WO2018028678A1 - 一种同步信号发送方法及装置 - Google Patents

一种同步信号发送方法及装置 Download PDF

Info

Publication number
WO2018028678A1
WO2018028678A1 PCT/CN2017/097116 CN2017097116W WO2018028678A1 WO 2018028678 A1 WO2018028678 A1 WO 2018028678A1 CN 2017097116 W CN2017097116 W CN 2017097116W WO 2018028678 A1 WO2018028678 A1 WO 2018028678A1
Authority
WO
WIPO (PCT)
Prior art keywords
unit
frequency resource
time
index value
time domain
Prior art date
Application number
PCT/CN2017/097116
Other languages
English (en)
French (fr)
Inventor
李俊超
龚政委
张弛
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Publication of WO2018028678A1 publication Critical patent/WO2018028678A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0001Arrangements for dividing the transmission path
    • H04L5/0003Two-dimensional division
    • H04L5/0005Time-frequency
    • H04L5/0007Time-frequency the frequencies being orthogonal, e.g. OFDM(A), DMT
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver

Definitions

  • the present application relates to the field of mobile communications technologies, and in particular, to a synchronization signal sending method and apparatus.
  • the terminal When the terminal is powered on or loses the network, it needs to perform cell search to implement access to the network.
  • Cell search is mainly based on synchronization signals.
  • the terminal can obtain information such as time synchronization, cell identification number, and the like of the cell that needs to be accessed according to the synchronization signal.
  • the synchronization signal is generally classified into a PSS (Primary Synchronization Signal) and an SSS (Secondary Synchronization Signal).
  • PSS Primary Synchronization Signal
  • SSS Secondary Synchronization Signal
  • the terminal can implement slot timing and frequency calibration through PSS, and can implement frame timing and obtain cell identification number through SSS.
  • the 3GPP (3rd Generation Partnership Project) specifies the time domain locations for transmitting PSS and SSS in FDD (Frequency Division Dual) and TDD (Time Division Duplex) modes.
  • FDD Frequency Division Dual
  • TDD Time Division Duplex
  • the PSS is transmitted on the last OFDM (Orthogonal Frequency Division Multiplexing) symbol of the first slot of subframe 0 and subframe 5; the SSS is the same as the PSS.
  • the frame is transmitted on the same time slot, but the SSS is transmitted on the penultimate OFDM symbol, one OFDM symbol ahead of the PSS.
  • TDD in one radio frame, the PSS is transmitted on the third OFDM symbol of subframe 1 and subframe 6; and the SSS is transmitted on the last OFDM symbol of the second slot in subframe 0 and subframe 5, 3 OFDM symbols ahead of PSS.
  • the PSS or SSS is sent on the last OFDM symbol of one slot in the subframe, and according to the subframe definition refreshed in 5G (5th Generation, 5th generation network) NR (New Radio), If PSS or SSS is transmitted on the last OFDM symbol in the slot, all symbols in the slot can only be transmitted downstream.
  • 5G 5th Generation, 5th generation network
  • NR New Radio
  • the time-frequency resource in which one slot exists in the radio frame in which the synchronization signal is transmitted is anchored
  • the time-frequency resource in which two slots exist in the radio frame in which the synchronization signal is transmitted is Anchored. In this case, how to improve the utilization of time-frequency resources has become an urgent problem to be solved.
  • the embodiment of the present application provides a synchronization signal sending method and device, which are used to provide a method for synchronizing signal transmission, and improve utilization of time-frequency resources.
  • the embodiment of the present application provides a synchronization signal sending method, including:
  • the network device sends the first synchronization signal on the basic time domain unit corresponding to the first index value on the first time-frequency resource sub-unit in the time-frequency resource unit;
  • the network device sends a first synchronization signal on a basic time domain unit corresponding to a second index value on at least one second time-frequency resource sub-unit of the time-frequency resource unit;
  • first index value is different from the second index value; each of the basic time domain units in the first time-frequency resource sub-unit
  • the uplink and downlink attributes are pre-configured, and the second time-frequency resource sub-unit includes at least one uplink-downlink attribute as a basic time-domain unit to be configured; and the basic synchronization signal is sent in each first time-frequency resource sub-unit.
  • the first index value corresponding to the time domain unit is the same, and the second index value corresponding to the basic time domain unit that sends the first synchronization signal in each second time frequency resource subunit is the same.
  • the network device sends the first synchronization signal on the basic time domain unit corresponding to the first index value on the first time-frequency resource sub-unit, and the second synchronization resource sub-unit Transmitting a first synchronization signal on a basic time domain unit corresponding to the second index value; and transmitting the first synchronization signal on the first time-frequency resource sub-unit and the first time-frequency resource sub-unit in the first time-frequency resource sub-unit
  • the second index value is different, so that the number of anchored time-frequency resource sub-units can be reduced and the flexibility of the time-frequency resource sub-unit can be improved, on the basis of ensuring that the terminal searches for the maximum search delay requirement of the first synchronization signal, thereby Improve the utilization of time-frequency resources.
  • the method further includes:
  • the network device sends a second synchronization signal on a basic time domain unit corresponding to a third index value on the first time-frequency resource sub-unit in the time-frequency resource unit;
  • the network device sends a second synchronization signal on a basic time domain unit corresponding to a fourth index value on at least one second time-frequency resource sub-unit of the time-frequency resource unit;
  • the third index value is different from the fourth index value; the third index value corresponding to the basic time domain unit that sends the second synchronization signal in each first time-frequency resource sub-unit is the same, and each second time-frequency resource
  • the fourth index value corresponding to the basic time domain unit in which the second synchronization signal is transmitted in the subunit is the same.
  • the first index value is greater than the second index value, or the third index value is greater than the fourth index value.
  • the basic time domain unit corresponding to the first index value is the last basic time-domain unit in the first time-frequency resource sub-unit;
  • the basic time domain unit corresponding to the third index value is the last basic time-domain unit in the first time-frequency resource sub-unit.
  • the basic time domain unit corresponding to the second index value is a basic of the second time-frequency resource sub-unit adjacent to the basic time-domain unit that sends the downlink control signal.
  • the time domain unit, the basic time domain unit corresponding to the fourth index value is a basic time domain unit adjacent to the basic time domain unit corresponding to the second index value in the second time-frequency resource sub-unit.
  • An embodiment of the present application provides a synchronization signal sending apparatus, where the apparatus includes:
  • a sending unit configured to send a first synchronization signal on a basic time domain unit corresponding to the first index value on the first time-frequency resource sub-unit in the time-frequency resource unit;
  • the sending unit is configured to send a first synchronization signal on a basic time domain unit corresponding to a second index value on at least one second time-frequency resource sub-unit of the time-frequency resource unit;
  • the first index value is different from the second index value; the uplink and downlink attributes of each basic time domain unit in the first time-frequency resource sub-unit are pre-configured, and the second time-frequency resource sub-unit includes at least one uplink and downlink attribute.
  • the basic time domain unit to be configured.
  • the sending unit is further configured to:
  • the third index value is different from the fourth index value.
  • the first index value is greater than the second index value, or the third index value is greater than the fourth index value.
  • the basic time domain unit corresponding to the first index value is the last basic time-domain unit in the first time-frequency resource sub-unit;
  • the basic time domain unit corresponding to the third index value is the last basic time-domain unit in the first time-frequency resource sub-unit.
  • the basic time domain unit corresponding to the second index value is a basic of the second time-frequency resource sub-unit adjacent to the basic time-domain unit that sends the downlink control signal.
  • the time domain unit, the basic time domain unit corresponding to the fourth index value is a basic time domain unit adjacent to the basic time domain unit corresponding to the second index value in the second time-frequency resource sub-unit.
  • An embodiment of the present application provides a synchronization signal sending apparatus, where the apparatus includes:
  • a transceiver configured to send a first synchronization signal on a basic time domain unit corresponding to a first index value on a first time-frequency resource sub-unit in a time-frequency resource unit;
  • the transceiver is configured to send a first synchronization signal on a basic time domain unit corresponding to a second index value on at least one second time-frequency resource sub-unit of the time-frequency resource unit;
  • the first index value is different from the second index value; the uplink and downlink attributes of each basic time domain unit in the first time-frequency resource sub-unit are pre-configured, and the second time-frequency resource sub-unit includes at least one uplink and downlink attribute.
  • the second index value corresponding to the basic time domain unit of the first synchronization signal is the same.
  • the transceiver is further configured to:
  • the third index value is different from the fourth index value; the third index value corresponding to the basic time domain unit that sends the second synchronization signal in each first time-frequency resource sub-unit is the same, and each second time-frequency resource
  • the fourth index value corresponding to the basic time domain unit in which the second synchronization signal is transmitted in the subunit is the same.
  • the first index value is greater than the second index value, or the third index value is greater than the fourth index value.
  • the basic time domain unit corresponding to the first index value is the last basic time-domain unit in the first time-frequency resource sub-unit;
  • the basic time domain unit corresponding to the third index value is the last basic time-domain unit in the first time-frequency resource sub-unit.
  • the basic time domain unit corresponding to the second index value is a basic of the second time-frequency resource sub-unit adjacent to the basic time-domain unit that sends the downlink control signal.
  • the time domain unit, the basic time domain unit corresponding to the fourth index value is a basic time domain unit adjacent to the basic time domain unit corresponding to the second index value in the second time-frequency resource sub-unit.
  • the embodiment of the present application provides a computer readable storage medium, where the computer storage medium stores computer readable instructions, and when the computer reads and executes the computer readable instructions, causes the computer to perform any of the above possible designs. Synchronous signal transmission method.
  • the embodiment of the present application provides a computer program product, when the computer reads and executes the computer program product, causing the computer to execute the synchronization signal sending method in any of the above possible designs.
  • the embodiment of the present application provides a chip connected to a memory for reading and executing a software program stored in the memory to implement a synchronization signal sending method in any of the above possible designs.
  • An embodiment of the present application provides a communication apparatus, which has a function of implementing network device or terminal behavior in any of the foregoing synchronization signal transmission methods, and includes the steps described in the method for performing any of the foregoing synchronization signal transmission methods. Or functionally corresponding parts (means).
  • the steps or functions may be implemented by software, or by hardware, or by a combination of hardware and software.
  • the communication device described above includes one or more processors and transceiver units.
  • the one or more processors are configured to support the communication device to perform corresponding functions in the methods described above. For example, a synchronization signal is generated.
  • the transceiver unit is configured to support the communication device to communicate with other devices to implement a receiving/transmitting function. For example, a synchronization signal generated by the processor or the like is transmitted.
  • the communication device may further include one or more memories for coupling with the processor, which store program instructions and data necessary for the communication device.
  • the one or more memories may be integrated with the processor or may be separate from the processor, and the present application is not limited thereto.
  • the communication device may be a base station or a Transmission Reception Point (TRP), etc.
  • the communication unit may be a transceiver or a transceiver circuit.
  • the communication device may also be a communication chip that can be disposed in the network device.
  • the communication unit may be an input/output circuit or interface of a communication chip.
  • the communication device may be a terminal, and the terminal may be a cellular phone, a handheld terminal, a notebook computer or other devices that can access the network, a drone device, a smart home device, an in-vehicle device, etc., and the communication unit may be Transceiver, or transceiver circuit.
  • the communication device may also be a communication chip that can be disposed in the terminal.
  • the communication unit may be an input/output circuit or interface of a communication chip.
  • the above communication device includes a transceiver, a processor, and a memory.
  • the processor is configured to control a transceiver transceiver signal for storing a computer program, the processor for calling and running the computer program from the memory, such that the communication device performs the network device or terminal completion in any of the above-described synchronization signal transmission methods Methods.
  • 1 is a schematic diagram of a system architecture of an LTE system
  • FIG. 2 is a schematic flowchart of a synchronization signal sending method according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of a time-frequency resource unit occupied by a synchronization signal according to an embodiment of the present disclosure
  • FIG. 4 is a schematic diagram of a time-frequency resource unit occupied by a synchronization signal according to an embodiment of the present disclosure
  • FIG. 5 is a schematic diagram of a time-frequency resource unit occupied by a synchronization signal according to an embodiment of the present disclosure
  • FIG. 6 is a schematic diagram of a time-frequency resource unit occupied by a synchronization signal according to an embodiment of the present disclosure
  • FIG. 7 is a schematic structural diagram of a synchronization signal sending apparatus according to an embodiment of the present application.
  • FIG. 8 is a schematic structural diagram of a synchronization signal sending apparatus according to an embodiment of the present disclosure.
  • FIG. 1 it is a schematic diagram of a system architecture of an LTE system.
  • the description of each network element and interface in Figure 1 is as follows:
  • MME Mobility Management Entity
  • S-GW Server GateWay
  • the MME is a key control node in LTE and belongs to the core network element. It is mainly responsible for the signaling processing part, that is, the control plane function. Includes access control, mobility management, attach and detach, session management, and gateway selection.
  • the S-GW is an important network element of the core network in LTE. It is mainly responsible for the user plane function of user data forwarding, that is, routing and forwarding of data packets under the control of the MME.
  • the eNB is a base station in LTE. It is mainly responsible for radio resource management, QoS (Quality of Service) management, data compression, and encryption on the air interface side. To the core network side, the eNB is mainly responsible for forwarding control plane signaling to the MME and forwarding user plane service data to the S-GW.
  • QoS Quality of Service
  • the UE may have the function of accessing the network side through an access device, such as an eNB, in LTE, or may have a wireless transmission between the access device and the other device in other networks. It can transmit voice or data services.
  • the UE includes, but is not limited to, a mobile station, a fixed or mobile subscriber unit, a pager, a cellular telephone, a Personal Digital Assistant (PDA), a handheld terminal, a notebook computer, or other device that can access the network.
  • PDA Personal Digital Assistant
  • S1 interface is a standard interface between the eNB and the core network.
  • the eNB is connected to the MME through the S1-MME interface, and is used for control signaling transmission; the eNB is connected to the S-GW through the S1-U interface, and is used for transmission of user data.
  • the S1-MME interface and the S1-U interface are collectively referred to as an S1 interface.
  • the X2 interface is a standard interface between the eNB and the eNB, and is used to implement interworking between the base stations.
  • the Uu interface is a radio interface between the UE and the base station, and the UE accesses the LTE network through the Uu interface.
  • D-TDD Dynamic Time Division Duplex
  • the so-called D-TDD refers to the flexible and fast switching of time-division duplex subframes to uplink and downlink according to the uplink and downlink traffic load in the network, so as to match the specific service requirements of the network to improve the throughput of the uplink and downlink services of the network.
  • the uplink and downlink of D-TDD can be more flexible and timely to adapt to various business needs.
  • the technology of dynamic subframe is proposed.
  • the uplink and downlink of the dynamic subframe are not anchored, but can be dynamically adjusted by the network side as needed, thereby reducing the delay of the service data transmission and increasing the throughput of the cell.
  • FIG. 2 a schematic flowchart of a synchronization signal sending method according to an embodiment of the present application is provided.
  • the method includes:
  • Step 201 The network device sends the first synchronization signal on the basic time domain unit corresponding to the first index value on the first time-frequency resource sub-unit in the time-frequency resource unit.
  • Step 202 The network device sends a first synchronization signal on a basic time domain unit corresponding to a second index value on at least one second time-frequency resource sub-unit of the time-frequency resource unit, where the first index value is Different from the second index value.
  • the meaning of the “at least one second time-frequency resource sub-unit” is that all or part of the time-frequency resource unit
  • the basic time domain unit corresponding to the second index value on the second time-frequency resource sub-unit is used to transmit the first synchronization signal.
  • the uplink and downlink attributes of each basic time domain unit in the first time-frequency resource sub-unit are pre-configured, and the second time-frequency resource sub-unit includes at least one uplink and downlink attribute as a basic time domain unit to be configured.
  • the first index value corresponding to the basic time domain unit that sends the first synchronization signal in each first time-frequency resource sub-unit is the same, and the basic time of transmitting the first synchronization signal in each second time-frequency resource sub-unit
  • the second index value corresponding to the domain unit is the same.
  • the network device may be an eNB or a device having an eNB function, which is not limited in this embodiment of the present application.
  • one time-frequency resource unit may include M consecutive time-frequency resource sub-units, and each time-frequency resource sub-unit may include N basic time-domain units, where M and N are natural numbers.
  • M and N are natural numbers.
  • the values of M and N can be determined according to actual conditions, and are not limited herein.
  • the number of the first time-frequency resource sub-units and the second time-frequency resource sub-units included in one time-frequency resource unit may be determined according to actual conditions, which is not limited by the embodiment of the present application.
  • the time-frequency resource unit may be a resource unit having a radio frame structure in an FDD mode or a TDD mode, or a resource unit having a radio frame structure similar to an FDD mode or a TDD mode.
  • one time-frequency resource sub-unit may be a resource unit of one subframe structure in a radio frame having an FDD mode or a TDD mode.
  • the basic time domain unit included in each time-frequency resource sub-unit may be a symbol such as an OFDM symbol, an SC-FDMA (Single Carrier Frequency Division Multiple Access) symbol, and the like. Not limited.
  • the uplink and downlink attributes of each basic time domain unit indicate that the basic time domain unit is an uplink time domain unit (that is, a time domain unit used for uplink transmission) or a downlink time domain unit (that is, used for downlink transmission). Time domain unit).
  • the uplink and downlink attributes of each basic time domain unit in the first time-frequency resource sub-unit are pre-configured, which means that the uplink and downlink attributes of each basic time domain unit in the first time-frequency resource sub-unit are agreed by the agreement or It is agreed by the network device and the terminal, and will not change.
  • subframes with subframe numbers of #0, #1, and #5 in a radio frame are downlink subframes and subframe numbers in any uplink and downlink subframe matching mode.
  • the subframes of #2 are uplink subframes in any uplink and downlink subframe matching mode, and the uplink and downlink attributes of these subframes are pre-configured.
  • the meaning of the pre-configuration may be the same as the above example.
  • a first time domain resource subunit includes 14 basic time domain units, wherein the uplink and downlink attributes of the basic time domain unit corresponding to the index values 0, 1, 2, 3, 4, and 5 are preconfigured as Uplink; the uplink and downlink attributes of the basic time domain unit corresponding to the index value of 6 to 13 are preconfigured as downlink.
  • the basic time domain unit corresponding to the index value of 0, 1, 2, 3, 4, and 5 can only be used for uplink transmission.
  • the basic time domain unit corresponding to the index value is 6 to 13. Can only be used for downlink transmission.
  • the index value of the basic time domain unit is a location number of the basic time domain unit in the time-frequency resource sub-unit in which the basic time domain unit is located, and may indicate that the basic time domain unit is located in the basic time domain unit. The location in the time-frequency resource subunit.
  • the index value of each basic time domain unit in the time-frequency resource sub-unit is gradually increased with time, that is, the index value of the preceding basic time-domain unit in the time-frequency resource sub-unit is greater than The index value of the basic time domain unit that follows the time-frequency resource subunit.
  • a basic time-domain unit with an index value of 0 indicates that the basic time-domain unit is the first basic time-domain unit in the time-frequency resource sub-unit.
  • a basic time domain unit having an index value of 3 indicates that the basic time domain unit is the fourth basic time domain unit in the time-frequency resource sub-unit.
  • the second time-frequency resource sub-unit includes at least one uplink-downlink attribute as a basic time-domain unit to be configured, and the second time-frequency resource sub-unit includes the uplink and downlink attributes as the basic to be configured.
  • Domain unit other The uplink and downlink attributes of the basic time domain unit can be pre-configured.
  • the uplink and downlink attributes are the basic time domain units to be configured.
  • the uplink and downlink attributes of the basic time domain unit are variable and can be flexibly changed according to the actual situation. Therefore, the uplink and downlink attributes are the basic time domain units to be configured before being sent.
  • the network device is required to determine whether the basic time domain unit is uplink or downlink, and may be determined by the network device according to actual conditions. For example, in the TDD mode, the subframes whose subframe numbers are #3, #4, #6, #7, #8, #9 in a radio frame may be uplink subframes or downlink subframes. Specifically, the uplink and downlink attributes of the subframes are determined to be configured according to different uplink and downlink subframe matching modes. In the embodiment of the present application, when the uplink and downlink attributes of the basic time domain unit are to be configured, the meaning to be configured may be the same as the above example.
  • a second time domain resource sub-unit includes 14 basic time domain units, wherein the uplink and downlink attributes of the basic time domain unit corresponding to the index value of 0, 1, 2, and 3 are pre-configured; The uplink and downlink attributes of the time domain unit are to be configured.
  • the network device Before transmitting the second time domain subunit, the network device needs to determine whether the basic time domain unit corresponding to the index value 4 to 13 in the basic time domain unit in the second time domain subunit is uplink or downlink.
  • the network device may send the result of the uplink and downlink configuration of the basic time domain unit to be configured to the terminal by signaling.
  • it may be sent to the terminal through DCI (Downlink Control Information) or RRC (Radio Resource Control) signaling.
  • DCI Downlink Control Information
  • RRC Radio Resource Control
  • the network device only sends the first synchronization signal
  • the first synchronization signal may include at least all functions of the PSS and the SSS, and the first synchronization signal sent by the network device may be used. Instructing the terminal to determine the identity in the physical cell group, the 5ms timing of the physical cell, the physical cell group identifier, the cyclic prefix configuration (which is a normal cyclic prefix or an extended cyclic prefix), and the system frame timing (ie, the subframe in the system frame) 0 where)).
  • the first synchronization signal may also indicate that the terminal determines other information of the cell, and details are not described herein again.
  • the network device needs to send the first synchronization signal and the second synchronization signal.
  • the first synchronization signal may include at least all functions of the PSS; the second synchronization signal may include at least all functions of the SSS. That is, the first synchronization signal sent by the network device may be used to indicate that the terminal determines the identity of the physical cell group and the 5ms timing of the physical cell.
  • the second synchronization signal sent by the network device may be used to indicate that the terminal determines the physical cell group identifier and the loop.
  • the prefix configuration whether the normal cyclic prefix or the extended cyclic prefix
  • the system frame timing that is, the location of the subframe 0 in the system frame.
  • the first synchronization signal and the second synchronization signal may also indicate that the terminal determines other information of the cell, and details are not described herein again.
  • the network device may send the second synchronization signal on the basic time domain unit corresponding to the third index value on the first time-frequency resource sub-unit; and the network device may be in the at least one second time-frequency resource.
  • the third index value corresponding to the basic time domain unit that sends the second synchronization signal in each first time-frequency resource sub-unit is the same, and the second synchronization signal is sent in each second time-frequency resource sub-unit.
  • the fourth index value corresponding to the basic time domain unit is the same.
  • the number of the first time-frequency resource sub-unit and the second time-frequency resource sub-unit used by the network device to send the first synchronization signal and the second synchronization signal may be pre-agreed by the protocol, or may be performed by the sender and the The embodiment of the present application is not limited in this embodiment.
  • the network device sends the first synchronization signal on all first time-frequency resource sub-units in the time-frequency resource unit, and sends the first synchronization signal on the at least one second time-frequency resource sub-unit in the time-frequency resource unit. Second synchronization signal.
  • the number of the first time-frequency resource sub-unit and the second time-frequency resource sub-unit used by the network device to send the first synchronization signal and the second synchronization signal may also have other forms, and no longer one by one. for example.
  • step 201 and step 202 the network device sends the first synchronization signal and the location of the basic time domain unit of the second synchronization signal in the time-frequency resource sub-unit on the time-frequency resource sub-unit, which may be determined according to actual conditions.
  • the index value of the basic time domain unit that sends the first synchronization signal on the first time-frequency resource sub-unit in the time-frequency resource unit is greater than that in the time-frequency resource unit. Sending an index value of a basic time domain unit of the first synchronization signal on the at least one second time-frequency resource sub-unit; or transmitting, by the network device, the first time-frequency resource sub-unit in the time-frequency resource unit.
  • the index value of the basic time domain unit of the second synchronization signal is greater than the index value of the basic time domain unit that transmits the second synchronization signal on the at least one second time frequency resource subunit in the time-frequency resource unit, that is, the first The index value is greater than the second index value, or the third index value is greater than the fourth index value.
  • the first index value when the first index value is greater than the second index value, it may be ensured that at least one first synchronization signal is not sent on the last basic time domain unit, so that the first time-frequency resource sub-unit or the second time-frequency may be caused.
  • the uplink and downlink attributes of the basic time domain unit located in the resource subunit after the basic time domain unit that sends the first synchronization signal are flexible, thereby improving system resource utilization.
  • the third index value is greater than the fourth index value
  • it can be ensured that at least one second synchronization signal is not sent on the last basic time domain unit, so that the first time-frequency resource sub-unit or the second time-frequency resource can be caused.
  • the uplink and downlink attributes of the basic time domain unit located in the subunit after the basic time domain unit that transmits the second synchronization signal are flexible, thereby improving system resource utilization.
  • the basic time domain unit corresponding to the first index value is the last basic time domain unit in the first time-frequency resource sub-unit, and the basic time-domain unit corresponding to the third index value It is the penultimate basic time domain unit in the first time-frequency resource sub-unit.
  • the basic time-domain unit corresponding to the fourth index value is the fourth basic time-domain unit in the time-frequency resource sub-unit, and the basic time-domain unit corresponding to the third index value is the time-frequency resource The third basic time domain unit in the subunit. Specifically, as shown in FIG.
  • the time-frequency resource unit includes ten time-frequency resource sub-units, the first time-frequency resource sub-unit is located at the first position of the time-frequency resource unit, and the second time-frequency resource sub-unit is located at the time-frequency resource.
  • each time-frequency resource sub-unit includes 14 basic time-domain units.
  • the network device sends the first synchronization signal on the last basic time domain unit of the first time-frequency resource unit, and sends the second synchronization signal on the second-to-last basic time domain unit of the first time-frequency resource unit;
  • the first synchronization signal is transmitted on the fourth basic time domain unit of the second time-frequency resource unit, and the second synchronization signal is transmitted on the third basic time domain unit of the second time-frequency resource unit.
  • the time-frequency resource unit includes N time-frequency resource sub-units, and the first time-frequency resource sub-unit is located at the h-th position of the time-frequency resource unit, h is less than or equal to N, and the second time-frequency resource is The unit is located at the kth position of the time-frequency resource unit, k is less than or equal to N, and h is not equal to k, and each time-frequency resource sub-unit includes M Basic time domain unit.
  • the network device sends the first synchronization signal on the basic time domain unit corresponding to the index value of the first time-frequency resource unit, and sends the second synchronization on the basic time domain unit corresponding to the index value of the first time-frequency resource unit.
  • a signal the network device sends a first synchronization signal on a basic time domain unit corresponding to an index value of the second time-frequency resource unit, and a basic time domain unit corresponding to an index value of the second time-frequency resource unit
  • i is greater than j and p is greater than q.
  • h, k, j, i, q, p, N and M are integers greater than or equal to zero.
  • the basic time domain unit corresponding to the first index value may also be the last basic time-domain unit in the first time-frequency resource sub-unit, or In the first time-frequency resource sub-unit, the basic time-domain unit corresponding to the third index value is the last basic time-domain unit in the first time-frequency resource sub-unit, which is not limited in this embodiment. No longer.
  • the terminal can determine the boundary of the first time frequency resource subunit while detecting the position of the first synchronization signal or the second synchronization signal, thereby simplifying the complexity of the terminal side detection.
  • the network device sends an index value of the basic time domain unit of the first synchronization signal on the first time-frequency resource sub-unit in the time-frequency resource unit that is greater than the second time-frequency resource sub-unit. And transmitting, by the network device, an index value of a basic time domain unit of the second synchronization signal on the first time-frequency resource sub-unit in the time-frequency resource unit; or An index value of the basic time domain unit that transmits the second synchronization signal on the at least one second time-frequency resource sub-unit in the time-frequency resource unit, that is, the first index value is greater than the second index value, or The third index value is smaller than the fourth index value.
  • the network device sends an index value of the basic time domain unit of the first synchronization signal on the first time-frequency resource sub-unit in the time-frequency resource unit is smaller than that in the time-frequency resource unit.
  • the index value of the basic time domain unit of the second synchronization signal is smaller than the index value of the basic time domain unit that transmits the second synchronization signal on the at least one second time frequency resource subunit in the time-frequency resource unit, that is, the first The index value is smaller than the second index value, or the third index value is smaller than the fourth index value.
  • the network device sends an index value of the basic time domain unit of the first synchronization signal on the first time-frequency resource sub-unit in the time-frequency resource unit is smaller than that in the time-frequency resource unit.
  • the index value of the basic time domain unit of the second synchronization signal is greater than the index value of the basic time domain unit that transmits the second synchronization signal on the at least one second time frequency resource subunit in the time-frequency resource unit, that is, the first The index value is smaller than the second index value, or the third index value is greater than the fourth index value.
  • the second possible implementation manner it may be ensured that at least one first synchronization signal or the second synchronization signal is not sent on the last basic time domain unit, so that the first synchronization signal may be sent.
  • the uplink and downlink attributes of the basic time domain unit after the basic time domain unit of the second synchronization signal are flexible, thereby improving system resource utilization.
  • the basic time domain unit that sends the first synchronization signal or the second synchronization signal by the network device is adjacent to the basic time domain unit that sends the downlink control signal, and is located in a basic time domain that sends the downlink control signal. After the unit.
  • the basic time domain unit that transmits the downlink control signal is the beginning of the time-frequency resource sub-unit a basic time domain unit, such that the basic time domain unit that transmits the first synchronization signal or the second synchronization signal is located on several basic time domain units in the time-frequency resource sub-unit, and the embodiment of the present application is applied in the D-TDD technology.
  • the time-frequency resource unit that sends the first synchronization signal or the second synchronization signal can be prevented from being anchored to the downlink time-frequency resource, so that the basic time domain unit that transmits the first synchronization signal or the second synchronization signal can be caused.
  • the uplink and downlink attributes of the basic time domain unit are flexible and variable, so that the variable time-frequency resources in the time-frequency resource unit can be maximized as much as possible, and the time-frequency resource utilization is improved.
  • the basic time domain unit corresponding to the second index value is adjacent to the basic time domain unit of the second time-frequency resource sub-unit and transmitting the downlink control signal.
  • the basic time domain unit, wherein the basic time domain unit corresponding to the fourth index value is a basic time domain unit adjacent to the basic time domain unit corresponding to the second index value in the second time frequency resource subunit.
  • the time-frequency resource unit includes 10 time-frequency resource sub-units
  • the second time-frequency resource sub-unit is located at the sixth position of the time-frequency resource unit
  • each time-frequency resource sub-unit includes 14 basic elements.
  • the network device sends a downlink control signal on the first basic time domain unit and the second basic time domain unit of the second time-frequency resource unit, and the network device may be in the fourth basic time domain of the second time-frequency resource unit.
  • the terminal detects the first synchronization signal and the second synchronization signal by means of blind detection at a position where the first synchronization signal and the second synchronization signal may occur.
  • the location of the basic time domain unit that sends the first synchronization signal in the first time-frequency resource sub-unit and the second time-frequency resource sub-unit is fixed, and the duration of each time-frequency resource sub-unit is also fixed. Therefore, when the length of the Cyclic Prefix (CP) in the sub-frequency resource sub-unit is different, the length of time between consecutive two first synchronization signals changes. Therefore, after detecting the first synchronization signal, the terminal can determine the length of the CP according to the length of time between the detected consecutive two first synchronization signals.
  • CP Cyclic Prefix
  • the duration of the time-frequency resource sub-unit is 1 ms
  • the length of the normal CP is 4.687 usus
  • the length of the extended CP is 16.67 us.
  • the time-frequency resource unit includes 10 time-frequency resource sub-units, and the time-frequency resource sub-unit has a duration of 1 ms.
  • the network device sends the first synchronization signal on the last basic time domain unit of the time-frequency resource unit corresponding to the index value #0; the network device is in the fourth basic time domain unit of the time-frequency resource unit corresponding to the index value #5.
  • the first synchronization signal is sent on. Therefore, there are four cases in which the length of time between consecutive two first synchronization signals is different:
  • the first case when the two first synchronization signals are located in the same time-frequency resource unit, and the regular frequency CP is transmitted in the time-frequency resource unit, the interval between the two consecutive first synchronization signals is 4.286 ms. .
  • the interval between the two consecutive first synchronization signals is 4.286 ms. .
  • the length of the unit and the duration of the regular CP determines the length of time between the two consecutive first synchronization signals in this case. The above process will not be described in detail in the following cases.
  • the second case when the two first synchronization signals are located in the same time-frequency resource unit, and the extended frequency CP is transmitted in the time-frequency resource unit, the interval between the two consecutive first synchronization signals is 4.333 ms. .
  • the third case when the two first synchronization signals are located in different time-frequency resource units, and each time-frequency resource unit When a regular CP is transmitted, the length of time between consecutive two first synchronization signals is 5.714 ms.
  • the fourth case when two first synchronization signals are located in different time-frequency resource units, and each time-frequency resource unit transmits an extended CP, the length of time between consecutive two first synchronization signals is 5.667ms.
  • the terminal when the terminal detects that the interval between the two consecutive first synchronization signals is 4.286 ms, it can be determined that the CP is a regular CP, and it can also be determined that the two first synchronization signals are at the same time. Within the domain resource unit. When the terminal detects that the interval between the two consecutive first synchronization signals is 4.333 ms, it can be determined that the CP is an extended CP, and it can also be determined that the two first synchronization signals are located in the same time domain resource unit.
  • the terminal detects that the interval between the two consecutive first synchronization signals is 4.714 ms, it can be determined that the CP is a regular CP, and it can also be determined that the two first synchronization signals are not located in the same time domain resource unit.
  • the terminal detects that the interval between the two consecutive first synchronization signals is 4.667 ms, it may be determined that the CP is an extended CP, and it may also be determined that the two first synchronization signals are not located in the same time domain resource unit.
  • the embodiment of the present application further provides a synchronization signal sending apparatus, which can perform the foregoing method embodiments.
  • FIG. 7 is a schematic structural diagram of a synchronization signal sending apparatus according to an embodiment of the present application, where the apparatus includes:
  • the apparatus may further include a processing unit, configured to generate a first synchronization signal
  • the sending unit 701 is configured to send the first synchronization signal on the basic time domain unit corresponding to the first index value on the first time-frequency resource sub-unit in the time-frequency resource unit;
  • the sending unit 701 is configured to send a first synchronization signal on a basic time domain unit corresponding to a second index value on at least one second time-frequency resource sub-unit of the time-frequency resource unit;
  • the first index value is different from the second index value; the uplink and downlink attributes of each basic time domain unit in the first time-frequency resource sub-unit are pre-configured, and the second time-frequency resource sub-unit includes at least one uplink and downlink attribute.
  • the second index value corresponding to the basic time domain unit of the first synchronization signal is the same.
  • the sending unit 701 is further configured to:
  • the third index value is different from the fourth index value; the third index value corresponding to the basic time domain unit that sends the second synchronization signal in each first time-frequency resource sub-unit is the same, and each second time-frequency resource
  • the fourth index value corresponding to the basic time domain unit in which the second synchronization signal is transmitted in the subunit is the same.
  • the first index value is greater than the second index value, or the third index value is greater than the fourth index value.
  • the basic time domain unit corresponding to the first index value is the last basic time-domain unit in the first time-frequency resource sub-unit;
  • the basic time domain unit corresponding to the third index value is the last basic time-domain unit in the first time-frequency resource sub-unit.
  • the basic time domain unit corresponding to the second index value is a basic of the second time-frequency resource sub-unit adjacent to the basic time-domain unit that sends the downlink control signal.
  • Time domain unit The basic time domain unit corresponding to the index is a basic time domain unit adjacent to the basic time domain unit corresponding to the second index value in the second time-frequency resource sub-unit.
  • the embodiment of the present application further provides a synchronization signal sending apparatus, which can perform the foregoing method embodiments.
  • FIG. 8 a schematic structural diagram of a synchronization signal sending apparatus is provided in the embodiment of the present application.
  • the apparatus includes: a processor 801, a memory 802, and a transceiver 803.
  • Memory 802 is used to store computer instructions.
  • the processor 801 is configured to execute computer instructions stored in the memory 802.
  • the transceiver 803 is configured to send, by using a first synchronization signal, a basic time domain unit corresponding to the first index value on the first time-frequency resource sub-unit in the time-frequency resource unit;
  • the transceiver 803 is configured to send a first synchronization signal on a basic time domain unit corresponding to a second index value on at least one second time-frequency resource sub-unit of the time-frequency resource unit;
  • the first index value is different from the second index value; the uplink and downlink attributes of each basic time domain unit in the first time-frequency resource sub-unit are pre-configured, and the second time-frequency resource sub-unit includes at least one uplink and downlink attribute.
  • the second index value corresponding to the basic time domain unit of the first synchronization signal is the same.
  • the transceiver 803 is further configured to:
  • the third index value is different from the fourth index value; the third index value corresponding to the basic time domain unit that sends the second synchronization signal in each first time-frequency resource sub-unit is the same, and each second time-frequency resource
  • the fourth index value corresponding to the basic time domain unit in which the second synchronization signal is transmitted in the subunit is the same.
  • the first index value is greater than the second index value, or the third index value is greater than the fourth index value.
  • the basic time domain unit corresponding to the first index value is the last basic time-domain unit in the first time-frequency resource sub-unit;
  • the basic time domain unit corresponding to the third index value is the last basic time-domain unit in the first time-frequency resource sub-unit.
  • the basic time domain unit corresponding to the second index value is a basic of the second time-frequency resource sub-unit adjacent to the basic time-domain unit that sends the downlink control signal.
  • the time domain unit, the basic time domain unit corresponding to the fourth index value is a basic time domain unit adjacent to the basic time domain unit corresponding to the second index value in the second time-frequency resource sub-unit.
  • the computer program instructions can also be stored in a computer readable memory that can direct a computer or other programmable data processing device to operate in a particular manner, such that the instructions stored in the computer readable memory produce an article of manufacture comprising the instruction device.
  • the apparatus implements the functions specified in one or more blocks of a flow or a flow and/or block diagram of the flowchart.
  • These computer program instructions can also be loaded onto a computer or other programmable data processing device such that a series of operational steps are performed on a computer or other programmable device to produce computer-implemented processing for execution on a computer or other programmable device.
  • the instructions provide steps for implementing the functions specified in one or more of the flow or in a block or blocks of a flow diagram.

Abstract

一种同步信号发送方法及装置,包括:网络设备在时频资源单元中的第一时频资源子单元上的第一索引值对应的基本时域单元上发送第一同步信号;所述网络设备在所述时频资源单元中的至少一个第二时频资源子单元上的第二索引值对应的基本时域单元上发送第一同步信号;其中,第一索引值与第二索引值不同;第一时频资源子单元中每个基本时域单元的上下行属性为预配置的,第二时频资源子单元中至少包括一个上下行属性为待配置的基本时域单元。

Description

一种同步信号发送方法及装置
本申请要求在2016年8月12日提交中国国家知识产权局、申请号为201610666553.X、发明名称为“一种同步信号发送方法及装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及移动通信技术领域,尤其涉及一种同步信号发送方法及装置。
背景技术
终端在开机或失去网络时,需要进行小区搜索,以实现接入网络。小区搜索主要是基于同步信号实现的。终端可以根据同步信号获得需要接入的小区的时间同步、小区识别号等信息。同步信号一般分为PSS(Primary Synchronization Signal,主同步信号)和SSS(Secondary Synchronization Signal,辅同步信号)。终端可以通过PSS实现时隙定时和频率校准,可以通过SSS实现帧定时以及获得小区识别号等信息。
目前,3GPP(3rd Generation Partnership Project,第三代合作伙伴计划)规定了FDD(Frequency Division Dual,频分双工)以及TDD(Time Division Duplex,时分双工)模式下发送PSS和SSS的时域位置。对于FDD而言,一个无线帧中,PSS在子帧0和子帧5第一个时隙的最后一个OFDM(Orthogonal Frequency Division Multiplexing,正交频分复用)符号上发送;SSS与PSS在同一子帧同一时隙上发送,但SSS位于倒数第二个OFDM符号上发送,比PSS提前一个OFDM符号。对于TDD而言,一个无线帧中,PSS在子帧1和子帧6的第三个OFDM符号上发送;而SSS在子帧0和子帧5中第二个时隙的最后一个OFDM符号上发送,比PSS提前3个OFDM符号。
上述方案中,PSS或SSS位于子帧中一个时隙的最后一个OFDM符号上发送,而根据5G(5th Generation,第5代网络)NR(New Radio,新空口)中刷新的子帧定义,一个时隙中的最后一个OFDM符号上若发送PSS或SSS,则该时隙中的所有符号上只能下行发送。根据该定义,在FDD模式下,发送同步信号的无线帧中存在一个时隙的时频资源被锚定,在TDD模式下,发送同步信号的无线帧中存在两个时隙的时频资源被锚定。在这种情况下,如何提高时频资源的利用率成为一个亟待解决的问题。
发明内容
本申请实施例提供一种同步信号发送方法及装置,用以提供一种同步信号发送的方法,提高时频资源的利用率。
本申请实施例提供一种同步信号发送方法,包括:
网络设备在时频资源单元中的第一时频资源子单元上的第一索引值对应的基本时域单元上发送第一同步信号;
所述网络设备在所述时频资源单元中的至少一个第二时频资源子单元上的第二索引值对应的基本时域单元上发送第一同步信号;
其中,第一索引值与第二索引值不同;第一时频资源子单元中每个基本时域单元的 上下行属性为预配置的,第二时频资源子单元中至少包括一个上下行属性为待配置的基本时域单元;每个第一时频资源子单元中发送所述第一同步信号的基本时域单元对应的第一索引值相同,每个第二时频资源子单元中发送所述第一同步信号的基本时域单元对应的第二索引值相同。
根据本申请实施例提供的方法,网络设备在第一时频资源子单元上的第一索引值对应的基本时域单元上发送第一同步信号,并在第二时频资源子单元上的第二索引值对应的基本时域单元上发送第一同步信号;由于在第一时频资源子单元发送第一同步信号的第一索引值与第二时频资源子单元上发送第一同步信号的第二索引值不同,因此可以在保证终端搜索第一同步信号的最大搜索时延需求的基础上,降低被锚定的时频资源子单元的数量,提高时频资源子单元的灵活性,从而提高时频资源的利用率。
可选的,所述方法还包括:
所述网络设备在所述时频资源单元中的第一时频资源子单元上的第三索引值对应的基本时域单元上发送第二同步信号;
所述网络设备在所述时频资源单元中的至少一个第二时频资源子单元上的第四索引值对应的基本时域单元上发送第二同步信号;
其中,第三索引值与第四索引值不同;每个第一时频资源子单元中发送所述第二同步信号的基本时域单元对应的第三索引值相同,每个第二时频资源子单元中发送所述第二同步信号的基本时域单元对应的第四索引值相同。
可选的,所述第一索引值大于所述第二索引值,或者,所述第三索引值大于所述第四索引值。
可选的,针对所述第一时频资源子单元,所述第一索引值对应的基本时域单元为第一时频资源子单元中最后一个基本时域单元;或者
针对所述第一时频资源子单元,所述第三索引值对应的基本时域单元为第一时频资源子单元中最后一个基本时域单元。
可选的,针对所述第二时频资源子单元,所述第二索引值对应的基本时域单元为第二时频资源子单元中与发送下行控制信号的基本时域单元相邻的基本时域单元,所述第四索引值对应的基本时域单元为第二时频资源子单元中与所述第二索引值对应的基本时域单元相邻的基本时域单元。
本申请实施例提供一种同步信号发送装置,该装置包括:
发送单元,用于在时频资源单元中的第一时频资源子单元上的第一索引值对应的基本时域单元上发送第一同步信号;
所述发送单元,用于在所述时频资源单元中的至少一个第二时频资源子单元上的第二索引值对应的基本时域单元上发送第一同步信号;
其中,第一索引值与第二索引值不同;第一时频资源子单元中每个基本时域单元的上下行属性为预配置的,第二时频资源子单元中至少包括一个上下行属性为待配置的基本时域单元。
可选的,所述发送单元还用于:
在所述时频资源单元中的第一时频资源子单元上的第三索引值对应的基本时域单元上发送第二同步信号;
在所述时频资源单元中的至少一个第二时频资源子单元上的第四索引值对应的基本 时域单元上发送第二同步信号;
其中,第三索引值与第四索引值不同。
可选的,所述第一索引值大于所述第二索引值,或者,所述第三索引值大于所述第四索引值。
可选的,针对所述第一时频资源子单元,所述第一索引值对应的基本时域单元为第一时频资源子单元中最后一个基本时域单元;或者
针对所述第一时频资源子单元,所述第三索引值对应的基本时域单元为第一时频资源子单元中最后一个基本时域单元。
可选的,针对所述第二时频资源子单元,所述第二索引值对应的基本时域单元为第二时频资源子单元中与发送下行控制信号的基本时域单元相邻的基本时域单元,所述第四索引值对应的基本时域单元为第二时频资源子单元中与所述第二索引值对应的基本时域单元相邻的基本时域单元。
本申请实施例提供一种同步信号发送装置,该装置包括:
收发机,用于在时频资源单元中的第一时频资源子单元上的第一索引值对应的基本时域单元上发送第一同步信号;
所述收发机,用于在所述时频资源单元中的至少一个第二时频资源子单元上的第二索引值对应的基本时域单元上发送第一同步信号;
其中,第一索引值与第二索引值不同;第一时频资源子单元中每个基本时域单元的上下行属性为预配置的,第二时频资源子单元中至少包括一个上下行属性为待配置的基本时域单元;每个第一时频资源子单元中发送所述第一同步信号的基本时域单元对应的第一索引值相同,每个第二时频资源子单元中发送所述第一同步信号的基本时域单元对应的第二索引值相同。
可选的,所述收发机还用于:
在所述时频资源单元中的第一时频资源子单元上的第三索引值对应的基本时域单元上发送第二同步信号;
在所述时频资源单元中的至少一个第二时频资源子单元上的第四索引值对应的基本时域单元上发送第二同步信号;
其中,第三索引值与第四索引值不同;每个第一时频资源子单元中发送所述第二同步信号的基本时域单元对应的第三索引值相同,每个第二时频资源子单元中发送所述第二同步信号的基本时域单元对应的第四索引值相同。
可选的,所述第一索引值大于所述第二索引值,或者,所述第三索引值大于所述第四索引值。
可选的,针对所述第一时频资源子单元,所述第一索引值对应的基本时域单元为第一时频资源子单元中最后一个基本时域单元;或者
针对所述第一时频资源子单元,所述第三索引值对应的基本时域单元为第一时频资源子单元中最后一个基本时域单元。
可选的,针对所述第二时频资源子单元,所述第二索引值对应的基本时域单元为第二时频资源子单元中与发送下行控制信号的基本时域单元相邻的基本时域单元,所述第四索引值对应的基本时域单元为第二时频资源子单元中与所述第二索引值对应的基本时域单元相邻的基本时域单元。
本申请实施例提供一种计算机可读存储介质,所述计算机存储介质中存储有计算机可读指令,当计算机读取并执行所述计算机可读指令时,使得计算机执行上述任一种可能的设计中的同步信号发送方法。
本申请实施例提供一种计算机程序产品,当计算机读取并执行所述计算机程序产品时,使得计算机执行上述任一种可能的设计中的同步信号发送方法。
本申请实施例提供一种芯片,所述芯片与存储器相连,用于读取并执行所述存储器中存储的软件程序,以实现上述任一种可能的设计中的同步信号发送方法。
本申请实施例提供一种通信装置,所述通信装置具有实现上述任一同步信号发送方法中的网络设备或终端行为的功能,其包括用于执行上述任一同步信号发送方法方面所描述的步骤或功能相对应的部件(means)。所述步骤或功能可以通过软件实现,或硬件实现,或者通过硬件和软件结合来实现。
在一种可能的设计中,上述通信装置包括一个或多个处理器和收发单元。所述一个或多个处理器被配置为支持所述通信装置执行上述方法中相应的功能。例如,生成同步信号。所述收发单元用于支持所述通信装置与其他设备通信,实现接收/发送功能。例如,发送所述处理器生成的同步信号等。
可选的,所述通信装置还可以包括一个或多个存储器,所述存储器用于与处理器耦合,其保存通信装置必要的程序指令和数据。所述一个或多个存储器可以和处理器集成在一起,也可以与处理器分离设置,本申请并不限定。
所述通信装置可以为基站或接收点(Transmission Reception Point,TRP)等,所述通信单元可以是收发器,或收发电路。
所述通信装置还可以为可设置于网络设备内通信芯片。所述通信单元可以为通信芯片的输入/输出电路或者接口。
所述通信装置可以为终端,所述终端可以为蜂窝电话、手持终端、笔记本电脑或是其他可以接入网络的设备、无人机设备、智能家居设备、车载设备等,所述通信单元可以是收发器,或收发电路。
所述通信装置还可以为可设置于终端内的通信芯片。所述通信单元可以为通信芯片的输入/输出电路或者接口。
另一个可能的设计中,上述通信装置,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该通信装置执行上述任一同步信号发送方法中网络设备或终端完成的方法。
附图说明
图1为LTE系统的系统架构示意图;
图2为本申请实施例提供的一种同步信号发送方法流程示意图;
图3为本申请实施例提供的一种同步信号占用的时频资源单元的示意图;
图4为本申请实施例提供的一种同步信号占用的时频资源单元的示意图;
图5为本申请实施例提供的一种同步信号占用的时频资源单元的示意图;
图6为本申请实施例提供的一种同步信号占用的时频资源单元的示意图;
图7为本申请实施例提供的一种同步信号发送装置结构示意图;
图8为本申请实施例提供的一种同步信号发送装置结构示意图。
具体实施方式
本申请实施例可以应用于LTE(Long Term Evolution,长期演进)、5G通信系统以及未来通信系统。如图1所示,为LTE系统的系统架构示意图。图1中各网元和接口的描述如下:
MME(Mobility Management Entity,移动性管理实体)/S-GW(Serving GateWay,服务网关):MME是LTE中的关键控制节点,属于核心网网元,主要负责信令处理部分,即控制面功能,包括接入控制、移动性管理、附着与去附着、会话管理功能以及网关选择等功能。S-GW是LTE中核心网的重要网元,主要负责用户数据转发的用户面功能,即在MME的控制下进行数据包的路由和转发。
eNB(evolved Node B,演进型基站):eNB是LTE中的基站,主要负责空口侧的无线资源管理、QoS(Quality of Service,服务质量)管理、数据压缩和加密等功能。往核心网侧,eNB主要负责向MME转发控制面信令以及向S-GW转发用户面业务数据。
UE(User Equipment,用户设备):UE可以具有在LTE中通过接入设备,如eNB,接入网络侧的功能,也可以具有在其他网络中,通过和接入设备之间的无线传输,UE可以进行语音或是数据业务的传输。示例的,UE包括但不限于移动站、固定或移动用户单元、寻呼机、蜂窝电话、个人数字助理(Personal Digital Assistant,PDA)、手持终端、笔记本电脑或是其他可以接入网络的设备。
S1接口:是eNB与核心网之间的标准接口。其中eNB通过S1-MME接口与MME连接,用于控制信令的传输;eNB通过S1-U接口与S-GW连接,用于用户数据的传输。其中S1-MME接口和S1-U接口统称为S1接口。
X2接口:eNB与eNB之间的标准接口,用于实现基站之间的互通。
Uu接口:Uu接口是UE与基站之间的无线接口,UE通过Uu接口接入到LTE网络。
目前,D-TDD(Dynamic Time Division Duplex,动态时分双工)技术越来越受到关注。所谓D-TDD,就是指根据网络内上下行业务负载情况,灵活快速地切换时分双工子帧上下行,从而匹配网络中具体的业务需求来提高网络上下行业务的吞吐量。
为了提高D-TDD的灵活性,使得D-TDD的上下行可以更加灵活及时的适应各种不同的业务需求,在3GPP NR标准的讨论中提出了动态子帧的技术。动态子帧的上下行不进行锚定,而是可以根据需要由网络侧进行动态的调整,从而可以降低业务数据传输的延迟,增加小区的吞吐量。
基于上面的描述,如图2所示,为本申请实施例提供的一种同步信号发送方法流程示意图。
参见图2,该方法包括:
步骤201:网络设备在时频资源单元中的第一时频资源子单元上的第一索引值对应的基本时域单元上发送第一同步信号。
步骤202:所述网络设备在所述时频资源单元中的至少一个第二时频资源子单元上的第二索引值对应的基本时域单元上发送第一同步信号;其中,第一索引值与第二索引值不同。
其中,“至少一个第二时频资源子单元”要表达的含义是,时频资源单元中的全部或部 分第二时频资源子单元上的第二索引值对应的基本时域单元用于发送第一同步信号。
其中,第一时频资源子单元中每个基本时域单元的上下行属性为预配置的,第二时频资源子单元中至少包括一个上下行属性为待配置的基本时域单元。每个第一时频资源子单元中发送所述第一同步信号的基本时域单元对应的第一索引值相同,每个第二时频资源子单元中发送所述第一同步信号的基本时域单元对应的第二索引值相同。
步骤201以及步骤202中,网络设备可以是指eNB,或者具有eNB功能的设备,本申请实施例对此并不限定。
本申请实施例中,一个时频资源单元中可以包括M个连续的时频资源子单元,每个时频资源子单元中可以包括N个基本时域单元,M、N为自然数。M和N的取值可以根据实际情况确定,在此并不限定。相应的,一个时频资源单元中包括的第一时频资源子单元以及第二时频资源子单元的数量可以根据实际情况确定,本申请实施例对此并不限定。
本申请实施例中,时频资源单元可以为具有FDD模式或TDD模式中无线帧结构的资源单元,或者为具有类似FDD模式或TDD模式中无线帧结构的资源单元。相应的,一个时频资源子单元可以为具有FDD模式或TDD模式的无线帧中一个子帧结构的资源单元。每个时频资源子单元中所包含的基本时域单元可以是指OFDM符号、SC-FDMA(Single carrier Frequency Division Multiple Access,单载波频分多址)符号等符号,本申请实施例对此并不限定。
本申请实施例中,每个基本时域单元的上下行属性指示出该基本时域单元为上行时域单元(即用于上行传输的时域单元)或者下行时域单元(即用于下行传输的时域单元)。第一时频资源子单元中每个基本时域单元的上下行属性为预配置的,是指第一时频资源子单元中每个基本时域单元的上下行属性是由协议约定好的或者由网络设备与终端约定好的,不会发生改变。举例来说,在TDD模式下,一个无线帧中子帧号分别为#0、#1、#5的子帧无论在何种上下行子帧配比模式下均为下行子帧,子帧号为#2的子帧无论在何种上下行子帧配比模式下均为上行子帧,这些子帧的上下行属性就是预配置的。本申请实施例中,基本时域单元的上下行属性为预配置时,预配置的含义可以和上面的例子的含义相同。
再举例来说,一个第一时域资源子单元中包括14个基本时域单元,其中索引值为0、1、2、3、4、5对应的基本时域单元的上下行属性预配置为上行;索引值为6至13对应的基本时域单元的上下行属性预配置为下行。上述配置下,在任何情况下,索引值为0、1、2、3、4、5对应的基本时域单元都只能用于进行上行发送,索引值为6至13对应的基本时域单元都只能用于进行下行发送。
需要说明的是,基本时域单元的索引值为该基本时域单元在该基本时域单元所处的时频资源子单元中的位置编号,可以指示出基本时域单元位于该基本时域单元所处的时频资源子单元中的位置。同时,本申请实施例中,时频资源子单元中每个基本时域单元的索引值是随着时间先后逐渐递增的,即位于时频资源子单元中前面的基本时域单元的索引值大于位于时频资源子单元中后面的基本时域单元的索引值。例如,一个时频资源子单元中包括7个基本时域单元,则索引值为0的基本时域单元表示该基本时域单元为该时频资源子单元中的第一个基本时域单元,索引值为3的基本时域单元表示该基本时域单元为该时频资源子单元中的第四个基本时域单元。
相应的,本申请实施例中,第二时频资源子单元中至少包括一个上下行属性为待配置的基本时域单元,第二时频资源子单元中除了上下行属性为待配置的基本时域单元,其他 的基本时域单元的上下行属性可以为预配置的。上下行属性为待配置的基本时域单元是指该基本时域单元的上下行属性为可变的,可以根据实际情况灵活变动,因此上下行属性为待配置的基本时域单元在发送之前,需要网络设备确定该基本时域单元是上行还是下行,具体可以由网络设备根据实际情况确定。举例来说,在TDD模式下,一个无线帧中子帧号分别为#3、#4、#6、#7、#8、#9的子帧可以为上行子帧,也可以为下行子帧,具体根据在不同上下行子帧配比模式确定,这些子帧的上下行属性就是为待配置的。本申请实施例中,基本时域单元的上下行属性为待配置时,待配置的含义可以和上面的例子的含义相同。
再举例来说,一个第二时域资源子单元中包括14个基本时域单元,其中索引值为0、1、2、3对应的基本时域单元的上下行属性为预配置的;其余基本时域单元的上下行属性为待配置的。网络设备在发送该第二时域子单元之前,需要确定该第二时域子单元中该基本时域单元中索引值为4至13对应的基本时域单元是上行还是下行。
需要说明的是,本申请实施例中,网络设备可以将上下行属性为待配置的基本时域单元的上下行配置的结果通过信令发送给终端。例如,可以通过DCI(Downlink Control Information,下行控制信息)或RRC(Radio Resource Control,无线资源控制)信令发送给终端。
本申请实施例中,一种可能的实现方式中,网络设备只发送第一同步信号,该第一同步信号可以至少包括PSS以及SSS的所有功能,此时网络设备发送的第一同步信号可以用于指示终端确定物理小区组内标识、物理小区的5ms timing(定时)、物理小区组标识、循环前缀配置(是正常的循环前缀还是扩展的循环前缀)、系统帧timing(即系统帧中子帧0所在的位置)。当然,以上只是示例,第一同步信号还可以指示终端确定小区的其它信息,在此不再赘述。
另一种可能的实现方式中,网络设备需要发送第一同步信号以及第二同步信号。此时,该第一同步信号可以至少包括PSS的所有功能;第二同步信号可以至少包括SSS的所有功能。即网络设备发送的第一同步信号可以用于指示终端确定物理小区组内标识、物理小区的5ms timing(定时);网络设备发送的第二同步信号可以用于指示终端确定物理小区组标识、循环前缀配置(是正常的循环前缀还是扩展的循环前缀)、系统帧timing(即系统帧中子帧0所在的位置)。当然,以上只是示例,第一同步信号以及第二同步信号还可以指示终端确定小区的其它信息,在此不再赘述。
在该实现方式中,网络设备可以在第一时频资源子单元上的第三索引值对应的基本时域单元上发送第二同步信号;以及,网络设备可以在至少一个第二时频资源子单元上的第四索引值对应的基本时域单元上发送第二同步信号;其中,第三索引值与第四索引值不同。其中,每个第一时频资源子单元中发送所述第二同步信号的基本时域单元对应的第三索引值相同,每个第二时频资源子单元中发送所述第二同步信号的基本时域单元对应的第四索引值相同。
本申请实施例中,网络设备发送第一同步信号以及第二同步信号所使用的第一时频资源子单元以及第二时频资源子单元的数量可以由协议预先约定,也可以由发送方和接收方预先约定,本申请实施例对此并不限定。
一种可能的实现方式中,网络设备在时频资源单元中的所有第一时频资源子单元上发送第一同步信号、在时频资源单元中的至少一个第二时频资源子单元上发送第二同步信号。
当然,以上只是示例,网络设备发送第一同步信号以及第二同步信号所使用的第一时频资源子单元以及第二时频资源子单元的数量还可以有其他形式,在此不再一一举例说明。
需要说明的是,尽管已描述了网络设备发送第一同步信号以及第二同步信号所使用的第一时频资源子单元以及第二时频资源子单元的数量,以及第一同步信号以及第二同步信号的功能,但本领域的技术人员可以对本申请实施例进行各种改动和变型而不脱离本申请实施例的范围。这样,后续协议演进中,倘若对本申请实施例的这些修改和变型属于本申请权利要求的范围之内,则本申请实施例也意图包含这些改动和变型在内。
步骤201以及步骤202中,网络设备在时频资源子单元上发送第一同步信号以及第二同步信号的基本时域单元在时频资源子单元中的位置,可以根据实际情况确定。
第一种可能的实现方式中,网络设备在所述时频资源单元中的第一时频资源子单元上发送第一同步信号的基本时域单元的索引值大于在所述时频资源单元中的至少一个第二时频资源子单元上发送第一同步信号的基本时域单元的索引值;或者,所述网络设备在所述时频资源单元中的第一时频资源子单元上发送第二同步信号的基本时域单元的索引值大于在所述时频资源单元中的至少一个第二时频资源子单元上发送第二同步信号的基本时域单元的索引值,即所述第一索引值大于所述第二索引值,或者,所述第三索引值大于所述第四索引值。
上述方法中,在第一索引值大于第二索引值时,可以保证至少有一个第一同步信号不在最后一个基本时域单元上发送,从而可以使得第一时频资源子单元或者第二时频资源子单元中位于发送第一同步信号的基本时域单元之后的基本时域单元的上下行属性灵活可变,提高系统资源利用率。相应的,在第三索引值大于第四索引值时,可以保证至少有一个第二同步信号不在最后一个基本时域单元上发送,从而可以使得第一时频资源子单元或者第二时频资源子单元中位于发送第二同步信号的基本时域单元之后的基本时域单元的上下行属性灵活可变,提高系统资源利用率。
举例来说,针对第一时频资源子单元,第一索引值对应的基本时域单元为该第一时频资源子单元中最后一个基本时域单元,第三索引值对应的基本时域单元为该第一时频资源子单元中倒数第二个基本时域单元。针对第二时频资源子单元,第四索引值对应的基本时域单元为该时频资源子单元中第四个基本时域单元,第三索引值对应的基本时域单元为该时频资源子单元中第三个基本时域单元。具体的,如图3所示,为本申请实施例提供的一种同步信号占用的时频资源单元的示意图。图3中,时频资源单元中包括10个时频资源子单元,第一时频资源子单元位于该时频资源单元的第1个位置上,第二时频资源子单元位于该时频资源单元的第6个位置上,每个时频资源子单元中包括14个基本时域单元。网络设备在第一时频资源单元的最后一个基本时域单元上发送第一同步信号、在第一时频资源单元的倒数第二个基本时域单元上发送第二同步信号;网络设备在第二时频资源单元的第四个基本时域单元上发送第一同步信号、在第二时频资源单元的第三个基本时域单元上发送第二同步信号。
再举例来说,如图4所示,为本申请实施例提供的一种同步信号占用的时频资源单元的示意图。图4中,时频资源单元中包括N个时频资源子单元,第一时频资源子单元位于该时频资源单元的第h个位置上,h小于或等于N,第二时频资源子单元位于该时频资源单元的第k个位置上,k小于或等于N,且h不等于k,每个时频资源子单元中包括M个 基本时域单元。网络设备在第一时频资源单元的索引值为i对应的基本时域单元上发送第一同步信号、在第一时频资源单元的索引值为j对应的基本时域单元上发送第二同步信号;网络设备在第二时频资源单元的索引值为p对应的基本时域单元上发送第一同步信号、在第二时频资源单元的索引值为q对应的基本时域单元上发送第二同步信号。其中,i大于j,p大于q。h,k,j,i,q,p,N和M均为大于或等于0的整数。
当然,以上只是示例,针对所述第一时频资源子单元,所述第一索引值对应的基本时域单元也可以为第一时频资源子单元中最后一个基本时域单元,或者,针对所述第一时频资源子单元,所述第三索引值对应的基本时域单元为第一时频资源子单元中最后一个基本时域单元,本申请实施例对此并不限定,在此不再赘述。
上述方法中,若第一索引值对应的基本时域单元也为第一时频资源子单元中最后一个基本时域单元,或者,第三索引值对应的基本时域单元为第一时频资源子单元中最后一个基本时域单元,则终端在检测到第一同步信号或者第二同步信号的位置的同时,可以确定第一时频资源子单元的边界,从而简化终端侧检测的复杂度。
第二种可能的实现方式中,网络设备在所述时频资源单元中的第一时频资源子单元上发送第一同步信号的基本时域单元的索引值大于第二时频资源子单元上发送第一同步信号的基本时域单元的索引值;或者,所述网络设备在所述时频资源单元中的第一时频资源子单元上发送第二同步信号的基本时域单元的索引值小于在所述时频资源单元中的至少一个第二时频资源子单元上发送第二同步信号的基本时域单元的索引值,即所述第一索引值大于所述第二索引值,或者,所述第三索引值小于所述第四索引值。
第三种可能的实现方式中,网络设备在所述时频资源单元中的第一时频资源子单元上发送第一同步信号的基本时域单元的索引值小于在所述时频资源单元中的至少一个第二时频资源子单元上发送第一同步信号的基本时域单元的索引值;或者,所述网络设备在所述时频资源单元中的第一时频资源子单元上发送第二同步信号的基本时域单元的索引值小于在所述时频资源单元中的至少一个第二时频资源子单元上发送第二同步信号的基本时域单元的索引值,即所述第一索引值小于所述第二索引值,或者,所述第三索引值小于所述第四索引值。
第四种可能的实现方式中,网络设备在所述时频资源单元中的第一时频资源子单元上发送第一同步信号的基本时域单元的索引值小于在所述时频资源单元中的至少一个第二时频资源子单元上发送第一同步信号的基本时域单元的索引值;或者,所述网络设备在所述时频资源单元中的第一时频资源子单元上发送第二同步信号的基本时域单元的索引值大于在所述时频资源单元中的至少一个第二时频资源子单元上发送第二同步信号的基本时域单元的索引值,即所述第一索引值小于所述第二索引值,或者,所述第三索引值大于所述第四索引值。
上述第二种可能的实现方式至第四种可能的实现方式中,可以保证至少有一个第一同步信号或者第二同步信号不在最后一个基本时域单元上发送,从而可以使得发送第一同步信号或者第二同步信号的基本时域单元之后的基本时域单元的上下行属性灵活可变,提高系统资源利用率。
可选的,本申请实施例中,网络设备发送第一同步信号或者第二同步信号的基本时域单元与发送下行控制信号的基本时域单元相邻,且位于发送下行控制信号的基本时域单元之后。通过上述方法,由于发送下行控制信号的基本时域单元为时频资源子单元最开始的 基本时域单元,因此发送第一同步信号或者第二同步信号的基本时域单元位于时频资源子单元中之前的几个基本时域单元上,当在D-TDD技术中应用本申请实施例提供的方法时,可以避免发送第一同步信号或者第二同步信号的时频资源单元被锚定为下行时频资源,从而可以使得位于发送第一同步信号或者第二同步信号的基本时域单元之后的基本时域单元的上下行属性灵活可变,从而可以尽可能最大化时频资源单元中的可变时频资源,提高了时频资源利用率。
举例来说,针对所述第二时频资源子单元,所述第二索引值对应的基本时域单元为该第二时频资源子单元中与发送下行控制信号的基本时域单元相邻的基本时域单元,所述第四索引值对应的基本时域单元为该第二时频资源子单元中与所述第二索引值对应的基本时域单元相邻的基本时域单元。
结合前面的描述,举例来说,如图5所示,为本申请实施例提供的一种同步信号占用的时频资源单元的示意图。图5中,时频资源单元中包括10个时频资源子单元,第二时频资源子单元位于该时频资源单元的第6个位置上,每个时频资源子单元中包括14个基本时域单元。网络设备在第二时频资源单元的第一个基本时域单元以及第二个基本时域单元上发送下行控制信号,此时网络设备可以在第二时频资源单元的第四个基本时域单元上发送第一同步信号、在第二时频资源单元的第三个基本时域单元上发送第二同步信号,从而可以在不影响控制信道统一设计的前提下,尽可能最大化时频资源单元中的可变时频资源,提高时频资源利用率。
本申请实施例中,终端在第一同步信号以及第二同步信号可能出现的位置,通过盲检的方式检测第一同步信号以及第二同步信号。
由于网络设备在第一时频资源子单元与第二时频资源子单元中发送第一同步信号的基本时域单元的位置固定,同时,每个时频资源子单元的持续时长也是固定的,因此当时频资源子单元中的循环前缀(Cyclic Prefix,CP)长度不同时,导致连续的两个第一同步信号之间间隔的时间长度会发生变化。因此终端在检测到第一同步信号后,可以根据检测到的连续的两个第一同步信号之间间隔的时间长度确定CP的长度。
举例来说,时频资源子单元的持续时间长度为1ms,常规(normal)CP的长度为4.687us,扩展(extended)CP的长度为16.67us。如图6所示,图6中,时频资源单元中包括10个时频资源子单元,时频资源子单元的持续时间长度为1ms。网络设备在索引值为#0对应的时频资源单元的最后一个基本时域单元上发送第一同步信号;网络设备在索引值为#5对应的时频资源单元的第四个基本时域单元上发送第一同步信号。因此,连续的两个第一同步信号之间间隔的时间长度有4种情况:
第一种情况:当两个第一同步信号位于同一时频资源单元,且该时频资源单元中发送的为常规CP时,连续的两个第一同步信号之间间隔的时间长度为4.286ms。参见图6,该情况下,连续的两个第一同步信号之间存在4个时频资源子单元、4个基本时域单元以及4个常规CP,可以根据时频资源子单元、基本时域单元以及常规CP的持续时间长度确定该情况下连续的两个第一同步信号之间间隔的时间长度。以下的情况不再详细描述上面的过程。
第二种情况:当两个第一同步信号位于同一时频资源单元,且该时频资源单元中发送的为扩展CP时,连续的两个第一同步信号之间间隔的时间长度为4.333ms。
第三种情况:当两个第一同步信号位于不同的时频资源单元,且每个时频资源单元中 发送的为常规CP时,连续的两个第一同步信号之间间隔的时间长度为5.714ms。
第四种情况:当两个第一同步信号位于不同的时频资源单元,且每个时频资源单元中发送的为扩展CP时,连续的两个第一同步信号之间间隔的时间长度为5.667ms。
因此,结合图6,当终端检测到连续的两个第一同步信号之间间隔的时间长度为4.286ms时,可以确定CP为常规CP,同时还可以确定这两个第一同步信号位于同一时域资源单元内。当终端检测到连续的两个第一同步信号之间间隔的时间长度为4.333ms时,可以确定CP为扩展CP,同时还可以确定这两个第一同步信号位于同一时域资源单元内。当终端检测到连续的两个第一同步信号之间间隔的时间长度为4.714ms时,可以确定CP为常规CP,同时还可以确定这两个第一同步信号不位于同一时域资源单元内。当终端检测到连续的两个第一同步信号之间间隔的时间长度为4.667ms时,可以确定CP为扩展CP,同时还可以确定这两个第一同步信号不位于同一时域资源单元内。
基于相同的技术构思,本申请实施例还提供一种同步信号发送装置,该装置可执行上述方法实施例。
如图7所示,为本申请实施例提供一种同步信号发送装置结构示意图,该装置包括:
需要说明的是,所述装置还可以包括处理单元,用于生成第一同步信号;
发送单元701,用于在时频资源单元中的第一时频资源子单元上的第一索引值对应的基本时域单元上发送第一同步信号;
所述发送单元701,用于在所述时频资源单元中的至少一个第二时频资源子单元上的第二索引值对应的基本时域单元上发送第一同步信号;
其中,第一索引值与第二索引值不同;第一时频资源子单元中每个基本时域单元的上下行属性为预配置的,第二时频资源子单元中至少包括一个上下行属性为待配置的基本时域单元;每个第一时频资源子单元中发送所述第一同步信号的基本时域单元对应的第一索引值相同,每个第二时频资源子单元中发送所述第一同步信号的基本时域单元对应的第二索引值相同。
可选的,所述发送单元701还用于:
在所述时频资源单元中的第一时频资源子单元上的第三索引值对应的基本时域单元上发送第二同步信号;
在所述时频资源单元中的至少一个第二时频资源子单元上的第四索引值对应的基本时域单元上发送第二同步信号;
其中,第三索引值与第四索引值不同;每个第一时频资源子单元中发送所述第二同步信号的基本时域单元对应的第三索引值相同,每个第二时频资源子单元中发送所述第二同步信号的基本时域单元对应的第四索引值相同。
可选的,所述第一索引值大于所述第二索引值,或者,所述第三索引值大于所述第四索引值。
可选的,针对所述第一时频资源子单元,所述第一索引值对应的基本时域单元为第一时频资源子单元中最后一个基本时域单元;或者
针对所述第一时频资源子单元,所述第三索引值对应的基本时域单元为第一时频资源子单元中最后一个基本时域单元。
可选的,针对所述第二时频资源子单元,所述第二索引值对应的基本时域单元为第二时频资源子单元中与发送下行控制信号的基本时域单元相邻的基本时域单元,所述第四索 引值对应的基本时域单元为第二时频资源子单元中与所述第二索引值对应的基本时域单元相邻的基本时域单元。
基于相同的技术构思,本申请实施例还提供一种同步信号发送装置,该装置可执行上述方法实施例。
如图8所示,为本申请实施例提供一种同步信号发送装置结构示意图,该装置包括:处理器801,存储器802,收发机803。
存储器802用于存储计算机指令。
处理器801用于执行所述存储器802中存储的计算机指令。
收发机803,用于在时频资源单元中的第一时频资源子单元上的第一索引值对应的基本时域单元上发送第一同步信号;
所述收发机803,用于在所述时频资源单元中的至少一个第二时频资源子单元上的第二索引值对应的基本时域单元上发送第一同步信号;
其中,第一索引值与第二索引值不同;第一时频资源子单元中每个基本时域单元的上下行属性为预配置的,第二时频资源子单元中至少包括一个上下行属性为待配置的基本时域单元;每个第一时频资源子单元中发送所述第一同步信号的基本时域单元对应的第一索引值相同,每个第二时频资源子单元中发送所述第一同步信号的基本时域单元对应的第二索引值相同。
可选的,所述收发机803还用于:
在所述时频资源单元中的第一时频资源子单元上的第三索引值对应的基本时域单元上发送第二同步信号;
在所述时频资源单元中的至少一个第二时频资源子单元上的第四索引值对应的基本时域单元上发送第二同步信号;
其中,第三索引值与第四索引值不同;每个第一时频资源子单元中发送所述第二同步信号的基本时域单元对应的第三索引值相同,每个第二时频资源子单元中发送所述第二同步信号的基本时域单元对应的第四索引值相同。
可选的,所述第一索引值大于所述第二索引值,或者,所述第三索引值大于所述第四索引值。
可选的,针对所述第一时频资源子单元,所述第一索引值对应的基本时域单元为第一时频资源子单元中最后一个基本时域单元;或者
针对所述第一时频资源子单元,所述第三索引值对应的基本时域单元为第一时频资源子单元中最后一个基本时域单元。
可选的,针对所述第二时频资源子单元,所述第二索引值对应的基本时域单元为第二时频资源子单元中与发送下行控制信号的基本时域单元相邻的基本时域单元,所述第四索引值对应的基本时域单元为第二时频资源子单元中与所述第二索引值对应的基本时域单元相邻的基本时域单元。
本申请是参照根据本申请实施例的方法、设备(系统)、和计算机程序产品的流程图和/或方框图来描述的。应理解可由计算机程序指令实现流程图和/或方框图中的每一流程和/或方框、以及流程图和/或方框图中的流程和/或方框的结合。可提供这些计算机程序指令到通用计算机、专用计算机、嵌入式处理机或其他可编程数据处理设备的处理器以产生一个机器,使得通过计算机或其他可编程数据处理设备的处理器执行的指令产生用 于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的装置。
这些计算机程序指令也可存储在能引导计算机或其他可编程数据处理设备以特定方式工作的计算机可读存储器中,使得存储在该计算机可读存储器中的指令产生包括指令装置的制造品,该指令装置实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能。
这些计算机程序指令也可装载到计算机或其他可编程数据处理设备上,使得在计算机或其他可编程设备上执行一系列操作步骤以产生计算机实现的处理,从而在计算机或其他可编程设备上执行的指令提供用于实现在流程图一个流程或多个流程和/或方框图一个方框或多个方框中指定的功能的步骤。
尽管已描述了本申请的优选实施例,但本领域内的技术人员一旦得知了基本创造性概念,则可对这些实施例作出另外的变更和修改。所以,所附权利要求意欲解释为包括优选实施例以及落入本申请范围的所有变更和修改。
显然,本领域的技术人员可以对本申请进行各种改动和变型而不脱离本申请的范围。这样,倘若本申请的这些修改和变型属于本申请权利要求的范围之内,则本申请也意图包含这些改动和变型在内。

Claims (13)

  1. 一种同步信号发送方法,其特征在于,该方法包括:
    网络设备在时频资源单元中的第一时频资源子单元上的第一索引值对应的基本时域单元上发送第一同步信号;
    所述网络设备在所述时频资源单元中的至少一个第二时频资源子单元上的第二索引值对应的基本时域单元上发送第一同步信号;
    其中,第一索引值与第二索引值不同;第一时频资源子单元中每个基本时域单元的上下行属性为预配置的,第二时频资源子单元中至少包括一个上下行属性为待配置的基本时域单元;每个第一时频资源子单元中发送所述第一同步信号的基本时域单元对应的第一索引值相同,每个第二时频资源子单元中发送所述第一同步信号的基本时域单元对应的第二索引值相同。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述网络设备在所述时频资源单元中的第一时频资源子单元上的第三索引值对应的基本时域单元上发送第二同步信号;
    所述网络设备在所述时频资源单元中的至少一个第二时频资源子单元上的第四索引值对应的基本时域单元上发送第二同步信号;
    其中,第三索引值与第四索引值不同;每个第一时频资源子单元中发送所述第二同步信号的基本时域单元对应的第三索引值相同,每个第二时频资源子单元中发送所述第二同步信号的基本时域单元对应的第四索引值相同。
  3. 根据权利要求2所述的方法,其特征在于,所述第一索引值大于所述第二索引值,或者,所述第三索引值大于所述第四索引值。
  4. 根据权利要求2或3所述的方法,其特征在于,针对所述第一时频资源子单元,所述第一索引值对应的基本时域单元为第一时频资源子单元中最后一个基本时域单元;或者
    针对所述第一时频资源子单元,所述第三索引值对应的基本时域单元为第一时频资源子单元中最后一个基本时域单元。
  5. 根据权利要求2或3所述的方法,其特征在于,针对所述第二时频资源子单元,所述第二索引值对应的基本时域单元为第二时频资源子单元中与发送下行控制信号的基本时域单元相邻的基本时域单元,所述第四索引值对应的基本时域单元为第二时频资源子单元中与所述第二索引值对应的基本时域单元相邻的基本时域单元。
  6. 一种同步信号发送装置,其特征在于,该装置包括:
    发送单元,用于在时频资源单元中的第一时频资源子单元上的第一索引值对应的基本时域单元上发送第一同步信号;
    所述发送单元,用于在所述时频资源单元中的至少一个第二时频资源子单元上的第二索引值对应的基本时域单元上发送第一同步信号;
    其中,第一索引值与第二索引值不同;第一时频资源子单元中每个基本时域单元的上下行属性为预配置的,第二时频资源子单元中至少包括一个上下行属性为待配置的基本时域单元;每个第一时频资源子单元中发送所述第一同步信号的基本时域单元对应的第一索引值相同,每个第二时频资源子单元中发送所述第一同步信号的基本时域单元对 应的第二索引值相同。
  7. 根据权利要求6所述的装置,其特征在于,所述发送单元还用于:
    在所述时频资源单元中的第一时频资源子单元上的第三索引值对应的基本时域单元上发送第二同步信号;
    在所述时频资源单元中的至少一个第二时频资源子单元上的第四索引值对应的基本时域单元上发送第二同步信号;
    其中,第三索引值与第四索引值不同;每个第一时频资源子单元中发送所述第二同步信号的基本时域单元对应的第三索引值相同,每个第二时频资源子单元中发送所述第二同步信号的基本时域单元对应的第四索引值相同。
  8. 根据权利要求7所述的装置,其特征在于,所述第一索引值大于所述第二索引值,或者,所述第三索引值大于所述第四索引值。
  9. 根据权利要求7或8所述的装置,其特征在于,针对所述第一时频资源子单元,所述第一索引值对应的基本时域单元为第一时频资源子单元中最后一个基本时域单元;或者
    针对所述第一时频资源子单元,所述第三索引值对应的基本时域单元为第一时频资源子单元中最后一个基本时域单元。
  10. 根据权利要求7或8所述的装置,其特征在于,针对所述第二时频资源子单元,所述第二索引值对应的基本时域单元为第二时频资源子单元中与发送下行控制信号的基本时域单元相邻的基本时域单元,所述第四索引值对应的基本时域单元为第二时频资源子单元中与所述第二索引值对应的基本时域单元相邻的基本时域单元。
  11. 一种通信装置,其特征在于,用于执行如权利要求1至5项任意一项所述的方法。
  12. 一种通信装置,其特征在于,包括处理器、存储器以及存储在存储器上并可在处理器上运行的计算机程序或指令,其特征在于,所述处理器执行所述程序或指令时使得所述通信装置实现如权利要求1至5项任意一项所述的方法。
  13. 一种计算机可读存储介质,其特征在于,包括计算机程序,当其在计算机上运行时,使得如权利要求1至5项任意一项所述的方法被执行。
PCT/CN2017/097116 2016-08-12 2017-08-11 一种同步信号发送方法及装置 WO2018028678A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610666553.X 2016-08-12
CN201610666553.XA CN107733608B (zh) 2016-08-12 2016-08-12 一种同步信号发送方法及装置

Publications (1)

Publication Number Publication Date
WO2018028678A1 true WO2018028678A1 (zh) 2018-02-15

Family

ID=61162873

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/097116 WO2018028678A1 (zh) 2016-08-12 2017-08-11 一种同步信号发送方法及装置

Country Status (2)

Country Link
CN (1) CN107733608B (zh)
WO (1) WO2018028678A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111294174B (zh) * 2019-01-11 2023-02-17 展讯通信(上海)有限公司 同步信号块的发送、接收方法及装置、存储介质、基站、用户终端
CN114080018A (zh) * 2020-08-21 2022-02-22 华为技术有限公司 一种通信方法及装置

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130259478A1 (en) * 2012-03-28 2013-10-03 Fujitsu Limited Optical transmitter, optical receiver, and optical transmission method
CN103581932A (zh) * 2012-08-09 2014-02-12 中兴通讯股份有限公司 一种导频测量方法及装置
CN103795668A (zh) * 2012-11-02 2014-05-14 电信科学技术研究院 一种信号处理方法、基站、终端、及系统
CN104734763A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种指示和接收上行波束索引的方法、系统及装置
CN105744639A (zh) * 2014-12-10 2016-07-06 中兴通讯股份有限公司 随机接入配置信息发送、接收方法及装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101997636B (zh) * 2009-08-17 2012-12-05 电信科学技术研究院 一种多用户终端信道质量指示信息的传输方法及装置
CN104009827B (zh) * 2013-02-22 2019-05-21 电信科学技术研究院 一种用户设备专用解调参考信号的传输方法及设备
CN104349464B (zh) * 2013-07-29 2018-05-15 中国移动通信集团公司 发送同步信号、确定载波类型的方法和设备
US10123290B2 (en) * 2013-11-27 2018-11-06 Lg Electronics Inc. Method for scanning resource for device-to-device direct communication in wireless communication system and apparatus therefor
CN105101300A (zh) * 2014-05-09 2015-11-25 中兴通讯股份有限公司 基于竞争的资源选择方法及装置

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130259478A1 (en) * 2012-03-28 2013-10-03 Fujitsu Limited Optical transmitter, optical receiver, and optical transmission method
CN103581932A (zh) * 2012-08-09 2014-02-12 中兴通讯股份有限公司 一种导频测量方法及装置
CN103795668A (zh) * 2012-11-02 2014-05-14 电信科学技术研究院 一种信号处理方法、基站、终端、及系统
CN104734763A (zh) * 2013-12-20 2015-06-24 中兴通讯股份有限公司 一种指示和接收上行波束索引的方法、系统及装置
CN105744639A (zh) * 2014-12-10 2016-07-06 中兴通讯股份有限公司 随机接入配置信息发送、接收方法及装置

Also Published As

Publication number Publication date
CN107733608A (zh) 2018-02-23
CN107733608B (zh) 2020-04-03

Similar Documents

Publication Publication Date Title
JP7071543B2 (ja) アップリンク同期方法及び装置
US11564184B2 (en) Timing method and apparatus
EP3155858B1 (en) Techniques for enhancing frame structure and listen before talk procedure (lbt) for transmissions using an unlicensed radio frequency spectrum band
US11109392B2 (en) Communication method, network device, and relay device
WO2017004774A1 (zh) 一种数据传输的方法、无线网络设备和通信系统
US11272547B2 (en) Communication method, network device, and user equipment
WO2018059481A1 (zh) 数据发送、接收方法及装置
JP6729976B2 (ja) リソース判定方法、関連デバイスおよびシステム
WO2018028672A1 (zh) 一种帧结构的配置方法、网络侧设备及终端
WO2019201222A1 (zh) 一种数据信道传输方法、接收方法及装置
CN104812053B (zh) D2d通信同步信道的传输方法及系统、发送端及接收端
WO2018137700A1 (zh) 一种通信方法,装置及系统
US20210243758A1 (en) Resource indication method and apparatus and communication system
KR20220050157A (ko) 리소스 다중화 방법 및 장치
WO2021056564A1 (zh) 直连通信操作处理方法、装置及存储介质
US20200136751A1 (en) Signal sending and receiving method, and apparatus
WO2018036437A1 (zh) 资源指示、确定方法、装置、网络侧设备及接收侧设备
WO2018028678A1 (zh) 一种同步信号发送方法及装置
KR20200003184A (ko) 정보 전송 방법 및 장치
WO2017101823A1 (zh) 一种无线帧的传输方法及无线网络设备
WO2016127391A1 (zh) 无线网络的数据传输方法及网络节点
WO2022002263A1 (zh) 定时偏移值的指示方法和设备
WO2018201840A1 (zh) 一种信息传输方法及装置
WO2020030290A1 (en) Apparatus, method and computer program
WO2023131296A1 (zh) 一种配置方法及其装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17838808

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 17838808

Country of ref document: EP

Kind code of ref document: A1