WO2023206557A1 - 传输定时调整方法、装置及存储介质 - Google Patents

传输定时调整方法、装置及存储介质 Download PDF

Info

Publication number
WO2023206557A1
WO2023206557A1 PCT/CN2022/090735 CN2022090735W WO2023206557A1 WO 2023206557 A1 WO2023206557 A1 WO 2023206557A1 CN 2022090735 W CN2022090735 W CN 2022090735W WO 2023206557 A1 WO2023206557 A1 WO 2023206557A1
Authority
WO
WIPO (PCT)
Prior art keywords
quantized value
time offset
offset
user equipment
base station
Prior art date
Application number
PCT/CN2022/090735
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to CN202280001272.6A priority Critical patent/CN115004781B/zh
Priority to PCT/CN2022/090735 priority patent/WO2023206557A1/zh
Publication of WO2023206557A1 publication Critical patent/WO2023206557A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W40/00Communication routing or communication path finding
    • H04W40/02Communication route or path selection, e.g. power-based or shortest path routing
    • H04W40/22Communication route or path selection, e.g. power-based or shortest path routing using selective relaying for reaching a BTS [Base Transceiver Station] or an access point
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay

Definitions

  • the present disclosure relates to the field of wireless communication technology, and in particular, to a transmission timing adjustment method, device and storage medium.
  • the base station In order to ensure uplink orthogonality, the base station requires that signals from different user equipments in the same subframe but using different frequency domain resources arrive at the base station to be basically aligned. As long as the base station receives the uplink data sent by the user equipment within the cyclic prefix (CP, Cyclic Prefix) range, it can correctly decode the uplink data. Therefore, in the uplink synchronization mechanism of the related technology, the base station enables the base station to adjust the uplink transmission timing by indicating to the user equipment the quantized value of the advance time (TA, Timing Advance) and the quantized value of the time offset (TA-offset, Timing Advance offset). , so that the time when signals from different user equipments in the same subframe arrive at the base station all fall within the CP range.
  • TA advance time
  • TA-offset Timing Advance offset
  • a relay device controlled by the network is expected to become a key technology for expanding cell coverage.
  • the coverage of the cell can be effectively expanded.
  • the uplink synchronization mechanism in related technologies will be affected.
  • the present disclosure provides a transmission timing adjustment method, device and storage medium.
  • a transmission timing adjustment method including:
  • the base station determines a first time offset quantized value, which at least represents the time when the relay device performs uplink and downlink switching;
  • the base station sends a timing advance offset TA-offset quantized value to the user equipment according to the first time offset quantized value and the second time offset quantized value.
  • the second time offset quantized value at least represents the performance of the base station.
  • the TA-offset quantized value is used by the user equipment to adjust transmission timing.
  • a transmission timing adjustment method including:
  • the relay device reports a first quantized time offset value to the base station, where the first quantized time offset value at least represents the time when the relay device performs uplink and downlink switching;
  • the relay device receives the timing advance offset TA-offset quantized value sent by the base station to the user equipment.
  • the TA-offset quantized value is the base station's quantized value based on the first time offset and the second time offset.
  • the second time offset quantized value is sent by shifting the quantized value, and the second time offset quantized value at least represents the time when the base station performs uplink and downlink switching;
  • the relay device forwards the TA-offset quantized value to the user equipment.
  • a transmission timing adjustment method including:
  • the user equipment receives the timing advance offset TA-offset quantized value sent by the base station to the user equipment.
  • the TA-offset quantized value is sent by the base station according to the first time offset quantization value and the second time offset quantization value.
  • the first time offset quantified value at least represents the time when the relay device performs uplink and downlink switching
  • the second time offset quantized value at least represents the time when the base station performs uplink and downlink switching
  • the user equipment adjusts transmission timing according to the TA-offset quantization value.
  • a transmission timing adjustment device is provided.
  • the transmission timing adjustment device is used in a base station and includes:
  • a determining module configured to determine a first time offset quantized value, the first time offset quantized value at least represents the time when the relay device performs uplink and downlink switching;
  • the first sending module is configured to send the timing advance offset TA-offset quantized value to the user equipment according to the first time offset quantized value and the second time offset quantized value, the second time offset quantized value is at least It represents the time when the base station performs uplink and downlink switching, and the TA-offset quantized value is used by the user equipment to adjust transmission timing.
  • a transmission timing adjustment device is provided, and the transmission timing adjustment device is used for relay equipment, including:
  • a reporting module configured to report a first quantized time offset value to the base station, where the first quantized time offset value at least represents the time when the relay device performs uplink and downlink switching;
  • the first receiving module is configured to receive the timing advance offset TA-offset quantized value sent by the base station to the user equipment, where the TA-offset quantized value is the base station based on the first time offset quantized value and the first time offset quantized value. Two time offset quantized values are sent, and the second time offset quantized value at least represents the time when the base station performs uplink and downlink switching;
  • the second sending module is configured to forward the TA-offset quantized value to the user equipment.
  • a transmission timing adjustment device is provided, and the transmission timing adjustment device is used for user equipment, including:
  • the second receiving module is configured to receive the TA-offset quantized value of the timing advance offset sent by the base station to the user equipment, where the TA-offset quantized value is the base station based on the first time offset quantized value and the second time offset.
  • the quantized value is sent, the first time offset quantized value at least represents the time when the relay device performs uplink and downlink switching, and the second time offset quantized value at least represents the time when the base station performs uplink and downlink switching;
  • an adjustment module configured to adjust the transmission timing according to the TA-offset quantization value.
  • a seventh aspect of an embodiment of the present disclosure there is provided a computer-readable storage medium on which computer program instructions are stored, and when the program instructions are executed by a processor, any one of the aspects provided by the first to third aspects is implemented.
  • the steps of the transmission timing adjustment method are described.
  • a transmission timing adjustment device including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to implement the transmission timing adjustment method provided in any one of the first to third aspects when executing the executable instructions.
  • the relay device reports to the base station a first time offset quantized value that at least represents the time when the relay device performs uplink and downlink switching.
  • the base station uses the first time offset quantized value and at least represents the base station.
  • the second time offset quantized value of the time of uplink and downlink switching is sent to the user equipment, and then the TA-offset quantized value is forwarded to the user equipment through the relay equipment, and the user equipment calculates the TA-offset quantized value according to the received TA-offset
  • the quantized value adjusts the transmission timing.
  • the time for the relay device to perform uplink and downlink switching can be added to the calculation of the uplink timing advance of the communication between the base station and the user equipment, so that the time for the uplink signals of different user equipment to reach the base station can be More accurate alignment.
  • Figure 1 is a schematic diagram of an application scenario of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 2 is a schematic flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 3 is a schematic flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 4 is a schematic flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 5 is a schematic flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 6 is a schematic flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 7 is a schematic flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 8 is a schematic flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 9 is a schematic flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 10 is a schematic flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 11 is a schematic flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 12 is a schematic flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 13 is a schematic flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 14 is a schematic flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 15 is a schematic flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 16 is a schematic flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 17 is a structural block diagram of a transmission timing adjustment device according to an exemplary embodiment.
  • Figure 18 is a structural block diagram of a transmission timing adjustment device according to an exemplary embodiment.
  • Figure 19 is a structural block diagram of a transmission timing adjustment device according to an exemplary embodiment.
  • Figure 20 is a structural block diagram of a transmission timing adjustment device according to an exemplary embodiment.
  • Figure 21 is a structural block diagram of a transmission timing adjustment device according to an exemplary embodiment.
  • Figure 1 is a schematic diagram of a wireless communication system according to an exemplary embodiment. As shown in Figure 1, the communication system includes several user equipments 11, relay equipment 12 and base stations 13.
  • the user equipment 11 may be a device that provides voice and/or data connectivity to the user.
  • the user equipment 11 can communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the user equipment 11 may be an Internet of Things terminal, such as a sensor device, a mobile phone (or a "cellular" phone), and a computer with an Internet of Things terminal, for example, it may be a fixed, portable, pocket-sized, handheld, computer-built-in Or a vehicle-mounted device.
  • station STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile
  • remote station remote station
  • access point remote terminal
  • access terminal access terminal
  • user terminal user terminal
  • user agent user agent
  • user equipment user device
  • user terminal User Equipment
  • the user equipment 11 may also be equipment of an unmanned aerial vehicle.
  • the user equipment 11 may also be a vehicle-mounted device, for example, it may be an on-board computer with a wireless communication function, or a wireless communication device connected to an external on-board computer.
  • the user equipment 11 may also be a roadside device, for example, it may be a street light, a signal light or other roadside device with a wireless communication function.
  • the relay device 12 may include RU (repeater unit, response unit) and MT (mobile terminal, mobile terminal).
  • MT is used to receive and process control signals sent by the base station and has some functions of the terminal;
  • RU is used to forward signals from the base station or terminal signal.
  • RIS Intelligent metasurface
  • IRS Intelligent Reflection Surface
  • RIS Intelligent metasurface
  • RIS Intelligent metasurface
  • RIS is also called “reconfigurable intelligent surface (RIS)” or “intelligent reflective surface”.
  • RIS is an ordinary thin plate.
  • RIS can be flexibly deployed in the wireless communication propagation environment and control the frequency, phase, polarization and other characteristics of reflected or refracted electromagnetic waves, thereby achieving the purpose of reshaping the wireless channel.
  • RIS can use precoding technology to reflect signals incident on its surface to a specific direction, thereby enhancing the signal strength at the receiving end and achieving channel control.
  • the relay device refers to the intelligent relay device and the RIS.
  • the base station 13 may be a network-side device in a wireless communication system.
  • the wireless communication system can be the 4th generation mobile communication technology (the 4th generation mobile communication, 4G) system, also known as the Long Term Evolution (LTE) system; or the wireless communication system can also be a 5G system, Also known as New Radio (NR) system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the base station 13 may be an evolved base station (eNB) used in the 4G system.
  • the base station 13 may also be a base station (gNB) that adopts a centralized distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (Central Unit, CU) and at least two distributed units (Distributed Unit, DU).
  • the centralized unit is equipped with a protocol stack including the Packet Data Convergence Protocol (PDCP) layer, the Radio Link Control protocol (Radio Link Control, RLC) layer, and the Media Access Control (Media Access Control, MAC) layer; distributed
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation of the base station 13.
  • Each user equipment 11 can establish a wireless connection with the relay device 12 through the wireless air interface, and the relay device 12 can also establish a communication connection with the base station 13 through the wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as The wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on the next generation mobile communication network technology standard of 5G.
  • the signal from the user equipment 11 can reach the base station 13 only after being forwarded by the relay device 12 .
  • the signal sent by the base station 13 can reach the user equipment 11 only after being forwarded by the relay device 12 .
  • user equipment within the coverage area of the same base station may include user equipment that performs auxiliary communication through relay equipment and equipment that does not need to perform auxiliary communication through relay equipment.
  • Figure 1 shows auxiliary communication through relay equipment. Indications performed by user equipment 11.
  • the user equipment can calculate the transmission timing T_TA based on the following formula:
  • T_TA (N_TA+N_TA,offset)*Tc, where N_TA is the TA quantized value sent by the base station to the user equipment, and N_TA,offset is the time offset quantized value sent by the base station to the user equipment, which is used to represent the uplink and downlink switching of the base station.
  • the time that is, the time required to switch to downlink transmission after uplink reception, Tc is a predefined time unit, and represents the minimum sampling interval in NR.
  • embodiments of the present disclosure provide a transmission timing adjustment method, device and storage medium.
  • FIG. 2 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 2, the transmission timing adjustment method includes:
  • the base station determines the first time offset quantization value.
  • the first time offset quantized value at least represents the time when the relay device performs uplink and downlink switching.
  • the base station sends the timing advance offset TA-offset quantized value to the user equipment according to the first time offset quantized value and the second time offset quantized value.
  • the second time offset quantized value at least represents the time when the base station performs uplink and downlink switching, and the TA-offset quantized value is used by the user equipment to adjust transmission timing.
  • the relay device includes two links, the first link is switched from receiving to sending, and the second link is switched from sending to receiving. Therefore, the first time offset quantized value may include the time when the first link of the relay device switches from receiving to transmitting, and the time when the second link switches from transmitting to receiving. Similarly, the second time offset quantized value may also include the time when the first link of the base station switches from receiving to transmitting, and the time when the second link switches from transmitting to receiving.
  • the user equipment included in the signal coverage of the base station may include user equipment that directly provides services (that is, no signaling is forwarded between the user equipment and the base station through a relay device), which is also referred to as the third in other embodiments below.
  • the second user equipment includes the MT part of the relay equipment.
  • the timing advance offset TA-offset quantized value that is, only the above-mentioned second time offset quantized value can be used Calculate transmission timing.
  • the user equipment included in the signal coverage of the base station may also include user equipment that indirectly provides services (that is, signaling is not forwarded between the user equipment and the base station through a relay device), which is also referred to in other embodiments below.
  • First user equipment when calculating the transmission timing of the first user equipment, for the timing advance offset TA-offset quantized value, the uplink and downlink switching time of the base station and the uplink and downlink switching time of the relay device can be considered at the same time, that is, the above-mentioned
  • the first time offset quantized value and the second time offset quantized value are used to calculate the transmission timing.
  • the base station determines a first time offset quantized value that at least represents the time when the relay device performs uplink and downlink switching, and uses the first time offset quantized value and the second time offset that at least represents the time when the base station performs uplink and downlink switching.
  • the shifted quantized value sends the timing advance offset TA-offset quantized value to the user equipment.
  • the user equipment adjusts the transmission timing according to the received TA-offset quantized value, and the time for the relay equipment to perform uplink and downlink switching can be added to the calculation of the uplink timing advance for communication between the base station and the user equipment, so that the uplink signals of different user equipment arrive The time of the base station can be more accurately aligned.
  • FIG 3 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 3, the transmission timing adjustment method includes:
  • the base station determines the first time offset quantization value.
  • the first time offset quantized value at least represents the time when the relay device performs uplink and downlink switching
  • the base station sends the sum of the first time offset quantized value and the second time offset quantized value to the first user equipment through UE-specific and/or UE-group specific signaling.
  • the user equipment within the coverage area of the base station includes a first user equipment, and the first user equipment is a user equipment that performs auxiliary communication through a relay device.
  • the timing advance offset TA-offset quantized value may be the sum of the first time offset quantized value and the second time offset quantized value, that is, the time when the relay device performs uplink and downlink switching is the same as when the base station performs uplink and downlink switching. The total switching time.
  • the base station before the base station sends the sum of the first time offset quantized value and the second time offset quantized value to the first user equipment through UE-specific and/or UE-group specific signaling, it may also be determined.
  • the relay device is transparent to the first user device.
  • the transparency of the relay device relative to the first user equipment means that the first user equipment does not perceive whether the communication between it and the base station is forwarded through the relay device.
  • the base station can use UE-specific and/or UE-group specific information.
  • the sum of the first time offset quantized value and the second time offset quantized value is sent to the first user equipment, and the first user equipment obtains the sum included in the UE-specific and/or UE-group specific signaling. value, the transmission timing can be adjusted based on the sum value.
  • the transmission timing can be adjusted according to the received sum of the first time offset quantized value and the second time offset quantized value, so that the uplink signals of different user equipment The time of arrival at the base station can be more accurately aligned.
  • FIG 4 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 4, the transmission timing adjustment method includes:
  • the base station determines the first time offset quantization value.
  • the first time offset quantized value at least represents the time when the relay device performs uplink and downlink switching
  • the base station sends the first time offset quantization value to the first user equipment through UE-specific and/or UE-group specific signaling.
  • the user equipment within the coverage of the base station includes a first user equipment and a second user equipment.
  • the first user equipment is a user equipment that performs auxiliary communication through a relay device
  • the second user equipment is a user equipment that does not perform auxiliary communication through a relay device.
  • the base station broadcasts the second time offset quantization value.
  • the user equipment may include a first user equipment that performs auxiliary communication through a relay device, or may include a second user equipment that does not perform auxiliary communication through a relay device.
  • the base station sends the first time offset quantized value to the first user equipment through UE-specific and/or UE-group specific signaling, and broadcasts the second time offset quantized value.
  • the first user equipment may add the first time offset quantization value based on the received broadcast second time offset quantization value, so as to calculate the sum of the first time offset quantization value and the second time offset quantization value according to the first time offset quantization value. Adjust transmission timing.
  • the base station before the base station sends the first time offset quantized value to the first user equipment through UE-specific and/or UE-group specific signaling, it may also be determined that the relay device is transparent relative to the first user equipment.
  • the transparency of the relay device relative to the first user equipment means that the first user equipment does not perceive whether the communication between it and the base station is forwarded through the relay device.
  • the base station can use UE-specific and/or UE-group specific information.
  • the first time offset quantized value is sent to the first user equipment. After the first user equipment obtains the first time offset quantized value included in the UE-specific and/or UE-group specific signaling, it can A time offset quantized value and a second time offset quantized value adjust the transmission timing.
  • the base station when the base station coverage includes a second user equipment that does not use a relay device for auxiliary communication, and a first user equipment that uses a relay device for auxiliary communication, the base station can broadcast the second user equipment to all user equipment. Two time offset quantized values, and send the first time offset quantized value to the first user equipment through UE-specific and/or UE-group specific signaling, so that the second user equipment only receives the second time offset broadcast by the base station
  • the first user equipment may receive the first time offset quantization value and the second time offset quantization value.
  • the second user equipment can adjust the transmission timing according to the second time offset quantized value, and the first user equipment can adjust the transmission timing according to the first time offset quantized value and the second time offset quantized value.
  • FIG. 5 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 5, the transmission timing adjustment method includes:
  • the base station determines the first time offset quantization value.
  • the first time offset quantized value at least represents the time when the relay device performs uplink and downlink switching
  • the base station broadcasts the first time offset quantized value and the second time offset quantized value.
  • the relay device before the base station broadcasts the first time offset quantized value and the second time offset quantized value, it may also be determined that the relay device is opaque with respect to the first user equipment.
  • the fact that the relay device is opaque with respect to the first user equipment indicates that the first user equipment can sense whether the communication between it and the base station is forwarded through the relay device.
  • both the user equipment that performs auxiliary communication through the relay device and the user equipment that does not perform auxiliary communication through the relay device can receive the first time offset quantized value and the second time offset quantized value, so that through the The user equipment that performs assisted communication through the relay device adjusts the transmission timing according to the first time offset quantized value and the second time offset quantized value, and the user equipment that does not perform assisted communication through the relay device adjusts the transmission timing according to the second time offset quantized value.
  • Figure 6 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 6, the transmission timing adjustment method includes:
  • the base station determines the first time offset quantization value.
  • the first time offset quantized value at least represents the time when the relay device performs uplink and downlink switching
  • the base station broadcasts the second time offset quantized value and the sum of the first time offset quantized value and the second time offset quantized value.
  • the relay device before the base station broadcasts the first time offset quantized value and the second time offset quantized value, it may also be determined that the relay device is opaque with respect to the first user equipment.
  • the fact that the relay device is opaque with respect to the first user equipment indicates that the first user equipment can sense whether the communication between it and the base station is forwarded through the relay device.
  • the user equipment performing auxiliary communication through the relay device receives the second time offset quantized value broadcast by the base station and the sum of the first time offset quantized value and the second time offset quantized value, the user equipment can perform the auxiliary communication according to the second time offset value.
  • the sum of a time offset quantized value and a second time offset quantized value adjusts the transmission timing.
  • the user equipment that does not perform auxiliary communication through the relay device can adjust the transmission timing according to the second time offset quantized value.
  • FIG. 7 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 7, the transmission timing adjustment method includes:
  • the base station obtains the first time offset quantized value included in the capability message reported by the relay device.
  • the first time offset quantized value at least represents the time when the relay device performs uplink and downlink switching
  • the base station sends the timing advance offset TA-offset quantized value to the user equipment according to the first time offset quantized value and the second time offset quantized value.
  • the second time offset quantized value at least represents the time when the base station performs uplink and downlink switching, and the TA-offset quantized value is used by the user equipment to adjust transmission timing.
  • the capability message reported by the relay device to the base station includes the time offset quantized value. That is to say, the first time offset quantified value can be placed in the capability message reported by the relay device for reporting. For example, it can be placed in repeater-MT capability for reporting.
  • FIG 8 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 8, the transmission timing adjustment method includes:
  • the base station obtains the index value included in the capability message reported by the relay device.
  • the base station determines the first time offset quantization value according to the index value.
  • the first time offset quantized value at least represents the time when the relay device performs uplink and downlink switching
  • the base station sends the timing advance offset TA-offset quantized value to the user equipment according to the first time offset quantized value and the second time offset quantized value.
  • the second time offset quantized value at least represents the time when the base station performs uplink and downlink switching, and the TA-offset quantized value is used by the user equipment to adjust transmission timing.
  • the first time offset quantization value can be an index value, such as capability class index. Different indexes can correspond to different values, and the index value is placed in the capability message reported by the relay device.
  • a more accurate first time offset quantification value can be obtained by obtaining the index value included in the capability message reported by the relay device.
  • FIG 9 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 9, the transmission timing adjustment method includes:
  • the base station determines the preset default value as the first time offset quantization value.
  • the first time offset quantized value at least represents the time when the relay device performs uplink and downlink switching
  • the base station sends the timing advance offset TA-offset quantized value to the user equipment according to the first time offset quantized value and the second time offset quantized value.
  • the second time offset quantized value at least represents the time when the base station performs uplink and downlink switching, and the TA-offset quantized value is used by the user equipment to adjust transmission timing.
  • the first time offset quantization value can be a preset default value, such as ⁇ FR1,10us; FR2,8us ⁇ .
  • the relay device does not need to report, and the user equipment can directly adjust the time offset according to the preset value.
  • the default value adjusts transmission timing.
  • the user equipment can adjust the transmission timing according to the preset default value without the need for relay equipment to report, thus reducing signaling overhead.
  • FIG 10 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 10, the transmission timing adjustment method includes:
  • the first time offset quantized value at least represents the time when the relay device performs uplink and downlink switching
  • the base station sends the timing advance offset TA-offset quantized value to the user equipment according to the first time offset quantized value and the second time offset quantized value.
  • the second time offset quantized value at least represents the time when the base station performs uplink and downlink switching, and the TA-offset quantized value is used by the user equipment to adjust transmission timing.
  • the base station may determine the preset default value as the first time offset quantization value, and the user equipment can determine the first time offset quantization value according to the preset default value. The value adjusts the transmission timing.
  • the base station obtains the first quantized time offset value reported by the relay device
  • the user equipment adjusts the transmission timing according to the obtained first quantized time offset value.
  • the first time offset quantized value may include quantized values corresponding to different frequency bands. That is to say, the first time offset quantized value can be a set of values, including multiple quantized values, and each quantized value corresponds to a different frequency band.
  • the reported content is ⁇ FR1,1000; FR2,800 ⁇ , that is, The quantization value of frequency band FR1 is 1000, and the quantization value of frequency band FR2 is 800.
  • the time unit of the first time offset quantized value is an absolute time unit, such as us, ns, etc.
  • the time unit of the first time offset quantized value is a time unit in the wireless communication system.
  • the time unit in the wireless communication system can be the minimum sampling interval Tc of the physical layer, or other time lengths of the physical layer, such as symbol, slot, etc. The embodiments of the present disclosure do not limit this.
  • FIG 11 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 11, the transmission timing adjustment method includes:
  • the relay device reports the first time offset quantization value to the base station.
  • the first time offset quantized value at least represents the time when the relay device performs uplink and downlink switching.
  • the relay device receives the timing advance offset TA-offset quantized value sent by the base station to the user equipment.
  • the TA-offset quantized value is sent by the base station based on the first time offset quantized value and the second time offset quantized value.
  • the second time offset quantized value at least represents the time when the base station performs uplink and downlink switching.
  • the relay device forwards the TA-offset quantized value to the user equipment.
  • the relay device reports to the base station the first time offset quantized value that represents the time when the relay device performs uplink and downlink switching, and receives the timing advance offset TA-offset quantized value sent by the base station to the user equipment, The TA-offset quantized value is then forwarded to the user equipment.
  • the user equipment adjusts the transmission timing according to the received TA-offset quantized value, and the time for the relay equipment to perform uplink and downlink switching can be added to the calculation of the uplink timing advance for communication between the base station and the user equipment, so that the uplink signals of different user equipment arrive The time of the base station can be more accurately aligned.
  • Figure 12 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 12, the transmission timing adjustment method includes:
  • the relay device reports a capability message to the base station.
  • the capability message includes the first time offset quantized value.
  • the first time offset quantized value at least represents the time when the relay device performs uplink and downlink switching.
  • the relay device receives the timing advance offset TA-offset quantized value sent by the base station to the user equipment.
  • the TA-offset quantized value is sent by the base station based on the first time offset quantized value and the second time offset quantized value.
  • the second time offset quantized value at least represents the time when the base station performs uplink and downlink switching.
  • the relay device forwards the TA-offset quantized value to the user equipment.
  • the capability message may include the first time offset quantized value
  • the relay device reports the capability message to the base station
  • the base station may determine the first time offset quantized value after receiving the capability message.
  • the first time offset quantized value is placed in the capability message, and the relay device can report the first time offset quantified value by reporting the capability message to the base station.
  • Figure 13 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 13, the transmission timing adjustment method includes:
  • the relay device reports a capability message to the base station.
  • the capability message includes an index value, and the index value is used by the base station to determine the first time offset quantization amount.
  • the first time offset quantized value at least represents the time when the relay device performs uplink and downlink switching.
  • the relay device receives the timing advance offset TA-offset quantized value sent by the base station to the user equipment.
  • the TA-offset quantized value is sent by the base station based on the first time offset quantized value and the second time offset quantized value.
  • the second time offset quantized value at least represents the time when the base station performs uplink and downlink switching.
  • the relay device forwards the TA-offset quantized value to the user equipment.
  • the capability message may include an index value, and the index value is used by the base station to determine the first time offset quantization amount.
  • the first time offset quantized value is placed in the capability message according to the index value, and the relay device can report the first time offset quantified value by reporting the capability message to the base station.
  • FIG 14 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 14, the transmission timing adjustment method includes:
  • the user equipment receives the timing advance offset TA-offset quantized value sent to the user equipment by the base station.
  • the TA-offset quantized value is sent by the base station according to the first time offset quantized value and the second time offset quantized value.
  • the first time offset quantized value at least represents the time when the relay device performs uplink and downlink switching.
  • the second time offset The offset quantized value at least represents the time when the base station performs uplink and downlink switching;
  • the user equipment adjusts the transmission timing according to the TA-offset quantization value.
  • the user equipment adjusts the transmission timing according to the received TA-offset quantized value, and the time when the relay equipment performs uplink and downlink switching can be added to the calculation of the transmission timing (also called uplink timing advance), so that different user equipment The time when the uplink signal reaches the base station can be more accurately aligned.
  • Figure 15 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 15, the transmission timing adjustment method includes:
  • the user equipment receives the timing advance offset TA-offset quantized value sent to the user equipment by the base station.
  • the TA-offset quantized value is sent by the base station according to the first time offset quantized value and the second time offset quantized value.
  • the first time offset quantized value at least represents the time when the relay device performs uplink and downlink switching.
  • the second time offset The offset quantized value at least represents the time when the base station performs uplink and downlink switching;
  • the user equipment performs auxiliary communication through the relay device, and the timing advance offset TA-offset quantized value includes a first time offset quantized value and a second time offset quantized value,
  • the user equipment adjusts the transmission timing T_TA according to the first time offset quantization value and the second time offset quantization value.
  • T_TA (N_TA+N_TA,offset1+N_TA,offset2)*Tc
  • N_TA is the advance time TA quantized value sent by the base station
  • N_TA,offset1 is the first time offset quantized value
  • N_TA,offset2 is the second time offset Quantized value
  • Tc is a predefined time unit.
  • the user equipment obtains the second time offset from the broadcast of the base station, and obtains the first time offset quantized value from the UE-specific and/or UE-group specific signaling sent by the base station. In this way, after receiving the signaling, the user equipment can adjust the transmission timing by adding the first time offset quantization value and the second time offset quantization value based on the advance time TA quantized value sent by the base station.
  • the user equipment can add the time when the relay device performs uplink and downlink switching into the calculation of transmission timing, so that the time when the uplink signals of different user equipment arrive at the base station can be more accurately aligned.
  • Figure 16 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment.
  • the user equipment performs auxiliary communication through the relay device, and the timing advance offset TA-offset quantized value includes the first time The sum of the offset quantized value and the second time offset quantized value, the user equipment adjusts the transmission timing according to the TA-offset quantized value.
  • the transmission timing adjustment method includes:
  • the user equipment receives the timing advance offset TA-offset quantized value sent by the base station to the user equipment.
  • the TA-offset quantized value is sent by the base station according to the first time offset quantized value and the second time offset quantized value.
  • the first time offset quantized value at least represents the time when the relay device performs uplink and downlink switching.
  • the second time offset The offset quantized value at least represents the time when the base station performs uplink and downlink switching;
  • the user equipment adjusts the transmission timing T_TA according to the sum of the first time offset quantization value and the second time offset.
  • T_TA (N_TA+N_TA,offset1')*Tc
  • N_TA is the advance time TA quantized value sent by the base station
  • N_TA,offset1' is the sum of the first time offset quantized value and the second time offset quantized value
  • Tc is a predefined time unit.
  • the user equipment obtains the second time offset from the broadcast of the base station, and obtains the first time offset quantized value and the second time from the UE-specific and/or UE-group specific signaling sent by the base station.
  • the sum of offset quantized values the user equipment can adjust the transmission timing by adding the first time offset quantization value and the second time offset quantization value based on the advance time TA quantized value sent by the base station.
  • the user equipment can add the time when the relay device performs uplink and downlink switching into the calculation of transmission timing, so that the time when the uplink signals of different user equipment arrive at the base station can be more accurately aligned.
  • FIG. 17 is a structural block diagram of a transmission timing adjustment device according to an exemplary embodiment.
  • the transmission timing adjustment device may be a base station or a part of a base station implemented through software, hardware, or a combination of software and hardware, and is used to perform the steps of the transmission timing adjustment method provided by the foregoing base station side method embodiment.
  • the transmission timing adjustment device 1700 includes a determining module 1701 and a first sending module 1702 .
  • Determining module 1701 configured to determine the first time offset quantization value
  • the first sending module 1702 is configured to send a timing advance offset TA-offset quantized value to the user equipment according to the first time offset quantized value and the second time offset quantized value.
  • the user equipment includes a first user equipment, and the first user equipment is a user equipment that performs auxiliary communication through the relay device.
  • the first sending module 1702 includes:
  • a first sending submodule configured to send the sum of the first time offset quantized value and the second time offset quantized value to the first user equipment through UE-specific and/or UE-group specific signaling. value.
  • the user equipment includes a first user equipment and a second user equipment
  • the first user equipment is a user equipment that performs auxiliary communication through the relay device
  • the second user equipment is a user equipment that does not pass the relay device.
  • the relay device is a user equipment for assisting communication.
  • the first sending module 1702 includes:
  • the second sending submodule is configured to send the first time offset quantized value to the first user equipment through UE-specific and/or UE-group specific signaling.
  • the first broadcast module is used to broadcast the second time offset quantized value.
  • the device also includes:
  • a first determination sub-module configured to determine the relative position of the relay device relative to the timing advance offset TA-offset quantized value before sending the timing advance offset TA-offset quantized value to the user equipment according to the first time offset quantized value and the second time offset quantized value.
  • the first user equipment is transparent.
  • the first sending module 1702 includes:
  • a second broadcast module is configured to broadcast the first time offset quantized value and the second time offset quantized value.
  • the first sending module 1702 includes:
  • a third broadcast module configured to broadcast the second time offset quantized value and the sum of the first time offset quantized value and the second time offset quantized value.
  • the user equipment includes a first user equipment
  • the first user equipment is user equipment that performs auxiliary communication through the relay device
  • the apparatus further includes:
  • the second determination sub-module is configured to determine the relative position of the relay device relative to the timing advance offset TA-offset quantized value before sending the timing advance offset TA-offset quantized value to the user equipment according to the first time offset quantized value and the second time offset quantized value.
  • the first user equipment is opaque.
  • the determining module 1701 includes:
  • the first acquisition module is configured to acquire the first time offset quantized value included in the capability message reported by the relay device.
  • the determining module 1701 includes:
  • the second acquisition module is used to acquire the index value included in the capability message reported by the relay device;
  • the third determination word module is used to determine the first time offset quantization value according to the index value.
  • the determining module 1701 includes:
  • the fourth word determination module is used to determine a preset default value as the first time offset quantization value.
  • the determining module 1701 includes:
  • the fifth determination module is configured to determine a preset default value as the first time offset quantization value when the first time offset quantization value reported by the relay device is not obtained.
  • the first time offset quantized value includes quantized values corresponding to different frequency bands.
  • the time unit of the first time offset quantized value is an absolute time unit, or the time unit of the first time offset quantized value is a time unit in a wireless communication system.
  • FIG. 18 is a structural block diagram of a transmission timing adjustment device according to an exemplary embodiment.
  • the transmission timing adjustment device may be a relay device or a part of a relay device implemented through software, hardware, or a combination of software and hardware, and is used to perform the steps of the transmission timing adjustment method provided by the method embodiment on the relay device side.
  • the transmission timing adjustment device 1800 includes a reporting module 1801 , a second receiving module 1802 and a second sending module 1803 .
  • the reporting module 1801 is configured to report a first quantized time offset value to the base station, where the first quantized time offset value at least represents the time when the relay device performs uplink and downlink switching;
  • the first receiving module 1802 is configured to receive the timing advance offset TA-offset quantized value sent by the base station to the user equipment.
  • the TA-offset quantized value is the base station based on the first time offset quantized value and
  • the second time offset quantized value is sent, and the second time offset quantized value at least represents the time when the base station performs uplink and downlink switching;
  • the second sending module 1803 is configured to forward the TA-offset quantized value to the user equipment.
  • the reporting module 1801 includes:
  • the first reporting submodule is configured to report a capability message to the base station, where the capability message includes the first time offset quantized value.
  • the reporting module 1801 includes:
  • the second reporting submodule is configured to report a capability message to the base station, where the capability message includes an index value, and the index value is used by the base station to determine the first time offset quantification amount.
  • FIG. 19 is a structural block diagram of a transmission timing adjustment device according to an exemplary embodiment.
  • the transmission timing adjustment device may be user equipment or a part of the user equipment implemented through software, hardware, or a combination of software and hardware, and is used to perform the steps of the transmission timing adjustment method provided by the method embodiment on the user equipment side.
  • the transmission timing adjustment device 1900 includes a second receiving module 1901 and an adjustment module 1902 .
  • the second receiving module 1901 is configured to receive the TA-offset quantized value of the timing advance offset sent by the base station to the user equipment.
  • the TA-offset quantized value is the base station based on the first time offset quantized value and the second time offset.
  • the first time offset quantized value at least represents the time when the relay device performs uplink and downlink switching
  • the second time offset quantized value at least represents the time when the base station performs uplink and downlink switching
  • the adjustment module 1902 is configured to adjust the transmission timing according to the TA-offset quantization value.
  • the user equipment performs auxiliary communication through the relay device, and the timing advance offset TA-offset quantized value includes the first time offset quantized value and the second time offset quantized value,
  • the adjustment module 1902 includes:
  • the first adjustment sub-module is used to adjust the transmission timing T_TA according to the first time offset quantization value and the second time offset quantization value; wherein,
  • T_TA (N_TA+N_TA,offset1+N_TA,offset2)*Tc;
  • N_TA is the advance time TA quantized value sent by the base station
  • N_TA,offset1 is the first time offset quantized value
  • N_TA,offset2 is the second time offset quantized value
  • Tc is a predefined time unit .
  • the user equipment performs auxiliary communication through the relay device, and the timing advance offset TA-offset quantized value includes the first time offset quantized value and the second time offset quantized value.
  • the adjustment module 1902 includes:
  • the second adjustment sub-module is used to adjust the transmission timing T_TA according to the first time offset quantization value and the sum value;
  • T_TA (N_TA+N_TA,offset1‘)*Tc;
  • N_TA is the advance time TA quantized value sent by the base station
  • N_TA,offset1' is the sum of the first time offset quantized value and the second time offset quantized value
  • Tc is a predefined time unit.
  • Embodiments of the present disclosure also provide a computer-readable storage medium on which computer program instructions are stored.
  • the program instructions are executed by a processor, any one of the base station side, the relay equipment side, and the user equipment side provided by the present disclosure can be implemented.
  • the steps of the transmission timing adjustment method are performed on the side.
  • An embodiment of the present disclosure also provides a transmission timing adjustment device, including: a processor; a memory for storing executable instructions by the processor; wherein the processor is configured to implement the present disclosure when executing the executable instructions.
  • the steps of the transmission timing adjustment method performed by any one of the base station side, the relay equipment side and the user equipment side are provided.
  • Figure 20 is a structural block diagram of a transmission timing adjustment device according to an exemplary embodiment.
  • the transmission timing adjustment apparatus 2000 may be the above-mentioned user equipment or relay equipment.
  • the apparatus 2000 may include one or more of the following components: a processing component 2002, a memory 2004, and a communications component 2016.
  • Processing component 2002 generally controls the overall operations of device 2000, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 2002 may include one or more processors 2020 to execute instructions to complete the steps of the above user equipment side or relay equipment side execution method.
  • processing component 2002 may include one or more modules that facilitate interaction between processing component 2002 and other components.
  • processing component 2002 may include a multimedia module to facilitate interaction between multimedia component 2008 and processing component 2002.
  • Memory 2004 is configured to store various types of data to support operations at device 2000. Examples of such data include instructions for any application or method operating on device 2000, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 2004 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Communication component 2016 is configured to facilitate wired or wireless communication between apparatus 2000 and other devices.
  • Device 2000 may access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • communication component 2016 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communications component 2016 also includes a near field communications (NFC) module to facilitate short-range communications.
  • NFC near field communications
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 2000 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented to execute the steps of the above user equipment side or relay equipment side execution method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented to execute the steps of the above user equipment side or relay equipment side execution method.
  • a non-transitory computer-readable storage medium including instructions such as a memory 2004 including instructions.
  • the instructions can be executed by the processor 2020 of the device 2000 to complete the above-mentioned AI service execution method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • the above device can also be a part of an independent electronic device.
  • the device can be an integrated circuit (Integrated Circuit, IC) or a chip, where the integrated circuit can be an IC. , or it can be a collection of multiple ICs; the chip can include but is not limited to the following types: GPU (Graphics Processing Unit, graphics processor), CPU (Central Processing Unit, central processing unit), FPGA (Field Programmable Gate Array, can Programming logic array), DSP (Digital Signal Processor, digital signal processor), ASIC (Application Specific Integrated Circuit, application specific integrated circuit), SOC (System on Chip, SoC, system on a chip or system-level chip), etc.
  • GPU Graphics Processing Unit, graphics processor
  • CPU Central Processing Unit, central processing unit
  • FPGA Field Programmable Gate Array, can Programming logic array
  • DSP Digital Signal Processor, digital signal processor
  • ASIC Application Specific Integrated Circuit, application specific integrated circuit
  • SOC System on Chip, SoC, system on a chip or system-level chip
  • the above-mentioned integrated circuit or chip can be used to execute executable instructions (or codes) to implement all or part of the steps of the above-mentioned user equipment side or relay equipment side execution method.
  • the executable instructions can be stored in the integrated circuit or chip, or can be obtained from other devices or devices.
  • the integrated circuit or chip includes a processor, a memory, and an interface for communicating with other devices.
  • the executable instructions can be stored in the processor, and when the executable instructions are executed by the processor, the steps of the above user equipment side or relay equipment side execution method are implemented; or, the integrated circuit or chip can receive executable instructions through the interface.
  • the instructions are executed and transferred to the processor for execution to implement the steps of the above user equipment side or relay equipment side execution method.
  • Figure 21 is a structural block diagram of a transmission timing adjustment device according to an exemplary embodiment.
  • the transmission timing adjustment device 2100 may be provided as a base station.
  • the transmission timing adjustment apparatus 2100 includes a processing component 2122 , which further includes one or more processors, and a memory resource represented by a memory 2132 for storing instructions, such as application programs, that can be executed by the processing component 2122 .
  • the application program stored in memory 2132 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 2122 is configured to execute instructions to perform the steps of the transmission timing adjustment method provided by the above method embodiment on the base station side.
  • the transmission timing adjustment device 2100 may also include a power supply component 2126 configured to perform power management of the device 2100, a wired or wireless network interface 2150 configured to connect the transmission timing adjustment device 2100 to a network, and an input/output (I/O ) interface 2158.
  • the transmission timing adjustment device 2100 may operate based on an operating system stored in the memory 2132, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • a computer program product comprising a computer program executable by a programmable device, the computer program having a function for executing the base station when executed by the programmable device
  • the code part of the transmission timing adjustment method executed by any one of the relay device side, the relay device side, and the user equipment side.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Radio Relay Systems (AREA)
  • Synchronisation In Digital Transmission Systems (AREA)

Abstract

一种传输定时调整方法、装置及存储介质。该方法包括:基站确定第一时间偏移量化值,所述第一时间偏移量化值至少表征中继设备进行上下行切换的时间;所述基站根据所述第一时间偏移量化值和第二时间偏移量化值向用户设备发送定时提前偏移TA-offset量化值,所述第二时间偏移量化值至少表征所述基站进行上下行切换的时间,所述TA-offset量化值用于所述用户设备调整传输定时。

Description

传输定时调整方法、装置及存储介质 技术领域
本公开涉及无线通信技术领域,尤其涉及一种传输定时调整方法、装置及存储介质。
背景技术
为了保证上行正交性,基站要求来自同一子帧但使用不同频域资源的不同用户设备的信号到达基站的时间基本上是对齐的。基站只要在循环前缀(CP,Cyclic Prefix)范围内接收到用户设备发送的上行数据,就能够正确的解码上行数据。因此,在相关技术的上行同步机制中,基站通过向用户设备指示提前时间(TA,Timing Advance)量化值以及时间偏移(TA-offset,Timing Advance offset)量化值,来使得基站调整上行传输定时,进而使得来自同一子帧的不同用户设备的信号到达基站的时间都落在CP范围内。
随着通信技术的发展,目前一种受网络控制的中继设备有望成为用来扩大小区覆盖范围的关键技术,通过中继设备转发用户设备或基站发送的信号,能够有效地扩大小区的覆盖范围。而在使用中继设备转发信号的情况下,将影响相关技术中的上行同步机制。
发明内容
为克服相关技术中存在的问题,本公开提供一种传输定时调整方法、装置及存储介质。
根据本公开实施例的第一方面,提供一种传输定时调整方法,包括:
基站确定第一时间偏移量化值,所述第一时间偏移量化值至少表征中继设备进行上下行切换的时间;
所述基站根据所述第一时间偏移量化值和第二时间偏移量化值向用户设备发送定时提前偏移TA-offset量化值,所述第二时间偏移量化值至少表征所述基站进行上下行切换的时间,所述TA-offset量化值用于所述用户设备调整传输定时。
根据本公开实施例的第二方面,提供一种传输定时调整方法,包括:
中继设备向基站上报第一时间偏移量化值,所述第一时间偏移量化值至少表征所述中继设备进行上下行切换的时间;
所述中继设备接收所述基站发送给用户设备的定时提前偏移TA-offset量化值,所述TA-offset量化值是所述基站根据所述第一时间偏移量化值和第二时间偏移量化值发送的,所述第二时间偏移量化值至少表征所述基站进行上下行切换的时间;
所述中继设备将所述TA-offset量化值转发至用户设备。
根据本公开实施例的第三方面,提供一种传输定时调整方法,包括:
用户设备接收基站发送给用户设备的定时提前偏移TA-offset量化值,所述TA-offset量化值是所述基站根据第一时间偏移量化值和第二时间偏移量化值发送的,所述第一时间偏移量化值至少表征中继设备进行上下行切换的时间,所述第二时间偏移量化值至少表征所述基站进行上下行切换的时间;
所述用户设备根据所述TA-offset量化值调整传输定时。
根据本公开实施例的第四方面,提供一种传输定时调整装置,所述传输定时调整装置用于基站,包括:
确定模块,被配置为确定第一时间偏移量化值,所述第一时间偏移量化值至少表征中继设备进行上下行切换的时间;
第一发送模块,被配置为根据所述第一时间偏移量化值和第二时间偏移量化值向用 户设备发送定时提前偏移TA-offset量化值,所述第二时间偏移量化值至少表征所述基站进行上下行切换的时间,所述TA-offset量化值用于所述用户设备调整传输定时。
根据本公开实施例的第五方面,提供一种传输定时调整装置,所述传输定时调整装置用于中继设备,包括:
上报模块,被配置为向基站上报第一时间偏移量化值,所述第一时间偏移量化值至少表征所述中继设备进行上下行切换的时间;
第一接收模块,被配置为接收所述基站发送给用户设备的定时提前偏移TA-offset量化值,所述TA-offset量化值是所述基站根据所述第一时间偏移量化值和第二时间偏移量化值发送的,所述第二时间偏移量化值至少表征所述基站进行上下行切换的时间;
第二发送模块,被配置为将所述TA-offset量化值转发至用户设备。
根据本公开实施例的第六方面,提供一种传输定时调整装置,所述传输定时调整装置用于用户设备,包括:
第二接收模块,被配置为接收基站发送给用户设备的定时提前偏移TA-offset量化值,所述TA-offset量化值是所述基站根据第一时间偏移量化值和第二时间偏移量化值发送的,所述第一时间偏移量化值至少表征中继设备进行上下行切换的时间,所述第二时间偏移量化值至少表征所述基站进行上下行切换的时间;
调整模块,被配置为根据所述TA-offset量化值调整传输定时。
根据本公开实施例的第七方面,提供一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现第一方面至第三方面中的任一方面所提供的传输定时调整方法的步骤。
根据本公开实施例的第八方面,提供一种传输定时调整装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行所述可执行指令时实现第一方面至第三方面中的任一方面所提供的传输定时调整方法。
本公开的实施例提供的技术方案中,中继设备向基站上报至少表征中继设备进行上下行切换的时间的第一时间偏移量化值,基站根据第一时间偏移量化值和至少表征基站进行上下行切换的时间的第二时间偏移量化值,向用户设备发送TA-offset量化值,然后通过中继设备将TA-offset量化值转发给用户设备,用户设备根据接收到的TA-offset量化值调整传输定时。如此,在经中继设备进行通信的场景下,可以将中继设备进行上下行切换的时间加入基站与用户设备通信的上行定时提前的计算中,使得不同用户设备的上行信号到达基站的时间能够更准确的对齐。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据一示例性实施例示出的一种传输定时调整方法的应用场景示意图。
图2是根据一示例性实施例示出的一种传输定时调整方法的流程示意图。
图3是根据一示例性实施例示出的一种传输定时调整方法的流程示意图。
图4是根据一示例性实施例示出的一种传输定时调整方法的流程示意图。
图5是根据一示例性实施例示出的一种传输定时调整方法的流程示意图。
图6是根据一示例性实施例示出的一种传输定时调整方法的流程示意图。
图7是根据一示例性实施例示出的一种传输定时调整方法的流程示意图。
图8是根据一示例性实施例示出的一种传输定时调整方法的流程示意图。
图9是根据一示例性实施例示出的一种传输定时调整方法的流程示意图。
图10是根据一示例性实施例示出的一种传输定时调整方法的流程示意图。
图11是根据一示例性实施例示出的一种传输定时调整方法的流程示意图。
图12是根据一示例性实施例示出的一种传输定时调整方法的流程示意图。
图13是根据一示例性实施例示出的一种传输定时调整方法的流程示意图。
图14是根据一示例性实施例示出的一种传输定时调整方法的流程示意图。
图15是根据一示例性实施例示出的一种传输定时调整方法的流程示意图。
图16是根据一示例性实施例示出的一种传输定时调整方法的流程示意图。
图17是根据一示例性实施例示出的一种传输定时调整装置的结构框图。
图18是根据一示例性实施例示出的一种传输定时调整装置的结构框图。
图19是根据一示例性实施例示出的一种传输定时调整装置的结构框图。
图20是根据一示例性实施例示出的一种传输定时调整装置的结构框图。
图21是根据一示例性实施例示出的一种传输定时调整装置的结构框图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
需要说明的是,本申请中所有获取信号、信息或数据的动作都是在遵照所在地国家相应的数据保护法规政策的前提下,并获得由相应装置所有者给予授权的情况下进行的。
图1是根据一示例性实施例示出的一种无线通信系统的示意图,如图1所示,该通信系统中包括若干个用户设备11、中继设备12以及基站13。
其中,用户设备11可以是指向用户提供语音和/或数据连通性的设备。用户设备11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信。用户设备11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(User Equipment,UE)。或者,用户设备11也可以是无人飞行器的设备。或者,用户设备11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,用户设备11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
该中继设备12可以包括RU(repeater unit,响应单元)和MT(mobile terminal,移动终端),MT用来接收并处理基站发送的控制信号,具有部分终端的功能;RU用来转发来自基站或者终端的信号。
智能超表面,或者IRS(Intelligent Reflection Surface)也被称为“可重构智能表面(RIS,reconfigurable intelligent surface)”或者“智能反射表面”。从外表上看,RIS是一张平平无奇的薄板。但是,它可以灵活部署在无线通信传播环境中,并实现对反射或者折射电磁波 的频率、相位、极化等特征的操控,从而达到重塑无线信道的目的。具体地说,RIS可以通过预编码技术,将入射到其表面的信号反射到特定的方向,从而增强接收端信号强度,实现对信道的控制。
由于智能中继设备和RIS在网络交互时具有类似的特性,因此,本公开中,中继设备,代指智能中继设备和RIS。
基站13可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(New Radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。
其中,基站13可以是4G系统中采用的演进型基站(eNB)。或者,基站13也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(Central Unit,CU)和至少两个分布单元(Distributed Unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站13的具体实现方式不加以限定。
各个用户设备11均能够与中继设备12通过无线空口建立无线连接,中继设备12也能够通过无线空口与基站13建立通信连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
参照图1,用户设备11的信号经过中继设备12转发才能到达基站13,类似的,基站13发送的信号通过中继设备12转发才能到达用户设备11。值得说明的是,同一基站覆盖范围内的用户设备可以包括通过中继设备进行辅助通信的用户设备以及不需要通过中继设备进行辅助通信的设备,图1是以通过中继设备进行辅助通信的用户设备11进行的示意。
相关技术中,用户设备可以基于以下公式进行传输定时T_TA的计算:
T_TA=(N_TA+N_TA,offset)*Tc,其中,N_TA为基站发送给用户设备的TA量化值,N_TA,offset为基站发送给用户设备的时间偏移量化值,用于表征基站进行上下行切换的时间,即在上行接收后,切换为下行发送所需要的时间,Tc为预定义的时间单位,在NR中表示最小采样间隔。
但在存在用户设备通过中继设备与基站进行通信的情况下,中继设备进行上下行切花也需要一定的时间,在此种情况下,采用相关技术确定用户设备的传输定可能会导致用户设备与基站之间不能上下行同步。
为了解决上述问题,本公开实施例提供一种传输定时调整方法、装置及存储介质。
图2是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图2所示,该传输定时调整方法包括:
S201、基站确定第一时间偏移量化值。
其中,第一时间偏移量化值至少表征中继设备进行上下行切换的时间。
S202、基站根据第一时间偏移量化值和第二时间偏移量化值向用户设备发送定时提前偏移TA-offset量化值。
其中,第二时间偏移量化值至少表征基站进行上下行切换的时间,TA-offset量化值用于用户设备调整传输定时。
在一个示例中,针对中继设备的上下行切换,中继设备包括两条链路,第一链路从接 收切换至发送,第二链路从发送切换至接收。因此,第一时间偏移量化值可以包括中继设备的第一链路从接收切换至发送的时间,以及第二链路从发送切换至接收的时间。同样,第二时间偏移量化值也可以包括基站的第一链路从接收切换至发送的时间,以及第二链路从发送切换至接收的时间。
在一个示例中,基站的信号覆盖范围内包括的用户设备可以包括直接提供服务的用户设备(即用户设备与基站之间未经过中继设备进行信令转发),下文其他实施例中也称第二用户设备,该第二用户设备包括了中继设备的MT部分。在此种情况下,第二用户设备的传输定时计算中,针对定时提前偏移TA-offset量化值,只用考虑基站的上下行切换时间,即可以只使用上述的第二时间偏移量化值计算传输定时。
在一个示例中,基站的信号覆盖范围内包括的用户设备还可以包括间接提供服务的用户设备(即用户设备与基站之间未经过中继设备进行信令转发),下文其他实施例中也称第一用户设备。在此种情况下,第一用户设备的传输定时计算中,针对定时提前偏移TA-offset量化值,可以同时考虑基站的上下行切换时间以及中继设备的上下行切换时间,即可以使用上述的第一时间偏移量化值和第二时间偏移量化值计算传输定时。
采用上述方法,基站确定至少表征中继设备进行上下行切换的时间的第一时间偏移量化值,并根据第一时间偏移量化值和至少表征基站进行上下行切换的时间的第二时间偏移量化值向用户设备发送定时提前偏移TA-offset量化值。如此,用户设备根据接收到的TA-offset量化值调整传输定时,可以将中继设备进行上下行切换的时间加入基站与用户设备通信的上行定时提前的计算中,使得不同用户设备的上行信号到达基站的时间能够更准确的对齐。
图3是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图3所示,该传输定时调整方法包括:
S301、基站确定第一时间偏移量化值。
其中,第一时间偏移量化值至少表征中继设备进行上下行切换的时间;
S302、基站通过UE-specific和/或UE-group specific信令向第一用户设备发送第一时间偏移量化值和第二时间偏移量化值的和值。
其中,基站覆盖范围内的用户设备包括第一用户设备,第一用户设备为通过中继设备进行辅助通信的用户设备。
在一个示例中,定时提前偏移TA-offset量化值可以是第一时间偏移量化值和第二时间偏移量化值的和值,即中继设备进行上下行切换的时间与基站进行上下行切换的时间的总和。
在一个示例中,在基站通过UE-specific和/或UE-group specific信令向第一用户设备发送第一时间偏移量化值和第二时间偏移量化值的和值之前,还可以确定中继设备相对第一用户设备透明。中继设备相对第一用户设备透明即表明第一用户设备不感知其与基站之间的通信是否通过中继设备转发,此种情况下,基站可以通过UE-specific和/或UE-group specific信令向第一用户设备发送第一时间偏移量化值和第二时间偏移量化值的和值,第一用户设备获取到该UE-specific和/或UE-group specific信令中包括的该和值后,即可根据该和值调整传输定时。
采用上述方法,对于通过中继设备进行辅助通信的用户设备,可以根据接收到的第一时间偏移量化值和第二时间偏移量化值的和值调整传输定时,使得不同用户设备的上行信号到达基站的时间能够更准确的对齐。
图4是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图4所示,该传输定时调整方法包括:
S401、基站确定第一时间偏移量化值。
其中,第一时间偏移量化值至少表征中继设备进行上下行切换的时间;
S402、基站通过UE-specific和/或UE-group specific信令向第一用户设备发送第一时间偏移量化值。
其中,基站覆盖范围内的用户设备包括第一用户设备和第二用户设备,第一用户设备为通过中继设备进行辅助通信的用户设备,第二用户设备为未通过中继设备进行辅助通信的用户设备。
S403、基站广播第二时间偏移量化值。
在一个示例中,用户设备可以包括通过中继设备进行辅助通信的第一用户设备,也可以包括未通过中继设备进行辅助通信的第二用户设备。此种情况下,基站通过UE-specific和/或UE-group specific信令向第一用户设备发送第一时间偏移量化值,并广播第二时间偏移量化值。第一用户设备可以在接收到广播的第二时间偏移量化值的基础上加上第一时间偏移量化值,以根据第一时间偏移量化值和第二时间偏移量化值的和值调整传输定时。
在一个示例中,在基站通过UE-specific和/或UE-group specific信令向第一用户设备发送第一时间偏移量化值之前,还可以确定中继设备相对第一用户设备透明。中继设备相对第一用户设备透明即表明第一用户设备不感知其与基站之间的通信是否通过中继设备转发,此种情况下,基站可以通过UE-specific和/或UE-group specific信令向第一用户设备发送第一时间偏移量化值,第一用户设备获取到该UE-specific和/或UE-group specific信令中包括的第一时间偏移量化值后,即可根据第一时间偏移量化值以及第二时间偏移量化值调整传输定时。
采用本实施例,在基站覆盖范围内包括未使用中继设备进行辅助通信的第二用户设备,以及使用中继设备进行辅助通信的第一用户设备的情况下,基站可以向所有用户设备广播第二时间偏移量化值,并通过UE-specific和/或UE-group specific信令向第一用户设备发送第一时间偏移量化值,使得第二用户设备仅接收基站广播的第二时间偏移量化值,而第一用户设备可以接收到第一时间偏移量化值以及第二时间偏移量化值。进而第二用户设备可以根据第二时间偏移量化值调整传输定时,第一用户设备可以根据第一时间偏移量化值以及第二时间偏移量化值调整传输定时。
图5是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图5所示,该传输定时调整方法包括:
S501、基站确定第一时间偏移量化值。
其中,第一时间偏移量化值至少表征中继设备进行上下行切换的时间;
S502、基站广播第一时间偏移量化值以及第二时间偏移量化值。
在一个示例中,在基站广播第一时间偏移量化值以及第二时间偏移量化值之前,还可以确定中继设备相对第一用户设备不透明。中继设备相对第一用户设备不透明即表明第一用户设备能感知其与基站之间的通信是否通过中继设备转发。
采用上述方法,通过中继设备进行辅助通信的用户设备以及未通过中继设备进行辅助通信的用户设备均可以接收到第一时间偏移量化值以及第二时间偏移量化值,从而使得通过中继设备进行辅助通信的用户设备根据第一时间偏移量化值以及第二时间偏移量化值调整传输定时,未通过中继设备进行辅助通信的用户设备根据第二时间偏移量化值调整传输定时。
图6是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图6所示,该传输定时调整方法包括:
S601、基站确定第一时间偏移量化值。
其中,第一时间偏移量化值至少表征中继设备进行上下行切换的时间;
S502、基站广播第二时间偏移量化值以及第一时间偏移量化值与第二时间偏移量化值 的和值。
在一个示例中,在基站广播第一时间偏移量化值以及第二时间偏移量化值之前,还可以确定中继设备相对第一用户设备不透明。中继设备相对第一用户设备不透明即表明第一用户设备能感知其与基站之间的通信是否通过中继设备转发。
采用上述方法,通过中继设备进行辅助通信的用户设备接收到基站广播的第二时间偏移量化值以及第一时间偏移量化值与第二时间偏移量化值的和值后,可以根据第一时间偏移量化值与第二时间偏移量化值的和值调整传输定时。未通过中继设备进行辅助通信的用户设备接收到基站广播的第二时间偏移量化值后,可以根据第二时间偏移量化值调整传输定时。
图7是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图7所示,该传输定时调整方法包括:
S701、基站获取中继设备上报的能力报文中包括的第一时间偏移量化值。
其中,第一时间偏移量化值至少表征中继设备进行上下行切换的时间;
S702、基站根据第一时间偏移量化值和第二时间偏移量化值向用户设备发送定时提前偏移TA-offset量化值。
其中,第二时间偏移量化值至少表征基站进行上下行切换的时间,TA-offset量化值用于用户设备调整传输定时。
在一个示例中,中继设备向基站上报的能力报文中包括时间偏移量化值,也即是说,第一时间偏移量化值可以放在中继设备上报的能力报文中进行上报,比如可以放在repeater-MT capability中进行上报。
采用上述方法,通过获取中继设备上报的能力报文,可以获取更准确的第一时间偏移量化值。
图8是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图8所示,该传输定时调整方法包括:
S801、基站获取中继设备上报的能力报文中包括的索引值。
S802、基站根据索引值,确定第一时间偏移量化值。
其中,第一时间偏移量化值至少表征中继设备进行上下行切换的时间;
S803、基站根据第一时间偏移量化值和第二时间偏移量化值向用户设备发送定时提前偏移TA-offset量化值。
其中,第二时间偏移量化值至少表征基站进行上下行切换的时间,TA-offset量化值用于用户设备调整传输定时。
在一个示例中,第一时间偏移量化值可以是索引值,比如capability class index,不同的index可以对应不同的值,索引值放在中继设备上报的能力报文中。
采用上述方法,可以通过获取中继设备上报的能力报文中包括的索引值,获取更准确的第一时间偏移量化值。
图9是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图9所示,该传输定时调整方法包括:
S901、基站将预设的默认值确定为第一时间偏移量化值。
其中,第一时间偏移量化值至少表征中继设备进行上下行切换的时间;
S902、基站根据第一时间偏移量化值和第二时间偏移量化值向用户设备发送定时提前偏移TA-offset量化值。
其中,第二时间偏移量化值至少表征基站进行上下行切换的时间,TA-offset量化值用于用户设备调整传输定时。
在一个示例中,第一时间偏移量化值可以是预设的默认值,比如{FR1,10us;FR2,8us}, 此时则不需要中继设备进行上报,用户设备可以直接根据预设的默认值调整传输定时。
采用上述方法,用户设备可以根据预设的默认值调整传输定时,无需中继设备上报,减少信令开销。
图10是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图10所示,该传输定时调整方法包括:
S1001、基站在未获取到中继设备上报的第一时间偏移量化值的情况下,将预设的默认值确定为第一时间偏移量化值。
其中,第一时间偏移量化值至少表征中继设备进行上下行切换的时间;
S1002、基站根据第一时间偏移量化值和第二时间偏移量化值向用户设备发送定时提前偏移TA-offset量化值。
其中,第二时间偏移量化值至少表征基站进行上下行切换的时间,TA-offset量化值用于用户设备调整传输定时。
在一个示例中,基站在未获取到中继设备上报的第一时间偏移量化值的情况下,可以将预设的默认值确定为第一时间偏移量化值,用户设备根据预设的默认值调整传输定时。基站在获取到中继设备上报的第一时间偏移量化值的情况下,用户设备根据获取到的第一时间偏移量化值调整传输定时。
在图1-图10所示的根据一示例性实施例示出的一种传输定时调整方法中,不同的频段(frequency band)可以对应有不同的时间偏移量化值。因此,在一个示例中,第一时间偏移量化值可以包括对应不同频段的量化值。也即是说,第一时间偏移量化值可以是一组值,包括多个量化值,每一量化值对应有不同的频段,比如上报的内容为{FR1,1000;FR2,800},即频段FR1的量化值为1000,频段FR2的量化值为800。
并且,在另一个示例中,第一时间偏移量化值的时间单位为绝对时间单位,比如us,ns等,或者,第一时间偏移量化值的时间单位为无线通信系统中的时间单元。无线通信系统中的时间单位可以是物理层的最小采样间隔Tc,或者物理层的其他时间长度,例如symbol、slot等。本公开实施例对此不作限定。
图11是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图11所示,该传输定时调整方法包括:
S1101、中继设备向基站上报第一时间偏移量化值。
其中,第一时间偏移量化值至少表征中继设备进行上下行切换的时间。
S1102、中继设备接收基站发送给用户设备的定时提前偏移TA-offset量化值。
其中,TA-offset量化值是基站根据第一时间偏移量化值和第二时间偏移量化值发送的,第二时间偏移量化值至少表征基站进行上下行切换的时间。
S1103、中继设备将TA-offset量化值转发至用户设备。
采用上述方法,中继设备向基站上报表征中继设备进行上下行切换的时间的第一时间偏移量化值,并接收基站发送的基站发送给用户设备的定时提前偏移TA-offset量化值,然后将TA-offset量化值转发给用户设备。如此,用户设备根据接收到的TA-offset量化值调整传输定时,可以将中继设备进行上下行切换的时间加入基站与用户设备通信的上行定时提前的计算中,使得不同用户设备的上行信号到达基站的时间能够更准确的对齐。
图12是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图12所示,该传输定时调整方法包括:
S1201、中继设备向基站上报能力报文,能力报文包括第一时间偏移量化值。
其中,第一时间偏移量化值至少表征中继设备进行上下行切换的时间。
S1202、中继设备接收基站发送给用户设备的定时提前偏移TA-offset量化值。
其中,TA-offset量化值是基站根据第一时间偏移量化值和第二时间偏移量化值发送的, 第二时间偏移量化值至少表征基站进行上下行切换的时间。
S1203、中继设备将TA-offset量化值转发至用户设备。
在一个示例中,能力报文可以包括第一时间偏移量化值,中继设备向基站上报能力报文,基站在接收到能力报文后则可以确定第一时间偏移量化值。
采用上述方法,将第一时间偏移量化值放在能力报文中,中继设备可以通过向基站上报能力报文的方式上报第一时间偏移量化值。
图13是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图13所示,该传输定时调整方法包括:
S1301、中继设备向基站上报能力报文,能力报文包括索引值,索引值用于基站确定第一时间偏移量化量。
其中,第一时间偏移量化值至少表征中继设备进行上下行切换的时间。
S1302、中继设备接收基站发送给用户设备的定时提前偏移TA-offset量化值。
其中,TA-offset量化值是基站根据第一时间偏移量化值和第二时间偏移量化值发送的,第二时间偏移量化值至少表征基站进行上下行切换的时间。
S1303、中继设备将TA-offset量化值转发至用户设备。
在一个示例中,能力报文可以包括索引值,索引值用于基站确定第一时间偏移量化量。
采用上述方法,依据索引值,将第一时间偏移量化值放在能力报文中,中继设备可以通过向基站上报能力报文的方式上报第一时间偏移量化值。
图14是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图14所示,该传输定时调整方法包括:
S1401、用户设备接收基站发送给用户设备的定时提前偏移TA-offset量化值。
其中,TA-offset量化值是基站根据第一时间偏移量化值和第二时间偏移量化值发送的,第一时间偏移量化值至少表征中继设备进行上下行切换的时间,第二时间偏移量化值至少表征基站进行上下行切换的时间;
S1402、用户设备根据TA-offset量化值调整传输定时。
采用上述方法,用户设备根据接收到的TA-offset量化值调整传输定,可以将中继设备进行上下行切换的时间加入传输定时(也可称为上行定时提前)的计算中,使得不同用户设备的上行信号到达基站的时间能够更准确的对齐。
图15是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图15所示,该传输定时调整方法包括:
S1501、用户设备接收基站发送给用户设备的定时提前偏移TA-offset量化值。
其中,TA-offset量化值是基站根据第一时间偏移量化值和第二时间偏移量化值发送的,第一时间偏移量化值至少表征中继设备进行上下行切换的时间,第二时间偏移量化值至少表征基站进行上下行切换的时间;
用户设备通过中继设备进行辅助通信,定时提前偏移TA-offset量化值包括第一时间偏移量化值和第二时间偏移量化值,
S1502、用户设备根据第一时间偏移量化值和第二时间偏移量化值调整传输定时T_TA。
其中,T_TA=(N_TA+N_TA,offset1+N_TA,offset2)*Tc,N_TA是基站发送的提前时间TA量化值,N_TA,offset1为第一时间偏移量化值,N_TA,offset2为第二时间偏移量化值,Tc为预定义的时间单位。
在一个示例中,用户设备从基站的广播中获取第二时间偏移量,并从基站发送的UE-specific and/or UE-group specific信令中获取第一时间偏移量化值。这样,用户设备收到该信令后,可以在基站发送的提前时间TA量化值的基础上,加上第一时间偏移量化值以及第二时间偏移量化值来调整传输定时。
采用上述方法,用户设备可以将中继设备进行上下行切换的时间加入传输定时的计算中,使得不同用户设备的上行信号到达基站的时间能够更准确的对齐。
图16是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图16所示,用户设备通过中继设备进行辅助通信,定时提前偏移TA-offset量化值包括第一时间偏移量化值与第二时间偏移量化值的和值,用户设备根据TA-offset量化值调整传输定时,该传输定时调整方法包括:
S1601、用户设备接收基站发送给用户设备的定时提前偏移TA-offset量化值。
其中,TA-offset量化值是基站根据第一时间偏移量化值和第二时间偏移量化值发送的,第一时间偏移量化值至少表征中继设备进行上下行切换的时间,第二时间偏移量化值至少表征基站进行上下行切换的时间;
S1602、用户设备根据第一时间偏移量化值和第二时间偏移量的和值调整传输定时T_TA。其中,T_TA=(N_TA+N_TA,offset1‘)*Tc,N_TA是基站发送的提前时间TA量化值,N_TA,offset1‘为第一时间偏移量化值和第二时间偏移量化值的和值,Tc为预定义的时间单位。
在一个示例中,用户设备从基站的广播中获取第二时间偏移量,并从基站发送的UE-specific and/or UE-group specific信令中获取第一时间偏移量化值和第二时间偏移量化值的和值。这样,用户设备收到该信令后,可以在基站发送的提前时间TA量化值的基础上,加上第一时间偏移量化值以及第二时间偏移量化值来调整传输定时。
采用上述方法,用户设备可以将中继设备进行上下行切换的时间加入传输定时的计算中,使得不同用户设备的上行信号到达基站的时间能够更准确的对齐。
图17是根据一示例性实施例示出的一种传输定时调整装置的结构框图。该传输定时调整装置可以是通过软件、硬件或者软件与硬件的结合实现的基站或基站的一部分,用以执行前述基站侧方法实施例提供的传输定时调整方法的步骤。参照图17,该传输定时调整装置1700包括确定模块1701和第一发送模块1702。
确定模块1701,被配置为确定第一时间偏移量化值;
第一发送模块1702,被配置为根据所述第一时间偏移量化值和第二时间偏移量化值向用户设备发送定时提前偏移TA-offset量化值。
可选地,所述用户设备包括第一用户设备,所述第一用户设备为通过所述中继设备进行辅助通信的用户设备,所述第一发送模块1702包括:
第一发送子模块,用于通过UE-specific和/或UE-group specific信令向所述第一用户设备发送所述第一时间偏移量化值和所述第二时间偏移量化值的和值。
可选地,所述用户设备包括第一用户设备和第二用户设备,所述第一用户设备为通过所述中继设备进行辅助通信的用户设备,所述第二用户设备为未通过所述中继设备进行辅助通信的用户设备,所述第一发送模块1702包括:
第二发送子模块,用于通过UE-specific和/或UE-group specific信令向所述第一用户设备发送所述第一时间偏移量化值。
第一广播模块,用于广播所述第二时间偏移量化值。
可选地,所述装置还包括:
第一确定子模块,用于在根据所述第一时间偏移量化值和第二时间偏移量化值向用户设备发送定时提前偏移TA-offset量化值之前,确定所述中继设备相对所述第一用户设备透明。
可选地,所述第一发送模块1702包括:
第二广播模块,用于广播所述第一时间偏移量化值以及所述第二时间偏移量化值。
可选地,所述第一发送模块1702包括:
第三广播模块,用于广播所述第二时间偏移量化值以及所述第一时间偏移量化值与所述第二时间偏移量化值的和值。
可选地,所述用户设备包括第一用户设备,所述第一用户设备为通过所述中继设备进行辅助通信的用户设备,所述装置还包括:
第二确定子模块,用于在根据所述第一时间偏移量化值和第二时间偏移量化值向用户设备发送定时提前偏移TA-offset量化值之前,确定所述中继设备相对所述第一用户设备不透明。
可选地,确定模块1701包括:
第一获取模块,用于获取所述中继设备上报的能力报文中包括的所述第一时间偏移量化值。
可选地,确定模块1701包括:
第二获取模块,用于获取所述中继设备上报的能力报文中包括的索引值;
第三确定字模块,用于根据所述索引值,确定所述第一时间偏移量化值。
可选地,确定模块1701包括:
第四确定字模块,用于将预设的默认值确定为所述第一时间偏移量化值。
可选地,确定模块1701包括:
第五确定字模块,用于在未获取到所述中继设备上报的第一时间偏移量化值的情况下,将预设的默认值确定为所述第一时间偏移量化值。
可选地,所述第一时间偏移量化值包括对应不同频段的量化值。
可选地,所述第一时间偏移量化值的时间单位为绝对时间单位,或者,所述第一时间偏移量化值的时间单位为无线通信系统中的时间单元。
图18是根据一示例性实施例示出的一种传输定时调整装置的结构框图。该传输定时调整装置可以是通过软件、硬件或者软件与硬件结合实现的中继设备或者中继设备的一部分,用以执行前述中继设备侧的方法实施例提供的传输定时调整方法的步骤。参照图18,该传输定时调整装置1800包括上报模块1801、第二接收模块1802和第二发送模块1803。
上报模块1801,被配置为向基站上报第一时间偏移量化值,所述第一时间偏移量化值至少表征所述中继设备进行上下行切换的时间;
第一接收模块1802,被配置为接收所述基站发送给用户设备的定时提前偏移TA-offset量化值,所述TA-offset量化值是所述基站根据所述第一时间偏移量化值和第二时间偏移量化值发送的,所述第二时间偏移量化值至少表征所述基站进行上下行切换的时间;
第二发送模块1803,被配置为将所述TA-offset量化值转发至用户设备。
可选地,所述上报模块1801包括:
第一上报子模块,用于向所述基站上报能力报文,所述能力报文包括所述第一时间偏移量化值。
可选地,所述上报模块1801包括:
第二上报子模块,用于向所述基站上报能力报文,所述能力报文包括索引值,所述索引值用于所述基站确定所述第一时间偏移量化量。
图19是根据一示例性实施例示出的一种传输定时调整装置的结构框图。该传输定时调整装置可以是通过软件、硬件或者软件与硬件结合实现的用户设备或者用户设备的一部分,用以执行前述用户设备侧的方法实施例提供的传输定时调整方法的步骤。参照图19,该传输定时调整装置1900包括第二接收模块1901和调整模块1902。
第二接收模块1901,被配置为接收基站发送给用户设备的定时提前偏移TA-offset量化值,所述TA-offset量化值是所述基站根据第一时间偏移量化值和第二时间偏移量化值发送的,所述第一时间偏移量化值至少表征中继设备进行上下行切换的时间,所述第二时间 偏移量化值至少表征所述基站进行上下行切换的时间;
调整模块1902,被配置为根据所述TA-offset量化值调整传输定时。
可选地,所述用户设备通过所述中继设备进行辅助通信,所述定时提前偏移TA-offset量化值包括所述第一时间偏移量化值和所述第二时间偏移量化值,所述调整模块1902包括:
第一调整子模块,用于根据所述第一时间偏移量化值和所述第二时间偏移量化值调整传输定时T_TA;其中,
T_TA=(N_TA+N_TA,offset1+N_TA,offset2)*Tc;
其中,N_TA是所述基站发送的提前时间TA量化值,N_TA,offset1为所述第一时间偏移量化值,N_TA,offset2为所述第二时间偏移量化值,Tc为预定义的时间单位。
可选地,所述用户设备通过所述中继设备进行辅助通信,所述定时提前偏移TA-offset量化值包括所述第一时间偏移量化值与所述第二时间偏移量化值的和值,所述调整模块1902包括:
第二调整子模块,用于根据所述第一时间偏移量化值和所述和值调整传输定时T_TA;其中,
T_TA=(N_TA+N_TA,offset1‘)*Tc;
其中,N_TA是所述基站发送的提前时间TA量化值,N_TA,offset1‘为所述第一时间偏移量化值和所述第二时间偏移量化值的和值,Tc为预定义的时间单位。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例还提供一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现本公开提供的基站侧、中继设备侧以及用户设备侧中的任一侧执行的传输定时调整方法的步骤。
本公开实施例还提供一种传输定时调整装置,包括:处理器;用于存储处理器可执行指令的存储器;其中,所述处理器被配置为在执行所述可执行指令时,实现本公开提供的基站侧、中继设备侧以及用户设备侧中的任一侧执行的传输定时调整方法的步骤。
图20是根据一示例性实施例示出的一种传输定时调整装置的结构框图。例如,该传输定时调整装置2000可以是为上述的用户设备或者中继设备。
参照图20,该装置2000可以包括以下一个或多个组件:处理组件2002,存储器2004,以及通信组件2016。
处理组件2002通常控制装置2000的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件2002可以包括一个或多个处理器2020来执行指令,以完成上述用户设备侧或者中继设备侧执行方法的步骤。此外,处理组件2002可以包括一个或多个模块,便于处理组件2002和其他组件之间的交互。例如,处理组件2002可以包括多媒体模块,以方便多媒体组件2008和处理组件2002之间的交互。
存储器2004被配置为存储各种类型的数据以支持在装置2000的操作。这些数据的示例包括用于在装置2000上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器2004可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
通信组件2016被配置为便于装置2000和其他设备之间有线或无线方式的通信。装置2000可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件2016经由广播信道接收来自外部广播管理系统的广播信号或广播 相关信息。在一个示例性实施例中,所述通信组件2016还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置2000可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述用户设备侧或者中继设备侧执行方法的步骤。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器2004,上述指令可由装置2000的处理器2020执行以完成上述AI服务执行方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
上述装置除了可以是独立的电子设备外,也可是独立电子设备的一部分,例如在一种实施例中,该装置可以是集成电路(Integrated Circuit,IC)或芯片,其中该集成电路可以是一个IC,也可以是多个IC的集合;该芯片可以包括但不限于以下种类:GPU(Graphics Processing Unit,图形处理器)、CPU(Central Processing Unit,中央处理器)、FPGA(Field Programmable Gate Array,可编程逻辑阵列)、DSP(Digital Signal Processor,数字信号处理器)、ASIC(Application Specific Integrated Circuit,专用集成电路)、SOC(System on Chip,SoC,片上系统或系统级芯片)等。上述的集成电路或芯片中可以用于执行可执行指令(或代码),以实现上述用户设备侧或者中继设备侧执行方法的全部或部分步骤。其中该可执行指令可以存储在该集成电路或芯片中,也可以从其他的装置或设备获取,例如该集成电路或芯片中包括处理器、存储器,以及用于与其他的装置通信的接口。该可执行指令可以存储于该处理器中,当该可执行指令被处理器执行时实现上述用户设备侧或者中继设备侧执行方法的步骤;或者,该集成电路或芯片可以通过该接口接收可执行指令并传输给该处理器执行,以实现上述用户设备侧或者中继设备侧执行方法的步骤。
图21是根据一示例性实施例示出的一种传输定时调整装置的结构框图。例如,传输定时调整装置2100可以被提供为一基站。参照图21,传输定时调整装置2100包括处理组件2122,其进一步包括一个或多个处理器,以及由存储器2132所代表的存储器资源,用于存储可由处理组件2122的执行的指令,例如应用程序。存储器2132中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件2122被配置为执行指令,以执行上述基站侧的方法实施例提供的传输定时调整方法的步骤。
传输定时调整装置2100还可以包括一个电源组件2126被配置为执行装置2100的电源管理,一个有线或无线网络接口2150被配置为将传输定时调整装置2100连接到网络,和一个输入输出(I/O)接口2158。传输定时调整装置2100可以操作基于存储在存储器2132的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
在另一示例性实施例中,还提供一种计算机程序产品,该计算机程序产品包含能够由可编程的装置执行的计算机程序,该计算机程序具有当由该可编程的装置执行时用于执行基站侧、中继设备侧以及用户设备侧中的任一侧执行的传输定时调整方法的代码部分。
本领域技术人员在考虑说明书及实践本公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可 以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (24)

  1. 一种传输定时调整方法,其特征在于,包括:
    基站确定第一时间偏移量化值,所述第一时间偏移量化值至少表征中继设备进行上下行切换的时间;
    所述基站根据所述第一时间偏移量化值和第二时间偏移量化值向用户设备发送定时提前偏移TA-offset量化值,所述第二时间偏移量化值至少表征所述基站进行上下行切换的时间,所述TA-offset量化值用于所述用户设备调整传输定时。
  2. 根据权利要求1所述的方法,其特征在于,所述用户设备包括第一用户设备,所述第一用户设备为通过所述中继设备进行辅助通信的用户设备,所述基站根据所述第一时间偏移量化值和第二时间偏移量化值向用户设备发送定时提前偏移TA-offset量化值,包括:
    所述基站通过UE-specific和/或UE-group specific信令向所述第一用户设备发送所述第一时间偏移量化值和所述第二时间偏移量化值的和值。
  3. 根据权利要求1所述的方法,其特征在于,所述用户设备包括第一用户设备和第二用户设备,所述第一用户设备为通过所述中继设备进行辅助通信的用户设备,所述第二用户设备为未通过所述中继设备进行辅助通信的用户设备,所述基站根据所述第一时间偏移量化值和第二时间偏移量化值向用户设备发送定时提前偏移TA-offset量化值,包括:
    所述基站通过UE-specific和/或UE-group specific信令向所述第一用户设备发送所述第一时间偏移量化值。
    所述基站广播所述第二时间偏移量化值。
  4. 根据权利要求2或3所述的方法,其特征在于,在所述基站根据所述第一时间偏移量化值和第二时间偏移量化值向用户设备发送定时提前偏移TA-offset量化值之前,所述方法还包括:
    确定所述中继设备相对所述第一用户设备透明。
  5. 根据权利要求1所述的方法,其特征在于,所述基站根据所述第一时间偏移量化值和第二时间偏移量化值向用户设备发送定时提前偏移TA-offset量化值,包括:
    所述基站广播所述第一时间偏移量化值以及所述第二时间偏移量化值。
  6. 根据权利要求1所述的方法,其特征在于,所述基站根据所述第一时间偏移量化值和第二时间偏移量化值向用户设备发送定时提前偏移TA-offset量化值,包括:
    所述基站广播所述第二时间偏移量化值以及所述第一时间偏移量化值与所述第二时间偏移量化值的和值。
  7. 根据权利要求5或6所述的方法,其特征在于,所述用户设备包括第一用户设备,所述第一用户设备为通过所述中继设备进行辅助通信的用户设备,在所述基站根据所述第一时间偏移量化值和第二时间偏移量化值向用户设备发送定时提前 偏移TA-offset量化值之前,所述方法还包括:
    确定所述中继设备相对所述第一用户设备不透明。
  8. 根据权利要求1所述的方法,其特征在于,所述基站确定第一时间偏移量化值,包括:
    所述基站获取所述中继设备上报的能力报文中包括的所述第一时间偏移量化值。
  9. 根据权利要求1所述的方法,其特征在于,所述基站确定第一时间偏移量化值,包括:
    所述基站获取所述中继设备上报的能力报文中包括的索引值;
    所述基站根据所述索引值,确定所述第一时间偏移量化值。
  10. 根据权利要求1所述的方法,其特征在于,所述基站确定第一时间偏移量化值,包括:
    所述基站将预设的默认值确定为所述第一时间偏移量化值。
  11. 根据权利要求1所述的方法,其特征在于,所述基站确定第一时间偏移量化值,包括:
    所述基站在未获取到所述中继设备上报的第一时间偏移量化值的情况下,将预设的默认值确定为所述第一时间偏移量化值。
  12. 根据权利要求1所述的方法,其特征在于,所述第一时间偏移量化值包括对应不同频段的量化值。
  13. 根据权利要求1所述的方法,其特征在于,所述第一时间偏移量化值的时间单位为绝对时间单位,或者,所述第一时间偏移量化值的时间单位为无线通信系统中的时间单元。
  14. 一种传输定时调整方法,其特征在于,包括:
    中继设备向基站上报第一时间偏移量化值,所述第一时间偏移量化值至少表征所述中继设备进行上下行切换的时间;
    所述中继设备接收所述基站发送给用户设备的定时提前偏移TA-offset量化值,所述TA-offset量化值是所述基站根据所述第一时间偏移量化值和第二时间偏移量化值发送的,所述第二时间偏移量化值至少表征所述基站进行上下行切换的时间;
    所述中继设备将所述TA-offset量化值转发至用户设备。
  15. 根据权利要求14所述的方法,其特征在于,所述中继设备向基站上报第一时间偏移量化值,包括:
    所述中继设备向所述基站上报能力报文,所述能力报文包括所述第一时间偏移量化值。
  16. 根据权利要求14所述的方法,其特征在于,所述中继设备向基站上报第一时间偏移量化值,包括:
    所述中继设备向所述基站上报能力报文,所述能力报文包括索引值,所述索引 值用于所述基站确定所述第一时间偏移量化量。
  17. 一种传输定时调整方法,其特征在于,包括:
    用户设备接收基站发送给用户设备的定时提前偏移TA-offset量化值,所述TA-offset量化值是所述基站根据第一时间偏移量化值和第二时间偏移量化值发送的,所述第一时间偏移量化值至少表征中继设备进行上下行切换的时间,所述第二时间偏移量化值至少表征所述基站进行上下行切换的时间;
    所述用户设备根据所述TA-offset量化值调整传输定时。
  18. 根据权利要求17所述的方法,其特征在于,所述用户设备通过所述中继设备进行辅助通信,所述定时提前偏移TA-offset量化值包括所述第一时间偏移量化值和所述第二时间偏移量化值,所述用户设备根据所述TA-offset量化值调整传输定时,包括:
    所述用户设备根据所述第一时间偏移量化值和所述第二时间偏移量化值调整传输定时T_TA;其中,
    T_TA=(N_TA+N_TA,offset1+N_TA,offset2)*Tc;
    其中,N_TA是所述基站发送的提前时间TA量化值,N_TA,offset1为所述第一时间偏移量化值,N_TA,offset2为所述第二时间偏移量化值,Tc为预定义的时间单位。
  19. 根据权利要求17所述的方法,其特征在于,所述用户设备通过所述中继设备进行辅助通信,所述定时提前偏移TA-offset量化值包括所述第一时间偏移量化值与所述第二时间偏移量化值的和值,所述用户设备根据所述TA-offset量化值调整传输定时,包括:
    所述用户设备根据所述第一时间偏移量化值和所述和值调整传输定时T_TA;其中,
    T_TA=(N_TA+N_TA,offset1‘)*Tc;
    其中,N_TA是所述基站发送的提前时间TA量化值,N_TA,offset1‘为所述第一时间偏移量化值和所述第二时间偏移量化值的和值,Tc为预定义的时间单位。
  20. 一种传输定时调整装置,其特征在于,所述传输定时调整装置用于基站,包括:
    确定模块,被配置为确定第一时间偏移量化值,所述第一时间偏移量化值至少表征中继设备进行上下行切换的时间;
    第一发送模块,被配置为根据所述第一时间偏移量化值和第二时间偏移量化值向用户设备发送定时提前偏移TA-offset量化值,所述第二时间偏移量化值至少表征所述基站进行上下行切换的时间,所述TA-offset量化值用于所述用户设备调整传输定时。
  21. 一种传输定时调整装置,其特征在于,所述传输定时调整装置用于中继设备,包括:
    上报模块,被配置向基站上报第一时间偏移量化值,所述第一时间偏移量化值至少表征所述中继设备进行上下行切换的时间;
    第一接收模块,被配置为接收所述基站发送给用户设备的定时提前偏移 TA-offset量化值,所述TA-offset量化值是所述基站根据所述第一时间偏移量化值和第二时间偏移量化值发送的,所述第二时间偏移量化值至少表征所述基站进行上下行切换的时间;
    第二发送模块,被配置为将所述TA-offset量化值转发至用户设备。
  22. 一种传输定时调整装置,其特征在于,所述传输定时调整装置用于用户设备,包括:
    第二接收模块,被配置为接收基站发送给用户设备的定时提前偏移TA-offset量化值,所述TA-offset量化值是所述基站根据第一时间偏移量化值和第二时间偏移量化值发送的,所述第一时间偏移量化值至少表征中继设备进行上下行切换的时间,所述第二时间偏移量化值至少表征所述基站进行上下行切换的时间;
    调整模块,被配置为根据所述TA-offset量化值调整传输定时。
  23. 一种计算机可读存储介质,其上存储有计算机程序指令,其特征在于,该程序指令被处理器执行时实现权利要求1~19中任一项所述方法的步骤。
  24. 一种传输定时调整装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行所述可执行指令时实现权利要求1至19任一项所述的传输定时调整方法。
PCT/CN2022/090735 2022-04-29 2022-04-29 传输定时调整方法、装置及存储介质 WO2023206557A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN202280001272.6A CN115004781B (zh) 2022-04-29 2022-04-29 传输定时调整方法、装置及存储介质
PCT/CN2022/090735 WO2023206557A1 (zh) 2022-04-29 2022-04-29 传输定时调整方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090735 WO2023206557A1 (zh) 2022-04-29 2022-04-29 传输定时调整方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2023206557A1 true WO2023206557A1 (zh) 2023-11-02

Family

ID=83023236

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090735 WO2023206557A1 (zh) 2022-04-29 2022-04-29 传输定时调整方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN115004781B (zh)
WO (1) WO2023206557A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109495961A (zh) * 2017-09-11 2019-03-19 电信科学技术研究院 一种时间提前量指示方法、基站、终端及装置
CN113163481A (zh) * 2020-01-23 2021-07-23 中国移动通信有限公司研究院 一种上行传输定时的确定方法、终端及基站
CN113508624A (zh) * 2019-03-28 2021-10-15 华为技术有限公司 一种定时对齐的方法和装置
CN114071690A (zh) * 2020-08-06 2022-02-18 维沃移动通信有限公司 信息上报方法、信息接收方法及相关设备
US20220104170A1 (en) * 2019-02-14 2022-03-31 Telefonaktiebolaget Lm Ericsson (Publ) Wireless communication device, radio access network node, methods, and computer programs for power efficient paging escalation

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3447936A1 (en) * 2017-08-22 2019-02-27 Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. Wireless communication system, base-station and user-side-device
US11102777B2 (en) * 2017-11-10 2021-08-24 Telefonaktiebolaget Lm Ericsson (Publ) Timing advance offset for uplink-downlink switching in new radio
EP3937556A1 (en) * 2017-11-10 2022-01-12 Telefonaktiebolaget Lm Ericsson (Publ) Timing advance offset for uplink-downlink switching in new radio
CN110167133B (zh) * 2018-02-13 2021-08-13 华为技术有限公司 一种上行同步方法及装置
KR102395264B1 (ko) * 2018-05-11 2022-05-04 광동 오포 모바일 텔레커뮤니케이션즈 코포레이션 리미티드 릴레이 시스템 동기화 방법, 장치, 컴퓨터 장치 및 저장 매체
CN112153556A (zh) * 2019-06-28 2020-12-29 中国移动通信有限公司研究院 一种信号传输方法、通信设备及基站
CN112929983A (zh) * 2019-12-06 2021-06-08 中兴通讯股份有限公司 基于时间调整量的接入方法、装置、设备及介质
CN113890700B (zh) * 2020-07-03 2023-04-07 维沃移动通信有限公司 定时偏移值的指示方法和设备

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109495961A (zh) * 2017-09-11 2019-03-19 电信科学技术研究院 一种时间提前量指示方法、基站、终端及装置
US20220104170A1 (en) * 2019-02-14 2022-03-31 Telefonaktiebolaget Lm Ericsson (Publ) Wireless communication device, radio access network node, methods, and computer programs for power efficient paging escalation
CN113508624A (zh) * 2019-03-28 2021-10-15 华为技术有限公司 一种定时对齐的方法和装置
CN113163481A (zh) * 2020-01-23 2021-07-23 中国移动通信有限公司研究院 一种上行传输定时的确定方法、终端及基站
CN114071690A (zh) * 2020-08-06 2022-02-18 维沃移动通信有限公司 信息上报方法、信息接收方法及相关设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZTE CORPORATION, SANECHIPS: "Remaining issues on TA report", 3GPP DRAFT; R2-2110733, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. electronic; 20211101 - 20211112, 22 October 2021 (2021-10-22), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France, XP052067176 *

Also Published As

Publication number Publication date
CN115004781A (zh) 2022-09-02
CN115004781B (zh) 2024-01-30

Similar Documents

Publication Publication Date Title
EP3883307B1 (en) Synchronous communication method and terminal
US20230261829A1 (en) Wireless communication method and apparatus, device, and storage medium
EP4191963A1 (en) Information transmission method and apparatus, and communication device
CN111264068B (zh) 定位的处理方法、装置、基站、终端设备及存储介质
WO2019052168A1 (zh) 配置anr的方法、终端设备、基站和核心网设备
US20210127317A1 (en) Path selecting method, terminal device, and network device
US12003450B2 (en) Signal transmission method and device and terminal
US20230189026A1 (en) Method and device for measuring channel state information
CN110495203B (zh) 共存干扰上报方法及装置、移动终端及存储介质
WO2020248288A1 (zh) 无线通信的方法、终端设备和网络设备
KR20210142174A (ko) 무선 통신 장치 및 그 무선 통신 방법
US20220116862A1 (en) Apparatus, system, and method of link disablement of an access point (ap)
AU2019303771A1 (en) D2d communication method and terminal device
WO2021092841A1 (zh) 下行控制信息传输方法及装置、通信设备及存储介质
WO2023206557A1 (zh) 传输定时调整方法、装置及存储介质
WO2021056584A1 (zh) 一种通信方法及装置
US20220322262A1 (en) Method, apparatus, and system for signal synchronization
WO2023115354A1 (zh) 通信方法及装置
KR20220002339A (ko) 사용자 디바이스 및 그 무선 통신 방법
US20230397174A1 (en) Methods and apparatuses for indicating a set of resources on a nr sidelink
US20200187192A1 (en) Method for indicating number of transmitting ports of ue, ue and network device
EP4099770A1 (en) Information processing method and apparatus, storage medium, and processor
US20230239822A1 (en) Wireless communication method, terminal device, and network device
RU2801396C1 (ru) Способ и устройство для передачи информации, устройство связи и носитель данных
WO2023206546A1 (zh) 传输定时调整方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939401

Country of ref document: EP

Kind code of ref document: A1