WO2023206546A1 - 传输定时调整方法、装置及存储介质 - Google Patents

传输定时调整方法、装置及存储介质 Download PDF

Info

Publication number
WO2023206546A1
WO2023206546A1 PCT/CN2022/090693 CN2022090693W WO2023206546A1 WO 2023206546 A1 WO2023206546 A1 WO 2023206546A1 CN 2022090693 W CN2022090693 W CN 2022090693W WO 2023206546 A1 WO2023206546 A1 WO 2023206546A1
Authority
WO
WIPO (PCT)
Prior art keywords
transmission delay
quantized value
user equipment
transmission
base station
Prior art date
Application number
PCT/CN2022/090693
Other languages
English (en)
French (fr)
Inventor
朱亚军
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2022/090693 priority Critical patent/WO2023206546A1/zh
Priority to CN202280001273.0A priority patent/CN115004795A/zh
Publication of WO2023206546A1 publication Critical patent/WO2023206546A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0055Synchronisation arrangements determining timing error of reception due to propagation delay

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a transmission timing adjustment method, device and storage medium.
  • the base station In order to ensure uplink orthogonality, the base station requires that signals from different user equipments in the same subframe but using different frequency domain resources arrive at the base station to be basically aligned. As long as the base station receives the uplink data sent by the user equipment within the cyclic prefix (CP, Cyclic Prefix) range, it can correctly decode the uplink data. Therefore, in the uplink synchronization mechanism of the related art, the base station allows the base station to adjust the uplink transmission timing by indicating the timing advance (TA, Timing Advance) quantization value to the user equipment, thereby allowing signals from different user equipment in the same subframe to reach the base station. The time falls within the CP range.
  • TA Timing Advance
  • a relay device controlled by the network is expected to become a key technology for expanding cell coverage.
  • the coverage of the cell can be effectively expanded.
  • the uplink synchronization mechanism in related technologies will be affected.
  • the present disclosure provides a transmission timing adjustment method, device and storage medium.
  • a transmission timing adjustment method is provided, applied to a base station, including:
  • the first transmission delay is the transmission delay between the user equipment and the relay device.
  • the second transmission delay is the transmission delay between the relay device and the relay device. Transmission delay between base stations;
  • a timing advance TA quantized value is sent to the user equipment according to the first transmission delay and the second transmission delay, and the TA quantized value is used by the user equipment to adjust transmission timing.
  • a transmission timing adjustment method is provided, applied to user equipment, including:
  • the TA quantized value is sent by the base station according to the first transmission delay and the second transmission delay.
  • the first transmission delay is the transmission between the user equipment and the relay equipment.
  • Delay is the transmission delay between the relay device and the base station;
  • the transmission timing is adjusted according to the TA quantization value.
  • a transmission timing adjustment device includes:
  • a determining module configured to determine a first transmission delay and a second transmission delay, the first transmission delay being the transmission delay between the user equipment and the relay device, the second transmission delay being the The transmission delay between the relay device and the base station;
  • a sending module configured to send a timing advance TA quantized value to the user equipment according to the first transmission delay and the second transmission delay, where the TA quantized value is used by the user equipment to adjust transmission timing.
  • a transmission timing adjustment device includes:
  • the receiving module is configured to receive a TA quantized value sent by the base station.
  • the TA quantized value is sent by the base station according to a first transmission delay and a second transmission delay.
  • the first transmission delay is between the user equipment and the center.
  • the transmission delay between relay devices, the second transmission delay is the transmission delay between the relay device and the base station;
  • an adjustment module configured to adjust the transmission timing according to the TA quantization value.
  • a transmission timing adjustment device including:
  • Memory used to store instructions executable by the processor
  • the processor is configured to: when executing the executable instructions, implement the transmission timing adjustment method described in the first aspect of this disclosure, or the transmission timing adjustment method described in the second aspect of this disclosure.
  • a non-transitory computer storage medium stores executable instructions. When the executable instructions are executed by a processor, they cause the processor to execute the present invention. Disclosed is the transmission timing adjustment method described in the first aspect, or the transmission timing adjustment method described in the second aspect of this disclosure.
  • the base station when signals are forwarded through a relay device between the user equipment and the base station, the base station can determine the first transmission delay between the user equipment and the relay device, and the relay device and the second transmission delay between the base station and the base station, and sends a timing advance TA quantized value to the user equipment according to the first transmission delay and the second transmission delay for the user equipment to adjust the transmission timing, thereby improving the user equipment transmission Timing accuracy.
  • FIG. 1 is a schematic diagram of a wireless communication system according to an exemplary embodiment.
  • Figure 2 is a flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 3 is a flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 4 is a flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 5 is a flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 6 is a flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 7 is a flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 8 is a flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 9 is a flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 10 is a flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 11 is a flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 12 is a flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 13 is a flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 14 is a flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 15 is a flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 16 is a flowchart of a transmission timing adjustment method according to an exemplary embodiment.
  • Figure 17 is a schematic diagram of MAC RAR in related art.
  • Figure 18 is a schematic diagram of a relative timing advance instruction MAC CE in the related art.
  • Figure 19 is a schematic diagram of an absolute timing advance instruction MAC CE in the related art.
  • Figure 20 is a block diagram of a transmission timing adjustment device according to an exemplary embodiment.
  • Figure 21 is a block diagram of a transmission timing adjustment device according to an exemplary embodiment.
  • Figure 22 is a schematic diagram of a transmission timing adjustment device according to an exemplary embodiment.
  • Figure 23 is a schematic diagram of a transmission timing adjustment device according to an exemplary embodiment.
  • the base station In order to ensure uplink orthogonality, the base station requires that signals from different user equipments in the same subframe but using different frequency domain resources arrive at the base station to be basically aligned. As long as the base station receives the uplink data sent by the user equipment within the cyclic prefix (CP, Cyclic Prefix) range, it can correctly decode the uplink data. Therefore, in the uplink synchronization mechanism of the related art, the base station allows the base station to adjust the uplink transmission timing by indicating the timing advance (TA, Timing Advance) quantization value to the user equipment, thereby allowing signals from different user equipment in the same subframe to reach the base station. The time falls within the CP range.
  • TA Timing Advance
  • a network-controlled relay device is expected to become a key technology used to expand cell coverage. It can be called a network-controlled relay device, a relay device that can directionally amplify signals, an intelligent relay device, a network Auxiliary relay equipment, controllable relay equipment, etc. are all referred to as relay equipment below.
  • Relay equipment can be composed of two parts: RU (repeater unit) and MT (mobile terminal). MT is used to receive and process control signals sent by the base station and has some functions of UE; RU is used to forward signals from the base station or UE.
  • the coverage of the cell can be effectively expanded.
  • the uplink synchronization mechanism in related technologies will be affected.
  • embodiments of the present disclosure provide a transmission timing adjustment method and device.
  • the implementation environment of the embodiment of the present disclosure is first introduced below.
  • Figure 1 is a schematic diagram of a wireless communication system according to an exemplary embodiment. As shown in Figure 1, the communication system includes several user equipments 11, relay equipment 12 and base stations 13.
  • the user equipment 11 may be a device that provides voice and/or data connectivity to the user.
  • the user equipment 11 can communicate with one or more core networks via a Radio Access Network (RAN).
  • RAN Radio Access Network
  • the user equipment 11 may be an Internet of Things terminal, such as a sensor device, a mobile phone (or a "cellular" phone), and a computer with an Internet of Things terminal, for example, it may be a fixed, portable, pocket-sized, handheld, computer-built-in Or a vehicle-mounted device.
  • station STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile
  • remote station remote station
  • access point remote terminal
  • access terminal access terminal
  • user terminal user terminal
  • user agent user agent
  • user equipment user device
  • user terminal User Equipment
  • the user equipment 11 may also be equipment of an unmanned aerial vehicle.
  • the user equipment 11 may also be a vehicle-mounted device, for example, it may be an on-board computer with a wireless communication function, or a wireless communication device connected to an external on-board computer.
  • the user equipment 11 may also be a roadside device, for example, it may be a street light, a signal light or other roadside device with a wireless communication function.
  • the relay device 12 may include RU (repeater unit, response unit) and MT (mobile terminal, mobile terminal).
  • MT is used to receive and process control signals sent by the base station and has some functions of the terminal;
  • RU is used to forward signals from the base station or terminal signal.
  • RIS intelligent metasurface
  • IRS Intelligent Reflection Surface
  • RIS or IRS can be flexibly deployed in the wireless communication propagation environment and control the frequency, phase, polarization and other characteristics of reflected or refracted electromagnetic waves, thereby achieving the purpose of reshaping the wireless channel.
  • RIS can use precoding technology to reflect signals incident on its surface to a specific direction, thereby enhancing the signal strength at the receiving end and achieving channel control.
  • the relay device 12 may also be an RIS and an IRS.
  • the base station 13 may be a network-side device in a wireless communication system.
  • the wireless communication system can be the 4th generation mobile communication technology (the 4th generation mobile communication, 4G) system, also known as the Long Term Evolution (LTE) system; or the wireless communication system can also be a 5G system, Also known as New Radio (NR) system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the base station 13 may be an evolved base station (eNB) used in the 4G system.
  • the base station 13 may also be a base station (gNB) that adopts a centralized distributed architecture in the 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (Central Unit, CU) and at least two distributed units (Distributed Unit, DU).
  • the centralized unit is equipped with a protocol stack including the Packet Data Convergence Protocol (PDCP) layer, the Radio Link Control protocol (Radio Link Control, RLC) layer, and the Media Access Control (Media Access Control, MAC) layer; distributed
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control
  • MAC Media Access Control
  • the unit is provided with a physical (Physical, PHY) layer protocol stack, and the embodiment of the present disclosure does not limit the specific implementation of the base station 13.
  • Each user equipment 11 can establish a wireless connection with the relay device 12 through the wireless air interface, and the relay device 12 can also establish a communication connection with the base station 13 through the wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as The wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on the next generation mobile communication network technology standard of 5G.
  • the signal from the user equipment 11 can reach the base station 13 only after being forwarded by the relay device 12 .
  • the signal sent by the base station 13 can reach the user equipment 11 only after being forwarded by the relay device 12 .
  • user equipment within the coverage area of the same base station may include user equipment that performs auxiliary communication through relay equipment and equipment that does not need to perform auxiliary communication through relay equipment.
  • Figure 1 shows auxiliary communication through relay equipment. Indications performed by user equipment 11.
  • Figure 2 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 2, it includes:
  • the base station determines a first transmission delay and a second transmission delay.
  • the first transmission delay is the transmission delay between the user equipment and the relay equipment
  • the second transmission delay is between the relay equipment and the base station. transmission delay between them.
  • the base station sends a timing advance TA quantized value to the user equipment according to the first transmission delay and the second transmission delay.
  • the TA quantized value is used by the user equipment to adjust transmission timing.
  • the execution subject of the transmission timing adjustment method provided by the embodiments of the present disclosure may be a base station.
  • the base station is communicatively connected with the relay device
  • the relay device is communicatively connected with the user equipment.
  • the base station in the embodiment of the present disclosure may be the base station 13 in the wireless communication system shown in Figure 1
  • the relay device may be the relay device 12 in the wireless communication system shown in Figure 1
  • the user equipment may be the one shown in Figure 1 Any user equipment 11 in the wireless communication system shown.
  • the base station determines the first transmission delay between the user equipment and the relay device, and the second transmission delay between the relay device and the base station, based on the transmission delays of the two communication links. Send the TA quantized value to the user equipment so that the user equipment adjusts the transmission timing, so that when there is a relay device in the communication system, the base station can accurately adjust the transmission timing of the user equipment so that the signals of different user equipment arrive at the base station in time to be aligned. to avoid uplink synchronization of signals sent by user equipment due to the use of relay equipment.
  • Figure 3 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 3, it includes:
  • the base station determines a first transmission delay and a second transmission delay.
  • the first transmission delay is the transmission delay between the user equipment and the relay equipment
  • the second transmission delay is between the relay equipment and the base station. transmission delay between them.
  • the base station sends a media access control layer random access response MAC RAR to the user equipment according to the first transmission delay and the second transmission delay.
  • the MAC RAR includes a TA quantized value, where the TA quantized value occupies 12 bits, the TA quantization value ranges from 0 to N1, where N1 is greater than 3846 and less than 4096.
  • the MAC RAR (MAC payload for Random Access Response) may be sent by the base station in response to the random access request of the user equipment, and is used to adjust the transmission timing of the user equipment during the random access process.
  • the TA quantized value included in the MAC RAR may be an absolute amount used to adjust the transmission timing of the user equipment, that is, the user equipment can directly replace the current transmission timing of the user equipment based on the TA quantized amount. For example, the user equipment can calculate the transmission timing T TA based on the following formula:
  • T TA (N TA +N TA,offset )*T c ;
  • N TA is the TA quantized value
  • N TA,offset is the sum of the time offset quantized values sent by the base station
  • T c is a predefined time unit.
  • the MAC RAR includes a Timing Advance Command field, which may include a TA quantization value.
  • the TA quantization value in the MAC RAR The range is (0 ⁇ 3846), occupying 12 bits.
  • MAC RAR also includes an R (Reserved, reserved) field, a UL Grant (up-link grant, uplink grant) field and a Temporary C-RNTI (temporary C-RNTI) field, where the R field is The reserved bit is set to "0" in related technologies, the UL Grant field occupies 27 bits, and the Temporary C-RNTI field occupies 16 bits.
  • R Reserved, reserved
  • UL Grant up-link grant, uplink grant
  • Temporary C-RNTI temporary C-RNTI
  • N1 is greater than 3846 and less than 4096, effectively expanding the adjustable TA range of the user equipment to adapt to the presence of relays.
  • Device communication system that is to say, in order to solve the problem of increasing the total transmission delay caused by the use of relay equipment, this embodiment expands the value range of the TA quantization value so that the adjustment range of the user equipment transmission timing is wider and avoids the problem caused by the use of relay equipment. This causes the signal sent by the user device to be unable to achieve uplink synchronization.
  • Figure 4 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 4, it includes:
  • the base station determines a first transmission delay and a second transmission delay.
  • the first transmission delay is the transmission delay between the user equipment and the relay equipment
  • the second transmission delay is between the relay equipment and the base station. transmission delay between them.
  • the base station sends the media access control layer control unit MAC CE to the user equipment according to the first transmission delay and the second transmission delay.
  • the MAC CE includes a TA quantization value, where the TA quantization value occupies 12 bits.
  • the TA quantization value ranges from 0 to N2, where N2 is greater than 3846 and less than 4096.
  • the MAC CE is used to adjust the transmission timing of the user equipment during the service process after the random access process is completed.
  • the MAC CE may be a Timing Advance Command MAC CE (relative timing advance command MAC CE), and the TA quantized value included in the MAC CE may be an absolute amount used to adjust the transmission timing of the user equipment. It can also be Absolute Timing Advance Command MAC CE.
  • the TA quantized value included in the MAC CE can also be a relative amount used to adjust the transmission timing of the user equipment. For example, the user equipment can adjust the transmission timing based on the following formula. The current transmission timing N TA_old of the user equipment is adjusted:
  • N TA_new N TA_old +( TA -x)*16*64/2 ⁇ ;
  • the relative timing advance command MAC CE includes a TAG ID field and a Timing Advance Command (timing advance command) field, where the TAG ID field is used to represent the target TAG identity of the addressed TAG. This field occupies 2 bits.
  • the Timing Advance Command field includes the TA quantization value, which occupies 6 bits. The TA quantization value ranges from 0 to 61.
  • the absolute timing advance command MAC CE includes multiple R fields, that is, reserved fields, and a Timing Advance Command field.
  • the Timing Advance Command field includes the TA quantization value, which occupies 12 bits, and the TA quantization value ranges from 0 to 3846.
  • N2 is greater than 3846 and less than 4096, effectively expanding the adjustable TA range of the user equipment to adapt to the presence of relay equipment communication system. That is to say, in order to solve the problem of increasing the total transmission delay caused by the use of relay equipment, this embodiment expands the value range of the TA quantization value so that the adjustment range of the user equipment transmission timing is wider and avoids the problem caused by the use of relay equipment. This causes the signal sent by the user device to be unable to achieve uplink synchronization.
  • Figure 5 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 5, it includes:
  • the base station determines a first transmission delay and a second transmission delay.
  • the first transmission delay is the transmission delay between the user equipment and the relay equipment
  • the second transmission delay is between the relay equipment and the base station. transmission delay between them.
  • the base station sends a media access control layer random access response MAC RAR to the user equipment according to the first transmission delay and the second transmission delay.
  • the MAC RAR includes a TA quantized value, where the TA quantized value occupies X1 bits, where X1 is greater than 12.
  • the method further includes: increasing the bits occupied by the TA quantization value by expanding the size of the MAC RAR.
  • the number of bits occupied by the Timing Advance Command field can be expanded to 13 or more, while the number of bits occupied by other fields remains unchanged.
  • the range of TA quantization values can be expanded without changing the structure of the original MAC RAR.
  • the method further includes: keeping the size of the MAC RAR unchanged, and increasing the bits occupied by the TA quantization value by occupying reserved fields in the MAC RAR.
  • the R field can be merged into the Timing Advance Command field to realize the occupation of the reserved field, thereby increasing the bits occupied by the TA quantization value.
  • the range of the TA quantization value can be expanded while maintaining the total number of bytes occupied by the original MAC RAR.
  • the TA quantization value ranges from 0 to N3, where N3 is greater than 4096.
  • the range of the TA quantized value is related to the number of bits it occupies. For example, when the TA quantized value only occupies 12 bits, the maximum value that can be represented is 4096. If the TA quantized value occupies When the number of bits is expanded to greater than 12, the maximum value of the TA quantization value can be greater than 4096.
  • the possible value range of the TA quantized value can be greater than 4096 to adapt to the communication system with relay equipment and avoid user errors due to the use of relay equipment. The signal sent by the device cannot achieve uplink synchronization.
  • Figure 6 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 6, it includes:
  • the base station determines a first transmission delay and a second transmission delay.
  • the first transmission delay is the transmission delay between the user equipment and the relay equipment
  • the second transmission delay is between the relay equipment and the base station. transmission delay between them.
  • the base station sends the media access control layer control unit MAC CE to the user equipment according to the first transmission delay and the second transmission delay.
  • the MAC CE includes a TA quantized value, where the TA quantized value occupies X2 bits. Among them, X2 is greater than 12.
  • the MAC CE can be an absolute timing advance command MAC CE, and the TA quantized value in the MAC CE can be used to adjust the absolute amount of the current transmission timing of the user equipment.
  • the adjustable TA range of the user equipment can be adapted to the communication system where relay equipment exists.
  • the method further includes: keeping the size of the MAC CE unchanged, and increasing the bits occupied by the TA quantization value by occupying reserved fields in the MAC CE.
  • the MAC CE instruction includes 4 R fields, that is, reserved fields.
  • the 4 predetermined fields can be Any one or more of the reserved fields are merged into the Timing Advance Command field to realize the occupation of the reserved fields, thereby increasing the bits occupied by the TA quantization value.
  • the number of bits occupied by the Timing Advance Command field can be increased by one.
  • the number of bits occupied by the TA quantization value X2 13.
  • the method further includes: increasing the bits occupied by the TA quantization value by expanding the size of the MAC CE.
  • the number of bits occupied by the Timing Advance Command field can be expanded to 13, and the number of bits occupied by other fields can be maintained.
  • the range of TA quantization values can be expanded without changing the structure of the original MAC CE.
  • the TA quantization value ranges from 0 to N3, where N3 is greater than 4096.
  • the range of the TA quantized value is related to the number of bits it occupies. For example, when the TA quantized value only occupies 12 bits, the maximum value that can be represented is 4096. If the TA quantized value occupies When the number of bits is expanded to greater than 12, the maximum value of the TA quantization value can be greater than 4096. Using the above solution, by expanding the number of bits occupied by the TA quantized value to greater than 12, the value range of the TA quantized value can be greater than 4096, so as to adapt to communication systems with relay equipment and avoid user-related errors due to the use of relay equipment. The signal sent by the device cannot achieve uplink synchronization.
  • Figure 7 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 7, it includes:
  • the base station determines a first transmission delay and a second transmission delay.
  • the first transmission delay is the transmission delay between the user equipment and the relay equipment
  • the second transmission delay is between the relay equipment and the base station. transmission delay between them.
  • the base station sends the media access control layer control unit MAC CE to the user equipment according to the first transmission delay and the second transmission delay.
  • the MAC CE includes a TA quantization value, where the TA quantization value occupies X3 bits. Wherein, X3 is greater than 6, and the TA quantization value is a relative amount used to adjust the current transmission timing of the user equipment.
  • the TA quantized value occupies more bits than related technologies.
  • the range of the TA quantization value can be effectively expanded, so that the adjustable TA range of the user equipment can adapt to the communication system in which relay equipment exists.
  • the number of bits occupied by the Timing Advance Command field in the MAC CE can be increased to 7 or more.
  • the TA quantization value ranges from 0 to M, where M is greater than 63.
  • the range of the TA quantized value is related to the number of bits it occupies. For example, when the TA quantized value only occupies 6 bits, the maximum value that can be represented is 64. If the TA quantized value occupies When the number of bits is expanded to greater than 6, the maximum value of the TA quantization value can be greater than 64.
  • the value range of the TA quantized value can be greater than 63 to adapt to communication systems with relay equipment and avoid the need for relay equipment. This causes the signal sent by the user device to be unable to achieve uplink synchronization.
  • Figure 8 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 8, it includes:
  • the base station determines a first transmission delay and a second transmission delay.
  • the first transmission delay is the transmission delay between the user equipment and the relay equipment
  • the second transmission delay is between the relay equipment and the base station. transmission delay between them.
  • the base station sends the quantized value of the first transmission delay and the quantized value of the second transmission delay to the user equipment.
  • the quantized value of the first transmission delay and the quantized value of the second transmission delay may be sent through different signaling.
  • the quantized value of the first transmission delay is sent to the user equipment based on MAC RAR
  • the second quantized value of the transmission delay is sent to the user equipment based on MAC RAR.
  • the quantified value of the transmission delay is sent to the user equipment based on the MAC CE.
  • the quantized value of the first transmission delay and the quantized value of the second transmission delay may also be sent through the same signaling.
  • a certain MAC RAR may include the quantized value of the first transmission delay and the quantized value of the second transmission delay. 2. Quantized value of transmission delay.
  • the first L bits in the Timing Advance Command field of the signaling are used to represent the quantized value of the first transmission delay, and the other bits are used to represent the quantized value of the second transmission delay.
  • the user terminal can then use the MAC to The RAR determines a quantized value of the first transmission delay and a quantized value of the second transmission delay.
  • L is less than the number of bits occupied by the Timing Advance Command field, and the number of bits occupied by the Timing Advance Command field is greater than 12.
  • the quantized value of the first transmission delay may be an absolute amount used to adjust the transmission timing of the user equipment, or may be a relative amount used to adjust the transmission timing of the user equipment.
  • the quantized value of the second transmission delay may be an absolute amount used to adjust the transmission timing of the user equipment, or may be a relative amount used to adjust the transmission timing of the user equipment.
  • the number of bits occupied by the quantized value of the first transmission delay may be 12, or may be greater than 12.
  • the number of bits occupied by the quantized value of the first transmission delay may be 6, or may be greater than 6.
  • the quantized value of the second transmission delay is an absolute quantity used to adjust the transmission timing of the user equipment
  • the number of bits occupied by the quantized value of the second transmission delay may be 12, or may be greater than 12.
  • the number of bits occupied by the quantized value of the second transmission delay may be 6, or may be greater than 6.
  • the user terminal Based on the sum of the quantized value of the first transmission delay and the quantized value of the second transmission delay, the user terminal can obtain the size of the overall TA quantized value in the corresponding communication system. Therefore, the base station passes the first transmission time
  • the quantized value of the delay and the quantified value of the second transmission delay can expand the range of the TA quantized value used by the user terminal to adjust the transmission timing to adapt to the communication system with relay equipment and avoid the problem caused by the use of relay equipment.
  • the signal sent by the user equipment cannot achieve uplink synchronization.
  • Figure 9 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 9, it includes:
  • the base station determines a first transmission delay and a second transmission delay.
  • the first transmission delay is the transmission delay between the user equipment and the relay equipment
  • the second transmission delay is between the relay equipment and the base station. transmission delay between them.
  • the first TA signaling and the second TA signaling may both be relative timing advance instructions MAC CE.
  • the first identification and the second identification may be stored in the TAG ID field in the signaling, for example, in In the MAC CE sent by the base station, when the information in the TAG ID field is 00, the TAG ID indicates that the MAC CE signaling is the first TA signaling, and the Timing Advance Command field in the MAC CE signaling indicates The information is the quantified value of the first transmission delay; when the information in the TAG ID field is 01, the TAG ID indicates that the MAC CE signaling is the second TA signaling, and the Timing Advance in the MAC CE signaling The information represented by the Command field is the quantized value of the second transmission delay.
  • the first TA signaling and the second TA signaling may also be MAC RAR, or an absolute timing advance command MAC CE.
  • MAC RAR MAC RAR
  • absolute timing advance command MAC CE absolute timing advance command
  • the user equipment can be configured according to the first identifier. and the second identifier determines whether the quantized value corresponding to the received signaling is the quantized value corresponding to the first transmission delay or the quantized value corresponding to the second transmission delay, thereby more accurately obtaining the overall performance of the user terminal in the communication system.
  • TA quantizes the value and adjusts transmission timing more accurately.
  • Figure 10 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment.
  • the execution subject of the method may be a user equipment, and the user equipment may be several user equipments 11 in the communication system as shown in Figure 1 Any user equipment in, as shown in Figure 10, the method includes:
  • the user equipment receives the TA quantized value sent by the base station.
  • the TA quantized value is sent by the base station according to the first transmission delay and the second transmission delay.
  • the first transmission delay is the time between the user equipment and the relay equipment.
  • Transmission delay, the second transmission delay is the transmission delay between the relay device and the base station.
  • the user equipment adjusts transmission timing according to the TA quantization value.
  • the base station determines the first transmission delay between the user equipment and the relay device, and the second transmission delay between the relay device and the base station, based on the transmission delays of the two communication links. Send the TA quantized value to the user equipment so that the user equipment adjusts the transmission timing, so that when there is a relay device in the communication system, the base station can accurately adjust the transmission timing of the user equipment so that the signals of different user equipment arrive at the base station in time to be aligned. to avoid uplink synchronization of signals sent by user equipment due to the use of relay equipment.
  • Figure 11 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 11, the method includes:
  • the user equipment obtains the TA quantized value from the media access control layer random access response MAC RAR sent by the base station, where the TA quantized value occupies 12 bits, and the value range of the TA quantized value is 0 to N1, where, N1 is greater than 3846 and less than 4096.
  • the user equipment adjusts the transmission timing according to the TA quantization value.
  • the adjustable TA range of the user equipment is effectively expanded to adapt to the communication system with relay equipment, avoiding Due to the use of relay equipment, the signal sent by the user equipment cannot achieve uplink synchronization.
  • Figure 12 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 12, the method includes:
  • the user equipment obtains the TA quantized value from the media access control layer control unit MAC CE sent by the base station.
  • the TA quantized value occupies 12 bits.
  • the TA quantized value ranges from 0 to N2, where N2 is greater than 3846 and less than 4096.
  • the user equipment adjusts transmission timing according to the TA quantization value.
  • the adjustable TA range of the user equipment is effectively expanded to adapt to the communication system with relay equipment, and avoids unnecessary problems.
  • the use of relay equipment causes the signal sent by the user equipment to be unable to achieve uplink synchronization.
  • Figure 13 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 13, the method includes:
  • the user equipment obtains the TA quantized value from the media access control layer random access response MAC RAR sent by the base station, where the TA quantized value occupies X1 bits, where X1 is greater than 12.
  • the user equipment adjusts transmission timing according to the TA quantization value.
  • the number of bits occupied by the Timing Advance Command field can be expanded to 13 or more to X1 bits, and the number of bits occupied by other fields can be maintained.
  • the range of TA quantization values can be expanded without changing the structure of the original MAC RAR.
  • the R field can be merged into the Timing Advance Command field to realize the occupation of the reserved field, thereby increasing the bits occupied by the TA quantization value to X1 bits.
  • the range of the TA quantization value can be expanded while maintaining the total number of bytes occupied by the original MAC RAR.
  • the TA quantization value ranges from 0 to N3, where N3 is greater than 4096.
  • N3 is greater than 4096.
  • Figure 14 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 14, the method includes:
  • the user equipment obtains the TA quantized value from the media access control layer control unit MAC CE sent by the base station, where the TA quantized value occupies X2 bits, where X2 is greater than 12.
  • the user equipment adjusts transmission timing according to the TA quantization value.
  • the MAC CE may be an absolute timing advance command MAC CE, and the TA quantized value in the MAC CE is an absolute amount used to adjust the current transmission timing of the user equipment. That is, the user equipment can directly replace the current transmission timing of the user equipment based on the TA quantization amount. For example, the user equipment can calculate the transmission timing T TA based on the following formula:
  • T TA (N TA +N TA,offset )*T c ;
  • N TA is the TA quantized value
  • N TA,offset is the sum of the time offset quantized values sent by the base station
  • T c is a predefined time unit.
  • the adjustable TA range of the user equipment can be adapted to the communication system where relay equipment exists.
  • the TA quantization value ranges from 0 to N3, where N3 is greater than 4096.
  • the range of the TA quantized value is related to the number of bits it occupies. For example, when the TA quantized value only occupies 12 bits, the maximum value that can be represented is 4096. If the TA quantized value occupies When the number of bits is expanded to greater than 12, the maximum value of the TA quantization value can be greater than 4096. Using the above solution, by expanding the number of bits occupied by the TA quantized value to greater than 12, the value range of the TA quantized value can be greater than 4096, so as to adapt to communication systems with relay equipment and avoid user-related errors due to the use of relay equipment. The signal sent by the device cannot achieve uplink synchronization.
  • Figure 15 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 15, the method includes:
  • the user equipment obtains the TA quantized value from the media access control layer control unit MAC CE sent by the base station, where the TA quantized value occupies X3 bits, where X3 is greater than 6, and the TA quantized value ranges from 0 to M, where M is greater than 63.
  • the user equipment adjusts the transmission timing to N TA_new according to the TA quantization value.
  • N TA_new N TA_old + ( TA -x)*16*64/2 ⁇ ;
  • N TA_old is the transmission timing of the user equipment before adjustment
  • T A is the TA quantization value
  • x (M-1)/2
  • the subcarrier spacing is 15*2 ⁇ .
  • the MAC CE is a relative timing advance command MAC CE
  • the TA quantization value in the MAC CE is a relative amount used to adjust the current transmission timing of the user equipment.
  • the TA quantized value occupies more bits than related technologies, which can be effectively implemented
  • the range of TA quantization values is expanded to realize that the adjustable TA range of user equipment can adapt to the communication system where relay equipment exists.
  • the range of the TA quantized value is related to the number of bits it occupies. For example, when the TA quantized value only occupies 6 bits, the maximum value that can be represented is 64. If the TA quantized value is When the number of occupied bits is expanded to greater than 6, the maximum value of the TA quantization value can be greater than or equal to 64. By expanding the number of bits occupied by the TA quantized value to greater than 6 bits, the value of the TA quantized value can be greater than 63.
  • the transmission timing of the user terminal is adjusted according to the above formula, so that the user terminal can be used in the application In the scenario of relay equipment, uplink synchronization of signals can still be accurately achieved based on this transmission timing.
  • Figure 16 is a flow chart of a transmission timing adjustment method according to an exemplary embodiment. As shown in Figure 16, the method includes:
  • the user equipment receives from the base station a quantized value of the first transmission delay and a quantized value of the second transmission delay.
  • the user equipment adjusts the transmission timing to T TA according to the quantized value N TA#1 of the first transmission delay and the quantized value N TA#2 of the second transmission delay.
  • T TA (N TA#1 +N TA#2 +N TA,offset )*T c ;
  • N TA,offset is the time offset quantized value sent by the base station
  • T c is the predefined time unit.
  • the quantized value of the first transmission delay and the quantized value of the second transmission delay may be sent by the base station, and the quantized value of the first transmission delay and the quantized value of the second transmission delay may be obtained through different
  • the quantized value of the first transmission delay is sent to the user equipment through the first TA signaling based on MAC RAR, and the quantified value of the second transmission delay is sent to the user through the second signaling based on the MAC CE. equipment.
  • the quantized value of the first transmission delay and the quantized value of the second transmission delay may also be sent through the same signaling, that is, the first TA signaling and the second TA signaling may be the same signaling. .
  • a certain MAC RAR may include a quantized value of the first transmission delay and a quantized value of the second transmission delay.
  • the first L bits in the Timing Advance Command field of the signaling are used to represent the quantized value of the first transmission delay, and the other bits are used to represent the quantized value of the second transmission delay.
  • the user terminal can then use the MAC to The RAR determines a quantized value of the first transmission delay and a quantized value of the second transmission delay.
  • L is less than the number of bits occupied by the Timing Advance Command field, and the number of bits occupied by the Timing Advance Command field is greater than 12.
  • the user equipment receives the quantized value of the first transmission delay between the user equipment and the relay device and the quantified value of the second transmission delay between the relay device and the base station sent by the base station, and based on the above formula , the new transmission timing can be calculated and adjusted according to the transmission timing, thereby ensuring that the signal sent by the user equipment based on the adjusted transmission timing can achieve uplink synchronization, ensuring that the user terminal can achieve synchronization in the communication system including relay equipment. Send signals efficiently.
  • the above-mentioned user equipment can also determine that the signaling is the first TA signaling or the second TA signaling according to the identifier in the signaling, where the first TA signaling includes the first Transmission delay, the second TA signaling includes the second transmission delay. Based on the first TA signaling and the second TA signaling, the user equipment can obtain the TA quantized value N TA#1 of the first transmission delay and the TA quantized value N TA#2 of the second transmission delay.
  • Figure 20 is a block diagram of a transmission timing adjustment device 2000 according to an exemplary embodiment. As shown in Figure 20, the device 2000 includes:
  • the determination module 2001 is configured to determine a first transmission delay and a second transmission delay.
  • the first transmission delay is the transmission delay between the user equipment and the relay equipment, and the second transmission delay is the relay equipment.
  • the sending module 2002 is configured to send a timing advance TA quantized value to the user equipment according to the first transmission delay and the second transmission delay, and the TA quantized value is used by the user equipment to adjust transmission timing.
  • the device 2000 includes a first sending module configured to:
  • the media access control layer random access response MAC RAR is sent to the user equipment according to the first transmission delay and the second transmission delay.
  • the MAC RAR includes a TA quantized value, where the TA quantized value occupies 12 bits, and the TA quantized value The value range is from 0 to N1, where N1 is greater than 3846 and less than 4096.
  • the device 2000 includes a second sending module configured to:
  • the media access control layer control unit MAC CE is sent to the user equipment according to the first transmission delay and the second transmission delay.
  • the MAC CE includes a TA quantization value, where the TA quantization value occupies 12 bits, and the TA quantization value is The value range is 0 to N2, where N2 is greater than 3846 and less than 4096.
  • the device 2000 includes a third sending module, the third sending module is configured to:
  • the media access control layer random access response MAC RAR is sent to the user equipment according to the first transmission delay and the second transmission delay.
  • the MAC RAR includes a TA quantized value, where the TA quantized value occupies X1 bits, where X1 is greater than 12.
  • the device 2000 also includes:
  • the expansion module is configured to increase the bits occupied by the TA quantization value by expanding the size of the MAC RAR.
  • the device 2000 also includes:
  • the first occupation module is configured to keep the size of the MAC RAR unchanged and increase the bits occupied by the TA quantization value by occupying the reserved fields in the MAC RAR.
  • the device 2000 includes a fourth sending module, the fourth sending module is configured to:
  • the media access control layer control unit MAC CE is sent to the user equipment according to the first transmission delay and the second transmission delay.
  • the MAC CE includes a TA quantization value, where the TA quantization value occupies X2 bits, where X2 is greater than 12.
  • the device 2000 also includes:
  • the second occupation module is configured to keep the size of the MAC CE unchanged and increase the bits occupied by the TA quantization value by occupying the reserved fields in the MAC CE.
  • the TA quantization value ranges from 0 to N3, where N3 is greater than 4096.
  • the device 2000 includes a fifth sending module configured to:
  • the media access control layer control unit MAC CE is sent to the user equipment according to the first transmission delay and the second transmission delay.
  • the MAC CE includes the TA quantized value, where the TA quantized value occupies X3 bits, where X3 is greater than 6 , the TA quantization value is a relative amount used to adjust the current transmission timing of the user equipment.
  • the TA quantization value ranges from 0 to M, where M is greater than 63.
  • the device 2000 includes a sixth sending module, the sixth sending module is configured to:
  • the device 2000 includes a seventh sending module, the seventh sending module is configured to:
  • the first TA signaling includes the first identifier and the first transmission delay
  • the second transmission delay is sent to the user equipment through the second TA signaling, where the second TA signaling includes the second identification and the second transmission delay.
  • Figure 21 is a block diagram of a transmission timing adjustment device 2100 according to an exemplary embodiment. As shown in Figure 21, the device 2100 includes:
  • the receiving module 2101 is configured to receive the TA quantized value sent by the base station.
  • the TA quantized value is sent by the base station according to the first transmission delay and the second transmission delay.
  • the first transmission delay is between the user equipment and the relay equipment.
  • the second transmission delay is the transmission delay between the relay device and the base station.
  • the adjustment module 2102 is configured to adjust the transmission timing according to the TA quantization value.
  • the device 2100 includes a first receiving module configured to:
  • the TA quantized value occupies 12 bits.
  • the TA quantized value ranges from 0 to N1, where N1 is greater than 3846 and Less than 4096.
  • the device 2100 includes a second receiving module configured to:
  • the TA quantized value from the media access control layer control unit MAC CE sent by the base station, where the TA quantized value occupies 12 bits, and the value range of the TA quantized value is 0 to N1, where N2 is greater than 3846 and less than 4096 .
  • the device 2100 includes a third receiving module configured to:
  • TA quantized value from the media access control layer random access response MAC RAR sent by the base station, where the TA quantized value occupies X1 bits, where X1 is greater than 12.
  • the device 2100 includes a fifth receiving module configured to:
  • TA quantization value from the media access control layer control unit MAC CE sent by the base station, where the TA quantization value occupies X2 bits, where X2 is greater than 12.
  • the TA quantization value ranges from 0 to N3, where N3 is greater than 4096.
  • the device 2100 includes a sixth receiving module configured to:
  • the TA quantized value occupies X3 bits, where X3 is greater than 6, and the TA quantized value ranges from 0 to M, where, M is greater than 63;
  • the device 2100 includes a first adjustment module configured to:
  • the user equipment adjusts the transmission timing to N TA_new according to the TA quantization value, where,
  • N TA_new N TA_old +( TA -x)*16*64/2 ⁇ ;
  • N TA_old is the transmission timing of the user equipment before adjustment
  • T A is the TA quantization value
  • x (M-1)/2
  • the subcarrier spacing is 15*2 ⁇ .
  • the device 2100 includes a seventh receiving module, the seventh receiving module is configured to:
  • the receiving base station sends the quantized value of the first transmission delay and the quantized value of the second transmission delay
  • the device 2100 includes a second adjustment module configured to:
  • the user equipment adjusts the transmission timing to T TA according to the quantized value N TA#1 of the first transmission delay and the quantized value N TA#2 of the second transmission delay;
  • T TA (N TA#1 +N TA#2 +N TA,offset )*T c ;
  • N TA,offset is the time offset quantized value sent by the base station
  • T c is the predefined time unit.
  • the present disclosure also provides a computer-readable storage medium on which computer program instructions are stored.
  • program instructions When the program instructions are executed by a processor, the steps of the data processing method provided by any of the foregoing method embodiments provided by the present disclosure are implemented.
  • Figure 22 is a block diagram of a transmission timing adjustment device 2200 according to an exemplary embodiment.
  • the apparatus 2200 may be a user device, which may be a mobile phone, a computer, a digital broadcast terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, or the like.
  • the device 2200 may include one or more of the following components: a processing component 2202, a memory 2204, a power component 2206, a multimedia component 2208, an audio component 2210, an input/output (I/O) interface 2212, a sensor component 2214, and communications component 2216.
  • Processing component 2202 generally controls the overall operations of device 2200, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 2202 may include one or more processors 2220 to execute instructions to complete all or part of the steps of the above-mentioned transmission timing adjustment method on the user equipment side.
  • processing component 2202 may include one or more modules that facilitate interaction between processing component 2202 and other components.
  • processing component 2202 may include a multimedia module to facilitate interaction between multimedia component 2208 and processing component 2202.
  • Memory 2204 is configured to store various types of data to support operations at device 2200. Examples of such data include instructions for any application or method operating on device 2200, contact data, phonebook data, messages, pictures, videos, etc.
  • Memory 2204 may be implemented by any type of volatile or non-volatile storage device, or a combination thereof, such as static random access memory (SRAM), electrically erasable programmable read-only memory (EEPROM), erasable programmable read-only memory (EEPROM), Programmable read-only memory (EPROM), programmable read-only memory (PROM), read-only memory (ROM), magnetic memory, flash memory, magnetic or optical disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read-only memory
  • EEPROM erasable programmable read-only memory
  • EPROM Programmable read-only memory
  • PROM programmable read-only memory
  • ROM read-only memory
  • magnetic memory flash memory, magnetic or optical disk.
  • Power component 2206 provides power to various components of device 2200.
  • Power components 2206 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to device 2200.
  • Multimedia component 2208 includes a screen that provides an output interface between the device 2200 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from the user.
  • the touch panel includes one or more touch sensors to sense touches, swipes, and gestures on the touch panel. The touch sensor may not only sense the boundary of a touch or slide action, but also detect the duration and pressure associated with the touch or slide action.
  • multimedia component 2208 includes a front-facing camera and/or a rear-facing camera.
  • the front camera and/or the rear camera may receive external multimedia data.
  • Each front-facing camera and rear-facing camera can be a fixed optical lens system or have a focal length and optical zoom capabilities.
  • Audio component 2210 is configured to output and/or input audio signals.
  • audio component 2210 includes a microphone (MIC) configured to receive external audio signals when device 2200 is in operating modes, such as call mode, recording mode, and voice recognition mode. The received audio signals may be further stored in memory 2204 or sent via communications component 2216.
  • audio component 2210 also includes a speaker for outputting audio signals.
  • the I/O interface 2212 provides an interface between the processing component 2202 and a peripheral interface module.
  • the peripheral interface module may be a keyboard, a click wheel, a button, etc. These buttons may include, but are not limited to: Home button, Volume buttons, Start button, and Lock button.
  • Sensor component 2214 includes one or more sensors that provide various aspects of status assessment for device 2200 .
  • the sensor component 2214 can detect the open/closed state of the device 2200, the relative positioning of components, such as the display and keypad of the device 2200, and the sensor component 2214 can also detect the position change of the device 2200 or a component of the device 2200. , the presence or absence of user contact with device 2200 , device 2200 orientation or acceleration/deceleration and temperature changes of device 2200 .
  • Sensor assembly 2214 may include a proximity sensor configured to detect the presence of nearby objects without any physical contact.
  • Sensor assembly 2214 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor component 2214 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 2216 is configured to facilitate wired or wireless communication between apparatus 2200 and other devices.
  • Device 2200 may access a wireless network based on a communication standard, such as WiFi, 2G or 3G, or a combination thereof.
  • the communication component 2216 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 2216 also includes a near field communication (NFC) module to facilitate short-range communications.
  • NFC near field communication
  • the NFC module can be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • apparatus 2200 may be configured by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable Gate array (FPGA), controller, microcontroller, microprocessor or other electronic components are implemented to perform the above transmission timing adjustment method on the user equipment side.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable Gate array
  • controller microcontroller, microprocessor or other electronic components are implemented to perform the above transmission timing adjustment method on the user equipment side.
  • FIG. 23 is a block diagram of a device 2300 for adjusting transmission timing according to an exemplary embodiment.
  • the apparatus 2300 may be provided as a base station.
  • apparatus 2300 includes a processing component 2322, which further includes one or more processors, and memory resources represented by memory 2332 for storing instructions, such as application programs, executable by processing component 2322.
  • the application program stored in memory 2332 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 2322 is configured to execute instructions to perform the above-mentioned transmission timing adjustment method on the base station side.
  • Device 2300 may also include a power supply component 2326 configured to perform power management of device 2300, a wired or wireless network interface 2350 configured to connect device 2300 to a network, and an input-output (I/O) interface 2358.
  • Device 2300 may operate based on an operating system stored in memory 2332, such as Windows Server TM , Mac OS X TM , Unix TM , Linux TM , FreeBSD TM or the like.
  • a non-transitory computer-readable storage medium including instructions such as a memory 2204 including instructions.
  • the instructions can be executed by the processor 2220 of the device 2200 to execute the above-mentioned transmission timing adjustment method on the user equipment side. Or the transmission timing adjustment method on the base station side.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, etc.
  • a computer program product comprising a computer program executable by a programmable device, the computer program having a function for performing the above when executed by the programmable device.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)
  • Time-Division Multiplex Systems (AREA)

Abstract

一种传输定时调整方法、装置及存储介质,包括:基站确定第一传输时延和第二传输时延,所述第一传输时延为用户设备与中继设备之间的传输时延,所述第二传输时延为所述中继设备与所述基站之间的传输时延;所述基站根据所述第一传输时延和所述第二传输时延向所述用户设备发送定时提前TA量化值,所述TA量化值用于所述用户设备调整传输定时。

Description

传输定时调整方法、装置及存储介质 技术领域
本公开涉及通信领域,尤其涉及一种传输定时调整方法、装置及存储介质。
背景技术
为了保证上行正交性,基站要求来自同一子帧但使用不同频域资源的不同用户设备的信号到达基站的时间基本上是对齐的。基站只要在循环前缀(CP,Cyclic Prefix)范围内接收到用户设备发送的上行数据,就能够正确的解码上行数据。因此,在相关技术的上行同步机制中,基站通过向用户设备指示定时提前(TA,Timing Advance)量化值,来使得基站调整上行传输定时,进而使得来自同一子帧的不同用户设备的信号到达基站的时间都落在CP范围内。
随着通信技术的发展,目前一种受网络控制的中继设备有望成为用来扩大小区覆盖范围的关键技术,通过中继设备转发用户设备或基站发送的信号,能够有效地扩大小区的覆盖范围。而在使用中继设备转发信号的情况下,将影响相关技术中的上行同步机制。
发明内容
为克服相关技术中存在的问题,本公开提供传输定时调整方法、装置及存储介质。
根据本公开实施例的第一方面,提供一种传输定时调整方法,应用于基站,包括:
确定第一传输时延和第二传输时延,所述第一传输时延为用户设备与中继设备之间的传输时延,所述第二传输时延为所述中继设备与所述基站之间的传输时延;
根据所述第一传输时延和所述第二传输时延向所述用户设备发送定时提前TA量化值,所述TA量化值用于所述用户设备调整传输定时。
根据本公开实施例的第二方面,提供一种传输定时调整方法,应用于用户设备,包括:
接收基站发送的TA量化值,所述TA量化值是所述基站根据第一传输时延和第二传输时延发送的,所述第一传输时延为用户设备与中继设备之间的传输时延,所述第二传输时延为所述中继设备与所述基站之间的传输时延;
根据所述TA量化值调整传输定时。
根据本公开实施例的第三方面,提供一种传输定时调整装置,所述装置包括:
确定模块,被配置为确定第一传输时延和第二传输时延,所述第一传输时延为用户设备与中继设备之间的传输时延,所述第二传输时延为所述中继设备与所述基站之间的传输时延;
发送模块,被配置为根据所述第一传输时延和所述第二传输时延向所述用户设备发送定时提前TA量化值,所述TA量化值用于所述用户设备调整传输定时。
根据本公开实施例的第四方面,提供一种传输定时调整装置,所述装置包括:
接收模块,被配置为接收基站发送的TA量化值,所述TA量化值是所述基站根据第一传输时延和第二传输时延发送的,所述第一传输时延为用户设备与中继设备之间的传输时延,所述第二传输时延为所述中继设备与所述基站之间的传输时延;
调整模块,被配置为根据所述TA量化值调整传输定时。
根据本公开实施例的第五方面,提供一种传输定时调整装置,包括:
处理器;
用于存储处理器可执行指令的存储器;
其中,所述处理器被配置为:执行所述可执行指令时实现本公开第一方面所述的传输定时调整方法,或者,本公开第二方面所述的传输定时调整方法。
根据本公开实施例的第六方面,提供一种非临时性计算机存储介质,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行时,使得所述处理器执行本公开第一方面所述的传输定时调整方法,或者,本公开第二方面所述的传输定时调整方法。
本公开的实施例提供的技术方案中,在用户设备与基站之间通过中继设备转发信号的情况下,基站可以确定用户设备与中继设备之间的第一传输时延,以及中继设备与基站之间的第二传输时延,并根据第一传输时延和第二传输时延向所述用户设备发送定时提前TA量化值,以用于用户设备调整传输定时,提高了用户设备传输定时的准确率。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开。
附图说明
本公开上述的和/或附加的方面和优点从下面结合附图对实施例的描述中将变得明显和容易理解,其中:
图1是根据一示例性实施例示出的一种无线通信系统的示意图。
图2是根据一示例性实施例示出的一种传输定时调整方法的流程图。
图3是根据一示例性实施例示出的一种传输定时调整方法的流程图。
图4是根据一示例性实施例示出的一种传输定时调整方法的流程图。
图5是根据一示例性实施例示出的一种传输定时调整方法的流程图。
图6是根据一示例性实施例示出的一种传输定时调整方法的流程图。
图7是根据一示例性实施例示出的一种传输定时调整方法的流程图。
图8是根据一示例性实施例示出的一种传输定时调整方法的流程图。
图9是根据一示例性实施例示出的一种传输定时调整方法的流程图。
图10是根据一示例性实施例示出的一种传输定时调整方法的流程图。
图11是根据一示例性实施例示出的一种传输定时调整方法的流程图。
图12是根据一示例性实施例示出的一种传输定时调整方法的流程图。
图13是根据一示例性实施例示出的一种传输定时调整方法的流程图。
图14是根据一示例性实施例示出的一种传输定时调整方法的流程图。
图15是根据一示例性实施例示出的一种传输定时调整方法的流程图。
图16是根据一示例性实施例示出的一种传输定时调整方法的流程图。
图17是相关技术中的MAC RAR的示意图。
图18是相关技术中的相对定时提前指令MAC CE的示意图。
图19是相关技术中的绝对定时提前指令MAC CE的示意图。
图20是根据一示例性实施例示出的一种传输定时调整装置的框图。
图21是根据一示例性实施例示出的一种传输定时调整装置的框图。
图22是根据一示例性实施例示出的一种传输定时调整装置的示意图。
图23是根据一示例性实施例示出的一种传输定时调整装置的示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开的一些方面相一致的装置和方法的例子。
需要说明的是,本申请中所有获取信号、信息或数据的动作都是在遵照所在地国家相应的数据保护法规政策的前提下,并获得由相应装置所有者给予授权的情况下进行的。
为了保证上行正交性,基站要求来自同一子帧但使用不同频域资源的不同用户设备的信号到达基站的时间基本上是对齐的。基站只要在循环前缀(CP,Cyclic Prefix)范围内接收到用户设备发送的上行数据,就能够正确的解码上行数据。因此,在相关技术的上行同步机制中,基站通过向用户设备指示定时提前(TA,Timing Advance)量化值,来使得基站调整上行传输定时,进而使得来自同一子帧的不同用户设备的信号到达基站的时间都落在CP范围内。
目前,一种受网络控制的中继设备有望成为用来扩大小区覆盖范围的关键技术,可以称之为受网络控制的中继设备、能定向放大信号的中继设备、智能中继设备、网络辅助的中继设备、可控制的中继设备等等,以下均以中继设备代指。中继设备可以由两部分组成:RU(repeater unit)和MT(mobile terminal),MT用来接收并处理基站发送的控制信号,具有部分UE的功能;RU用来转发来自基站或者UE的信号。
通过中继设备转发用户设备或基站发送的信号,能够有效地扩大小区的覆盖范围。而在使用中继设备转发信号的情况下,将影响相关技术中的上行同步机制。
为了解决上述问题,本公开实施例提供一种传输定时调整方法、装置。下面先介绍本公开实施例的实施环境。
图1是根据一示例性实施例示出的一种无线通信系统的示意图,如图1所示,该通信系统中包括若干个用户设备11、中继设备12以及基站13。
其中,用户设备11可以是指向用户提供语音和/或数据连通性的设备。用户设备11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信。用户设备11可以是物联网终端,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网终端的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程终端(remote terminal)、接入终端(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户终端(User Equipment,UE)。或者,用户设备11也可以是无人飞行器的设备。或者,用户设备11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,用户设备11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
该中继设备12可以包括RU(repeater unit,响应单元)和MT(mobile terminal,移动终端),MT用来接收并处理基站发送的控制信号,具有部分终端的功能;RU用来转发来自基站或者终端的信号。
此外,智能超表面(RIS,reconfigurable intelligent surface),或者IRS(Intelligent Reflection Surface)也被称为“可重构智能表面”或者“智能反射表面”。RIS或者IRS可以灵活部署在无线通信传播环境中,并实现对反射或者折射电磁波的频率、相位、极化等特征的操控,从而达到重塑无线信道的目的。具体地,RIS可以通过预编码技术,将入射到其表面的信号反射到特定的方向,从而增强接收端信号强度,实现对信道的控制。
由于一般中继设备和RIS在网络交互时具有类似的特性,因此,中继设备12还可以是RIS以及IRS。
基站13可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(New Radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。
其中,基站13可以是4G系统中采用的演进型基站(eNB)。或者,基站13也可以是 5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(Central Unit,CU)和至少两个分布单元(Distributed Unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站13的具体实现方式不加以限定。
各个用户设备11均能够与中继设备12通过无线空口建立无线连接,中继设备12也能够通过无线空口与基站13建立通信连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
参照图1,用户设备11的信号经过中继设备12转发才能到达基站13,类似的,基站13发送的信号通过中继设备12转发才能到达用户设备11。值得说明的是,同一基站覆盖范围内的用户设备可以包括通过中继设备进行辅助通信的用户设备以及不需要通过中继设备进行辅助通信的设备,图1是以通过中继设备进行辅助通信的用户设备11进行的示意。
图2是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图2所示,包括:
S201、基站确定第一传输时延和第二传输时延,该第一传输时延为用户设备与中继设备之间的传输时延,该第二传输时延为该中继设备与该基站之间的传输时延。
S202、基站根据该第一传输时延和该第二传输时延向该用户设备发送定时提前TA量化值,该TA量化值用于该用户设备调整传输定时。
本公开实施例提供的传输定时调整方法的执行主体可以为基站。其中,该基站与中继设备通信连接,并,该中继设备与用户设备通信连接。本公开实施例中的基站可以是如图1所示的无线通信系统中的基站13,中继设备可以是图1所示的无线通信系统中的中继设备12,用户设备可以是图1所示的无线通信系统中的任意一个用户设备11。
在本公开实施例中,基站通过确定用户设备与中继设备之间的第一传输时延,以及,中继设备与基站之间第二传输时延,基于两条通信链路的传输时延向用户设备发送TA量化值以使得用户设备调整传输定时,以使得通信系统中存在中继设备时,基站可以准确地调整用户设备的传输定时,使得不同用户设备的信号到达基站的时间上是对齐的,避免因使用中继设备导致用户设备发送的信号无法实现上行同步。
图3是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图3所示,包括:
S301、基站确定第一传输时延和第二传输时延,该第一传输时延为用户设备与中继设备之间的传输时延,该第二传输时延为该中继设备与该基站之间的传输时延。
S302、基站根据该第一传输时延和该第二传输时延向该用户设备发送媒体接入控制层随机接入响应MAC RAR,该MAC RAR包括TA量化值,其中,该TA量化值占用12比特,该TA量化值的取值范围为0至N1,其中,N1大于3846且小于4096。
该MAC RAR(MAC payload for Random Access Response)可以是基站响应于用户设备的随机接入请求而发送的,用于在随机接入过程中调整用户设备的传输定时。该MAC RAR中包括的TA量化值可以是用于调整用户设备的传输定时的绝对量,即用户设备根据该TA量化量可以直接对用户设备当前的传输定时进行替换。例如,用户设备可以基于如下公式进行传输定时T TA的计算:
T TA=(N TA+N TA,offset)*T c
其中,N TA是该TA量化值,N TA,offset是基站发送的时间偏移量化值的和值,T c为预定 义的时间单位。
其中,参照图17所示的相关技术中的MAC RAR的示意图,MAC RAR包括Timing Advance Command(定时提前指令)字段,该字段可以包括TA量化值,在相关技术中,MAC RAR中的TA量化值的范围为(0~3846),占用12比特。
此外,参照图17,MAC RAR还包括R(Reserved,保留)字段、UL Grant(up-link grant,上行链路授权)字段以及Temporary C-RNTI(临时C-RNTI)字段,其中,R字段为保留位,在相关技术中设置为“0”,UL Grant字段占用27比特,Temporary C-RNTI字段占用16比特。
采用上述方案,通过将MAC RAR中的TA量化值的取值范围由0~3846扩大到0至N1,N1大于3846且小于4096,有效地扩大了用户设备可调整的TA范围以适应存在中继设备的通信系统。即针对由于中继设备的使用造成的总的传输延时的增加问题,本实施例通过扩大TA量化值的取值范围,使得用户设备传输定时的调整范围更大,避免了因使用中继设备导致用户设备发送的信号无法实现上行同步的问题。
图4是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图4所示,包括:
S401、基站确定第一传输时延和第二传输时延,该第一传输时延为用户设备与中继设备之间的传输时延,该第二传输时延为该中继设备与该基站之间的传输时延。
S402、基站根据该第一传输时延和该第二传输时延向该用户设备发送媒体接入控制层控制单元MAC CE,该MAC CE包括TA量化值,其中,该TA量化值占用12比特,该TA量化值的取值范围为0至N2,其中,N2大于3846且小于4096。
该MAC CE用于在随机接入过程完成后的业务过程中调整用户设备的传输定时。该MAC CE可以是Timing Advance Command MAC CE(相对定时提前指令MAC CE),该MAC CE中包括的TA量化值可以是用于调整用户设备的传输定时的绝对量。也可以是Absolute Timing Advance Command MAC CE(绝对定时提前指令MAC CE),该MAC CE中包括的TA量化值也可以是用于调整用户设备的传输定时的相对量,例如用户设备可以基于如下公式对用户设备当前的传输定时N TA_old进行调整:
N TA_new=N TA_old+(T A-x)*16*64/2 μ
T A是用于调整用户设备的传输定时的相对量,x=(M-1)/2,子载波间隔SCS为15*2 μ,M为T A的最大取值。
参照图18所示的相关技术中的相对定时提前指令MAC CE的示意图,该相对定时提前指令MAC CE包括TAG ID字段以及Timing Advance Command(定时提前指令)字段,其中,TAG ID字段用于表示被寻址TAG的TAG身份,该字段占用2比特。Timing Advance Command字段包括TA量化值,该字段占用6比特,该TA量化值的取值范围为0至61。
参照图19所示的相关技术中的绝对定时提前指令MAC CE的示意图,该绝对定时提前指令MAC CE包括多个R字段,即预留字段,以及Timing Advance Command(定时提前指令)字段。该Timing Advance Command字段包括TA量化值,该字段占用12比特,该TA量化值的取值范围为0至3846。
采用上述方案,通过将MAC CE中的TA量化值由范围(0~3846)扩大至0至N2,N2大于3846且小于4096,有效地扩大了用户设备可调整的TA范围以适应存在中继设备的通信系统。即针对由于中继设备的使用造成的总的传输延时的增加问题,本实施例通过扩大TA量化值的取值范围,使得用户设备传输定时的调整范围更大,避免了因使用中继设备导致用户设备发送的信号无法实现上行同步的问题。
图5是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图5所示,包括:
S501、基站确定第一传输时延和第二传输时延,该第一传输时延为用户设备与中继设备之间的传输时延,该第二传输时延为该中继设备与该基站之间的传输时延。
S502、该基站根据该第一传输时延和该第二传输时延向该用户设备发送媒体接入控制层随机接入响应MAC RAR,该MAC RAR包括TA量化值,其中,该TA量化值占用X1比特,其中,X1大于12。
采用上述方案,通过将MAC RAR的TA量化值占用的比特数提高至X1比特,使得该TA量化值相较于相关技术占用比特数更多,能够有效地实现TA量化值的范围的扩大,以使得用户设备可调整的TA范围能够适应存在中继设备的通信系统。
在一个示例中,该方法还包括:通过扩大该MAC RAR的大小,增加该TA量化值占用的比特。
参照图17所示的MAC RAR的示意图,可以将Timing Advance Command字段占用的比特数扩大至13或更多,并保持其他字段占据的比特数不变。采用本方案,通过增加MAC RAR占用的字节数,可以在不改变原有MAC RAR的结构的情况下,实现TA量化值的范围的扩大。
在另一个示例中,该方法还包括:保持该MAC RAR的大小不变,通过占用MAC RAR中的预留字段增加该TA量化值占用的比特。
参照图17所示的MAC RAR的示意图,可以将R字段并入Timing Advance Command字段,以实现预留字段的占用,进而增加TA量化值占用的比特。采用本方案,通过占用MAC RAR中的预留字段以增加TA量化值占用的比特,可以在保持原有MAC RAR的占用的总字节数的情况下,实现TA量化值的范围的扩大。
在又一些示例中,该TA量化值的取值范围为0至N3,其中,N3大于4096。
本领域技术人员应理解,TA量化值的取值范围与其所占用的比特数相关,例如,在TA量化值仅占用12比特时,能够表征的最大值即为4096,如果将TA量化值占用的比特数扩大至大于12时,则该TA量化值的最大值则可以大于4096。采用上述方案,在TA量化值占用的比特数大于12的情况下,该TA量化值能够的取值范围可以大于4096,以适应存在中继设备的通信系统,避免了因使用中继设备导致用户设备发送的信号无法实现上行同步的问题。
图6是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图6所示,包括:
S601、基站确定第一传输时延和第二传输时延,该第一传输时延为用户设备与中继设备之间的传输时延,该第二传输时延为该中继设备与该基站之间的传输时延。
S602、基站根据该第一传输时延和该第二传输时延向该用户设备发送媒体接入控制层控制单元MAC CE,该MAC CE包括TA量化值,其中,该TA量化值占用X2比特,其中,X2大于12。
其中,该MAC CE可以是绝对定时提前指令MAC CE,该MAC CE中的TA量化值可以用于调整用户设备当前的传输定时的绝对量。
采用上述方案,通过将MAC CE的TA量化值占用的比特数提高至X2比特,使得该TA量化值相较于相关技术占用比特数更多,能够有效地实现TA量化值的范围的扩大,以实现用户设备可调整的TA范围能够适应存在中继设备的通信系统。
在一个示例中,该方法还包括:保持该MAC CE的大小不变,通过占用MAC CE中的预留字段增加该TA量化值占用的比特。
示例地,参照图19所示的相关技术中的绝对定时提前指令MAC CE的示意图,该MAC CE指令包括4个R字段,即预留字段,采用上述示例中的方案,则可以将4个预留字段中的任意一个或多个并入Timing Advance Command字段,以实现预留字段的占用,进而 增加TA量化值占用的比特。例如,若占用一个预留字段,则Timing Advance Command字段占用的比特数则可以加一,此时TA量化值占用的比特数X2=13。采用本方案,通过占用MAC CE中的预留字段以增加TA量化值占用的比特,可以在保持原有MAC CE的占用的总字节数的情况下,实现TA量化值的范围的扩大。
在另一个示例中,该方法还包括:通过扩大该MAC CE的大小,增加该TA量化值占用的比特。
示例地,参照图19所示的MAC CE的示意图,可以将Timing Advance Command字段占用的比特数扩大至13,并保持其他字段占用的比特数。采用本方案,通过增加MAC CE占用的字节数,可以在不改变原有MAC CE的结构的情况下,实现TA量化值的范围的扩大。
在又一个示例中,该TA量化值的取值范围为0至N3,其中,N3大于4096。
本领域技术人员应理解,TA量化值的取值范围与其所占用的比特数相关,例如,在TA量化值仅占用12比特时,能够表征的最大值即为4096,如果将TA量化值占用的比特数扩大至大于12时,则该TA量化值的最大值则可以大于4096。采用上述方案,通过将TA量化值占用的比特数扩大至大于12,使得该TA量化值的取值范围可以大于4096,以适应存在中继设备的通信系统,避免了因使用中继设备导致用户设备发送的信号无法实现上行同步的问题。
图7是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图7所示,包括:
S701、基站确定第一传输时延和第二传输时延,该第一传输时延为用户设备与中继设备之间的传输时延,该第二传输时延为该中继设备与该基站之间的传输时延。
S702、基站根据该第一传输时延和该第二传输时延向该用户设备发送媒体接入控制层控制单元MAC CE,该MAC CE包括TA量化值,其中,该TA量化值占用X3比特,其中,X3大于6,该TA量化值是用于调整该用户设备当前的传输定时的相对量。
采用本方案,通过将MAC CE中用于调整用户设备当前的传输定时的相对量的TA量化值占用的比特数提高至X3比特,使得该TA量化值相较于相关技术占用比特数更多,能够有效地实现TA量化值的范围的扩大,以实现用户设备可调整的TA范围能够适应存在中继设备的通信系统。
示例地,参照图18所示的相关技术中的相对定时提前指令MAC CE的示意图,可以将该MAC CE中的Timing Advance Command字段占用的比特数增加至7或者更多。
在一个示例中,该TA量化值的取值范围为0至M,其中,M大于63。
本领域技术人员应理解,TA量化值的取值范围与其所占用的比特数相关,例如,在TA量化值仅占用6比特时,能够表征的最大值即为64,如果将TA量化值占用的比特数扩大至大于6时,则该TA量化值的最大值则可以大于64。采用上述方案,通过将TA量化值占用的比特数扩大至大于6比特,能够使得该TA量化值的取值范围可以大于63,以适应存在中继设备的通信系统,避免了因使用中继设备导致用户设备发送的信号无法实现上行同步的问题。
图8是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图8所示,包括:
S801、基站确定第一传输时延和第二传输时延,该第一传输时延为用户设备与中继设备之间的传输时延,该第二传输时延为该中继设备与该基站之间的传输时延。
S802、基站向该用户设备发送该第一传输时延的量化值和该第二传输时延的量化值。
其中,第一传输时延的量化值以及第二传输时延的量化值可以是通过不同的信令发送的,例如第一传输时延的量化值是基于MAC RAR发送至用户设备的,第二传输时延的量 化值是基于MAC CE发送至用户设备的。或者,该第一传输时延的量化值以及第二传输时延的量化值也可以是通过同一信令发送的,例如,某一MAC RAR中可以包括第一传输时延的量化值,以及第二传输时延的量化值。示例地,在该信令的Timing Advance Command字段的前L个比特用于表征第一传输时延的量化值,其他比特用于表征第二传输时延的量化值,用户终端即可以基于该MAC RAR确定第一传输延时的量化值以及第二传输时延的量化值。其中,L小于该Timing Advance Command字段占用的比特数,该Timing Advance Command字段占用的比特数大于12。
此外,第一传输时延的量化值可以是用于调整用户设备的传输定时的绝对量,也可以是用于调整用户设备的传输定时的相对量。第二传输时延的量化值可以是用于调整用户设备的传输定时的绝对量,也可以是用于调整用户设备的传输定时的相对量。
并且,在第一传输延时的量化值是用于调整用户设备的传输定时的绝对量的情况下,该第一传输延时的量化值占用的比特数可以为12,也可以大于12。在第一传输延时的量化值是用于调整用户设备的传输定时的相对量的情况下,该第一传输延时的量化值占用的比特数可以为6,也可以大于6。在第二传输延时的量化值是用于调整用户设备的传输定时的绝对量的情况下,该第二传输延时的量化值占用的比特数可以为12,也可以大于12。在第二传输延时的量化值是用于调整用户设备的传输定时的相对量的情况下,该第二传输延时的量化值占用的比特数可以为6,也可以大于6。
用户终端基于第一传输时延的量化值以及第二传输时延的量化值的和值,即可以得到在对应的通信系统中的整体的TA量化值的大小,因此,基站通过第一传输时延的量化值以及第二传输时延的量化值,能够扩大用户终端用于调整传输定时的TA量化值的取值范围,以适应存在中继设备的通信系统,避免了因使用中继设备导致用户设备发送的信号无法实现上行同步的问题。
图9是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图9所示,包括:
S901、基站确定第一传输时延和第二传输时延,该第一传输时延为用户设备与中继设备之间的传输时延,该第二传输时延为该中继设备与该基站之间的传输时延。
S902、通过第一TA信令向该用户设备发送该第一传输时延,该第一TA信令包括第一标识和该第一传输时延。
S903、通过第二TA信令向该用户设备发送该第二传输时延,该第二TA信令包括第二标识和该第二传输时延。
示例地,该第一TA信令以及第二TA信令可以均为相对定时提前指令MAC CE,参照图18,第一标识以及第二标识可以存储于信令中的TAG ID字段,例如,在基站发送的MAC CE中,TAG ID字段中的信息为00的情况下,则该TAG ID表征该MAC CE信令为第一TA信令,在该MAC CE信令中的Timing Advance Command字段表征的信息即为第一传输时延的量化值;TAG ID字段中的信息为01的情况下,则该TAG ID表征该MAC CE信令为第二TA信令,该MAC CE信令中的Timing Advance Command字段表征的信息即为第二传输时延的量化值。
或者,该第一TA信令以及第二TA信令也可以是MAC RAR,或者绝对定时提前指令MAC CE,具体的实施方案本公开在此不再赘述。
采用上述方案,通过在第一传输时延的第一TA信令以及第二传输时延对应的第二TA信令中添加第一标识以及第二标识,以使得用户设备能够根据该第一标识以及第二标识确定其接收到的信令对应的量化值是第一传输时延对应的量化值还是第二传输时延对应的量化值,进而更加准确地得到该用户终端在通信系统中整体的TA量化值,并更准确地对传输定时进行调整。
图10是根据一示例性实施例示出的一种传输定时调整方法的流程图,该方法的执行主体可以是用户设备,该用户设备可以是如图1所示的通信系统中的若干用户设备11中的任意一个用户设备,如图10所示,该方法包括:
S1001、用户设备接收基站发送的TA量化值,该TA量化值是该基站根据第一传输时延和第二传输时延发送的,该第一传输时延为用户设备与中继设备之间的传输时延,该第二传输时延为该中继设备与该基站之间的传输时延。
S1002、用户设备根据该TA量化值调整传输定时。
在本公开实施例中,基站通过确定用户设备与中继设备之间的第一传输时延,以及,中继设备与基站之间第二传输时延,基于两条通信链路的传输时延向用户设备发送TA量化值以使得用户设备调整传输定时,以使得通信系统中存在中继设备时,基站可以准确地调整用户设备的传输定时,使得不同用户设备的信号到达基站的时间上是对齐的,避免因使用中继设备导致用户设备发送的信号无法实现上行同步。
图11是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图11所示,该方法包括:
S1101、用户设备从基站发送的媒体接入控制层随机接入响应MAC RAR中获取TA量化值,其中,该TA量化值占用12比特,该TA量化值的取值范围为0至N1,其中,N1大于3846且小于4096。
S1102、用户设备根据该TA量化值调整传输定时。
采用上述方案,通过将MAC RAR中的TA量化值的取值范围由0~3846扩大到0至N1,有效地扩大了用户设备可调整的TA范围以适应存在中继设备的通信系统,避免了因使用中继设备导致用户设备发送的信号无法实现上行同步的问题。
图12是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图12所示,该方法包括:
S1201、用户设备从基站发送的媒体接入控制层控制单元MAC CE中获取TA量化值,其中,该TA量化值占用12比特,该TA量化值的取值范围为0至N2,其中,N2大于3846且小于4096。
S1202、用户设备根据该TA量化值调整传输定时。
采用上述方案,通过将MAC CE中的TA量化值由范围(0~3846)扩大至0至N2,有效地扩大了用户设备可调整的TA范围以适应存在中继设备的通信系统,避免了因使用中继设备导致用户设备发送的信号无法实现上行同步的问题。
图13是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图13所示,该方法包括:
S1301、用户设备从基站发送的媒体接入控制层随机接入响应MAC RAR中获取TA量化值,其中,该TA量化值占用X1比特,其中,X1大于12。
S1302、用户设备根据该TA量化值调整传输定时。
采用上述方案,通过将MAC RAR的TA量化值占用的比特数提高至X1比特,使得该TA量化值相较于相关技术占用的比特数更多,能够有效地实现TA量化值的范围的扩大,以使得用户设备可调整的TA范围能够适应存在中继设备的通信系统。
示例地,参照图17所示的MAC RAR的示意图,可以将Timing Advance Command字段占用的比特数扩大至13或更多至X1比特,并保持其他字段占据的比特数。通过增加MAC RAR占用的字节数,可以在不改变原有MAC RAR的结构的情况下,实现TA量化值的范围的扩大。
示例地,参照图17所示的MAC RAR的示意图,可以将R字段并入Timing Advance Command字段,以实现预留字段的占用,进而增加TA量化值占用的比特至X1比特。通 过占用MAC RAR中的预留字段以增加TA量化值占用的比特,可以在保持原有MAC RAR的占用的总字节数的情况下,实现TA量化值的范围的扩大。
在一个示例中,TA量化值的取值范围为0至N3,其中,N3大于4096。采用该方案,在TA量化值占用的比特数大于12的情况下,该TA量化值能够的取值范围可以大于4096,以适应存在中继设备的通信系统,避免了因使用中继设备导致用户设备发送的信号无法实现上行同步的问题。
图14是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图14所示,该方法包括:
S1401、用户设备从基站发送的媒体接入控制层控制单元MAC CE中获取TA量化值,其中,该TA量化值占用X2比特,其中,X2大于12。
S1402、用户设备根据该TA量化值调整传输定时。
其中,该MAC CE可以是绝对定时提前指令MAC CE,该MAC CE中的TA量化值是用于调整用户设备当前的传输定时的绝对量。即用户设备根据该TA量化量可以直接对用户设备当前的传输定时进行替换。例如,用户设备可以基于如下公式进行传输定时T TA的计算:
T TA=(N TA+N TA,offset)*T c
其中,N TA是该TA量化值,N TA,offset是基站发送的时间偏移量化值的和值,T c为预定义的时间单位。
采用上述方案,通过将MAC CE的TA量化值占用的比特数提高至X2比特,使得该TA量化值相较于相关技术占用比特数更多,能够有效地实现TA量化值的范围的扩大,以实现用户设备可调整的TA范围能够适应存在中继设备的通信系统。
示例地,参照图19所示的相关技术中的绝对定时提前指令MAC CE的示意图,该MAC CE指令包括4个R字段,即预留字段,则可以将4个预留字段中的任意一个或多个并入Timing Advance Command字段,以实现预留字段的占用,进而增加TA量化值占用的比特。例如,若占用一个预留字段,则Timing Advance Command字段占用的比特数则可以加一,此时TA量化值占用的比特数X2=13。采用本方案,通过占用MAC CE中的预留字段以增加TA量化值占用的比特,可以在保持原有MAC CE的占用的总字节数的情况下,实现TA量化值的范围的扩大。
在一个示例中,TA量化值的取值范围为0至N3,其中,N3大于4096。
本领域技术人员应理解,TA量化值的取值范围与其所占用的比特数相关,例如,在TA量化值仅占用12比特时,能够表征的最大值即为4096,如果将TA量化值占用的比特数扩大至大于12时,则该TA量化值的最大值则可以大于4096。采用上述方案,通过将TA量化值占用的比特数扩大至大于12,使得该TA量化值的取值范围可以大于4096,以适应存在中继设备的通信系统,避免了因使用中继设备导致用户设备发送的信号无法实现上行同步的问题。
图15是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图15所示,该方法包括:
S1501、用户设备从基站发送的媒体接入控制层控制单元MAC CE中获取TA量化值,其中,该TA量化值占用X3比特,其中,X3大于6,该TA量化值的取值范围为0至M,其中,M大于63。
S1502、用户设备根据该TA量化值将传输定时调整为N TA_new
其中,N TA_new=N TA_old+(T A-x)*16*64/2 μ
N TA_old为该用户设备在调整之前的传输定时,T A为该TA量化值,x=(M-1)/2,子载波间隔为15*2 μ
其中,该MAC CE为相对定时提前指令MAC CE,该MAC CE中的TA量化值是用于调整用户设备当前的传输定时的相对量。
通过将MAC CE中用于调整用户设备当前的传输定时的相对量的TA量化值占用的比特数提高至X3比特,使得该TA量化值相较于相关技术占用比特数更多,能够有效地实现TA量化值的范围的扩大,以实现用户设备可调整的TA范围能够适应存在中继设备的通信系统。
并且,本领域技术人员应理解,TA量化值的取值范围与其所占用的比特数相关,例如,在TA量化值仅占用6比特时,能够表征的最大值即为64,如果将TA量化值占用的比特数扩大至大于6时,则该TA量化值的最大值则可以大于或等于64。通过将TA量化值占用的比特数扩大至大于6比特,能够使得该TA量化值的取值可以大于63。
采用上述方案,通过获取基站发送的MAC CE并获取取值范围被扩大的TA量化值,并基于该TA量化值,按照上述公式对用户终端的传输定时进行调整,能够使得该用户终端能够在应用中继设备的场景下,仍可以准确地基于该传输定时实现信号的上行同步。
图16是根据一示例性实施例示出的一种传输定时调整方法的流程图,如图16所示,该方法包括:
S1601、用户设备接收基站发送第一传输时延的量化值和第二传输时延的量化值。
S1602、用户设备根据该第一传输时延的量化值N TA#1和该第二传输时延的量化值N TA#2将传输定时调整为T TA
其中,T TA=(N TA#1+N TA#2+N TA,offset)*T c
N TA,offset为该基站发送的时间偏移量化值,T c为预定义的时间单位。
其中,上述第一传输时延的量化值以及第二传输时延的量化值可以是基站发送的,并且,第一传输时延的量化值以及第二传输时延的量化值可以是通过不同的信令发送的,例如第一传输时延的量化值是基于MAC RAR通过第一TA信令发送至用户设备的,第二传输时延的量化值是基于MAC CE通过第二信令发送至用户设备的。或者,该第一传输时延的量化值以及第二传输时延的量化值也可以是通过同一信令发送的,即,该第一TA信令和第二TA信令可以是相同的信令。
例如,某一MAC RAR中可以包括第一传输时延的量化值,以及第二传输时延的量化值。示例地,在该信令的Timing Advance Command字段的前L个比特用于表征第一传输时延的量化值,其他比特用于表征第二传输时延的量化值,用户终端即可以基于该MAC RAR确定第一传输延时的量化值以及第二传输时延的量化值。其中,L小于该Timing Advance Command字段占用的比特数,该Timing Advance Command字段占用的比特数大于12。
采用上述方案,用户设备通过接受基站发送的用户设备与中继设备之间的第一传输时延的量化值,以及中继设备与基站之间第二传输时延的量化值,并基于上述公式,可以计算得到新的传输定时,并根据该传输定时进行调整,进而保证该用户设备基于调整后的传输定时发送的信号能够实现上行同步,确保了用户终端在包括中继设备的通信系统中能够有效的发送信号。
进一步,上述用户设备在接收到基站发送的信令之后,还可以根据信令中的标识,确定该信令为第一TA信令或者第二TA信令,其中第一TA信令包括第一传输时延,第二TA信令包括第二传输时延。用户设备基于第一TA信令,以及第二TA信令,即可以得到第一传输时延的TA量化值N TA#1,以及第二传输时延的TA量化值N TA#2
图20是根据一示例性实施例示出的一种传输定时调整装置2000的框图,如图20所示,该装置2000包括:
确定模块2001,被配置为确定第一传输时延和第二传输时延,该第一传输时延为用户 设备与中继设备之间的传输时延,该第二传输时延为该中继设备与该基站之间的传输时延;
发送模块2002,被配置为根据该第一传输时延和该第二传输时延向该用户设备发送定时提前TA量化值,该TA量化值用于该用户设备调整传输定时。
可选地,该装置2000包括第一发送模块,该第一发送模块被配置为:
根据第一传输时延和第二传输时延向用户设备发送媒体接入控制层随机接入响应MAC RAR,该MAC RAR包括TA量化值,其中,该TA量化值占用12比特,该TA量化值的取值范围为0至N1,其中,N1大于3846且小于4096。
可选地,该装置2000包括第二发送模块,该第二发送模块被配置为:
根据第一传输时延和第二传输时延向用户设备发送媒体接入控制层控制单元MAC CE,该MAC CE包括TA量化值,其中,该TA量化值占用12比特,该TA量化值的取值范围为0至N2,其中,N2大于3846且小于4096。
可选地,该装置2000包括第三发送模块,该第三发送模块被配置为:
根据第一传输时延和第二传输时延向用户设备发送媒体接入控制层随机接入响应MAC RAR,该MAC RAR包括TA量化值,其中,该TA量化值占用X1比特,其中,X1大于12。
可选地,该装置2000还包括:
扩大模块,被配置为通过扩大MAC RAR的大小,增加TA量化值占用的比特。
可选地,该装置2000还包括:
第一占用模块,被配置为保持MAC RAR的大小不变,通过占用MAC RAR中的预留字段增加TA量化值占用的比特。
可选地,该装置2000包括第四发送模块,该第四发送模块被配置为:
根据第一传输时延和第二传输时延向用户设备发送媒体接入控制层控制单元MAC CE,该MAC CE包括TA量化值,其中,该TA量化值占用X2比特,其中,X2大于12。
可选地,该装置2000还包括:
第二占用模块,被配置为保持MAC CE的大小不变,通过占用MAC CE中的预留字段增加TA量化值占用的比特。
可选地,TA量化值的取值范围为0至N3,其中,N3大于4096。
可选地,该装置2000包括第五发送模块,该第五发送模块被配置为:
根据第一传输时延和第二传输时延向用户设备发送媒体接入控制层控制单元MAC CE,该MAC CE包括该TA量化值,其中,该TA量化值占用X3比特,其中,X3大于6,该TA量化值是用于调整该用户设备当前的传输定时的相对量。
可选地,该TA量化值的取值范围为0至M,其中,M大于63。
可选地,该装置2000包括第六发送模块,该第六发送模块被配置为:
向用户设备发送第一传输时延的量化值和第二传输时延的量化值。
可选地,该装置2000包括第七发送模块,该第七发送模块被配置为:
通过第一TA信令向用户设备发送第一传输时延,该第一TA信令包括第一标识和该第一传输时延;
通过第二TA信令向用户设备发送第二传输时延,该第二TA信令包括第二标识和该第二传输时延。
图21是根据一示例性实施例示出的一种传输定时调整装置2100的框图,如图21所示,该装置2100包括:
接收模块2101,被配置为接收基站发送的TA量化值,该TA量化值是该基站根据第一传输时延和第二传输时延发送的,该第一传输时延为用户设备与中继设备之间的传输时延,该第二传输时延为该中继设备与该基站之间的传输时延。
调整模块2102,被配置为根据该TA量化值调整传输定时。
可选地,该装置2100包括第一接收模块,该第一接收模块被配置为:
从基站发送的媒体接入控制层随机接入响应MAC RAR中获取TA量化值,其中,该TA量化值占用12比特,该TA量化值的取值范围为0至N1,其中,N1大于3846且小于4096。
可选地,该装置2100包括第二接收模块,该第二接收模块被配置为:
从基站发送的媒体接入控制层控制单元MAC CE中获取TA量化值,其中,该TA量化值占用12比特,该TA量化值的取值范围为0至N1,其中,N2大于3846且小于4096。
可选地,该装置2100包括第三接收模块,该第三接收模块被配置为:
从基站发送的媒体接入控制层随机接入响应MAC RAR中获取TA量化值,其中,该TA量化值占用X1比特,其中,X1大于12。
可选地,该装置2100包括第五接收模块,该第五接收模块被配置为:
从基站发送的媒体接入控制层控制单元MAC CE中获取TA量化值,其中,该TA量化值占用X2比特,其中,X2大于12。
可选地,该TA量化值的取值范围为0至N3,其中,N3大于4096。
可选地,该装置2100包括第六接收模块,该第六接收模块被配置为:
从基站发送的媒体接入控制层控制单元MAC CE中获取TA量化值,其中,该TA量化值占用X3比特,其中,X3大于6,该TA量化值的取值范围为0至M,其中,M大于63;
该装置2100包括第一调整模块,该第一调整模块被配置为:
用户设备根据TA量化值将传输定时调整为N TA_new,其中,
N TA_new=N TA_old+(T A-x)*16*64/2 μ
N TA_old为该用户设备在调整之前的传输定时,T A为该TA量化值,x=(M-1)/2,子载波间隔为15*2 μ
可选地,该装置2100包括第七接收模块,该第七接收模块被配置为:
接收基站发送第一传输时延的量化值和第二传输时延的量化值;
该装置2100包括第二调整模块,该第二调整模块被配置为:
该用户设备根据第一传输时延的量化值N TA#1和第二传输时延的量化值N TA#2将传输定时调整为T TA
其中,T TA=(N TA#1+N TA#2+N TA,offset)*T c
N TA,offset为该基站发送的时间偏移量化值,T c为预定义的时间单位。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开还提供一种计算机可读存储介质,其上存储有计算机程序指令,该程序指令被处理器执行时实现本公开提供的前述任一方法实施例提供的数据处理方法的步骤。
图22是根据一示例性实施例示出的一种传输定时调整装置2200的框图。例如,装置2200可以是用户设备,该用户设备可以是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图22,装置2200可以包括以下一个或多个组件:处理组件2202,存储器2204,电力组件2206,多媒体组件2208,音频组件2210,输入/输出(I/O)的接口2212,传感器组件2214,以及通信组件2216。
处理组件2202通常控制装置2200的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件2202可以包括一个或多个处理器2220来执行指令,以完成上述的用户设备侧的传输定时调整方法的全部或部分步骤。此外,处理组 件2202可以包括一个或多个模块,便于处理组件2202和其他组件之间的交互。例如,处理组件2202可以包括多媒体模块,以方便多媒体组件2208和处理组件2202之间的交互。
存储器2204被配置为存储各种类型的数据以支持在装置2200的操作。这些数据的示例包括用于在装置2200上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器2204可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电力组件2206为装置2200的各种组件提供电力。电力组件2206可以包括电源管理系统,一个或多个电源,及其他与为装置2200生成、管理和分配电力相关联的组件。
多媒体组件2208包括在所述装置2200和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件2208包括一个前置摄像头和/或后置摄像头。当装置2200处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件2210被配置为输出和/或输入音频信号。例如,音频组件2210包括一个麦克风(MIC),当装置2200处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器2204或经由通信组件2216发送。在一些实施例中,音频组件2210还包括一个扬声器,用于输出音频信号。
I/O接口2212为处理组件2202和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件2214包括一个或多个传感器,用于为装置2200提供各个方面的状态评估。例如,传感器组件2214可以检测到装置2200的打开/关闭状态,组件的相对定位,例如所述组件为装置2200的显示器和小键盘,传感器组件2214还可以检测装置2200或装置2200一个组件的位置改变,用户与装置2200接触的存在或不存在,装置2200方位或加速/减速和装置2200的温度变化。传感器组件2214可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件2214还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件2214还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件2216被配置为便于装置2200和其他设备之间有线或无线方式的通信。装置2200可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件2216经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件2216还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,装置2200可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述用户设备侧的传输定时调整方法。
图23是根据一示例性实施例示出的一种传输定时调整的装置2300的框图。例如,装置2300可以被提供为一基站。参照图23,装置2300包括处理组件2322,其进一步包括一个或多个处理器,以及由存储器2332所代表的存储器资源,用于存储可由处理组件2322的执行的指令,例如应用程序。存储器2332中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件2322被配置为执行指令,以执行上述基站侧的传输定时调整方法。
装置2300还可以包括一个电源组件2326被配置为执行装置2300的电源管理,一个有线或无线网络接口2350被配置为将装置2300连接到网络,和一个输入输出(I/O)接口2358。装置2300可以操作基于存储在存储器2332的操作系统,例如Windows Server TM,Mac OS X TM,Unix TM,Linux TM,FreeBSD TM或类似。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器2204,上述指令可由装置2200的处理器2220执行上述用户设备侧的传输定时调整方法或者基站侧的传输定时调整方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
在另一示例性实施例中,还提供一种计算机程序产品,该计算机程序产品包含能够由可编程的装置执行的计算机程序,该计算机程序具有当由该可编程的装置执行时用于执行上述用户设备侧的传输定时调整方法或者基站侧的传输定时调整方法的代码部分。
本领域技术人员在考虑说明书及实践本公开后,将容易想到本公开的其它实施方案。本申请旨在涵盖本公开的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开的范围仅由所附的权利要求来限制。

Claims (25)

  1. 一种传输定时调整方法,应用于基站,其特征在于,包括:
    确定第一传输时延和第二传输时延,所述第一传输时延为用户设备与中继设备之间的传输时延,所述第二传输时延为所述中继设备与所述基站之间的传输时延;
    根据所述第一传输时延和所述第二传输时延向所述用户设备发送定时提前TA量化值,所述TA量化值用于所述用户设备调整传输定时。
  2. 根据权利要求1所述的方法,其特征在于,所述根据所述第一传输时延和所述第二传输时延向所述用户设备发送定时提前TA量化值,包括:
    根据所述第一传输时延和所述第二传输时延向所述用户设备发送媒体接入控制层随机接入响应MAC RAR,所述MAC RAR包括所述TA量化值,其中,所述TA量化值占用12比特,所述TA量化值的取值范围为0至N1,其中,N1大于3846且小于4096。
  3. 根据权利要求1所述的方法,其特征在于,所述根据所述第一传输时延和所述第二传输时延向所述用户设备发送定时提前TA量化值,包括:
    根据所述第一传输时延和所述第二传输时延向所述用户设备发送媒体接入控制层控制单元MAC CE,所述MAC CE包括所述TA量化值,其中,所述TA量化值占用12比特,所述TA量化值的取值范围为0至N2,其中,N2大于3846且小于4096。
  4. 根据权利要求1所述的方法,其特征在于,所述根据所述第一传输时延和所述第二传输时延向所述用户设备发送定时提前TA量化值,包括:
    根据所述第一传输时延和所述第二传输时延向所述用户设备发送媒体接入控制层随机接入响应MAC RAR,所述MAC RAR包括所述TA量化值,其中,所述TA量化值占用X1比特,其中,X1大于12。
  5. 根据权利要求1所述的方法,其特征在于,所述方法还包括:通过扩大所述MAC RAR的大小,增加所述TA量化值占用的比特。
  6. 根据权利要求1所述的方法,其特征在于,所述方法还包括:保持所述MAC RAR的大小不变,通过占用MAC RAR中的预留字段增加所述TA量化值占用的比特。
  7. 根据权利要求1所述的方法,其特征在于,所述根据所述第一传输时延和所述第二传输时延向所述用户设备发送定时提前TA量化值,包括:
    根据所述第一传输时延和所述第二传输时延向所述用户设备发送媒体接入控制层控制单元MAC CE,所述MAC CE包括所述TA量化值,其中,所述TA量化值占用X2比特,其中,X2大于12。
  8. 根据权利要求7所述的方法,其特征在于,所述方法还包括:保持所述MAC CE的大小不变,通过占用MAC CE中的预留字段增加所述TA量化值占用的比特。
  9. 根据权利要求4-8中任一项所述的方法,其特征在于,所述TA量化值的取值范围为0至N3,其中,N3大于4096。
  10. 根据权利要求1所述的方法,其特征在于,所述根据所述第一传输时延和所述第二传输时延向所述用户设备发送定时提前TA量化值,包括:
    根据所述第一传输时延和所述第二传输时延向所述用户设备发送媒体接入控制层控制单元MAC CE,所述MAC CE包括所述TA量化值,其中,所述TA量化值占用X3比特,其中,X3大于6,所述TA量化值是用于调整所述用户设备当前的传输定时的相对量。
  11. 根据权利要求10所述的方法,其特征在于,所述TA量化值的取值范围为0至M,其中,M大于63。
  12. 根据权利要求1所述的方法,其特征在于,所述根据所述第一传输时延和所述第二传输时延向所述用户设备发送定时提前TA量化值,包括:
    向所述用户设备发送所述第一传输时延的量化值和所述第二传输时延的量化值。
  13. 根据权利要求12所述的方法,其特征在于,所述向所述用户设备发送所述第一传输时延的量化值和所述第二传输时延的量化值,包括:
    通过第一TA信令向所述用户设备发送所述第一传输时延,所述第一TA信令包括第一标识和所述第一传输时延;
    通过第二TA信令向所述用户设备发送所述第二传输时延,所述第二TA信令包括第二标识和所述第二传输时延。
  14. 一种传输定时调整方法,应用于用户设备,其特征在于,包括:
    接收基站发送的TA量化值,所述TA量化值是所述基站根据第一传输时延和第二传输时延发送的,所述第一传输时延为用户设备与中继设备之间的传输时延,所述第二传输时延为所述中继设备与所述基站之间的传输时延;
    根据所述TA量化值调整传输定时。
  15. 根据权利要求14所述的方法,其特征在于,所述接收基站发送的TA量化值,包括:
    从所述基站发送的媒体接入控制层随机接入响应MAC RAR中获取所述TA量化值,其中,所述TA量化值占用12比特,所述TA量化值的取值范围为0至N1,其中,N1大于3846且小于4096。
  16. 根据权利要求14所述的方法,其特征在于,所述接收基站发送的TA量化值,包括:
    从所述基站发送的媒体接入控制层控制单元MAC CE中获取所述TA量化值,其中,所述TA量化值占用12比特,所述TA量化值的取值范围为0至N2,其中,N2大于3846且小于4096。
  17. 根据权利要求14所述的方法,其特征在于,所述接收基站发送的TA量化值,包括:
    从所述基站发送的媒体接入控制层随机接入响应MAC RAR中获取所述TA量化值,其中,所述TA量化值占用X1比特,其中,X1大于12。
  18. 根据权利要求14所述的方法,其特征在于,所述接收基站发送的TA量化值,包括:
    从所述基站发送的媒体接入控制层控制单元MAC CE中获取所述TA量化值,其中,所述TA量化值占用X2比特,其中,X2大于12。
  19. 据权利要求17或18所述的方法,其特征在于,所述TA量化值的取值范围为0至N3,其中,N3大于4096。
  20. 根据权利要求14所述的方法,其特征在于,所述接收基站发送的TA量化值,包括:
    从所述基站发送的媒体接入控制层控制单元MAC CE中获取所述TA量化值,其中,所述TA量化值占用X3比特,其中,X3大于6,所述TA量化值的取值范围为0至M,其中,M大于63;
    所述根据所述TA量化值调整传输定时,包括:
    根据所述TA量化值将传输定时调整为N TA_new,其中,
    N TA_new=N TA_old+(T A-x)*16*64/2 μ
    N TA_old为所述用户设备在调整之前的传输定时,T A为所述TA量化值,x=(M-1)/2,子载波间隔SCS为15*2 μ
  21. 根据权利要求14所述的方法,其特征在于,所述接收基站发送的TA量化值,包括:
    接收所述基站发送所述第一传输时延的量化值和所述第二传输时延的量化值;
    所述根据所述TA量化值调整传输定时,包括:
    根据所述第一传输时延的量化值N TA#1和所述第二传输时延的量化值N TA#2将传输定时调整为T TA
    其中,T TA=(N TA#1+N TA#2+N TA,offset)*T c
    N TA,offset为所述基站发送的时间偏移量化值,T c为预定义的时间单位。
  22. 一种传输定时调整装置,其特征在于,所述装置包括:
    确定模块,被配置为确定第一传输时延和第二传输时延,所述第一传输时延为用户设备与中继设备之间的传输时延,所述第二传输时延为所述中继设备与所述基站之间的传输时延;
    发送模块,被配置为根据所述第一传输时延和所述第二传输时延向所述用户设备发送定时提前TA量化值,所述TA量化值用于所述用户设备调整传输定时。
  23. 一种传输定时调整装置,其特征在于,所述装置包括:
    接收模块,被配置为接收基站发送的TA量化值,所述TA量化值是所述基站根据第一传输时延和第二传输时延发送的,所述第一传输时延为用户设备与中继设备之间的传输时延,所述第二传输时延为所述中继设备与所述基站之间的传输时延;
    调整模块,被配置为根据所述TA量化值调整传输定时。
  24. 一种传输定时调整装置,其特征在于,包括:
    处理器;
    用于存储处理器可执行指令的存储器;
    其中,所述处理器被配置为:执行所述可执行指令时实现权利要求1至13任一项所述的传输定时调整方法,或者,权利要求14至21任一项所述的传输定时调整方法。
  25. 一种非临时性计算机存储介质,其特征在于,所述计算机存储介质中存储有可执行指令,所述可执行指令被处理器执行时,使得所述处理器执行权利要求1至13任一项所述的传输定时调整方法,或者,权利要求14至21任一项所述的传输定时调整方法。
PCT/CN2022/090693 2022-04-29 2022-04-29 传输定时调整方法、装置及存储介质 WO2023206546A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2022/090693 WO2023206546A1 (zh) 2022-04-29 2022-04-29 传输定时调整方法、装置及存储介质
CN202280001273.0A CN115004795A (zh) 2022-04-29 2022-04-29 传输定时调整方法、装置及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2022/090693 WO2023206546A1 (zh) 2022-04-29 2022-04-29 传输定时调整方法、装置及存储介质

Publications (1)

Publication Number Publication Date
WO2023206546A1 true WO2023206546A1 (zh) 2023-11-02

Family

ID=83023223

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/090693 WO2023206546A1 (zh) 2022-04-29 2022-04-29 传输定时调整方法、装置及存储介质

Country Status (2)

Country Link
CN (1) CN115004795A (zh)
WO (1) WO2023206546A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886673A (zh) * 2016-03-31 2018-11-23 富士通株式会社 无线通信系统、无线设备、中继节点以及基站
CN112737840A (zh) * 2020-12-29 2021-04-30 西北工业大学深圳研究院 一种基于无人机辅助的车联网中继选择与安全传输方法
CN113424654A (zh) * 2019-04-01 2021-09-21 华为技术有限公司 数据传输的方法及通信设备

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9467959B2 (en) * 2011-04-01 2016-10-11 Mediatek, Inc. Method of maintaining multiple timing advance
US10979985B2 (en) * 2017-03-31 2021-04-13 Convida Wireless, Llc Terminal and relay devices, base station and methods
CN112913294A (zh) * 2018-10-25 2021-06-04 苹果公司 Iab网络中定时超前(ta)偏移的信令
CN110505636A (zh) * 2018-11-29 2019-11-26 中国电子科技集团公司第七研究所 一种用于中继通信的同步控制方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108886673A (zh) * 2016-03-31 2018-11-23 富士通株式会社 无线通信系统、无线设备、中继节点以及基站
CN113424654A (zh) * 2019-04-01 2021-09-21 华为技术有限公司 数据传输的方法及通信设备
CN112737840A (zh) * 2020-12-29 2021-04-30 西北工业大学深圳研究院 一种基于无人机辅助的车联网中继选择与安全传输方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PANASONIC: "RN DL/UL subframe timing of backhaul and access link", 3GPP DRAFT; R1-100383, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Valencia, Spain; 20100118, 12 January 2010 (2010-01-12), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP050418044 *

Also Published As

Publication number Publication date
CN115004795A (zh) 2022-09-02

Similar Documents

Publication Publication Date Title
WO2022006821A1 (zh) 无线通信的方法、装置、设备及存储介质
CN108401501B (zh) 数据传输方法、装置及无人机
US20230094982A1 (en) Method and device for communication processing
WO2023077460A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022147664A1 (zh) 接入方法、辅助信息处理方法及装置、设备及存储介质
WO2021217306A1 (zh) Prs配置处理方法及装置、通信设备及存储介质
WO2022120735A1 (zh) 无线通信的方法、装置、通信设备及存储介质
WO2022036597A1 (zh) 信息处理方法、装置及计算机可读存储介质
EP4117375A1 (en) Wireless network access method and apparatus, communication device, and storage medium
US20230075773A1 (en) Information transmission method and apparatus, and communication device and storage medium
WO2023206546A1 (zh) 传输定时调整方法、装置及存储介质
WO2022110057A1 (zh) 无线传输的方法、装置、通信设备及存储介质
WO2022061717A1 (zh) 生效时间确定方法、装置、通信设备和存储介质
WO2022126369A1 (zh) 传输数据的方法、装置、通信设备及存储介质
WO2022147767A1 (zh) 信息处理方法及装置、通信设备及存储介质
WO2022205341A1 (zh) 测量间隔预配置处理方法、装置、通信设备及存储介质
US20230199896A1 (en) Method and apparatus for transferring service, communication device and storage medium
WO2022021082A1 (zh) 上行传输方法及装置、通信设备和存储介质
US20230224973A1 (en) Method and apparatus for sending data, and user equipment and storage medium
WO2023164796A1 (zh) 信息处理方法、装置、通信设备及存储介质
WO2022222145A1 (zh) 终端能力信息的上报方法、装置、通信设备及存储介质
WO2023206504A1 (zh) 系统消息处理方法及装置、通信设备及存储介质
WO2021007731A1 (zh) 定时提前量指示方法、装置、通信设备及存储介质
WO2024016194A1 (zh) 一种信息传输方法、装置、通信设备及存储介质
WO2023201741A1 (zh) 信息处理方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22939392

Country of ref document: EP

Kind code of ref document: A1