WO2017193908A1 - 信息的收发方法、装置及系统 - Google Patents

信息的收发方法、装置及系统 Download PDF

Info

Publication number
WO2017193908A1
WO2017193908A1 PCT/CN2017/083615 CN2017083615W WO2017193908A1 WO 2017193908 A1 WO2017193908 A1 WO 2017193908A1 CN 2017083615 W CN2017083615 W CN 2017083615W WO 2017193908 A1 WO2017193908 A1 WO 2017193908A1
Authority
WO
WIPO (PCT)
Prior art keywords
serving cell
subframe length
synchronization signal
subframe
period
Prior art date
Application number
PCT/CN2017/083615
Other languages
English (en)
French (fr)
Inventor
成艳
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to JP2018559374A priority Critical patent/JP2019520731A/ja
Priority to EP17795526.7A priority patent/EP3442188B1/en
Priority to BR112018072556A priority patent/BR112018072556A2/pt
Publication of WO2017193908A1 publication Critical patent/WO2017193908A1/zh
Priority to US16/186,403 priority patent/US10764850B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2666Acquisition of further OFDM parameters, e.g. bandwidth, subcarrier spacing, or guard interval length
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2647Arrangements specific to the receiver only
    • H04L27/2655Synchronisation arrangements
    • H04L27/2689Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation
    • H04L27/2692Link with other circuits, i.e. special connections between synchronisation arrangements and other circuits for achieving synchronisation with preamble design, i.e. with negotiation of the synchronisation sequence with transmitter or sequence linked to the algorithm used at the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/08Access point devices

Definitions

  • the present invention relates to the field of network applications, and in particular, to a method, device and system for transmitting and receiving information.
  • the 5G network also known as the New Radio (NR) network, is dedicated to supporting higher system performance, which will support a variety of different services, different deployment scenarios and different spectrum.
  • different services include enhanced mobile broadband (eMBB), machine type communication (English: Machine Type Communication, MTC), ultra-reliable low-latency communication (English: Ultra-Reliable and Low Latency Communications, URLLC) , Multimedia Broadcast Multicast Service (MBMS) and positioning;
  • eMBB enhanced mobile broadband
  • MTC Machine Type Communication
  • URLLC Ultra-Reliable and Low Latency Communications
  • MBMS Multimedia Broadcast Multicast Service
  • different deployment scenarios include indoor hotspot (English: indoor hotspot), dense urban (English: dense urban), suburban, urban macro coverage (English: Urban Macro) and high-speed rail scenes
  • 5G will support a spectrum range of up to 100 GHz (English: GHz), with 6 GHz and below 6 GHz as the main frequency band and 6 GHz or higher as the secondary frequency band.
  • 5G will support multiple sets of system parameters. For example, 5G will support different subcarrier spacings, different subcarrier spacings correspond to different system parameters, and the same subcarrier spacing can support different subframe lengths.
  • the length of the subframe may be referred to as the length of the Transmission Time Interval (TTI), or the length of the subframe may be referred to as a Transmission Time Unit (TTU).
  • TTI Transmission Time Interval
  • TTU Transmission Time Unit
  • subframe lengths for example, a subframe length less than 1 millisecond (ms) in length, can be used for low-latency services, such as URLLC; for longer subframe lengths, for example, a subframe length of 1 ms, can be used for Services with low latency requirements or large packet sizes, such as eMBB.
  • ms millisecond
  • eMBB Services with low latency requirements or large packet sizes
  • an embodiment of the present invention provides a method, device, and system for transmitting and receiving information.
  • the technical solution is as follows:
  • the first aspect provides a method for transmitting and receiving information, where the method includes: determining, by a user equipment, a subframe length of a serving cell; and determining, by the user equipment, a synchronization signal of the serving cell according to a subframe length of the serving cell. And the user equipment sends information or receives information on the serving cell according to the period of the synchronization signal and the length of the subframe.
  • the design problem of the synchronization signal corresponding to different subframe lengths in the 5G communication network is solved by determining the period of the synchronization signal of the serving cell according to the subframe length of the serving cell.
  • the determining, by the user equipment, the period of the synchronization signal of the serving cell according to the subframe length of the serving cell includes: determining, by the user equipment, the service according to a subframe length of the serving cell Community The subframe length corresponding to the subframe length is set; the user equipment determines the period of the synchronization signal of the serving cell according to the longest subframe length in the subframe length set. Since the period of the synchronization signal of the serving cell is determined by using the longest subframe length in the set of subframe lengths in the serving cell, the lengths of different subframes belonging to the same subframe length set are only corresponding to one set of synchronization signal designs. The design complexity is reduced; and the synchronization signal overhead can be reduced and the resource utilization can be improved under the premise of ensuring reasonable delay.
  • the determining, by the user equipment, the period of the synchronization signal of the serving cell according to the subframe length of the serving cell includes: determining, by the user equipment, the service according to a subframe length of the serving cell a subframe length set corresponding to a subframe length of the cell; the user equipment determines a period of the synchronization signal of the serving cell according to a shortest subframe length in the subframe length set. Since the period of the synchronization signal of the serving cell is determined by using the shortest subframe length in the subframe length set in the serving cell, the lengths of different subframes belonging to the same subframe length set are only corresponding to one set of synchronization signal design, and the reduction is reduced. The design complexity is reduced, and the time for the user equipment to access the cell can be reduced and the service delay can be reduced while ensuring reasonable overhead.
  • the subframe length corresponding to the subframe length of the serving cell is one of a first subframe length set and a second subframe length set, and any of the first subframe length sets One subframe length is longer than any one of the second subframe length sets.
  • the period of the synchronization signal of the serving cell determined according to the first subframe length set is longer than the period of the synchronization signal of the serving cell determined according to the second subframe length set.
  • the first subframe length set includes a first subframe length and a second subframe length, the first subframe length is equal to 0.5 milliseconds, and the second subframe length is equal to 1 millisecond;
  • the second subframe length set includes a third subframe length and a fourth subframe length, the third subframe length is equal to 0.125 milliseconds, and the fourth subframe length is equal to 0.25 milliseconds.
  • the length of the different subframes corresponding to the same subcarrier interval is divided into two subframe length sets, and the shortest two subframes belong to the same subframe length set, and the longest two subframes belong to the same subframe length set, so that the same sub-frame
  • reasonable resources can be used to ensure reasonable delay requirements.
  • the subframe length set corresponding to the subframe length of the serving cell includes a first subframe length and a second subframe length, where the first subframe length is equal to 0.5 milliseconds, and the second subframe
  • the length of the subframe length corresponding to the subframe length of the serving cell includes a third subframe length and a fourth subframe length, and the third subframe length is equal to 0.125 milliseconds, and the third subframe The frame length is equal to 0.25 milliseconds.
  • the determining, by the user equipment, the period of the synchronization signal of the serving cell according to the subframe length of the serving cell includes: if the subframe length of the serving cell is equal to 0.125 milliseconds, the user The device determines a period of the synchronization signal of the serving cell based on a subframe length of 0.25 milliseconds; if the subframe length of the serving cell is equal to 0.25 milliseconds, the user equipment determines the serving cell based on a subframe length of 0.25 milliseconds.
  • the user equipment determines a period of the synchronization signal of the serving cell based on a subframe length of 1 millisecond; if the subframe length of the serving cell Equal to 1 millisecond, the user equipment determines the period of the synchronization signal of the serving cell based on the subframe length of 1 millisecond.
  • the determining, by the user equipment, the period of the synchronization signal of the serving cell according to the subframe length of the serving cell includes: if the subframe length of the serving cell is equal to 0.125 milliseconds, the user The device determines that the period of the synchronization signal of the serving cell is a positive integer multiple of 0.25 milliseconds; if the subframe length of the serving cell is equal to 0.25 milliseconds, the user equipment determines that the period of the synchronization signal of the serving cell is 0.25 milliseconds Positive integer multiple; If the subframe length of the serving cell is equal to 0.5 milliseconds, the user equipment determines that the period of the synchronization signal of the serving cell is a positive integer multiple of 1 millisecond; if the subframe length of the serving cell is equal to 1 millisecond, The user equipment determines that the period of the synchronization signal of the serving cell is a positive integer multiple of 1 millisecond.
  • the determining, by the user equipment, the period of the synchronization signal of the serving cell according to the subframe length of the serving cell includes: if the subframe length of the serving cell is equal to 0.125 milliseconds, the user The device determines that the period of the synchronization signal of the serving cell is 1.25 milliseconds; if the subframe length of the serving cell is equal to 0.25 milliseconds, the user equipment determines that the period of the synchronization signal of the serving cell is 1.25 milliseconds; If the subframe length of the serving cell is equal to 0.5 milliseconds, the user equipment determines that the period of the synchronization signal of the serving cell is 5 milliseconds; if the subframe length of the serving cell is equal to 1 millisecond, the user equipment determines that The period of the synchronization signal of the serving cell is 5 milliseconds.
  • the method further includes: receiving, by the user equipment, system information of a serving cell, where a period of system information of the serving cell is the same as a period of a synchronization signal of the serving cell.
  • the method further includes: the user equipment determining, according to a subframe length of the serving cell, a period of system information of the serving cell; the user equipment according to the The period of the synchronization signal and the length of the subframe are sent or received on the serving cell, and the method includes: the period of the synchronization signal, the period of the system information of the serving cell, and the sub The frame length transmits or receives information on the serving cell.
  • the user equipment determines the period of the system information of the serving cell according to the subframe length of the serving cell, where the user equipment determines the service according to the subframe length of the serving cell. a subframe length set corresponding to a subframe length of the cell; the user equipment determines a period of system information of the serving cell according to a length of the longest subframe in the subframe length set.
  • the user equipment determines a subframe length of the serving cell, where the user equipment determines a sequence corresponding to the synchronization signal of the serving cell, and the user equipment determines according to a sequence corresponding to the synchronization signal.
  • the subframe length of the serving cell is a subframe length of the serving cell.
  • the user equipment determines the subframe length of the serving cell according to the sequence corresponding to the synchronization signal, including: if the sequence corresponding to the synchronization signal is the first sequence, the user equipment determines The subframe length of the serving cell is the length of the first subframe; if the sequence corresponding to the synchronization signal is the second sequence, the user equipment determines that the subframe length of the serving cell is the second subframe length.
  • the determining, by the user equipment, the subframe length of the serving cell according to the sequence corresponding to the synchronization signal includes: if the sequence corresponding to the synchronization signal is a third sequence, the user equipment determines The subframe length of the serving cell is the third subframe length. If the sequence corresponding to the synchronization signal is the fourth sequence, the user equipment determines that the subframe length of the serving cell is the fourth subframe length.
  • the first subframe length is 0.125 milliseconds and the second subframe length is 0.25 milliseconds.
  • the third subframe is 0.5 milliseconds in length and the fourth subframe is 1 millisecond in length.
  • the synchronization signal is the primary synchronization signal.
  • the synchronization signal is located in the first N symbols of the subframe carrying the synchronization signal, the N being greater than or equal to one.
  • a second aspect provides a method for transmitting and receiving information, where the method includes: determining, by a base station, a subframe length of a serving cell The base station determines a period of the synchronization signal of the serving cell according to the subframe length of the serving cell; the base station sends a synchronization signal on the serving cell according to a period of the synchronization signal; The subframe length of the serving cell transmits or receives information on the serving cell.
  • the determining, by the base station, the period of the synchronization signal of the serving cell according to the subframe length of the serving cell including: determining, by the base station, the serving cell according to a subframe length of the serving cell a subframe length set corresponding to the subframe length; the base station determines a period of the synchronization signal of the serving cell according to the longest subframe length in the subframe length set.
  • the determining, by the base station, the period of the synchronization signal of the serving cell according to the subframe length of the serving cell including: determining, by the base station, the serving cell according to a subframe length of the serving cell a subframe length set corresponding to the subframe length; the base station determines a period of the synchronization signal of the serving cell according to the shortest subframe length in the subframe length set. Since the period of the synchronization signal of the serving cell is determined by using the shortest subframe length in the subframe length set in the serving cell, the lengths of different subframes belonging to the same subframe length set are only corresponding to one set of synchronization signal design, and the reduction is reduced. The design complexity is reduced, and the time for the user equipment to access the cell can be reduced and the service delay can be reduced while ensuring reasonable overhead.
  • the subframe length corresponding to the subframe length of the serving cell is one of a first subframe length set and a second subframe length set, and any of the first subframe length sets One subframe length is longer than any one of the second subframe length sets.
  • the period of the synchronization signal of the serving cell determined according to the first subframe length set is longer than the period of the synchronization signal of the serving cell determined according to the second subframe length set.
  • the first subframe length set includes a first subframe length and a second subframe length, the first subframe length is equal to 0.5 milliseconds, and the second subframe length is equal to 1 millisecond;
  • the second subframe length set includes a third subframe length and a fourth subframe length, the third subframe length is equal to 0.125 milliseconds, and the third subframe length is equal to 0.25 milliseconds.
  • the subframe length set corresponding to the subframe length of the serving cell includes a first subframe length and a second subframe length, the first subframe length is equal to 0.5 milliseconds, and the second subframe The frame length is equal to 1 millisecond; or the subframe length set corresponding to the subframe length of the serving cell includes a third subframe length and a fourth subframe length, and the third subframe length is equal to 0.125 milliseconds, and the fourth The subframe length is equal to 0.25 milliseconds.
  • the determining, by the base station, the period of the synchronization signal of the serving cell according to the subframe length of the serving cell includes: if the subframe length of the serving cell is equal to 0.125 milliseconds, the base station is based on a subframe length of 0.25 milliseconds determines a period of a synchronization signal of the serving cell; if a subframe length of the serving cell is equal to 0.25 milliseconds, the base station determines a synchronization signal of the serving cell based on a subframe length of 0.25 milliseconds a period; if the subframe length of the serving cell is equal to 0.5 milliseconds, the base station determines a period of the synchronization signal of the serving cell based on a subframe length of 1 millisecond; if the subframe length of the serving cell is equal to 1 millisecond, Then, the base station determines a period of the synchronization signal of the serving cell based on a subframe length of 1 millisecond
  • the determining, by the base station, the period of the synchronization signal of the serving cell according to the subframe length of the serving cell includes: if the subframe length of the serving cell is equal to 0.125 milliseconds, the base station determines The period of the synchronization signal of the serving cell is a positive integer multiple of 0.25 milliseconds; if the subframe length of the serving cell is equal to 0.25 milliseconds, the base station determines that the period of the synchronization signal of the serving cell is a positive integer of 0.25 milliseconds If the subframe length of the serving cell is equal to 0.5 milliseconds, the base station determines that the period of the synchronization signal of the serving cell is 1 millisecond. A positive integer multiple; if the subframe length of the serving cell is equal to 1 millisecond, the period of the synchronization signal of the serving cell is a positive integer multiple of 1 millisecond.
  • the determining, by the base station, the period of the synchronization signal of the serving cell according to the subframe length of the serving cell includes: if the subframe length of the serving cell is equal to 0.125 milliseconds, the base station determines The period of the synchronization signal of the serving cell is 1.25 milliseconds; if the subframe length of the serving cell is equal to 0.25 milliseconds, the base station determines that the period of the synchronization signal of the serving cell is 1.25 milliseconds; If the subframe length is equal to 0.5 milliseconds, the base station determines that the period of the synchronization signal of the serving cell is 5 milliseconds; if the subframe length of the serving cell is equal to 1 millisecond, the base station determines a synchronization signal of the serving cell. The period is 5 milliseconds.
  • the method further includes: the base station transmitting system information of a serving cell, where a period of system information of the serving cell is the same as a period of a synchronization signal of the serving cell.
  • the method further includes: determining, by the base station, a period of system information of the serving cell according to a subframe length of the serving cell; the base station according to a subframe length of the serving cell
  • the sending or receiving information on the serving cell further includes: the base station sending or receiving information on the serving cell according to a period of the synchronization signal, a period of system information of the serving cell, and a length of the subframe. .
  • the determining, by the base station, the period of the system information of the serving cell according to the subframe length of the serving cell including: determining, by the base station, the serving cell according to a subframe length of the serving cell a subframe length set corresponding to the subframe length; the base station determines a period of system information of the serving cell according to the longest subframe length in the subframe length set.
  • the base station sends a synchronization signal on the serving cell according to a period of the synchronization signal, including: determining, by the base station, a sequence of the synchronization signal according to a subframe length of the serving cell; The base station transmits a synchronization signal on the serving cell according to a period of the synchronization signal and a sequence of the synchronization signal.
  • the base station determines the sequence of the synchronization signal according to the subframe length of the serving cell, including: if the subframe length of the serving cell is the first subframe length, the base station determines The sequence corresponding to the synchronization signal is a first sequence. If the subframe length of the serving cell is the second subframe length, the base station determines that the sequence corresponding to the synchronization signal is the second sequence.
  • the base station determines the sequence of the synchronization signal according to the subframe length of the serving cell, including: if the subframe length of the serving cell is the third subframe length, the base station determines The sequence corresponding to the synchronization signal is a third sequence. If the subframe length of the serving cell is the fourth subframe length, the base station determines that the sequence corresponding to the synchronization signal is the fourth sequence.
  • the first subframe length is 0.125 milliseconds and the second subframe length is 0.25 milliseconds.
  • the first subframe is 0.5 milliseconds in length and the second subframe is 1 millisecond in length.
  • the synchronization signal is the primary synchronization signal.
  • the synchronization signal is located in the first N symbols of the subframe carrying the synchronization signal, and the N is greater than or equal to 1.
  • a transceiver for transmitting information is provided, the transceiver device of the information includes at least one unit, and each unit of the transceiver device of the information is used to implement any one of the foregoing first aspect or the first aspect. The corresponding steps in the method of transmitting and receiving the provided information.
  • a device for transmitting and receiving information includes at least one unit, the letter
  • the respective units of the transceiver device are respectively configured to implement corresponding steps in the method of transmitting and receiving information provided by any of the possible aspects of the second aspect or the second aspect.
  • a user equipment in a fifth aspect, includes: a processor, a memory coupled to the processor, a transmitter, and a receiver, the processor being configured to implement the method for transmitting and receiving information provided by any of the possible aspects of the first aspect or the first aspect Each step.
  • a base station in a sixth aspect, includes: a processor, a memory connected to the processor, a transmitter, and a receiver, and the processor is configured to implement each of the method for transmitting and receiving information provided by any one of the second aspect or the second aspect step.
  • a computer readable medium storing instructions for implementing a method of transceiving information provided by the first aspect or any of the possible designs of the first aspect is provided.
  • a computer readable medium storing instructions for implementing a method of transceiving information provided by any of the possible aspects of the second aspect or the second aspect.
  • the ninth aspect provides a system for transmitting and receiving information, the system comprising the user equipment provided in the third aspect or the fifth aspect, and the base station provided in the fourth aspect or the sixth aspect.
  • FIG. 1 is a schematic diagram of an implementation environment involved in a method for transmitting and receiving information provided in some embodiments of the present invention
  • FIG. 2 is a schematic structural diagram of a user equipment provided in an embodiment of the present invention.
  • FIG. 3 is a schematic structural diagram of a base station provided in an embodiment of the present invention.
  • 4A is a flowchart of a method for transmitting and receiving information provided in an embodiment of the present invention.
  • 4B is a flowchart of a method for transmitting and receiving information provided in another embodiment of the present invention.
  • 4C is a flowchart of determining, by a user equipment, a subframe length of a serving cell according to an embodiment of the present invention
  • 4D is a flowchart of determining, by a user equipment, a subframe length of a serving cell according to an embodiment of the present invention
  • 4E is a flowchart of a method for transmitting and receiving information provided in still another embodiment of the present invention.
  • FIG. 5 is a block diagram of a transceiver for transmitting information provided in an embodiment of the present invention.
  • Figure 6 is a block diagram of a transceiver for providing information in another embodiment of the present invention.
  • FIG. 1 is a schematic diagram of an implementation environment involved in a method for transmitting and receiving information provided in some embodiments of the present invention, where the implementation environment includes a user equipment 110 and a base station 120.
  • the user equipment 110 performs information interaction with the base station 120 through the serving cell.
  • the user device 110 may be a mobile phone, a tablet computer, a personal computer (PC), a multimedia playback device, or the like.
  • User equipment 110 communicates with base station 120 over a network.
  • the structure of the user equipment 110 can be seen in FIG. 2, and the user equipment 110 includes a processor 21, a transceiver 22, and a memory 23.
  • the processor 21 includes one or more processing cores, and the processor 21 executes by executing a software program Various functional applications and data processing.
  • the transceiver 22 can be used to communicate with other devices, such as with the base station 120.
  • the memory 23 is coupled to the processor 21, for example, the memory 23 can be coupled to the processor 21 via a bus; the memory 23 can be used to store software programs.
  • the memory 23 can be implemented by any type of volatile or non-volatile storage device or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory ( English: electrically erasable programmable read-only memory (EEPROM), erasable programmable read only memory (EPROM), programmable read only memory (English: programmable read only memory, PROM), only Read memory (English: read only memory image, ROM), magnetic memory, flash memory, disk or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable programmable read only memory
  • PROM programmable read only memory
  • only Read memory English: read only memory image, ROM
  • magnetic memory magnetic memory
  • flash memory disk or optical disk.
  • the structure of the user equipment 110 shown in FIG. 2 does not constitute a limitation on the user equipment 110, and may include more or less components than those illustrated, or combine some components, or different. Parts layout.
  • the structure of the base station 120 can be seen in FIG. 3.
  • the base station 120 includes a processor 31, a transceiver 32, and a memory 33.
  • the processor 31 includes one or more processing cores, and the processor 31 executes various functional applications and data processing by running a software program.
  • the transceiver 32 can be used to communicate with other devices, such as with the user device 110.
  • the memory 33 is coupled to the processor 31.
  • the memory 33 can be coupled to the processor 31 via a bus; the memory 33 can be used to store software programs.
  • Memory 33 can be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory, electrically erasable programmable read only memory, erasable programmable read only memory, Program read-only memory, read-only memory, magnetic memory, flash memory, disk or optical disk.
  • the structure of the base station 120 shown in FIG. 3 does not constitute a limitation to the base station 120, and may include more or less components than those illustrated, or may combine certain components or different components. Arrangement.
  • FIG. 4A is a flowchart of a method for transmitting and receiving information provided in an embodiment of the present invention
  • the method for transmitting and receiving the information is applied to the user equipment 110 shown in FIG. 1 and FIG.
  • the method for transmitting and receiving the information includes the following steps:
  • Step 401 The user equipment determines a subframe length of the serving cell.
  • the user equipment determines the subframe length of the serving cell, or the user equipment determines the TTI length of the serving cell, or the user equipment determines the length of the TTU of the serving cell.
  • the serving cell in all the embodiments of the present invention may be a serving cell configured by the network side device to the user equipment, or a serving cell serving the user equipment, or a serving cell accessed by the user equipment.
  • the serving cell (English: serving cell) in all embodiments of the present invention may also be referred to as a carrier (English: component carrier).
  • the serving cell in the embodiment of the present invention may be a primary serving cell of a user equipment (English: primary serving cell) or a secondary serving cell (English: secondary serving cell).
  • the user equipment determines the subframe length of the serving cell, which may include:
  • Step 401a The user equipment receives system information of the serving cell, where the system information includes subframe length indication information.
  • Step 401b The user equipment determines, according to the subframe length indication information included in the system information, the child of the serving cell. Frame length.
  • Step 401 can be performed by processor 21 in FIG.
  • Step 402 The user equipment determines a period of the synchronization signal of the serving cell according to the subframe length of the serving cell.
  • the user equipment when the user equipment determines the period of the synchronization signal of the serving cell according to the subframe length of the serving cell, the user equipment may include at least the following five modes:
  • the user equipment determines a subframe length set corresponding to the subframe length of the serving cell according to the subframe length of the serving cell; the user equipment determines the service according to the longest subframe length in the subframe length set. The period of the synchronization signal of the cell.
  • the user equipment determines a subframe length set corresponding to the subframe length of the serving cell according to the subframe length of the serving cell; the user equipment determines the serving cell according to the shortest subframe length in the subframe length set. The period of the sync signal.
  • the subframe length set corresponding to the subframe length of the serving cell includes a first subframe length and a second subframe length, and the first subframe length is equal to 0.5 milliseconds.
  • the second subframe length is equal to 1 millisecond; or the subframe length corresponding to the subframe length of the serving cell includes a third subframe length and a fourth subframe length, and the third subframe length is equal to 0.125 milliseconds, and the fourth subframe The frame length is equal to 0.25 milliseconds.
  • the subframe length set corresponding to the subframe length of the serving cell is one of the first subframe length set and the second subframe length set, and any one of the first subframe length sets Each is longer than any one of the second subframe length sets.
  • the period of the synchronization signal of the serving cell determined according to the first subframe length set is longer than the period of the synchronization signal of the serving cell determined according to the second subframe length set.
  • the first subframe length set includes a first subframe length and a second subframe length, the first subframe length is equal to 0.5 milliseconds, the second subframe length is equal to 1 millisecond, and the second subframe length set includes the first subframe length The three subframe length and the fourth subframe length, the third subframe length is equal to 0.125 milliseconds, and the third subframe length is equal to 0.25 milliseconds.
  • the user equipment determines the period of the synchronization signal of the serving cell based on the subframe length of 0.25 milliseconds; if the subframe length of the serving cell is equal to 0.25 The user equipment determines the period of the synchronization signal of the serving cell based on the subframe length of 0.25 milliseconds; if the subframe length of the serving cell is equal to 0.5 milliseconds, the user equipment determines the serving cell based on the subframe length of 1 millisecond. The period of the synchronization signal; if the subframe length of the serving cell is equal to 1 millisecond, the user equipment determines the period of the synchronization signal of the serving cell based on the subframe length of 1 millisecond;
  • the user equipment determines that the period of the synchronization signal of the serving cell is a positive integer multiple of 0.25 milliseconds; if the subframe length of the serving cell is equal to 0.25 The user equipment determines that the period of the synchronization signal of the serving cell is a positive integer multiple of 0.25 milliseconds; if the subframe length of the serving cell is equal to 0.5 milliseconds, the user equipment determines that the period of the synchronization signal of the serving cell is 1 A positive integer multiple of milliseconds; if the subframe length of the serving cell is equal to 1 millisecond, the user equipment determines that the period of the synchronization signal of the serving cell is a positive integer multiple of 1 millisecond.
  • the user equipment determines that the period of the synchronization signal of the serving cell is 1.25 milliseconds; if the subframe length of the serving cell is equal to 0.25 milliseconds, The user equipment determines that the period of the synchronization signal of the serving cell is 1.25 milliseconds; if the subframe length of the serving cell is equal to 0.5 milliseconds, the user equipment determines that the period of the synchronization signal of the serving cell is 5 milliseconds; if the child of the serving cell The frame length is equal to 1 millisecond, and the user equipment determines that the period of the synchronization signal of the serving cell is 5 milliseconds.
  • Step 402 can be performed by processor 21 in FIG.
  • the period of the system information of the serving cell and the period of the synchronization signal may be the same.
  • the period of the synchronization signal of the serving cell determined by the user equipment according to the subframe length of the serving cell is also the period of the system information of the serving cell, and
  • the system information of the serving cell may also be received according to the period of the system information.
  • This step 403 is an optional step.
  • Step 403 The user equipment receives system information of the serving cell.
  • the step 403 is an optional step.
  • the user equipment receives system information of the serving cell, and the period of the system information of the serving cell may be the same as the period of the synchronization signal of the serving cell.
  • the user equipment receiving the system information of the serving cell may include: determining, by the user equipment, the period of the system information of the serving cell according to the subframe length of the serving cell; the period of the user equipment according to the system information of the serving cell Receiving system information of the serving cell.
  • the determining, by the user equipment, the period of the system information of the serving cell according to the subframe length of the serving cell may include: determining, by the user equipment, the subframe length of the serving cell according to the subframe length of the serving cell a subframe length set; the user equipment determines a period of system information of the serving cell according to a length of the longest subframe in the subframe length set;
  • determining, by the user equipment, the period of the system information of the serving cell according to the subframe length of the serving cell where the user equipment determines the subframe length of the serving cell according to the subframe length of the serving cell. a corresponding subframe length set; the user equipment determines a period of system information of the serving cell according to a shortest subframe length in the subframe length set;
  • the step of determining, by the user equipment, the period of the system information of the serving cell according to the subframe length of the serving cell may be performed by the transceiver 22 in FIG.
  • the system information includes a subframe number (English: Subframe Number) indication field, where the subframe number indication field is used to indicate the first radio frame block index.
  • the first radio frame block includes eight radio frames, that is, the sub-frame number indication field is used to indicate an index number of the first radio frame block that carries the system information; and optionally, the system information corresponds to
  • the scrambling information may be used to distinguish the first subframe block index corresponding to the subframe that carries the system information, where the first subframe block index refers to the first subframe block corresponding to the subframe that carries the system information in the first radio frame.
  • An index in the block, the first subframe block including 2 subframes.
  • Step 403 can be performed by transceiver 22 in FIG.
  • Step 404 The user equipment sends information or receives information on the serving cell according to the period of the synchronization signal and the length of the subframe.
  • the user equipment sends information or receives information on the serving cell according to the period of the synchronization signal and the length of the subframe, which may include:
  • the user equipment receives the synchronization signal according to the period of the synchronization signal, and synchronizes with the serving cell; the user equipment sends information or receives information on the serving cell according to the length of the subframe.
  • the user equipment sends information or receives information on the serving cell according to the period of the synchronization signal and the length of the subframe, and may further include:
  • the user equipment sends information or receives information on the serving cell according to a period of the synchronization signal, a period of system information of the serving cell, and a length of the subframe.
  • a period of the synchronization signal a period of system information of the serving cell
  • a length of the subframe a period of the subframe
  • the user equipment receives the synchronization signal according to the period of the synchronization signal, and synchronizes with the serving cell; the device receives the system information according to the period of the system information, and determines the system parameter of the serving cell; the user equipment is in the service according to the length of the subframe. Send or receive information on the cell.
  • the user equipment sends information on the serving cell, and the user equipment sends uplink data and uplink control information to the base station on the serving cell according to the resource unit of the serving cell.
  • the user equipment receiving the information on the serving cell may include: the user equipment receives the information sent by the base station on the serving cell according to the resource unit of the serving cell, and specifically includes the downlink data and the downlink control sent by the receiving base station. Information and downlink reference signals.
  • Step 404 can be performed by transceiver 22 in FIG.
  • the corresponding base station determines the period of the synchronization signal of the serving cell and the process of transmitting and receiving information, as shown in FIG. 4B. .
  • FIG. 4B is a flowchart of a method for transmitting and receiving information provided in another embodiment of the present invention
  • the method for transmitting and receiving the information is applied to the base station 120 shown in FIG. 1 and FIG. 3, and the method for transmitting and receiving the information It can include the following steps:
  • Step 405 The base station determines a subframe length of the serving cell.
  • the base station determines the subframe length of the serving cell, or the base station determines the TTI length of the serving cell, or the base station determines the length of the TTU of the serving cell.
  • Step 405 can be performed by processor 31 in FIG.
  • Step 406 The base station determines, according to the subframe length of the serving cell, a period of the synchronization signal of the serving cell.
  • the base station determines the period of the synchronization signal of the serving cell according to the subframe length of the serving cell, and may include at least the following five modes:
  • the base station determines, according to the subframe length of the serving cell, a subframe length set corresponding to the subframe length of the serving cell; the base station determines the service according to the longest subframe length in the subframe length set. The period of the synchronization signal of the cell.
  • the base station determines, according to the subframe length of the serving cell, a subframe length set corresponding to the subframe length of the serving cell; the base station determines the serving cell according to the shortest subframe length in the subframe length set. The period of the sync signal.
  • the subframe length corresponding to the subframe length of the serving cell further includes a first subframe length and a second subframe length, where the first subframe length is The length of the subframe length corresponding to the subframe length of the serving cell includes a third subframe length and a fourth subframe length, and the third subframe length is equal to 0.125. In milliseconds, the third subframe length is equal to 0.25 milliseconds.
  • the subframe length corresponding to the subframe length of the serving cell is a first subframe length set.
  • the length of any one of the subframe lengths included in the first subframe length set is longer than any one of the subframe lengths included in the second subframe length set.
  • the period of the synchronization signal of the serving cell determined according to the first subframe length set is longer than the period of the synchronization signal of the serving cell determined according to the second subframe length set.
  • the first subframe length set includes a first subframe length and a second subframe length, the first subframe length is equal to 0.5 milliseconds, and the second subframe length is equal to 1 millisecond;
  • the second subframe The length set includes a third subframe length and a fourth subframe length, the third subframe length being equal to 0.125 milliseconds, and the third subframe length being equal to 0.25 milliseconds.
  • the base station determines the period of the synchronization signal of the serving cell based on the subframe length of 0.25 milliseconds; if the subframe length of the serving cell is equal to 0.25 milliseconds The base station determines the period of the synchronization signal of the serving cell based on the subframe length of 0.25 milliseconds; if the subframe length of the serving cell is equal to 0.5 milliseconds, the base station determines the synchronization signal of the serving cell based on the subframe length of 1 millisecond. If the subframe length of the serving cell is equal to 1 millisecond, the base station determines the period of the synchronization signal of the serving cell based on the subframe length of 1 millisecond.
  • the period of the synchronization signal of the serving cell is a positive integer multiple of 0.25 milliseconds; if the subframe length of the serving cell is equal to 0.25 milliseconds, the The period of the synchronization signal of the serving cell is a positive integer multiple of 0.25 milliseconds; if the subframe length of the serving cell is equal to 0.5 milliseconds, the period of the synchronization signal of the serving cell is a positive integer multiple of 1 millisecond; if the child of the serving cell The frame length is equal to 1 millisecond, and the period of the synchronization signal of the serving cell is a positive integer multiple of 1 millisecond.
  • the period of the synchronization signal of the serving cell is 1.25 milliseconds; if the subframe length of the serving cell is equal to 0.25 milliseconds, the serving cell is synchronized. The period of the signal is 1.25 milliseconds; if the subframe length of the serving cell is equal to 0.5 milliseconds, the period of the synchronization signal of the serving cell is 5 milliseconds; if the subframe length of the serving cell is equal to 1 millisecond, the synchronization of the serving cell The period of the signal is 5 milliseconds.
  • Step 406 can be performed by processor 31 in FIG.
  • Step 407 The base station sends a synchronization signal on the serving cell according to a period of the synchronization signal.
  • the base station sends a synchronization signal on the serving cell according to the period of the synchronization signal. For example, the base station determines the subframe in which the synchronization signal is transmitted according to the period of the synchronization signal, and transmits the synchronization signal on the subframe in which the different signal is transmitted.
  • Step 407 can be performed by transceiver 32 in FIG.
  • the period of the system information of the serving cell and the period of the synchronization signal may be the same.
  • the base station may determine the period of the synchronization signal of the serving cell according to the subframe length of the serving cell, that is, the period of the system information of the serving cell, according to This period can receive system information of the serving cell.
  • step 408 which is an optional step.
  • Step 408 The base station sends system information of the serving cell.
  • the step 408 is an optional step.
  • the base station sends system information of the serving cell, and the period of the system information of the serving cell and the period of the synchronization signal of the serving cell may be the same.
  • the sending, by the base station, system information of the serving cell may include: determining, by the base station, a period of system information of the serving cell according to a subframe length of the serving cell; the base station receiving according to a period of system information of the serving cell System information of the serving cell.
  • the determining, by the base station, the period of the system information of the serving cell according to the subframe length of the serving cell may include: determining, by the base station, the subframe corresponding to the subframe length of the serving cell according to the subframe length of the serving cell a set of lengths; the base station determines a period of system information of the serving cell according to a length of a longest subframe in the set of subframe lengths;
  • the base station sends the system information of the serving cell, which may include:
  • the base station sends system information of the serving cell, where the system information includes subframe length indication information, and the subframe length indication information is used to indicate a subframe length of the serving cell.
  • the system information includes a subframe number indicating field, where the subframe number indicating field is used to indicate a first radio frame block index, where the A radio frame block includes 8 radio frames, that is, the sub-frame number indication field is used to indicate an index number of the first radio frame block of the subframe carrying the system information; and optionally, the scrambling information corresponding to the system information
  • the first subframe block index corresponding to the subframe that carries the system information may be different, where the first subframe block index refers to the first subframe block corresponding to the subframe that carries the system information in the first radio frame block. Index, the first subframe block includes 2 subframes.
  • Step 408 can be performed by transceiver 32 in FIG.
  • Step 409 The base station sends information or receives information on the serving cell according to the subframe length of the serving cell.
  • the sending, by the base station, information on the serving cell according to the length of the subframe may include: sending downlink data, downlink control information, and downlink reference signal to the user equipment.
  • the receiving, by the base station, the information on the serving cell according to the length of the subframe may include: receiving, by the base station, information sent by the user equipment on the serving cell according to the resource unit of the serving cell, where the Uplink data and uplink control information.
  • the system information in all embodiments of the present invention may refer to a Master Information Block (MIB).
  • MIB Master Information Block
  • Step 409 can be performed by transceiver 32 in FIG.
  • the user equipment determines the period of the synchronization signal of the serving cell according to the subframe length of the serving cell, and solves the corresponding sub-frame length corresponding to the sub-carrier spacing of the 5G.
  • the problem of how the sync signal is designed.
  • the user equipment determines, according to the subframe length of the serving cell, a subframe corresponding to the subframe length of the serving cell. a length set, the user equipment determines a period of the synchronization signal of the serving cell according to the longest subframe length in the subframe length set, or the user equipment determines the synchronization of the serving cell according to the shortest subframe length in the subframe length set.
  • the period of the signal is such that different sub-frame lengths belonging to the same sub-frame length set correspond to only one set of synchronization signal design, which reduces design complexity; when the period of the synchronization signal is determined according to the longest sub-frame length in the sub-frame length set When the reasonable delay is ensured, the synchronization signal overhead can be reduced, and the resource utilization rate can be improved. When the period of the synchronization signal is determined according to the shortest subframe length in the subframe length set, the reasonable overhead can be ensured. The time for the user equipment to access the cell is reduced, and the service delay is reduced.
  • the subframe length set corresponding to the subframe length of the serving cell is one of a first subframe length set and a second subframe length set, where the first subframe length set includes a first subframe length and a second subframe a frame length, the first subframe length is equal to 0.5 milliseconds, and the second subframe length is equal to 1 millisecond; the second subframe length set includes a third subframe length and a fourth subframe length, where the third subframe length is equal to 0.125 milliseconds, the length of the third subframe is equal to 0.25 milliseconds; the length of the different subframes corresponding to the same subcarrier interval is divided into two subframe length sets, and the shortest two subframes belong to the same subframe length set, and the longest two The sub-frames belong to a set of sub-frame lengths, so that when the same set of synchronization signals are used for the same sub-frame length set, reasonable resources can be utilized to ensure reasonable delay requirements.
  • step 401 can be implemented by using the steps in FIG. 4C.
  • step 401 can further determine the subframe length of the serving cell by using a sequence corresponding to the synchronization signal, as shown in FIG. 4D.
  • the device may include the following steps:
  • Step 401c The user equipment determines a sequence corresponding to the synchronization signal of the serving cell.
  • Step 401d The user equipment determines the subframe length of the serving cell according to the sequence corresponding to the synchronization signal.
  • step 401d the user equipment determines the subframe length of the serving cell according to the sequence corresponding to the synchronization signal, which may be:
  • the subframe length of the serving cell is the length of the first subframe; if the sequence corresponding to the synchronization signal is the second sequence, the subframe length of the serving cell is the second Subframe length.
  • step 401d the user equipment determines the subframe length of the serving cell according to the sequence corresponding to the synchronization signal, which may be:
  • the subframe length of the serving cell is the third subframe length; if the sequence corresponding to the synchronization signal is the fourth sequence, the subframe length of the serving cell is the fourth. Subframe length.
  • first subframe length may be 0.125 milliseconds
  • second subframe length may be 0.25 milliseconds
  • third subframe length may be 0.5 milliseconds
  • fourth subframe length may be 1 millisecond.
  • the first sequence is the same as the third sequence
  • the second sequence is the same as the fourth sequence.
  • the user equipment may further distinguish the first subframe length and the third subframe length according to the carrier frequency of the serving cell or the subcarrier spacing of the serving cell, and may be based on the carrier frequency of the serving cell or the subcarrier of the serving cell.
  • the interval further distinguishes between the second subframe length and the fourth subframe length.
  • the first carrier frequency corresponds to the first subframe length and the second subframe length
  • the second carrier frequency corresponds to the third subframe length and the fourth subframe length
  • the user equipment determines the carrier frequency according to the serving cell The subframe length set corresponding to the serving cell, and further determining the subframe length of the serving cell according to the sequence corresponding to the synchronization signal.
  • the synchronization signal may be a primary synchronization signal.
  • the synchronization signal is located in the first N symbols of the subframe carrying the synchronization signal, and the N is greater than or equal to 1; further optionally, the synchronization signal includes a primary synchronization signal and a secondary synchronization signal, where the synchronization signal is located on the bearer
  • the first N symbols of the subframe of the synchronization signal, the N is greater than or equal to 2; further optionally, the subframe carrying the synchronization signal further carries system information, where the system information carries M devices after the N synchronization signals On the symbol, M is a positive integer greater than or equal to 1.
  • the user equipment determines a sequence corresponding to the synchronization signal of the serving cell, and may include:
  • the user equipment determines a candidate sequence corresponding to the synchronization signal; the user equipment detects the synchronization signal according to the candidate sequence, and determines a sequence corresponding to the synchronization signal.
  • the user equipment may determine a sequence corresponding to the synchronization signal by using a blind detection synchronization signal according to the candidate sequence.
  • step 408 the system information of the serving cell sent by the base station does not include the subframe length indication.
  • step 407 can be implemented in addition to the steps in FIG. 4B.
  • step 407 can also be replaced with step 4071 and step 4072.
  • Step 4071 The base station determines a sequence of the synchronization signal of the serving cell according to the subframe length of the serving cell.
  • This step can be performed by the processor 31 in FIG.
  • Step 4072 The base station sends a synchronization signal on the serving cell according to a period of the synchronization signal and a sequence of the synchronization signal.
  • the base station determines a sequence of the synchronization signal of the serving cell according to the subframe length of the serving cell, which may be:
  • the subframe length of the serving cell is the length of the first subframe; if the sequence corresponding to the synchronization signal is the second sequence, the subframe length of the serving cell is the second Subframe length.
  • the base station determines the subframe length of the serving cell according to the sequence corresponding to the synchronization signal, which may be:
  • the subframe length of the serving cell is the third subframe length; if the sequence corresponding to the synchronization signal is the fourth sequence, the subframe length of the serving cell is the fourth. Subframe length.
  • first subframe length may be 0.125 milliseconds
  • second subframe length may be 0.25 milliseconds
  • third subframe length may be 0.5 milliseconds
  • fourth subframe length may be 1 millisecond.
  • the first sequence is the same as the third sequence
  • the second sequence is the same as the fourth sequence.
  • the synchronization signal may be a primary synchronization signal.
  • the synchronization signal is located in the first N symbols of the subframe carrying the synchronization signal, and the N is greater than or equal to 1; further optionally, the synchronization signal includes a primary synchronization signal and a secondary synchronization signal, where the synchronization signal is located on the bearer
  • the first N symbols of the subframe of the synchronization signal, the N is greater than or equal to 2; further optionally, the subframe carrying the synchronization signal further carries system information, where the system information carries M devices after the N synchronization signals Symbolically, the M is a positive integer greater than or equal to 1.
  • the user equipment determines the period of the synchronization signal of the serving cell according to the subframe length of the serving cell, and solves the difference between the 5G and the subcarrier spacing.
  • the problem of how the synchronization signal corresponding to the frame length is designed.
  • the user equipment determines, according to the subframe length of the serving cell, a subframe length set corresponding to the subframe length of the serving cell, and the user equipment determines a synchronization signal of the serving cell according to the longest subframe length in the subframe length set.
  • the period or the user equipment determines the period of the synchronization signal of the serving cell according to the shortest subframe length in the subframe length set, so that different subframe lengths belonging to the same subframe length set only correspond to one set of synchronization signal design, reducing The design complexity is determined.
  • the synchronization signal overhead can be reduced and the resource utilization can be improved under the premise of ensuring a reasonable delay;
  • the shortest subframe length in the frame length set determines the period of the synchronization signal, the time for the user equipment to access the cell can be reduced, and the service delay can be reduced, while ensuring reasonable overhead.
  • the subframe length set corresponding to the subframe length of the serving cell is one of a first subframe length set and a second subframe length set, where the first subframe length set includes a first subframe length and a second subframe a frame length, the first subframe length is equal to 0.5 milliseconds, and the second subframe length is equal to 1 millisecond; the second subframe length set includes a third subframe length and a fourth subframe length, where the third subframe length is equal to 0.125 milliseconds, the length of the third subframe is equal to 0.25 milliseconds; the length of the different subframes corresponding to the same subcarrier interval is divided into two subframe length sets, and the shortest two subframes belong to the same subframe length set, and the longest two The sub-frames belong to a set of sub-frame lengths, so that when the same set of synchronization signals are used for the same sub-frame length set, reasonable resources can be utilized to ensure reasonable delay requirements.
  • FIG. 5 is a block diagram of a device for transmitting and receiving information provided by an embodiment of the present invention.
  • the transceiver device of the information can be implemented as all or part of the user equipment by software, hardware or a combination of both.
  • the transceiver device of the information may include: a processing unit 510 and a transceiver unit 520.
  • the processing unit 510 is configured to implement the functions of at least one of the foregoing steps 401 and 402.
  • the transceiver unit 520 is configured to implement the functions of at least one of the foregoing steps 403 and 404.
  • the transceiver unit 520 is further configured to implement the function of the foregoing step 401a
  • the processing unit 510 is further configured to implement the function of the foregoing step 401b.
  • processing unit 510 is further configured to implement the functions of at least one of the foregoing steps 401c and 401d.
  • the processing unit 510 can be implemented by the processor 21 shown in FIG. 2, and the transceiver unit 520 can be implemented by the transceiver 22 shown in FIG. 2.
  • FIG. 6 is a block diagram of a transceiver for information provided by another embodiment of the present invention.
  • the transmitting and receiving device of the information can be implemented as all or part of the base station by software, hardware or a combination of both.
  • the transceiver device of the information may include: a processing unit 610 and a transceiver unit 620.
  • the processing unit 610 is configured to implement the functions of at least one of the foregoing steps 405 and 406.
  • the transceiver unit 620 is configured to implement the functions of at least one of the foregoing steps 407, 408, and 409.
  • the transceiver unit 620 is further configured to implement the function of the foregoing step 4072, and the processing unit 610 is further configured to implement The function of step 4071 is described.
  • the processing unit 610 can be implemented by the processor 31 shown in FIG. 3, and the transceiver unit 620 can be implemented by the transceiver 32 shown in FIG.
  • the information receiving and transmitting apparatus provided by the foregoing embodiment receives or transmits information
  • only the division of each functional unit described above is illustrated.
  • the foregoing functions may be assigned different functions according to needs.
  • the unit is completed, that is, the internal structure of the base station or the user equipment is divided into different functional units to complete all or part of the functions described above.
  • the method for transmitting and receiving the information provided by the foregoing embodiment is the same as the embodiment of the method for transmitting and receiving information. For the specific implementation process, refer to the method embodiment, and details are not described herein again.
  • the embodiment of the present invention further provides an information transceiving system, where the information transceiving system includes a user equipment and a base station, wherein the user equipment includes information transmitting and receiving apparatus as shown in FIG. 5, and the base station includes information transmission and reception as shown in FIG.
  • the information transceiving system includes a user equipment and a base station, wherein the user equipment includes information transmitting and receiving apparatus as shown in FIG. 5, and the base station includes information transmission and reception as shown in FIG.
  • the disclosed apparatus and method may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit may be only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined. Or it can be integrated into another system, or some features can be ignored or not executed.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present invention which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present invention.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .
  • a person skilled in the art may understand that all or part of the steps of implementing the above embodiments may be completed by hardware, or may be instructed by a program to execute related hardware, and the program may be stored in a computer readable storage medium.
  • the storage medium mentioned may be a read only memory, a magnetic disk or an optical disk or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)
  • Data Exchanges In Wide-Area Networks (AREA)

Abstract

本发明实施例提供了一种信息的收发方法、装置及系统,涉及网络应用领域。所述信息的收方法包括:确定服务小区的子帧长度;根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期;根据所述同步信号的周期和所述子帧长度在所述服务小区上发送信息或接收信息;本发明通过根据服务小区的子帧长度确定服务小区的同步信号的周期,因此解决了5G通信网络中不同子帧长度对应的同步信号的设计问题。

Description

信息的收发方法、装置及系统
本申请要求于2016年5月12日提交中国专利局、申请号为201610316999.X、发明名称为“信息的收发方法、装置及系统”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本发明涉及网络应用领域,特别涉及一种信息的收发方法、装置及系统。
背景技术
5G网络,也即新空口(New Radio,NR)网络致力于支持更高系统性能,其将支持各种不同业务、不同部署场景和不同频谱。其中,不同业务包括增强的移动宽带(英文:enhanced Mobile Broadband,eMBB),机器类型通信(英文:Machine Type Communication,MTC),超可靠低延迟通信(英文:Ultra-Reliable and Low Latency Communications,URLLC),多媒体广播多播业务(英文:Multimedia Broadcast Multicast Service,MBMS)和定位等;不同部署场景包括室内热点(英文:indoor hotspot)、密集城区(英文:dense urban)、郊区、城区宏覆盖(英文:Urban Macro)及高铁场景等;5G将支持高达100千兆赫兹(英文:GHz)的频谱范围,其中6GHz和6GHz以下为主频带,6GHz以上为辅频带。
不同业务、不同部署场景和不同频谱具有不同的特征,它们各自对系统参数(或称numerology)的要求不一样。为使得5G能够高性能支持不同业务、不同部署场景和不同频谱,5G将支持多套系统参数。比如,5G将支持不同子载波间隔,不同子载波间隔对应不同的系统参数,同一个子载波间隔可以支持不同的子帧长度。当前,子帧长度又可称为传输时间间隔(英文:Transmission Time Interval,TTI)长度,或子帧长度又可以称为传输时间单元(英文:Transmission Time Unit,TTU)。对于较短的子帧长度,例如长度小于1毫秒(ms)的子帧长度,可用于低延迟业务,例如URLLC;对于较长的子帧长度,例如长度为1ms的子帧长度,可用于对延迟要求不高,或数据包大小较大等业务,例如eMBB。
如何设计5G通信网络中不同子帧长度对应的同步信号,是一个亟待解决的问题。
发明内容
为了解决5G通信网络中如何设置不同子帧长度对应的同步信号的问题,本发明实施例提供了一种信息的收发方法、装置及系统。所述技术方案如下:
第一方面,提供了一种信息的收发方法,所述方法包括:用户设备确定服务小区的子帧长度;所述用户设备根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期;所述用户设备根据所述同步信号的周期和所述子帧长度在所述服务小区上发送信息或接收信息。通过根据服务小区的子帧长度确定服务小区的同步信号的周期,从而解决了5G通信网络中不同子帧长度对应的同步信号的设计问题。
在一个可能的设计中,所述用户设备根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期,包括:所述用户设备根据所述服务小区的子帧长度确定所述服务小区 的子帧长度对应的子帧长度集合;所述用户设备根据所述子帧长度集合中最长的子帧长度确定所述服务小区的同步信号的周期。由于是利用了服务小区中子帧长度集合中最长的子帧长度来确定服务小区的同步信号的周期,因此使得属于同一个子帧长度集合中的不同子帧长度仅对应一套同步信号设计,减少了设计复杂度;且可以在保证合理时延的前提下,减少同步信号开销,提高资源利用率。
在一个可能的设计中,所述用户设备根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期,包括:所述用户设备根据所述服务小区的子帧长度确定所述服务小区的子帧长度对应的子帧长度集合;所述用户设备根据所述子帧长度集合中最短的子帧长度确定所述服务小区的同步信号的周期。由于是利用了服务小区中子帧长度集合中最短的子帧长度来确定服务小区的同步信号的周期,因此使得属于同一个子帧长度集合中的不同子帧长度仅对应一套同步信号设计,减少了设计复杂度;且可以在保证合理开销的情况下,减低用户设备接入小区的时间,降低服务延时。
在一个可能的设计中,所述服务小区的子帧长度对应的子帧长度集合为第一子帧长度集合和第二子帧长度集合中的一个,所述第一子帧长度集合中的任何一个子帧长度均长于所述第二子帧长度集合中的任何一个子帧长度。
在一个可能的设计中,根据所述第一子帧长度集合确定的所述服务小区的同步信号的周期长于根据所述第二子帧长度集合确定的所述服务小区的同步信号的周期。
在一个可能的设计中,所述第一子帧长度集合包括第一子帧长度和第二子帧长度,所述第一子帧长度等于0.5毫秒,所述第二子帧长度等于1毫秒;所述第二子帧长度集合包括第三子帧长度和第四子帧长度,所述第三子帧长度等于0.125毫秒,所述第四子帧长度等于0.25毫秒。通过将同一子载波间隔对应的不同子帧长度划分为两个子帧长度集合,且最短的两个子帧属于同一个子帧长度集合,最长的两个子帧属于同一个子帧长度集合,使得对同一个子帧长度集合采用同一套同步信号设计时,能够利用合理的资源保证合理的延时要求。
在一个可能的设计中,所述服务小区的子帧长度对应的子帧长度集合包括第一子帧长度和第二子帧长度,述第一子帧长度等于0.5毫秒,所述第二子帧长度等于1毫秒;或,所述服务小区的子帧长度对应的子帧长度集合包括第三子帧长度和第四子帧长度,所述第三子帧长度等于0.125毫秒,所述第三子帧长度等于0.25毫秒。
在一个可能的设计中,所述用户设备根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期,包括:若所述服务小区的子帧长度等于0.125毫秒,则所述用户设备基于0.25毫秒的子帧长度确定所述服务小区的同步信号的周期;若所述服务小区的子帧长度等于0.25毫秒,则所述用户设备基于0.25毫秒的子帧长度确定所述服务小区的同步信号的周期;若所述服务小区的子帧长度等于0.5毫秒,则所述用户设备基于1毫秒的子帧长度确定所述服务小区的同步信号的周期;若所述服务小区的子帧长度等于1毫秒,则所述用户设备基于1毫秒的子帧长度确定所述服务小区的同步信号的周期。
在一个可能的设计中,所述用户设备根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期,包括:若所述服务小区的子帧长度等于0.125毫秒,则所述用户设备确定所述服务小区的同步信号的周期为0.25毫秒的正整数倍;若所述服务小区的子帧长度等于0.25毫秒,则所述用户设备确定所述服务小区的同步信号的周期为0.25毫秒的正整数倍; 若所述服务小区的子帧长度等于0.5毫秒,则所述用户设备确定所述服务小区的同步信号的周期为1毫秒的正整数倍;若所述服务小区的子帧长度等于1毫秒,则所述用户设备确定所述服务小区的同步信号的周期为1毫秒的正整数倍。
在一个可能的设计中,所述用户设备根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期,包括:若所述服务小区的子帧长度等于0.125毫秒,则所述用户设备确定所述服务小区的同步信号的周期为1.25毫秒;若所述服务小区的子帧长度等于0.25毫秒,则所述用户设备确定所述服务小区的同步信号的周期为1.25毫秒;若所述服务小区的子帧长度等于0.5毫秒,则所述用户设备确定所述服务小区的同步信号的周期为5毫秒;若所述服务小区的子帧长度等于1毫秒,则所述用户设备确定所述服务小区的同步信号的周期为5毫秒。
在一个可能的设计中,所述方法还包括:所述用户设备接收服务小区的系统信息,所述服务小区的系统信息的周期与所述服务小区的同步信号的周期相同。
在一个可能的设计中,所述方法还包括:所述方法还包括:所述用户设备根据所述服务小区的子帧长度确定所述服务小区的系统信息的周期;所述用户设备根据所述同步信号的周期和所述子帧长度在所述服务小区上发送信息或接收信息,还包括:所述用户设备根据所述同步信号的周期、所述服务小区的系统信息的周期和所述子帧长度在所述服务小区上发送信息或接收信息。
在一个可能的设计中,所述用户设备根据所述服务小区的子帧长度确定所述服务小区的系统信息的周期,包括:所述用户设备根据所述服务小区的子帧长度确定所述服务小区的子帧长度对应的子帧长度集合;所述用户设备根据所述子帧长度集合中最长的子帧长度确定所述服务小区的系统信息的周期。
在一个可能的设计中,所述用户设备确定服务小区的子帧长度,包括:所述用户设备确定所述服务小区的同步信号对应的序列;所述用户设备根据所述同步信号对应的序列确定所述服务小区的子帧长度。
在一个可能的设计中,所述用户设备根据所述同步信号对应的序列确定所述服务小区的子帧长度,包括:若所述同步信号对应的序列为第一序列,则所述用户设备确定所述服务小区的子帧长度为第一子帧长度;若所述同步信号对应的序列为第二序列,则所述用户设备确定所述服务小区的子帧长度为第二子帧长度。
在一个可能的设计中,所述用户设备根据所述同步信号对应的序列确定所述服务小区的子帧长度,包括:若所述同步信号对应的序列为第三序列,则所述用户设备确定所述服务小区的子帧长度为第三子帧长度;若所述同步信号对应的序列为第四序列,则所述用户设备确定所述服务小区的子帧长度为第四子帧长度。
在一个可能的设计中,所述第一子帧长度为0.125毫秒,所述第二子帧长度为0.25毫秒。
在一个可能的设计中,所述第三子帧长度为0.5毫秒,所述第四子帧长度为1毫秒。
在一个可能的设计中,所述同步信号为主同步信号。
在一个可能的设计中,所述同步信号位于承载所述同步信号的子帧的前N个符号,所述N大于或等于1。
第二方面,提供了一种信息的收发方法,所述方法包括:基站确定服务小区的子帧长 度;所述基站根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期;所述基站根据所述同步信号的周期在所述服务小区上发送同步信号;所述基站根据所述服务小区的子帧长度在所述服务小区上发送信息或接收信息。
在一个可能的设计中,所述基站根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期,包括:所述基站根据所述服务小区的子帧长度确定所述服务小区的子帧长度对应的子帧长度集合;所述基站根据所述子帧长度集合中最长的子帧长度确定所述服务小区的同步信号的周期。
在一个可能的设计中,所述基站根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期,包括:所述基站根据所述服务小区的子帧长度确定所述服务小区的子帧长度对应的子帧长度集合;所述基站根据所述子帧长度集合中最短的子帧长度确定所述服务小区的同步信号的周期。由于是利用了服务小区中子帧长度集合中最短的子帧长度来确定服务小区的同步信号的周期,因此使得属于同一个子帧长度集合中的不同子帧长度仅对应一套同步信号设计,减少了设计复杂度;且可以在保证合理开销的情况下,减低用户设备接入小区的时间,降低服务延时。
在一个可能的设计中,所述服务小区的子帧长度对应的子帧长度集合为第一子帧长度集合和第二子帧长度集合中的一个,所述第一子帧长度集合中的任何一个子帧长度均长于所述第二子帧长度集合中的任何一个子帧长度。
在一个可能的设计中,根据所述第一子帧长度集合确定的所述服务小区的同步信号的周期长于根据所述第二子帧长度集合确定的所述服务小区的同步信号的周期。
在一个可能的设计中,所述第一子帧长度集合包括第一子帧长度和第二子帧长度,所述第一子帧长度等于0.5毫秒,所述第二子帧长度等于1毫秒;所述第二子帧长度集合包括第三子帧长度和第四子帧长度,所述第三子帧长度等于0.125毫秒,所述第三子帧长度等于0.25毫秒。
在一个可能的设计中,所述服务小区的子帧长度对应的子帧长度集合包括第一子帧长度和第二子帧长度,所述第一子帧长度等于0.5毫秒,所述第二子帧长度等于1毫秒;或,所述服务小区的子帧长度对应的子帧长度集合包括第三子帧长度和第四子帧长度,所述第三子帧长度等于0.125毫秒,所述第四子帧长度等于0.25毫秒。
在一个可能的设计中,所述基站根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期,包括:若所述服务小区的子帧长度等于0.125毫秒,则所述基站基于0.25毫秒的子帧长度确定所述服务小区的同步信号的周期;若所述服务小区的子帧长度等于0.25毫秒,则所述基站基于0.25毫秒的子帧长度确定所述服务小区的同步信号的周期;若所述服务小区的子帧长度等于0.5毫秒,则所述基站基于1毫秒的子帧长度确定所述服务小区的同步信号的周期;若所述服务小区的子帧长度等于1毫秒,则所述基站基于1毫秒的子帧长度确定所述服务小区的同步信号的周期。
在一个可能的设计中,所述基站根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期,包括:若所述服务小区的子帧长度等于0.125毫秒,则所述基站确定所述服务小区的同步信号的周期为0.25毫秒的正整数倍;若所述服务小区的子帧长度等于0.25毫秒,则所述基站确定所述服务小区的同步信号的周期为0.25毫秒的正整数倍;若所述服务小区的子帧长度等于0.5毫秒,则所述基站确定所述服务小区的同步信号的周期为1毫秒的 正整数倍;若所述服务小区的子帧长度等于1毫秒,则所述服务小区的同步信号的周期为1毫秒的正整数倍。
在一个可能的设计中,所述基站根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期,包括:若所述服务小区的子帧长度等于0.125毫秒,则所述基站确定所述服务小区的同步信号的周期为1.25毫秒;若所述服务小区的子帧长度等于0.25毫秒,则所述基站确定所述服务小区的同步信号的周期为1.25毫秒;若所述服务小区的子帧长度等于0.5毫秒,则所述基站确定所述服务小区的同步信号的周期为5毫秒;若所述服务小区的子帧长度等于1毫秒,则所述基站确定所述服务小区的同步信号的周期为5毫秒。
在一个可能的设计中,所述方法还包括:所述基站发送服务小区的系统信息,所述服务小区的系统信息的周期与所述服务小区的同步信号的周期相同。
在一个可能的设计中,所述方法还包括:所述基站根据所述服务小区的子帧长度确定所述服务小区的系统信息的周期;所述基站根据所述服务小区的子帧长度在所述服务小区上发送信息或接收信息,还包括:所述基站根据所述同步信号的周期、所述服务小区的系统信息的周期和所述子帧长度在所述服务小区上发送信息或接收信息。
在一个可能的设计中,所述基站根据所述服务小区的子帧长度确定所述服务小区的系统信息的周期,包括:所述基站根据所述服务小区的子帧长度确定所述服务小区的子帧长度对应的子帧长度集合;所述基站根据所述子帧长度集合中最长的子帧长度确定所述服务小区的系统信息的周期。
在一个可能的设计中,所述基站根据所述同步信号的周期在所述服务小区上发送同步信号,包括:所述基站根据所述服务小区的子帧长度确定所述同步信号的序列;所述基站根据所述同步信号的周期和所述同步信号的序列在所述服务小区上发送同步信号。
在一个可能的设计中,所述基站根据所述服务小区的子帧长度确定所述同步信号的序列,包括:若所述服务小区的子帧长度为第一子帧长度,则所述基站确定所述同步信号对应的序列为第一序列;若所述服务小区的子帧长度为第二子帧长度,则所述基站确定所述同步信号对应的序列为第二序列。
在一个可能的设计中,所述基站根据所述服务小区的子帧长度确定所述同步信号的序列,包括:若所述服务小区的子帧长度为第三子帧长度,则所述基站确定所述同步信号对应的序列为第三序列;若所述服务小区的子帧长度为第四子帧长度,则所述基站确定所述同步信号对应的序列为第四序列。
在一个可能的设计中,所述第一子帧长度为0.125毫秒,所述第二子帧长度为0.25毫秒。
在一个可能的设计中,所述第一子帧长度为0.5毫秒,所述第二子帧长度为1毫秒。
在一个可能的设计中,所述同步信号为主同步信号。
在一个可能的设计中,所述同步信号位于承载所述同步信号的子帧的前N个符号,所述N大于等于1。
第三方面,提供了一种信息的收发装置,该信息的收发装置包括至少一个单元,该信息的收发装置的各个单元分别用于实现上述第一方面或第一方面中任意一种可能的设计所提供的信息的收发方法中对应的步骤。
第四方面,提供了一种信息的收发装置,该信息的收发装置包括至少一个单元,该信 息的收发装置的各个单元分别用于实现上述第二方面或第二方面中任意一种可能的设计所提供的信息的收发方法中对应的步骤。
第五方面,提供了一种用户设备。该用户设备包括:处理器、与处理器相连的存储器、发射器和接收器,该处理器用于实现上述第一方面或第一方面中任意一种可能的设计所提供的信息的收发方法中的各个步骤。
第六方面,提供了一种基站。该基站包括:处理器、与处理器相连的存储器、发射器和接收器,该处理器用于实现上述第二方面或第二方面中任意一种可能的设计所提供的信息的收发方法中的各个步骤。
第七方面,提供了一种计算机可读介质,该计算机可读介质存储用于实现第一方面或第一方面中任意一种可能的设计所提供的信息的收发方法的指令。
第八方面,提供了一种计算机可读介质,该计算机可读介质存储用于实现第二方面或第二方面中任意一种可能的设计所提供的信息的收发方法的指令。
第九方面,提供了一种信息的收发系统,系统中包括如上述第三方面或第五方面所提供的用户设备,以及,如上述第四方面或第六方面所提供的基站。
附图说明
图1是本发明部分实施例中提供的信息的收发方法所涉及的实施环境的示意图;
图2是本发明一个实施例中提供的用户设备的结构示意图;
图3是本发明一个实施例中提供的基站的结构示意图;
图4A是本发明一个实施例中提供的信息的收发方法的流程图;
图4B是本发明另一个实施例中提供的信息的收发方法的流程图;
图4C是本发明一个实施例中提供的用户设备确定服务小区的子帧长度的流程图;
图4D是本发明一个实施例中提供的用户设备确定服务小区的子帧长度的流程图;
图4E是本发明再一个实施例中提供的信息的收发方法的流程图;
图5是本发明一个实施例中提供的信息的收发装置的框图;
图6是本发明另一个实施例中提供的信息的收发装置的框图。
具体实施方式
为使本发明的目的、技术方案和优点更加清楚,下面将结合附图对本发明实施方式作进一步地详细描述。
图1是本发明部分实施例中提供的信息的收发方法所涉及的实施环境的示意图,该实施环境包括用户设备110和基站120。
用户设备110通过服务小区与基站120进行信息交互。用户设备110可以是手机、平板电脑、个人计算机(英文:personal computer,PC)、多媒体播放设备等。用户设备110与基站120之间通过网络通信。
用户设备110的结构可以参见图2所示,用户设备110包括处理器21、收发器22和存储器23。
处理器21包括一个或者一个以上处理核心,处理器21通过运行软件程序,从而执行 各种功能应用以及数据处理。
收发器22可以用于用于与其它设备进行通信,比如可以与基站120进行通信。
存储器23与处理器21相连,比如,存储器23可以通过总线与处理器21相连;存储器23可用于存储软件程序。
存储器23可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(英文:static random access memory,SRAM),电可擦除可编程只读存储器(英文:electrically erasable programmable read-only memory,EEPROM),可擦除可编程只读存储器(英文:erasable programmable read only memory,EPROM),可编程只读存储器(英文:programmable read only memory,PROM),只读存储器(英文:read only memory image,ROM),磁存储器,快闪存储器,磁盘或光盘。
本领域技术人员可以理解,图2中所示出的用户设备110的结构并不构成对用户设备110的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
基站120的结构可以参见图3所示,基站120包括处理器31、收发器32和存储器33。
处理器31包括一个或者一个以上处理核心,处理器31通过运行软件程序,从而执行各种功能应用以及数据处理。
收发器32可以用于与其它设备进行通信,比如可以与用户设备110进行通信。
存储器33与处理器31相连,比如,存储器33可以通过总线与处理器31相连;存储器33可用于存储软件程序。
存储器33可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器,电可擦除可编程只读存储器,可擦除可编程只读存储器,可编程只读存储器,只读存储器,磁存储器,快闪存储器,磁盘或光盘。
本领域技术人员可以理解,图3中所示出的基站120的结构并不构成对基站120的限定,可以包括比图示更多或更少的部件,或者组合某些部件,或者不同的部件布置。
下面结合图1所示环境,分别对图4A示出的以用户设备为执行主体的信息的收发方法,以及图4B所示出以基站为执行主体的信息的收发方法的流程进行举例说明。
请参见图4A所示,其是本发明一个实施例中提供的信息的收发方法的流程图,该信息的收发方法应用于图1和图2所示的用户设备110中。该信息的收发方法包括如下步骤:
步骤401,用户设备确定服务小区的子帧长度;
在该步骤中,用户设备确定服务小区的子帧长度,或称为用户设备确定服务小区的TTI长度,或称为用户设备确定服务小区的TTU的长度。
本发明所有实施例中的服务小区可以为网络侧设备给用户设备配置的服务小区,也可以指为用户设备服务的服务小区,也可以指用户设备接入的服务小区。本发明所有实施例中的服务小区(英文:serving cell)也可以称为载波(英文:component carrier)。本发明所有实施例中的服务小区可以为用户设备的主服务小区(英文:primary serving cell),也可以为用户设备的辅服务小区(英文:secondary serving cell)。
该步骤中,请参见图4C所示,用户设备确定服务小区的子帧长度,可以包括:
步骤401a,用户设备接收服务小区的系统信息,系统信息包括子帧长度指示信息;
步骤401b,用户设备根据该系统信息中包含的子帧长度指示信息确定该服务小区的子 帧长度。
步骤401可以由图2中的处理器21来执行。
步骤402,用户设备根据该服务小区的子帧长度确定该服务小区的同步信号的周期;
在该步骤中,用户设备根据该服务小区的子帧长度确定该服务小区的同步信号的周期时,可以至少包括如下五种方式:
在第一种方式中,用户设备根据该服务小区的子帧长度确定该服务小区的子帧长度对应的子帧长度集合;用户设备根据该子帧长度集合中最长的子帧长度确定该服务小区的同步信号的周期。
在第二种方式中,用户设备根据该服务小区的子帧长度确定该服务小区的子帧长度对应的子帧长度集合;用户设备根据该子帧长度集合中最短的子帧长度确定该服务小区的同步信号的周期。
在第一种方式或第二种方式下,可选地,该服务小区的子帧长度对应的子帧长度集合包括第一子帧长度和第二子帧长度,第一子帧长度等于0.5毫秒,第二子帧长度等于1毫秒;或,该服务小区的子帧长度对应的子帧长度集合包括第三子帧长度和第四子帧长度,第三子帧长度等于0.125毫秒,第四子帧长度等于0.25毫秒。
或,可选地,该服务小区的子帧长度对应的子帧长度集合为第一子帧长度集合和第二子帧长度集合中的一个,第一子帧长度集合中的任何一个子帧长度均长于比第二子帧长度集合中的任何一个子帧长度。进一步可选地,根据第一子帧长度集合确定的该服务小区的同步信号的周期比根据第二子帧长度集合确定的该服务小区的同步信号的周期长。
进一步可选地,第一子帧长度集合包括第一子帧长度和第二子帧长度,第一子帧长度等于0.5毫秒,第二子帧长度等于1毫秒;第二子帧长度集合包括第三子帧长度和第四子帧长度,第三子帧长度等于0.125毫秒,第三子帧长度等于0.25毫秒。
在第三种方式中,若该服务小区的子帧长度等于0.125毫秒,则该用户设备基于0.25毫秒的子帧长度确定该服务小区的同步信号的周期;若该服务小区的子帧长度等于0.25毫秒,则该用户设备基于0.25毫秒的子帧长度确定该服务小区的同步信号的周期;若该服务小区的子帧长度等于0.5毫秒,则该用户设备基于1毫秒的子帧长度确定该服务小区的同步信号的周期;若该服务小区的子帧长度等于1毫秒,则该用户设备基于1毫秒的子帧长度确定该服务小区的同步信号的周期;
在第四种方式中,若该服务小区的子帧长度等于0.125毫秒,则该用户设备确定该服务小区的同步信号的周期为0.25毫秒的正整数倍;若该服务小区的子帧长度等于0.25毫秒,则该用户设备确定该服务小区的同步信号的周期为0.25毫秒的正整数倍;若该服务小区的子帧长度等于0.5毫秒,则该用户设备确定该服务小区的同步信号的周期为1毫秒的正整数倍;若该服务小区的子帧长度等于1毫秒,则该用户设备确定该服务小区的同步信号的周期为1毫秒的正整数倍。
在第五种方式中,若该服务小区的子帧长度等于0.125毫秒,则该用户设备确定该服务小区的同步信号的周期为1.25毫秒;若该服务小区的子帧长度等于0.25毫秒,则该用户设备确定该服务小区的同步信号的周期为1.25毫秒;若该服务小区的子帧长度等于0.5毫秒,则该用户设备确定该服务小区的同步信号的周期为5毫秒;若该服务小区的子帧长度等于1毫秒,则该用户设备确定该服务小区的同步信号的周期为5毫秒。
步骤402可以由图2中的处理器21来执行。
服务小区的系统信息的周期与同步信号的周期可以是相同的。在服务小区的系统信息的周期与同步信号的周期相同的情况下,用户设备根据该服务小区的子帧长度确定出的该服务小区的同步信号的周期,也是服务小区的系统信息的周期,并且还可根据系统信息的周期接收服务小区的系统信息。具体请参见步骤403,该步骤403为可选步骤。
步骤403,用户设备接收服务小区的系统信息;
本发明实施例中,该步骤403为可选步骤。
该步骤中,该用户设备接收服务小区的系统信息,该服务小区的系统信息的周期与该服务小区的同步信号的周期可以相同。
该步骤中,该用户设备接收服务小区的系统信息,可以包括:该用户设备根据该服务小区的子帧长度确定该服务小区的系统信息的周期;该用户设备根据该服务小区的系统信息的周期接收该服务小区的系统信息。
进一步可选地,该用户设备根据该服务小区的子帧长度确定该服务小区的系统信息的周期,可以包括:该用户设备根据该服务小区的子帧长度确定该服务小区的子帧长度对应的子帧长度集合;该用户设备根据该子帧长度集合中最长的子帧长度确定该服务小区的系统信息的周期;
其中,对该服务小区的子帧长度对应的子帧长度集合的其他描述可以参见步骤402对子帧长度集合的解释,此处不再赘述。
或,进一步可选地,该用户设备根据该服务小区的子帧长度确定该服务小区的系统信息的周期,可以包括:该用户设备根据该服务小区的子帧长度确定该服务小区的子帧长度对应的子帧长度集合;该用户设备根据该子帧长度集合中最短的子帧长度确定该服务小区的系统信息的周期;
其中,对该服务小区的子帧长度对应的子帧长度集合的其他描述如步骤402,此处不再赘述。
这里用户设备根据服务小区的子帧长度确定服务小区的系统信息的周期的步骤可以由图2中的收发器22来执行。
进一步可选地,若该服务小区的子帧长度为上述第一子帧长度集合中的最短的子帧长度,或若该服务小区的子帧长度为上述第二子帧长度集合中最短的子帧长度,或该服务小区的子帧长度为0.125ms或0.5ms,则该系统信息包括子帧号(英文:Subframe Number)指示域,该子帧号指示域用于指示第一无线帧块索引,该第一无线帧块包括8个无线帧,即该子帧号指示域用于指示承载该系统信息的子帧该第一无线帧块的索引号;进一步可选地,该系统信息对应的加扰信息可以区分承载该系统信息的子帧对应的第一子帧块索引,该第一子帧块索引指该承载该系统信息的子帧对应的第一子帧块在该第一无线帧块中的索引,该第一子帧块包括2个子帧。
步骤403可以由图2中的收发器22来执行。
步骤404,用户设备根据该同步信号的周期和该子帧长度在该服务小区上发送信息或接收信息。
该步骤中,该用户设备根据该同步信号的周期和该子帧长度在该服务小区上发送信息或接收信息,可以包括:
该用户设备根据该同步信号的周期接收同步信号,与该服务小区同步;该用户设备根据该子帧长度在该服务小区上发送信息或接收信息。
该步骤中,该用户设备根据该同步信号的周期和该子帧长度在该服务小区上发送信息或接收信息,还可以包括:
该用户设备根据该同步信号的周期、该服务小区的系统信息的周期和该子帧长度在该服务小区上发送信息或接收信息。在具体实现时,可以为:
该用户设备根据该同步信号的周期接收同步信号,与该服务小区同步;该设备根据该系统信息的周期接收系统信息,确定该服务小区的系统参数;该用户设备根据该子帧长度在该服务小区上发送信息或接收信息。
其中,该步骤中,该用户设备在该服务小区上发送信息,可以包括:用户设备根据该服务小区的资源单元在该服务小区上给基站发送上行数据和上行控制信息。
该步骤中,该用户设备在该服务小区上接收信息,可以包括:用户设备根据该服务小区的资源单元在该服务小区上接收基站发送的信息,具体可以包括接收基站发送的下行数据、下行控制信息和下行参考信号。
步骤404可以由图2中的收发器22来执行。
用户设备按照图4A中方式确定服务小区的同步信号的周期时,为了使得用户设备与基站进行信息同步,对应的基站确定该服务小区的同步信号的周期以及进行信息收发的过程参见图4B所示。
请参见图4B所示,其是本发明另一个实施例中提供的信息的收发方法的流程图,该信息的收发方法应用于图1和图3所示的基站120中,该信息的收发方法可以包括如下步骤:
步骤405,基站确定服务小区的子帧长度;
该步骤中,基站确定服务小区的子帧长度,或称为基站确定服务小区的TTI长度,或称为基站确定服务小区的TTU的长度。
这里服务小区的描述可以参见步骤401中对服务小区的描述,这里就不再赘述。
步骤405可以由图3中的处理器31来执行。
步骤406,基站根据该服务小区的子帧长度确定该服务小区的同步信号的周期;
该步骤中,该基站根据该服务小区的子帧长度确定该服务小区的同步信号的周期,可以至少包括如下五种方式:
在第一种方式中,该基站根据该服务小区的子帧长度确定该服务小区的子帧长度对应的子帧长度集合;该基站根据该子帧长度集合中最长的子帧长度确定该服务小区的同步信号的周期。
在第二种方式中,该基站根据该服务小区的子帧长度确定该服务小区的子帧长度对应的子帧长度集合;该基站根据该子帧长度集合中最短的子帧长度确定该服务小区的同步信号的周期。
在第一种方式中或第二种方式中,进一步可选地,该服务小区的子帧长度对应的子帧长度集合包括第一子帧长度和第二子帧长度,该第一子帧长度等于0.5毫秒,该第二子帧长度等于1毫秒;或,该服务小区的子帧长度对应的子帧长度集合包括第三子帧长度和第四子帧长度,该第三子帧长度等于0.125毫秒,该第三子帧长度等于0.25毫秒。
或,进一步可选地,该服务小区的子帧长度对应的子帧长度集合为第一子帧长度集合 和第二子帧长度集合中的一个,该第一子帧长度集合包括的任何一个子帧长度均长于该第二子帧长度集合包括的任何一个子帧长度。
进一步可选地,根据该第一子帧长度集合确定的该服务小区的同步信号的周期比根据该第二子帧长度集合确定的该服务小区的同步信号的周期长。
进一步可选地,该第一子帧长度集合包括第一子帧长度和第二子帧长度,该第一子帧长度等于0.5毫秒,该第二子帧长度等于1毫秒;该第二子帧长度集合包括第三子帧长度和第四子帧长度,该第三子帧长度等于0.125毫秒,该第三子帧长度等于0.25毫秒。
在第三种方式中,若该服务小区的子帧长度等于0.125毫秒,则该基站基于0.25毫秒的子帧长度确定该服务小区的同步信号的周期;若该服务小区的子帧长度等于0.25毫秒,则该基站基于0.25毫秒的子帧长度确定该服务小区的同步信号的周期;若该服务小区的子帧长度等于0.5毫秒,则该基站基于1毫秒的子帧长度确定该服务小区的同步信号的周期;若该服务小区的子帧长度等于1毫秒,则该基站基于1毫秒的子帧长度确定该服务小区的同步信号的周期。
在第四种方式中,若该服务小区的子帧长度等于0.125毫秒,则该服务小区的同步信号的周期为0.25毫秒的正整数倍;若该服务小区的子帧长度等于0.25毫秒,则该服务小区的同步信号的周期为0.25毫秒的正整数倍;若该服务小区的子帧长度等于0.5毫秒,则该服务小区的同步信号的周期为1毫秒的正整数倍;若该服务小区的子帧长度等于1毫秒,则该服务小区的同步信号的周期为1毫秒的正整数倍。
在第五种方式中,若该服务小区的子帧长度等于0.125毫秒,则该服务小区的同步信号的周期为1.25毫秒;若该服务小区的子帧长度等于0.25毫秒,则该服务小区的同步信号的周期为1.25毫秒;若该服务小区的子帧长度等于0.5毫秒,则该服务小区的同步信号的周期为5毫秒;若该服务小区的子帧长度等于1毫秒,则该服务小区的同步信号的周期为5毫秒。
步骤406可以由图3中的处理器31来执行。
步骤407,基站根据该同步信号的周期在该服务小区上发送同步信号;
本发明实施例该步骤407中,基站根据该同步信号的周期在该服务小区上发送同步信号。例如,基站根据该同步信号的周期确定发送该同步信号的子帧,在该发送不同信号的子帧上发送该同步信号。
步骤407可以由图3中的收发器32来执行。
服务小区的系统信息的周期与同步信号的周期可以是相同的。在服务小区的系统信息的周期与同步信号的周期相同的情况下,基站可根据该服务小区的子帧长度确定该服务小区的同步信号的周期,也即,服务小区的系统信息的周期,根据该周期可接收服务小区的系统信息。具体请参见步骤408,该步骤408为可选步骤。
步骤408,基站发送服务小区的系统信息;
本发明实施例中,该步骤408为可选步骤。
该步骤中,该基站发送服务小区的系统信息,该服务小区的系统信息的周期与该服务小区的同步信号的周期可以相同。
该步骤中,该基站发送服务小区的系统信息,可以包括:该基站根据该服务小区的子帧长度确定该服务小区的系统信息的周期;该基站根据该服务小区的系统信息的周期接收 该服务小区的系统信息。
进一步可选地,该基站根据该服务小区的子帧长度确定该服务小区的系统信息的周期,可以包括:该基站根据该服务小区的子帧长度确定该服务小区的子帧长度对应的子帧长度集合;该基站根据该子帧长度集合中最长的子帧长度确定该服务小区的系统信息的周期;
其中,对该服务小区的子帧长度对应的子帧长度集合的其他描述如步骤402,此处不再赘述。
或,进一步可选地,该基站根据该服务小区的子帧长度确定该服务小区的系统信息的周期,可以包括:
该基站根据该服务小区的子帧长度确定该服务小区的子帧长度对应的子帧长度集合;
该基站根据该子帧长度集合中最短的子帧长度确定该服务小区的系统信息的周期;
其中,对该服务小区的子帧长度对应的子帧长度集合的其他描述如步骤402,此处不再赘述。
进一步可选地,该步骤中,基站发送服务小区的系统信息,可以包括:
基站发送服务小区的系统信息,该系统信息包括子帧长度指示信息,该子帧长度指示信息用于指示该服务小区的子帧长度。
进一步可选地,若该服务小区的子帧长度为该第一子帧聚合中的最短的子帧,或若该服务小区的子帧长度为该第二子帧长度集合中最短的子帧,或该服务小区的子帧长度为0.125ms或0.5ms,则该系统信息包括子帧号(英文:Subframe Number)指示域,该子帧号指示域用于指示第一无线帧块索引,该第一无线帧块包括8个无线帧,即该子帧号指示域用于指示承载该系统信息的子帧该第一无线帧块的索引号;进一步可选地,该系统信息对应的加扰信息可以区分承载该系统信息的子帧对应的第一子帧块索引,该第一子帧块索引指该承载该系统信息的子帧对应的第一子帧块在该第一无线帧块中的索引,该第一子帧块包括2个子帧。
步骤408可以由图3中的收发器32来执行。
步骤409,基站根据该服务小区的子帧长度在该服务小区上发送信息或接收信息。
该步骤中,该基站根据该子帧长度在该服务小区上发送信息,可以包括:给用户设备发送下行数据、下行控制信息和下行参考信号。
该步骤中,该基站根据该子帧长度在该服务小区上接收信息,可以包括:基站根据该服务小区的资源单元在该服务小区上接收用户设备发送的信息,具体可以包括接收用户设备发送的上行数据和上行控制信息。
本发明所有实施例中的系统信息可以指主信息块(英文:Master Information Block,MIB)。
需要说明的是,本发明实施例中,若无特殊说明,不限定各步骤之间的先后顺序,不限定各步骤之间的相互依赖关系。
步骤409可以由图3中的收发器32来执行。
综上所述,本发明的一个实施例提供的信息收发方法,用户设备根据服务小区的子帧长度确定该服务小区的同步信号的周期,解决了5G同一个子载波间隔下步不同子帧长度对应的同步信号如何设计的问题。
进一步地,用户设备根据服务小区的子帧长度确定该服务小区的子帧长度对应的子帧 长度集合,该用户设备根据该子帧长度集合中最长的子帧长度确定该服务小区的同步信号的周期或该用户设备根据该子帧长度集合中最短的子帧长度确定该服务小区的同步信号的周期,使得属于同一个子帧长度集合中的不同子帧长度仅对应一套同步信号设计,减少了设计复杂度;当根据该子帧长度集合中最长的子帧长度确定同步信号的周期时,可以在保证合理时延的前提下,减少同步信号开销,提高资源利用率;当根据该子帧长度集合中的最短的子帧长度确定同步信号的周期时,可以在保证合理开销的情况下,减低用户设备接入小区的时间,降低服务延时。
进一步地,服务小区的子帧长度对应的子帧长度集合为第一子帧长度集合和第二子帧长度集合中的一个,该第一子帧长度集合包括第一子帧长度和第二子帧长度,该第一子帧长度等于0.5毫秒,该第二子帧长度等于1毫秒;该第二子帧长度集合包括第三子帧长度和第四子帧长度,该第三子帧长度等于0.125毫秒,该第三子帧长度等于0.25毫秒;使得将同一子载波间隔对应的不同子帧长度划分为两个子帧长度集合,且最短的两个子帧属于同一个子帧长度集合,最长的两个子帧属于统一个子帧长度集合,使得对同一个子帧长度集合采用同一套同步信号设计时,能够利用合理的资源保证合理的延时要求。
本发明实施例对系统信息周期设计的有益效果与对同步信号周期设计的类似,此处不再赘述。
在实际实现时,步骤401除了可以通过图4C中的步骤来实现外,可替换地,步骤401还可以通过同步信号对应的序列来确定服务小区的子帧长度,请参见图4D所示,用户设备在确定服务小区的子帧长度时,可以包括如下步骤:
步骤401c,用户设备确定服务小区的同步信号对应的序列;
步骤401d,用户设备根据该同步信号对应的序列确定该服务小区的子帧长度。
进一步地,在步骤401d中,用户设备根据该同步信号对应的序列确定该服务小区的子帧长度,可以为:
若该同步信号对应的序列为第一序列,则该服务小区的子帧长度为第一子帧长度;若该同步信号对应的序列为第二序列,则该服务小区的子帧长度为第二子帧长度。
或,进一步地,在步骤401d中,用户设备根据该同步信号对应的序列确定该服务小区的子帧长度,可以为:
若该同步信号对应的序列为第三序列,则该服务小区的子帧长度为第三子帧长度;若该同步信号对应的序列为第四序列,则该服务小区的子帧长度为第四子帧长度。
进一步地,该第一子帧长度可以为0.125毫秒,该第二子帧长度可以为0.25毫秒,第三子帧长度可以为0.5毫秒,第四子帧长度可以为1毫秒。
进一步可选地,该第一序列与该第三序列相同,该第二序列与该第四序列相同。此时,用户设备可以根据该服务小区的载波频率或该服务小区的子载波间隔进一步区分第一子帧长度和第三子帧长度,可以根据该服务小区的载波频率或该服务小区的子载波间隔进一步区分第二子帧长度和第四子帧长度。进一步可选地,第一载波频率对应第一子帧长度和第二子帧长度,第二载波频率对应第三子帧长度和第四子帧长度;用户设备根据该服务小区的载波频率确定该服务小区对应的子帧长度集合,再进一步根据同步信号对应的序列确定该服务小区的子帧长度。
进一步地,该同步信号可以为主同步信号。
进一步可选地,该同步信号位于承载该同步信号的子帧的前N个符号,该N大于等于1;进一步可选地,该同步信号包括主同步信号和辅同步信号,该同步信号位于承载该同步信号的子帧的前N个符号,该N大于等于2;进一步可选地,该承载该同步信号的子帧还承载系统信息,该系统信息承载在该N个同步信号之后的M个符号上,M为大于或等于1的正整数。
进一步可选地,用户设备确定服务小区的同步信号对应的序列,可以包括:
用户设备确定同步信号对应的候选序列;用户设备根据该候选序列检测同步信号,确定该同步信号对应的序列。
具体地,用户设备可以根据该候选序列通过盲检同步信号,确定该同步信号对应的序列。
对应于图4D中的步骤,在步骤408中,基站发送服务小区的系统信息中不包含子帧长度指示。
进一步地,基站可以根据服务小区的子帧长度确定该服务小区的同步信号的序列,然后根据该服务小区的同步信号的周期和序列,在该服务小区发送同步信号。因此,步骤407除了可以通过图4B中的步骤来实现外,可替换地,请参见图4E所示,步骤407还可以被替换为步骤4071和步骤4072。
步骤4071,基站根据该服务小区的子帧长度确定该服务小区的同步信号的序列。
该步骤可以由图3中的处理器31来执行。
步骤4072,基站根据该同步信号的周期和该同步信号的序列在该服务小区上发送同步信号。
进一步地,基站根据该服务小区的子帧长度确定该服务小区的同步信号的序列,可以为:
若该同步信号对应的序列为第一序列,则该服务小区的子帧长度为第一子帧长度;若该同步信号对应的序列为第二序列,则该服务小区的子帧长度为第二子帧长度。
或,进一步地,基站根据该同步信号对应的序列确定该服务小区的子帧长度,可以为:
若该同步信号对应的序列为第三序列,则该服务小区的子帧长度为第三子帧长度;若该同步信号对应的序列为第四序列,则该服务小区的子帧长度为第四子帧长度。
进一步地,该第一子帧长度可以为0.125毫秒,该第二子帧长度可以为0.25毫秒,第三子帧长度可以为0.5毫秒,第四子帧长度可以为1毫秒。
进一步可选地,该第一序列与该第三序列相同,该第二序列与该第四序列相同。
进一步地,该同步信号可以为主同步信号。
进一步可选地,该同步信号位于承载该同步信号的子帧的前N个符号,该N大于等于1;进一步可选地,该同步信号包括主同步信号和辅同步信号,该同步信号位于承载该同步信号的子帧的前N个符号,该N大于等于2;进一步可选地,该承载该同步信号的子帧还承载系统信息,该系统信息承载在该N个同步信号之后的M个符号上,该M为大于等于1的正整数。
需要说明的是,本发明实施例中,若无特殊说明,不限定各步骤之间的先后顺序,不限定各步骤之间的相互依赖关系;
综上所述,本发明的一个实施例提供的信息收发方法,用户设备根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期,解决了5G同一个子载波间隔下步不同子帧长度对应的同步信号如何设计的问题。
进一步地,用户设备根据服务小区的子帧长度确定该服务小区的子帧长度对应的子帧长度集合,该用户设备根据该子帧长度集合中最长的子帧长度确定该服务小区的同步信号的周期或该用户设备根据该子帧长度集合中最短的子帧长度确定该服务小区的同步信号的周期,使得属于同一个子帧长度集合中的不同子帧长度仅对应一套同步信号设计,减少了设计复杂度;当根据该子帧长度集合中最长的子帧长度确定同步信号的周期时,可以在保证合理时延的前提下,减少同步信号开销,提高资源利用率;当根据该子帧长度集合中的最短的子帧长度确定同步信号的周期时,可以在保证合理开销的情况下,减低用户设备接入小区的时间,降低服务延时。
进一步地,服务小区的子帧长度对应的子帧长度集合为第一子帧长度集合和第二子帧长度集合中的一个,该第一子帧长度集合包括第一子帧长度和第二子帧长度,该第一子帧长度等于0.5毫秒,该第二子帧长度等于1毫秒;该第二子帧长度集合包括第三子帧长度和第四子帧长度,该第三子帧长度等于0.125毫秒,该第三子帧长度等于0.25毫秒;使得将同一子载波间隔对应的不同子帧长度划分为两个子帧长度集合,且最短的两个子帧属于同一个子帧长度集合,最长的两个子帧属于统一个子帧长度集合,使得对同一个子帧长度集合采用同一套同步信号设计时,能够利用合理的资源保证合理的延时要求。
本发明实施例对系统信息周期设计的有益效果与对同步信号周期设计的类似,此处不再赘述。
请参考图5,其示出了本发明一个实施例提供的信息的收发装置的框图。该信息的收发装置可以通过软件、硬件或者两者的结合实现成为用户设备的全部或者一部分。该信息的收发装置可以包括:处理单元510和收发单元520。
处理单元510,用于实现上述步骤401和步骤402中至少一个步骤的功能。
收发单元520,用于实现上述步骤403和步骤404中至少一个步骤的功能。
可选的,收发单元520还用于实现上述步骤401a的功能,处理单元510还用于实现上述步骤401b的功能。
可选的,处理单元510还用于实现上述步骤401c和步骤401d中至少一个步骤的功能。
相关细节可结合参考上述方法实施例。
可选的,本发明实施例中,处理单元510可以由图2所示的处理器21实现,收发单元520可以由图2所示的收发器22实现。
请参考图6,其示出了本发明另一个实施例提供的信息的收发装置的框图。该信息的收发装置可以通过软件、硬件或者两者的结合实现成为基站的全部或者一部分。该信息的收发装置可以包括:处理单元610和收发单元620。
处理单元610,用于实现上述步骤405和步骤406中至少一个步骤的功能。
收发单元620,用于实现上述步骤407、步骤408和步骤409中至少一个步骤的功能。
可选的,收发单元620还用于实现上述步骤4072的功能,处理单元610还用于实现上 述步骤4071的功能。
相关细节可结合参考上述方法实施例。
可选的,本发明实施例中,处理单元610可以由图3所示的处理器31实现,收发单元620可以由图3所示的收发器32实现。
需要说明的是:上述实施例提供的信息的收发装置在对接收或发送信息时,仅以上述各功能单元的划分进行举例说明,实际应用中,可以根据需要而将上述功能分配由不同的功能单元完成,即将基站或用户设备的内部结构划分成不同的功能单元,以完成以上描述的全部或者部分功能。另外,上述实施例提供的信息的收发装置与信息的收发方法实施例属于同一构思,其具体实现过程详见方法实施例,这里不再赘述。
本发明实施例还提供一种信息的收发系统,该信息的收发系统包括用户设备和基站,其中用户设备包括如图5所示的信息的收发装置,基站包括如图6所示的信息的收发装置,具体可以参见对图5和图6的描述,这里就不再赘述。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本发明的范围。
所述领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,可以仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟 悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。
本领域普通技术人员可以理解实现上述实施例的全部或部分步骤可以通过硬件来完成,也可以通过程序来指令相关的硬件完成,所述的程序可以存储于一种计算机可读存储介质中,上述提到的存储介质可以是只读存储器,磁盘或光盘等。

Claims (77)

  1. 一种信息的收发方法,其特征在于,所述方法包括:
    用户设备确定服务小区的子帧长度;
    所述用户设备根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期;
    所述用户设备根据所述同步信号的周期和所述子帧长度在所述服务小区上发送信息或接收信息。
  2. 根据权利要求1所述的方法,其特征在于,所述用户设备根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期,包括:
    所述用户设备根据所述服务小区的子帧长度确定所述服务小区的子帧长度对应的子帧长度集合;
    所述用户设备根据所述子帧长度集合中最长的子帧长度确定所述服务小区的同步信号的周期。
  3. 根据权利要求2所述的方法,其特征在于,所述服务小区的子帧长度对应的子帧长度集合为第一子帧长度集合和第二子帧长度集合中的一个,所述第一子帧长度集合中的任何一个子帧长度均长于所述第二子帧长度集合中的任何一个子帧长度。
  4. 根据权利要求3所述的方法,其特征在于,根据所述第一子帧长度集合确定的所述服务小区的同步信号的周期长于根据所述第二子帧长度集合确定的所述服务小区的同步信号的周期。
  5. 根据权利要求3或4所述的方法,其特征在于,所述第一子帧长度集合包括第一子帧长度和第二子帧长度,所述第一子帧长度等于0.5毫秒,所述第二子帧长度等于1毫秒;所述第二子帧长度集合包括第三子帧长度和第四子帧长度,所述第三子帧长度等于0.125毫秒,所述第三子帧长度等于0.25毫秒。
  6. 根据权利要求2所述的方法,其特征在于,
    所述服务小区的子帧长度对应的子帧长度集合包括第一子帧长度和第二子帧长度,所述第一子帧长度等于0.5毫秒,所述第二子帧长度等于1毫秒;
    或,
    所述服务小区的子帧长度对应的子帧长度集合包括第三子帧长度和第四子帧长度,所述第三子帧长度等于0.125毫秒,所述第四子帧长度等于0.25毫秒。
  7. 根据权利要求1所述的方法,其特征在于,所述用户设备根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期,包括:
    若所述服务小区的子帧长度等于0.125毫秒,则所述用户设备基于0.25毫秒的子帧长度确定所述服务小区的同步信号的周期;
    若所述服务小区的子帧长度等于0.25毫秒,则所述用户设备基于0.25毫秒的子帧长度确定所述服务小区的同步信号的周期;
    若所述服务小区的子帧长度等于0.5毫秒,则所述用户设备基于1毫秒的子帧长度确定所述服务小区的同步信号的周期;
    若所述服务小区的子帧长度等于1毫秒,则所述用户设备基于1毫秒的子帧长度确定所述服务小区的同步信号的周期。
  8. 根据权利要求1所述的方法,其特征在于,所述用户设备根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期,包括:
    若所述服务小区的子帧长度等于0.125毫秒,则所述用户设备确定所述服务小区的同步信号的周期为0.25毫秒的正整数倍;
    若所述服务小区的子帧长度等于0.25毫秒,则所述用户设备确定所述服务小区的同步信号的周期为0.25毫秒的正整数倍;
    若所述服务小区的子帧长度等于0.5毫秒,则所述用户设备确定所述服务小区的同步信号的周期为1毫秒的正整数倍;
    若所述服务小区的子帧长度等于1毫秒,则所述用户设备确定所述服务小区的同步信号的周期为1毫秒的正整数倍。
  9. 根据权利要求1所述的方法,其特征在于,所述用户设备根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期,包括:
    若所述服务小区的子帧长度等于0.125毫秒,则所述用户设备确定所述服务小区的同步信号的周期为1.25毫秒;
    若所述服务小区的子帧长度等于0.25毫秒,则所述用户设备确定所述服务小区的同步信号的周期为1.25毫秒;
    若所述服务小区的子帧长度等于0.5毫秒,则所述用户设备确定所述服务小区的同步信号的周期为5毫秒;
    若所述服务小区的子帧长度等于1毫秒,则所述用户设备确定所述服务小区的同步信号的周期为5毫秒。
  10. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述用户设备接收服务小区的系统信息,所述服务小区的系统信息的周期与所述服务小区的同步信号的周期相同。
  11. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述用户设备根据所述服务小区的子帧长度确定所述服务小区的系统信息的周期;
    所述用户设备根据所述同步信号的周期和所述子帧长度在所述服务小区上发送信息或接收信息,还包括:
    所述用户设备根据所述同步信号的周期、所述服务小区的系统信息的周期和所述子帧长度在所述服务小区上发送信息或接收信息。
  12. 根据权利要求11所述的方法,其特征在于,所述用户设备根据所述服务小区的子帧长度确定所述服务小区的系统信息的周期,包括:
    所述用户设备根据所述服务小区的子帧长度确定所述服务小区的子帧长度对应的子帧长度集合;
    所述用户设备根据所述子帧长度集合中最长的子帧长度确定所述服务小区的系统信息的周期。
  13. 根据权利要求1所述的方法,其特征在于,所述用户设备确定服务小区的子帧长度,包括:
    所述用户设备确定所述服务小区的同步信号对应的序列;
    所述用户设备根据所述同步信号对应的序列确定所述服务小区的子帧长度。
  14. 根据权利要求13所述的方法,其特征在于,所述用户设备根据所述同步信号对应的序列确定所述服务小区的子帧长度,包括:
    若所述同步信号对应的序列为第一序列,则所述用户设备确定所述服务小区的子帧长度为第一子帧长度;
    若所述同步信号对应的序列为第二序列,则所述用户设备确定所述服务小区的子帧长度为第二子帧长度。
  15. 根据权利要求13所述的方法,其特征在于,所述用户设备根据所述同步信号对应的序列确定所述服务小区的子帧长度,包括:
    若所述同步信号对应的序列为第三序列,则所述用户设备确定所述服务小区的子帧长度为第三子帧长度;
    若所述同步信号对应的序列为第四序列,则所述用户设备确定所述服务小区的子帧长度为第四子帧长度。
  16. 根据权利要求14所述的方法,其特征在于,所述第一子帧长度为0.125毫秒,所述第二子帧长度为0.25毫秒。
  17. 根据权利要求15所述的方法,其特征在于,所述第三子帧长度为0.5毫秒,所述第四子帧长度为1毫秒。
  18. 根据权利要求13至17中任一项所述的方法,其特征在于,所述同步信号为主同步信号。
  19. 根据权利要求13至18中任一项所述的方法,其特征在于,所述同步信号位于承载所述同步信号的子帧的前N个符号,所述N大于或等于1。
  20. 一种信息的收发方法,其特征在于,所述方法包括:
    基站确定服务小区的子帧长度;
    所述基站根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期;
    所述基站根据所述同步信号的周期在所述服务小区上发送同步信号;
    所述基站根据所述服务小区的子帧长度在所述服务小区上发送信息或接收信息。
  21. 根据权利要求20所述的方法,其特征在于,所述基站根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期,包括:
    所述基站根据所述服务小区的子帧长度确定所述服务小区的子帧长度对应的子帧长度集合;
    所述基站根据所述子帧长度集合中最长的子帧长度确定所述服务小区的同步信号的周期。
  22. 根据权利要求21所述的方法,其特征在于,所述服务小区的子帧长度对应的子帧长度集合为第一子帧长度集合和第二子帧长度集合中的一个,所述第一子帧长度集合中的任何一个子帧长度均长于所述第二子帧长度集合中的任何一个子帧长度。
  23. 根据权利要求22所述的方法,其特征在于,根据所述第一子帧长度集合确定的所述服务小区的同步信号的周期长于根据所述第二子帧长度集合确定的所述服务小区的同步信号的周期。
  24. 根据权利要求22或23所述的方法,其特征在于,所述第一子帧长度集合包括第一子帧长度和第二子帧长度,所述第一子帧长度等于0.5毫秒,所述第二子帧长度等于1毫秒;所述第二子帧长度集合包括第三子帧长度和第四子帧长度,所述第三子帧长度等于0.125毫秒,所述第四子帧长度等于0.25毫秒。
  25. 根据权利要求21所述的方法,其特征在于,
    所述服务小区的子帧长度对应的子帧长度集合包括第一子帧长度和第二子帧长度,所述第一子帧长度等于0.5毫秒,所述第二子帧长度等于1毫秒;
    或,
    所述服务小区的子帧长度对应的子帧长度集合包括第三子帧长度和第四子帧长度,所述第三子帧长度等于0.125毫秒,所述第三子帧长度等于0.25毫秒。
  26. 根据权利要求20所述的方法,其特征在于,所述基站根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期,包括:
    若所述服务小区的子帧长度等于0.125毫秒,则所述基站基于0.25毫秒的子帧长度确定所述服务小区的同步信号的周期;
    若所述服务小区的子帧长度等于0.25毫秒,则所述基站基于0.25毫秒的子帧长度确定所述服务小区的同步信号的周期;
    若所述服务小区的子帧长度等于0.5毫秒,则所述基站基于1毫秒的子帧长度确定所述服务小区的同步信号的周期;
    若所述服务小区的子帧长度等于1毫秒,则所述基站基于1毫秒的子帧长度确定所述服务小区的同步信号的周期。
  27. 根据权利要求20所述的方法,其特征在于,所述基站根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期,包括:
    若所述服务小区的子帧长度等于0.125毫秒,则所述基站确定所述服务小区的同步信号的周期为0.25毫秒的正整数倍;
    若所述服务小区的子帧长度等于0.25毫秒,则所述基站确定所述服务小区的同步信号的周期为0.25毫秒的正整数倍;
    若所述服务小区的子帧长度等于0.5毫秒,则所述基站确定所述服务小区的同步信号的周期为1毫秒的正整数倍;
    若所述服务小区的子帧长度等于1毫秒,则所述服务小区的同步信号的周期为1毫秒的正整数倍。
  28. 根据权利要求20所述的方法,其特征在于,所述基站根据所述服务小区的子帧长度确定所述服务小区的同步信号的周期,包括:
    若所述服务小区的子帧长度等于0.125毫秒,则所述基站确定所述服务小区的同步信号的周期为1.25毫秒;
    若所述服务小区的子帧长度等于0.25毫秒,则所述基站确定所述服务小区的同步信号的周期为1.25毫秒;
    若所述服务小区的子帧长度等于0.5毫秒,则所述基站确定所述服务小区的同步信号的周期为5毫秒;
    若所述服务小区的子帧长度等于1毫秒,则所述基站确定所述服务小区的同步信号的周期为5毫秒。
  29. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述基站发送服务小区的系统信息,所述服务小区的系统信息的周期与所述服务小区的同步信号的周期相同。
  30. 根据权利要求20所述的方法,其特征在于,所述方法还包括:
    所述基站根据所述服务小区的子帧长度确定所述服务小区的系统信息的周期;
    所述基站根据所述服务小区的子帧长度在所述服务小区上发送信息或接收信息,还包括:
    所述基站根据所述同步信号的周期、所述服务小区的系统信息的周期和所述子帧长度在所述服务小区上发送信息或接收信息。
  31. 根据权利要求30所述的方法,其特征在于,所述基站根据所述服务小区的子帧长度确定所述服务小区的系统信息的周期,包括:
    所述基站根据所述服务小区的子帧长度确定所述服务小区的子帧长度对应的子帧长度集合;
    所述基站根据所述子帧长度集合中最长的子帧长度确定所述服务小区的系统信息的周期。
  32. 根据权利要求20所述的方法,其特征在于,所述基站根据所述同步信号的周期在所述服务小区上发送同步信号,包括:
    所述基站根据所述服务小区的子帧长度确定所述同步信号的序列;
    所述基站根据所述同步信号的周期和所述同步信号的序列在所述服务小区上发送同步信号。
  33. 根据权利要求32所述的方法,其特征在于,所述基站根据所述服务小区的子帧长度确定所述同步信号的序列,包括:
    若所述服务小区的子帧长度为第一子帧长度,则所述基站确定所述同步信号对应的序列为第一序列;
    若所述服务小区的子帧长度为第二子帧长度,则所述基站确定所述同步信号对应的序列为第二序列。
  34. 根据权利要求32所述的方法,其特征在于,所述基站根据所述服务小区的子帧长度确定所述同步信号的序列,包括:
    若所述服务小区的子帧长度为第三子帧长度,则所述基站确定所述同步信号对应的序列为第三序列;
    若所述服务小区的子帧长度为第四子帧长度,则所述基站确定所述同步信号对应的序列为第四序列。
  35. 根据权利要求33所述的方法,其特征在于,所述第一子帧长度为0.125毫秒,所述第二子帧长度为0.25毫秒。
  36. 根据权利要求34所述的方法,其特征在于,所述第一子帧长度为0.5毫秒,所述第二子帧长度为1毫秒。
  37. 根据权利要求32至36中任一项所述的方法,其特征在于,所述同步信号为主同步信号。
  38. 根据权利要求32至37中任一项所述的方法,其特征在于,所述同步信号位于承载所述同步信号的子帧的前N个符号,所述N大于等于1。
  39. 一种信息的收发装置,其特征在于,所述装置包括:
    处理单元,用于确定服务小区的子帧长度;
    所述处理单元,还用于根据确定的所述服务小区的子帧长度确定所述服务小区的同步信号的周期;
    收发单元,用于根据所述处理单元确定的所述同步信号的周期和所述处理单元确定的所述子帧长度,在所述服务小区上发送信息或接收信息。
  40. 根据权利要求39所述的装置,其特征在于,所述处理单元,还用于:
    根据所述服务小区的子帧长度确定所述服务小区的子帧长度对应的子帧长度集合;
    根据所述子帧长度集合中最长的子帧长度确定所述服务小区的同步信号的周期。
  41. 根据权利要求40所述的装置,其特征在于,所述服务小区的子帧长度对应的子帧长度集合为第一子帧长度集合和第二子帧长度集合中的一个,所述第一子帧长度集合中的任何一个子帧长度均长于所述第二子帧长度集合中的任何一个子帧长度。
  42. 根据权利要求41所述的装置,其特征在于,根据所述第一子帧长度集合确定的所述服务小区的同步信号的周期长于根据所述第二子帧长度集合确定的所述服务小区的同步信号的周期。
  43. 根据权利要求41或42所述的装置,其特征在于,所述第一子帧长度集合包括第一子帧长度和第二子帧长度,所述第一子帧长度等于0.5毫秒,所述第二子帧长度等于1毫秒;所述第二子帧长度集合包括第三子帧长度和第四子帧长度,所述第三子帧长度等于0.125毫秒,所述第三子帧长度等于0.25毫秒。
  44. 根据权利要求40所述的装置,其特征在于,
    所述服务小区的子帧长度对应的子帧长度集合包括第一子帧长度和第二子帧长度,所述第一子帧长度等于0.5毫秒,所述第二子帧长度等于1毫秒;
    或,
    所述服务小区的子帧长度对应的子帧长度集合包括第三子帧长度和第四子帧长度,所述第三子帧长度等于0.125毫秒,所述第四子帧长度等于0.25毫秒。
  45. 根据权利要求39所述的装置,其特征在于,所述处理单元,还用于:
    若所述服务小区的子帧长度等于0.125毫秒,则基于0.25毫秒的子帧长度确定所述服务小区的同步信号的周期;
    若所述服务小区的子帧长度等于0.25毫秒,则基于0.25毫秒的子帧长度确定所述服务小区的同步信号的周期;
    若所述服务小区的子帧长度等于0.5毫秒,则基于1毫秒的子帧长度确定所述服务小区的同步信号的周期;
    若所述服务小区的子帧长度等于1毫秒,则基于1毫秒的子帧长度确定所述服务小区的同步信号的周期。
  46. 根据权利要求39所述的装置,其特征在于,所述处理单元,还用于:
    若所述服务小区的子帧长度等于0.125毫秒,则确定所述服务小区的同步信号的周期为0.25毫秒的正整数倍;
    若所述服务小区的子帧长度等于0.25毫秒,则确定所述服务小区的同步信号的周期为0.25毫秒的正整数倍;
    若所述服务小区的子帧长度等于0.5毫秒,则确定所述服务小区的同步信号的周期为1毫秒的正整数倍;
    若所述服务小区的子帧长度等于1毫秒,则确定所述服务小区的同步信号的周期为1毫秒的正整数倍。
  47. 根据权利要求39所述的装置,其特征在于,所述处理单元,还用于:
    若所述服务小区的子帧长度等于0.125毫秒,则确定所述服务小区的同步信号的周期为1.25毫秒;
    若所述服务小区的子帧长度等于0.25毫秒,则确定所述服务小区的同步信号的周期为1.25毫秒;
    若所述服务小区的子帧长度等于0.5毫秒,则确定所述服务小区的同步信号的周期为5毫秒;
    若所述服务小区的子帧长度等于1毫秒,则确定所述服务小区的同步信号的周期为5毫秒。
  48. 根据权利要求39所述的装置,其特征在于,
    所述收发单元,还用于接收服务小区的系统信息,所述服务小区的系统信息的周期与所述服务小区的同步信号的周期相同。
  49. 根据权利要求39所述的装置,其特征在于,
    所述处理单元,还用于根据所述服务小区的子帧长度确定所述服务小区的系统信息的周期;
    所述收发单元,还用于:
    根据所述处理单元确定的所述同步信号的周期、所述服务小区的系统信息的周期和所述子帧长度,在所述服务小区上发送信息或接收信息。
  50. 根据权利要求49所述的装置,其特征在于,所述处理单元,还用于:
    根据所述服务小区的子帧长度确定所述服务小区的子帧长度对应的子帧长度集合;
    根据所述子帧长度集合中最长的子帧长度确定所述服务小区的系统信息的周期。
  51. 根据权利要求39所述的装置,其特征在于,所述处理单元,还用于:
    确定所述服务小区的同步信号对应的序列;
    根据所述同步信号对应的序列确定所述服务小区的子帧长度。
  52. 根据权利要求51所述的装置,其特征在于,所述处理单元,还用于:
    若所述同步信号对应的序列为第一序列,则确定所述服务小区的子帧长度为第一子帧长度;
    若所述同步信号对应的序列为第二序列,则确定所述服务小区的子帧长度为第二子帧长度。
  53. 根据权利要求51所述的装置,其特征在于,所述处理单元,还用于:
    若所述同步信号对应的序列为第三序列,则确定所述服务小区的子帧长度为第三子帧长度;
    若所述同步信号对应的序列为第四序列,则确定所述服务小区的子帧长度为第四子帧长度。
  54. 根据权利要求52所述的装置,其特征在于,所述第一子帧长度为0.125毫秒,所述第二子帧长度为0.25毫秒。
  55. 根据权利要求53所述的装置,其特征在于,所述第三子帧长度为0.5毫秒,所述第四子帧长度为1毫秒。
  56. 根据权利要求51至55中任一项所述的装置,其特征在于,所述同步信号为主同步信号。
  57. 根据权利要求51至56中任一项所述的装置,其特征在于,所述同步信号位于承载所述同步信号的子帧的前N个符号,所述N大于或等于1。
  58. 一种信息的收发装置,其特征在于,所述装置包括:
    处理单元,用于确定服务小区的子帧长度;
    所述处理单元,还用于根据确定的所述服务小区的子帧长度确定所述服务小区的同步信号的周期;
    收发单元,用于根据所述处理单元确定的所述同步信号的周期在所述服务小区上发送同步信号;
    所述收发单元,还用于根据所述服务小区的子帧长度在所述服务小区上发送信息或接收信息。
  59. 根据权利要求58所述的装置,其特征在于,所述处理单元,还用于:
    根据所述服务小区的子帧长度确定所述服务小区的子帧长度对应的子帧长度集合;
    根据所述子帧长度集合中最长的子帧长度确定所述服务小区的同步信号的周期。
  60. 根据权利要求59所述的装置,其特征在于,所述服务小区的子帧长度对应的子帧长度集合为第一子帧长度集合和第二子帧长度集合中的一个,所述第一子帧长度集合中的任何 一个子帧长度均长于所述第二子帧长度集合中的任何一个子帧长度。
  61. 根据权利要求60所述的装置,其特征在于,根据所述第一子帧长度集合确定的所述服务小区的同步信号的周期长于根据所述第二子帧长度集合确定的所述服务小区的同步信号的周期。
  62. 根据权利要求60或61所述的装置,其特征在于,所述第一子帧长度集合包括第一子帧长度和第二子帧长度,所述第一子帧长度等于0.5毫秒,所述第二子帧长度等于1毫秒;所述第二子帧长度集合包括第三子帧长度和第四子帧长度,所述第三子帧长度等于0.125毫秒,所述第四子帧长度等于0.25毫秒。
  63. 根据权利要求59所述的装置,其特征在于,
    所述服务小区的子帧长度对应的子帧长度集合包括第一子帧长度和第二子帧长度,所述第一子帧长度等于0.5毫秒,所述第二子帧长度等于1毫秒;
    或,
    所述服务小区的子帧长度对应的子帧长度集合包括第三子帧长度和第四子帧长度,所述第三子帧长度等于0.125毫秒,所述第三子帧长度等于0.25毫秒。
  64. 根据权利要求58所述的装置,其特征在于,所述处理单元,还用于:
    若所述服务小区的子帧长度等于0.125毫秒,则基于0.25毫秒的子帧长度确定所述服务小区的同步信号的周期;
    若所述服务小区的子帧长度等于0.25毫秒,则基于0.25毫秒的子帧长度确定所述服务小区的同步信号的周期;
    若所述服务小区的子帧长度等于0.5毫秒,则基于1毫秒的子帧长度确定所述服务小区的同步信号的周期;
    若所述服务小区的子帧长度等于1毫秒,则基于1毫秒的子帧长度确定所述服务小区的同步信号的周期。
  65. 根据权利要求58所述的装置,其特征在于,所述处理单元,还用于:
    若所述服务小区的子帧长度等于0.125毫秒,则确定所述服务小区的同步信号的周期为0.25毫秒的正整数倍;
    若所述服务小区的子帧长度等于0.25毫秒,则确定所述服务小区的同步信号的周期为0.25毫秒的正整数倍;
    若所述服务小区的子帧长度等于0.5毫秒,则确定所述服务小区的同步信号的周期为1毫秒的正整数倍;
    若所述服务小区的子帧长度等于1毫秒,则确定所述服务小区的同步信号的周期为1毫秒的正整数倍。
  66. 根据权利要求58所述的装置,其特征在于,所述处理单元,还用于:
    若所述服务小区的子帧长度等于0.125毫秒,则确定所述服务小区的同步信号的周期为1.25毫秒;
    若所述服务小区的子帧长度等于0.25毫秒,则确定所述服务小区的同步信号的周期为1.25毫秒;
    若所述服务小区的子帧长度等于0.5毫秒,则确定所述服务小区的同步信号的周期为5毫秒;
    若所述服务小区的子帧长度等于1毫秒,则确定所述服务小区的同步信号的周期为5毫秒。
  67. 根据权利要求58所述的装置,其特征在于,
    所述收发单元,还用于发送服务小区的系统信息,所述服务小区的系统信息的周期与所述服务小区的同步信号的周期相同。
  68. 根据权利要求58所述的装置,其特征在于,
    所述处理单元,用于根据所述服务小区的子帧长度确定所述服务小区的系统信息的周期;
    所述收发单元,还用于:
    根据所述处理单元确定的所述同步信号的周期、所述服务小区的系统信息的周期和所述子帧长度,在所述服务小区上发送信息或接收信息。
  69. 根据权利要求68所述的装置,其特征在于,所述处理单元,还用于:
    根据所述服务小区的子帧长度确定所述服务小区的子帧长度对应的子帧长度集合;
    根据所述子帧长度集合中最长的子帧长度确定所述服务小区的系统信息的周期。
  70. 根据权利要求58所述的装置,其特征在于,所述收发单元,还用于:
    根据所述服务小区的子帧长度确定所述同步信号的序列;
    根据所述同步信号的周期和所述同步信号的序列在所述服务小区上发送同步信号。
  71. 根据权利要求70所述的装置,其特征在于,所述收发单元,还用于:
    若所述服务小区的子帧长度为第一子帧长度,则确定所述同步信号对应的序列为第一序列;
    若所述服务小区的子帧长度为第二子帧长度,则确定所述同步信号对应的序列为第二序列。
  72. 根据权利要求71所述的装置,其特征在于,所述收发单元,还用于:
    若所述服务小区的子帧长度为第三子帧长度,则确定所述同步信号对应的序列为第三序列;
    若所述服务小区的子帧长度为第四子帧长度,则确定所述同步信号对应的序列为第四序列。
  73. 根据权利要求71所述的装置,其特征在于,所述第一子帧长度为0.125毫秒,所述第二子帧长度为0.25毫秒。
  74. 根据权利要求72所述的装置,其特征在于,所述第一子帧长度为0.5毫秒,所述第二子帧长度为1毫秒。
  75. 根据权利要求60至74中任一项所述的装置,其特征在于,所述同步信号为主同步信号。
  76. 根据权利要求60至75中任一项所述的装置,其特征在于,所述同步信号位于承载所述同步信号的子帧的前N个符号,所述N大于等于1。
  77. 一种信息的收发系统,其特征在于,所述系统包括用户设备和基站,
    所述用户设备包括如权利要求39至57中任一所述的信息的收发装置;
    所述基站包括如权利要求58至76中任一所述的信息的收发装置。
PCT/CN2017/083615 2016-05-12 2017-05-09 信息的收发方法、装置及系统 WO2017193908A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2018559374A JP2019520731A (ja) 2016-05-12 2017-05-09 情報送受信方法、装置、およびシステム
EP17795526.7A EP3442188B1 (en) 2016-05-12 2017-05-09 Information transceiving method, device, and system
BR112018072556A BR112018072556A2 (pt) 2016-05-12 2017-05-09 método de transcepção de informações, aparelho e meio
US16/186,403 US10764850B2 (en) 2016-05-12 2018-11-09 Information transceiving method, apparatus, and system

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610316999.X 2016-05-12
CN201610316999.XA CN107370703B (zh) 2016-05-12 2016-05-12 信息的收发方法、装置及系统

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/186,403 Continuation US10764850B2 (en) 2016-05-12 2018-11-09 Information transceiving method, apparatus, and system

Publications (1)

Publication Number Publication Date
WO2017193908A1 true WO2017193908A1 (zh) 2017-11-16

Family

ID=60266641

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/083615 WO2017193908A1 (zh) 2016-05-12 2017-05-09 信息的收发方法、装置及系统

Country Status (6)

Country Link
US (1) US10764850B2 (zh)
EP (1) EP3442188B1 (zh)
JP (1) JP2019520731A (zh)
CN (1) CN107370703B (zh)
BR (1) BR112018072556A2 (zh)
WO (1) WO2017193908A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019054308A (ja) * 2016-01-26 2019-04-04 シャープ株式会社 基地局装置、端末装置および通信方法
WO2021243687A1 (en) * 2020-06-05 2021-12-09 Qualcomm Incorporated User equipment selection of synchronization signal block cycle

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120213508A1 (en) * 2011-02-23 2012-08-23 Jeffrey Scott Moynihan Network element clock synchronization systems and methods using optical transport network delay measurement
CN105144731A (zh) * 2013-03-17 2015-12-09 Lg电子株式会社 分配广播信道的方法、发送和接收广播信道信号的方法、以及用于支持其的设备
CN105264995A (zh) * 2013-03-28 2016-01-20 三星电子株式会社 Tdd通信系统中用于上行链路-下行链路配置的适应的下行链路信令

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20050099968A1 (en) * 2002-06-25 2005-05-12 Osamu Yamano Power control method and apparatus
KR101498057B1 (ko) * 2008-08-22 2015-03-03 엘지전자 주식회사 릴레이 시스템을 지원하기 위한 프리엠블 전송방법
CN101741538B (zh) * 2008-11-13 2013-01-16 中兴通讯股份有限公司 同步调度方法
KR101361600B1 (ko) * 2010-10-22 2014-02-21 한국전자통신연구원 Lte 기반 펨토 셀의 시스템 정보를 전송하는 시스템
CN104796920B (zh) * 2014-01-16 2019-02-12 电信科学技术研究院 数据传输方法、基站以及终端设备
EP3174257B1 (en) 2014-08-13 2018-10-03 Huawei Technologies Co., Ltd. Synchronization signal transmitting and receiving method and device

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20120213508A1 (en) * 2011-02-23 2012-08-23 Jeffrey Scott Moynihan Network element clock synchronization systems and methods using optical transport network delay measurement
CN105144731A (zh) * 2013-03-17 2015-12-09 Lg电子株式会社 分配广播信道的方法、发送和接收广播信道信号的方法、以及用于支持其的设备
CN105264995A (zh) * 2013-03-28 2016-01-20 三星电子株式会社 Tdd通信系统中用于上行链路-下行链路配置的适应的下行链路信令

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
LEE, J. ET AL.: "LTE-Advanced in 3GPP Rel-13/14: An evolution toward 5G", IEEE COMMUNICATIONS MAGAZINE, vol. 54, no. 3, 17 March 2016 (2016-03-17), XP011603198, ISSN: 0163-6804 *

Also Published As

Publication number Publication date
JP2019520731A (ja) 2019-07-18
EP3442188A1 (en) 2019-02-13
EP3442188B1 (en) 2022-02-23
CN107370703A (zh) 2017-11-21
BR112018072556A2 (pt) 2019-02-19
US10764850B2 (en) 2020-09-01
CN107370703B (zh) 2020-08-07
EP3442188A4 (en) 2019-05-08
US20190082404A1 (en) 2019-03-14

Similar Documents

Publication Publication Date Title
US10278170B2 (en) Information sending and receiving methods and devices
CN103597757B (zh) 载波聚合系统中用于载波激活的方法和设备
EP3537784B1 (en) Method for detecting synchronization signal block, and method, apparatus and system for transmitting synchronization signal block
WO2017004774A1 (zh) 一种数据传输的方法、无线网络设备和通信系统
EP3413655B1 (en) Wireless communication device, communication method, computer program, and wireless communication system
WO2016050196A2 (zh) 一种蜂窝通信中的laa传输的基站、ue中的方法和设备
US20120033589A1 (en) Apparatus and method for co-existence between different radio access technologies
CN104812053B (zh) D2d通信同步信道的传输方法及系统、发送端及接收端
US11297596B2 (en) Paging occasion start determination
WO2018228537A1 (zh) 信息发送、接收方法及装置
WO2017167011A1 (zh) 信息的传输方法及相关装置
CN109309545A (zh) 一种指示时隙格式的方法、设备及系统
WO2021056564A1 (zh) 直连通信操作处理方法、装置及存储介质
WO2020063929A1 (zh) 一种发现参考信号发送方法及装置
WO2018112934A1 (zh) 传输信息的方法、网络设备和终端设备
WO2017193908A1 (zh) 信息的收发方法、装置及系统
WO2021027806A1 (zh) 信息传输的方法和装置
CN103546411B (zh) 上行授权信息发送方法、授权信息指示方法及基站
WO2016169479A1 (zh) 一种数据传输方法及设备
WO2019184884A1 (zh) 通信方法、装置、设备及存储介质
US11212795B2 (en) Method and apparatus for indicating and determining slot structure
WO2023279865A1 (zh) 一种通信方法及装置
WO2022223031A1 (zh) 一种数据传输的通信处理方法和相关设备
WO2018028678A1 (zh) 一种同步信号发送方法及装置
CN109076594B (zh) 一种低功耗终端接入网络的方法及装置

Legal Events

Date Code Title Description
WWE Wipo information: entry into national phase

Ref document number: 2017795526

Country of ref document: EP

ENP Entry into the national phase

Ref document number: 2018559374

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112018072556

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2017795526

Country of ref document: EP

Effective date: 20181106

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17795526

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 112018072556

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20181101