WO2019071498A1 - 无线通信方法、网络设备和终端设备 - Google Patents

无线通信方法、网络设备和终端设备 Download PDF

Info

Publication number
WO2019071498A1
WO2019071498A1 PCT/CN2017/105777 CN2017105777W WO2019071498A1 WO 2019071498 A1 WO2019071498 A1 WO 2019071498A1 CN 2017105777 W CN2017105777 W CN 2017105777W WO 2019071498 A1 WO2019071498 A1 WO 2019071498A1
Authority
WO
WIPO (PCT)
Prior art keywords
bandwidth
symbols
frequency domain
domain resource
channel
Prior art date
Application number
PCT/CN2017/105777
Other languages
English (en)
French (fr)
Inventor
张治�
Original Assignee
Oppo广东移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=66100249&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=WO2019071498(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Priority to CN201780092431.7A priority Critical patent/CN110786061A/zh
Priority to KR1020207012952A priority patent/KR102511587B1/ko
Priority to CN202010065825.7A priority patent/CN111277393B/zh
Priority to EP22164171.5A priority patent/EP4040711B1/en
Priority to BR112020007030-0A priority patent/BR112020007030A2/pt
Priority to ES17928710T priority patent/ES2914323T3/es
Priority to CA3078828A priority patent/CA3078828C/en
Priority to FIEP22164171.5T priority patent/FI4040711T3/fi
Priority to EP17928710.7A priority patent/EP3697146B1/en
Priority to PCT/CN2017/105777 priority patent/WO2019071498A1/zh
Priority to LTEPPCT/CN2017/105777T priority patent/LT3697146T/lt
Priority to AU2017435587A priority patent/AU2017435587B2/en
Priority to MX2020003826A priority patent/MX2020003826A/es
Application filed by Oppo广东移动通信有限公司 filed Critical Oppo广东移动通信有限公司
Priority to CN202310939380.4A priority patent/CN116961863A/zh
Priority to SG11202003263RA priority patent/SG11202003263RA/en
Priority to DK17928710.7T priority patent/DK3697146T3/da
Priority to EP23193789.7A priority patent/EP4258747A3/en
Priority to JP2020520267A priority patent/JP7054733B2/ja
Priority to PL17928710T priority patent/PL3697146T3/pl
Priority to RU2020115328A priority patent/RU2742601C1/ru
Priority to KR1020237008943A priority patent/KR20230042398A/ko
Priority to TW107134674A priority patent/TWI762726B/zh
Publication of WO2019071498A1 publication Critical patent/WO2019071498A1/zh
Priority to US16/845,835 priority patent/US10932209B2/en
Priority to US17/153,859 priority patent/US11438851B2/en
Priority to JP2022062153A priority patent/JP7307227B2/ja
Priority to US17/812,313 priority patent/US11902917B2/en
Priority to JP2023106997A priority patent/JP2023123744A/ja
Priority to AU2023278035A priority patent/AU2023278035A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0073Acquisition of primary synchronisation channel, e.g. detection of cell-ID within cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0076Acquisition of secondary synchronisation channel, e.g. detection of cell-ID group
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J11/00Orthogonal multiplex systems, e.g. using WALSH codes
    • H04J11/0069Cell search, i.e. determining cell identity [cell-ID]
    • H04J11/0079Acquisition of downlink reference signals, e.g. detection of cell-ID
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/10Access restriction or access information delivery, e.g. discovery data delivery using broadcasted information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • H04W48/12Access restriction or access information delivery, e.g. discovery data delivery using downlink control channel
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0005Synchronisation arrangements synchronizing of arrival of multiple uplinks
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • H04W56/0015Synchronization between nodes one node acting as a reference for the others

Definitions

  • the present application relates to the field of communications, and more particularly to a wireless communication method, a network device, and a terminal device.
  • the synchronized signals are Primary Synchronization Signal (PSS) and Secondary Synchronization Signal (SSS), and the terminal equipment performs radio resource management (Radio Resource Management).
  • the reference signal measured by the RRM) is a Cell Reference Signal (CRS) or a Channel State Information Reference Signal (CSI-RS).
  • the network device can send multiple Synchronization Signal Blocks (SS blocks) to the terminal device, and the terminal device can search for the SS block within the system bandwidth to obtain the cell identifier (Identifier, ID). And performing time-frequency synchronization, acquiring physical broadcast channel (PBCH) information, and performing RRM measurement based on SSS and PBCH Demodulation Reference Signal (DMRS).
  • SS blocks Synchronization Signal Blocks
  • ID cell identifier
  • ID cell identifier
  • time-frequency synchronization acquiring physical broadcast channel (PBCH) information
  • PBCH physical broadcast channel
  • DMRS Demodulation Reference Signal
  • the embodiment of the present application provides a wireless communication method and device, which can improve communication performance in terms of transmission of an SS Block.
  • a wireless communication method including:
  • the network device on the N first symbols, occupies the first bandwidth, and sends the first channel or signal included in the synchronization signal block to the terminal device, where N is an integer greater than or equal to 1;
  • the network device occupies the second bandwidth on the M second symbols, and occupies the third bandwidth on the S first symbols in the N first symbols, and sends the second channel or signal included in the synchronization signal block to the terminal device.
  • M and S I is an integer greater than or equal to 1.
  • the second channel or the signal may be transmitted on the symbol for transmitting the first channel or the signal, and the bandwidth occupied by the synchronization signal block may be reduced as a whole, thereby reducing the number of initial searches without
  • the transmission resources of the second channel or signal are greatly reduced, thereby reducing or avoiding the influence of the bandwidth of the synchronization signal block on the second channel or signal transmission performance, thereby improving communication performance.
  • the first channel or signal comprises a primary synchronization signal PSS and/or a secondary synchronization signal SSS.
  • the first channel or the signal includes the PSS and the SSS, and the first symbols occupied by the PSS and the SSS are different.
  • the second channel or the signal includes a physical broadcast channel PBCH.
  • the sum of the bandwidths of the first bandwidth and the third bandwidth is equal to or smaller than the second bandwidth.
  • the frequency domain resource location occupied by the first bandwidth and the frequency domain resource location occupied by the third bandwidth are respectively A subset of the frequency domain resource locations occupied by the bandwidth.
  • a center frequency point of the first bandwidth is equal to a center frequency point of the second bandwidth.
  • the frequency domain resource location of the third bandwidth is located on both sides of the frequency domain resource location of the first bandwidth.
  • the frequency domain resource location of the first bandwidth is located in a low frequency range of the second bandwidth
  • the frequency domain resource location of the third bandwidth is located in the high frequency range of the second bandwidth.
  • the frequency domain resource location of the first bandwidth is located in a high frequency range of the second bandwidth
  • the frequency domain resource location of the third bandwidth is located in the low frequency range of the second bandwidth.
  • the first bandwidth, the second bandwidth, and/or the third bandwidth are respectively equal to an integer number of physical resources.
  • the second bandwidth is less than the bandwidth occupied by the 24 PRBs.
  • the second bandwidth is equal to the bandwidth occupied by the 18 PRBs.
  • the first bandwidth is equal to the bandwidth occupied by the 12 PRBs.
  • S is equal to N.
  • N is equal to 2
  • M is equal to 2
  • the N first symbols and the M second symbols are sequentially sorted in order in the time domain: a first symbol, a second symbol, a first symbol, and a second symbol.
  • the network device occupies the second bandwidth on the M second symbols, and the N first symbols
  • the second channel or the signal included in the synchronization signal block is sent to the terminal device by using the third bandwidth, and includes:
  • the network device starts from the first symbol of the N first symbols and the M second symbols according to the time domain of the first frequency domain, and follows the N first symbols and the M second symbols in the time domain.
  • the second channel or the signal is mapped to the low frequency domain resource and the high frequency domain resource, wherein the bandwidth mapped on the first symbol is the third bandwidth, and the bandwidth mapped on the second symbol is the second bandwidth.
  • the network device sends the mapped second channel or signal to the terminal device.
  • a wireless communication method including:
  • the network device sends the first channel or signal included in the synchronization signal block on the N first symbols.
  • the third bandwidth and the frequency domain resource location of the first bandwidth do not overlap each other, and the M, the N, and the S are integers greater than or equal to 1.
  • the first transmission may be transmitted on the symbol of the first channel or signal.
  • the two channels or signals can generally reduce the bandwidth occupied by the sync signal block, thereby reducing the number of initial searches without substantially reducing the transmission resources of the second channel or signal, thereby reducing or avoiding the reduction of the sync signal block.
  • the impact of bandwidth on the second channel or signal transmission performance can improve communication performance.
  • the first channel or signal comprises a primary synchronization signal PSS and/or a secondary synchronization signal SSS.
  • the first channel or the signal includes the PSS and the SSS, and the first symbols occupied by the PSS and the SSS are different.
  • the second channel or the signal includes a physical broadcast channel PBCH.
  • the sum of the bandwidths of the first bandwidth and the third bandwidth is equal to or smaller than the second bandwidth.
  • the frequency domain resource location occupied by the first bandwidth and the frequency domain resource location occupied by the third bandwidth are respectively A subset of the frequency domain resource locations occupied by the bandwidth.
  • a center frequency point of the first bandwidth is equal to a center frequency point of the second bandwidth.
  • the frequency domain resource location of the third bandwidth is located at two sides of the frequency domain resource location of the first bandwidth.
  • the frequency domain resource location of the first bandwidth is located in a low frequency range of the second bandwidth
  • the frequency domain resource location of the third bandwidth is located in the high frequency range of the second bandwidth.
  • the frequency domain resource location of the first bandwidth is located in a high frequency range of the second bandwidth
  • the frequency domain resource location of the third bandwidth is located in the low frequency range of the second bandwidth.
  • the first bandwidth, the second bandwidth, and/or the third bandwidth are respectively equal to an integer number of physical resource blocks PRB Occupied bandwidth.
  • the second bandwidth is less than the bandwidth occupied by 24 PRBs.
  • the second bandwidth is equal to the bandwidth occupied by the 18 physical resource blocks PRB.
  • the first bandwidth is equal to the bandwidth occupied by the 12 PRBs.
  • S is equal to N.
  • N is equal to 2
  • M is equal to 2
  • the N first symbols and the M second symbols are sequentially sorted in order in the time domain: a first symbol, a second symbol, a first symbol, and a second symbol.
  • the terminal device is on the M second symbols, from the second bandwidth, and the N first Obtaining, on the S first symbols in the symbol, the second channel or signal included in the synchronization signal block sent by the network device from the third bandwidth, including:
  • the terminal device starts from the first symbol of the N first symbols and the M second symbols according to the pre-frequency domain and the time domain, according to the N first symbols and the M second symbols in the time domain.
  • the second channel or the signal is demapped by the low frequency domain resource and the high frequency domain resource, wherein the bandwidth of the demapping on the first symbol is the third bandwidth, and the bandwidth of the demapping on the second symbol is the second bandwidth.
  • a network device for performing the method of any of the first aspect or the first aspect of the first aspect.
  • the network device comprises functional modules for performing the method of the first aspect or any of the possible implementations of the first aspect described above.
  • a terminal device for performing the method in any of the above-mentioned second aspect or any possible implementation of the second aspect.
  • the terminal device includes a functional module for the method in any of the above-mentioned second aspect or any possible implementation of the second aspect.
  • a network device including a processor, a memory, and a transceiver.
  • the processor, the memory, and the transceiver communicate with each other through an internal connection path, transmitting control and/or data signals, such that the network device performs the first aspect or any possible implementation of the first aspect The method in .
  • a terminal device including a processor, a memory, and a transceiver. Said Between the processor, the memory, and the transceiver, communicating with each other through an internal connection path, transmitting control and/or data signals, such that the terminal device performs any of the second aspect or the second aspect of the second aspect method.
  • a computer readable medium for storing a computer program, the computer program comprising instructions for performing any one of the methods described above or any possible implementation.
  • a computer program product comprising instructions, when executed on a computer, causes the computer to perform the method of any one of the above methods or any of the possible implementations.
  • FIG. 1 is a schematic diagram of a wireless communication system in accordance with an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a wireless communication method according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a transmission manner of a synchronization signal block according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of a transmission manner of a synchronization signal block according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a transmission manner of a synchronization signal block according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a transmission manner of a synchronization signal block according to an embodiment of the present application.
  • Fig. 7 is a schematic diagram of a transmission mode of a sync signal block.
  • FIG. 8 is a schematic block diagram of a network device according to an embodiment of the present application.
  • FIG. 9 is a schematic block diagram of a terminal device according to an embodiment of the present application.
  • FIG. 10 is a schematic block diagram of a system chip in accordance with an embodiment of the present application.
  • FIG. 11 is a schematic block diagram of a communication device in accordance with an embodiment of the present application.
  • GSM Global Mobile
  • CDMA Code Division Multiple Access
  • WCDMA Wideband Code Division Multiple Access
  • GPRS General Packet Radio Service
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • UMTS Universal Mobile Telecommunication System
  • WiMAX Worldwide Interoperability for Microwave Access
  • FIG. 1 shows a wireless communication system 100 to which an embodiment of the present application is applied.
  • the wireless communication system 100 can include a network device 110.
  • Network device 100 can be a device that communicates with a terminal device.
  • Network device 100 may provide communication coverage for a particular geographic area and may communicate with terminal devices (e.g., UEs) located within the coverage area.
  • the network device 100 may be a base station (Base Transceiver Station, BTS) in a GSM system or a CDMA system, or may be a base station (NodeB, NB) in a WCDMA system, or may be an evolved base station in an LTE system.
  • BTS Base Transceiver Station
  • NodeB NodeB
  • the network device can be a relay station, an access point, an in-vehicle device, a wearable device, A network side device in a 5G network or a network device in a publicly available Public Land Mobile Network (PLMN) in the future.
  • PLMN Public Land Mobile Network
  • the wireless communication system 100 also includes at least one terminal device 120 located within the coverage of the network device 110.
  • Terminal device 120 can be mobile or fixed.
  • the terminal device 120 may refer to an access terminal, a user equipment (User Equipment, UE), a subscriber unit, a subscriber station, a mobile station, a mobile station, a remote station, a remote terminal, a mobile device, a user terminal, a terminal, and a wireless communication.
  • the access terminal may be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), with wireless communication.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • a functional handheld device a computing device or other processing device connected to a wireless modem, an in-vehicle device, a wearable device, a terminal device in a 5G network, or a terminal device in a future evolved PLMN, or the like.
  • the device can be directly connected to the terminal device 120 (Device to Device, D2D) Communication.
  • the 5G system or network may also be referred to as a New Radio (NR) system or network.
  • NR New Radio
  • FIG. 1 exemplarily shows one network device and two terminal devices.
  • the wireless communication system 100 may include a plurality of network devices and may include other numbers of terminal devices within the coverage of each network device. The application embodiment does not limit this.
  • the wireless communication system 100 may further include other network entities, such as a network controller, a mobility management entity, and the like.
  • network entities such as a network controller, a mobility management entity, and the like.
  • system and “network” are used interchangeably herein.
  • the term “and/or” in this context is merely an association describing the associated object, indicating that there may be three relationships, for example, A and/or B, which may indicate that A exists separately, and both A and B exist, respectively. B these three situations.
  • the character "/" in this article generally indicates that the contextual object is an "or" relationship.
  • FIG. 2 is a schematic flowchart of a wireless communication method 200 according to an embodiment of the present application.
  • the method 200 is optionally applicable to the system shown in FIG. 1, but is not limited thereto.
  • the method 200 includes at least some of the following.
  • the network device occupies the first bandwidth on the N first symbols, and sends the first channel or signal included in the synchronization signal block to the terminal device, where the N is an integer greater than or equal to 1.
  • the N first symbols may be consecutive N symbols, or may be discontinuous N symbols.
  • the first channel or signal comprises a PSS and/or an SSS.
  • the first channel or signal includes a PSS and an SSS, and the PSS and the first symbol occupied by the SSS are different.
  • the first channel or signal includes a primary synchronization signal and a secondary synchronization signal
  • N is equal to 2
  • one symbol is used to transmit the primary synchronization signal
  • the other symbol is used to transmit the secondary synchronization signal
  • the symbol occupied by the primary synchronization signal is transmitted and the secondary synchronization is transmitted.
  • the symbols occupied by the signal can be separated by one symbol.
  • the frequency domain resource occupied by the first bandwidth may be a continuous frequency domain resource or a discontinuous frequency domain resource.
  • the first channel or signal refers to a channel or signal occupying the first bandwidth on the first symbol, may include a channel or signal having the same bandwidth characteristic, or include a certain type of channel or signal, where The granularity of the division may be determined according to a specific situation, and the embodiment of the present application is This is not limited, for example, the first channel or signal is a synchronization signal, or the first channel or signal is a primary synchronization signal or a secondary synchronization signal.
  • the width and/or resource location of the first bandwidth used for transmitting the first channel or signal on each first symbol may be different from the other at least one first symbol for sending the first The width and/or resource location of the bandwidth occupied by the channel or signal.
  • the first channel or signal includes a primary synchronization signal and a secondary synchronization signal
  • N 2 2
  • one symbol is used to transmit the primary synchronization signal
  • the other symbol is used to transmit the secondary synchronization signal
  • the bandwidth and/or resources occupied by the primary synchronization signal are transmitted.
  • the location is different from the bandwidth and/or resource location occupied by the transmitting secondary sync signal.
  • the width and/or resource location of the first bandwidth occupied by the first channel or signal transmitted on the N symbols may be the same.
  • the first channel or signal includes a primary synchronization signal and a secondary synchronization signal
  • N 2 2
  • one symbol is used to transmit the primary synchronization signal
  • the other symbol is used to transmit the secondary synchronization signal
  • the bandwidth and/or resources occupied by the primary synchronization signal are transmitted.
  • the location is equal to the bandwidth and/or resource location occupied by the secondary sync signal.
  • the first bandwidth is equal to the bandwidth occupied by an integer number of physical resource blocks (PRBs).
  • PRBs physical resource blocks
  • the first bandwidth is equal to the bandwidth occupied by 12 PRBs.
  • other values may be used, for example, 10 or The bandwidth occupied by 14 PRBs.
  • the first bandwidth occupied by the first channel or the signal may include the guard subcarrier spacing on both sides.
  • the network device occupies a second bandwidth on the M second symbols, and occupies a third bandwidth on the S first symbols in the N first symbols, and sends the synchronization signal to the terminal device.
  • the block includes a second channel or signal, wherein the first bandwidth and the frequency domain resource location of the third bandwidth do not overlap each other, and the M and the S are integers greater than or equal to 1.
  • the N first symbols are arranged in cross with the M second symbols.
  • the N is equal to 2
  • the M is equal to 2
  • the N first symbols and the M second symbols are sequentially sorted in the time domain in sequence: the first symbol, the second symbol, and the first The symbol and the second symbol.
  • the M first symbols may be consecutive M symbols, or may be discontinuous M symbols.
  • the first channel or signal comprises a PBCH.
  • the PBCH may include a DMRS of the PBCH.
  • the first channel or signal includes the PSS and does not include the SSS, meaning that the PBCH may be transmitted only on the symbol transmitting the PSS, and the PBCH is not transmitted on the symbol transmitting the SSS.
  • the first channel or signal includes the SSS and does not include the PSS, meaning that the PBCH can be transmitted only on the symbols transmitting the SSS without transmitting the PBCH on the symbols transmitting the PSS.
  • the first channel or signal includes the PSS and includes the SSS, meaning that the PBCH can be transmitted on the symbols of the transmitted PSS and on the symbols of the SSS.
  • the first channel or the signal uses the PSS and/or the SSS, and the second channel or the signal includes the PBCH as an example, the embodiment of the present application is not limited thereto.
  • the first channel or signal includes a PSS
  • the second channel or signal includes an SSS
  • the first channel or signal includes an SSS
  • the second channel or signal includes a PSS
  • the first channel or signal includes a PBCH
  • the second channel or signal includes PSS and/or SSS.
  • the frequency domain resource occupied by the second bandwidth may be a continuous frequency domain resource or a discontinuous frequency domain resource.
  • the second channel or signal refers to a channel signal occupying a second bandwidth on the second symbol and occupying a third bandwidth on the first symbol, may include a channel or signal having the same bandwidth characteristic, or include a certain The channel or the signal of the class, wherein the granularity of the division of the class may be determined according to the specific situation, which is not limited by the embodiment of the present application.
  • the width and/or resource location of the second bandwidth used for transmitting the second channel or signal on each second symbol may be different from the other at least one second symbol for transmitting the second The width and/or resource location of the bandwidth occupied by the channel or signal.
  • the width and/or resource location of the second bandwidth occupied by the second channel or signal on the M second symbols may be the same.
  • the width and/or resource position of the third bandwidth used for transmitting the second channel or the signal occupied on each of the first symbols may be different from the other at least one first symbol.
  • the width and/or resource location of the second bandwidth occupied by the second channel or the signal transmitted on the S first symbols may be the same.
  • S is less than or equal to N.
  • the first channel or signal includes PSS and SSS
  • the second channel or signal is PBCH
  • N is equal to 2
  • S is less than N means that only the PSS or only SSS occupied symbols are used to transmit the PBCH.
  • the second bandwidth is equal to the bandwidth occupied by an integer number of PRBs.
  • the second bandwidth is less than the bandwidth occupied by the 24 PRBs, for example, equal to the bandwidth occupied by the 18 PRBs.
  • other values may be used, for example, equal to the bandwidth occupied by 20, 16 and other PRBs.
  • the third bandwidth is equal to the bandwidth occupied by an integer number of PRBs.
  • the third bandwidth is equal to the bandwidth occupied by the six PRBs.
  • other values may be used, for example, equal to the bandwidth occupied by five, four, and the like.
  • the second bandwidth occupied by the second channel or the signal may include the guard subcarrier spacing on both sides.
  • the third bandwidth occupied by the second channel or the signal may include the guard subcarrier spacing on both sides.
  • the terminal device acquires, on the N first symbols, a first channel or signal included in the synchronization signal block sent by the network device on the first bandwidth.
  • the terminal device may perform blind detection on the N first symbols to obtain a first channel or signal sent by the network device from the first bandwidth, for example, PSS and SSS.
  • the terminal device acquires, on the M second symbols, from the second bandwidth, and on the S first symbols in the N first symbols, from the third bandwidth, the network device sends the
  • the synchronization signal block includes a second channel or signal.
  • the terminal device may acquire a cell identifier (Identifier, ID), perform time-frequency synchronization, acquire physical broadcast channel (PBCH) information, or SRS and PBCH Demodulation Reference Signal (DMRS) perform RRM measurement and the like.
  • ID cell identifier
  • PBCH physical broadcast channel
  • DMRS PBCH Demodulation Reference Signal
  • the network device may send multiple SS Blocks, and the multiple SS Blocks may form a Synchronisation Signal burts set (SS burst set).
  • the multiple SS blocks may be separately sent by using multiple transmit beams, and the transmit beams of each SS block are different from the transmit beams of other SS blocks.
  • the sum of the bandwidth of the first bandwidth and the third bandwidth is equal to or smaller than the second bandwidth.
  • the third bandwidth may be less than or equal to XY, that is, the bandwidth Y of the first channel or signal is transmitted on the N first symbols, and the first one is N.
  • the bandwidth of the second channel or signal transmitted is less than or equal to X-Y, and on the second symbol, the bandwidth of the second channel or signal is transmitted as X.
  • the remaining XY bandwidths of the N first symbols except for the S first symbols may transmit non-first channels or signals and other channels other than the second channel or signals. Or signal, it is also possible not to transmit any channel or signal.
  • the frequency domain resource location occupied by the first bandwidth and the frequency domain resource location occupied by the third bandwidth are respectively a subset of the frequency domain resource locations occupied by the second bandwidth.
  • the center frequency of the second bandwidth may be referred to as the center frequency of the synchronization signal block.
  • the frequency domain resource location occupied by the first bandwidth and the frequency domain resource location occupied by the third bandwidth may be equal to the frequency domain resource location occupied by the second bandwidth, or may be the frequency domain resource location occupied by the second bandwidth. Subset.
  • the center frequency of the first bandwidth is equal to the center frequency of the second bandwidth.
  • the frequency domain resource location of the third bandwidth may be located on both sides of the frequency domain resource location of the first bandwidth.
  • the sum of the bandwidth of the first bandwidth and the third bandwidth is equal to or smaller than the second bandwidth.
  • the first channel or signal includes PSS and SSS
  • the second channel or signal includes PBCH
  • the second bandwidth is X
  • the first bandwidth is Y.
  • symbols on both the transmitted PSS and SSS remain on both sides (XY).
  • the bandwidth of the PBCH in the PBCH-only symbol is 18 PRBs, and the bandwidth occupied by the PSS and the SSS is 12 PRBs, and the PSS and the SSS occupy 12
  • the center frequency of the PRB is the center frequency of the SS block.
  • the frequency domain resource location of the third bandwidth may also be located at one side of the frequency domain resource location of the first bandwidth, and the other The side may transmit a channel or signal that is not a first channel or signal and a non-second channel or signal, or may not perform any channel or signal transmission.
  • the frequency domain resource location of the third bandwidth is located in a low frequency range of the second bandwidth; and the frequency domain resource location of the first bandwidth is located in a high frequency range of the second bandwidth, where the third bandwidth is The frequency range is lower than the frequency range of the first bandwidth.
  • the lowest frequency domain resource location of the third bandwidth may be equal to the lowest of the second bandwidth.
  • the frequency domain resource location, the highest frequency domain resource location of the first bandwidth may be equal to the highest frequency domain resource location of the second bandwidth,
  • the first channel or signal includes PSS and SSS
  • the second channel or signal includes PBCH
  • the second bandwidth is X
  • the first bandwidth is Y
  • the symbol side of the transmission PSS and SSS remains (XY)
  • the remaining bandwidth of the bandwidth is used to transmit the PBCH on the remaining bandwidth on one side of the symbols transmitting the PSS and SSS.
  • the bandwidth of the PBCH in the PBCH only transmission is 18 PRBs
  • the bandwidth occupied by the PSS/SSS is 12 PRBs (including the protection subcarriers on both sides of the PSS and the SSS).
  • the 12 PRBs occupied by PSS and SSS are located in the high frequency range of the SS block, and the remaining 6 PRBs in the low frequency range of the SS block are used to transmit the PBCH. .
  • the frequency domain resource location of the first bandwidth is located in a low frequency range of the second bandwidth; and the frequency domain resource location of the third bandwidth is located in a high frequency range of the second bandwidth.
  • the first channel or signal includes PSS and SSS
  • the second channel or signal includes PBCH
  • the second bandwidth is X
  • the first bandwidth is Y
  • the symbol side of the transmission PSS and SSS remains (XY)
  • the remaining bandwidth of the bandwidth is used to transmit the PBCH on the remaining bandwidth on one side of the symbols transmitting the PSS and SSS.
  • the bandwidth of the PBCH in the PBCH only transmission is 18 PRBs
  • the bandwidth occupied by the PSS/SSS is 12 PRBs (including the protection subcarriers on both sides of the PSS and the SSS).
  • the 12 PRBs occupied by PSS and SSS are located in the low frequency range of the SS block, and the remaining 6 PRBs in the high frequency range of the SS block are used to transmit the PBCH. .
  • the network device starts from the N first symbol and the first symbol of the M second symbols according to the first frequency domain and the time domain, according to the N first symbols and the M a sequence of the second symbols in the time domain, the first low frequency domain resource and the high frequency domain resource performing the mapping of the second channel or the signal, wherein the bandwidth mapped on the first symbol is the third bandwidth, the first The bandwidth mapped on the two symbols is the second bandwidth; the network device sends the mapped second channel or signal to the terminal device.
  • the terminal device starts from the N first symbol and the first symbol of the M second symbols according to the first frequency domain and the time domain, according to the N first symbols and the M a sequence of the second symbol in the time domain, wherein the low frequency domain resource and the high frequency domain resource perform demapping of the second channel or signal, wherein the bandwidth of the demapping on the first symbol is the third bandwidth, The bandwidth of the demapping on the second symbol is the second bandwidth.
  • the PBCH mapping is mapped in the frequency band in which the PBCH can be transmitted according to the pre-frequency domain back time domain.
  • the PBCH may be mapped according to the pre-frequency domain post-time domain (starting from the first symbol, the low-frequency domain bandwidth, and then the high-time domain bandwidth; and then the subsequent symbols are operated in this way), that is, according to In FIG. 6, the PBCH1-PBCH2-PBCH3-PBCH4-PBCH5-PBCH6 bandwidth is mapped in the order, and in each part of the bandwidth, it is also mapped in order from the frequency domain low point to the frequency domain high point.
  • mapping may be performed in a first time domain or a frequency domain manner, or when frequency domain mapping is performed, a high frequency and high frequency may be performed.
  • the value of the synchronization channel raster of the cell search is related to the bandwidth of the terminal, and is also related to the bandwidth occupied by the SS block; the larger the bandwidth occupied by the SS block, the cell search that may be caused. The smaller the value of the sync channel raster.
  • the second channel or the signal may be transmitted on the symbol for transmitting the first channel or the signal, and the bandwidth occupied by the synchronization signal block may be reduced as a whole, thereby reducing the number of initial searches without
  • the transmission resources of the second channel or signal are greatly reduced, thereby reducing or avoiding the influence of the bandwidth of the synchronization signal block on the second channel or signal transmission performance, thereby improving communication performance.
  • the first channel or signal includes PSS and SSS
  • the second channel or signal is PBCH
  • the sequence length of PSS and SSS is 127
  • 127 REs occupying 12 PRBs are needed
  • the PBCH channel needs to occupy 288 of 24 PRBs.
  • RE if PSS and SSS are transmitted on the first and third symbols respectively, and PBCH is transmitted only on the second and fourth symbols as shown in FIG. 7, the bandwidth occupied by the SS Block is occupied by 24 PRBs.
  • Bandwidth if as shown in Figure 3-6, occupying 6 PRBs on the first and third symbols to transmit PBCH, the bandwidth of the SS Block is 18 PRBs, which can reduce the bandwidth of the SS Block. Avoid reducing the resources occupied by the PBCH, which can improve communication performance.
  • the channel or signal included in the first channel or signal and the second channel or signal is used for the synchronization signal block, the embodiment of the present application is not limited thereto, the first channel or the signal and the second channel.
  • the signal may not be a channel or a signal included in the synchronization signal block.
  • the first channel or signal is a Physical Downlink Control Channel (PDCCH)
  • the second channel or signal is a physical downlink power channel (Physical Downlink Shared Channel, PDSCH), or the first channel or signal and the second channel or signal are other channels or signals.
  • FIG. 8 is a schematic block diagram of a network device 300 in accordance with an embodiment of the present application.
  • the network device 300 includes a first transmission unit 310 and a second transmission unit 320.
  • the first transmission unit 310 is configured to: occupy the first bandwidth on the N first symbols, and send the information to the terminal device.
  • the second transmission unit 320 is configured to: occupy the second bandwidth on the M second symbols, and Transmitting a third bandwidth on the S first symbols of the N first symbols, and transmitting, to the terminal device, a second channel or signal included in the synchronization signal block, where the first bandwidth and the first The frequency domain resource locations of the three bandwidths do not overlap each other, and the M and the S are integers greater than or equal to 1.
  • the network device 600 may correspond to the network device in the method 200, and the corresponding operations implemented by the network device in the method 200 may be implemented. For brevity, no further details are provided herein.
  • FIG. 9 is a schematic block diagram of a terminal device 400 according to an embodiment of the present application.
  • the terminal device 400 includes an obtaining unit 410, where the acquiring unit 410 is configured to: on the M second symbols, from the second bandwidth, and S in the N first symbols.
  • the obtaining unit 410 may further perform an operation in 230 to acquire a first channel or a signal.
  • terminal device 400 may correspond to the terminal device in the method 200, and the corresponding operations implemented by the terminal device in the method 200 may be implemented. For brevity, details are not described herein again.
  • FIG. 10 is a schematic structural diagram of a system chip 500 according to an embodiment of the present application.
  • the system chip 500 of FIG. 10 includes an input interface 501, an output interface 502, the processor 503, and a memory 504 that can be connected by an internal communication connection line.
  • the processor 503 is configured to execute code in the memory 504.
  • the processor 503 when the code is executed, the processor 503 implements a method performed by a network device in a method embodiment. For the sake of brevity, it will not be repeated here.
  • the processor 503 when the code is executed, the processor 503 implements a method performed by the terminal device in the method embodiment. For the sake of brevity, it will not be repeated here.
  • FIG. 11 is a schematic block diagram of a communication device 600 in accordance with an embodiment of the present application.
  • the communication device 600 includes a processor 610 and a memory 620.
  • the memory 620 can store program code, and the processor 610 can execute the program code stored in the memory 620.
  • the communication device 600 can include a transceiver 630 that can control the transceiver 630 to communicate externally.
  • the processor 610 can call the program code stored in the memory 620 to perform the corresponding operations of the network device in the method embodiment.
  • the processor 610 can call the program code stored in the memory 620 to perform the corresponding operations of the network device in the method embodiment.
  • the processor 610 can call the program code stored in the memory 620 to perform the corresponding operations of the terminal device in the method embodiment.
  • the processor 610 can call the program code stored in the memory 620 to perform the corresponding operations of the terminal device in the method embodiment.
  • the processor of the embodiment of the present application may be an integrated circuit chip with signal processing capability.
  • each step of the foregoing method embodiments may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), a Field Programmable Gate Array (FPGA), or the like. Programming logic devices, discrete gates or transistor logic devices, discrete hardware components.
  • the methods, steps, and logical block diagrams disclosed in the embodiments of the present application can be implemented or executed.
  • the general purpose processor may be a microprocessor or the processor or any conventional processor or the like.
  • the steps of the method disclosed in the embodiments of the present application may be directly implemented by the hardware decoding processor, or may be performed by a combination of hardware and software modules in the decoding processor.
  • the software module can be located in a conventional storage medium such as random access memory, flash memory, read only memory, programmable read only memory or electrically erasable programmable memory, registers, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and combines the hardware to complete the steps of the above method.
  • the memory in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read only memory (PROM), an erasable programmable read only memory (Erasable PROM, EPROM), or an electric Erase programmable read only memory (EEPROM) or flash memory.
  • the volatile memory can be a Random Access Memory (RAM) that acts as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • SDRAM Synchronous DRAM
  • DDR SDRAM Double Data Rate SDRAM
  • Enhanced SDRAM Enhanced Synchronous Dynamic Random Access Memory
  • SLDRAM synchronous connection of dynamic random access memory
  • DR RAM direct memory bus random access memory
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product. Based on this understanding, this application The technical solution in essence or the part contributing to the prior art or part of the technical solution may be embodied in the form of a software product stored in a storage medium, including a plurality of instructions for making one
  • the computer device (which may be a personal computer, server, or network device, etc.) performs all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like. .

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Databases & Information Systems (AREA)
  • Computer Security & Cryptography (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例提供了一种无线通信方法和设备,可以在SS Block的传输方面提升通信性能。该方法包括:网络设备在N个第一符号上,占用第一带宽,向终端设备发送同步信号块包括的第一信道或信号,其中,N为大于或等于1的整数;网络设备在M个第二符号上,占用第二带宽,以及在N个第一符号中的S个第一符号上,占用第三带宽,向终端设备发送同步信号块包括的第二信道或信号,其中,第一带宽与第三带宽的频域资源位置互不重叠,M和S为大于或等于1的整数。

Description

无线通信方法、网络设备和终端设备 技术领域
本申请涉及通信领域,并且更具体地,涉及一种无线通信方法、网络设备和终端设备。
背景技术
在长期演进(Long Term Evolution,LTE)系统中,进行同步的信号为主同步信号(Primary Synchronization Signal,PSS)、辅同步信号(Secondary Synchronization Signal,SSS),终端设备进行无线资源管理(Radio Resource Management,RRM)测量的参考信号为小区参考信号(Cell Reference Signal,CRS)或信道状态信息参考信号(Channel State Information Reference Signal,CSI-RS)。
在新无线(New Radio,NR)系统中,网络设备可以向终端设备发送多个同步信号块(Synchronization Signal Block,SS block),终端设备可以在系统带宽内搜索SS block获取小区标识(Identifier,ID)、进行时频同步、获取物理广播信道(Physical Broadcasting Channel,PBCH)信息、并基于SSS以及PBCH的解调参考信号(Demodulation Reference Signal,DMRS)进行RRM测量。
在新无线系统中,对通信性能的要求较高,因此,如何在SS Block的传输方面提高通信性能是一项亟待解决的问题。
发明内容
本申请实施例提供了一种无线通信方法和设备,可以在SS Block的传输方面提升通信性能。
第一方面,提供了一种无线通信方法,包括:
网络设备在N个第一符号上,占用第一带宽,向终端设备发送同步信号块包括的第一信道或信号,其中,N为大于或等于1的整数;
网络设备在M个第二符号上,占用第二带宽,以及在N个第一符号中的S个第一符号上,占用第三带宽,向终端设备发送同步信号块包括的第二信道或信号,其中,第一带宽与第三带宽的频域资源位置互不重叠,M和S 为大于或等于1的整数。
因此,在本申请实施例中,可以在传输第一信道或信号的符号上传输第二信道或信号,可以总体上降低同步信号块所占用的带宽,从而在减少初始搜索的次数的同时,无需大幅减少第二信道或信号的传输资源,因此减少或避免了因为降低同步信号块的带宽所对第二信道或信号传输性能造成的影响,从而可以提升通信性能。
结合第一方面,在第一方面的一种可能的实现方式中,第一信道或信号包括主同步信号PSS和/或辅同步信号SSS。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,第一信道或信号包括PSS和SSS,PSS和SSS占用的第一符号不相同。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,第二信道或信号包括物理广播信道PBCH。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,第一带宽与第三带宽的带宽之和等于或小于第二带宽。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,第一带宽占用的频域资源位置与第三带宽占用的频域资源位置分别为第二带宽占用的频域资源位置的子集。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,第一带宽的中心频点等于第二带宽的中心频点。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,第三带宽的频域资源位置位于第一带宽的频域资源位置的两侧。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,第一带宽的频域资源位置位于第二带宽的低频范围内;以及
第三带宽的频域资源位置位于第二带宽的高频范围内。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,第一带宽的频域资源位置位于第二带宽的高频范围内;以及
第三带宽的频域资源位置位于第二带宽的低频范围内。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,第一带宽、第二带宽和/或第三带宽分别等于整数个物理资源 块PRB所占用的带宽。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,第二带宽小于24个PRB所占用的带宽。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,第二带宽等于18个PRB所占用的带宽。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,第一带宽等于12个PRB所占用的带宽。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,S等于N。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,N等于2,M等于2;
N个第一符号与M个第二符号在时域上按照先后顺序的排序依次为:第一符号、第二符号、第一符号和第二符号。
结合第一方面或上述任一种可能的实现方式,在第一方面的另一种可能的实现方式中,网络设备在M个第二符号上,占用第二带宽,以及在N个第一符号中的S个第一符号上,占用第三带宽,向终端设备发送同步信号块包括的第二信道或信号,包括:
网络设备按照先频域后时域的方式,从N个第一符号与M个第二符号之中的第一个符号开始,按照N个第一符号与M个第二符号在时域上的先后顺序,先低频域资源再高频域资源的进行第二信道或信号的映射,其中,第一符号上映射的带宽为第三带宽,第二符号上映射的带宽为第二带宽;
网络设备向终端设备发送映射后的第二信道或信号。
第二方面,提供了一种无线通信方法,包括:
终端设备在M个第二符号上,从第二带宽上,以及在N个第一符号中的S个第一符号上,从第三带宽上,获取所述网络设备发送的同步信号块包括的第二信道或信号;
其中,在所述N个第一符号上,在第一带宽上,所述网络设备发送所述同步信号块包括的第一信道或信号;
其中,所述第三带宽与所述第一带宽的频域资源位置互不重叠,所述M、所述N和所述S为大于或等于1的整数。
因此,在本申请实施例中,可以在传输第一信道或信号的符号上传输第 二信道或信号,可以总体上降低同步信号块所占用的带宽,从而在减少初始搜索的次数的同时,无需大幅减少第二信道或信号的传输资源,因此减少或避免了因为降低同步信号块的带宽所对第二信道或信号传输性能造成的影响,从而可以提升通信性能。
结合第二方面,在第二方面的一种可能的实现方式中,第一信道或信号包括主同步信号PSS和/或辅同步信号SSS。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,第一信道或信号包括PSS和SSS,PSS和SSS占用的第一符号不相同。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,第二信道或信号包括物理广播信道PBCH。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,第一带宽与第三带宽的带宽之和等于或小于第二带宽。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,第一带宽占用的频域资源位置与第三带宽占用的频域资源位置分别为第二带宽占用的频域资源位置的子集。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,第一带宽的中心频点等于第二带宽的中心频点。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,第三带宽的频域资源位置位于第一带宽的频域资源位置的两侧。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,第一带宽的频域资源位置位于第二带宽的低频范围内;以及
第三带宽的频域资源位置位于第二带宽的高频范围内。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,第一带宽的频域资源位置位于第二带宽的高频范围内;以及
第三带宽的频域资源位置位于第二带宽的低频范围内。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,第一带宽、第二带宽和/或第三带宽分别等于整数个物理资源块PRB所占用的带宽。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能 的实现方式中,第二带宽小于24个PRB所占用的带宽。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,第二带宽等于18个物理资源块PRB所占用的带宽。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,第一带宽等于12个PRB所占用的带宽。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,S等于N。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,N等于2,M等于2;
N个第一符号与M个第二符号在时域上按照先后顺序的排序依次为:第一符号、第二符号、第一符号和第二符号。
结合第二方面或上述任一种可能的实现方式,在第二方面的另一种可能的实现方式中,终端设备在M个第二符号上,从第二带宽上,以及在N个第一符号中的S个第一符号上,从第三带宽上,获取网络设备发送的同步信号块包括的第二信道或信号,包括:
终端设备按照先频域后时域的方式,从N个第一符号与M个第二符号之中的第一个符号开始,按照N个第一符号与M个第二符号在时域上的先后顺序,先低频域资源再高频域资源的进行第二信道或信号的解映射,其中,第一符号上解映射的带宽为第三带宽,第二符号上解映射的带宽为第二带宽。
第三方面,提供了一种网络设备,用于执行上述第一方面或第一方面的任意可能的实现方式中的方法。具体地,所述网络设备包括用于执行上述第一方面或第一方面的任意可能的实现方式中的方法的功能模块。
第四方面,提供了一种终端设备,用于执行上述第二方面或第二方面的任意可能的实现方式中的方法。具体地,所述终端设备包括用于上述第二方面或第二方面的任意可能的实现方式中的方法的功能模块。
第五方面,提供了一种网络设备,包括处理器、存储器和收发器。所述处理器、所述存储器和所述收发器之间通过内部连接通路互相通信,传递控制和/或数据信号,使得所述网络设备执行上述第一方面或第一方面的任意可能的实现方式中的方法。
第六方面,提供了一种终端设备,包括处理器、存储器和收发器。所述 处理器、所述存储器和所述收发器之间通过内部连接通路互相通信,传递控制和/或数据信号,使得所述终端设备执行上述第二方面或第二方面的任意可能的实现方式中的方法。
第七方面,提供了一种计算机可读介质,用于存储计算机程序,所述计算机程序包括用于执行上述任意一种方法或任意可能的实现方式中的指令。
第八方面,提供了一种包括指令的计算机程序产品,当其在计算机上运行时,使得计算机执行上述任意一种方法或任意可能的实现方式中的方法。
附图说明
为了更清楚地说明本申请实施例的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是根据本申请实施例的无线通信系统的示意性图。
图2是根据本申请实施例的无线通信方法的示意性流程图。
图3是根据本申请实施例的同步信号块的传输方式的示意性图。
图4是根据本申请实施例的同步信号块的传输方式的示意性图。
图5是根据本申请实施例的同步信号块的传输方式的示意性图。
图6是根据本申请实施例的同步信号块的传输方式的示意性图。
图7是一种同步信号块的传输方式的示意性图。
图8是根据本申请实施例的网络设备的示意性框图。
图9是根据本申请实施例的终端设备的示意性框图。
图10是根据本申请实施例的系统芯片的示意性框图。
图11是根据本申请实施例的通信设备的示意性框图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请实施例的技术方案可以应用于各种通信系统,例如:全球移动通 讯(Global System of Mobile communication,简称为“GSM”)系统、码分多址(Code Division Multiple Access,简称为“CDMA”)系统、宽带码分多址(Wideband Code Division Multiple Access,简称为“WCDMA”)系统、通用分组无线业务(General Packet Radio Service,简称为“GPRS”)、长期演进(Long Term Evolution,简称为“LTE”)系统、LTE频分双工(Frequency Division Duplex,简称为“FDD”)系统、LTE时分双工(Time Division Duplex,简称为“TDD”)、通用移动通信系统(Universal Mobile Telecommunication System,简称为“UMTS”)、全球互联微波接入(Worldwide Interoperability for Microwave Access,简称为“WiMAX”)通信系统或5G系统等。
图1示出了本申请实施例应用的无线通信系统100。该无线通信系统100可以包括网络设备110。网络设备100可以是与终端设备通信的设备。网络设备100可以为特定的地理区域提供通信覆盖,并且可以与位于该覆盖区域内的终端设备(例如UE)进行通信。可选地,该网络设备100可以是GSM系统或CDMA系统中的基站(Base Transceiver Station,BTS),也可以是WCDMA系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional Node B,eNB或eNodeB),或者是云无线接入网络(Cloud Radio Access Network,CRAN)中的无线控制器,或者该网络设备可以为中继站、接入点、车载设备、可穿戴设备、5G网络中的网络侧设备或者未来演进的公共陆地移动网络(Public Land Mobile Network,PLMN)中的网络设备等。
该无线通信系统100还包括位于网络设备110覆盖范围内的至少一个终端设备120。终端设备120可以是移动的或固定的。可选地,终端设备120可以指接入终端、用户设备(User Equipment,UE)、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、5G网络中的终端设备或者未来演进的PLMN中的终端设备等。
可选地,终端设备120之间可以进行终端直连(Device to Device,D2D) 通信。
可选地,5G系统或网络还可以称为新无线(New Radio,NR)系统或网络。
图1示例性地示出了一个网络设备和两个终端设备,可选地,该无线通信系统100可以包括多个网络设备并且每个网络设备的覆盖范围内可以包括其它数量的终端设备,本申请实施例对此不做限定。
可选地,该无线通信系统100还可以包括网络控制器、移动管理实体等其他网络实体,本申请实施例对此不作限定。
应理解,本文中术语“系统”和“网络”在本文中常被可互换使用。本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
图2是根据本申请实施例的无线通信方法200的示意性流程图。该方法200可选地可以应用于图1所示的系统,但并不限于此。该方法200包括以下内容中的至少部分内容。
在210中,网络设备在N个第一符号上,占用第一带宽,向终端设备发送同步信号块包括的第一信道或信号,其中,该N为大于或等于1的整数。
可选地,在N大于1时,N个第一符号可以是连续的N个符号,也可以是不连续的N个符号。
可选地,该第一信道或信号包括PSS和/或SSS。
可选地,该第一信道或信号包括PSS和SSS,该PSS和该SSS占用的该第一符号不相同。
例如,第一信道或信号包括主同步信号和辅同步信号,N等于2,一个符号用于发送主同步信号,另一个符号用于发送辅同步信号,发送主同步信号占用的符号与发送辅同步信号占用的符号可以间隔一个符号。
可选地,第一带宽占用的频域资源可以是连续的频域资源,也可以是不连续的频域资源。
可选地,第一信道或信号是指在第一符号上占用第一带宽的信道或信号,可以包括具有相同的带宽特征的信道或信号,或者包括某一类的信道或信号,其中,类别的划分的颗粒度可以根据具体情况而定,本申请实施例对 此不作限定,例如,第一信道或信号为同步信号,或第一信道或信号为主同步信号或辅同步信号。
可选地,N大于1时,每个第一符号上用于发送第一信道或信号占用的第一带宽的宽度和/或资源位置可以不同于其他至少一个第一符号上用于发送第一信道或信号占用的带宽的宽度和/或资源位置。
例如,第一信道或信号包括主同步信号和辅同步信号,N等于2,一个符号用于发送主同步信号,另一个符号用于发送辅同步信号,发送主同步信号占用的带宽和/或资源位置不同于发送辅同步信号占用的带宽和/或资源位置。
当然,N个符号上发送第一信道或信号占用的第一带宽的宽度和/或资源位置可以相同。
例如,第一信道或信号包括主同步信号和辅同步信号,N等于2,一个符号用于发送主同步信号,另一个符号用于发送辅同步信号,发送主同步信号占用的带宽和/或资源位置等于发送辅同步信号占用的带宽和/或资源位置。
可选地,第一带宽等于整数个物理资源块(Physical Resource Block,PRB)占用的带宽,例如,第一带宽等于12个PRB占用的带宽,当然,也可以是其他的数值,例如,10或14个PRB占用的带宽。
可选地,在本申请实施例中,发送第一信道或信号占用的第一带宽可以包括两侧的保护子载波间隔。
在220中,该网络设备在M个第二符号上,占用第二带宽,以及在该N个第一符号中的S个第一符号上,占用第三带宽,向该终端设备发送该同步信号块包括的第二信道或信号,其中,该第一带宽与该第三带宽的频域资源位置互不重叠,该M和该S为大于或等于1的整数。
可选地,N个第一符号与M个第二符号交叉排列。
例如,该N等于2,该M等于2;该N个第一符号与该M个第二符号在时域上按照先后顺序的排序依次为:该第一符号、该第二符号、该第一符号和该第二符号。
可选地,在M大于1时,M个第一符号可以是连续的M个符号,也可以是不连续的M个符号。
可选地,该第一信道或信号包括PBCH。可选地,本申请实施例提到的 PBCH可以包括PBCH的DMRS。
可选地,第一信道或信号包括PSS而不包括SSS,意味着可以仅在传输PSS的符号上传输PBCH,而不在传输SSS的符号上传输PBCH。
或者,第一信道或信号包括SSS而不包括PSS,意味着可以仅在传输SSS的符号上传输PBCH,而不在传输PSS的符号上传输PBCH。
或者,第一信道或信号包括PSS以及包括SSS,意味着可以在传输PSS的符号上以及SSS的符号上传输PBCH。
应理解,虽然本申请实施例很多处以第一信道或信信号包括PSS和/或SSS,以及第二信道或信号包括PBCH为例进行说明书,但本申请实施例并不限于此。
例如,第一信道或信信号包括PSS,以及第二信道或信号包括SSS;或者,第一信道或信信号包括SSS,以及第二信道或信号包括PSS;或者,第一信道或信信号包括PBCH,以及第二信道或信号包括PSS和/或SSS。
可选地,第二带宽占用的频域资源可以是连续的频域资源,也可以是不连续的频域资源。
可选地,第二信道或信号是指在第二符号上占用第二带宽以及在第一符号上占用第三带宽的信道信号,可以包括具有相同的带宽特征的信道或信号,或者包括某一类的信道或信号,其中,类别的划分的颗粒度可以根据具体情况而定,本申请实施例对此不作限定。
可选地,M大于1时,每个第二符号上用于发送第二信道或信号占用的第二带宽的宽度和/或资源位置可以不同于其他至少一个第二符号上用于发送第二信道或信号占用的带宽的宽度和/或资源位置。
当然,M个第二符号上发送第二信道或信号占用的第二带宽的宽度和/或资源位置可以相同。
可选地,S大于1时,S个第一符号中每个第一符号上用于发送第二信道或信号占用的第三带宽的宽度和/或资源位置可以不同于其他至少一个第一符号上用于发送第二信道或信号占用的带宽的宽度和/或资源位置。
当然,S个第一符号上发送第二信道或信号占用的第二带宽的宽度和/或资源位置可以相同。
可选地,S小于或等于N。
其中,如果第一信道或信号包括PSS和SSS,第二信道或信号为PBCH, 且N等于2,则S小于N意味着仅有PSS或仅有SSS的占用的符号用于传输PBCH。
可选地,第二带宽等于整数个PRB占用的带宽。
可选地,第二带宽小于24个PRB占用的带宽,例如,等于18个PRB占用的带宽,当然,也可以是其他数值,例如,等于20个,16个等PRB占用的带宽。
可选地,第三带宽等于整数个PRB占用的带宽。
可选地,第三带宽等于6个PRB占用的带宽,当然,也可以是其他数值,例如,等于5个,4个等PRB占用的带宽。
可选地,在本申请实施例中,发送第二信道或信号占用的第二带宽可以包括两侧的保护子载波间隔。
可选地,在本申请实施例中,发送第二信道或信号占用的第三带宽可以包括两侧的保护子载波间隔。
在230中,终端设备在N个第一符号上,获取网络设备在第一带宽上发送的同步信号块包括的第一信道或信号。
具体地,终端设备可以在N个第一符号上进行盲检测,以获取网络设备从第一带宽上发送的第一信道或信号,例如,PSS和SSS。
在240中,该终端设备在M个第二符号上,从第二带宽上,以及在该N个第一符号中的S个第一符号上,从第三带宽上,获取该网络设备发送的该同步信号块包括的第二信道或信号。
从而,终端设备在获取到第一信道或信号以及第二信道或信号之后,可以获取小区标识(Identifier,ID)、进行时频同步、获取物理广播信道(Physical Broadcasting Channel,PBCH)信息、或基于SSS以及PBCH的解调参考信号(Demodulation Reference Signal,DMRS)进行RRM测量等。
可选地,网络设备可以发送多个SS Block,多个SS Block可以组成同步信号簇集合(Synchronisation Signal burts set,SS burst set)。其中,多个SS Block可以采用多个发送波束分别进行发送,每个SS Block的发送波束不同于其他SS Block的发送波束。
可选地,该第一带宽与该第三带宽的带宽之和等于或小于该第二带宽。
例如,第二带宽为X,第一带宽为Y,则第三带宽可以小于或等于X-Y,也即,在N个第一符号上,传输第一信道或信号的带宽Y,在N个第一符 号中的S个符号上,传输第二信道或信号的带宽小于或等于X-Y,在第二符号上,传输第二信道或信号的带宽为X。
其中,在S小于N时,N个第一符号中的除S个第一符号之外的其他符号上,剩余X-Y的带宽可以传输非第一信道或信号以及非第二信道或信号的其他信道或信号,也可以不传输任何信道或信号。
可选地,该第一带宽占用的频域资源位置与该第三带宽占用的频域资源位置分别为该第二带宽占用的频域资源位置的子集。此时,可选地,可以将第二带宽的中心频点称为同步信号块的中心频点。
其中,第一带宽占用的频域资源位置与该第三带宽占用的频域资源位置可以等于该第二带宽占用的频域资源位置,或者也可以为该第二带宽占用的频域资源位置的子集。
可选地,该第一带宽的中心频点等于该第二带宽的中心频点。此时,该第三带宽的频域资源位置可以位于该第一带宽的频域资源位置的两侧。此时可选地,该第一带宽与该第三带宽的带宽之和等于或小于该第二带宽。
例如,假设第一信道或信号包括PSS和SSS,第二信道或信号包括PBCH,第二带宽为X,第一带宽为Y,在SS block内,传输PSS和SSS的符号两侧均剩余(X-Y)/2带宽的剩余带宽,除仅传输PBCH的符号,PSS/SSS符号上的两侧剩余带宽上都用于传输PBCH。
例如,如图3所示,在SS block内,仅传输PBCH的符号中的PBCH的带宽为18个PRB,而PSS和SSS所占的带宽均为12个PRB,且PSS和SSS所占的12个PRB的中心频点为SS block的中心频点,则PSS两侧分别剩余3个PRB,SSS两侧分别剩余3个PRB;这些剩余的PRB均可以用来传输PBCH。
应理解,在该第一带宽的中心频点等于该第二带宽的中心频点时,该第三带宽的频域资源位置也可以位于该第一带宽的频域资源位置的一侧,另一侧可以传输非第一信道或信号以及非第二信道或信号的信道或信号,也可以不进行任何信道或信号的传输。
可选地,该第三带宽的频域资源位置位于该第二带宽的低频范围内;以及该第一带宽的频域资源位置位于该第二带宽的高频范围内,此时,第三带宽的频率范围低于第一带宽的频率范围。
此时,可选地,第三带宽的最低频域资源位置可以等于第二带宽的最低 频域资源位置,第一带宽的最高频域资源位置可以等于第二带宽的最高频域资源位置,
例如,假设第一信道或信号包括PSS和SSS,第二信道或信号包括PBCH,第二带宽为X,第一带宽为Y,在SS block内,传输PSS和SSS的符号一侧剩余(X-Y)带宽的剩余带宽,除仅传输PBCH的符号,传输PSS和SSS的符号上的一侧剩余带宽上用于传输PBCH。
如图4所示,在SS block内,仅传输PBCH的符号中PBCH的带宽为18个PRB,而PSS/SSS所占的带宽均为12个PRB(包含PSS和SSS两侧的保护子载波),在传输PSS和SSS的符号上,PSS和SSS所占的12个PRB的位于SS block的高频范围内,则SS block的低频范围内剩余6个PRB,这些剩余的PRB均用来传输PBCH。
可选地,该第一带宽的频域资源位置位于该第二带宽的低频范围内;以及该第三带宽的频域资源位置位于该第二带宽的高频范围内。
例如,假设第一信道或信号包括PSS和SSS,第二信道或信号包括PBCH,第二带宽为X,第一带宽为Y,在SS block内,传输PSS和SSS的符号一侧剩余(X-Y)带宽的剩余带宽,除仅传输PBCH的符号,传输PSS和SSS的符号上的一侧剩余带宽上用于传输PBCH。
如图5所示,在SS block内,仅传输PBCH的符号中PBCH的带宽为18个PRB,而PSS/SSS所占的带宽均为12个PRB(包含PSS和SSS两侧的保护子载波),在传输PSS和SSS的符号上,PSS和SSS所占的12个PRB的位于SS block的低频范围内,则SS block的高频范围内剩余6个PRB,这些剩余的PRB均用来传输PBCH。
可选地,该网络设备按照先频域后时域的方式,从该N个第一符号与该M个第二符号之中的第一个符号开始,按照该N个第一符号与该M个第二符号在时域上的先后顺序,先低频域资源再高频域资源的进行该第二信道或信号的映射,其中,该第一符号上映射的带宽为该第三带宽,该第二符号上映射的带宽为该第二带宽;该网络设备向该终端设备发送映射后的该第二信道或信号。相应地,该终端设备按照先频域后时域的方式,从该N个第一符号与该M个第二符号之中的第一个符号开始,按照该N个第一符号与该M个第二符号在时域上的先后顺序,先低频域资源再高频域资源的进行该第二信道或信号的解映射,其中,该第一符号上解映射的带宽为该第三带宽,该 第二符号上解映射的带宽为该第二带宽。
例如,如图6所示,PBCH映射在前述可以传输PBCH的频带上按照先频域后时域的方式进行映射。
例如,以图6为例,PBCH可以依照先频域后时域(从第一个符号开始先低频域带宽,后高时域带宽;然后依次后续的符号如此操作)的方式进行映射,即依照图6中PBCH1-PBCH2-PBCH3-PBCH4-PBCH5-PBCH6带宽的顺序进行映射,在每一部分带宽中,也依照从频域低点到频域高点的顺序映射。
应理解,在本申请实施例中,也可以按照先时域或频域的方式进行映射,或者,在进行频域映射时,也可以进行先高频再高频的方式进行映射。
由于终端设备在频段上进行小区搜索时,小区搜索的同步信道栅格的取值与终端的带宽有关,也与SS block占用的带宽有关;SS block占用的带宽越大,会导致的小区搜索的同步信道栅格的取值越小。
因此,在本申请实施例中,可以在传输第一信道或信号的符号上传输第二信道或信号,可以总体上降低同步信号块所占用的带宽,从而在减少初始搜索的次数的同时,无需大幅减少第二信道或信号的传输资源,因此减少或避免了因为降低同步信号块的带宽所对第二信道或信号传输性能造成的影响,从而可以提升通信性能。
例如,假设第一信道或信号包括PSS和SSS,第二信道或信号为PBCH,PSS和SSS的序列长度为127,需要占用12个PRB的127个RE,而PBCH信道需要占用24个PRB的288个RE,如果如图7所示,在第一和第三符号上分别传输PSS和SSS,以及仅在第二和第四个符号上传输PBCH,则SS Block占用的带宽为24个PRB占用的带宽,如果如图3-6所示,占用第一个和第三个符号上的6个PRB传输PBCH,则SS Block的带宽为18个PRB,从而可以在降低SS Block的带宽的基础上,避免减少PBCH占用的资源,从而可以提升通信性能。
应理解,虽然上文以第一信道或信号以及第二信道或信号为同步信号块包括的信道或信号进行了说明,但本申请实施例并不限于此,第一信道或信号以及第二信道或信号也可以不是同步信号块包括的信道或信号,例如,第一信道或信号为物理下行控制信道(Physical Downlink Control Channel,PDCCH),第二信道或信号为物理下行功效信道(Physical Downlink Shared  Channel,PDSCH),或者第一信道或信号与第二信道或信号为其他的信道或信号。
图8是根据本申请实施例的网络设备300的示意性框图。如图8所示,该网络设备300包括第一传输单元310和第二传输单元320;所述第一传输单元310用于:在N个第一符号上,占用第一带宽,向终端设备发送同步信号块包括的第一信道或信号,其中,所述N为大于或等于1的整数;所述第二传输单元320用于:在M个第二符号上,占用第二带宽,以及在所述N个第一符号中的S个第一符号上,占用第三带宽,向所述终端设备发送所述同步信号块包括的第二信道或信号,其中,所述第一带宽与所述第三带宽的频域资源位置互不重叠,所述M和所述S为大于或等于1的整数。
应理解,该网络设备600可以对应于方法200中的网络设备,可以实现方法200中的网络设备实现的相应操作,为了简洁,在此不再赘述。
图9是根据本申请实施例的终端设备400的示意性框图。如图9所示,该终端设备400包括获取单元410,所述获取单元410用于:在M个第二符号上,从第二带宽上,以及在所述N个第一符号中的S个第一符号上,从第三带宽上,获取所述网络设备发送的所述同步信号块包括的第二信道或信号,其中,在所述N个第一符号上,在第一带宽上,所述网络设备发送所述同步信号块包括的第一信道或信号;其中,所述第三带宽与所述第一带宽的频域资源位置互不重叠,所述M、所述N和所述S为大于或等于1的整数。
可选地,该获取单元410还可以执行230中的操作,获取第一信道或信号。
应理解,该终端设备400可以对应于方法200中的终端设备,可以实现方法200中的终端设备实现的相应操作,为了简洁,在此不再赘述。
图10是本申请实施例的系统芯片500的一个示意性结构图。图10的系统芯片500包括输入接口501、输出接口502、所述处理器503以及存储器504之间可以通过内部通信连接线路相连,所述处理器503用于执行所述存储器504中的代码。
可选地,当所述代码被执行时,所述处理器503实现方法实施例中由网络设备执行的方法。为了简洁,在此不再赘述。
可选地,当所述代码被执行时,所述处理器503实现方法实施例中由终端设备执行的方法。为了简洁,在此不再赘述。
图11是根据本申请实施例的通信设备600的示意性框图。如图11所示,该通信设备600包括处理器610和存储器620。其中,该存储器620可以存储有程序代码,该处理器610可以执行该存储器620中存储的程序代码。
可选地,如图11所示,该通信设备600可以包括收发器630,处理器610可以控制收发器630对外通信。
可选地,该处理器610可以调用存储器620中存储的程序代码,执行方法实施例中的网络设备的相应操作,为了简洁,在此不再赘述。
可选地,该处理器610可以调用存储器620中存储的程序代码,执行方法实施例中的终端设备的相应操作,为了简洁,在此不再赘述。
应理解,本申请实施例的处理器可能是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本申请实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本申请实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本申请实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic  RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请 的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,)ROM、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (68)

  1. 一种无线通信方法,其特征在于,包括:
    网络设备在N个第一符号上,占用第一带宽,向终端设备发送同步信号块包括的第一信道或信号,其中,所述N为大于或等于1的整数;
    所述网络设备在M个第二符号上,占用第二带宽,以及在所述N个第一符号中的S个第一符号上,占用第三带宽,向所述终端设备发送所述同步信号块包括的第二信道或信号,其中,所述第一带宽与所述第三带宽的频域资源位置互不重叠,所述M和所述S为大于或等于1的整数。
  2. 根据权利要求1所述的方法,其特征在于,所述第一信道或信号包括主同步信号PSS和/或辅同步信号SSS。
  3. 根据权利要求2所述的方法,其特征在于,所述第一信道或信号包括PSS和SSS,所述PSS和所述SSS占用的所述第一符号不相同。
  4. 根据权利要求1至3中任一项所述的方法,其特征在于,所述第二信道或信号包括物理广播信道PBCH。
  5. 根据权利要求1至4中任一项所述的方法,其特征在于,所述第一带宽与所述第三带宽的带宽之和等于或小于所述第二带宽。
  6. 根据权利要求1至5中任一项所述的方法,其特征在于,所述第一带宽占用的频域资源位置与所述第三带宽占用的频域资源位置分别为所述第二带宽占用的频域资源位置的子集。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一带宽的中心频点等于所述第二带宽的中心频点。
  8. 根据权利要求1至7中任一项所述的方法,其特征在于,所述第三带宽的频域资源位置位于所述第一带宽的频域资源位置的两侧。
  9. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一带宽的频域资源位置位于所述第二带宽的低频范围内;以及
    所述第三带宽的频域资源位置位于所述第二带宽的高频范围内。
  10. 根据权利要求1至6中任一项所述的方法,其特征在于,所述第一带宽的频域资源位置位于所述第二带宽的高频范围内;以及
    所述第三带宽的频域资源位置位于所述第二带宽的低频范围内。
  11. 根据权利要求1至10中任一项所述的方法,其特征在于,所述第一带宽、所述第二带宽和/或所述第三带宽分别等于整数个物理资源块PRB 所占用的带宽。
  12. 根据权利要求1至11中任一项所述的方法,其特征在于,所述第二带宽小于24个PRB所占用的带宽。
  13. 根据权利要求1至12中任一项所述的方法,其特征在于,所述第二带宽等于18个PRB所占用的带宽。
  14. 根据权利要求1至13中任一项所述的方法,其特征在于,所述第一带宽等于12个PRB所占用的带宽。
  15. 根据权利要求1至14中任一项所述的方法,其特征在于,所述S等于所述N。
  16. 根据权利要求1至15中任一项所述的方法,其特征在于,所述N等于2,所述M等于2;
    所述N个第一符号与所述M个第二符号在时域上按照先后顺序的排序依次为:所述第一符号、所述第二符号、所述第一符号和所述第二符号。
  17. 根据权利要求1至16中任一项所述的方法,其特征在于,所述网络设备在M个第二符号上,占用第二带宽,以及在所述N个第一符号中的S个第一符号上,占用第三带宽,向所述终端设备发送所述同步信号块包括的第二信道或信号,包括:
    所述网络设备按照先频域后时域的方式,从所述N个第一符号与所述M个第二符号之中的第一个符号开始,按照所述N个第一符号与所述M个第二符号在时域上的先后顺序,先低频域资源再高频域资源的进行所述第二信道或信号的映射,其中,所述第一符号上映射的带宽为所述第三带宽,所述第二符号上映射的带宽为所述第二带宽;
    所述网络设备向所述终端设备发送映射后的所述第二信道或信号。
  18. 一种无线通信方法,其特征在于,包括:
    终端设备在M个第二符号上,从第二带宽上,以及在N个第一符号中的S个第一符号上,从第三带宽上,获取所述网络设备发送的同步信号块包括的第二信道或信号;
    其中,在所述N个第一符号上,在第一带宽上,所述网络设备发送所述同步信号块包括的第一信道或信号;
    其中,所述第三带宽与所述第一带宽的频域资源位置互不重叠,所述M、所述N和所述S为大于或等于1的整数。
  19. 根据权利要求18所述的方法,其特征在于,所述第一信道或信号包括主同步信号PSS和/或辅同步信号SSS。
  20. 根据权利要求19所述的方法,其特征在于,所述第一信道或信号包括PSS和SSS,所述PSS和所述SSS占用的所述第一符号不相同。
  21. 根据权利要求18至20中任一项所述的方法,其特征在于,所述第二信道或信号包括物理广播信道PBCH。
  22. 根据权利要求18至21中任一项所述的方法,其特征在于,所述第一带宽与所述第三带宽的带宽之和等于或小于所述第二带宽。
  23. 根据权利要求18至22中任一项所述的方法,其特征在于,所述第一带宽占用的频域资源位置与所述第三带宽占用的频域资源位置分别为所述第二带宽占用的频域资源位置的子集。
  24. 根据权利要求18至23中任一项所述的方法,其特征在于,所述第一带宽的中心频点等于所述第二带宽的中心频点。
  25. 根据权利要求18至24中任一项所述的方法,其特征在于,所述第三带宽的频域资源位置位于所述第一带宽的频域资源位置的两侧。
  26. 根据权利要求18至23中任一项所述的方法,其特征在于,所述第一带宽的频域资源位置位于所述第二带宽的低频范围内;以及
    所述第三带宽的频域资源位置位于所述第二带宽的高频范围内。
  27. 根据权利要求18至23中任一项所述的方法,其特征在于,所述第一带宽的频域资源位置位于所述第二带宽的高频范围内;以及
    所述第三带宽的频域资源位置位于所述第二带宽的低频范围内。
  28. 根据权利要求18至27中任一项所述的方法,其特征在于,所述第一带宽、所述第二带宽和/或所述第三带宽分别等于整数个物理资源块PRB所占用的带宽。
  29. 根据权利要求18至28中任一项所述的方法,其特征在于,所述第二带宽小于24个PRB所占用的带宽。
  30. 根据权利要求18至29中任一项所述的方法,其特征在于,所述第二带宽等于18个物理资源块PRB所占用的带宽。
  31. 根据权利要求18至30中任一项所述的方法,其特征在于,所述第一带宽等于12个PRB所占用的带宽。
  32. 根据权利要求18至31中任一项所述的方法,其特征在于,所述S 等于所述N。
  33. 根据权利要求18至32中任一项所述的方法,其特征在于,所述N等于2,所述M等于2;
    所述N个第一符号与所述M个第二符号在时域上按照先后顺序的排序依次为:所述第一符号、所述第二符号、所述第一符号和所述第二符号。
  34. 根据权利要求18至33中任一项所述的方法,其特征在于,所述终端设备在M个第二符号上,从第二带宽上,以及在N个第一符号中的S个第一符号上,从第三带宽上,获取所述网络设备发送的所述同步信号块包括的第二信道或信号,包括:
    所述终端设备按照先频域后时域的方式,从所述N个第一符号与所述M个第二符号之中的第一个符号开始,按照所述N个第一符号与所述M个第二符号在时域上的先后顺序,先低频域资源再高频域资源的进行所述第二信道或信号的解映射,其中,所述第一符号上解映射的带宽为所述第三带宽,所述第二符号上解映射的带宽为所述第二带宽。
  35. 一种网络设备,其特征在于,包括第一传输单元和第二传输单元;
    所述第一传输单元用于:在N个第一符号上,占用第一带宽,向终端设备发送同步信号块包括的第一信道或信号,其中,所述N为大于或等于1的整数;
    所述第二传输单元用于:在M个第二符号上,占用第二带宽,以及在所述N个第一符号中的S个第一符号上,占用第三带宽,向所述终端设备发送所述同步信号块包括的第二信道或信号,其中,所述第一带宽与所述第三带宽的频域资源位置互不重叠,所述M和所述S为大于或等于1的整数。
  36. 根据权利要求35所述的网络设备,其特征在于,所述第一信道或信号包括主同步信号PSS和/或辅同步信号SSS。
  37. 根据权利要求36所述的网络设备,其特征在于,所述第一信道或信号包括PSS和SSS,所述PSS和所述SSS占用的所述第一符号不相同。
  38. 根据权利要求35至37中任一项所述的网络设备,其特征在于,所述第二信道或信号包括物理广播信道PBCH。
  39. 根据权利要求35至38中任一项所述的网络设备,其特征在于,所述第一带宽与所述第三带宽的带宽之和等于或小于所述第二带宽。
  40. 根据权利要求35至39中任一项所述的网络设备,其特征在于,所 述第一带宽占用的频域资源位置与所述第三带宽占用的频域资源位置分别为所述第二带宽占用的频域资源位置的子集。
  41. 根据权利要求35至40中任一项所述的网络设备,其特征在于,所述第一带宽的中心频点等于所述第二带宽的中心频点。
  42. 根据权利要求35至41中任一项所述的网络设备,其特征在于,所述第三带宽的频域资源位置位于所述第一带宽的频域资源位置的两侧。
  43. 根据权利要求35至40中任一项所述的网络设备,其特征在于,所述第一带宽的频域资源位置位于所述第二带宽的低频范围内;以及
    所述第三带宽的频域资源位置位于所述第二带宽的高频范围内。
  44. 根据权利要求35至40中任一项所述的网络设备,其特征在于,所述第一带宽的频域资源位置位于所述第二带宽的高频范围内;以及
    所述第三带宽的频域资源位置位于所述第二带宽的低频范围内。
  45. 根据权利要求35至44中任一项所述的网络设备,其特征在于,所述第一带宽、所述第二带宽和/或所述第三带宽分别等于整数个物理资源块PRB所占用的带宽。
  46. 根据权利要求35至45中任一项所述的网络设备,其特征在于,所述第二带宽小于24个PRB所占用的带宽。
  47. 根据权利要求35至46中任一项所述的网络设备,其特征在于,所述第二带宽等于18个PRB所占用的带宽。
  48. 根据权利要求35至47中任一项所述的网络设备,其特征在于,所述第一带宽等于12个PRB所占用的带宽。
  49. 根据权利要求35至48中任一项所述的网络设备,其特征在于,所述S等于所述N。
  50. 根据权利要求35至49中任一项所述的网络设备,其特征在于,所述N等于2,所述M等于2;
    所述N个第一符号与所述M个第二符号在时域上按照先后顺序的排序依次为:所述第一符号、所述第二符号、所述第一符号和所述第二符号。
  51. 根据权利要求35至50中任一项所述的网络设备,其特征在于,所述第二传输单元进一步用于:
    按照先频域后时域的方式,从所述N个第一符号与所述M个第二符号之中的第一个符号开始,按照所述N个第一符号与所述M个第二符号在时 域上的先后顺序,先低频域资源再高频域资源的进行所述第二信道或信号的映射,其中,所述第一符号上映射的带宽为所述第三带宽,所述第二符号上映射的带宽为所述第二带宽;
    向所述终端设备发送映射后的所述第二信道或信号。
  52. 一种终端设备,其特征在于,包括获取单元;
    所述获取单元用于:在M个第二符号上,从第二带宽上,以及在所述N个第一符号中的S个第一符号上,从第三带宽上,获取所述网络设备发送的同步信号块包括的第二信道或信号,
    其中,在所述N个第一符号上,在第一带宽上,所述网络设备发送所述同步信号块包括的第一信道或信号;
    其中,所述第三带宽与所述第一带宽的频域资源位置互不重叠,所述M、所述N和所述S为大于或等于1的整数。
  53. 根据权利要求52所述的终端设备,其特征在于,所述第一信道或信号包括主同步信号PSS和/或辅同步信号SSS。
  54. 根据权利要求53所述的终端设备,其特征在于,所述第一信道或信号包括PSS和SSS,所述PSS和所述SSS占用的所述第一符号不相同。
  55. 根据权利要求52至54中任一项所述的终端设备,其特征在于,所述第二信道或信号包括物理广播信道PBCH。
  56. 根据权利要求52至55中任一项所述的终端设备,其特征在于,所述第一带宽与所述第三带宽的带宽之和等于或小于所述第二带宽。
  57. 根据权利要求52至56中任一项所述的终端设备,其特征在于,所述第一带宽占用的频域资源位置与所述第三带宽占用的频域资源位置分别为所述第二带宽占用的频域资源位置的子集。
  58. 根据权利要求52至57中任一项所述的终端设备,其特征在于,所述第一带宽的中心频点等于所述第二带宽的中心频点。
  59. 根据权利要求52至58中任一项所述的终端设备,其特征在于,所述第三带宽的频域资源位置位于所述第一带宽的频域资源位置的两侧。
  60. 根据权利要求52至57中任一项所述的终端设备,其特征在于,所述第一带宽的频域资源位置位于所述第二带宽的低频范围内;以及
    所述第三带宽的频域资源位置位于所述第二带宽的高频范围内。
  61. 根据权利要求52至57中任一项所述的终端设备,其特征在于,所 述第一带宽的频域资源位置位于所述第二带宽的高频范围内;以及
    所述第三带宽的频域资源位置位于所述第二带宽的低频范围内。
  62. 根据权利要求52至61中任一项所述的终端设备,其特征在于,所述第一带宽、所述第二带宽和/或所述第三带宽分别等于整数个物理资源块PRB所占用的带宽。
  63. 根据权利要求52至62中任一项所述的终端设备,其特征在于,所述第二带宽小于24个PRB所占用的带宽。
  64. 根据权利要求52至63中任一项所述的终端设备,其特征在于,所述第二带宽等于18个物理资源块PRB所占用的带宽。
  65. 根据权利要求52至64中任一项所述的终端设备,其特征在于,所述第一带宽等于12个PRB所占用的带宽。
  66. 根据权利要求52至65中任一项所述的终端设备,其特征在于,所述S等于所述N。
  67. 根据权利要求52至66中任一项所述的终端设备,其特征在于,所述N等于2,所述M等于2;
    所述N个第一符号与所述M个第二符号在时域上按照先后顺序的排序依次为:所述第一符号、所述第二符号、所述第一符号和所述第二符号。
  68. 根据权利要求52至67中任一项所述的终端设备,其特征在于,所述获取单元进一步用于:
    按照先频域后时域的方式,从所述N个第一符号与所述M个第二符号之中的第一个符号开始,按照所述N个第一符号与所述M个第二符号在时域上的先后顺序,先低频域资源再高频域资源的进行所述第二信道或信号的解映射,其中,所述第一符号上解映射的带宽为所述第三带宽,所述第二符号上解映射的带宽为所述第二带宽。
PCT/CN2017/105777 2017-10-11 2017-10-11 无线通信方法、网络设备和终端设备 WO2019071498A1 (zh)

Priority Applications (28)

Application Number Priority Date Filing Date Title
CN202310939380.4A CN116961863A (zh) 2017-10-11 2017-10-11 无线通信方法、网络设备、终端设备及计算机可读介质
SG11202003263RA SG11202003263RA (en) 2017-10-11 2017-10-11 Wireless communication method, network device and terminal device
KR1020207012952A KR102511587B1 (ko) 2017-10-11 2017-10-11 무선 통신 방법, 네트워크 기기 및 단말 기기
EP22164171.5A EP4040711B1 (en) 2017-10-11 2017-10-11 Wireless communication method, network device and terminal device
BR112020007030-0A BR112020007030A2 (pt) 2017-10-11 2017-10-11 método para comunicação sem fio, dispositivo de rede e dispositivo terminal
ES17928710T ES2914323T3 (es) 2017-10-11 2017-10-11 Método de comunicación inalámbrica, dispositivo de red y dispositivo de terminal
CA3078828A CA3078828C (en) 2017-10-11 2017-10-11 Wireless communication method, network device and terminal device
FIEP22164171.5T FI4040711T3 (fi) 2017-10-11 2017-10-11 Langaton viestintämenetelmä, verkkolaite ja päätelaite
EP17928710.7A EP3697146B1 (en) 2017-10-11 2017-10-11 Wireless communication method, network device and terminal device
PCT/CN2017/105777 WO2019071498A1 (zh) 2017-10-11 2017-10-11 无线通信方法、网络设备和终端设备
LTEPPCT/CN2017/105777T LT3697146T (lt) 2017-10-11 2017-10-11 Belaidis ryšio būdas, tinklo prietaisas ir terminalo prietaisas
AU2017435587A AU2017435587B2 (en) 2017-10-11 2017-10-11 Wireless communication method, network device and terminal device
MX2020003826A MX2020003826A (es) 2017-10-11 2017-10-11 Metodo de comunicacion inalambrica, dispositivo de red y dispositivo terminal.
CN201780092431.7A CN110786061A (zh) 2017-10-11 2017-10-11 无线通信方法、网络设备和终端设备
KR1020237008943A KR20230042398A (ko) 2017-10-11 2017-10-11 무선 통신 방법, 네트워크 기기 및 단말 기기
CN202010065825.7A CN111277393B (zh) 2017-10-11 2017-10-11 无线通信方法、网络设备和终端设备
DK17928710.7T DK3697146T3 (da) 2017-10-11 2017-10-11 Fremgangsmåde, netværksenhed og terminalenhed til trådløs kommunikation
EP23193789.7A EP4258747A3 (en) 2017-10-11 2017-10-11 Wireless communication method, network device and terminal device
JP2020520267A JP7054733B2 (ja) 2017-10-11 2017-10-11 無線通信方法、ネットワーク装置及び端末装置
PL17928710T PL3697146T3 (pl) 2017-10-11 2017-10-11 Sposób komunikacji bezprzewodowej, urządzenie sieciowe i urządzenie końcowe
RU2020115328A RU2742601C1 (ru) 2017-10-11 2017-10-11 Способ осуществления беспроводной связи, сетевое устройство и терминальное устройство
TW107134674A TWI762726B (zh) 2017-10-11 2018-10-01 無線通訊方法、網路設備和終端設備
US16/845,835 US10932209B2 (en) 2017-10-11 2020-04-10 Wireless communication method, network device and terminal device
US17/153,859 US11438851B2 (en) 2017-10-11 2021-01-20 Wireless communication method, network device and terminal device
JP2022062153A JP7307227B2 (ja) 2017-10-11 2022-04-01 無線通信方法、ネットワーク装置及び端末装置
US17/812,313 US11902917B2 (en) 2017-10-11 2022-07-13 Wireless communication method, network device and terminal device
JP2023106997A JP2023123744A (ja) 2017-10-11 2023-06-29 無線通信方法、ネットワーク装置及び端末装置
AU2023278035A AU2023278035A1 (en) 2017-10-11 2023-12-06 Wireless communication method, network device and terminal device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2017/105777 WO2019071498A1 (zh) 2017-10-11 2017-10-11 无线通信方法、网络设备和终端设备

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/845,835 Continuation US10932209B2 (en) 2017-10-11 2020-04-10 Wireless communication method, network device and terminal device

Publications (1)

Publication Number Publication Date
WO2019071498A1 true WO2019071498A1 (zh) 2019-04-18

Family

ID=66100249

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/105777 WO2019071498A1 (zh) 2017-10-11 2017-10-11 无线通信方法、网络设备和终端设备

Country Status (18)

Country Link
US (3) US10932209B2 (zh)
EP (3) EP4040711B1 (zh)
JP (1) JP7054733B2 (zh)
KR (2) KR20230042398A (zh)
CN (3) CN116961863A (zh)
AU (2) AU2017435587B2 (zh)
BR (1) BR112020007030A2 (zh)
CA (1) CA3078828C (zh)
DK (1) DK3697146T3 (zh)
ES (1) ES2914323T3 (zh)
FI (1) FI4040711T3 (zh)
LT (1) LT3697146T (zh)
MX (1) MX2020003826A (zh)
PL (1) PL3697146T3 (zh)
RU (1) RU2742601C1 (zh)
SG (1) SG11202003263RA (zh)
TW (1) TWI762726B (zh)
WO (1) WO2019071498A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021073471A1 (zh) * 2019-10-18 2021-04-22 华为技术有限公司 一种发送端、接收端以及带宽切换方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11271699B1 (en) 2017-11-09 2022-03-08 Verana Networks, Inc. Wireless mesh network
US11838151B1 (en) 2017-11-09 2023-12-05 Verana Networks, Inc. Wireless mesh network

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103458529A (zh) * 2012-05-29 2013-12-18 夏普株式会社 无线通信系统的接入方法和设备
US20170064685A1 (en) * 2015-08-26 2017-03-02 Qualcomm Incorporated Downlink and synchronization techniques for narrowband wireless communications

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8982750B2 (en) 2009-01-16 2015-03-17 Qualcomm Incorporated Method and apparatus for transmitting overload indicator over the air
CN103039114B (zh) * 2010-08-16 2016-09-28 瑞典爱立信有限公司 提供信号同步的方法以及相关网络和装置
US9591644B2 (en) 2013-08-16 2017-03-07 Qualcomm Incorporated Downlink procedures for LTE/LTE-A communication systems with unlicensed spectrum
EP3075087A1 (en) * 2013-11-27 2016-10-05 Telefonaktiebolaget LM Ericsson (publ) Network node, wireless device, methods therein, for sending and detecting, respectively, synchronization signal and an associated information
US10581569B2 (en) * 2014-08-22 2020-03-03 Qualcomm Incorporated Techniques for transmitting and receiving synchronization signals over an unlicensed radio frequency spectrum band
US10341970B2 (en) * 2014-11-17 2019-07-02 Qualcomm Incorporated Techniques for transmitting synchronization signals in a shared radio frequency spectrum band
CN107615841B (zh) * 2015-05-29 2020-06-02 华为技术有限公司 一种资源映射方法及装置
US10193734B2 (en) * 2015-12-24 2019-01-29 Lg Electronics Inc. Method for transceiving signal in a wireless communication system and apparatus for the same
CN107046458A (zh) * 2016-02-05 2017-08-15 中兴通讯股份有限公司 参考信号的发送、接收方法、装置及传输系统
WO2017164348A1 (ja) * 2016-03-25 2017-09-28 株式会社Nttドコモ ユーザ端末、無線基地局及び無線通信方法
EP4152675A1 (en) * 2017-02-07 2023-03-22 Innovative Technology Lab Co., Ltd. Method and apparatus for broadcast channel configuration and broadccast channel transmission and reception for communication system
KR101962147B1 (ko) * 2017-06-16 2019-03-26 엘지전자 주식회사 하향링크 채널을 송수신하는 방법 및 이를 위한 장치
US11064424B2 (en) * 2017-07-25 2021-07-13 Qualcomm Incorporated Shared spectrum synchronization design
EP3662715B1 (en) 2017-09-11 2022-03-02 LG Electronics Inc. Method and apparatus for transmitting downlink control information in wireless communication system
WO2019069471A1 (ja) 2017-10-06 2019-04-11 株式会社Nttドコモ ユーザ端末及び無線通信方法

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103458529A (zh) * 2012-05-29 2013-12-18 夏普株式会社 无线通信系统的接入方法和设备
US20170064685A1 (en) * 2015-08-26 2017-03-02 Qualcomm Incorporated Downlink and synchronization techniques for narrowband wireless communications

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
INTEL CORPORATION: "On Multiplexing between PSS and SSS", 3GPP TSG RAN WGI MEETING #87, RL-1613046, 18 November 2016 (2016-11-18), XP051176993 *
LG ELECTRONICS: "NR PBCH Design", 3GPP TSG RAN WGI MEETING #87, RI-1611787, 18 November 2016 (2016-11-18), XP051175756 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021073471A1 (zh) * 2019-10-18 2021-04-22 华为技术有限公司 一种发送端、接收端以及带宽切换方法

Also Published As

Publication number Publication date
TWI762726B (zh) 2022-05-01
CN110786061A (zh) 2020-02-11
AU2017435587B2 (en) 2023-09-07
KR20200063219A (ko) 2020-06-04
US20200245279A1 (en) 2020-07-30
AU2023278035A1 (en) 2023-12-21
LT3697146T (lt) 2022-10-25
PL3697146T3 (pl) 2022-06-13
US20220353836A1 (en) 2022-11-03
EP4258747A3 (en) 2023-12-13
US10932209B2 (en) 2021-02-23
RU2742601C1 (ru) 2021-02-09
SG11202003263RA (en) 2020-05-28
US11902917B2 (en) 2024-02-13
DK3697146T3 (da) 2022-05-30
KR102511587B1 (ko) 2023-03-16
JP2021502725A (ja) 2021-01-28
EP4258747A2 (en) 2023-10-11
CN111277393B (zh) 2023-04-07
TW201919359A (zh) 2019-05-16
CA3078828C (en) 2022-09-27
FI4040711T3 (fi) 2024-01-02
US11438851B2 (en) 2022-09-06
BR112020007030A2 (pt) 2020-10-13
EP3697146B1 (en) 2022-04-27
JP7054733B2 (ja) 2022-04-14
KR20230042398A (ko) 2023-03-28
CN111277393A (zh) 2020-06-12
US20210144662A1 (en) 2021-05-13
EP3697146A1 (en) 2020-08-19
AU2017435587A1 (en) 2020-05-21
EP4040711A1 (en) 2022-08-10
EP3697146A4 (en) 2020-12-02
CN116961863A (zh) 2023-10-27
CA3078828A1 (en) 2019-04-18
EP4040711B1 (en) 2023-11-29
MX2020003826A (es) 2020-08-06
ES2914323T3 (es) 2022-06-09

Similar Documents

Publication Publication Date Title
US11096131B2 (en) Wireless communication method and device
WO2019137407A1 (zh) 信号检测的方法和装置
WO2019109378A1 (zh) 无线通信方法和设备
WO2018126414A1 (zh) 传输数据的方法和通信设备
US11902917B2 (en) Wireless communication method, network device and terminal device
WO2019056390A1 (zh) 无线通信方法、网络设备和终端
WO2019033396A1 (zh) 无线通信方法和设备
JP6987242B2 (ja) リソース構成方法、端末装置及びネットワーク装置
WO2019127483A1 (zh) 寻呼方法、网络设备和终端设备
WO2019061350A1 (zh) 无线通信方法和设备
TW202008827A (zh) 資源配置的方法、終端設備和網路設備
WO2019127462A1 (zh) 无线通信方法、终端设备和网络设备
WO2019061347A1 (zh) 无线通信方法和设备
US11856539B2 (en) Method and device for transmitting downlink control information
WO2019080111A1 (zh) 无线通信方法和设备
JP7307227B2 (ja) 無線通信方法、ネットワーク装置及び端末装置
WO2019061580A1 (zh) 无线通信方法和设备
WO2019095439A1 (zh) 接收信号强度指示测量方法和终端设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17928710

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3078828

Country of ref document: CA

Ref document number: 2020520267

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20207012952

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2017928710

Country of ref document: EP

Effective date: 20200511

ENP Entry into the national phase

Ref document number: 2017435587

Country of ref document: AU

Date of ref document: 20171011

Kind code of ref document: A

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112020007030

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 112020007030

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20200408