WO2018045516A1 - 一种通信方法及基站 - Google Patents

一种通信方法及基站 Download PDF

Info

Publication number
WO2018045516A1
WO2018045516A1 PCT/CN2016/098362 CN2016098362W WO2018045516A1 WO 2018045516 A1 WO2018045516 A1 WO 2018045516A1 CN 2016098362 W CN2016098362 W CN 2016098362W WO 2018045516 A1 WO2018045516 A1 WO 2018045516A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
base station
rbs
symbols
special
Prior art date
Application number
PCT/CN2016/098362
Other languages
English (en)
French (fr)
Inventor
王新宇
丁鼎
谢铂云
李宏杰
黄兴
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2019533262A priority Critical patent/JP6917458B2/ja
Priority to PCT/CN2016/098362 priority patent/WO2018045516A1/zh
Priority to CN201680088594.3A priority patent/CN109644366B/zh
Priority to KR1020197008393A priority patent/KR102128864B1/ko
Priority to EP16915452.3A priority patent/EP3499952B1/en
Publication of WO2018045516A1 publication Critical patent/WO2018045516A1/zh
Priority to US16/295,248 priority patent/US10904064B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0092Indication of how the channel is divided
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/26Resource reservation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2691Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation involving interference determination or cancellation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2602Signal structure
    • H04L27/2605Symbol extensions, e.g. Zero Tail, Unique Word [UW]
    • H04L27/2607Cyclic extensions
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/14Two-way operation using the same type of signal, i.e. duplex
    • H04L5/1469Two-way operation using the same type of signal, i.e. duplex using time-sharing
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/10Scheduling measurement reports ; Arrangements for measurement reports
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/27Control channels or signalling for resource management between access points
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/541Allocation or scheduling criteria for wireless resources based on quality criteria using the level of interference
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/54Allocation or scheduling criteria for wireless resources based on quality criteria
    • H04W72/542Allocation or scheduling criteria for wireless resources based on quality criteria using measured or perceived quality
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a communication method and a base station.
  • the uplink transmission and the downlink transmission are in the same frequency band, and the uplink signal and the downlink signal pass through different time periods on the time axis. Send to distinguish. Since the uplink transmission and the downlink transmission are in the same frequency band, the same frequency interference is often present in the TDD system.
  • the downlink transmission of the base station A and the uplink reception of the base station B overlap in time, because the power of the downlink transmission is greater than that of the uplink transmission.
  • the downlink transmission of the base station A interferes with the uplink reception of the base station B, so that the uplink service of the base station B is seriously deteriorated.
  • the time synchronization between the base stations is maintained, that is, the air interfaces between the base stations remain aligned (or the frames remain aligned), so that the possibility of overlapping the uplink transmission and the downlink transmission in time is greatly reduced.
  • the air interfaces between the base stations remain aligned (or the frames remain aligned)
  • the embodiments of the present application provide a communication method and a base station, so as to reduce co-channel interference between base stations that are relatively far apart in the TDD system.
  • an embodiment of the present application provides a communication method, including:
  • the base station determines that there is co-channel interference
  • the base station For the N consecutive symbols before the GP in the special subframe in the radio frame, the base station transmits a signal by using the intermediate M1 resource blocks RB of the N symbols, and retains the M1 RBs except the N symbols.
  • the use of RBs other than N, M1 are positive integers.
  • the base station after determining that co-channel interference occurs, the base station can only pass through the special subframe.
  • the RBs outside the RB cause co-channel interference to the uplink subframe of the remote base station, thereby reducing the occurrence of serious deterioration of user services due to co-channel interference.
  • the method further includes:
  • the base station reserves the use of the M2 RBs in the middle of the target uplink subframe in the radio frame, where the M2 is a positive integer and is greater than or equal to the M1, and the target uplink subframe includes the special subframe.
  • the base station After the base station determines that there is co-channel interference, the base station uses the M2 RBs in the middle of the target uplink subframe in the radio frame as the reserved resource block, so that the resource block that is most susceptible to interference in the target uplink subframe does not It is scheduled to any terminal, so that the same-frequency interference received by the target uplink subframe is minimized.
  • the base station determines that co-channel interference exists, including:
  • the base station performs measurement on the M3 RBs in the middle of the received uplink subframe, and obtains a measurement result, where the M3 is a positive integer and is less than or equal to the M1;
  • the base station determines that co-channel interference exists when the measurement result meets a preset co-channel interference condition.
  • the preset co-channel interference condition includes at least one of the following:
  • the base station determines that the average value of the interference noise in the M3 RBs in the middle of all received uplink subframes is greater than the second threshold.
  • the N symbols include at least one symbol in the special subframe; or the N symbols include at least one symbol in the special subframe and a downlink sub-segment adjacent to the special subframe At least one symbol in the frame.
  • the method further includes:
  • the base station For each downlink subframe adjacent to the special subframe in each radio frame, the base station reserves the N Among the symbols in the symbol, the use of RBs other than the intermediate M RBs.
  • the base station sends a signal only on the M RBs in the middle of the downlink subframes adjacent to the special subframe, thereby avoiding interference of the downlink subframe sent by the base station to the uplink subframe of the remote base station, thereby further The interference received by the uplink subframe of the remote base station is reduced.
  • the middle M1 RBs of the N symbols carry at least one of the following:
  • PBCH physical broadcast channel
  • the cell reference signal in the first slot in the downlink subframe is the cell reference signal in the first slot in the downlink subframe.
  • M1 is equal to 6.
  • the embodiment of the present application provides a base station, where the base station includes a unit or a means for performing each step of the method in any of the foregoing first aspects.
  • the embodiment of the present application provides a base station, where the base station includes a processor and a memory, where the memory is used to store a program, and the processor calls a program stored in the memory to perform any of the methods provided by the first aspect of the embodiments of the present application. .
  • the application provides a base station comprising at least one processing element (or chip) for performing the method of the above first aspect.
  • the present application provides a computer program for performing any of the methods provided in the first aspect above when executed by a processor.
  • a program product such as a computer readable storage medium, comprising the program of the fifth aspect is provided.
  • FIG. 1 is a schematic diagram of a TDD communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic diagram of a TDD frame structure according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of a co-channel interference according to an embodiment of the present application.
  • FIG. 4 is a schematic diagram of interference of a remote base station to a near-end base station in the prior art
  • FIG. 5 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of resource scheduling according to an embodiment of the present application.
  • FIG. 7 is a schematic diagram of resource scheduling according to an embodiment of the present application.
  • FIG. 8 is a schematic diagram of resource scheduling according to an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of a base station according to an embodiment of the present application.
  • the embodiments of the present application are applicable to a mobile communication system in a TDD mode, such as a TDD-LTE (Long Term Evolution) system.
  • a TDD mode such as a TDD-LTE (Long Term Evolution) system.
  • TDD-LTE Long Term Evolution
  • a terminal also called a User Equipment (UE) is a device that provides voice and/or data connectivity to a user, for example, a handheld device with a wireless connection function, an in-vehicle device, and the like.
  • UE User Equipment
  • Common terminals include, for example, mobile phones, tablets, notebook computers, PDAs, mobile internet devices (MIDs), wearable devices such as smart watches, smart bracelets, pedometers, and the like.
  • MIDs mobile internet devices
  • wearable devices such as smart watches, smart bracelets, pedometers, and the like.
  • a base station also known as a radio access network (RAN) device
  • RAN radio access network
  • eNB evolved Node B
  • RNC Radio network controller
  • NB Node B
  • BSC Base Station Controller
  • BTS Base Transceiver Station
  • home base station for example, Home evolved
  • NodeB or Home Node B, HNB
  • BBU BaseBand Unit
  • AP Wifi access point
  • Multiple means two or more. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • the meanings of the symbols include, but are not limited to, Orthogonal Frequency Division Multiplexing (OFDM) symbols, Sparse Code Multiplexing Access (SCMA) symbols, and filtering.
  • OFDM Orthogonal Frequency Division Multiplexing
  • SCMA Sparse Code Multiplexing Access
  • filtering The Orthogonal Frequency Division Multiplexing (F-OFDM) symbol and the Non-Orthogonal Multiple Access (NOMA) symbol may be determined according to actual conditions, and details are not described herein.
  • FIG. 1 is a schematic diagram of a TDD communication system according to an embodiment of the present application.
  • the communication system includes a base station 110 and a base station 120, and the base station 110 and the base station 120 are far apart.
  • the base station 110 and the base station 120 are far apart, they do not cause interference to each other.
  • the co-channel interference between the base station 110 and the base station 120 is very serious, resulting in the terminal of the fragmented network being unable to access, or unable to perform normal services.
  • This situation is usually caused by atmospheric waveguides, which are the effects of the atmosphere formed by climatic conditions on the refraction of electromagnetic waves.
  • the electromagnetic wave seems to propagate in the waveguide, and the propagation loss is small (approximating the free-space propagation), which can bypass the ground plane and realize the over-the-horizon transmission.
  • the reason for this is that when a layer of the troposphere of the Earth's atmosphere is inverted or the water vapor is drastically reduced, the vertical variation of the air density and the refractive index is large, causing the super-refraction propagation of radio waves, and the electromagnetic energy is above and below the atmosphere of the layer.
  • the back and forth reflections between the walls propagate forward as if they were inside the waveguide.
  • the atmospheric waveguide layer can be either ground or suspended.
  • FIG. 2 is a schematic diagram of a TDD frame structure according to an embodiment of the present application.
  • FIG. 3 is a schematic diagram of co-channel interference according to an embodiment of the present application.
  • the radio frame of the TDD is composed of 10 subframes, which are respectively labeled. #0 to #9 logo. Please refer to Table 1.
  • the TDD system has seven uplink and downlink configurations.
  • the subframe used for transmitting the downlink signal is the downlink subframe and is represented by D.
  • the subframe used for transmitting the uplink signal is the uplink subframe, and the U is represented by U. ; is separated by a special subframe between the downlink subframe and the uplink subframe, and the special subframe is denoted by S.
  • the special subframe includes three parts, namely, a downlink preamble slot (DwPTS), a guard period (GP), and an uplink preamble slot (UpPTS); wherein the DwPTS is a downlink slot in a special subframe, and the UpPTS is a special sub-frame.
  • the upstream time slot in the frame, GP is the guard time.
  • the number of OFDM symbols they occupy is configurable, as shown in Table 2.
  • Table 2 shows the number of symbols occupied by DwPTS, GP, and UpPTS in different configurations in a special subframe under a regular CP (Cyclic Prefix) and an extended CP.
  • the high power downlink signal of the base station 110 can generate long-distance transmission to the base station 120 through the atmospheric waveguide. Since the long-distance transmission time exceeds the GP of the TDD system, the downlink signal of the base station 110 is received by the base station 120 at the receiving time slot of the base station 120, thereby interfering with the uplink reception of the base station 120, generating long-distance co-channel interference of the TDD system, and Interference is generally full-band interference and the affected area is large. As shown in FIG. 4, the downlink subframe D of the base station 110 may even "fall" to the time slot corresponding to the uplink subframe of the base station 120, and interfere with the uplink reception of the base station 120.
  • the same-frequency interference generated between such distant base stations is referred to as remote co-channel interference.
  • One of the base stations is referred to as a remote base station, and the other base station is referred to as a near-end base station.
  • base station 110 is a remote base station and base station 120 is a near-end base station.
  • the base station 120 can also be referred to as a remote base station, and the base station 110 is referred to as a near-end base station, and the interference between them is mutual.
  • the far-end co-channel interference occurs between base stations that are far apart, such as base stations ranging from 200 Km to 400 Km. Since the transmit power of the base station is much larger than the transmit power of the terminal, the far-end co-channel interference mainly represents that the downlink signal of the remote base station interferes with the uplink signal of the near-end base station. Specifically, as the propagation distance increases, the downlink signal of the remote base station reaches the near-end base station of the same frequency after the propagation delay, and the asynchronous synchronization occurs between the uplink and downlink signals, so that the downlink signal interference of the remote base station occurs.
  • the uplink signal to the near-end base station severely deteriorates the uplink service of the near-end base station, affecting the normal operation of the near-end base station.
  • the electromagnetic wave seems to propagate in the waveguide, and the propagation loss is small (approximating free-space propagation), which can bypass the ground plane and achieve super Line of sight transmission.
  • the high-power downlink signal of the remote base station can generate long-distance transmission to the near-end base station.
  • the downlink signal of the remote base station is on the near-end base station.
  • the line signal is received by the near-end base station when receiving the time slot, thereby interfering with the reception of the uplink signal of the near-end base station.
  • the special subframe configuration is modified to add a GP in the time domain, for example, the special subframe configuration is modified to 3:9:2 as shown in Table 2.
  • the special subframe configuration is modified to 3:9:2 as shown in Table 2.
  • there are 9 symbols of GP which has a certain suppression effect on the far-field interference of 200KM.
  • co-channel interference for base stations other than 200 KM cannot be solved.
  • the embodiment of the present application provides a communication method, in which, when there is co-channel interference, the base station uses only a plurality of the N symbols in the continuous N symbols before the GP in the special subframe.
  • a resource block (RB) transmits a signal, and is reserved for RBs other than the above multiple RBs among the N symbols, where N is a positive integer. Since only some of the N symbols are used to transmit signals, the interference of the reserved RBs to other base stations can be neglected, so the same-frequency interference is greatly reduced.
  • FIG. 5 is a schematic flowchart of a communication method according to an embodiment of the present application.
  • the method may include the following steps:
  • Step 501 The base station determines that co-channel interference exists.
  • Step 502 For a consecutive N symbols before the GP in the special subframe in the radio frame, the base station sends a signal by using the middle M1 RBs of the N symbols, and retains the M1 except the M symbols.
  • the co-channel interference refers to the far-end co-channel interference, which is also called the long-distance co-channel interference.
  • the base station can determine the existence of co-channel interference by using an existing method, for example, if the base station determines the power of the first symbol from the power of the first symbol to the last symbol in a plurality of consecutive detection periods. Decrement in turn determines that there is co-channel interference.
  • the embodiment of the present application further provides the following method for determining the presence of co-channel interference, but the present application does not limit the manner in which co-channel interference is determined.
  • the base station may determine whether there is co-channel interference by measuring M3 RBs in the middle of the received uplink subframe, where M3 is a positive integer less than or equal to M1. Specifically, the following steps may be included:
  • Step 1 The base station can measure the M3 RBs in the middle of the received uplink subframe, and obtain The measurement result is obtained, where M3 is a positive integer and is less than or equal to M1.
  • the base station may measure power of two preset symbols in the M3 RBs in the middle of the received uplink subframe, for example, power of the first preset symbol and the second preset symbol.
  • the base station may also measure interference noise in the M3 RBs in the middle of each received uplink subframe.
  • the base station can also measure other content, and details are not described herein again.
  • the measurement result obtained by the base station may include at least one of the following:
  • Interference noise in M3 RBs in the middle of the uplink subframe received by the base station is Interference noise in M3 RBs in the middle of the uplink subframe received by the base station.
  • the base station specifically measures the power of the first preset symbol and the second preset symbol in the M3 RBs in the middle of the uplink subframe, which is not limited in this embodiment, and details are not described herein again.
  • the base station specifically measures the interference noise in the M3 RBs in the middle of each uplink subframe, which is not limited in this embodiment of the present application.
  • the first preset symbol and the second preset symbol may be determined according to actual conditions.
  • the first preset symbol is the symbol 0 in the M3 RBs in the middle of the uplink subframe.
  • the second preset symbol is the symbol 11 in the M3 RBs in the middle of the uplink subframe.
  • the first preset symbol may also be the symbol 1 in the M3 RBs in the middle of the uplink subframe, and the second preset symbol is the symbol 10 in the M3 RBs in the middle of the uplink subframe, and the like. Narration.
  • the value of M can be determined according to the actual situation.
  • the value of M is 6, and of course, M can also take other values, which will not be exemplified herein.
  • Step 2 The base station determines that there is co-channel interference when the measurement result satisfies the preset co-channel interference condition.
  • the preset co-channel interference condition includes at least one of the following:
  • the power difference between the first preset symbol and the second preset symbol in the M3 RBs in the middle of the uplink subframe received by the base station is greater than the first threshold in a plurality of consecutive detection periods
  • all the uplink subframes received by the base station are in the middle of M3.
  • the average of the interference noise within the RBs is greater than the second threshold.
  • the first threshold and the second threshold may be determined according to actual conditions, and details are not described herein again.
  • the base station can receive at least one uplink subframe.
  • the base station after detecting the uplink subframe, if the base station determines that the preset co-channel interference bar is not met according to the measurement result, it can be determined that the co-channel interference does not occur, and the base station can send according to the manner specified in the existing standard. Wireless frame.
  • the size of N is determined according to the distance between two base stations having co-channel interference.
  • the larger the distance the larger N.
  • the distance between the two base stations is within a distance of 250 Km between the two base stations, and the N symbols may include only at least one symbol in the special subframe; when the distance between the two base stations is greater than The above distance may further include at least one symbol in a downlink subframe adjacent to the special subframe.
  • the base station reserves the use of the RBs other than the M1 RBs in the N symbols, and may refer to not transmitting signals in the RBs other than the M1 RBs in the N symbols. .
  • the base station reserves the use of the RBs other than the M1 RBs in the N symbols, at least 90% of the RBs except the M1 RBs in the N symbols are reserved. Use of (Resource Element, resource element).
  • FIG. 6 a schematic diagram of resource scheduling provided by an embodiment of the present application is provided.
  • the first radio frame and the second radio frame are radio frames of the remote base station and the near end base station, respectively, and the subframe configuration mode in the first radio frame and the second radio frame is mode 2, and other mode subframes.
  • the configuration reference may be made to the description of FIG. 6 , and details are not described herein again.
  • the first radio frame and the second radio frame should be two radio frames that are synchronously transmitted. Due to the atmospheric waveguide, the first radio frame and the second radio frame are not synchronized, so that the first radio frame is not synchronized.
  • the frame (the subframe is a special subframe) overlaps with the second subframe of the second radio frame (the subframe is an uplink subframe), so that the special subframe of the first radio frame and the uplink subframe of the second radio frame Causes co-channel interference.
  • the base station After determining that co-channel interference occurs, the base station sends a signal using only the intermediate M1 resource blocks of the N symbols for consecutive N symbols before the GP in the special subframe in the radio frame. And retaining the use of the resource blocks except the M1 resource blocks in the N symbols, that is, not transmitting the resources through the resource blocks except the M1 resource blocks in the N symbols.
  • the padded area is a resource block used when the base station transmits a signal; the unfilled area is a resource block reserved by the base station, that is, a resource block that is not used.
  • the base station may send a signal only through the M1 RBs in the middle of the N symbols preceding the GP in the special subframe, and retain the M1 RBs among the N symbols.
  • the use of the outer RBs thereby reducing the co-channel interference caused by the RBs other than the M1 RBs to the uplink subframe of the remote base station, thereby reducing user services caused by co-channel interference The occurrence of a serious deterioration.
  • the base station may send a cell reference signal (CRS) and a synchronization signal only through M RBs in the middle of N symbols in the special subframe. Synchronization Signal).
  • CRS cell reference signal
  • Synchronization Signal Synchronization Signal
  • the base station sends the cell reference signal and the synchronization signal only through the M1 RBs in the middle of the N symbols in the special subframe, so that the same frequency interference caused by the special subframe transmitted by the base station is reduced, and the basic of the cell is not affected. business.
  • the base station determines that the presence of co-channel interference is determined by determining the same-frequency interference of other base stations.
  • the same-frequency interference is mutual.
  • the base station is interfered by the same frequency of other base stations, it also causes co-channel interference to other base stations. Therefore, by using the manner in which part of the RB is reserved, co-channel interference to other base stations can be reduced.
  • the base station itself can reserve the use of some RBs in the uplink subframe that may be interfered with, so that the uplink and downlink signals can be scheduled to be shifted in the frequency domain, so that the same frequency interference of other base stations can be further reduced, and the serious solution is solved.
  • the problem that the far-end interference causes the uplink service to deteriorate.
  • the base station reserves the use of the M2 RBs in the middle of the target uplink subframe in the radio frame, and the target uplink subframe includes an uplink subframe adjacent to the special subframe, or may further include an uplink sub-frame separated from the special subframe by at least one subframe. frame.
  • the base station uses M2 RBs in the middle of the target uplink subframe in the radio frame as reserved RBs. Not scheduled to any terminal, where M2 is a positive integer and greater than or equal to M1.
  • the special subframe is adjacent to the uplink subframe. Therefore, when co-channel interference occurs, there is a high possibility that the uplink subframe and the special subframe interfere with each other. At the same time, since the transmit power of the base station is much larger than the transmit power of the terminal, the interference of the uplink subframe to the special subframe can be neglected, and the interference that needs to be eliminated is the interference of the special subframe to the uplink subframe.
  • the base station After the base station determines that there is co-channel interference, the base station uses the M2 RBs in the middle of the target uplink subframe in the radio frame as the reserved resource block, so that the resource block that is most susceptible to interference in the target uplink subframe does not It is scheduled to any terminal, so that the same-frequency interference received by the target uplink subframe is minimized.
  • FIG. 7 a schematic diagram of resource scheduling provided by an embodiment of the present application is provided.
  • the first radio frame and the second radio frame are radio frames of the remote base station and the near end base station, respectively, and the subframe configuration mode of the first radio frame and the second radio frame is mode 2, and other mode subframe configurations are used.
  • the subframe configuration mode of the first radio frame and the second radio frame is mode 2, and other mode subframe configurations are used.
  • the first radio frame and the second radio frame should be two radio frames that are synchronously transmitted, and the first radio frame and the second radio frame are not synchronized due to the atmospheric waveguide, so that the first radio frame is not synchronized.
  • the frame (the subframe is a special subframe) overlaps with the second subframe of the second radio frame (the subframe is an uplink subframe), so that the special subframe of the first radio frame and the uplink subframe of the second radio frame Causes co-channel interference.
  • the base station reserves, for the consecutive N symbols before the protection period in the special subframe in the radio frame, the base station reserves the resource blocks except the M1 resource blocks in the N symbols.
  • the base station uses the M1 RBs in the middle of the target uplink subframe in the radio frame as reserved resource blocks, and does not schedule to any terminal, that is, does not transmit signals through the M1 RBs in the middle of the target uplink subframe.
  • the padded area is a resource block used when the base station transmits a signal; the unfilled area is a resource block reserved by the base station, that is, a resource block that is not used.
  • the base station reserves, for the downlink subframe adjacent to the special subframe in the radio frame, the base station retains the symbols in the downlink subframe among the N symbols except the middle M1.
  • the first radio frame and the second radio frame are radio frames of the remote base station and the near end base station, respectively, and the subframe configuration mode of the first radio frame and the second radio frame is mode 2, and the subframe configuration of other modes is configured.
  • the subframe configuration mode of the first radio frame and the second radio frame is mode 2, and the subframe configuration of other modes is configured.
  • the first radio frame and the second radio frame should be two radio frames that are synchronously transmitted, and the first radio frame and the second radio frame are not synchronized due to the atmospheric waveguide, so that the first radio frame is not synchronized.
  • the frame (the subframe is a special subframe) overlaps with the second subframe of the second radio frame (the subframe is an uplink subframe), so that the special subframe of the first radio frame and the uplink subframe of the second radio frame Causes co-channel interference.
  • the base station reserves, for the consecutive N symbols before the guard interval in the special subframe in the radio frame, the base station reserves the resource blocks except the M1 resource blocks in the N symbols.
  • the base station only transmits signals on M RBs in the middle of the downlink subframes adjacent to the special subframe, and no longer uses the M1 RBs in the downlink subframe adjacent to the special subframe except the middle M1 RBs.
  • the padded area is a resource block used when the base station transmits a signal; the unfilled area is a resource block reserved by the base station, that is, a resource block that is not used.
  • the base station sends the paging message and system information only on the M1 RBs in the middle of the downlink subframe adjacent to the special subframe. , a Physical Broadcast Channel (PBCH), a synchronization signal, and a cell reference signal in the first time slot.
  • PBCH Physical Broadcast Channel
  • the base station sends a signal only on the M RBs in the middle of the downlink subframes adjacent to the special subframe, thereby avoiding interference of the downlink subframe sent by the base station to the uplink subframe of the remote base station, thereby further The interference received by the uplink subframe of the remote base station is reduced.
  • the embodiment of the present application further provides a base station, which can perform the method flow described in FIG.
  • the embodiment of the present application provides a schematic structural diagram of a base station.
  • the base station 900 includes:
  • the processing unit 901 is configured to determine that there is co-channel interference
  • the transceiver unit 902 is configured to perform a continuous N before the protection period GP in the special subframe in the radio frame. And transmitting, by using the intermediate M1 resource blocks RB of the N symbols, and retaining the use of RBs other than the M1 RBs in the N symbols, where N and M1 are positive integers.
  • the transceiver unit 902 is further configured to:
  • the target uplink subframe includes an uplink adjacent to the special subframe.
  • the subframe includes an uplink subframe adjacent to the special subframe and an uplink subframe separated from the special subframe by at least one subframe.
  • processing unit 901 is specifically configured to:
  • the preset co-channel interference condition includes at least one of the following:
  • the power difference between the first preset symbol and the second preset symbol in the M3 RBs in the middle of the received uplink subframe is greater than the first threshold in a plurality of consecutive detection periods
  • the average value of the interference noise in the M3 RBs in the middle of the received uplink subframes is greater than the second threshold in a plurality of consecutive detection periods.
  • the N symbols include at least one symbol in the special subframe; or the N symbols include at least one symbol in the special subframe and a downlink sub-segment adjacent to the special subframe At least one symbol in the frame.
  • the middle M1 RBs of the N symbols carry at least one of the following:
  • PBCH physical broadcast channel
  • the cell reference signal in the first slot in the downlink subframe is the cell reference signal in the first slot in the downlink subframe.
  • M1 is equal to 6.
  • each unit of the above base station is only a division of a logical function, and the actual implementation may be integrated into one physical entity in whole or in part, or may be physically separated.
  • these units may all be implemented in the form of software by means of processing component calls; or may be implemented entirely in hardware; some units may be implemented by software in the form of processing component calls, and some units may be implemented in the form of hardware.
  • the processing unit may be a separately set processing element, or may be integrated in one chip of the base station, or may be stored in a memory of the base station in the form of a program, and is called by one of the processing elements of the base station and executes the above.
  • the function of each unit The implementation of other units is similar.
  • each step of the above method or each of the above units may be completed by an integrated logic circuit of hardware in the processor element or an instruction in a form of software.
  • the above units may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Singnal processor (DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASICs Application Specific Integrated Circuits
  • DSP digital Singnal processor
  • FPGA Field Programmable Gate Array
  • the processing element can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke the program.
  • CPU central processing unit
  • these units can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • the embodiment of the present application further provides a base station, which can perform the method flow described in FIG.
  • the embodiment of the present application provides a schematic structural diagram of a base station.
  • the base station includes an antenna 1010, a radio frequency device 1020, and a baseband device 1030.
  • the antenna 1010 is connected to the radio frequency device 1020.
  • the radio frequency device 1020 receives the information transmitted by the terminal through the antenna 1010, and transmits the information sent by the terminal to the baseband device 1030 for processing.
  • the baseband device 1030 processes the information of the terminal and sends the information to the radio frequency device 1020.
  • the radio frequency device 1020 processes the information of the terminal and transmits it to the terminal via the antenna 1010.
  • the baseband device 1030 is configured to determine that there is co-channel interference, and send signals to the intermediate M1 resource blocks RB of the N symbols for the N consecutive symbols before the protection period GP in the special subframe in the radio frame, and keep The use of RBs other than the M1 RBs among the N symbols, where N and M1 are positive integers.
  • the baseband device 1030 can transmit signals through the radio frequency device 1020.
  • the baseband device 1030 is further configured to:
  • the target uplink subframe includes an uplink adjacent to the special subframe.
  • the subframe includes an uplink subframe adjacent to the special subframe and an uplink subframe separated from the special subframe by at least one subframe.
  • the baseband device 1030 may be specifically configured to perform the following operations to determine the presence of co-channel interference:
  • the preset co-channel interference condition includes at least one of the following:
  • the power difference between the first preset symbol and the second preset symbol in the M3 RBs in the middle of the received uplink subframe is greater than the first threshold in a plurality of consecutive detection periods
  • the average value of the interference noise in the M3 RBs in the middle of the received uplink subframes is greater than the second threshold in a plurality of consecutive detection periods.
  • the N symbols include at least one symbol in the special subframe; or the N symbols include at least one symbol in the special subframe and a downlink sub-segment adjacent to the special subframe At least one symbol in the frame.
  • the middle M1 RBs of the N symbols carry at least one of the following:
  • PBCH physical broadcast channel
  • the cell reference signal in the first slot in the downlink subframe is the cell reference signal in the first slot in the downlink subframe.
  • M1 is equal to 6.
  • the various units shown in Figure 9 may be located in baseband device 1030.
  • the above various units are implemented in the form of a processing element scheduler, such as baseband device 1030 including processing element 131 and storage element 132, processing element 131 invoking storage
  • the component 132 stores a program to perform the method of the above method embodiments.
  • the baseband device 1030 may further include an interface 133 for interacting with the radio frequency device 1020, such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the various units shown in FIG. 9 may be one or more processing elements configured to implement the above methods, the processing elements being disposed on a baseband device 1030, where the processing elements may be integrated circuits, For example: one or more ASICs, or one or more DSPs, or one or more FPGAs, etc. These integrated circuits can be integrated to form a chip.
  • the various units shown in Figure 9 can be integrated together in the form of a system on a chip, for example, the baseband device 1030 includes a SOC chip for implementing the above method.
  • the processing element 131 and the storage element 132 may be integrated into the chip, and the functions of the above method or the above units may be implemented by the processing element 131 in the form of a stored program that calls the storage element 132; or, at least one integrated circuit may be integrated into the chip.
  • the functions of the above methods or the above units may be implemented; or, in combination with the above implementation manners, the functions of some units are implemented in the form of processing component calling programs, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus includes at least one processing element, a storage element and a communication interface, wherein at least one of the processing elements is used to perform the method provided by the above method embodiments.
  • the processing element may perform some or all of the steps in the above method embodiment in a manner of executing the program stored in the storage element in the first manner; or in the second manner: through the processor element
  • the integrated logic circuit of the hardware performs some or all of the steps in the foregoing method embodiments in combination with the instructions.
  • the method provided by the foregoing method embodiments may also be implemented in combination with the first mode and the second mode.
  • the processing elements 131 herein are as described above, and may be general purpose processors, such as a central processing unit, or may be one or more integrated circuits configured to implement the above methods, such as one or more specific integrated circuits, or one Or multiple microprocessors, or one or more field programmable gate arrays, and the like.
  • the storage element 132 can be a memory or a collective name for a plurality of storage elements.
  • an interface may also be included in FIG. 10, and the interface may include any number of interconnected buses and bridges, specifically linked by one or more processors represented by the processor and various circuits of the memory represented by the memory.
  • the interface can also link various other circuits, such as peripherals, voltage regulators, and power management circuits, as is known in the art, and therefore, will not be further described herein.
  • embodiments of the present application can be provided as a method, system, or computer program product.
  • the present application can take the form of an entirely hardware embodiment, an entirely software embodiment, or an embodiment in combination of software and hardware.
  • the application can take the form of a computer program product embodied on one or more computer usable memory channels (including but not limited to disk storage and optical storage, etc.) in which computer usable program code is embodied.
  • the present application is described with reference to flowchart illustrations and/or block diagrams of methods, apparatus (system), and computer program products according to embodiments of the present application. It will be understood that each flow and/or block of the flowchart illustrations and/or FIG.
  • the computer program instructions can be provided to a processor of a general purpose computer, special purpose computer, embedded processor, or other programmable data processing device to produce a machine instruction for generating instructions executed by a processor of a computer or other programmable data processing device Means for implementing the functions specified in one or more flows of the flowchart or in a block or blocks of the flowchart.
  • These computer program instructions can also be stored in a bootable computer or other programmable data processing device.
  • a computer readable memory that operates in a particular manner, causing instructions stored in the computer readable memory to produce an article of manufacture comprising an instruction device implemented in one or more flows and/or block diagrams of the flowchart The function specified in the box or in multiple boxes.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

一种通信方法及基站,包括:基站确定存在同频干扰;针对无线帧中特殊子帧中的保护期GP之前连续的N个符号,所述基站使用所述N个符号的中间M1个资源块RB发送信号,并保留所述N个符号中除了所述M1个RB之外的RB的使用,其中N、M1均为正整数。

Description

一种通信方法及基站 技术领域
本申请涉及通信技术领域,尤其涉及一种通信方法及基站。
背景技术
在TDD(Time Division Duplexing,时分双工)模式的移动通信系统(以下简称TDD系统)中,上行传输和下行传输在相同的频带内,上行信号和下行信号通过在时间轴上不同的时间段内发送进行区分。由于上行传输和下行传输在相同的频带内,TDD系统中往往存在同频干扰的情况,例如基站A的下行传输和基站B的上行接收在时间上存在重叠,由于下行传输的功率大于上行传输的功率,则基站A的下行传输会干扰基站B的上行接收,使得基站B的上行业务严重恶化。
目前,为了减少同频干扰,让基站之间保持时间上的同步,即基站之间空口保持对齐(或帧保持对齐),这样上行传输和下行传输在时间上重叠的可能性就会大大减少。然而,相距比较远的基站之间由于气候等原因仍然存在同频干扰的问题。
发明内容
本申请实施例提供一种通信方法及基站,以期减少TDD系统中相距比较远的基站之间的同频干扰。
第一方面,本申请实施例提供一种通信方法,包括:
基站确定存在同频干扰;
针对无线帧中特殊子帧中的GP之前连续的N个符号,所述基站使用所述N个符号的中间M1个资源块RB发送信号,并保留所述N个符号中除了所述M1个RB之外的RB的使用,其中N、M1均为正整数。
通过上述方法,基站在确定发生同频干扰之后,可以只通过特殊子帧中 GP之前的N个符号的中间的M1个RB发送信号,并保留所述N个符号中除了所述M1个RB之外的RB的使用,从而降低了所述N个符号中除了所述M1个RB之外的RB对远端基站的上行子帧造成的同频干扰,从而能够减少由于同频干扰造成的用户业务严重恶化的现象的发生。
可选的,所述方法还包括:
所述基站保留无线帧中目标上行子帧中间的M2个RB的使用,其中,所述M2为正整数,且大于或等于所述M1,所述目标上行子帧包括与所述特殊子帧相邻的上行子帧,或者包括与所述特殊子帧相邻的上行子帧和与所述特殊子帧间隔至少1个子帧的上行子帧。
通过上述方法,基站在确定存在同频干扰之后,基站将无线帧中的目标上行子帧的中间的M2个RB作为保留资源块,从而使得目标上行子帧中最容易受到干扰的资源块不会被调度给任何终端,从而使得目标上行子帧受到的同频干扰降到最低。
可选的,所述基站确定存在同频干扰,包括:
所述基站对接收到的上行子帧的中间的M3个RB进行测量,获得测量结果,其中,所述M3为正整数,且小于或等于所述M1;
所述基站在所述测量结果满足预设同频干扰条件时,确定存在同频干扰。
可选的,所述预设同频干扰条件包括以下至少一项:
在连续多个检测周期内,所述基站确定接收到的上行子帧的中间的M3个RB内的第一预设符号和第二预设符号之间的功率差大于第一阈值;
在连续多个检测周期内,所述基站确定接收到的所有上行子帧在中间的M3个RB内的干扰噪声的平均值大于第二阈值。
可选的,所述N个符号包括所述特殊子帧中的至少一个符号;或者所述N个符号包括所述特殊子帧中的至少一个符号以及与所述特殊子帧相邻的下行子帧中的至少一个符号。
可选的,所述方法还包括:
针对每个无线帧中与特殊子帧相邻的下行子帧,所述基站保留所述N个 符号中位于所述下行子帧中的符号中除了中间M个RB之外的RB的使用。
通过上述方法,基站只在与特殊子帧相邻的下行子帧的中间的M个RB上发送信号,从而避免了基站发送的下行子帧对远端的基站的上行子帧的干扰,从而进一步降低了远端的基站的上行子帧受到的干扰。
可选的,所述N个符号的中间M1个RB承载以下至少一项:
特殊子帧中的小区参考信号;
特殊子帧中的同步信号;
下行子帧中的寻呼消息;
下行子帧中的系统信息;
下行子帧中的物理广播信道PBCH;
下行子帧中的同步信号;
下行子帧中第一个时隙中的小区参考信号。
可选的,M1等于6。
第二方面,本申请实施例提供一种基站,该基站包括用于执行以上第一方面中任一种方法各个步骤的单元或手段(means)。
第三方面,本申请实施例提供一种基站,该基站包括处理器和存储器,存储器用于存储程序,处理器调用存储器存储的程序,以执行本申请实施例第一方面提供的任一种方法。
第四方面,本申请提供一种基站,包括用于执行以上第一方面的方法的至少一个处理元件(或芯片)。
第五方面,本申请提供一种计算机程序,该程序在被处理器执行时用于执行以上第一方面提供的任一种方法。
第六方面,提供一种程序产品,例如计算机可读存储介质,包括第五方面的程序。
附图说明
图1为本申请实施例提供的一种TDD通信系统的示意图;
图2为本申请实施例提供的一种TDD帧结构的示意图;
图3为本申请实施例提供的一种同频干扰的示意图;
图4为现有技术中远端基站对近端基站的干扰示意图;
图5为本申请实施例提供的一种通信方法流程示意图;
图6为本申请实施例提供的一种资源调度示意图;
图7为本申请实施例提供的一种资源调度示意图;
图8为本申请实施例提供的一种资源调度示意图;
图9为本申请实施例提供的一种基站结构示意图;
图10为本申请实施例提供的一种基站结构示意图。
具体实施方式
下面结合说明书附图对本申请实施例做详细描述。
本申请实施例适用于TDD模式的移动通信系统,如TDD-LTE(Long Term Evolution,长期演进)系统等移动通信系统。
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端,又称之为用户设备(User Equipment,UE),是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。常见的终端例如包括:手机、平板电脑、笔记本电脑、掌上电脑、移动互联网设备(mobile internet device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等。
2)、基站,又称为无线接入网(Radio Access Network,RAN)设备是一种将终端接入到无线网络的设备,包括但不限于:演进型节点B(evolved Node B,eNB)、无线网络控制器(radio network controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU)。此外,还可以包括Wifi接入点(Access Point, AP)等。
3)、“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
4)、本申请实施例中,符号的意义包含但不限于正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号、稀疏码分多址技术(Sparse Code Multiplexing Access,SCMA)符号、过滤正交频分复用(Filtered Orthogonal Frequency Division Multiplexing,F-OFDM)符号、非正交多址接入(Non-Orthogonal Multiple Access,NOMA)符号,具体可以根据实际情况确定,在此不再赘述。
请参考图1,其为本申请实施例提供的一种TDD通信系统的示意图。如图1所示,该通信系统包括基站110和基站120,且基站110和基站120相距较远。理论上,由于基站110和基站120相距甚远,不会对彼此造成干扰。但是,实践中却发现在某些情况下,基站110和基站120之间的同频干扰非常严重,导致成片网络的终端无法接入,或者无法进行正常业务。
这种情况通常是由大气波导引起的,大气波导是一种气候条件下形成的大气对电磁波折射的效应。在大气波导效应下,电磁波好像在波导中传播一样,传播损耗很小(近似于自由空间传播),可以绕过地平面,实现超视距传输。形成原因在于当地球大气的对流层的某层出现逆温或水汽急剧减小,导致空气密度和折射率的垂直变化很大,造成无线电波射线的超折射传播,其电磁能量在该层大气的上下壁之间来回反射向前传播,好像在波导内进行的现象。大气波导层可以是贴地面的,也可以是悬空的大气层。
下面结合图2和图3,描述大气波导如何引起TDD系统的同频干扰。其中,图2为本申请实施例提供的一种TDD帧结构的示意图。图3为本申请实施例提供的一种同频干扰的示意图。
如图2所示,TDD的无线帧由10个子帧(subframe)组成,分别用标号 #0至#9标识。请结合表1,目前TDD系统有7种上下行配置,其中,用于传输下行信号的子帧为下行子帧,用D表示;用于传输上行信号的子帧为上行子帧,用U表示;在下行子帧和上行子帧之间用特殊子帧隔开,该特殊子帧用S表示。特殊子帧包括三个部分,分别为下行前导时隙(DwPTS),保护期(GP),和上行前导时隙(UpPTS);其中,DwPTS是特殊子帧中的下行时隙,UpPTS是特殊子帧中的上行时隙,GP是保护时间。它们的所占的OFDM符号数是可以配置的,具体参见表2所示。表2示意出了在常规CP(Cyclic Prefix,循环前缀)和扩展CP下,特殊子帧中DwPTS、GP以及UpPTS分别在不同配置下所占的符号数。
表1
Figure PCTCN2016098362-appb-000001
表2
Figure PCTCN2016098362-appb-000002
Figure PCTCN2016098362-appb-000003
如图3所示,基站110的大功率下行信号通过大气波导可以产生远距离传输到达基站120。由于远距离传输时间超过TDD系统的GP,基站110的下行信号在基站120的接收时隙被基站120收到,从而干扰了基站120的上行接收,产生TDD系统的远距离同频干扰,并且此干扰一般都是全频段干扰,受影响面积大。如图4所示,基站110的下行子帧D甚至会“飘到”基站120的上行子帧所对应的时隙,而对基站120上行接收产生干扰。
以下将这种相距较远的基站之间产生的同频干扰称为远端同频干扰。且将其中一个基站称为远端基站,另一个基站称为近端基站。例如,基站110为远端基站,基站120为近端基站。当然,也可以将基站120称为远端基站,基站110称为近端基站,且它们之间的干扰是相互的。
可见,远端同频干扰发生在相距很远的基站之间,例如距离200Km到400Km的基站。由于基站的发射功率远大于终端的发射功率,因此远端同频干扰主要表现为远端基站的下行信号干扰近端基站的上行信号。具体的,随着传播距离的增加,远端基站的下行信号经过传播延迟到达同频的近端基站后,原本时间同步的上下行信号之间会发生异步,从而使得远端基站的下行信号干扰到近端基站的上行信号,使近端基站的上行业务严重恶化,影响近端基站的正常工作。TDD系统的远端同频干扰的产生因素很多,例如在“大气波导”效应下,电磁波好像在波导中传播一样,传播损耗很小(近似于自由空间传播),可以绕过地平面,实现超视距传输。当存在“大气波导”现象的情况下,远端基站的大功率下行信号可以产生远距离传输到达近端基站。由于远距离传输时间超过TDD系统的GP,远端基站的下行信号在近端基站的上 行信号接收时隙时被近端基站收到,从而干扰了近端基站上行信号的接收。
目前,在出现远端同频干扰非常严重的情况下,采用修改特殊子帧配置来在时域上增加GP,例如将特殊子帧配置修改为表2中所示的3:9:2。此时,有9个符号的GP,对于200KM的远端同频干扰具有一定的抑制效果。然而,对于200KM以外的基站的同频干扰仍然无法解决。
基于上述论述,本申请实施例提供一种通信方法,在该方法中,当存在同频干扰时,基站针对特殊子帧中GP之前的连续N个符号,仅使用这N个符号中间的多个资源块(resource block,RB)发送信号,而对于这N个符号中的除以上多个RB之外的RB则保留使用,其中N为正整数。由于N个符号中,仅有部分RB用于发送信号,保留RB对其它基站的干扰便可以忽略,因此同频干扰大幅度的减少。
请参考图5,其为本申请实施例提供的一种通信方法的流程示意图。
如图5所示,该方法可以包括以下步骤:
步骤501:基站确定存在同频干扰。
步骤502:针对无线帧中特殊子帧中的GP之前连续的N个符号,所述基站使用所述N个符号的中间M1个RB发送信号,并保留所述N个符号中除了所述M1个RB之外的RB的使用,其中N、M1均为正整数。
步骤501中,同频干扰是指远端同频干扰,也称为远距离同频干扰。
基站可以采用现有方法确定同频干扰的存在,例如,在连续多个检测周期内,如果基站确定接收到的上行子帧的所有符号中,从第一个符号的功率至最后一个符号的功率依次递减,则确定存在同频干扰。此外,本申请实施例还提供了以下方法用于确定同频干扰的存在,然而本申请并不限制同频干扰的确定方式。
基站可以通过对接收到的上行子帧的中间的M3个RB进行测量,从而确定是否存在同频干扰,其中M3为小于或等于M1的正整数。具体的,可以包括以下步骤:
步骤一:基站可以对接收到的上行子帧的中间的M3个RB进行测量,获 得测量结果,其中M3为正整数,且小于或等于M1。
具体的,基站可以测量接收到的上行子帧的中间的M3个RB内的两个预设符号的功率,例如第一预设符号和第二预设符号的功率。或者,基站还可以测量接收到的每个上行子帧在中间的M3个RB内的干扰噪声。当然,以上只是示例,基站还可以测量其他内容,在此不再赘述。
结合前面的描述,本申请实施例中,基站获得的测量结果可以包括以下至少一项:
基站接收到的上行子帧的中间的M3个RB内的第一预设符号和第二预设符号功率;
基站接收到的上行子帧的中间的M3个RB内的干扰噪声。
需要说明的是,基站具体如何测量上行子帧的中间的M3个RB内的第一预设符号和第二预设符号的功率,本申请实施例对此并不限定,在此不再赘述。此外,基站具体如何测量每个上行子帧的中间的M3个RB内的干扰噪声,本申请实施例对此并不限定。
可选的,本申请实施例中,第一预设符号和第二预设符号可以根据实际情况确定,例如,第一预设符号为上行子帧的中间的M3个RB中的符号0,第二预设符号为上行子帧的中间的M3个RB中的符号11。当然,第一预设符号还可以为上行子帧的中间的M3个RB中的符号1,第二预设符号为上行子帧的中间的M3个RB中的符号10等情况,在此不再赘述。
相应的,本申请实施例中,M的取值可以根据实际情况确定,例如M取值为6,当然M还可以取其它值,在此不再一一举例说明。
步骤二:基站在所述测量结果满足预设同频干扰条件时,确定存在同频干扰。
本申请实施例中,预设同频干扰条件包括以下至少一项:
在连续多个检测周期内,所述基站接收到的上行子帧的中间的M3个RB内的第一预设符号和第二预设符号之间的功率差大于第一阈值;
在连续多个检测周期内,所述基站接收到的所有上行子帧在中间的M3 个RB内的干扰噪声的平均值大于第二阈值。
其中,第一阈值以及第二阈值可以根据实际情况确定,在此不再赘述。每个检测周期内,基站可以接收到至少一个上行子帧。
需要说明的是,基站在检测完上行子帧之后,若根据测量结果确定不满足预设同频干扰条,则可以确定未发生同频干扰,此时基站可以按照现有标准中规定的方式发送无线帧。
步骤502中,N的大小根据存在同频干扰的两个基站之间的距离确定。距离越大,N越大。可选的,两个基站之间的距离在两个基站之间的距离250Km距离以内,这N个符号可以只包括所述特殊子帧中的至少一个符号;当两个基站之间的距离大于以上距离时,还可以包括与所述特殊子帧相邻的下行子帧中的至少一个符号。
本申请实施例中,基站保留所述N个符号中除了所述M1个RB之外的RB的使用,可以是指不在所述N个符号中除了所述M1个RB之外的RB中传输信号。可选的,基站保留所述N个符号中除了所述M1个RB之外的RB的使用时,保留了所述N个符号中除了所述M1个RB之外的RB中至少90%的RE(Resource Element,资源元素)的使用。
举例来说,结合前面的描述,如图6所示,为本申请实施例提供的一种资源调度示意图。图6中,第一无线帧与第二无线帧分别为远端基站和近端基站的无线帧,第一无线帧和第二无线帧中的子帧配置模式为模式2,其他模式的子帧配置可以参考图6的描述,在此不再赘述。
图6中,第一无线帧与第二无线帧应该是同步发送的两个无线帧,由于大气波导,导致第一无线帧与第二无线帧出现不同步,使得第一无线帧的1号子帧(该子帧为特殊子帧)与第二无线帧的2号子帧(该子帧为上行子帧)重叠,从而使得第一无线帧的特殊子帧对第二无线帧的上行子帧造成同频干扰。
基站在确定发生同频干扰之后,针对无线帧中特殊子帧中的GP之前连续的N个符号,所述基站只使用所述N个符号的中间M1个资源块发送信号, 并保留所述N个符号中除了所述M1个资源块之外的资源块的使用,即不通过所述N个符号中除了所述M1个资源块之外的资源块发送信号。结合图6,被填充的区域为基站发送信号时使用的资源块;未被填充的区域为基站保留的资源块,即不使用的资源块。
通过上述方法,基站在确定发生同频干扰之后,可以只通过特殊子帧中GP之前的N个符号的中间的M1个RB发送信号,并保留所述N个符号中除了所述M1个RB之外的RB的使用,从而降低了所述N个符号中除了所述M1个RB之外的RB对远端基站的上行子帧造成的同频干扰,从而能够减少由于同频干扰造成的用户业务严重恶化的现象的发生。
可选的,本申请实施例中,针对无线帧中的特殊子帧,基站可以只通过特殊子帧中N个符号中间的M个RB发送小区参考信号(cell reference signal,CRS)以及同步信号(Synchronization Signal)。
通过上述方法,基站只通过特殊子帧中N个符号中间的M1个RB发送小区参考信号以及同步信号,从而在降低了基站发送的特殊子帧造成的同频干扰的同时,不影响小区的基本业务。
需要说明的是,在以上步骤501中,基站确定同频干扰的存在,是通过确定其它基站对自身的同频干扰来确定的。同频干扰是相互的,当该基站受到其它基站的同频干扰时,也会对其它基站造成同频干扰。因此,采用保留部分RB的使用的方式,可以减少对其它基站的同频干扰。进一步的,基站自身可以保留可能受到干扰的上行子帧中的部分RB的使用,这样可以将上行和下行信号在频域上调度错开,如此可以进一步降低其它基站对自身的同频干扰,解决严重远端干扰导致上行业务恶化的问题。
相对于图5所示的实施例,还包括如下步骤:
基站保留无线帧中目标上行子帧中间的M2个RB的使用,目标上行子帧包括与特殊子帧相邻的上行子帧,或者,还可以包括与特殊子帧间隔至少1个子帧的上行子帧。
该步骤中,基站将无线帧中目标上行子帧中间的M2个RB作为保留RB, 不调度给任何终端,其中,M2为正整数,且大于或等于M1。
由表1可知,一个无线帧中,特殊子帧与上行子帧相邻,因此在发生同频干扰时,上行子帧和特殊子帧之间互相干扰的可能性很大。同时,由于基站的发射功率远大于终端的发射功率,因此上行子帧对特殊子帧的干扰可以忽略,最终需要消除的干扰为特殊子帧对上行子帧的干扰。
通过上述方法,基站在确定存在同频干扰之后,基站将无线帧中的目标上行子帧的中间的M2个RB作为保留资源块,从而使得目标上行子帧中最容易受到干扰的资源块不会被调度给任何终端,从而使得目标上行子帧受到的同频干扰降到最低。
举例来说,如图7所示,为本申请实施例提供的一种资源调度示意图。图7中,第一无线帧与第二无线帧分别为远端基站和近端基站的无线帧,第一无线帧和第二无线帧的子帧配置模式为模式2,其他模式的子帧配置可以参考图7的描述,在此不再赘述。
图7中,第一无线帧与第二无线帧应该是同步发送的两个无线帧,由于大气波导,导致第一无线帧与第二无线帧出现不同步,使得第一无线帧的1号子帧(该子帧为特殊子帧)与第二无线帧的2号子帧(该子帧为上行子帧)重叠,从而使得第一无线帧的特殊子帧对第二无线帧的上行子帧造成同频干扰。基站在确定发生同频干扰之后,针对无线帧中特殊子帧中的保护期之前连续的N个符号,所述基站保留所述N个符号中除了所述M1个资源块之外的资源块的使用,同时,基站将无线帧中的目标上行子帧的中间的M1个RB作为保留资源块,不调度给任何终端,即不通过目标上行子帧的中间的M1个RB发送信号。结合图7,被填充的区域为基站发送信号时使用的资源块;未被填充的区域为基站保留的资源块,即不使用的资源块。
进一步的,基站在确定存在同频干扰之后,针对无线帧中与特殊子帧相邻的下行子帧,所述基站保留所述N个符号中位于所述下行子帧中的符号中除了中间M1个RB之外的RB的使用,即所述基站只通过所述N个符号中位于所述下行子帧中的符号的中间M1个RB发送信号。
举例来说,如图8所示,为本申请实施例提供的一种资源调度示意图。图8中,第一无线帧与第二无线帧分别为远端基站和近端基站的无线帧,第一无线帧和第二无线帧的子帧配置模式为模式2,其他模式的子帧配置可以参考图8的描述,在此不再赘述。
图8中,第一无线帧与第二无线帧应该是同步发送的两个无线帧,由于大气波导,导致第一无线帧与第二无线帧出现不同步,使得第一无线帧的1号子帧(该子帧为特殊子帧)与第二无线帧的2号子帧(该子帧为上行子帧)重叠,从而使得第一无线帧的特殊子帧对第二无线帧的上行子帧造成同频干扰。基站在确定发生同频干扰之后,针对无线帧中特殊子帧中的保护间隔之前连续的N个符号,所述基站保留所述N个符号中除了所述M1个资源块之外的资源块的使用;同时,基站只在与特殊子帧相邻的下行子帧的中间的M个RB上发送信号,不再使用与特殊子帧相邻的下行子帧中除了中间的M1个RB之外的其它RB。结合图8,被填充的区域为基站发送信号时使用的资源块;未被填充的区域为基站保留的资源块,即不使用的资源块。
可选的,针对无线帧中与特殊子帧相邻的下行子帧,基站只在与特殊子帧相邻的下行子帧的中间的M1个RB上发送寻呼消息、系统信息(System Information)、物理广播信道(Physical Broadcast Channel,PBCH)、同步信号以及第一个时隙中的小区参考信号。
通过上述方法,基站只在与特殊子帧相邻的下行子帧的中间的M个RB上发送信号,从而避免了基站发送的下行子帧对远端的基站的上行子帧的干扰,从而进一步降低了远端的基站的上行子帧受到的干扰。
基于相同的技术构思,本申请实施例还提供一种基站,该基站可执行图5所述的方法流程。
如图9所示,本申请实施例提供一种基站结构示意图。
参见图9,该基站900包括:
处理单元901,用于确定存在同频干扰;
收发单元902,用于针对无线帧中特殊子帧中的保护期GP之前连续的N 个符号,使用所述N个符号的中间M1个资源块RB发送信号,并保留所述N个符号中除了所述M1个RB之外的RB的使用,其中N、M1均为正整数。
可选的,所述收发单元902还用于:
保留无线帧中目标上行子帧中间的M2个RB的使用,其中,所述M2为正整数,且大于或等于所述M1,所述目标上行子帧包括与所述特殊子帧相邻的上行子帧,或者包括与所述特殊子帧相邻的上行子帧和与所述特殊子帧间隔至少1个子帧的上行子帧。
可选的,所述处理单元901具体用于:
对接收到的上行子帧的中间的M3个RB进行测量,获得测量结果,其中,所述M3为正整数,且小于或等于所述M1;
在所述测量结果满足预设同频干扰条件时,确定存在同频干扰。
可选的,所述预设同频干扰条件包括以下至少一项:
在连续多个检测周期内,接收到的上行子帧的中间的M3个RB内的第一预设符号和第二预设符号之间的功率差大于第一阈值;
在连续多个检测周期内,接收到的所有上行子帧在中间的M3个RB内的干扰噪声的平均值大于第二阈值。
可选的,所述N个符号包括所述特殊子帧中的至少一个符号;或者所述N个符号包括所述特殊子帧中的至少一个符号以及与所述特殊子帧相邻的下行子帧中的至少一个符号。
可选的,所述N个符号的中间M1个RB承载以下至少一项:
特殊子帧中的小区参考信号;
特殊子帧中的同步信号;
下行子帧中的寻呼消息;
下行子帧中的系统信息;
下行子帧中的物理广播信道PBCH;
下行子帧中的同步信号;
下行子帧中第一个时隙中的小区参考信号。
可选的,M1等于6。
应理解以上基站的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元通过软件通过处理元件调用的形式实现,部分单元通过硬件的形式实现。例如,处理单元可以为单独设立的处理元件,也可以集成在基站的某一个芯片中实现,此外,也可以以程序的形式存储于基站的存储器中,由基站的某一个处理元件调用并执行以上各个单元的功能。其它单元的实现与之类似。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软件形式的指令完成。
例如,以上这些单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个单元通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
基于相同的技术构思,本申请实施例还提供一种基站,该基站可执行图5所述的方法流程。
如图10所示,本申请实施例提供一种基站结构示意图。
参见图10,该基站包括:天线1010、射频装置1020、基带装置1030。天线1010与射频装置1020连接。在上行方向上,射频装置1020通过天线1010接收终端发送的信息,将终端发送的信息发送给基带装置1030进行处理。在下行方向上,基带装置1030对终端的信息进行处理,并发送给射频装置1020, 射频装置1020对终端的信息进行处理后经过天线1010发送给终端。
基带装置1030,用于确定存在同频干扰,且针对无线帧中特殊子帧中的保护期GP之前连续的N个符号,使用所述N个符号的中间M1个资源块RB发送信号,并保留所述N个符号中除了所述M1个RB之外的RB的使用,其中N、M1均为正整数。其中,基带装置1030可以通过射频装置1020发送信号。
可选的,所述基带装置1030还用于:
保留无线帧中目标上行子帧中间的M2个RB的使用,其中,所述M2为正整数,且大于或等于所述M1,所述目标上行子帧包括与所述特殊子帧相邻的上行子帧,或者包括与所述特殊子帧相邻的上行子帧和与所述特殊子帧间隔至少1个子帧的上行子帧。
可选的,所述基带装置1030具体可以用于执行以下操作以确定同频干扰的存在:
对接收到的上行子帧的中间的M3个RB进行测量,获得测量结果,其中,所述M3为正整数,且小于或等于所述M1;
在所述测量结果满足预设同频干扰条件时,确定存在同频干扰。
可选的,所述预设同频干扰条件包括以下至少一项:
在连续多个检测周期内,接收到的上行子帧的中间的M3个RB内的第一预设符号和第二预设符号之间的功率差大于第一阈值;
在连续多个检测周期内,接收到的所有上行子帧在中间的M3个RB内的干扰噪声的平均值大于第二阈值。
可选的,所述N个符号包括所述特殊子帧中的至少一个符号;或者所述N个符号包括所述特殊子帧中的至少一个符号以及与所述特殊子帧相邻的下行子帧中的至少一个符号。
可选的,所述N个符号的中间M1个RB承载以下至少一项:
特殊子帧中的小区参考信号;
特殊子帧中的同步信号;
下行子帧中的寻呼消息;
下行子帧中的系统信息;
下行子帧中的物理广播信道PBCH;
下行子帧中的同步信号;
下行子帧中第一个时隙中的小区参考信号。
可选的,M1等于6。
图9中所示的各个单元可以位于基带装置1030,在一种实现中,以上各个单元通过处理元件调度程序的形式实现,例如基带装置1030包括处理元件131和存储元件132,处理元件131调用存储元件132存储的程序,以执行以上方法实施例中的方法。此外,该基带装置1030还可以包括接口133,用于与射频装置1020交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
在另一种实现中,图9中所示的各个单元可以是被配置成实施以上方法的一个或多个处理元件,这些处理元件设置于基带装置1030上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA等。这些集成电路可以集成在一起,构成芯片。
例如,图9中所示的各个单元可以集成在一起,以片上系统的形式实现,例如,基带装置1030包括SOC芯片,用于实现以上方法。该芯片内可以集成处理元件131和存储元件132,由处理元件131调用存储元件132的存储的程序的形式实现以上方法或以上各个单元的功能;或者,该芯片内可以集成至少一个集成电路,用于实现以上方法或以上各个单元的功能;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
不管采用何种方式,总之,以上装置包括至少一个处理元件,存储元件和通信接口,其中至少一个处理元件用于执行以上方法实施例所提供的方法。处理元件可以以第一种方式:即执行存储元件存储的程序的方式执行以上方法实施例中的部分或全部步骤;也可以以第二种方式:即通过处理器元件中 的硬件的集成逻辑电路结合指令的方式执行以上方法实施例中的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上方法实施例提供的方法。
这里的处理元件131同以上描述,可以是通用处理器,例如中央处理器,还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路,或,一个或多个微处理器,或,一个或者多个现场可编程门阵列等。
存储元件132可以是一个存储器,也可以是多个存储元件的统称。
可选的,图10中还可以包括接口,接口可以包括任意数量的互联的总线和桥,具体由处理器代表的一个或多个处理器和存储器代表的存储器的各种电路链接在一起。接口还可以将诸如外围设备、稳压器和功率管理电路等之类的各种其他电路链接在一起,这些都是本领域所公知的,因此,本文不再对其进行进一步描述。
本领域内的技术人员应明白,本申请的实施例可提供为方法、系统、或计算机程序产品。因此,本申请可采用完全硬件实施例、完全软件实施例、或结合软件和硬件方面的实施例的形式。而且,本申请可采用在一个或多个其中包含有计算机可用程序代码的计算机可用存储信道(包括但不限于磁盘存储器和光学存储器等)上实施的计算机程序产品的形式。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器指令,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设 备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的精神和范围。这样,倘若本申请的这些修改和变型属于本申请权利要求及其等同技术的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (14)

  1. 一种通信方法,其特征在于,该方法包括:
    基站确定存在同频干扰;
    针对无线帧中特殊子帧中的保护期GP之前连续的N个符号,所述基站使用所述N个符号的中间M1个资源块RB发送信号,并保留所述N个符号中除了所述M1个RB之外的RB的使用,其中N、M1均为正整数。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述基站保留无线帧中目标上行子帧中间的M2个RB的使用,其中,所述M2为正整数,且大于或等于所述M1,所述目标上行子帧包括与所述特殊子帧相邻的上行子帧,或者包括与所述特殊子帧相邻的上行子帧和与所述特殊子帧间隔至少1个子帧的上行子帧。
  3. 根据权利要求1或2所述的方法,其特征在于,所述基站确定存在同频干扰,包括:
    所述基站对接收到的上行子帧的中间的M3个RB进行测量,获得测量结果,其中,所述M3为正整数,且小于或等于所述M1;
    所述基站在所述测量结果满足预设同频干扰条件时,确定存在同频干扰。
  4. 根据权利要求3所述的方法,其特征在于,所述预设同频干扰条件包括以下至少一项:
    在连续多个检测周期内,所述基站接收到的上行子帧的中间的M3个RB内的第一预设符号和第二预设符号之间的功率差大于第一阈值;
    在连续多个检测周期内,所述基站接收到的所有上行子帧在中间的M3个RB内的干扰噪声的平均值大于第二阈值。
  5. 根据权利要求1至4任一所述的方法,其特征在于,所述N个符号包括所述特殊子帧中的至少一个符号;或者所述N个符号包括所述特殊子帧中的至少一个符号以及与所述特殊子帧相邻的下行子帧中的至少一个符号。
  6. 根据权利要求1至5任一所述的方法,其特征在于,所述N个符号的 中间M1个RB承载以下至少一项:
    特殊子帧中的小区参考信号;
    特殊子帧中的同步信号;
    下行子帧中的寻呼消息;
    下行子帧中的系统信息;
    下行子帧中的物理广播信道PBCH;
    下行子帧中的同步信号;
    下行子帧中第一个时隙中的小区参考信号。
  7. 根据权利要求1至6任一所述的方法,其特征在于,M1等于6。
  8. 一种基站,其特征在于,该基站包括:
    处理单元,用于确定存在同频干扰;
    收发单元,用于针对无线帧中特殊子帧中的保护期GP之前连续的N个符号,使用所述N个符号的中间M1个资源块RB发送信号,并保留所述N个符号中除了所述M1个RB之外的RB的使用,其中N、M1均为正整数。
  9. 根据权利要求8所述的基站,其特征在于,所述收发单元还用于:
    保留无线帧中目标上行子帧中间的M2个RB的使用,其中,所述M2为正整数,且大于或等于所述M1,所述目标上行子帧包括与所述特殊子帧相邻的上行子帧,或者包括与所述特殊子帧相邻的上行子帧和与所述特殊子帧间隔至少1个子帧的上行子帧。
  10. 根据权利要求8或9所述的基站,其特征在于,所述处理单元具体用于:
    对接收到的上行子帧的中间的M3个RB进行测量,获得测量结果,其中,所述M3为正整数,且小于或等于所述M1;
    在所述测量结果满足预设同频干扰条件时,确定存在同频干扰。
  11. 根据权利要求10所述的基站,其特征在于,所述预设同频干扰条件包括以下至少一项:
    在连续多个检测周期内,接收到的上行子帧的中间的M3个RB内的第一 预设符号和第二预设符号之间的功率差大于第一阈值;
    在连续多个检测周期内,接收到的所有上行子帧在中间的M3个RB内的干扰噪声的平均值大于第二阈值。
  12. 根据权利要求8至11任一所述的基站,其特征在于,所述N个符号包括所述特殊子帧中的至少一个符号;或者所述N个符号包括所述特殊子帧中的至少一个符号以及与所述特殊子帧相邻的下行子帧中的至少一个符号。
  13. 根据权利要求8至12任一所述的基站,其特征在于,所述N个符号的中间M1个RB承载以下至少一项:
    特殊子帧中的小区参考信号;
    特殊子帧中的同步信号;
    下行子帧中的寻呼消息;
    下行子帧中的系统信息;
    下行子帧中的物理广播信道PBCH;
    下行子帧中的同步信号;
    下行子帧中第一个时隙中的小区参考信号。
  14. 根据权利要求8至13任一所述的基站,其特征在于,M1等于6。
PCT/CN2016/098362 2016-09-07 2016-09-07 一种通信方法及基站 WO2018045516A1 (zh)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP2019533262A JP6917458B2 (ja) 2016-09-07 2016-09-07 通信方法および基地局
PCT/CN2016/098362 WO2018045516A1 (zh) 2016-09-07 2016-09-07 一种通信方法及基站
CN201680088594.3A CN109644366B (zh) 2016-09-07 2016-09-07 一种通信方法及基站
KR1020197008393A KR102128864B1 (ko) 2016-09-07 2016-09-07 통신 방법 및 기지국
EP16915452.3A EP3499952B1 (en) 2016-09-07 2016-09-07 Reducing co-channel interference
US16/295,248 US10904064B2 (en) 2016-09-07 2019-03-07 Communication method and base station

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2016/098362 WO2018045516A1 (zh) 2016-09-07 2016-09-07 一种通信方法及基站

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/295,248 Continuation US10904064B2 (en) 2016-09-07 2019-03-07 Communication method and base station

Publications (1)

Publication Number Publication Date
WO2018045516A1 true WO2018045516A1 (zh) 2018-03-15

Family

ID=61561294

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/098362 WO2018045516A1 (zh) 2016-09-07 2016-09-07 一种通信方法及基站

Country Status (6)

Country Link
US (1) US10904064B2 (zh)
EP (1) EP3499952B1 (zh)
JP (1) JP6917458B2 (zh)
KR (1) KR102128864B1 (zh)
CN (1) CN109644366B (zh)
WO (1) WO2018045516A1 (zh)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2020034328A1 (en) * 2018-09-27 2020-02-20 Zte Corporation Interference management in wireless systems
CN110891316A (zh) * 2018-09-10 2020-03-17 华为技术有限公司 一种时域资源配置方法及接入网设备
CN111836387A (zh) * 2019-04-17 2020-10-27 大唐移动通信设备有限公司 一种远端干扰的自适应方法和装置
CN113890718A (zh) * 2018-09-28 2022-01-04 中兴通讯股份有限公司 处理干扰的方法及装置、存储介质和电子装置
CN116959665A (zh) * 2023-09-21 2023-10-27 深圳市爱保护科技有限公司 运动监测方法、装置、设备及存储介质

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
SG11202102585VA (en) * 2018-11-02 2021-04-29 Zte Corp Interference management in wireless systems
CN112583562B (zh) * 2019-09-30 2022-08-26 华为技术有限公司 数据传输的方法与装置

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132223A (zh) * 2006-08-23 2008-02-27 北京信威通信技术股份有限公司 调整tdd无线通信系统中上行随机接入时隙的方法和系统
CN101557276A (zh) * 2008-04-08 2009-10-14 大唐移动通信设备有限公司 一种连续同向子帧的数据传输方法及装置
CN102655652A (zh) * 2012-01-05 2012-09-05 电信科学技术研究院 一种远端干扰的检测方法和设备
WO2015006940A1 (en) * 2013-07-17 2015-01-22 Nokia Siemens Networks Oy Subframe configuration for performing ul-dl interference measurement in guard period of special subframe for wireless networks
CN105517044A (zh) * 2015-11-25 2016-04-20 中国联合网络通信集团有限公司 一种干扰协调的方法及系统
CN105828338A (zh) * 2016-03-10 2016-08-03 京信通信技术(广州)有限公司 一种配置几乎空白子帧abs的方法及装置

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101425844B (zh) * 2007-11-02 2013-03-20 电信科学技术研究院 一种时分双工系统的数据传输方法和系统
US9083494B2 (en) * 2010-03-23 2015-07-14 Qualcomm Incorporated Efficient resource utilization in TDD
CN103141129A (zh) 2010-09-28 2013-06-05 富士通株式会社 微基站、微基站干扰协调方法和用户终端
CN102457367B (zh) * 2010-10-22 2016-04-20 株式会社Ntt都科摩 消除特殊子帧内干扰的方法
US20130286902A1 (en) * 2012-04-27 2013-10-31 Qualcomm Incorporated Flexible special subframe configuration for tdd in lte
JP6111144B2 (ja) 2013-06-03 2017-04-05 株式会社Nttドコモ 無線基地局、無線通信システム及び無線通信方法
JP6285647B2 (ja) * 2013-06-14 2018-02-28 株式会社Nttドコモ 無線基地局、無線通信システムおよび無線通信方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101132223A (zh) * 2006-08-23 2008-02-27 北京信威通信技术股份有限公司 调整tdd无线通信系统中上行随机接入时隙的方法和系统
CN101557276A (zh) * 2008-04-08 2009-10-14 大唐移动通信设备有限公司 一种连续同向子帧的数据传输方法及装置
CN102655652A (zh) * 2012-01-05 2012-09-05 电信科学技术研究院 一种远端干扰的检测方法和设备
WO2015006940A1 (en) * 2013-07-17 2015-01-22 Nokia Siemens Networks Oy Subframe configuration for performing ul-dl interference measurement in guard period of special subframe for wireless networks
CN105517044A (zh) * 2015-11-25 2016-04-20 中国联合网络通信集团有限公司 一种干扰协调的方法及系统
CN105828338A (zh) * 2016-03-10 2016-08-03 京信通信技术(广州)有限公司 一种配置几乎空白子帧abs的方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3499952A4 *

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110891316A (zh) * 2018-09-10 2020-03-17 华为技术有限公司 一种时域资源配置方法及接入网设备
CN110891316B (zh) * 2018-09-10 2023-11-03 华为技术有限公司 一种时域资源配置方法及接入网设备
US11902840B2 (en) 2018-09-10 2024-02-13 Huawei Technologies Co., Ltd. Time domain resource configuration method and access network device
WO2020034328A1 (en) * 2018-09-27 2020-02-20 Zte Corporation Interference management in wireless systems
US11930520B2 (en) 2018-09-27 2024-03-12 Zte Corporation Interference management in wireless systems
CN113890718A (zh) * 2018-09-28 2022-01-04 中兴通讯股份有限公司 处理干扰的方法及装置、存储介质和电子装置
US11588575B2 (en) 2018-09-28 2023-02-21 Zte Corporation Method and device for processing interference, storage medium and electronic device
CN111836387A (zh) * 2019-04-17 2020-10-27 大唐移动通信设备有限公司 一种远端干扰的自适应方法和装置
CN111836387B (zh) * 2019-04-17 2022-12-23 大唐移动通信设备有限公司 一种远端干扰的自适应方法和装置
CN116959665A (zh) * 2023-09-21 2023-10-27 深圳市爱保护科技有限公司 运动监测方法、装置、设备及存储介质
CN116959665B (zh) * 2023-09-21 2023-12-19 深圳市爱保护科技有限公司 运动监测方法、装置、设备及存储介质

Also Published As

Publication number Publication date
EP3499952B1 (en) 2022-02-23
KR102128864B1 (ko) 2020-07-01
EP3499952A1 (en) 2019-06-19
KR20190039807A (ko) 2019-04-15
JP6917458B2 (ja) 2021-08-11
CN109644366A (zh) 2019-04-16
EP3499952A4 (en) 2019-07-03
US10904064B2 (en) 2021-01-26
JP2019530380A (ja) 2019-10-17
CN109644366B (zh) 2020-12-01
US20190207798A1 (en) 2019-07-04

Similar Documents

Publication Publication Date Title
WO2018045516A1 (zh) 一种通信方法及基站
WO2018219096A1 (zh) 一种针对终端自干扰的传输方法、相关设备和系统
EP2938148B1 (en) Method and apparatus for scheduling user equipment in full-duplex cellular network
EP3806550A1 (en) Signal transmission method and device
WO2018171601A1 (zh) 传输信号的方法和装置
EP3917200A1 (en) Signal transmission and detection method and device
WO2020221332A1 (zh) 一种通信方法及通信装置
CN109152029A (zh) 一种通信方法、网络设备及用户设备
US11638222B2 (en) Power determining method and apparatus
US11997655B2 (en) Resource indication method and apparatus and communication system
WO2018171689A1 (zh) 一种信息传输方法及通信设备
US20140016623A1 (en) Method, Apparatus And Computer Program Product For Triggering The Determination Of A Timing Advance For One Component Carrier Based Upon Another Component Carrier
WO2019029496A1 (zh) 同步信号块指示及确定方法、网络设备和终端设备
CN111629385B (zh) 全双工参考信号的配置方法、终端及基站
WO2021203957A1 (zh) 一种通信方法及装置
CN109803378B (zh) 一种资源选择触发方法和用户终端
CN105103471A (zh) 用于公共参考信号干扰的额外辅助信息
EP3905750A1 (en) Method, system and device for circumventing far-end interference
WO2019101299A1 (en) Method for efficient measurement gap offset signaling
WO2017193908A1 (zh) 信息的收发方法、装置及系统
CN114650600A (zh) 资源配置方法、装置、网络节点和存储介质
CN111800808B (zh) 一种远端干扰源的检测方法及装置
CN110830207A (zh) 一种信息发送、接收方法、设备及装置
WO2020043002A1 (zh) 一种空间复用方法及装置
WO2019100365A1 (zh) 一种无线通信的方法和设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16915452

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2019533262

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2016915452

Country of ref document: EP

Effective date: 20190314

Ref document number: 20197008393

Country of ref document: KR

Kind code of ref document: A