WO2022002263A1 - 定时偏移值的指示方法和设备 - Google Patents

定时偏移值的指示方法和设备 Download PDF

Info

Publication number
WO2022002263A1
WO2022002263A1 PCT/CN2021/104310 CN2021104310W WO2022002263A1 WO 2022002263 A1 WO2022002263 A1 WO 2022002263A1 CN 2021104310 W CN2021104310 W CN 2021104310W WO 2022002263 A1 WO2022002263 A1 WO 2022002263A1
Authority
WO
WIPO (PCT)
Prior art keywords
signaling
offset value
timing offset
value
communication device
Prior art date
Application number
PCT/CN2021/104310
Other languages
English (en)
French (fr)
Inventor
彭淑燕
刘进华
王欢
Original Assignee
维沃移动通信有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 维沃移动通信有限公司 filed Critical 维沃移动通信有限公司
Priority to EP21831696.6A priority Critical patent/EP4178280A4/en
Publication of WO2022002263A1 publication Critical patent/WO2022002263A1/zh
Priority to US18/092,198 priority patent/US20230140165A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0053Allocation of signaling, i.e. of overhead other than pilot signals
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • H04L5/0073Allocation arrangements that take into account other cell interferences
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated

Definitions

  • the present application belongs to the field of communication technologies, and in particular relates to a timing offset value indication method and device.
  • An integrated access and backhaul (IAB) system includes an IAB node (node), and an IAB node includes a mobile terminal (Mobile Termination, MT) functional part and a distributed unit (Distributed Unit, DU) functional part.
  • the IAB node can find an upstream access point (that is, the parent IAB node parent IAB node), and establish a wireless connection with the DU of the upstream access point.
  • the DU of the IAB node will provide cell services for the child nodes, that is, the DU can provide access services for the UE (User Equipment) or the MT of the IAB child node.
  • frequency division multiplexing Frequency Division Multiplexing
  • SDM Space Division Multiplexing
  • timing advance (TA) indication defined in the related art cannot meet the requirements in some scenarios in the IAB system, that is, according to the TA indication, the adjustment between links in the above scenarios cannot be achieved. Synchronization requirements, therefore, it is necessary to provide a new timing indication scheme.
  • the purpose of the embodiments of the present application is to provide a timing offset value indication method and device, which are used to solve the problem that synchronization requirements between links cannot be achieved in the related art.
  • a method for indicating a timing offset value is provided, applied to a first communication device, the method includes: receiving a first signaling from a second communication device; acquiring timing according to the first signaling an offset value, the timing offset value is used to adjust the timing of the first communication device; wherein the first communication device includes a self-backhaul IAB node, and the second communication device includes a parent of the IAB node node or IAB host node or IAB sub-node; or the first communication device includes a terminal, and the second communication device includes an IAB node or an IAB host node serving the terminal.
  • a method for indicating a timing offset value is provided, applied to a second communication device, the method includes: sending first signaling, where the first signaling is used by the first communication device to obtain a timing offset value, the timing offset value is used to adjust the timing of the first communication device; wherein, the first communication device includes a self-backhaul IAB node, and the second communication device includes the parent node of the IAB node or An IAB host node or an IAB child node; or the first communication device includes a terminal, and the second communication device includes an IAB node or an IAB host node serving the terminal.
  • a first communication device comprising: a receiving module for receiving a first signaling from a second communication device; an obtaining module for obtaining a timing offset value according to the first signaling , the timing offset value is used to adjust the timing of the first communication device; wherein, the first communication device includes a self-backhaul IAB node, and the second communication device includes the parent node or IAB of the IAB node a host node or an IAB child node; or the first communication device includes a terminal, and the second communication device includes an IAB node or an IAB host node serving the terminal.
  • a second communication device comprising: a sending module configured to send first signaling, where the first signaling is used by the first communication device to obtain a timing offset value, the timing offset value for adjusting the timing of the first communication device; wherein the first communication device includes a self-backhaul IAB node, and the second communication device includes a parent node or an IAB host node or an IAB child node of the IAB node; Or the first communication device includes a terminal, and the second communication device includes an IAB node or an IAB host node serving the terminal.
  • a first communication device comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being The processor implements the steps of the method according to the first aspect when executed.
  • a second communication device comprising a processor, a memory, and a program or instruction stored on the memory and executable on the processor, the program or instruction being The processor, when executed, implements the steps of the method as described in the second aspect.
  • a readable storage medium on which a program or an instruction is stored, and when the program or instruction is executed by a processor, the method described in the first aspect or the second the method described in the aspect.
  • a chip in an eighth aspect, includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the method according to the first aspect , or implement the method described in the second aspect.
  • the first communication device may receive first signaling from the second communication device, and obtain a timing offset value according to the first signaling, where the timing offset value is used to adjust the first communication device Timing.
  • the embodiments of the present application can meet the synchronization requirement between links, reduce the interference between systems, and facilitate meeting the normal communication requirement.
  • FIG. 1 is a block diagram of a wireless communication system according to an embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for indicating a timing offset value according to an embodiment of the present application
  • FIG. 3 is a schematic diagram of an application scenario of a method for indicating a timing offset value according to an embodiment of the present application
  • FIG. 4 is a schematic diagram of a specific example of a timing offset value according to an embodiment of the present application.
  • FIG. 5 is a schematic diagram of a first signaling format according to an embodiment of the present application.
  • FIG. 6 is a schematic diagram of a first signaling format according to another embodiment of the present application.
  • FIG. 7 is a schematic diagram of a first signaling format according to still another embodiment of the present application.
  • FIG. 8 is a schematic diagram of a first signaling format according to still another embodiment of the present application.
  • FIG. 9 is a schematic diagram of a first signaling format according to still another embodiment of the present application.
  • FIG. 10 is a schematic diagram of a first signaling format according to yet another embodiment of the present application.
  • FIG. 11 is a schematic flowchart of a method for indicating a timing offset value according to another embodiment of the present application.
  • FIG. 12 is a schematic structural diagram of a first communication device according to an embodiment of the present application.
  • FIG. 13 is a schematic structural diagram of a second communication device according to an embodiment of the present application.
  • FIG. 14 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • FIG. 15 is a schematic structural diagram of a network side device according to an embodiment of the present application.
  • first, second and the like in the description and claims of the present application are used to distinguish similar objects, and are not used to describe a specific order or sequence. It is to be understood that the data so used are interchangeable under appropriate circumstances so that the embodiments of the present application can be practiced in sequences other than those illustrated or described herein, and "first”, “second” distinguishes Usually it is a class, and the number of objects is not limited.
  • the first object may be one or multiple.
  • “and/or” in the description and claims indicates at least one of the connected objects, and the character “/" generally indicates that the associated objects are in an "or” relationship.
  • LTE Long Term Evolution
  • LTE-Advanced LTE-Advanced
  • LTE-A Long Term Evolution-Advanced
  • CDMA Code Division Multiple Access
  • TDMA Time Division Multiple Access
  • FDMA Frequency Division Multiple Access
  • OFDMA Orthogonal Frequency Division Multiple Access
  • SC-FDMA Single-carrier Frequency-Division Multiple Access
  • system and “network” in the embodiments of the present application are often used interchangeably, and the described technology can be used not only for the above-mentioned systems and radio technologies, but also for other systems and radio technologies.
  • NR New Radio
  • the following description describes a New Radio (NR) system for example purposes, and uses NR terminology in most of the description below, although these techniques are also applicable to applications other than NR system applications, such as 6th generation (6 th Generation, 6G) communication system.
  • 6th generation 6 th Generation, 6G
  • FIG. 1 shows a block diagram of a wireless communication system to which the embodiments of the present application can be applied.
  • the wireless communication system includes an access device 11 , a network-side device 12 and a terminal 13 .
  • the access device 11 can also be a terminal or an IAB node, and the IAB node can include a mobile terminal (Mobile Termination, MT) functional part and a distributed unit (Distributed Unit, DU) functional part, and the DU can provide network services for other access devices,
  • the MT can be regarded as an ordinary terminal, and has the function of accessing the network side of the ordinary terminal, etc.
  • the terminal mentioned above can be a mobile phone, a tablet computer (Tablet Personal Computer), a laptop computer (Laptop Computer) or a notebook computer, a personal digital assistant (Personal Digital Assistant, PDA), a handheld computer, a netbook, a super mobile personal computer Computer (ultra-mobile personal computer, UMPC), mobile Internet device (Mobile Internet Device, MID), wearable device (Wearable Device) or vehicle-mounted equipment (VUE), pedestrian terminal (PUE) and other terminal-side devices, wearable Equipment includes: bracelets, earphones, glasses, etc. It should be noted that, the embodiment of the present application does not limit the specific type of the IAB node.
  • the network side device 12 may be a base station or a core network, wherein the base station may be referred to as a Node B, an evolved Node B, an access point, a Base Transceiver Station (BTS), a radio base station, a radio transceiver, a basic service Set (Basic Service Set, BSS), Extended Service Set (Extended Service Set, ESS), Node B, Evolved Node B (eNB), Next Generation Node B (gNB), Home Node B, Home Evolved Node B, WLAN Access point, WiFi node, Transmitting Receiving Point (TRP) or some other suitable term in the field, as long as the same technical effect is achieved, the base station is not limited to specific technical vocabulary. In the application embodiments, only the base station in the NR system is used as an example, but the specific type of the base station is not limited.
  • an embodiment of the present application provides a method 200 for indicating a timing offset value.
  • the method can be executed by a first communication device.
  • the method can be executed by software or hardware installed in the first communication device.
  • the method includes the following steps.
  • S202 Receive the first signaling from the second communication device.
  • S204 Acquire a timing offset value according to the first signaling, where the timing offset value is used to adjust the timing of the first communication device.
  • the above-mentioned first communication device includes a self-backhaul IAB node, and the second communication device includes a parent node or an IAB host node or an IAB child node of the IAB node; or the first communication device includes a terminal, and the second communication device includes The device includes an IAB node or an IAB host node serving the terminal.
  • the above-mentioned first signaling may be a Media Access Control Control Element (Media Access Control Element, MAC CE) signaling, or a random access response (Random Access Response, RAR) signaling, or a Radio Resource Control (Radio Resource Control, RRC) signaling, or Downlink Control Information (DCI) signaling, or F1-Application Protocol (Application Protocol, AP) signaling, or Backhaul Adaptation Protocol (BAP) protocol Data unit (ProtocolDataUnit, PDU) signaling.
  • Media Access Control Element Media Access Control Element, MAC CE
  • RAR Random Access Response
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • F1-Application Protocol Application Protocol
  • AP Application Protocol
  • BAP Backhaul Adaptation Protocol
  • PDU protocol Data unit
  • the above-mentioned first communication device is an IAB node, and the first signaling comes from a parent node of the IAB node or from an IAB host node or an IAB child node.
  • the first communication device may be the IAB node 2 in FIG. 3, and the first signaling may be sent by the IAB node 1 to the IAB node 2; or may be sent by the IAB donor (donor) to the IAB node 2. It may also be reported to the IAB node 2 by the IAB child node of the IAB node 2, wherein the IAB child node of the IAB node 2 is not shown in FIG. 3 .
  • the IAB host and the IAB node 2 communicate through F1-AP signaling.
  • the above-mentioned first communication device is a terminal (eg, UE), and the first signaling comes from an IAB node or an IAB host node serving the terminal.
  • the first communication device may be the terminal in FIG. 3, and the first signaling may be sent by the IAB node 1 to the terminal; or may be sent by the IAB donor (donor) to the terminal.
  • the above-mentioned timing offset value may be an uplink (UL) timing offset value compared to a downlink (DL) timing offset value of the first communication device, and may also be a downlink timing offset value of the first communication device compared to an uplink timing offset value.
  • UL uplink
  • DL downlink
  • the above-mentioned timing offset value may be referred to as the timing offset value of the first communication device's transmission compared to the reception, or the first communication device's reception compared to the transmission timing offset value.
  • timing offset value mentioned in the various embodiments of this application is different from the traditional concept of timing advance (Timing advance, TA).
  • Timing advance Timing advance
  • the specific difference is that the TA indicated by the RAR in the related art can only be a positive value , and the timing offset value in each embodiment of the present application may be a positive value or a negative value; for another example, the range of the timing offset value is greater than the range of the TA, etc. Therefore, in the various embodiments of the present application, it is mentioned that The timing offset value of can also be replaced by other technical terms, such as extended TA and so on.
  • a first communication device may receive a first signaling from a second communication device, and obtain a timing offset value according to the first signaling, and the timing offset value for adjusting the timing of the first communication device.
  • the embodiments of the present application can meet the synchronization requirement between links, reduce the interference between systems, and facilitate meeting the normal communication requirement.
  • the related art has preliminarily defined the timing synchronization of the IAB node.
  • the IAB node 1 works under the timing of case 7 (case 7), its DU RX (or DU UL) is followed by The MT RX (or MT DL) keeps synchronization (see Figure 4); at the same time, the DU DL (or DU TX) of the IAB node 1 is aligned with the DL of the parent IAB node (that is, the IAB host).
  • Tp1 is the propagation delay from the parent IAB node (ie IAB host) of the IAB node 1 to the IAB node 1
  • Tp2 is the child IAB node (ie IAB node 2) of the IAB node 1 or the serving UE to the IAB node 1.
  • the timing difference of MT UL/MT TX/UE UL of IAB node 2 compared with MT DL/MT RX/UE DL of IAB node 2 will produce a negative negative value with a larger absolute value. value, this negative timing indication value indicates that it exceeds the indication range of the existing signaling (i.e. Timing Advance Command MAC CE).
  • the timing offset value may be the timing offset value obtained by the IAB node 2 or the UE shown in FIG. 3 and FIG. 4 .
  • the timing offset value provided by the embodiment of the present application is mainly used to keep the DU UL of the IAB node 1 synchronized.
  • the TA solution in the related art cannot achieve link synchronization, as follows: a) RAR can only indicate a positive value TA; b) The range of negative values that can be indicated by TA adjusting the MAC CE is small, which cannot meet the requirements of the above scenario.
  • receiving the first signaling from the second communication device mentioned in S202 of Embodiment 200 includes at least one of the following:
  • the above configuration information may be configured as whether the first communication device receives the first signaling, or is configured to receive the first signaling or the second signaling.
  • the first communication device in Embodiment 200 is configured to receive the first signaling .
  • the first communication device may further receive RRC signaling for configuring the signaling type used for the first communication device, where the RRC signaling is used for the first communication device.
  • the signaling type used for configuration the signaling type includes at least one of the first signaling and the second signaling, and the second signaling is used to configure or instruct the TA for the first communication device.
  • the second signaling may be TA indication signaling supported by an existing protocol.
  • the foregoing capability information indicates whether the first communication device can receive the first signaling.
  • the first communication device may report its capability, or the protocol stipulates that the first communication device must support the capability, and then the second communication device may consider whether the first communication device is capable according to the capability of the first communication device. Receive the first signaling.
  • the traditional IAB/UE cannot receive/demodulate the first signaling, and the traditional IAB/UE is an IAB/UE that supports existing protocol functions.
  • the first signaling mentioned in Embodiment 200 is MAC CE signaling
  • the absolute value of the maximum negative offset value that can be indicated by the MAC CE signaling is not less than the existing TA adjustment MAC CE (that is, the first Two signaling) the absolute value of the maximum negative offset value that can be indicated.
  • the MAC CE signaling indicates that the negative offset value with the largest absolute value is -1939; or, the negative offset value with the largest absolute value indicated is -1923; or the negative offset value with the largest absolute value indicated is -1923. -3878; alternatively, the largest negative offset value of the indicated absolute value is -3846.
  • the first communication device can also obtain the final timing offset value through other operations according to the negative offset value (assuming n) indicated by the above MAC CE signaling, for example, calculate the final timing offset value according to the following formula Shift value:
  • N N old +n*16*64/2 ⁇
  • N in this formula is the timing offset value finally calculated, N old is the previous timing offset value, or the old timing offset value, and n is the (positive or negative) offset indicated by the MAC CE signaling
  • the shift value, ⁇ is a parameter related to the subcarrier spacing.
  • the obtaining the timing offset value according to the first signaling mentioned in Embodiment 200 includes one of the following:
  • the first signaling may directly indicate the final timing offset value, and the timing offset value may be positive or negative.
  • the first signaling may indicate an offset value
  • the offset value may be a positive value or a negative value.
  • the first communication device may add or subtract the above-mentioned offset value from the initial timing offset value to obtain The final timing offset value; or adding or subtracting the above-mentioned offset value to the timing offset value determined last time to obtain the final timing offset value.
  • the timing offset value is positive, the UL is advanced; if the timing offset value is negative, the UL is delayed.
  • the first communication device can obtain the final timing offset value based on the following formula:
  • N (N TA +N TA,offset )*T c
  • N in this formula is the timing offset value finally calculated
  • N TA is the first intermediate value indicated by the first signaling
  • N TA,offset is a predefined or pre-configured offset value
  • T c is a predefined or pre-configured offset value. Preconfigured time unit value.
  • N TA_old can be added or subtracted from N TA to obtain N TA_new
  • N TA_ini can be added or subtracted from N TA to obtain N TA_new
  • the final timing offset value can be obtained according to the following formula:
  • N (N TA_new +N TA,offset )*T c
  • N in the formula is the timing offset value finally calculated
  • N TA,offset is a predefined or pre-configured offset value
  • T c is a predefined or pre-configured time unit value.
  • the first signaling mentioned in Embodiment 200 is used to indicate a first value, and the interval range of the first value is [K1, K2]; wherein, K1 and K2 are both positive; or K1 and K2 are both negative; or both K1 and K2 are non-positive; or both K1 and K2 are non-negative; or K1 is negative and K2 is positive.
  • the first signaling is a MAC CE, and the range of the first value indicated by the MAC CE is [-3878, 0].
  • first value mentioned in the various embodiments of this application may correspond to (or be directly equal to) the indicated value of the first signaling in the above four examples, the offset value indicated by the first signaling, first intermediate value, etc.
  • the first signaling can be used to configure or indicate the timing offset value for the first communication device, and the second signaling can also be used as The first communication device configures or indicates a timing offset value (specifically, TA).
  • the required indication value (the first value) is in [-A, -(a+1)] and [b+1, +B]
  • the first signaling can be used for the first communication
  • the device configures or indicates the timing offset value, but the second signaling cannot be used, because the value to be indicated exceeds the range that can be indicated by the second signaling.
  • the second signaling may be used to configure or indicate the timing offset value (specifically, TA) for the first communication device.
  • the required indication value (the first value) is in [-A, -(a+1)] and [b+1, +B]
  • the first signaling can be used for the first communication
  • the device configures or indicates the timing offset value.
  • the second signaling may be used to configure or indicate the timing offset value (specifically, TA) for the first communication device.
  • the required indication value (the first intermediate value) is in [-C, -(a+1)]
  • the first signaling can be used to configure or indicate the timing offset value for the first communication device .
  • the first signaling is received when the first value is [-A, -(a+1)] or [b+1, +B].
  • A, a, B, b and C in the above examples 1 to 3 are all positive values.
  • the first signaling mentioned in the foregoing embodiments further includes first indication information, where the first indication information is used to indicate that the timing offset value is a positive value or a negative value; or to indicate the timing Whether the offset value is reversed will be described below with reference to several specific examples.
  • the first signaling is MAC CE signaling, and the first information is indicated by the M1 bit of the MAC CE signaling.
  • the timing offset value can be indicated by a display indication as a positive value or negative value.
  • the first information is indicated by RRC.
  • the above-mentioned M1 bit is specifically in the MAC CE header (header), and the M1 bit may be specifically 1 bit.
  • the R (that is, reserved) bit in the existing TACMAC CE header can be redefined to form a newly defined MAC CE.
  • the newly defined MAC CE indicates a A value less than -31, for example, when 1 bit is reserved, the indicated negative value range is [-32-95].
  • the above-mentioned newly defined MAC CE adopts a new LCID identification.
  • Example 2 The first signaling carries random access response RAR information, and the first information is indicated by the M2 bit in the RAR information.
  • 1bit R of RAR is used to indicate the positive or negative of the timing offset value.
  • the first signaling includes RAR, and the first information is indicated by a specific code point in the channel state information (Channel State Information, CSI) request field of the RAR; or the first information is indicated by the uplink scheduling of the RAR information ( UL grant) specific code point indication.
  • CSI Channel State Information
  • Example 3 Specifically, for example, the CSI request field in the RAR is used to distinguish whether the RAR is positive or negative.
  • Example 3 the specific code point in the UL grant in the RAR is used to indicate whether the RAR is positive or negative, and specifically, it can be indicated by a specific code point in the frequency domain resource allocation domain/time domain resource allocation domain/MCS.
  • the first signaling carries RAR, and the first information is indicated by the M3 bit of the second MAC CE header of the first signaling.
  • the second MAC CE header may be one of the headers of the MAC CE including the above RAR.
  • a new RAR header can be defined, and 1 bit in the header indicates that the timing offset value indicated by the RAR is positive or negative.
  • the first signaling in the above examples 1 to 4 is used to indicate the timing offset value of one or more first communication devices in the timing offset value group, or used to indicate one or more timing offset values in the cell.
  • the timing offset value of the first communication device is used to indicate the timing offset value of one or more first communication devices in the timing offset value group, or used to indicate one or more timing offset values in the cell.
  • the receiving the first signaling from the second communication device in Embodiment 200 includes: receiving the first signaling according to capability information of the first communication device; wherein the capability The information indicates whether the first communication device can receive the first signaling.
  • the first communication device may report its capability, or the protocol stipulates that the first communication device must support the capability, and then the second communication device may consider whether the first communication device is capable or not according to the capability of the first communication device Receive the first signaling.
  • the traditional IAB/UE cannot receive/demodulate the first signaling
  • the traditional IAB/UE is an IAB/UE that supports existing protocol functions.
  • the first communication device in the embodiment 200 still adjusts the transmission even when the timing offset value is a negative value.
  • the TA value calculated by the first communication device is negative, no adjustment is made.
  • the first signaling mentioned in Embodiment 200 is used to indicate a first value
  • the acquiring a timing offset value according to the first signaling includes: determining according to the first value and at least one of the following Timing offset value: time domain unit offset value, subcarrier spacing SCS.
  • the time domain unit offset value is MAC CE/RRC/Master System Information Block (MasterInformationBlock, MIB)/System Information Blocks (SystemInformationBlocks, SIB)/RAR indication/F1-AP signaling indication/BAP PDU indication or a configured value.
  • the first communication device may further receive third signaling, where the third signaling is used to indicate or configure the time-domain unit offset value.
  • the SCS can be a reference SCS, and the reference SCS is a MAC CE/RRC/MIB/SIB/RAR indication/F1-AP signaling indication/BAP PDU indication or a configured value, or a predefined value, or a predefined rule according to the protocol the value obtained.
  • the SCS is indicated or configured by the fourth received signaling; or the SCS is predefined; or the SCS is obtained according to a predefined rule.
  • This embodiment assists the indication of timing offset values by introducing the concept of time domain unit offset values (eg OFDM symbol offsets) and/or SCS. That is, the final timing offset value is related to the indication value of the first signaling, and the time domain unit offset value and/or the SCS.
  • time domain unit offset values eg OFDM symbol offsets
  • the SCS in this embodiment may also be the maximum/minimum SCS in the UL and/or DL of the serving cell (the UL of the serving cell may include/exclude the SUL), or the UL and/or in all cells in the TAG Or the maximum/minimum SCS in the DL (the UL of the serving cell may include/exclude the SUL), or the SCS of the SUL.
  • the obtaining the timing offset value according to the first signaling mentioned in Embodiment 200 includes: performing a superimposition or combination process on the first values respectively indicated by a plurality of the first signaling to obtain the timing offset value.
  • the superposition/combination of multiple MAC CEs can realize the indication of a larger range of negative TA/N TA.
  • the first signaling in this embodiment may be equivalent to the second signaling mentioned above.
  • multiple MAC CEs (which may be the first signaling, or may also be referred to as the second signaling) indicate that the acquisition of A timing offset value.
  • the first signaling mentioned in each of the foregoing embodiments is used to respectively indicate a timing offset value of at least one cell.
  • the first signaling includes at least one of the following: an identifier (eg, an index) of at least one of the cells; and SCS information, where the SCS information is used to obtain an SCS, and the SCS is used to obtain the timing offset value.
  • an identifier eg, an index
  • the MAC CE indication is: cell 1, timing offset value 1; cell 2, timing offset value 2; cell 5, timing offset value 5. Or for example: cell 2, timing offset value 2; cell 1, timing offset value 1; cell 5, timing offset value 5.
  • the first signaling does not include a cell index
  • the plurality of offset values are sorted according to the cell index, that is, the position of the timing offset value of the at least one cell in the first signaling is Acquired according to the identity of at least one of the cells and/or a predefined rule.
  • a MAC CE carries 5 TA commands, cell 1-cell 5.
  • the signaling carried in the MAC CE is: timing offset value 1, timing offset value 2, timing offset value 3, timing offset value 4, and timing offset value 5. If the TA of a certain cell is not adjusted, the TA value is set to a special code point (for example: 0).
  • the above predefined rules can be the default ordering, cell 1-cell 10. In this case, the parameter of the cell identity does not appear explicitly in the first signaling.
  • the first signaling is dynamic scheduling signaling
  • the dynamic scheduling signaling is used to indicate a timing offset value of corresponding uplink (UL) information.
  • the dynamic scheduling signaling is downlink control information (Downlink Control Information, DCI) and the uplink information is a physical uplink shared channel (Physical Uplink Shared Channel, PUSCH)
  • DCI scheduling information indicates the timing offset value of the PUSCH
  • the DCI may be the same or different.
  • the above-mentioned uplink information may include PUSCH, may also include a sounding reference signal (Sounding Reference Signal, SRS) accompanying the PUSCH, and may also include a Physical Uplink Control Channel (Physical Uplink Control Channel) sent simultaneously with the PUSCH , PUCCH).
  • SRS Sounding Reference Signal
  • PUCCH Physical Uplink Control Channel
  • a new field can be introduced into dynamic scheduling signaling, such as DCI (ie, UL grant), which indicates that the corresponding PUSCH (and the SRS accompanying the PUSCH and the PUCCH sent simultaneously with the PUSCH) transmission should follow Timing offset value.
  • DCI ie, UL grant
  • the first signaling is dynamic scheduling signaling
  • the dynamic scheduling signaling is used to schedule the RAR
  • the dynamic scheduling signaling is also used to indicate that the TA obtained according to the RAR is a negative value or a positive value.
  • the judgment basis for "for scheduling RAR" may be that if the DCI is scrambled with a random access radio network temporary identifier (Random Access Radio Network Temporary Identifier, RA-RNTI), then the DCI is used for scheduling the RAR.
  • RA-RNTI Random Access Radio Network Temporary Identifier
  • 1 bit in DCI format 1-0 may be used to indicate the positive and negative of RAR.
  • the indication may be carried to indicate the positive or negative of the TA obtained according to the RAR.
  • the first communication device may also receive DCI, where the DCI is used to schedule the first signaling; wherein, the DCI is in a specific search space (Search Space, SS) and/or a specific control resource set (Control resource set, CORESET), the timing offset value is a negative value.
  • DCI is used to schedule the first signaling
  • the DCI is in a specific search space (Search Space, SS) and/or a specific control resource set (Control resource set, CORESET)
  • the timing offset value is a negative value.
  • a specific search space and/or control resource set may be configured. If the first communication device receives the DCI scheduling RAR in the SS or CORESET, the TA value indicated by the RAR scheduled by the DCI is a negative value.
  • the timing offset value mentioned in the various embodiments of the present application may be TA, where the TA may be a positive value or a negative value, and the TA may be equivalent to the timing offset value mentioned above, or May indicate a difference in name.
  • timing offset value mentioned in the various embodiments of this application is different from the definition of the traditional TA, but has the same function as the traditional TA. In the subsequent release protocol, the timing offset value can also be called The action is an extended TA, which includes a negative TA.
  • Step 1 The parent node (IAB node 1 in Figure 3) sends the RAR, and the IAB node 2 (IAB node 2 in Figure 3) obtains the TA value according to the RAR's instruction, and the TA value is the initial TA.
  • Step 2 The MAC CE carries 1 bit of information to indicate the positive and negative of the TA.
  • the TA value is the negation of the acquired TA.
  • N TA is the value indicated by RAR
  • N TA,offset is a predefined or pre-configured offset value
  • Tc is a predefined or pre-configured time unit value.
  • N TA_new N TA_old + ( T A -31) ⁇ 16 ⁇ 64/2 u, T A is the value indicated MAC CE.
  • Step 3 The IAB node adjusts according to the obtained TA value.
  • FIG. 3 shows a schematic diagram of a two-hop IAB, where IAB node 1 is the parent node of IAB node 2 , and an IAB donor (donor) is the parent node of IAB node 1 .
  • the IAB host is the CU control of IAB Node 1 and IAB Node 2.
  • IAB node 2 is a child node of IAB node 1.
  • IAB node 2 is used as a reference, and its parent node refers to IAB node 1.
  • Step 1 The parent node (IAB node 1 in Figure 3) sends the RAR, and the IAB node 2 (IAB node 2 in Figure 3) obtains the TA value according to the RAR's instruction, and the TA value is the initial TA.
  • Step 2 The MAC CE carries TA indications of N cells.
  • the MAC CE does not carry the cell index (index) information, and indicates the TA of the cell according to the cell ID from small to large.
  • each cell MAC CE requires 12 bits of indication information (calculated according to the extended MAC CE, that is, the first signaling mentioned above, at least the range indicated by the RAR needs to be reached, then you can refer to the RAR's indicated as 12bits).
  • Step 3 The IAB node adjusts according to the obtained TA value.
  • Step 1 The parent node (IAB node 1 in Figure 3) sends the RAR, and the IAB node 2 (IAB node 2 in Figure 3) obtains the TA value according to the RAR's instruction, and the TA value is the initial TA.
  • Step 2 The TA indication of the cell is carried in the first signaling (MAC CE), and the cell index information is carried in the MAC CE
  • each cell MAC CE needs 12bits indication information (calculated according to the extended MAC CE, at least the range indicated by the RAR needs to be reached, then the indication of the RAR can be referred to as 12bits), then the design of its MAC CE is shown in Figure 6 , where 1bity is used to indicate positive and negative, serving cell ID (referred to as cell ID in Figure 6) is used to indicate cell index, and TAC is used to indicate timing.
  • Step 3 The IAB node adjusts according to the obtained TA value.
  • the UE accesses the IAB node 1, and the IAB node 1 sends an RAR to the UE, and the RAR indicates a timing offset value offset, and the timing offset value is a negative value. Then UE UL lags by offset compared to UE DL.
  • Absolute Timing Advance Command MAC CE is used to obtain the TA value, and 1 bit reserved bit is used to indicate the positive and negative of the timing offset value indicated by the MAC CE.
  • the 4th bit of the first byte is used to indicate the positive or negative of the TAC, if it is 1, it means positive, if it is 0, it means negative, or vice versa.
  • 1 bit reserved bit in the RAR indicates the positive or negative of the TA value obtained according to the RAR.
  • the first bit of the first byte indicates that if it is 1, it means positive, and if it is 0, it means negative. Or the other way around.
  • This embodiment newly defines the MAC CE header for the MAC CE including the RAR, and 1 bit in the header indicates that the TA value obtained according to the RAR is positive or negative, or indicates whether the TA value obtained according to the RAR is reversed.
  • the reserved bit in the first byte (oct1) is used to indicate the positive or negative of the TA value obtained according to the RAR.
  • the fourth bit of the first byte if it is 1, it means positive, and if it is 0, it means negative. Or the other way around.
  • the third bit or the fourth bit of the first byte indicates the positive or negative of the TA value obtained according to the RAR.
  • the E indication field in FIG. 9 and FIG. 10 is used to indicate whether there are other MAC subheaders after the MAC subheader.
  • R indicates that the field is a reserved field.
  • the T indication field is used to indicate whether the MAC subheader contains the random access preamble ID or the BI indication field.
  • the T1 indication field is used to indicate whether the MAC subheader contains a random access preamble ID or T2.
  • the T2 indication field is used to indicate whether the MAC subheader contains a fallback indication (BI) indication field or a MAC service data unit (Service Data Unit, SDU) indication field.
  • BI fallback indication
  • SDU Service Data Unit
  • This embodiment reuses a new subheader, that is, the MAC CE carrying the RAR will carry two subheaders.
  • the first byte Oct 1 is a subheader
  • the second byte Oct 2 is another subheader.
  • the TA mentioned in the first embodiment to the tenth embodiment may be the timing offset value mentioned in the various embodiments before the first embodiment.
  • the method for indicating a timing offset value according to an embodiment of the present application has been described in detail above with reference to FIG. 2 to FIG. 10 .
  • a method for indicating a timing offset value according to another embodiment of the present application will be described in detail below with reference to FIG. 11 . It can be understood that, the description from the second communication device side is the same as the description from the first communication device side in the methods shown in FIG. 2 to FIG. 10 , and to avoid repetition, relevant descriptions are appropriately omitted.
  • FIG. 11 is a schematic flowchart of an implementation of a method for indicating a timing offset value according to an embodiment of the present application, which can be applied to a second communication device. As shown in Figure 11, the method 1100 includes:
  • S1102 Send first signaling, where the first signaling is used by the first communication device to obtain a timing offset value, where the timing offset value is used to adjust the timing of the first communication device.
  • the first communication device includes an IAB node
  • the second communication device includes a parent node or an IAB host node or an IAB child node of the IAB node; or the first communication device includes a terminal, and the second communication device includes The device includes an IAB node or an IAB host node serving the terminal.
  • the second communication device sends the first signaling, so that the first communication device can receive the first signaling from the second communication device, and obtain the timing offset value according to the first signaling,
  • the timing offset value is used to adjust the timing of the first communication device.
  • the embodiments of the present application can meet the synchronization requirement between links, reduce the interference between systems, and facilitate meeting the normal communication requirement.
  • the first signaling further includes first indication information, where the first indication information is used to indicate that the timing offset value is a positive value or a negative value; or to indicate that the timing offset value is a positive value or a negative value. Whether the shift value is negated.
  • the first signaling is used to respectively indicate a timing offset value of at least one cell.
  • the first signaling is dynamic scheduling signaling; wherein the dynamic scheduling signaling is used to indicate the timing offset value of the corresponding uplink information; or the dynamic scheduling signaling Let be used to schedule the RAR, and the dynamic scheduling signaling is also used to indicate that the TA obtained according to the RAR is a negative value or a positive value.
  • the method further includes: sending DCI, wherein the DCI is used to schedule the first signaling; wherein the DCI is in a specific search space SS and/or a specific control
  • the timing offset value is a negative value.
  • the timing offset value is TA, where the TA is a positive value or a negative value.
  • FIG. 12 is a schematic structural diagram of a first communication device according to an embodiment of the present application, where the first communication device may correspond to an IAB node or terminal in other embodiments. As shown in Figure 12, the first communication device 1200 includes:
  • a receiving module 1202 configured to receive the first signaling from the second communication device
  • an obtaining module 1204 configured to obtain a timing offset value according to the first signaling, where the timing offset value is used to adjust the timing of the first communication device;
  • the first communication device includes an IAB node
  • the second communication device includes a parent node or an IAB host node or an IAB child node of the IAB node; or the first communication device includes a terminal, and the second communication device includes The device includes an IAB node or an IAB host node serving the terminal.
  • the receiving module 1202 is configured to perform at least one of the following: receive the first signaling from the second communication device according to the configuration information; receive the first signaling according to the capability information of the first communication device the first signaling from the second communication device.
  • the obtaining module 1204 is configured to: use the indication value of the first signaling as the timing offset value; or according to the initial timing offset value and the timing offset determined last time obtain a timing offset value according to one of the two values, and the offset value indicated by the first signaling; or calculate the timing offset value according to the first intermediate value, where the first signaling is used to indicate The first intermediate value, the first intermediate value is used to calculate the timing offset value; or the first intermediate value indicated by the first signaling initially received and the last received first intermediate value. One of the first intermediate value indicated by a signaling and the first intermediate value indicated by the first signaling received this time obtain a timing offset value.
  • the first signaling is used to indicate a first value
  • the interval range of the first value is [K1, K2]; wherein, K1 and K2 are both positive; or K1 and K2 are both negative; or both K1 and K2 are non-positive; or both K1 and K2 are non-negative; or K1 is negative and K2 is positive.
  • the first signaling is used to indicate a first value
  • the interval range of the first value is [-A, +B]; or the interval range of the first value is [ -A, -(a+1)] and [b+1, +B]; or the interval range of the first value is [-C, -(a+1)];
  • the second signaling is used to indicate the first value Two values, the interval range of the second value is [-a, +b]; wherein, A>a, C>a, B>b, b>-a.
  • the first signaling is received when the first value is [-A, -(a+1)] or [b+1, +B] .
  • the first signaling further includes first indication information, where the first indication information is used to indicate that the timing offset value is a positive value or a negative value; or to indicate that the timing offset value is a positive value or a negative value. Whether the shift value is negated.
  • the first signaling is medium access control control unit MAC CE signaling
  • the first information is indicated by the M1 bit of the MAC CE signaling, or the first information is indicated by the M1 bit of the MAC CE signaling.
  • RRC indication is medium access control control unit MAC CE signaling
  • the first signaling includes a random access response RAR, and the first information is indicated by an M2 bit in the RAR.
  • the first signaling includes RAR; the first information is indicated by a specific code point in the channel state information CSI request field of the RAR; or the first information is indicated by the The specific code point indication in the uplink scheduling of the RAR.
  • the first signaling includes RAR, and the first information is indicated by the M3 bit in the second MAC CE header of the first signaling.
  • the first signaling is used to indicate a timing offset value of the first communication device in a timing offset value group, or used to indicate the first communication device in a cell the timing offset value.
  • the first signaling is used to indicate a first value
  • the acquiring a timing offset value according to the first signaling includes: determining according to the first value and at least one of the following Timing offset value: time domain unit offset value, subcarrier spacing SCS.
  • the receiving module 1202 may be further configured to: receive third signaling, where the third signaling is used to indicate or configure the time domain unit offset value.
  • the SCS is indicated or configured by the fourth received signaling; or the value of the SCS is predefined; or the value of the SCS is obtained according to a predefined rule.
  • the obtaining module 1204 is configured to: superimpose or combine multiple first values respectively indicated by the first signaling to obtain the timing offset value.
  • the first signaling is used to respectively indicate a timing offset value of at least one cell.
  • the first signaling includes at least one of the following: an identifier of the cell; and SCS information, where the SCS information is used to obtain an SCS, and the SCS is used to obtain the timing offset value.
  • the position of the timing offset value of the at least one cell in the first signaling is obtained according to the identity of the at least one cell and/or a predefined rule.
  • the first signaling is dynamic scheduling signaling
  • the dynamic scheduling signaling is used to indicate a timing offset value of the corresponding uplink information.
  • the first signaling is dynamic scheduling signaling
  • the dynamic scheduling signaling is used to schedule RAR
  • the dynamic scheduling signaling is also used to indicate that the TA obtained according to the RAR is: Negative or positive value.
  • the receiving module 1202 may be further configured to: receive downlink control information DCI, where the DCI is used to schedule the first signaling; where the DCI is in a specific search space In the case of obtaining from the SS and/or the specific control resource set CORESET, the timing offset value is a negative value.
  • the timing offset value is TA, where the TA is a positive value or a negative value.
  • the apparatus 1200 may refer to the process of the method 200 corresponding to the embodiment of the present application, and each unit/module and the above-mentioned other operations and/or functions in the apparatus 1200 are respectively in order to implement the corresponding process in the method 200, And can achieve the same or equivalent technical effects, for the sake of brevity, details are not repeated here.
  • FIG. 13 is a schematic structural diagram of a second communication device according to an embodiment of the present application, where the second communication device may correspond to an IAB node or an IAB host or an IAB child node in other embodiments.
  • the second communication device 1300 includes:
  • a sending module 1300 configured to send first signaling, where the first signaling is used by the first communication device to obtain a timing offset value, and the timing offset value is used to adjust the timing of the first communication device; wherein,
  • the first communication device includes a self-backhaul IAB node, and the second communication device includes a parent node or an IAB host node or an IAB child node of the IAB node; or the first communication device includes a terminal, and the second communication device includes a terminal.
  • the communication device includes an IAB node or an IAB host node serving the terminal.
  • the second communication device sends the first signaling, so that the first communication device can receive the first signaling from the second communication device, and obtain the timing offset value according to the first signaling,
  • the timing offset value is used to adjust the timing of the first communication device.
  • the embodiments of the present application can meet the synchronization requirement between links, reduce the interference between systems, and facilitate meeting the normal communication requirement.
  • the first signaling further includes first indication information, where the first indication information is used to indicate that the timing offset value is a positive value or a negative value; or to indicate that the timing offset value is a positive value or a negative value. Whether the shift value is negated.
  • the first signaling is used to respectively indicate a timing offset value of at least one cell.
  • the first signaling is dynamic scheduling signaling; wherein the dynamic scheduling signaling is used to indicate the timing offset value of the corresponding uplink information; or the dynamic scheduling signaling Let be used to schedule the RAR, and the dynamic scheduling signaling is also used to indicate that the TA obtained according to the RAR is a negative value or a positive value.
  • the sending module 1300 may be further configured to send DCI, where the DCI is used to schedule the first signaling; wherein the DCI is in a specific search space SS and/or In the case of obtaining from the specific control resource set CORESET, the timing offset value is a negative value.
  • the timing offset value is TA, where the TA is a positive value or a negative value.
  • the second communication device 1300 For the second communication device 1300 according to the embodiment of the present application, reference may be made to the process of the method 1100 corresponding to the embodiment of the present application, and each unit/module and the above-mentioned other operations and/or functions in the second communication device 1300 are respectively for implementing the method 1100, and can achieve the same or equivalent technical effects, and for the sake of brevity, details are not repeated here.
  • an embodiment of the present application further provides a communication device 1400, including a processor 1401, a memory 1402, a program or instruction stored in the memory 1402 and executable on the processor 1401,
  • a communication device 1400 including a processor 1401, a memory 1402, a program or instruction stored in the memory 1402 and executable on the processor 1401,
  • the communication device 1400 is a terminal
  • the program or instruction is executed by the processor 1401
  • each process of the above-mentioned embodiment of the method for indicating the timing offset value can be achieved, and the same technical effect can be achieved.
  • the communication device 1400 is the second communication device mentioned above, when the program or instruction is executed by the processor 1401, each process of the above-mentioned embodiment of the method for indicating the timing offset value can be realized, and the same technical effect can be achieved. In order to avoid Repeat, and will not repeat them here.
  • the network side device 1500 includes: an antenna 151 , a radio frequency device 152 , and a baseband device 153 .
  • the antenna 151 is connected to the radio frequency device 152 .
  • the radio frequency device 152 receives information through the antenna 151, and sends the received information to the baseband device 153 for processing.
  • the baseband device 153 processes the information to be sent and sends it to the radio frequency device 152
  • the radio frequency device 152 processes the received information and sends it out through the antenna 151 .
  • the above-mentioned frequency band processing apparatus may be located in the baseband apparatus 153 , and the method performed by the network-side device in the above embodiments may be implemented in the baseband apparatus 153 .
  • the baseband apparatus 153 includes a processor 154 and a memory 155 .
  • the baseband device 153 may include, for example, at least one baseband board on which multiple chips are arranged, as shown in FIG. 15 , one of the chips is, for example, the processor 154 , which is connected to the memory 155 to call the program in the memory 155 to execute
  • the network devices shown in the above method embodiments operate.
  • the baseband device 153 may further include a network interface 156 for exchanging information with the radio frequency device 152, and the interface is, for example, a common public radio interface (CPRI for short).
  • CPRI common public radio interface
  • the network-side device in this embodiment of the present invention further includes: an instruction or program stored in the memory 155 and executable on the processor 154 , and the processor 154 invokes the instruction or program in the memory 155 to execute the instructions or programs shown in FIG. 12 or 13 .
  • the method executed by each module achieves the same technical effect. To avoid repetition, it is not repeated here.
  • the embodiments of the present application further provide a readable storage medium, where a program or an instruction is stored on the readable storage medium, and when the program or instruction is executed by a processor, each process of the above-mentioned method for indicating a timing offset value is implemented, And can achieve the same technical effect, in order to avoid repetition, it is not repeated here.
  • the processor is the processor in the terminal described in the foregoing embodiment.
  • the readable storage medium includes a computer-readable storage medium, such as a computer read-only memory (Read-Only Memory, ROM), a random access memory (Random Access Memory, RAM), a magnetic disk or an optical disk, and the like.
  • An embodiment of the present application further provides a chip, where the chip includes a processor and a communication interface, the communication interface is coupled to the processor, and the processor is configured to run a program or an instruction to implement the above-mentioned indication of the timing offset value
  • the chip includes a processor and a communication interface
  • the communication interface is coupled to the processor
  • the processor is configured to run a program or an instruction to implement the above-mentioned indication of the timing offset value
  • the chip mentioned in the embodiments of the present application may also be referred to as a system-on-chip, a system-on-chip, a system-on-chip, or a system-on-a-chip, or the like.
  • the method of the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course can also be implemented by hardware, but in many cases the former is better implementation.
  • the technical solution of the present application can be embodied in the form of a software product in essence or in a part that contributes to the prior art, and the computer software product is stored in a storage medium (such as ROM/RAM, magnetic disk, CD-ROM), including several instructions to make a terminal (which may be a mobile phone, a computer, a server, an air conditioner, or a network device, etc.) execute the methods described in the various embodiments of this application.
  • a storage medium such as ROM/RAM, magnetic disk, CD-ROM

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请实施例公开了一种定时偏移值的指示方法和设备,用于解决相关技术中无法实现链路之间的同步需求的问题。该方法可以应用于第一通信设备,包括:接收来自于第二通信设备的第一信令;根据所述第一信令获取定时偏移值,所述定时偏移值用于调整所述第一通信设备的定时;其中,所述第一通信设备包括IAB节点,所述第二通信设备包括所述IAB节点的父节点或IAB宿主节点或IAB子节点;或所述第一通信设备包括终端,所述第二通信设备包括为所述终端服务的IAB节点或IAB宿主节点。

Description

定时偏移值的指示方法和设备
交叉引用
本申请要求在2020年7月3日在中国提交的申请号为202010637358.0、发明名称为“定时偏移值的指示方法和设备”的中国专利申请的优先权,该申请的全部内容通过引用结合在本申请中。
技术领域
本申请属于通信技术领域,具体涉及一种定时偏移值的指示方法和设备。
背景技术
自回传(Integrated Access and Backhaul,IAB)系统包括IAB节点(node),一个IAB节点包括移动终端(Mobile Termination,MT)功能部分和分布式单元(Distributed Unit,DU)功能部分。依靠MT,IAB节点可以找到一个上游接入点(即父IAB节点parent IAB node),并跟上游接入点的DU建立无线连接。IAB节点的DU会为子节点提供小区服务,即DU可以为UE(User Equipment)或者IAB子节点的MT提供接入服务。
在IAB节点中,MT和DU之间需要支持频分复用(FDM,Frequency Division Multiplexing)/空分复用(SDM,Space Division Multiplexing)的复用,即,DU和MT同时收发,MT和DU同时发送或者同时接收,或者MT和DU一发一收同时进行。
相关技术中定义的定时提前(Timing advance,TA)指示的方法和范围无法满足IAB系统中一些场景下的需求,也就是,根据TA指示,调整后无法实现上述一些场景下的链路之间的同步需求,因此,有必要提供新的定时指示方案。
发明内容
本申请实施例的目的是提供一种定时偏移值的指示方法和设备,用于解决相关技术中无法实现链路之间的同步需求的问题。
为了解决上述技术问题,本申请是这样实现的。
第一方面,提供了一种定时偏移值的指示方法,应用于第一通信设备,所述方法包括:接收来自于第二通信设备的第一信令;根据所述第一信令获取定时偏移值,所述定时偏移值用于调整所述第一通信设备的定时;其中,所述第一通信设备包括自回传IAB节点,所述第二通信设备包括所述IAB节点的父节点或IAB宿主节点或IAB子节点;或所述第一通信设备包括终端,所述第二通信设备包括为所述终端服务的IAB节点或IAB宿主节点。
第二方面,提供了一种定时偏移值的指示方法,应用于第二通信设备,所述方法包括:发送第一信令,所述第一信令用于第一通信设备获取定时偏移值,所述定时偏移值用于调整所述第一通信设备的定时;其中,所述第一通信设备包括自回传IAB节点,所述第二通信设备包括所述IAB节点的父节点或IAB宿主节点或IAB子节点;或所述第一通信设备包括终端,所述第二通信设备包括为所述终端服务的IAB节点或IAB宿主节点。
第三方面,提供了一种第一通信设备,包括:接收模块,用于接收来自于第二通信设备的第一信令;获取模块,用于根据所述第一信令获取定时偏移值,所述定时偏移值用于调整所述第一通信设备的定时;其中,所述第一通信设备包括自回传IAB节点,所述第二通信设备包括所述IAB节点的父节点或IAB宿主节点或IAB子节点;或所述第一通信设备包括终端,所述第二通信设备包括为所述终端服务的IAB节点或IAB宿主节点。
第四方面,提供了一种第二通信设备,包括:发送模块,用于发送第一信令,所述第一信令用于第一通信设备获取定时偏移值,所述定时偏移值用于调整所述第一通信设备的定时;其中,所述第一通信设备包括自回传IAB节点,所述第二通信设备包括所述IAB节点的父节点或IAB宿主节点或IAB子节点;或所述第一通信设备包括终端,所述第二通信设备包括为所述终端服务的IAB节点或IAB宿主节点。
第五方面,提供了一种第一通信设备,该第一通信设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第一方面所述的方法的步骤。
第六方面,提供了一种第二通信设备,该第二通信设备包括处理器、存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如第二方面所述的方法的步骤。
第七方面,提供了一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被处理器执行时实现如第一方面所述的方法,或者实现如第二方面所述的方法。
第八方面,提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如第一方面所述的方法,或实现如第二方面所述的方法。
在本申请实施例中,第一通信设备可以接收来自于第二通信设备的第一信令,并根据该第一信令获取定时偏移值,该定时偏移值用于调整第一通信设备的定时。本申请实施例可以满足链路之间的同步需求,降低系统间的干扰,便于满足正常的通信需求。
附图说明
图1是根据本申请的一个实施例的无线通信系统的框图;
图2是根据本申请的一个实施例的定时偏移值的指示方法的示意性流程图;
图3是根据本申请的一个实施例的定时偏移值的指示方法的应用场景示意图;
图4是根据本申请的一个实施例的定时偏移值的具体示例示意图;
图5是根据本申请的一个实施例的第一信令格式示意图;
图6是根据本申请的另一个实施例的第一信令格式示意图;
图7是根据本申请的再一个实施例的第一信令格式示意图;
图8是根据本申请的又一个实施例的第一信令格式示意图;
图9是根据本申请的又一个实施例的第一信令格式示意图;
图10是根据本申请的又一个实施例的第一信令格式示意图;
图11是根据本申请的另一个实施例的定时偏移值的指示方法的示意性流程图;
图12是根据本申请的一个实施例的第一通信设备的结构示意图;
图13是根据本申请的一个实施例的第二通信设备的结构示意图;
图14是根据本申请的一个实施例的通信设备的结构示意图;
图15是根据本申请的一个实施例的网络侧设备的结构示意图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有作出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
本申请的说明书和权利要求书中的术语“第一”、“第二”等是用于区别类似的对象,而不用于描述特定的顺序或先后次序。应该理解这样使用的数据在适当情况下可以互换,以便本申请的实施例能够以除了在这里图示或描述的那些以外的顺序实施,且“第一”、“第二”所区别的对象通常为一类,并不限定对象的个数,例如第一对象可以是一个,也可以是多个。此外,说明书以及权利要求中“和/或”表示所连接对象的至少其中之一,字符“/”一般表示前后关联对象是一种“或”的关系。
值得指出的是,本申请实施例所描述的技术不限于长期演进型(Long Term Evolution,LTE)/LTE的演进(LTE-Advanced,LTE-A)系统,还可用于其他无线通信系统,诸如码分多址(Code Division Multiple Access,CDMA)、时分多址(Time Division Multiple Access,TDMA)、频分多址(Frequency Division Multiple Access,FDMA)、正交频分多址(Orthogonal Frequency  Division Multiple Access,OFDMA)、单载波频分多址(Single-carrier Frequency-Division Multiple Access,SC-FDMA)和其他系统。本申请实施例中的术语“系统”和“网络”常被可互换地使用,所描述的技术既可用于以上提及的系统和无线电技术,也可用于其他系统和无线电技术。然而,以下描述出于示例目的描述了新空口(NewRadio,NR)系统,并且在以下大部分描述中使用NR术语,尽管这些技术也可应用于NR系统应用以外的应用,如第6代(6 thGeneration,6G)通信系统。
图1示出本申请实施例可应用的一种无线通信系统的框图。无线通信系统包括接入设备11、网络侧设备12和终端13。接入设备11也可以是终端或IAB节点,IAB节点可以包括移动终端(Mobile Termination,MT)功能部分和分布式单元(Distributed Unit,DU)功能部分,DU可以为其他接入设备提供网络服务,MT可以视为普通终端,具有普通终端接入网络侧的功能等。上述提到的终端可以是手机、平板电脑(Tablet Personal Computer)、膝上型电脑(Laptop Computer)或称为笔记本电脑、个人数字助理(Personal Digital Assistant,PDA)、掌上电脑、上网本、超级移动个人计算机(ultra-mobile personal computer,UMPC)、移动上网装置(Mobile Internet Device,MID)、可穿戴式设备(Wearable Device)或车载设备(VUE)、行人终端(PUE)等终端侧设备,可穿戴式设备包括:手环、耳机、眼镜等。需要说明的是,在本申请实施例并不限定IAB节点的具体类型。网络侧设备12可以是基站或核心网,其中,基站可被称为节点B、演进节点B、接入点、基收发机站(Base Transceiver Station,BTS)、无线电基站、无线电收发机、基本服务集(Basic Service Set,BSS)、扩展服务集(Extended Service Set,ESS)、B节点、演进型B节点(eNB)、下一代节点B(gNB)、家用B节点、家用演进型B节点、WLAN接入点、WiFi节点、发送接收点(TransmittingReceivingPoint,TRP)或所述领域中其他某个合适的术语,只要达到相同的技术效果,所述基站不限于特定技术词汇,需要说明的是,在本申请实施例中仅以NR系统中的基站为例,但是并不限定基站的具体类型。
下面结合附图,通过具体的实施例及其应用场景对本申请实施例提供的定时偏移值的指示方法和设备进行详细地说明。
如图2所示,本申请的一个实施例提供一种定时偏移值的指示方法200,该方法可以由第一通信设备执行,换言之,该方法可以由安装在第一通信设备的软件或硬件来执行,该方法包括如下步骤。
S202:接收来自于第二通信设备的第一信令。
S204:根据第一信令获取定时偏移值,该定时偏移值用于调整第一通信设备的定时。
上述第一通信设备包括自回传IAB节点,所述第二通信设备包括所述IAB节点的父节点或IAB宿主节点或IAB子节点;或所述第一通信设备包括终端,所述第二通信设备包括为所述终端服务的IAB节点或IAB宿主节点。
上述第一信令可以是媒体接入控制控制单元(Media Access ControlControl Element,MAC CE)信令,或者随机接入响应(Random Access Response,RAR)信令,或者是无线资源控制(Radio Resource Control,RRC)信令,或者是下行控制信息(Downlink Control Information,DCI)信令,或者是F1-应用协议(Application Protocol,AP)信令,或者是回传适配协议(Backhaul Adaptation Protocol,BAP)协议数据单元(ProtocolDataUnit,PDU)信令。
在一个例子中,上述第一通信设备为IAB节点,第一信令来自于该IAB节点的父节点或者来自于IAB宿主节点或IAB子节点。具体例如,在图3中,第一通信设备可以为图3中的IAB节点2,该第一信令可以是IAB节点1发送给IAB节点2;还可以是IAB宿主(donor)发送给IAB节点2,还可以是IAB节点2的IAB子节点上报给IAB节点2的,其中,IAB节点2的IAB子节点在图3中未显示。在图3中,IAB宿主和IAB节点2之间通过F1-AP信令通信。
在另一个例子中,上述第一通信设备为终端(例如UE),第一信令来自于为该终端服务的IAB节点或IAB宿主节点。具体例如,在图3中,第一通 信设备可以为图3中的终端,该第一信令可以是IAB节点1发送给终端;还可以是IAB宿主(donor)发送给终端。
上述定时偏移值可以是第一通信设备的上行(UL)相比下行(DL)的定时偏移值,还可以是第一通信设备的下行相比上行的定时偏移值。对于IAB节点的MT(后续称作是IAB-MT)和终端而言,UL是发送,DL是接收;对于IAB节点的DU(后续称作是IAB-DU)而言,UL是接收,DL是发送,因此,上述定时偏移值可以称作是第一通信设备的发送相比接收的定时偏移值,或者是第一通信设备的接收相比发送的定时偏移值。
需要说明的是,本申请各个实施例中提到的定时偏移值区别于传统的定时提前量(Timing advance,TA)的概念,具体区别例如,相关技术中RAR指示的TA只能为正值,而本申请各个实施例中的定时偏移值可以为正值,也可以为负值;又例如,定时偏移值的范围要大于TA的范围等,因此,本申请各个实施例中提到的定时偏移值还可以用其他的技术术语来替代,例如,扩展TA等。
本申请实施例提供的定时偏移值的指示方法,第一通信设备可以接收来自于第二通信设备的第一信令,并根据该第一信令获取定时偏移值,该定时偏移值用于调整第一通信设备的定时。本申请实施例可以满足链路之间的同步需求,降低系统间的干扰,便于满足正常的通信需求。
为便于理解,以下将结合一个具体的应用场景,对本申请实施例提供的定时偏移值的指示方法进行详细说明。
参见图3和图4,相关技术已经对IAB节点的定时同步进行了初步定义,IAB节点1工作在情况7(case 7)定时的情况下时,其DU RX(或称作是DU UL)跟MT RX(或称作是MT DL)保持同步(见图4);同时,IAB节点1的DU DL(或称作是DU TX)和父IAB节点(即IAB宿主)的DL对齐。
图4中Tp1是该IAB节点1的父IAB节点(即IAB宿主)到该IAB节点1的传播时延,Tp2是该IAB节点1的子IAB节点(即IAB节点2)或服 务的UE到该IAB节点1的传播时延,可以观察到,IAB节点2的MT UL/MT TX/UE UL相比于IAB节点2的MT DL/MT RX/UE DL的定时差会产生绝对值较大的负值,这个负的定时指示值指示超出了现有信令(即Timing Advance Command MAC CE)的指示范围。也就是,TA信令需要指示一个大的负值,才能使得满足以上所说的case 7下的定时,不排除用于其他定时情况,因此,本申请各个实施例提到的第一通信设备获取定时偏移值,可以是图3和图4所示的IAB节点2或UE获取定时偏移值,定时偏移值的具体含义可以参见图4的指示。通过本申请实施例提供的定时偏移值,主要用于使IAB节点1的DU UL保持同步。
针对上述应用场景,相关技术中TA方案无法实现链路同步,具体如下:a)RAR只能指示正值TA;b)TA调整MAC CE可指示的负值范围较小,无法满足上述场景需求。
以上结合图3和图4对本申请实施例的一个可选的应用场景进行介绍,以下将对本申请实施例提供的定时偏移值的指示方法进行详细说明。
可选地,实施例200的S202中提到的接收来自于第二通信设备的第一信令包括以下至少之一:
1)根据配置信息接收自于第二通信设备的第一信令;
2)根据所述第一通信设备的能力信息接收自于第二通信设备的第一信令。
上述配置信息可以配置为第一通信设备是否接收第一信令,或者配置为接收第一信令或第二信令,当然,实施例200中的第一通信设备是配置为接收第一信令。
在其他的例子中,S202之前,第一通信设备还可以接收用于为所述第一通信设备配置使用的信令类型的RRC信令,所述RRC信令用于为所述第一通信设备配置使用的信令类型,所述信令类型包括所述第一信令和第二信令的至少之一,所述第二信令用于为所述第一通信设备配置或指示TA,该第二信令可以是现有协议支持的TA指示信令。
上述能力信息表示第一通信设备是否能够接收所述第一信令。该例子中, 第一通信设备可以上报其能力(capability),或者协议规定第一通信设备必须支持该能力,进而第二通信设备可以根据第一通信设备的能力,来考虑第一通信设备是否能够接收第一信令。比如:演进的IAB/UE才能接收第一信令,传统的IAB/UE无法接收/解调第一信令,传统的IAB/UE为支持现有协议功能的IAB/UE。
可选地,实施例200中提到的第一信令是MAC CE信令,该MAC CE信令可指示的最大的负偏移值的绝对值,不小于现有TA调整MAC CE(即第二信令)可指示的最大的负偏移值的绝对值。例如:该MAC CE信令指示的绝对值最大的负偏移值为-1939;或者,指示的绝对值最大的负偏移值为-1923;或者,指示的绝对值最大的负偏移值为-3878;或者,指示的绝对值最大的负偏移值为-3846。这样,第一通信设备还可以根据上述MAC CE信令指示的负偏移值(假设为n),再经过其它运算的到最终的定时偏移值,例如,根据如下公式计算得到最终的定时偏移值:
N=N old+n*16*64/2 μ
该公式中的N为最终计算得到的定时偏移值,N old为之前的定时偏移值,或称作是旧的定时偏移值,n为MAC CE信令指示的(正或负)偏移值,μ是与子载波间隔相关的参数。
可选地,实施例200中提到的所述根据所述第一信令获取定时偏移值包括如下之一:
1)将所述第一信令的指示值作为所述定时偏移值。该例子中,第一信令可以直接指示最终的定时偏移值,且该定时偏移值可以为正,也可以为负。
2)根据初始定时偏移值和上一次确定得到的定时偏移值这两者之一,以及本次的所述第一信令指示的偏移值获取定时偏移值。该例子中,第一信令可以指示偏移值,该偏移值可以为正值也可以为负值,第一通信设备可以将初始定时偏移值加上或减去上述偏移值,得到最终的定时偏移值;或者是将上一次确定得到的定时偏移值加上或减去上述偏移值,得到最终的定时偏移值。或者是,当定时偏移值为正时,则UL为提前;如果定时偏移值为负时, 则UL为延迟。
3)根据第一中间值计算所述定时偏移值,其中,所述第一信令用于指示所述第一中间值,所述第一中间值用于计算所述定时偏移值。该例子例如,第一中间值为N TA,第一通信设备可以基于如下公式得到最终的定时偏移值:
N=(N TA+N TA,offset)*T c
该公式中的N为最终计算得到的定时偏移值,N TA为第一信令指示的第一中间值,N TA,offset为预定义或预配置的偏移值,T c为预定义或预配置的时间单位值。
4)根据初始接收到的所述第一信令指示的第一中间值N TA_ini或上一次接收到的所述第一信令指示的第一中间值N TA_old这两者之一,以及本次接收到的所述第一信令指示的第一中间值N TA获取定时偏移值。
该例子例如,可以将N TA_old加上或减去N TA得到N TA_new,或者将将N TA_ini加上或减去N TA得到N TA_new,然后根据如下公式得到最终的定时偏移值:
N=(N TA_new+N TA,offset)*T c
该公式中的N为最终计算得到的定时偏移值,N TA,offset为预定义或预配置的偏移值,T c为预定义或预配置的时间单位值。
可选地,实施例200中提到的第一信令用于指示第一值,所述第一值的区间范围为[K1,K2];其中,K1和K2均为正;或K1和K2均为负;或K1和K2均为非正;或K1和K2均为非负;或K1为负K2为正。在一个例子中,第一信令为MAC CE,该MAC CE指示的第一值的范围为[-3878,0]。
需要说明的是,本申请各个实施例中提到的第一值,可以对应于(或直接是等于)上述四个例子中第一信令的指示值、第一信令指示的偏移值、第一中间值等。
可选地,对于实施例200中新定义的第一信令,以及相关技术中还存在的用于指示或配置TA的第二信令,关于第一信令和第二信令该如何选取,本申请以下几个实施例提供了几种解决方案。
例子1:第一信令用于指示第一值,所述第一值的区间范围为[-A,+B]; 第二信令用于指示第二值,所述第二值的区间范围为[-a,+b];其中,A>a,B>b,b>-a,例如:a=31,b=32。在例子1中,如果需要的指示值(第一值)在[-a b]中,可采用第一信令为第一通信设备配置或指示定时偏移值,还可以采用第二信令为第一通信设备配置或指示定时偏移值(具体可以是TA)。在其他情况下,例如,需要的指示值(第一值)在[-A,-(a+1)]和[b+1,+B]中,则可采用第一信令为第一通信设备配置或指示定时偏移值,而不可采用第二信令,因为需要指示的值超出了第二信令可指示的范围。
例子2:第一信令用于指示第一值,第一值的区间范围为[-A,-(a+1)]和[b+1,+B];第二信令用于指示第二值,所述第二值的区间范围为[-a,+b];其中,A>a,B>b,b>-a,例如:a=31,b=32。在例子2中,如果需要的指示值(第一值)在[-a b]中,可采用第二信令为第一通信设备配置或指示定时偏移值(具体可以是TA)。在其他情况下,例如,需要的指示值(第一值)在[-A,-(a+1)]和[b+1,+B]中,则可采用第一信令为第一通信设备配置或指示定时偏移值。
例子3:第一信令用于指示第一中间值,第一中间值的区间范围为[-C,-(a+1)];第二信令用于指示第二值,所述第二值的区间范围为[-a,+b];其中,C>a,b>-a,例如:a=31,b=32。在例子3中,如果需要的指示值(第一中间值)在[-a b]中,可采用第二信令为第一通信设备配置或指示定时偏移值(具体可以是TA)。在其他情况下,例如,需要的指示值(第一中间值)在[-C,-(a+1)]中,则可采用第一信令为第一通信设备配置或指示定时偏移值。
上述例子1至例子3中,第一信令是在所述第一值在[-A,-(a+1)]或[b+1,+B]的情况下接收到的。
可选地,上述例子1至例子3中的A,a,B,b和C均为正值。
可选地,前文各个实施例中提到的第一信令还包括第一指示信息,所述第一指示信息用于指示所述定时偏移值为正值或者负值;或者指示所述定时偏移值是否取反,以下将结合几个具体的例子进行说明。
例子1:所述第一信令为MAC CE信令,所述第一信息通过所述MAC CE 信令的M1比特指示,该实施里可以通过显示指示的方式指示定时偏移值为正值或者负值。或者所述第一信息通过RRC指示。
可选地,上述M1比特具体的是MAC CE头部(header)中,M1比特具体可以是1比特。该例子具体可以重定义已有的TACMAC CE header中的R(即reserved)bit构成新定义的MAC CE,具体例如,例如,当1bit预留比特(Reserved bit),该新定义的MAC CE指示一个小于-31的值,例如,1bit预留比特时,指示的负值范围为[-32-95]。可选地,上述新定义的MAC CE采用新的LCID标识。
例子2:第一信令承载随机接入响应RAR信息,第一信息通过所述RAR信息中的M2比特指示。例如,RAR的1bit R用于指示定时偏移值的正负。
例子3:第一信令包括RAR,第一信息通过所述RAR的信道状态信息(ChannelStateInformation,CSI)请求域中特定的码点指示;或所述第一信息通过所述RAR信息的上行调度(UL grant)中特定的码点指示。
例子3具体例如,RAR中的CSI request域用于区分RAR为正或负。例子3又例如,RAR中UL grant中特定的码点用于指示RAR为正,或为负,具体可以用频域资源分配域/时域资源分配域/MCS的特定码点指示。
例子4:第一信令承载RAR,所述第一信息通过第一信令的第二MAC CE头部M3比特指示。该第二MAC CE头部可以是包括上述RAR的MAC CE的其中一个头部。该例子可以新定义RAR header,header中1bit指示RAR指示的定时偏移值为正或者为负
可选地,上述例子1至例子4中的第一信令用于指示定时偏移值组内的一个或多个第一通信设备的定时偏移值,或用于指示小区内的一个或多个第一通信设备的定时偏移值。
基于上述例子1至例子4,实施例200中的接收来自于第二通信设备的第一信令包括:根据所述第一通信设备的能力信息接收所述第一信令;其中,所述能力信息表示所述第一通信设备是否能够接收所述第一信令。该例子中,第一通信设备可以上报其能力(capability),或者协议规定第一通信设备必须 支持该能力,进而第二通信设备可以根据第一通信设备的能力,来考虑第一通信设备是否能够接收第一信令。比如:演进的IAB/UE才能接收第一信令,传统的IAB/UE无法接收/解调第一信令,传统的IAB/UE为支持现有协议功能的IAB/UE。
基于上述例子1至例子4,实施例200中的第一通信设备在定时偏移值是负值的情况下仍然进行传输的调整。而在相关技术中,如果第一通信设备计算所得的TA值为负,则不调整。
可选地,实施例200中提到的第一信令用于指示第一值,所述根据所述第一信令获取定时偏移值包括:根据所述第一值以及如下至少之一确定定时偏移值:时域单位偏移值、子载波间隔SCS。
该时域单位偏移值为MAC CE/RRC/主系统信息块(MasterInformationBlock,MIB)/系统信息块(SystemInformationBlocks,SIB)/RAR指示/F1-AP信令指示/BAP PDU指示或者配置的值。该实施例之前,第一通信设备还可以接收第三信令,所述第三信令用于指示或配置所述时域单位偏移值。
该SCS可以为参考SCS,参考SCS为MAC CE/RRC/MIB/SIB/RAR指示/F1-AP信令指示/BAP PDU指示或者配置的值,或者为预定义的值,或者根据协议预定义规则得到的值。可选地,所述SCS是接收到的第四信令指示或配置的;或所述SCS是预定义的;或所述SCS是根据预定义规则得到的。
该实施例通过引入时域单位偏移值(如OFDM符号偏移)和/或SCS的概念辅助定时偏移值的指示。即,最终定时偏移值,与第一信令的指示值,以及时域单位偏移值和/或SCS相关。
该实施例中的SCS还可以为服务小区(serving cell)UL和/或DL中的最大/最小SCS(serving cell的UL可以包括/不包括SUL),或者为TAG中的所有cell中UL和/或DL中的最大/最小SCS(serving cell的UL可以包括/不包括SUL),或者SUL的SCS。
可选地,实施例200中提到的所述根据所述第一信令获取定时偏移值包 括:将多个所述第一信令分别指示的第一值进行叠加或合并处理,以得到所述定时偏移值。该实施例考虑到一个MAC CE可调整的负偏移值有限,多个MAC CE叠加/合并可以实现更大范围的负TA/N TA的指示。该实施例中的第一信令可以等同于前文提到的第二信令,该例子可以通过多个MAC CE(可以是第一信令,也可以称作是第二信令)指示,获取一个定时偏移值。
可选地,前文各个实施例提到的第一信令用于分别指示至少一个小区的定时偏移值。
在一个例子中,第一信令包括如下至少之一:至少一个所述小区的标识(例如索引);SCS信息,所述SCS信息用于获取SCS,所述SCS用于获取所述定时偏移值。
在第一信令包括小区索引的情况下,例如:cell 1,cell 2,cell 5需要定时调整,则MAC CE指示为:cell 1,定时偏移值1;cell 2,定时偏移值2;cell 5,定时偏移值5。或者例如:cell 2,定时偏移值2;cell 1,定时偏移值1;cell 5,定时偏移值5。
在另一个例子中,第一信令不包括小区索引,多个偏移值按照小区索引排序,也即,所述至少一个小区的定时偏移值在所述第一信令中的位置,是根据至少一个所述小区的标识和/或预定义的规则获取的。例如:一个MAC CE中携带5个TA命令,cell 1-cell 5。则MAC CE中携带的信令为:定时偏移值1,定时偏移值2,定时偏移值3,定时偏移值4,定时偏移值5。若某个小区的TA不调整,则该TA值设置为特殊的码点(例如:0)。上述预定义的规则可以是默认的排序,cell 1-cell 10。这种情况下,第一信令中不会显式的出现小区标识的这个参数。
可选地,所述第一信令是动态调度信令,所述动态调度信令用于指示对应的上行链路(UL)信息的定时偏移值。例如,在动态调度信令是下行控制信息(Downlink Control Information,DCI),上行链路信息是物理上行共享信道(PhysicalUplinkSharedChannel,PUSCH)的情况下,DCI调度信息指示PUSCH的定时偏移值,该DCI和调度该PUSCH的DCI可以相同也可以不 同。可选地,上述上行链路信息可以包括PUSCH,还可以包括伴随该PUSCH的探测参考信号(Sounding Reference Signal,SRS),还可以包括和跟该PUSCH同时发送的物理上行控制信道(Physical Uplink Control Channel,PUCCH)。
该实施例可以在动态调度信令,如DCI(即UL grant)中引入一个新的域,该域指示对应的PUSCH(以及伴随该PUSCH的SRS和跟该PUSCH同时发送的PUCCH)传输应该遵循的定时偏移值。该域可以指示下列一种或多种:偏移的符号数,偏移的值n(对应的偏移值=n*16*64/2 u)和N TA。当收到的DCI未携带该域时,PUSCH(以及伴随该PUSCH的SRS和跟该PUSCH同时发送的PUCCH)的发送遵循传统的TA。
可选地,所述第一信令是动态调度信令,所述动态调度信令用于调度RAR,所述动态调度信令还用于指示根据所述RAR获取的TA为负值或正值。该实施例中“用于调度RAR”判断依据可以是,若DCI用随机接入无线网络临时标识(Random Access Radio Network Temporary Identifier,RA-RNTI)加扰,则DCI用于调度RAR。
该实施例可以用DCI format 1-0中1bit指示RAR的正负。当DCI用于调度RAR时,可以携带该指示,用于指示根据RAR获取的TA的正负。
可选地,实施例200的S202之前,第一通信设备还可以接收DCI,其中,所述DCI用于调度所述第一信令;其中,在所述DCI是在特定搜索空间(Search Space,SS)和/或特定控制资源集(Control resource set,CORESET)中获取的情况下,所述定时偏移值为负值。
该实施例可以配置特定的搜索空间和/或控制资源集,若第一通信设备在所述SS或者CORESET中接收到调度RAR的DCI,则该DCI调度的RAR指示的TA值为负值。
可选地,本申请各个实施例中提到的定时偏移值可以为TA,其中,该TA可以为正值或负值,该TA可以是等效于上面所说的定时偏移值,也可能指示名称上的不同。
需要说明的是,本申请各个实施例中提到的定时偏移值已经不同于传统 的TA的定义,但是和传统TA存在部分相同的作用,在后续release协议中,定时偏移值也可以称作是扩展TA,该扩展TA包括负TA。
为详细说明本申请上述实施例提供的定时偏移值的指示方法,以下将结合几个具体的实施例进行说明。
实施例一
该实施例包括如下步骤:
步骤1:父节点(图3中的IAB node 1)发送RAR,IAB节点2(图3中的IAB node 2)根据RAR的指示获取TA值,该TA值即为初始的TA。
步骤2:MAC CE中携带1bit信息指示该TA的正负。
a)若为负,则TA值为获取的TA取反。
例如:TA=-(N TA+N TA,offset)*Tc,其中,N TA_new=N TA_old+(T A-31)·16·64/2 u,T A为MAC CE指示的值。
该公式中的TA为最终计算得到的定时偏移值,N TA为RAR指示的值,N TA,offset为预定义或预配置的偏移值,Tc为预定义或预配置的时间单位值。
该例子中,RAR可以直携带12bits信息,直接指示的值为T A=0,1,2,….,3846。第一通信设备根据T A,获取N TA=T A·16·64/2 u
b)若为正,则计算所得的TA及其TA值。
例如:TA=(N TA+N TA,offset)*Tc,其中,N TA_new=N TA_old+(T A-31)·16·64/2 u,T A为MAC CE指示的值。该公式的具体含义参见上述a)中的解释。
步骤3:IAB节点根据获取的TA值进行调整。
需要说明的是,图3给出了两跳IAB的示意图,其中IAB节点1为IAB节点2的父节点,IAB宿主(donor)为IAB节点1的父节点。IAB宿主为IAB节点1和IAB节点2的CU控制。IAB节点2为IAB节点1的子节点。这里以IAB节点2为参考,其父节点指的是IAB节点1。
实施例二
该实施例包括如下步骤:
步骤1:父节点(图3中的IAB node 1)发送RAR,IAB节点2(图3 中的IAB node 2)根据RAR的指示获取TA值,该TA值即为初始的TA。
步骤2:MAC CE中携带N个小区(cell)的TA指示。MAC CE中不携带cell索引(index)信息,按照cell ID从小到大的顺序指示cell的TA。
例如,如图5所示,若每个cell MAC CE需要12bits指示信息(根据扩展的MAC CE,即前文提到的第一信令计算,至少需要达到RAR所指示的范围,那么可以参考RAR的指示为12bits)。
步骤3:IAB节点根据获取的TA值进行调整。
实施例三
该实施例包括如下步骤:
步骤1:父节点(图3中的IAB node 1)发送RAR,IAB节点2(图3中的IAB node 2)根据RAR的指示获取TA值,该TA值即为初始的TA。
步骤2:第一信令(MAC CE)中携带cell的TA指示,MAC CE中携带cell index信息
例如:若每个cell MAC CE需要12bits指示信息(根据扩展的MAC CE计算,至少需要达到RAR所指示的范围,那么可以参考RAR的指示为12bits),则其MAC CE的设计如图6所示,其中,1bity用于指示正负,serving cell ID(图6中简称cell ID)用于指示cell index,TAC用于指示定时。
步骤3:IAB节点根据获取的TA值进行调整。
实施例四
该实施例中,对于图3,UE接入IAB node 1,IAB node 1向UE发送RAR,RAR指示一个定时偏移值offset,该定时偏移值为负值。则UE UL相比UE DL滞后offset。
实施例五
该实施例用Absolute Timing Advance Command MAC CE获取TA值,用1bit reserved bit指示MAC CE指示的定时偏移值的正负。例如,如图7所示,用第一个字节的第4bit用于指示该TAC的正负,若为1表示为正,若为0表示为负,或者,反过来。
实施例六
该实施例中,RAR中1bit reserved bit指示根据RAR获取的TA值的正负。如图8所示,例如:第一个字节的第一个比特指示,若为1表示正,为0表示负。或者反过来。
实施例七
该实施例为包括RAR的MAC CE新定义MAC CE header,header中1bit指示根据RAR获取的TA值为正或者为负,或者指示根据RAR获取的TA值是否取反。
如图9所示,采用第一个字节(oct1)中的reserved bit指示根据RAR获取的TA值的正负。例如:第一个字节的第四比特,若为1表示正,为0表示负。或者反过来。
或者,如图10所示,第一个字节的第三比特或者第四比特指示根据RAR获取的TA值的正负。
图9和图10中的E指示域用于指示该MAC子头之后是否还存在其他的MAC子头。R指示域为预留字段。T指示域用于指示该MAC子头是否包含随机接入前导码ID或BI指示域。T1指示域用于指示该MAC子头是否包含随机接入前导码ID或T2。T2指示域用于指示MAC子头是否包含回退指示(BI)指示域或MAC服务数据单元(Service Data Unit,SDU)指示域。
该实施例重用了一个新的subheader,也就是携带RAR的MAC CE中会携带两个subheader。第一个字节Oct 1为一个subheader,第二个字节Oct 2为另一个subheader。
需要说明的是,上述实施例一至实施例十中提到的TA,可以是实施例一之前的各个实施例中提到的定时偏移值。
以上结合图2至图10详细描述了根据本申请实施例的定时偏移值的指示方法。下面将结合图11详细描述根据本申请另一实施例的定时偏移值的指示方法。可以理解的是,从第二通信设备侧的描述与图2至图10所示的方法中第一通信设备侧的描述相同,为避免重复,适当省略相关描述。
图11是本申请实施例的定时偏移值的指示方法实现流程示意图,可以应用在第二通信设备。如图11所示,该方法1100包括:
S1102:发送第一信令,第一信令用于第一通信设备获取定时偏移值,该定时偏移值用于调整第一通信设备的定时。
其中,所述第一通信设备包括IAB节点,所述第二通信设备包括所述IAB节点的父节点或IAB宿主节点或IAB子节点;或所述第一通信设备包括终端,所述第二通信设备包括为所述终端服务的IAB节点或IAB宿主节点。
在本申请实施例中,第二通信设备发送第一信令,这样,第一通信设备可以接收来自于第二通信设备的第一信令,并根据该第一信令获取定时偏移值,该定时偏移值用于调整第一通信设备的定时。本申请实施例可以满足链路之间的同步需求,降低系统间的干扰,便于满足正常的通信需求。
可选地,作为一个实施例,所述第一信令还包括第一指示信息,所述第一指示信息用于指示所述定时偏移值为正值或者负值;或者指示所述定时偏移值是否取反。
可选地,作为一个实施例,所述第一信令用于分别指示至少一个小区的定时偏移值。
可选地,作为一个实施例,所述第一信令是动态调度信令;其中,所述动态调度信令用于指示对应的上行链路信息的定时偏移值;或所述动态调度信令用于调度RAR,所述动态调度信令还用于指示根据所述RAR获取的TA为负值或正值。
可选地,作为一个实施例,所述方法还包括:发送DCI,其中,所述DCI用于调度所述第一信令;其中,在所述DCI是在特定搜索空间SS和/或特定控制资源集CORESET中获取的情况下,所述定时偏移值为负值。
可选地,作为一个实施例,所述定时偏移值为TA,其中,所述TA为正值或负值。
图12是根据本申请实施例的第一通信设备的结构示意图,该第一通信设备可以对应于其他实施例中的IAB节点或终端。如图12所示,第一通信设 备1200包括:
接收模块1202,用于接收来自于第二通信设备的第一信令;
获取模块1204,用于根据所述第一信令获取定时偏移值,所述定时偏移值用于调整所述第一通信设备的定时;
其中,所述第一通信设备包括IAB节点,所述第二通信设备包括所述IAB节点的父节点或IAB宿主节点或IAB子节点;或所述第一通信设备包括终端,所述第二通信设备包括为所述终端服务的IAB节点或IAB宿主节点。
可选地,作为一个实施例,接收模块1202,用于执行如下至少之一:根据配置信息接收自于第二通信设备的所述第一信令;根据所述第一通信设备的能力信息接收自于第二通信设备的所述第一信令。
可选地,作为一个实施例,获取模块1204,用于:将所述第一信令的指示值作为所述定时偏移值;或者根据初始定时偏移值和上一次确定得到的定时偏移值这两者之一,以及所述第一信令指示的偏移值获取定时偏移值;或者根据第一中间值计算所述定时偏移值,其中,所述第一信令用于指示所述第一中间值,所述第一中间值用于计算所述定时偏移值;或者根据初始接收到的所述第一信令指示的第一中间值和上一次接收到的所述第一信令指示的第一中间值这两者之一,以及本次接收到的所述第一信令指示的第一中间值获取定时偏移值。
可选地,作为一个实施例,所述第一信令用于指示第一值,所述第一值的区间范围为[K1,K2];其中,K1和K2均为正;或K1和K2均为负;或K1和K2均为非正;或K1和K2均为非负;或K1为负K2为正。
可选地,作为一个实施例,所述第一信令用于指示第一值,所述第一值的区间范围为[-A,+B];或所述第一值的区间范围为[-A,-(a+1)]和[b+1,+B];或所述第一值的区间范围为[-C,-(a+1)];第二信令用于指示第二值,所述第二值的区间范围为[-a,+b];其中,A>a,C>a,B>b,b>-a。
可选地,作为一个实施例,所述第一信令,是在所述第一值在[-A,-(a+1)]或[b+1,+B]的情况下接收到的。
可选地,作为一个实施例,所述第一信令还包括第一指示信息,所述第一指示信息用于指示所述定时偏移值为正值或者负值;或者指示所述定时偏移值是否取反。
可选地,作为一个实施例,所述第一信令为媒体访问控制控制单元MAC CE信令,所述第一信息通过所述MAC CE信令的M1比特指示,或者所述第一信息通过RRC指示。
可选地,作为一个实施例,所述第一信令包括随机接入响应RAR,所述第一信息通过所述RAR中的M2比特指示。
可选地,作为一个实施例,所述第一信令包括RAR;所述第一信息通过所述RAR的信道状态信息CSI请求域中特定的码点指示;或所述第一信息通过所述RAR的上行调度中特定的码点指示。
可选地,作为一个实施例,所述第一信令包括RAR,所述第一信息通过第一信令的第二MAC CE头部M3比特指示。
可选地,作为一个实施例,所述第一信令用于指示定时偏移值组内的所述第一通信设备的定时偏移值,或用于指示小区内的所述第一通信设备的定时偏移值。
可选地,作为一个实施例,所述第一信令用于指示第一值,所述根据所述第一信令获取定时偏移值包括:根据所述第一值以及如下至少之一确定定时偏移值:时域单位偏移值、子载波间隔SCS。
可选地,作为一个实施例,接收模块1202,还可以用于:接收第三信令,所述第三信令用于指示或配置所述时域单位偏移值。
可选地,作为一个实施例,所述SCS是接收到的第四信令指示或配置的;或所述SCS的值是预定义的;或所述SCS的值是根据预定义规则得到的。
可选地,作为一个实施例,获取模块1204,用于:将多个所述第一信令分别指示的第一值进行叠加或合并处理,以得到所述定时偏移值。
可选地,作为一个实施例,所述第一信令用于分别指示至少一个小区的定时偏移值。
可选地,作为一个实施例,所述第一信令包括如下至少之一:所述小区的标识;SCS信息,所述SCS信息用于获取SCS,所述SCS用于获取所述定时偏移值。
可选地,作为一个实施例,所述至少一个小区的定时偏移值在所述第一信令中的位置,是根据至少一个所述小区的标识和/或预定义的规则获取的。
可选地,作为一个实施例,所述第一信令是动态调度信令,所述动态调度信令用于指示对应的上行链路信息的定时偏移值。
可选地,作为一个实施例,所述第一信令是动态调度信令,所述动态调度信令用于调度RAR,所述动态调度信令还用于指示根据所述RAR获取的TA为负值或正值。
可选地,作为一个实施例,接收模块1202,还可以用于:接收下行控制信息DCI,其中,所述DCI用于调度所述第一信令;其中,在所述DCI是在特定搜索空间SS和/或特定控制资源集CORESET中获取的情况下,所述定时偏移值为负值。
可选地,作为一个实施例,所述定时偏移值为TA,其中,所述TA为正值或负值。
根据本申请实施例的装置1200可以参照对应本申请实施例的方法200的流程,并且,该装置1200中的各个单元/模块和上述其他操作和/或功能分别为了实现方法200中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
图13是根据本申请实施例的第二通信设备的结构示意图,该第二通信设备可以对应于其他实施例中的IAB节点或IAB宿主或IAB子节点。如图13所示,第二通信设备1300包括:
发送模块1300,用于发送第一信令,所述第一信令用于第一通信设备获取定时偏移值,所述定时偏移值用于调整所述第一通信设备的定时;其中,所述第一通信设备包括自回传IAB节点,所述第二通信设备包括所述IAB节点的父节点或IAB宿主节点或IAB子节点;或所述第一通信设备包括终端, 所述第二通信设备包括为所述终端服务的IAB节点或IAB宿主节点。
在本申请实施例中,第二通信设备发送第一信令,这样,第一通信设备可以接收来自于第二通信设备的第一信令,并根据该第一信令获取定时偏移值,该定时偏移值用于调整第一通信设备的定时。本申请实施例可以满足链路之间的同步需求,降低系统间的干扰,便于满足正常的通信需求。
可选地,作为一个实施例,所述第一信令还包括第一指示信息,所述第一指示信息用于指示所述定时偏移值为正值或者负值;或者指示所述定时偏移值是否取反。
可选地,作为一个实施例,所述第一信令用于分别指示至少一个小区的定时偏移值。
可选地,作为一个实施例,所述第一信令是动态调度信令;其中,所述动态调度信令用于指示对应的上行链路信息的定时偏移值;或所述动态调度信令用于调度RAR,所述动态调度信令还用于指示根据所述RAR获取的TA为负值或正值。
可选地,作为一个实施例,发送模块1300,还可以用于发送DCI,其中,所述DCI用于调度所述第一信令;其中,在所述DCI是在特定搜索空间SS和/或特定控制资源集CORESET中获取的情况下,所述定时偏移值为负值。
可选地,作为一个实施例,所述定时偏移值为TA,其中,所述TA为正值或负值。
根据本申请实施例的第二通信设备1300可以参照对应本申请实施例的方法1100的流程,并且,该第二通信设备1300中的各个单元/模块和上述其他操作和/或功能分别为了实现方法1100中的相应流程,并且能够达到相同或等同的技术效果,为了简洁,在此不再赘述。
可选的,如图14所示,本申请实施例还提供一种通信设备1400,包括处理器1401,存储器1402,存储在存储器1402上并可在所述处理器1401上运行的程序或指令,例如,该通信设备1400为终端时,该程序或指令被处理器1401执行时实现上述定时偏移值的指示方法实施例的各个过程,且能达 到相同的技术效果。该通信设备1400为前文提到的第二通信设备时,该程序或指令被处理器1401执行时实现上述定时偏移值的指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
具体地,本申请实施例还提供了一种网络侧设备,该网络侧设备可以是前文中的IAB节点,或IAB宿主。如图15所示,该网络侧设备1500包括:天线151、射频装置152、基带装置153。天线151与射频装置152连接。在上行方向上,射频装置152通过天线151接收信息,将接收的信息发送给基带装置153进行处理。在下行方向上,基带装置153对要发送的信息进行处理,并发送给射频装置152,射频装置152对收到的信息进行处理后经过天线151发送出去。
上述频带处理装置可以位于基带装置153中,以上实施例中网络侧设备执行的方法可以在基带装置153中实现,该基带装置153包括处理器154和存储器155。
基带装置153例如可以包括至少一个基带板,该基带板上设置有多个芯片,如图15所示,其中一个芯片例如为处理器154,与存储器155连接,以调用存储器155中的程序,执行以上方法实施例中所示的网络设备操作。
该基带装置153还可以包括网络接口156,用于与射频装置152交互信息,该接口例如为通用公共无线接口(common public radio interface,简称CPRI)。
具体地,本发明实施例的网络侧设备还包括:存储在存储器155上并可在处理器154上运行的指令或程序,处理器154调用存储器155中的指令或程序执行图12或13所示各模块执行的方法,并达到相同的技术效果,为避免重复,故不在此赘述。
本申请实施例还提供一种可读存储介质,所述可读存储介质上存储有程序或指令,该程序或指令被处理器执行时实现上述定时偏移值的指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
其中,所述处理器为上述实施例中所述的终端中的处理器。所述可读存 储介质,包括计算机可读存储介质,如计算机只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等。
本申请实施例另提供了一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现上述定时偏移值的指示方法实施例的各个过程,且能达到相同的技术效果,为避免重复,这里不再赘述。
应理解,本申请实施例提到的芯片还可以称为系统级芯片,系统芯片,芯片系统或片上系统芯片等。
需要说明的是,在本文中,术语“包括”、“包含”或者其任何其他变体意在涵盖非排他性的包含,从而使得包括一系列要素的过程、方法、物品或者装置不仅包括那些要素,而且还包括没有明确列出的其他要素,或者是还包括为这种过程、方法、物品或者装置所固有的要素。在没有更多限制的情况下,由语句“包括一个……”限定的要素,并不排除在包括该要素的过程、方法、物品或者装置中还存在另外的相同要素。此外,需要指出的是,本申请实施方式中的方法和装置的范围不限按示出或讨论的顺序来执行功能,还可包括根据所涉及的功能按基本同时的方式或按相反的顺序来执行功能,例如,可以按不同于所描述的次序来执行所描述的方法,并且还可以添加、省去、或组合各种步骤。另外,参照某些示例所描述的特征可在其他示例中被组合。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到上述实施例方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端(可以是手机,计算机,服务器,空调器,或者网络设备等)执行本申请各个实施例所述的方法。
上面结合附图对本申请的实施例进行了描述,但是本申请并不局限于上述的具体实施方式,上述的具体实施方式仅仅是示意性的,而不是限制性的,本领域的普通技术人员在本申请的启示下,在不脱离本申请宗旨和权利要求所保护的范围情况下,还可做出很多形式,均属于本申请的保护之内。

Claims (34)

  1. 一种定时偏移值的指示方法,应用于第一通信设备,所述方法包括:
    接收来自于第二通信设备的第一信令;
    根据所述第一信令获取定时偏移值,所述定时偏移值用于调整所述第一通信设备的定时;
    其中,所述第一通信设备包括自回传IAB节点,所述第二通信设备包括所述IAB节点的父节点或IAB宿主节点或IAB子节点;或所述第一通信设备包括终端,所述第二通信设备包括为所述终端服务的IAB节点或IAB宿主节点。
  2. 根据权利要求1所述的方法,其中,所述接收来自于第二通信设备的第一信令包括以下至少之一:
    根据配置信息接收自于所述第二通信设备的所述第一信令;
    根据所述第一通信设备的能力信息接收自于所述第二通信设备的所述第一信令。
  3. 根据权利要求1所述的方法,其中,所述根据所述第一信令获取定时偏移值包括:
    将所述第一信令的指示值作为所述定时偏移值;或者
    根据初始定时偏移值和上一次确定得到的定时偏移值这两者之一,以及所述第一信令指示的偏移值获取定时偏移值;或者
    根据第一中间值计算所述定时偏移值,其中,所述第一信令用于指示所述第一中间值,所述第一中间值用于计算所述定时偏移值;或者
    根据初始接收到的所述第一信令指示的第一中间值和上一次接收到的所述第一信令指示的第一中间值这两者之一,以及本次接收到的所述第一信令指示的第一中间值获取定时偏移值。
  4. 根据权利要求1所述的方法,其中,所述第一信令用于指示第一值,所述第一值的区间范围为[K1,K2];
    其中,K1和K2均为正;或K1和K2均为负;或K1和K2均为非正; 或K1和K2均为非负;或K1为负K2为正。
  5. 根据权利要求1所述的方法,其中,所述第一信令用于指示第一值,所述第一值的区间范围为[-A,+B];或所述第一值的区间范围为[-A,-(a+1)]和[b+1,+B];或所述第一值的区间范围为[-C,-(a+1)];
    第二信令用于指示第二值,所述第二值的区间范围为[-a,+b];
    其中,A>a,C>a,B>b,b>-a。
  6. 根据权利要求5所述的方法,其中,所述第一信令,是在所述第一值在[-A,-(a+1)]或[b+1,+B]的情况下接收到的。
  7. 根据权利要求1所述的方法,其中,所述第一信令还包括第一指示信息,所述第一指示信息用于指示所述定时偏移值为正值或者负值;或者指示所述定时偏移值是否取反。
  8. 根据权利要求7所述的方法,其中,所述第一信令为媒体访问控制控制单元MAC CE信令,所述第一信息通过所述MAC CE信令的M1比特指示,或者所述第一信息通过RRC指示。
  9. 根据权利要求7所述的方法,其中,所述第一信令包括随机接入响应RAR,所述第一信息通过所述RAR中的M2比特指示。
  10. 根据权利要求7所述的方法,其中,所述第一信令包括RAR;
    所述第一信息通过所述RAR的信道状态信息CSI请求域中特定的码点指示;或
    所述第一信息通过所述RAR的上行调度中特定的码点指示。
  11. 根据权利要求7所述的方法,其中,所述第一信令包括RAR,所述第一信息通过所述第一信令的第二MAC CE头部M3比特指示。
  12. 根据权利要求7所述的方法,其中,
    所述第一信令用于指示定时偏移值组内的所述第一通信设备的定时偏移值,或用于指示小区内的所述第一通信设备的定时偏移值。
  13. 根据权利要求1所述的方法,其中,所述第一信令用于指示第一值,所述根据所述第一信令获取定时偏移值包括:
    根据所述第一值以及如下至少之一确定定时偏移值:时域单位偏移值、子载波间隔SCS。
  14. 根据权利要求13所述的方法,其中,所述方法还包括:接收第三信令,所述第三信令用于指示或配置所述时域单位偏移值。
  15. 根据权利要求13所述的方法,其中,所述SCS是接收到的第四信令指示或配置的;或所述SCS是预定义的;或所述SCS是根据预定义规则得到的。
  16. 根据权利要求1所述的方法,其中,所述根据所述第一信令获取定时偏移值包括:
    将多个所述第一信令分别指示的第一值进行叠加或合并处理,以得到所述定时偏移值。
  17. 根据权利要求1所述的方法,其中,所述第一信令用于分别指示至少一个小区的定时偏移值。
  18. 根据权利要求17所述的方法,其中,所述第一信令包括如下至少之一:
    所述小区的标识;
    SCS信息,所述SCS信息用于获取SCS,所述SCS用于获取所述定时偏移值。
  19. 根据权利要求17所述的方法,其中,所述至少一个小区的定时偏移值在所述第一信令中的位置,是根据所述至少一个小区的标识和/或预定义的规则获取的。
  20. 根据权利要求1所述的方法,其中,所述第一信令是动态调度信令,所述动态调度信令用于指示对应的上行链路UL信息的定时偏移值。
  21. 根据权利要求1所述的方法,其中,所述第一信令是动态调度信令,所述动态调度信令用于调度RAR,所述动态调度信令还用于指示根据所述RAR获取的TA为负值或正值。
  22. 根据权利要求1所述的方法,其中,所述方法还包括:接收下行控 制信息DCI,其中,所述DCI用于调度所述第一信令;
    其中,在所述DCI是在特定搜索空间SS和/或特定控制资源集CORESET中获取的情况下,所述定时偏移值为负值。
  23. 根据权利要求1所述的方法,其中,所述定时偏移值为TA,其中,所述TA为正值或负值。
  24. 一种定时偏移值的指示方法,应用于第二通信设备,所述方法包括:
    发送第一信令,所述第一信令用于第一通信设备获取定时偏移值,所述定时偏移值用于调整所述第一通信设备的定时;
    其中,所述第一通信设备包括自回传IAB节点,所述第二通信设备包括所述IAB节点的父节点或IAB宿主节点或IAB子节点;或所述第一通信设备包括终端,所述第二通信设备包括为所述终端服务的IAB节点或IAB宿主节点。
  25. 根据权利要求24所述的方法,其中,所述第一信令还包括第一指示信息,所述第一指示信息用于指示所述定时偏移值为正值或者负值;或者指示所述定时偏移值是否取反。
  26. 根据权利要求24所述的方法,其中,所述第一信令用于分别指示至少一个小区的定时偏移值。
  27. 根据权利要求24所述的方法,其中,所述第一信令是动态调度信令;
    其中,所述动态调度信令用于指示对应的上行链路信息的定时偏移值;或
    所述动态调度信令用于调度RAR,所述动态调度信令还用于指示根据所述RAR获取的TA为负值或正值。
  28. 根据权利要求24所述的方法,其中,所述方法还包括:发送DCI,其中,所述DCI用于调度所述第一信令;
    其中,在所述DCI是在特定搜索空间SS和/或特定控制资源集CORESET中获取的情况下,所述定时偏移值为负值。
  29. 根据权利要求24所述的方法,其中,所述定时偏移值为TA,其中, 所述TA为正值或负值。
  30. 一种第一通信设备,包括:
    接收模块,用于接收来自于第二通信设备的第一信令;
    获取模块,用于根据所述第一信令获取定时偏移值,所述定时偏移值用于调整所述第一通信设备的定时;
    其中,所述第一通信设备包括自回传IAB节点,所述第二通信设备包括所述IAB节点的父节点或IAB宿主节点或IAB子节点;或所述第一通信设备包括终端,所述第二通信设备包括为所述终端服务的IAB节点或IAB宿主节点。
  31. 一种第二通信设备,包括:
    发送模块,用于发送第一信令,所述第一信令用于第一通信设备获取定时偏移值,所述定时偏移值用于调整所述第一通信设备的定时;
    其中,所述第一通信设备包括自回传IAB节点,所述第二通信设备包括所述IAB节点的父节点或IAB宿主节点或IAB子节点;或所述第一通信设备包括终端,所述第二通信设备包括为所述终端服务的IAB节点或IAB宿主节点。
  32. 一种通信设备,包括处理器,存储器及存储在所述存储器上并可在所述处理器上运行的程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至23任一项所述的定时偏移值的指示方法;或实现如权利要求24至29任一项所述的定时偏移值的指示方法。
  33. 一种可读存储介质,所述可读存储介质上存储程序或指令,所述程序或指令被所述处理器执行时实现如权利要求1至23任一项所述的定时偏移值的指示方法;或实现如权利要求24至29任一项所述的定时偏移值的指示方法。
  34. 一种芯片,所述芯片包括处理器和通信接口,所述通信接口和所述处理器耦合,所述处理器用于运行程序或指令,实现如权利要求1至23任一项所述的定时偏移值的指示方法;或实现如权利要求24至29任一项所述的 定时偏移值的指示方法。
PCT/CN2021/104310 2020-07-03 2021-07-02 定时偏移值的指示方法和设备 WO2022002263A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP21831696.6A EP4178280A4 (en) 2020-07-03 2021-07-02 METHOD AND DEVICE FOR INDICating SYNCHRONIZATION OFFSET VALUE
US18/092,198 US20230140165A1 (en) 2020-07-03 2022-12-30 Timing offset value indication method and device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202010637358.0A CN113890700B (zh) 2020-07-03 2020-07-03 定时偏移值的指示方法和设备
CN202010637358.0 2020-07-03

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US18/092,198 Continuation US20230140165A1 (en) 2020-07-03 2022-12-30 Timing offset value indication method and device

Publications (1)

Publication Number Publication Date
WO2022002263A1 true WO2022002263A1 (zh) 2022-01-06

Family

ID=79013351

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2021/104310 WO2022002263A1 (zh) 2020-07-03 2021-07-02 定时偏移值的指示方法和设备

Country Status (4)

Country Link
US (1) US20230140165A1 (zh)
EP (1) EP4178280A4 (zh)
CN (1) CN113890700B (zh)
WO (1) WO2022002263A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023206557A1 (zh) * 2022-04-29 2023-11-02 北京小米移动软件有限公司 传输定时调整方法、装置及存储介质

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200059879A1 (en) * 2018-08-17 2020-02-20 Qualcomm Incorporated Dynamic timing adjustment for new radio integrated access and backhaul node
WO2020035947A1 (ja) * 2018-08-17 2020-02-20 株式会社Nttドコモ 無線通信装置及び無線通信方法
WO2020065037A1 (en) * 2018-09-27 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Timing control for integrated access and backhaul (iab) node transmission

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3297343A3 (en) * 2016-09-19 2018-06-20 ASUSTek Computer Inc. Method and apparatus for handling timing advance for uplink transmission in a wireless communication system
KR102137605B1 (ko) * 2017-06-11 2020-07-27 엘지전자 주식회사 무선 통신 시스템에서 상향링크 채널을 송수신하는 방법 및 이를 위한 장치
CN112913294A (zh) * 2018-10-25 2021-06-04 苹果公司 Iab网络中定时超前(ta)偏移的信令

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20200059879A1 (en) * 2018-08-17 2020-02-20 Qualcomm Incorporated Dynamic timing adjustment for new radio integrated access and backhaul node
WO2020035947A1 (ja) * 2018-08-17 2020-02-20 株式会社Nttドコモ 無線通信装置及び無線通信方法
WO2020065037A1 (en) * 2018-09-27 2020-04-02 Telefonaktiebolaget Lm Ericsson (Publ) Timing control for integrated access and backhaul (iab) node transmission

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
NOKIA, NOKIA SHANGHAI BELL: "IAB timing", 3GPP DRAFT; R1-1804624_IAB_TIMING, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sanya, P.R. China; 20180416 - 20180420, 15 April 2018 (2018-04-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051426893 *
See also references of EP4178280A4 *

Also Published As

Publication number Publication date
EP4178280A4 (en) 2024-01-10
EP4178280A1 (en) 2023-05-10
CN113890700B (zh) 2023-04-07
US20230140165A1 (en) 2023-05-04
CN113890700A (zh) 2022-01-04

Similar Documents

Publication Publication Date Title
TWI737844B (zh) 傳輸參考信號的方法和通訊設備
EP3751917A1 (en) Uplink synchronization method and device
WO2018192015A1 (zh) 时频资源传输方向的配置方法和装置
WO2015183004A1 (ko) 이중 접속을 지원하는 방법 및 이를 이용한 기기
CN113411891B (zh) 用于集成接入和回传(iab)的定时控制
EP3634049B1 (en) Synchronization method and apparatus
CN104812053B (zh) D2d通信同步信道的传输方法及系统、发送端及接收端
WO2021063372A1 (zh) 一种资源确定方法及装置
EP4340518A2 (en) Random access responding method and device, and random access method and device
US20230140165A1 (en) Timing offset value indication method and device
CN116210335A (zh) 用于降低能力设备的早期指示
WO2022105783A1 (zh) Iab节点的冲突处理方法、装置、设备及可读存储介质
WO2014139351A1 (zh) 一种d2d发现信号的传输方法和设备
WO2019096273A1 (zh) 一种信息发送、接收的方法及装置
WO2018028678A1 (zh) 一种同步信号发送方法及装置
WO2022017488A1 (zh) 功率分配、获取方法、装置及节点设备
US20230300766A1 (en) Method of propagation delay compensation and related devices
EP4380072A1 (en) Signal transmission method, repeater and network side device
EP4161159B1 (en) Enhancements for reduced capability new radio devices
US20230300769A1 (en) Method and apparatus for determining timing advance value
KR102613535B1 (ko) 네트워크 슬라이싱에 기반하여 랜덤 액세스를 수행하는 장치 및 방법
WO2024060187A1 (zh) 用于侧行通信方法以及终端设备
US20230344688A1 (en) Method for symbol application, communication apparatus, and storage medium
WO2023164867A1 (en) System and method for l1 connection setup and l1 reconfiguration
WO2024011632A1 (zh) 资源配置方法、装置、设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21831696

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2021831696

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE