,6,7共享相同的时频资源,频域占用一个PRB内的奇数号RE,时域上占用2个OFDM符号,进一步通过序列长度为2的FD-OCC序列和TD-OCC序列实现不同的DMRS正交端口。
端口2:FD-OCC序列{1,1}+TD-OCC序列{1,1};
端口3:FD-OCC序列{1,-1}+TD-OCC序列{1,1};
端口6:FD-OCC序列{1,1}+TD-OCC序列{1,-1};
端口7:FD-OCC序列{1,-1}+TD-OCC序列{1,-1}。
在NR上行非正交多址接入(Non-Orthogonal Multiple Access,NOMA)免调度场景下,需要的DMRS正交端口个数大于12(例如,典型值为24和48),而上述NR的DMRS正交端口个数只有12,无法满足该需求。虽然上述NR的DMRS端口数可以通过非正交方式进行扩展,但是非正交的DMRS端口之间存在相互干扰,会导致基于DMRS端口的激活检测和信道估计性能下降,从而引起整体系统性能下降。因此,需要设计个数大于12(例如,典型值为24和48)的DMRS正交端口。
因此,本申请实施例提出一种上行数据信道DMRS正交端口图样的设计方案,基本思想是优先基于给定的频分复用因子在正交的频域位置上实现不 同的DMRS正交端口,然后针对CP-OFDM波形通过正交的FD-OCC序列实现不同的DMRS正交端口,针对DFT-s-OFDM波形通过Zadoff-Chu(ZC)序列的循环移位实现不同的DMRS正交端口,最后通过正交的TD-OCC序列实现不同的DMRS正交端口。
如图3所示,本申请实施例提供的一种数据传输方法,包括:
S101、确定上行数据信道的解调参考信号DMRS正交端口图样,其中,DMRS正交端口的个数大于12;
例如,DMRS正交端口的个数为24或48。当然,也可以为其他个数,不限于24或48。
S102、采用DMRS正交端口图样进行数据传输。
本申请实施例提供了上行数据信道的DMRS正交端口个数大于12(例如为24、48)时的DMRS正交端口图样,从而更好地支持上行免调度场景下的非正交多址传输,能够有效地满足NOMA上行免调度场景下的UE激活检测、信道估计和数据信道检测性能,从而更好地支持上行免调度场景下的非正交多址传输。
可选地,DMRS正交端口图样中,基于给定的频分复用因子在正交的频域位置上实现不同的DMRS正交端口。
可选地,针对循环前缀正交频分复用CP-OFDM波形,进一步还通过正交的频域正交叠加码FD-OCC序列实现不同的DMRS正交端口。
可选地,针对离散傅里叶变换扩展正交频分复用DFT-s-OFDM波形,进一步还通过ZC序列的循环移位实现不同的DMRS正交端口。
可选地,进一步还通过正交的TD-OCC序列实现不同的DMRS正交端口。
可选地,针对循环前缀正交频分复用CP-OFDM波形,DMRS正交端口图样中,DMRS正交端口的个数为P,DMRS正交端口在时域上占用M个OFDM符号,频域上频分复用FDM因子为N,FD-OCC序列长度为T,TD-OCC序列长度为S,并且满足P=N*T*S,其中,P为大于12的整数值,N、T和S均为大于等于1的整数值,具体数值可以根据实际需要而定。
例如,可选地,针对循环前缀正交频分复用CP-OFDM波形,DMRS正交端口图样中,DMRS正交端口的个数为24,DMRS正交端口在时域上占用2个OFDM符号,频域上频分复用FDM因子为3,FD-OCC序列长度为4,TD-OCC序列长度为2。
可选地,24个DMRS正交端口中,端口0~7、端口8~15和端口16~23分别共享相同的时频资源,端口0~7、端口8~15和端口16~23之间采用频分复用FDM方式实现不同的DMRS正交端口;其中,
端口0~7共享相同的时频资源,频域上占用一个物理资源块PRB内的资源单元RE#0,1,2和3,时域上占用2个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为2的TD-OCC序列实现不同的DMRS正交端口;
端口8~15共享相同的时频资源,频域上占用一个PRB内的RE#4,5,6和7,时域上占用2个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为2的TD-OCC序列实现不同的DMRS正交端口;
端口16~23共享相同的时频资源,频域上占用一个PRB内的RE#8,9,10和11,时域上占用2个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为2的TD-OCC序列实现不同的DMRS正交端口。
例如,可选地,针对循环前缀正交频分复用CP-OFDM波形,DMRS正交端口图样中,DMRS正交端口的个数为48,DMRS正交端口在时域上占用4个OFDM符号,频域上FDM因子为3,FD-OCC序列长度为4,TD-OCC序列长度为4。
可选地,48个DMRS正交端口中,端口0~15、端口16~31和端口32~47分别共享相同的时频资源,端口0~15、端口16~31和端口32~47之间采用频分复用方式实现不同的DMRS正交端口;其中,
端口0~15共享相同的时频资源,频域上占用一个物理资源块PRB内的资源单元RE#0,1,2和3,时域上占用4个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为4的TD-OCC序列实现不同的DMRS正交 端口;
端口16~31共享相同的时频资源,频域上占用一个PRB内的RE#4,5,6和7,时域上占用4个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为4的TD-OCC序列实现不同的DMRS正交端口;
端口32~47共享相同的时频资源,频域上占用一个PRB内的RE#8,9,10和11,时域上占用4个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为4的TD-OCC序列实现不同的DMRS正交端口。
可选地,针对离散傅里叶变换扩展正交频分复用DFT-s-OFDM波形DMRS正交端口图样中,DMRS正交端口的个数为P,DMRS正交端口在时域上占用M个OFDM符号,频域上频分复用FDM因子为N,ZC序列的码域循环移位CS个数为R,TD-OCC序列长度为S。满足P=N*R*S,P为大于12的正整数,N、R、S均为大于等于1的整数值,具体数值可以根据实际需要而定。
可选地,针对离散傅里叶变换扩展正交频分复用DFT-s-OFDM波形DMRS正交端口图样中,DMRS正交端口的个数为24,DMRS正交端口在时域上占用2个OFDM符号,频域上FDM因子为3,ZC序列的码域循环移位CS个数为4,TD-OCC序列长度为2。
例如,可选地,24个DMRS正交端口中,端口0~7,8~15和16~23分别共享相同的时频资源,端口0~7,8~15和端口16~23之间采用频分复用方式实现不同的DMRS正交端口;其中,
端口0~7共享相同的时频资源,频域上占用一个物理资源块PRB内的资源单元RE#0,3,6和9,时域上占用2个OFDM符号,进一步通过个数为4的ZC序列的CS值和序列长度为2的TD-OCC序列实现不同的DMRS正交端口;
端口8~15共享相同的时频资源,频域上占用一个PRB内的RE#1,4,7和10,时域上占用2个OFDM符号,进一步通过个数为4的ZC序列的CS值和序列长度为2的TD-OCC序列实现不同的DMRS正交端口;
端口16~23共享相同的时频资源,频域上占用一个PRB内的RE#2,5,8和 11,时域上占用2个OFDM符号,进一步通过个数为4的ZC序列的CS值和序列长度为2的TD-OCC序列实现不同的DMRS正交端口。
例如,可选地,针对离散傅里叶变换扩展正交频分复用DFT-s-OFDM波形,DMRS正交端口图样中,DMRS正交端口的个数为48,DMRS正交端口在时域上占用4个OFDM符号,频域上FDM因子为3,ZC序列的码域循环移位CS个数为4,TD-OCC序列长度为4。
可选地,48个DMRS正交端口中,端口0~15、端口16~31和端口32~47分别共享相同的时频资源,端口0~15、端口16~31和端口32~47之间采用频分复用方式实现不同的DMRS正交端口;其中,
端口0~15共享相同的时频资源,频域上占用一个物理资源块PRB内的资源单元RE#0,3,6和9,时域上占用4个OFDM符号,进一步通过个数为4的ZC序列的CS值和序列长度为4的TD-OCC序列实现不同的DMRS正交端口;
端口16~31共享相同的时频资源,频域上占用一个PRB内的RE#1,4,7和10,时域上占用4个OFDM符号,进一步通过个数为4的ZC序列的CS值和长度为4的TD-OCC序列实现不同的DMRS正交端口;
端口32~47共享相同的时频资源,频域上占用一个PRB内的RE#2,5,8和11,时域上占用4个OFDM符号,进一步通过个数为4的ZC序列的CS值和长度为4的TD-OCC序列实现不同的DMRS正交端口。
需要说明的是,本申请实施例提供的技术方案,可以应用到终端侧和网络侧。
下面结合附图以四个实施例具体说明。
实施例一:
如图4所示,本申请实施例支持CP-OFDM波形下的24个DMRS正交端口,配置类型2。本申请实施例最大可支持的DMRS正交端口个数P是24。在时域上占用2个OFDM符号(图4中,时域上(横坐标)占用OFDM符号#2和符号#3),频域上频分复用(FDM)因子为3(图4中,频域上(纵坐标) 把一个PRB包含的12个RE划分为3组,第一组包括RE#0,1,2和3;第二组包括RE#4,5,6和7;第三组包括RE#8,9,10和11),FD-OCC序列长度为4(具体序列取值参见下面每个端口的介绍),TD-OCC序列长度为2(具体序列取值参见下面每个端口的介绍)。
本申请实施例的优点在于基于CP-OFDM波形的配置类型2,在频域连续的4个RE上采用长度为4的正交覆盖码进行频域复用,基本能够保证4个RE上的频域信道响应不变,从而能够保证了信道估计的精度性能。如果基于CP-OFDM波形的配置类型1,在频域间隔为2的4个RE上采用长度为4的正交覆盖码进行频域复用的总频域带宽为8个RE,此时采用FD-OCC的4个RE上的频域信道响应可能发生变化,从而降低了信道估计的精度性能。因此,本申请实施例能够提供更高的信道估计精度性能。
如图4所示,端口0~7、端口8~15和端口16~23分别共享相同的时频资源,端口0~7、端口8~15和端口16~23之间采用频分复用FDM方式实现不同的DMRS正交端口。
端口0~7共享相同的时频资源,频域上占用一个PRB内的RE#0,1,2和3,时域上占用2个OFDM符号,进一步通过长度为4的FD-OCC序列和序列长度为2的TD-OCC序列实现不同的DMRS正交端口。
端口0:FD-OCC序列{1,1,1,1}+TD-OCC序列{1,1};
端口1:FD-OCC序列{1,1,-1,-1}+TD-OCC序列{1,1};
端口2:FD-OCC序列{1,-1,-1,1}+TD-OCC序列{1,1};
端口3:FD-OCC序列{1,-1,1,-1}+TD-OCC序列{1,1};
端口4:FD-OCC序列{1,1,1,1}+TD-OCC序列{1,-1};
端口5:FD-OCC序列{1,1,-1,-1}+TD-OCC序列{1,-1};
端口6:FD-OCC序列{1,-1,-1,1}+TD-OCC序列{1,-1};
端口7:FD-OCC序列{1,-1,1,-1}+TD-OCC序列{1,-1};
端口8~15共享相同的时频资源,频域上占用一个PRB内的RE#4,5,6和7,时域上占用2个OFDM符号,进一步通过序列长度为4的FD-OCC序列 和序列长度为2的TD-OCC序列实现不同的DMRS正交端口。
端口8:FD-OCC序列{1,1,1,1}+TD-OCC序列{1,1};
端口9:FD-OCC序列{1,1,-1,-1}+TD-OCC序列{1,1};
端口10:FD-OCC序列{1,-1,-1,1}+TD-OCC序列{1,1};
端口11:FD-OCC序列{1,-1,1,-1}+TD-OCC序列{1,1};
端口12:FD-OCC序列{1,1,1,1}+TD-OCC序列{1,-1};
端口13:FD-OCC序列{1,1,-1,-1}+TD-OCC序列{1,-1};
端口14:FD-OCC序列{1,-1,-1,1}+TD-OCC序列{1,-1};
端口15:FD-OCC序列{1,-1,1,-1}+TD-OCC序列{1,-1};
端口16~23共享相同的时频资源,频域上占用一个PRB内的RE#8,9,10和11,时域上占用2个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为2的TD-OCC序列实现不同的DMRS正交端口。
端口16:FD-OCC序列{1,1,1,1}+TD-OCC序列{1,1};
端口17:FD-OCC序列{1,1,-1,-1}+TD-OCC序列{1,1};
端口18:FD-OCC序列{1,-1,-1,1}+TD-OCC序列{1,1};
端口19:FD-OCC序列{1,-1,1,-1}+TD-OCC序列{1,1};
端口20:FD-OCC序列{1,1,1,1}+TD-OCC序列{1,-1};
端口21:FD-OCC序列{1,1,-1,-1}+TD-OCC序列{1,-1};
端口22:FD-OCC序列{1,-1,-1,1}+TD-OCC序列{1,-1};
端口23:FD-OCC序列{1,-1,1,-1}+TD-OCC序列{1,-1}。
实施例二:
如图5所示,本申请实施例支持CP-OFDM波形下的48个DMRS正交端口,配置类型2。本申请实施例最大可支持的DMRS正交端口个数P是48。在时域上占用4个OFDM符号,频域上FDM因子为3,FD-OCC序列长度为4,TD-OCC序列长度为4。
本申请实施例的优点同实施例一,差异在于通过增加了TD-OCC序列长度,以增加时域OFDM符号开销为代价来支持更大的DMRS正交端口个数。
如图5所示,端口0~15、端口16~31和端口32~47分别共享相同的时频资源,端口0~15、端口16~31和端口32~47之间采用频分复用FDM方式进行实现不同的DMRS正交端口。
端口0~15共享相同的时频资源,频域上占用一个PRB内的RE#0,1,2和3,时域上占用4个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为4的TD-OCC序列实现不同的DMRS正交端口。
端口0:FD-OCC序列{1,1,1,1}+TD-OCC序列{1,1,1,1};
端口1:FD-OCC序列{1,1,-1,-1}+TD-OCC序列{1,1,1,1};
端口2:FD-OCC序列{1,-1,-1,1}+TD-OCC序列{1,1,1,1};
端口3:FD-OCC序列{1,-1,1,-1}+TD-OCC序列{1,1,1,1};
端口4:FD-OCC序列{1,1,1,1}+TD-OCC序列{1,1,-1,-1};
端口5:FD-OCC序列{1,1,-1,-1}+TD-OCC序列{1,1,-1,-1};
端口6:FD-OCC序列{1,-1,-1,1}+TD-OCC序列{1,1,-1,-1};
端口7:FD-OCC序列{1,-1,1,-1}+TD-OCC序列{1,1,-1,-1};
端口8:FD-OCC序列{1,1,1,1}+TD-OCC序列{1,-1,-1,1};
端口9:FD-OCC序列{1,1,-1,-1}+TD-OCC序列{1,-1,-1,1};
端口10:FD-OCC序列{1,-1,-1,1}+TD-OCC序列{1,-1,-1,1};
端口11:FD-OCC序列{1,-1,1,-1}+TD-OCC序列{1,-1,-1,1};
端口12:FD-OCC序列{1,1,1,1}+TD-OCC序列{1,-1,1,-1};
端口13:FD-OCC序列{1,1,-1,-1}+TD-OCC序列{1,-1,1,-1};
端口14:FD-OCC序列{1,-1,-1,1}+TD-OCC序列{1,-1,1,-1};
端口15:FD-OCC序列{1,-1,1,-1}+TD-OCC序列{1,-1,1,-1};
端口16~31共享相同的时频资源,频域上占用一个PRB内的RE#4,5,6和7,时域上占用4个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为4的TD-OCC序列实现不同的DMRS正交端口。
端口16:FD-OCC序列{1,1,1,1}+TD-OCC序列{1,1,1,1};
端口17:FD-OCC序列{1,1,-1,-1}+TD-OCC序列{1,1,1,1};
端口18:FD-OCC序列{1,-1,-1,1}+TD-OCC序列{1,1,1,1};
端口19:FD-OCC序列{1,-1,1,-1}+TD-OCC序列{1,1,1,1};
端口20:FD-OCC序列{1,1,1,1}+TD-OCC序列{1,1,-1,-1};
端口21:FD-OCC序列{1,1,-1,-1}+TD-OCC序列{1,1,-1,-1};
端口22:FD-OCC序列{1,-1,-1,1}+TD-OCC序列{1,1,-1,-1};
端口23:FD-OCC序列{1,-1,1,-1}+TD-OCC序列{1,1,-1,-1};
端口24:FD-OCC序列{1,1,1,1}+TD-OCC序列{1,-1,-1,1};
端口25:FD-OCC序列{1,1,-1,-1}+TD-OCC序列{1,-1,-1,1};
端口26:FD-OCC序列{1,-1,-1,1}+TD-OCC序列{1,-1,-1,1};
端口27:FD-OCC序列{1,-1,1,-1}+TD-OCC序列{1,-1,-1,1};
端口28:FD-OCC序列{1,1,1,1}+TD-OCC序列{1,-1,1,-1};
端口29:FD-OCC序列{1,1,-1,-1}+TD-OCC序列{1,-1,1,-1};
端口30:FD-OCC序列{1,-1,-1,1}+TD-OCC序列{1,-1,1,-1};
端口31:FD-OCC序列{1,-1,1,-1}+TD-OCC序列{1,-1,1,-1};
端口32~47共享相同的时频资源,频域上占用一个PRB内的RE#8,9,10和11,时域上占用4个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为4的TD-OCC序列实现不同的DMRS正交端口。
端口32:FD-OCC序列{1,1,1,1}+TD-OCC序列{1,1,1,1};
端口33:FD-OCC序列{1,1,-1,-1}+TD-OCC序列{1,1,1,1};
端口34:FD-OCC序列{1,-1,-1,1}+TD-OCC序列{1,1,1,1};
端口35:FD-OCC序列{1,-1,1,-1}+TD-OCC序列{1,1,1,1};
端口36:FD-OCC序列{1,1,1,1}+TD-OCC序列{1,1,-1,-1};
端口37:FD-OCC序列{1,1,-1,-1}+TD-OCC序列{1,1,-1,-1};
端口38:FD-OCC序列{1,-1,-1,1}+TD-OCC序列{1,1,-1,-1};
端口39:FD-OCC序列{1,-1,1,-1}+TD-OCC序列{1,1,-1,-1};
端口40:FD-OCC序列{1,1,1,1}+TD-OCC序列{1,-1,-1,1};
端口41:FD-OCC序列{1,1,-1,-1}+TD-OCC序列{1,-1,-1,1};
端口42:FD-OCC序列{1,-1,-1,1}+TD-OCC序列{1,-1,-1,1};
端口43:FD-OCC序列{1,-1,1,-1}+TD-OCC序列{1,-1,-1,1};
端口44:FD-OCC序列{1,1,1,1}+TD-OCC序列{1,-1,1,-1};
端口45:FD-OCC序列{1,1,-1,-1}+TD-OCC序列{1,-1,1,-1};
端口46:FD-OCC序列{1,-1,-1,1}+TD-OCC序列{1,-1,1,-1};
端口47:FD-OCC序列{1,-1,1,-1}+TD-OCC序列{1,-1,1,-1}。
实施例三:
可以继续参见图4,本申请实施例最大可支持DFT-s-OFDM波形下的DMRS正交端口个数P是24。在时域上占用2个OFDM符号,频域上FDM因子为3,ZC序列的码域循环移位(cyclic shift,CS)个数为4,TD-OCC序列长度为2。
本申请实施例的优点在于在频域间隔为3个RE进行复用因子为3的频分复用(Frequency Division Multiplexing,FDM),基于ZC序列的4种码域CS(例如:CS值0,3,6,9)来支持4个正交DMRS端口,由于ZC序列在同步情况下具有理想的周期自相关性能,因此能够保证信道估计的精度性能。如果采用FD-OCC,则存在FD-OCC的频域间隔为3个RE的4个RE上的频域信道响应可能发生变化,从而降低了信道估计的精度性能。因此,本申请实施例能够提供更高的信道估计精度性能。
如图4所示,端口0~7,8~15和16~23分别共享相同的时频资源,端口0~7,8~15和端口16~23之间采用频分复用方式实现不同的DMRS正交端口。CS表示针对ZC序列的码域CS。
端口0~7共享相同的时频资源,频域上占用一个PRB内的RE#0,3,6和9,时域上占用2个OFDM符号,进一步通过个数为4的ZC序列的CS值和序列长度为2的TD-OCC序列实现不同的DMRS正交端口。
端口0:ZC序列的CS值0+TD-OCC序列{1,1};
端口1:ZC序列的CS值3+TD-OCC序列{1,1};
端口2:ZC序列的CS值6+TD-OCC序列{1,1};
端口3:ZC序列的CS值9+TD-OCC序列{1,1};
端口4:ZC序列的CS值0+TD-OCC序列{1,-1};
端口5:ZC序列的CS值3+TD-OCC序列{1,-1};
端口6:ZC序列的CS值6+TD-OCC序列{1,-1};
端口7:ZC序列的CS值9+TD-OCC序列{1,-1};
端口8~15共享相同的时频资源,频域上占用一个PRB内的RE#1,4,7和10,时域上占用2个OFDM符号,进一步通过个数为4的ZC序列的CS值和序列长度为2的TD-OCC序列实现不同的DMRS正交端口。
端口8:ZC序列的CS值0+TD-OCC序列{1,1};
端口9:ZC序列的CS值3+TD-OCC序列{1,1};
端口10:ZC序列的CS值6+TD-OCC序列{1,1};
端口11:ZC序列的CS值9+TD-OCC序列{1,1};
端口12:ZC序列的CS值0+TD-OCC序列{1,-1};
端口13:ZC序列的CS值3+TD-OCC序列{1,-1};
端口14:ZC序列的CS值6+TD-OCC序列{1,-1};
端口15:ZC序列的CS值9+TD-OCC序列{1,-1};
端口16~23共享相同的时频资源,频域上占用一个PRB内的RE#2,5,8和11,时域上占用2个OFDM符号,进一步通过个数为4的ZC序列的CS值和序列长度为2的TD-OCC序列实现不同的DMRS正交端口。
端口16:ZC序列的CS值0+TD-OCC序列{1,1};
端口17:ZC序列的CS值3+TD-OCC序列{1,1};
端口18:ZC序列的CS值6+TD-OCC序列{1,1};
端口19:ZC序列的CS值9+TD-OCC序列{1,1};
端口20:ZC序列的CS值0+TD-OCC序列{1,-1};
端口21:ZC序列的CS值3+TD-OCC序列{1,-1};
端口22:ZC序列的CS值6+TD-OCC序列{1,-1};
端口23:ZC序列的CS值9+TD-OCC序列{1,-1}。
实施例四:
如图6所示,本申请实施例最大可支持DFT-s-OFDM波形下的DMRS正交端口个数P是48。在时域上占用4个OFDM符号,频域上FDM因子为3,ZC序列的码域CS个数为4,TD-OCC序列长度为4。
本申请实施例的优点同实施例三,差异在于通过增加了TD-OCC序列长度,以增加时域OFDM信号开销为代价来支持更大的DMRS正交端口个数。
如图6所示,端口0~15、端口16~31和端口32~47分别共享相同的时频资源,端口0~15、端口16~31和端口32~47之间采用频分复用方式实现不同的DMRS正交端口。CS表示针对ZC序列的码域循环移位。
端口0~15共享相同的时频资源,频域上占用一个PRB内的RE#0,3,6和9,时域上占用4个OFDM符号,进一步通过个数为4的ZC序列的CS值和序列长度为4的TD-OCC序列实现不同的DMRS正交端口。
端口0:ZC序列的CS值0+TD-OCC序列{1,1,1,1};
端口1:ZC序列的CS值3+TD-OCC序列{1,1,1,1};
端口2:ZC序列的CS值6+TD-OCC序列{1,1,1,1};
端口3:ZC序列的CS值9+TD-OCC序列{1,1,1,1};
端口4:ZC序列的CS值0+TD-OCC序列{1,1,-1,-1};
端口5:ZC序列的CS值3+TD-OCC序列{1,1,-1,-1};
端口6:ZC序列的CS值6+TD-OCC序列{1,1,-1,-1};
端口7:ZC序列的CS值9+TD-OCC序列{1,1,-1,-1};
端口8:ZC序列的CS值0+TD-OCC序列{1,-1,-1,1};
端口9:ZC序列的CS值3+TD-OCC序列{1,-1,-1,1};
端口10:ZC序列的CS值6+TD-OCC序列{1,-1,-1,1};
端口11:ZC序列的CS值9+TD-OCC序列{1,-1,-1,1};
端口12:ZC序列的CS值0+TD-OCC序列{1,-1,1,-1};
端口13:ZC序列的CS值3+TD-OCC序列{1,-1,1,-1};
端口14:ZC序列的CS值6+TD-OCC序列{1,-1,1,-1};
端口15:ZC序列的CS值9+TD-OCC序列{1,-1,1,-1};
端口16~31共享相同的时频资源,频域上占用一个PRB内的RE#1,4,7和10,时域上占用4个OFDM符号,进一步通过个数为4的ZC序列的CS值和序列长度为4的TD-OCC序列实现不同的DMRS正交端口。
端口16:ZC序列的CS值0+TD-OCC序列{1,1,1,1};
端口17:ZC序列的CS值3+TD-OCC序列{1,1,1,1};
端口18:ZC序列的CS值6+TD-OCC序列{1,1,1,1};
端口19:ZC序列的CS值9+TD-OCC序列{1,1,1,1};
端口20:ZC序列的CS值0+TD-OCC序列{1,1,-1,-1};
端口21:ZC序列的CS值3+TD-OCC序列{1,1,-1,-1};
端口22:ZC序列的CS值6+TD-OCC序列{1,1,-1,-1};
端口23:ZC序列的CS值9+TD-OCC序列{1,1,-1,-1};
端口24:ZC序列的CS值0+TD-OCC序列{1,-1,-1,1};
端口25:ZC序列的CS值3+TD-OCC序列{1,-1,-1,1};
端口26:ZC序列的CS值6+TD-OCC序列{1,-1,-1,1};
端口27:ZC序列的CS值9+TD-OCC序列{1,-1,-1,1};
端口28:ZC序列的CS值0+TD-OCC序列{1,-1,1,-1};
端口29:ZC序列的CS值3+TD-OCC序列{1,-1,1,-1};
端口30:ZC序列的CS值6+TD-OCC序列{1,-1,1,-1};
端口31:ZC序列的CS值9+TD-OCC序列{1,-1,1,-1};
端口32~47共享相同的时频资源,频域上占用一个PRB内的RE#2,5,8和11,时域上占用4个OFDM符号,进一步通过个数为4的ZC序列的CS值和序列长度为4的TD-OCC序列实现不同的DMRS正交端口。
端口32:ZC序列的CS值0+TD-OCC序列{1,1,1,1};
端口33:ZC序列的CS值3+TD-OCC序列{1,1,1,1};
端口34:ZC序列的CS值6+TD-OCC序列{1,1,1,1};
端口35:ZC序列的CS值9+TD-OCC序列{1,1,1,1};
端口36:ZC序列的CS值0+TD-OCC序列{1,1,-1,-1};
端口37:ZC序列的CS值3+TD-OCC序列{1,1,-1,-1};
端口38:ZC序列的CS值6+TD-OCC序列{1,1,-1,-1};
端口39:ZC序列的CS值9+TD-OCC序列{1,1,-1,-1};
端口40:ZC序列的CS值0+TD-OCC序列{1,-1,-1,1};
端口41:ZC序列的CS值3+TD-OCC序列{1,-1,-1,1};
端口42:ZC序列的CS值6+TD-OCC序列{1,-1,-1,1};
端口43:ZC序列的CS值9+TD-OCC序列{1,-1,-1,1};
端口44:ZC序列的CS值0+TD-OCC序列{1,-1,1,-1};
端口45:ZC序列的CS值3+TD-OCC序列{1,-1,1,-1};
端口46:ZC序列的CS值6+TD-OCC序列{1,-1,1,-1};
端口47:ZC序列的CS值9+TD-OCC序列{1,-1,1,-1}。
与上述方法相对应地,如图7所示,本申请实施例提供的一种数据传输装置包括:
第一单元11,用以确定上行数据信道的解调参考信号DMRS正交端口图样,其中,DMRS正交端口的个数大于12。
第二单元12,用以采用DMRS正交端口图样进行数据传输。
可选地,DMRS正交端口图样中,基于给定的频分复用因子在正交的频域位置上实现不同的DMRS正交端口。
可选地,针对循环前缀正交频分复用CP-OFDM波形,进一步还通过正交的频域正交叠加码FD-OCC序列实现不同的DMRS正交端口。
可选地,针对离散傅里叶变换扩展正交频分复用DFT-s-OFDM波形,进一步还通过ZC序列的循环移位实现不同的DMRS正交端口。
可选地,进一步还通过正交的TD-OCC序列实现不同的DMRS正交端口。
需要说明的是,本申请实施例中对单元的划分是示意性的,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式。另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物 理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
其中,集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)或处理器(processor)执行本申请各个实施例中方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
如图8所示,本申请实施例提供的另一种数据传输装置包括:
存储器520,用于存储程序指令;
处理器500,用于调用存储器中存储的程序指令,按照获得的程序执行:
确定上行数据信道的解调参考信号DMRS正交端口图样,其中,DMRS正交端口的个数大于12;
采用DMRS正交端口图样进行数据传输。
可选地,可以通过收发机510进行数据传输。
可选地,DMRS正交端口图样中,基于给定的频分复用因子在正交的频域位置上实现不同的DMRS正交端口。
可选地,针对循环前缀正交频分复用CP-OFDM波形,进一步还通过正交的频域正交叠加码FD-OCC序列实现不同的DMRS正交端口。
可选地,针对离散傅里叶变换扩展正交频分复用DFT-s-OFDM波形,进一步还通过ZC序列的循环移位实现不同的DMRS正交端口。
可选地,进一步还通过正交的TD-OCC序列实现不同的DMRS正交端口。
可选地,针对循环前缀正交频分复用CP-OFDM波形,DMRS正交端口图样中,DMRS正交端口的个数为P,DMRS正交端口在时域上占用M个 OFDM符号,频域上频分复用FDM因子为N,FD-OCC序列长度为T,TD-OCC序列长度为S,并且满足P=N*T*S,其中,P为大于12的整数值,N、T和S是大于等于1的整数值。
可选地,针对循环前缀正交频分复用CP-OFDM波形,DMRS正交端口图样中,DMRS正交端口的个数为24,DMRS正交端口在时域上占用2个OFDM符号,频域上频分复用FDM因子为3,FD-OCC序列长度为4,TD-OCC序列长度为2。
可选地,24个DMRS正交端口中,端口0~7、端口8~15和端口16~23分别共享相同的时频资源,端口0~7、端口8~15和端口16~23之间采用频分复用FDM方式实现不同的DMRS正交端口;其中,
端口0~7共享相同的时频资源,频域上占用一个物理资源块PRB内的资源单元RE#0,1,2和3,时域上占用2个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为2的TD-OCC序列实现不同的DMRS正交端口;
端口8~15共享相同的时频资源,频域上占用一个PRB内的RE#4,5,6和7,时域上占用2个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为2的TD-OCC序列实现不同的DMRS正交端口;
端口16~23共享相同的时频资源,频域上占用一个PRB内的RE#8,9,10和11,时域上占用2个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为2的TD-OCC序列实现不同的DMRS正交端口。
可选地,针对循环前缀正交频分复用CP-OFDM波形,DMRS正交端口图样中,DMRS正交端口的个数为48,DMRS正交端口在时域上占用4个OFDM符号,频域上FDM因子为3,FD-OCC序列长度为4,TD-OCC序列长度为4。
可选地,48个DMRS正交端口中,端口0~15、端口16~31和端口32~47分别共享相同的时频资源,端口0~15、端口16~31和端口32~47之间采用频分复用方式实现不同的DMRS正交端口;其中,
端口0~15共享相同的时频资源,频域上占用一个物理资源块PRB内的资源单元RE#0,1,2和3,时域上占用4个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为4的TD-OCC序列实现不同的DMRS正交端口;
端口16~31共享相同的时频资源,频域上占用一个PRB内的RE#4,5,6和7,时域上占用4个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为4的TD-OCC序列实现不同的DMRS正交端口;
端口32~47共享相同的时频资源,频域上占用一个PRB内的RE#8,9,10和11,时域上占用4个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为4的TD-OCC序列实现不同的DMRS正交端口。
可选地,针对离散傅里叶变换扩展正交频分复用DFT-s-OFDM波形,DMRS正交端口图样中,DMRS正交端口的个数为P,DMRS正交端口在时域上占用M个OFDM符号,频域上频分复用FDM因子为N,ZC序列的码域循环移位CS个数为R,TD-OCC序列长度为S,并且满足P=N*R*S,其中,P为大于12的整数值,N、R和S是大于等于1的整数值。
可选地,针对离散傅里叶变换扩展正交频分复用DFT-s-OFDM波形,DMRS正交端口图样中,DMRS正交端口的个数为24,DMRS正交端口在时域上占用2个OFDM符号,频域上FDM因子为3,ZC序列的码域循环移位CS个数为4,TD-OCC序列长度为2。
可选地,24个DMRS正交端口中,端口0~7,8~15和16~23分别共享相同的时频资源,端口0~7,8~15和端口16~23之间采用频分复用方式实现不同的DMRS正交端口;其中,
端口0~7共享相同的时频资源,频域上占用一个物理资源块PRB内的资源单元RE#0,3,6和9,时域上占用2个OFDM符号,进一步通过个数为4的ZC序列的CS值和序列长度为2的TD-OCC序列实现不同的DMRS正交端口;
端口8~15共享相同的时频资源,频域上占用一个PRB内的RE#1,4,7和10,时域上占用2个OFDM符号,进一步通过个数为4的ZC序列的CS值和 序列长度为2的TD-OCC序列实现不同的DMRS正交端口;
端口16~23共享相同的时频资源,频域上占用一个PRB内的RE#2,5,8和11,时域上占用2个OFDM符号,进一步通过个数为4的ZC序列的CS值和序列长度为2的TD-OCC序列实现不同的DMRS正交端口。
可选地,针对离散傅里叶变换扩展正交频分复用DFT-s-OFDM波形,DMRS正交端口图样中,DMRS正交端口的个数为48,DMRS正交端口在时域上占用4个OFDM符号,频域上FDM因子为3,ZC序列的码域循环移位CS个数为4,TD-OCC序列长度为4。
可选地,48个DMRS正交端口中,端口0~15、端口16~31和端口32~47分别共享相同的时频资源,端口0~15、端口16~31和端口32~47之间采用频分复用方式实现不同的DMRS正交端口;其中,
端口0~15共享相同的时频资源,频域上占用一个物理资源块PRB内的资源单元RE#0,3,6和9,时域上占用4个OFDM符号,进一步通过个数为4的ZC序列的CS值和序列长度为4的TD-OCC序列实现不同的DMRS正交端口;
端口16~31共享相同的时频资源,频域上占用一个PRB内的RE#1,4,7和10,时域上占用4个OFDM符号,进一步通过个数为4的ZC序列的CS值和长度为4的TD-OCC序列实现不同的DMRS正交端口;
端口32~47共享相同的时频资源,频域上占用一个PRB内的RE#2,5,8和11,时域上占用4个OFDM符号,进一步通过个数为4的ZC序列的CS值和长度为4的TD-OCC序列实现不同的DMRS正交端口。
可选地,收发机510,用于在处理器500的控制下接收和发送数据。
其中,在图8中,总线架构可以包括任意数量的互联的总线和桥,具体由处理器500代表的一个或多个处理器和存储器520代表的存储器的各种电路链接在一起。总线架构还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。总线接口提供接口。收发机510可以是多个元件, 即包括发送机和收发机,提供用于在传输介质上与各种其他装置通信的单元。处理器500负责管理总线架构和通常的处理,存储器520可以存储处理器500在执行操作时所使用的数据。
处理器500可以是中央处埋器(CPU)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现场可编程门阵列(Field-Programmable Gate Array,FPGA)或复杂可编程逻辑器件(Complex Programmable Logic Device,CPLD)。
本申请实施例提供的数据传输装置,可以是用户终端,也可以是网络侧设备,例如基站等。当作为用户终端时,还可以有用户接口等相关器件,针对不同的用户设备,用户接口可以是能够外接内接需要设备的接口,连接的设备包括但不限于小键盘、显示器、扬声器、麦克风、操纵杆等。另外还可以有其他器件,在次不再赘述。
本申请实施例还提供了一种计算设备,该计算设备具体可以为桌面计算机、便携式计算机、智能手机、平板电脑、个人数字助理(Personal Digital Assistant,PDA)等。该计算设备可以包括中央处理器(Center Processing Unit,CPU)、存储器、输入/输出设备等,输入设备可以包括键盘、鼠标、触摸屏等,输出设备可以包括显示设备,如液晶显示器(Liquid Crystal Display,LCD)、阴极射线管(Cathode Ray Tube,CRT)等。
存储器可以包括只读存储器(ROM)和随机存取存储器(RAM),并向处理器提供存储器中存储的程序指令和数据。在本申请实施例中,存储器可以用于存储本申请实施例提供的任一方法的程序。
处理器通过调用存储器存储的程序指令,处理器用于按照获得的程序指令执行本申请实施例提供的任一方法。
本申请实施例提供了一种计算机存储介质,用于储存为上述本申请实施例提供的装置所用的计算机程序指令,其包含用于执行上述本申请实施例提供的任一方法的程序。
计算机存储介质可以是计算机能够存取的任何可用介质或数据存储设备,包括但不限于磁性存储器(例如软盘、硬盘、磁带、磁光盘(MO)等)、光 学存储器(例如CD、DVD、BD、HVD等)、以及半导体存储器(例如ROM、EPROM、EEPROM、非易失性存储器(NAND FLASH)、固态硬盘(SSD))等。
本申请实施例提供的方法可以应用于终端设备,也可以应用于网络设备。
其中,终端设备也可称之为用户设备(User Equipment,简称为“UE”)、移动台(Mobile Station,简称为“MS”)、移动终端(Mobile Terminal)等,可选的,该终端可以具备经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信的能力,例如,终端可以是移动电话(或称为“蜂窝”电话)、或具有移动性质的计算机等,例如,终端还可以是便携式、袖珍式、手持式、计算机内置的或者车载的移动装置。
网络设备可以为基站(例如,接入点),指接入网中在空中接口上通过一个或多个扇区与无线终端通信的设备。基站可用于将收到的空中帧与IP分组进行相互转换,作为无线终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括网际协议(IP)网络。基站还可协调对空中接口的属性管理。例如,基站可以是GSM或CDMA中的基站(BTS,Base Transceiver Station),也可以是WCDMA中的基站(NodeB),还可以是LTE中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以是5G系统中的gNB等。本申请实施例中不做限定。
上述方法处理流程可以用软件程序实现,该软件程序可以存储在存储介质中,当存储的软件程序被调用时,执行上述方法步骤。
综上所述,本申请实施例解决了上行数据信道的解调参考信号(DeModulation Reference Signal,DMRS)正交端口个数为24和48时的DMRS正交端口图样设计方法,从而更好地支持上行免调度场景下的非正交多址传输。本申请实施例能够有效地满足NOMA上行免调度场景下的UE激活检测、信道估计和数据信道检测性能,从而更好地支持上行免调度场景下的非正交多址传输。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或 计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储介质(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (32)

  1. 一种数据传输方法,所述方法包括:
    确定上行数据信道的解调参考信号DMRS正交端口图样,其中,所述DMRS正交端口的个数大于12;
    采用所述DMRS正交端口图样进行数据传输。
  2. 根据权利要求1所述的方法,所述DMRS正交端口图样中,基于给定的频分复用因子在正交的频域位置上实现不同的DMRS正交端口。
  3. 根据权利要求2所述的方法,针对循环前缀正交频分复用CP-OFDM波形,进一步还通过正交的频域正交叠加码FD-OCC序列实现不同的DMRS正交端口。
  4. 根据权利要求2所述的方法,针对离散傅里叶变换扩展正交频分复用DFT-s-OFDM波形,进一步还通过ZC序列的循环移位实现不同的DMRS正交端口。
  5. 根据权利要求3或4所述的方法,进一步还通过正交的TD-OCC序列实现不同的DMRS正交端口。
  6. 根据权利要求5所述的方法,针对循环前缀正交频分复用CP-OFDM波形,所述DMRS正交端口图样中,DMRS正交端口的个数为P,频域上频分复用FDM因子为N,FD-OCC序列长度为T,TD-OCC序列长度为S,并且满足P=N*T*S,其中,P为大于12的整数值,N、T和S是大于等于1的整数值。
  7. 根据权利要求6所述的方法,针对循环前缀正交频分复用CP-OFDM波形,所述DMRS正交端口图样中,DMRS正交端口的个数P为24,频域上频分复用FDM因子N为3,FD-OCC序列长度T为4,TD-OCC序列长度S为2。
  8. 根据权利要求7所述的方法,24个DMRS正交端口中,端口0~7、端口8~15和端口16~23分别共享相同的时频资源,端口0~7、端口8~15和端 口16~23之间采用频分复用FDM方式实现不同的DMRS正交端口;其中,
    端口0~7共享相同的时频资源,频域上占用一个物理资源块PRB内的资源单元RE#0,1,2和3,时域上占用2个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为2的TD-OCC序列实现不同的DMRS正交端口;
    端口8~15共享相同的时频资源,频域上占用一个PRB内的RE#4,5,6和7,时域上占用2个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为2的TD-OCC序列实现不同的DMRS正交端口;
    端口16~23共享相同的时频资源,频域上占用一个PRB内的RE#8,9,10和11,时域上占用2个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为2的TD-OCC序列实现不同的DMRS正交端口。
  9. 根据权利要求6所述的方法,针对循环前缀正交频分复用CP-OFDM波形,所述DMRS正交端口图样中,DMRS正交端口的个数P为48,频域上FDM因子N为3,FD-OCC序列长度T为4,TD-OCC序列长度S为4。
  10. 根据权利要求9所述的方法,48个DMRS正交端口中,端口0~15、端口16~31和端口32~47分别共享相同的时频资源,端口0~15、端口16~31和端口32~47之间采用频分复用方式实现不同的DMRS正交端口;其中,
    端口0~15共享相同的时频资源,频域上占用一个物理资源块PRB内的资源单元RE#0,1,2和3,时域上占用4个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为4的TD-OCC序列实现不同的DMRS正交端口;
    端口16~31共享相同的时频资源,频域上占用一个PRB内的RE#4,5,6和7,时域上占用4个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为4的TD-OCC序列实现不同的DMRS正交端口;
    端口32~47共享相同的时频资源,频域上占用一个PRB内的RE#8,9,10和11,时域上占用4个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为4的TD-OCC序列实现不同的DMRS正交端口。
  11. 根据权利要求5所述的方法,针对离散傅里叶变换扩展正交频分复用DFT-s-OFDM波形,所述DMRS正交端口图样中,DMRS正交端口的个数为P,频域上频分复用FDM因子为N,ZC序列的码域循环移位CS个数为R,TD-OCC序列长度为S,并且满足P=N*R*S,其中,P为大于12的整数值,N、R和S是大于等于1的整数值。
  12. 根据权利要求11所述的方法,针对离散傅里叶变换扩展正交频分复用DFT-s-OFDM波形,所述DMRS正交端口图样中,DMRS正交端口的个数P为24,频域上FDM因子N为3,ZC序列的码域循环移位CS个数R为4,TD-OCC序列长度S为2。
  13. 根据权利要求12所述的方法,24个DMRS正交端口中,端口0~7,8~15和16~23分别共享相同的时频资源,端口0~7,8~15和端口16~23之间采用频分复用方式实现不同的DMRS正交端口;其中,
    端口0~7共享相同的时频资源,频域上占用一个物理资源块PRB内的资源单元RE#0,3,6和9,时域上占用2个OFDM符号,进一步通过个数为4的ZC序列的CS值和序列长度为2的TD-OCC序列实现不同的DMRS正交端口;
    端口8~15共享相同的时频资源,频域上占用一个PRB内的RE#1,4,7和10,时域上占用2个OFDM符号,进一步通过个数为4的ZC序列的CS值和序列长度为2的TD-OCC序列实现不同的DMRS正交端口;
    端口16~23共享相同的时频资源,频域上占用一个PRB内的RE#2,5,8和11,时域上占用2个OFDM符号,进一步通过个数为4的ZC序列的CS值和序列长度为2的TD-OCC序列实现不同的DMRS正交端口。
  14. 根据权利要求11所述的方法,针对离散傅里叶变换扩展正交频分复用DFT-s-OFDM波形,所述DMRS正交端口图样中,DMRS正交端口的个数P为48,频域上FDM因子N为3,ZC序列的码域循环移位CS个数R为4,TD-OCC序列长度S为4。
  15. 根据权利要求14所述的方法,48个DMRS正交端口中,端口0~15、端口16~31和端口32~47分别共享相同的时频资源,端口0~15、端口16~31 和端口32~47之间采用频分复用方式实现不同的DMRS正交端口;其中,
    端口0~15共享相同的时频资源,频域上占用一个物理资源块PRB内的资源单元RE#0,3,6和9,时域上占用4个OFDM符号,进一步通过个数为4的ZC序列的CS值和序列长度为4的TD-OCC序列实现不同的DMRS正交端口;
    端口16~31共享相同的时频资源,频域上占用一个PRB内的RE#1,4,7和10,时域上占用4个OFDM符号,进一步通过个数为4的ZC序列的CS值和长度为4的TD-OCC序列实现不同的DMRS正交端口;
    端口32~47共享相同的时频资源,频域上占用一个PRB内的RE#2,5,8和11,时域上占用4个OFDM符号,进一步通过个数为4的ZC序列的CS值和长度为4的TD-OCC序列实现不同的DMRS正交端口。
  16. 一种数据传输装置,包括:
    存储器,用于存储程序指令;
    处理器,用于调用所述存储器中存储的程序指令,按照获得的程序执行:
    确定上行数据信道的解调参考信号DMRS正交端口图样,其中,所述DMRS正交端口的个数大于12;
    采用所述DMRS正交端口图样进行数据传输。
  17. 根据权利要求16所述的装置,所述DMRS正交端口图样中,基于给定的频分复用因子在正交的频域位置上实现不同的DMRS正交端口。
  18. 根据权利要求17所述的装置,针对循环前缀正交频分复用CP-OFDM波形,进一步还通过正交的频域正交叠加码FD-OCC序列实现不同的DMRS正交端口。
  19. 根据权利要求17所述的装置,针对离散傅里叶变换扩展正交频分复用DFT-s-OFDM波形,进一步还通过ZC序列的循环移位实现不同的DMRS正交端口。
  20. 根据权利要求18或19所述的装置,进一步还通过正交的TD-OCC序列实现不同的DMRS正交端口。
  21. 根据权利要求20所述的装置,针对循环前缀正交频分复用CP-OFDM波形,所述DMRS正交端口图样中,DMRS正交端口的个数为P,频域上频分复用FDM因子为N,FD-OCC序列长度为T,TD-OCC序列长度为S,并且满足P=N*T*S,其中,P为大于12的整数值,N、T和S是大于等于1的整数值。
  22. 根据权利要求21所述的装置,针对循环前缀正交频分复用CP-OFDM波形,所述DMRS正交端口图样中,DMRS正交端口的个数为24,频域上频分复用FDM因子为3,FD-OCC序列长度为4,TD-OCC序列长度为2。
  23. 根据权利要求22所述的装置,24个DMRS正交端口中,端口0~7、端口8~15和端口16~23分别共享相同的时频资源,端口0~7、端口8~15和端口16~23之间采用频分复用FDM方式实现不同的DMRS正交端口;其中,
    端口0~7共享相同的时频资源,频域上占用一个物理资源块PRB内的资源单元RE#0,1,2和3,时域上占用2个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为2的TD-OCC序列实现不同的DMRS正交端口;
    端口8~15共享相同的时频资源,频域上占用一个PRB内的RE#4,5,6,和7,时域上占用2个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为2的TD-OCC序列实现不同的DMRS正交端口;
    端口16~23共享相同的时频资源,频域上占用一个PRB内的RE#8,9,10,和11,时域上占用2个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为2的TD-OCC序列实现不同的DMRS正交端口。
  24. 根据权利要求21所述的装置,针对循环前缀正交频分复用CP-OFDM波形,所述DMRS正交端口图样中,DMRS正交端口的个数为48,频域上FDM因子为3,FD-OCC序列长度为4,TD-OCC序列长度为4。
  25. 根据权利要求24所述的装置,48个DMRS正交端口中,端口0~15、端口16~31和端口32~47分别共享相同的时频资源,端口0~15、端口16~31和端口32~47之间采用频分复用方式实现不同的DMRS正交端口;其中,
    端口0~15共享相同的时频资源,频域上占用一个物理资源块PRB内的资源单元RE#0,1,2和3,时域上占用4个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为4的TD-OCC序列实现不同的DMRS正交端口;
    端口16~31共享相同的时频资源,频域上占用一个PRB内的RE#4,5,6和7,时域上占用4个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为4的TD-OCC序列实现不同的DMRS正交端口;
    端口32~47共享相同的时频资源,频域上占用一个PRB内的RE#8,9,10和11,时域上占用4个OFDM符号,进一步通过序列长度为4的FD-OCC序列和序列长度为4的TD-OCC序列实现不同的DMRS正交端口。
  26. 根据权利要求20所述的装置,针对离散傅里叶变换扩展正交频分复用DFT-s-OFDM波形,所述DMRS正交端口图样中,DMRS正交端口的个数为P,频域上频分复用FDM因子为N,ZC序列的码域循环移位CS个数为R,TD-OCC序列长度为S,并且满足P=N*R*S,其中,P为大于12的整数值,N、R和S是大于等于1的整数值。
  27. 根据权利要求26所述的装置,针对离散傅里叶变换扩展正交频分复用DFT-s-OFDM波形,所述DMRS正交端口图样中,DMRS正交端口的个数为24,频域上FDM因子为3,ZC序列的码域循环移位CS个数为4,TD-OCC序列长度为2。
  28. 根据权利要求27所述的装置,24个DMRS正交端口中,端口0~7,8~15和16~23分别共享相同的时频资源,端口0~7,8~15和端口16~23之间采用频分复用方式实现不同的DMRS正交端口;其中,
    端口0~7共享相同的时频资源,频域上占用一个物理资源块PRB内的资源单元RE#0,3,6和9,时域上占用2个OFDM符号,进一步通过个数为4的ZC序列的CS值和序列长度为2的TD-OCC序列实现不同的DMRS正交端口;
    端口8~15共享相同的时频资源,频域上占用一个PRB内的RE#1,4,7和10,时域上占用2个OFDM符号,进一步通过个数为4的ZC序列的CS值和 序列长度为2的TD-OCC序列实现不同的DMRS正交端口;
    端口16~23共享相同的时频资源,频域上占用一个PRB内的RE#2,5,8和11,时域上占用2个OFDM符号,进一步通过个数为4的ZC序列的CS值和序列长度为2的TD-OCC序列实现不同的DMRS正交端口。
  29. 根据权利要求26所述的装置,针对离散傅里叶变换扩展正交频分复用DFT-s-OFDM波形,所述DMRS正交端口图样中,DMRS正交端口的个数为48,频域上FDM因子为3,ZC序列的码域循环移位CS个数为4,TD-OCC序列长度为4。
  30. 根据权利要求29所述的装置,48个DMRS正交端口中,端口0~15、端口16~31和端口32~47分别共享相同的时频资源,端口0~15、端口16~31和端口32~47之间采用频分复用方式实现不同的DMRS正交端口;其中,
    端口0~15共享相同的时频资源,频域上占用一个物理资源块PRB内的资源单元RE#0,3,6和9,时域上占用4个OFDM符号,进一步通过个数为4的ZC序列的CS值和序列长度为4的TD-OCC序列实现不同的DMRS正交端口;
    端口16~31共享相同的时频资源,频域上占用一个PRB内的RE#1,4,7和10,时域上占用4个OFDM符号,进一步通过个数为4的ZC序列的CS值和长度为4的TD-OCC序列实现不同的DMRS正交端口;
    端口32~47共享相同的时频资源,频域上占用一个PRB内的RE#2,5,8和11,时域上占用4个OFDM符号,进一步通过个数为4的ZC序列的CS值和长度为4的TD-OCC序列实现不同的DMRS正交端口。
  31. 一种数据传输装置,包括:
    第一单元,用于确定上行数据信道的解调参考信号DMRS正交端口图样,其中,所述DMRS正交端口的个数大于12;
    第二单元,用于采用所述DMRS正交端口图样进行数据传输。
  32. 一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令用于使所述计算机执行权利要求1至15任一项所 述的方法。
PCT/CN2019/106812 2018-12-14 2019-09-19 一种数据传输方法及装置 WO2020119207A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
KR1020217021801A KR20210100178A (ko) 2018-12-14 2019-09-19 데이터 전송 방법 및 장치
US17/311,691 US20230155759A9 (en) 2018-12-14 2019-09-19 Data transmission method and device
EP19895445.5A EP3896884A4 (en) 2018-12-14 2019-09-19 DATA TRANSMISSION METHOD AND DEVICE

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811535526.4 2018-12-14
CN201811535526.4A CN111327409B (zh) 2018-12-14 2018-12-14 一种数据传输方法及装置

Publications (1)

Publication Number Publication Date
WO2020119207A1 true WO2020119207A1 (zh) 2020-06-18

Family

ID=71075617

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/106812 WO2020119207A1 (zh) 2018-12-14 2019-09-19 一种数据传输方法及装置

Country Status (5)

Country Link
US (1) US20230155759A9 (zh)
EP (1) EP3896884A4 (zh)
KR (1) KR20210100178A (zh)
CN (1) CN111327409B (zh)
WO (1) WO2020119207A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020167039A1 (ko) * 2019-02-15 2020-08-20 엘지전자 주식회사 무선 통신 시스템에서 신호를 송수신 하는 방법 및 이를 지원하는 장치
WO2021024329A1 (ja) * 2019-08-02 2021-02-11 株式会社Nttドコモ 端末及び無線通信方法
CN116918288A (zh) * 2022-02-17 2023-10-20 北京小米移动软件有限公司 映射方法、装置、设备及存储介质
CN117882344A (zh) * 2022-08-11 2024-04-12 新华三技术有限公司 一种信号发送、信号接收方法、装置、设备及存储介质
WO2024071775A1 (ko) * 2022-09-29 2024-04-04 엘지전자 주식회사 무선 통신 시스템에서 커버리지를 향상시키기 위한 장치 및 방법
WO2024097996A1 (en) * 2022-11-04 2024-05-10 Apple Inc. Demodulation reference signal configurations

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160970A (zh) * 2015-04-03 2016-11-23 北京信威通信技术股份有限公司 多用户mimo系统中下行解调参考信号的发送方法
WO2018082705A1 (zh) * 2016-11-04 2018-05-11 中兴通讯股份有限公司 控制信道的发送方法和装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102158319B (zh) * 2010-02-12 2015-12-16 中兴通讯股份有限公司 一种基于混合复用解调参考符号的预编码方法及装置
CN102082595B (zh) * 2010-04-30 2013-08-07 电信科学技术研究院 一种配置dmrs的方法、装置及系统
WO2016127309A1 (en) * 2015-02-10 2016-08-18 Qualcomm Incorporated Dmrs enhancement for higher order mu-mimo
WO2017035807A1 (en) * 2015-09-02 2017-03-09 Nec Corporation Methods and apparatuses for transmitting and receiving dmrs
CN108631998B (zh) * 2017-03-24 2020-07-28 华为技术有限公司 一种参考信号映射方法及网络设备、终端设备

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106160970A (zh) * 2015-04-03 2016-11-23 北京信威通信技术股份有限公司 多用户mimo系统中下行解调参考信号的发送方法
WO2018082705A1 (zh) * 2016-11-04 2018-05-11 中兴通讯股份有限公司 控制信道的发送方法和装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTERDIGITAL INC.: "Details of IDMA Transmitter Processing", 3GPP TSG RAN WG1 MEETING #94BIS R1-1811194, 12 October 2018 (2018-10-12), pages 1 - 5, XP051518595, DOI: 20191106101902X *
See also references of EP3896884A4

Also Published As

Publication number Publication date
EP3896884A4 (en) 2022-01-26
CN111327409A (zh) 2020-06-23
CN111327409B (zh) 2021-08-03
US20230155759A9 (en) 2023-05-18
EP3896884A1 (en) 2021-10-20
US20220029762A1 (en) 2022-01-27
KR20210100178A (ko) 2021-08-13

Similar Documents

Publication Publication Date Title
WO2020119207A1 (zh) 一种数据传输方法及装置
WO2021000872A1 (zh) 信号传输方法及装置
JP2021517757A (ja) 物理ダウンリンク制御チャネルのブラインド検出のための方法及び端末機器
TWI687116B (zh) 一種資源配置方法及裝置、電腦存儲介質
JP2020516128A (ja) Dmrs送信方法及び通信デバイス
WO2022151868A1 (zh) 一种dmrs绑定窗口确定方法、装置及存储介质
TWI737843B (zh) 用於傳輸上行訊號的方法和裝置
WO2019137407A1 (zh) 信号检测的方法和装置
WO2020151535A1 (zh) 一种信号传输、检测方法及装置
WO2019015587A1 (zh) 用于传输dmrs的方法和通信设备
WO2021238545A1 (zh) 信息传输方法及装置
WO2022022579A1 (zh) 一种通信方法及装置
CN110769508A (zh) 信号传输方法、装置、终端设备、网络设备及系统
WO2020164639A1 (zh) 一种随机接入方法、设备及系统
AU2015409983A1 (en) Data transmission method and apparatus
WO2019029731A1 (zh) 一种资源配置方法及设备
JP2020507290A (ja) 通信方法及びネットワークデバイス
TW201826747A (zh) 資源映射的方法和通訊設備
WO2020199822A1 (zh) 资源分配方法及装置、存储介质、用户设备
WO2018202103A1 (zh) 一种参考信号图样的传输方法及其装置
WO2019071498A1 (zh) 无线通信方法、网络设备和终端设备
WO2018228181A1 (zh) 一种pbch专属解调参考信号传输方法及装置
WO2020029837A1 (zh) 一种同步广播信息的发送、检测方法及装置
WO2021056227A1 (zh) 用于传输参考信号的方法与装置
WO2021017604A1 (zh) 资源确定方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19895445

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217021801

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019895445

Country of ref document: EP

Effective date: 20210714