WO2022006821A1 - 无线通信的方法、装置、设备及存储介质 - Google Patents

无线通信的方法、装置、设备及存储介质 Download PDF

Info

Publication number
WO2022006821A1
WO2022006821A1 PCT/CN2020/101116 CN2020101116W WO2022006821A1 WO 2022006821 A1 WO2022006821 A1 WO 2022006821A1 CN 2020101116 W CN2020101116 W CN 2020101116W WO 2022006821 A1 WO2022006821 A1 WO 2022006821A1
Authority
WO
WIPO (PCT)
Prior art keywords
terminal
satellite
trs
time
time domain
Prior art date
Application number
PCT/CN2020/101116
Other languages
English (en)
French (fr)
Inventor
刘洋
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to EP20944823.2A priority Critical patent/EP4181587A4/en
Priority to PCT/CN2020/101116 priority patent/WO2022006821A1/zh
Priority to US18/003,832 priority patent/US20230261829A1/en
Priority to CN202080001471.8A priority patent/CN111937450B/zh
Publication of WO2022006821A1 publication Critical patent/WO2022006821A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0212Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave
    • H04W52/0216Power saving arrangements in terminal devices managed by the network, e.g. network or access point is master and terminal is slave using a pre-established activity schedule, e.g. traffic indication frame
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0229Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a wanted signal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W52/00Power management, e.g. TPC [Transmission Power Control], power saving or power classes
    • H04W52/02Power saving arrangements
    • H04W52/0209Power saving arrangements in terminal devices
    • H04W52/0225Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal
    • H04W52/0235Power saving arrangements in terminal devices using monitoring of external events, e.g. the presence of a signal where the received signal is a power saving command
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/001Synchronization between nodes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W76/00Connection management
    • H04W76/20Manipulation of established connections
    • H04W76/27Transitions between radio resource control [RRC] states
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W68/00User notification, e.g. alerting and paging, for incoming communication, change of service or the like
    • H04W68/02Arrangements for increasing efficiency of notification or paging channel
    • H04W68/025Indirect paging
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02DCLIMATE CHANGE MITIGATION TECHNOLOGIES IN INFORMATION AND COMMUNICATION TECHNOLOGIES [ICT], I.E. INFORMATION AND COMMUNICATION TECHNOLOGIES AIMING AT THE REDUCTION OF THEIR OWN ENERGY USE
    • Y02D30/00Reducing energy consumption in communication networks
    • Y02D30/70Reducing energy consumption in communication networks in wireless communication networks

Definitions

  • the present disclosure relates to the technical field of wireless communication, but is not limited to the technical field of wireless communication, and in particular, relates to a method, apparatus, device, and storage medium for wireless communication.
  • NTN Non-terrestrial wireless communication
  • NR New Radio
  • the synchronization between the terminal and the base station is worse than that of the terrestrial cellular system.
  • the pre-synchronization time for the terminal to receive satellites is longer.
  • An embodiment of the present disclosure discloses a wireless communication method, which is applied to satellites, wherein the method includes:
  • the configuration information is at least used to indicate the first time domain position of the tracking reference signal (TRS) sent by the satellite; the tracking reference signal (TRS) is used between the terminal and the satellite
  • the first time domain position is used for the terminal to determine the wake-up time of the terminal in the radio resource control (RRC) idle state.
  • RRC radio resource control
  • the first time-domain position is located before the second time-domain position where the satellite sends paging control information; wherein the paging control information is used to indicate the time when the satellite sends the paging message. time-frequency domain resources.
  • the method further includes:
  • the tracking reference signal (TRS) is repeatedly sent at a plurality of the first time domain locations.
  • the tracking reference signal includes grouping information of the terminal; wherein the grouping information is used to indicate the terminal monitoring the paging control information.
  • a method for wireless communication which is applied to a terminal, and the method includes:
  • the configuration information is at least used to indicate the first time domain position of the tracking reference signal (TRS) sent by the satellite; the tracking reference signal (TRS) is used between the terminal and the satellite
  • the first time domain position is used for the terminal to determine the wake-up time of the terminal in the radio resource control (RRC) idle state.
  • RRC radio resource control
  • the method further includes:
  • the terminal Wake up the terminal at a preset wake-up time before the first time-domain position; wherein, the preset wake-up time is determined according to the first time-domain position;
  • the tracking reference signal (TRS) transmitted by the satellite is received.
  • the first time-domain position is located before the second time-domain position where the satellite sends paging control information; wherein the paging control information is used to indicate the time when the satellite sends the paging message. time-frequency domain resources.
  • the method further includes:
  • TRS tracking reference signal
  • a synchronization parameter for synchronization between the terminal and the satellite is determined using the tracking reference signal (TRS).
  • TRS tracking reference signal
  • the tracking reference signal includes grouping information of the terminal; the method further includes:
  • an apparatus for wireless communication which is applied to a satellite, wherein the apparatus includes a sending module, wherein,
  • the sending module is configured to send the configuration information of the tracking reference signal (TRS) of at least one beam to the terminal;
  • TRS tracking reference signal
  • the configuration information is at least used to indicate the first time domain position of the tracking reference signal (TRS) sent by the satellite; the tracking reference signal (TRS) is used between the terminal and the satellite
  • the first time domain position is used for the terminal to determine the wake-up time of the terminal in the radio resource control (RRC) idle state.
  • RRC radio resource control
  • the sending module is further configured to: the first time domain position is located before the second time domain position where the satellite sends the paging control information; wherein, the paging control information is obtained by using Time-frequency domain resources for instructing the satellite to send paging messages.
  • the sending module is further configured to repeatedly send the tracking reference signal (TRS) at a plurality of the first time domain positions.
  • TRS tracking reference signal
  • the sending module is further configured so that the tracking reference signal (TRS) includes grouping information of the terminal; wherein, the grouping information is used to indicate all the monitoring information of the paging control information. described terminal.
  • TRS tracking reference signal
  • an apparatus for wireless communication applied to a terminal, the apparatus includes a receiving module, wherein the receiving module is configured to receive a tracking reference signal of at least one beam sent by a satellite (TRS) configuration information;
  • TRS satellite
  • the configuration information is at least used to indicate the first time domain position of the tracking reference signal (TRS) sent by the satellite; the tracking reference signal (TRS) is used between the terminal and the satellite
  • the first time domain position is used for the terminal to determine the wake-up time of the terminal in the radio resource control (RRC) idle state.
  • RRC radio resource control
  • the apparatus includes a wake-up module, wherein,
  • the wake-up module is further configured to wake up the terminal at a preset wake-up time before the first time-domain position; wherein the preset wake-up time is determined according to the first time-domain position;
  • the receiving module is further configured to: at the first time domain position, receive the tracking reference signal (TRS) sent by the satellite.
  • TRS tracking reference signal
  • the receiving module is further configured to: the first time domain position is located before the second time domain position where the satellite sends the paging control information; wherein, the paging control information is obtained by using Time-frequency domain resources for instructing the satellite to send paging messages.
  • the apparatus further includes a synchronization module, wherein,
  • the receiving module is further configured to receive the tracking reference signal (TRS) sent by the satellite;
  • TRS tracking reference signal
  • the synchronization module is further configured to use the tracking reference signal (TRS) to determine a synchronization parameter for synchronization between the terminal and the satellite.
  • TRS tracking reference signal
  • the tracking reference signal includes grouping information of the terminal; the apparatus further includes a monitoring module, wherein the monitoring module is further configured to determine the pair based on the indication of the grouping information Paging control information is monitored.
  • a device comprising:
  • a memory for storing the processor-executable instructions
  • the processor is configured to: when executing the executable instructions, implement the method described in any embodiment of the present disclosure.
  • a computer storage medium stores a computer-executable program, and when the executable program is executed by a processor, implements the method described in any embodiment of the present disclosure.
  • the configuration information of the tracking reference signal (TRS) of at least one beam is sent to the terminal; wherein, the configuration information is at least used to indicate the first tracking reference signal (TRS) sent by the satellite. time domain location; the tracking reference signal (TRS) is used for synchronization between the terminal and the satellite; the first time domain location is used to determine the terminal in a radio resource control (RRC) idle state wake-up time.
  • RRC radio resource control
  • the terminal can determine before the first time domain position, wake up the terminal in time at the wake-up time, and receive the tracking reference signal (TRS) at the first time domain position. ) and use the tracking reference signal (TRS) for synchronization.
  • the detection time of the tracking reference signal (TRS) can be shorter, so that the synchronization time is shorter and the terminal's Power will be lower.
  • FIG. 1 is a schematic structural diagram of a wireless communication system provided according to an exemplary embodiment.
  • FIG. 2 is a schematic structural diagram of a wireless communication system provided according to an exemplary embodiment.
  • FIG. 3 is a flowchart of a method for wireless communication provided according to an exemplary embodiment.
  • Fig. 4 is a schematic diagram of a method for beam transmission provided according to an exemplary embodiment.
  • FIG. 5 is a schematic diagram of a method for wireless communication provided according to an exemplary embodiment.
  • FIG. 6 is a schematic diagram of a method for wireless communication provided according to an exemplary embodiment.
  • FIG. 7 is a flowchart of a method for wireless communication provided according to an exemplary embodiment.
  • FIG. 8 is a flowchart of a method for wireless communication provided according to an exemplary embodiment.
  • FIG. 9 is a flowchart of a method for wireless communication provided according to an exemplary embodiment.
  • FIG. 10 is a flowchart of a method for wireless communication provided according to an exemplary embodiment.
  • FIG. 11 is a flowchart of a method for wireless communication provided according to an exemplary embodiment.
  • FIG. 12 is a schematic diagram of an apparatus for wireless communication provided according to an exemplary embodiment.
  • FIG. 13 is a schematic diagram of an apparatus for wireless communication provided according to an exemplary embodiment.
  • FIG. 14 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 15 is a schematic structural diagram of a base station according to an embodiment of the present disclosure.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • the terms “greater than” or “less than” are used herein when characterizing the relationship of size. However, those skilled in the art can understand that the term “greater than” also covers the meaning of “greater than or equal to”, and “less than” also covers the meaning of "less than or equal to”.
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several user equipments 110 and several base stations 120 .
  • the user equipment 110 may be a device that provides voice and/or data connectivity to the user.
  • User equipment 110 may communicate with one or more core networks via a Radio Access Network (RAN), and user equipment 110 may be IoT user equipment such as sensor devices, mobile phones (or "cellular" phones) ) and a computer with IoT user equipment, for example, may be stationary, portable, pocket-sized, hand-held, computer-built or vehicle-mounted.
  • RAN Radio Access Network
  • IoT user equipment such as sensor devices, mobile phones (or "cellular" phones)
  • a computer with IoT user equipment for example, may be stationary, portable, pocket-sized, hand-held, computer-built or vehicle-mounted.
  • station Ses, STA
  • subscriber unit subscriber unit
  • subscriber station subscriber station
  • mobile station mobile station
  • mobile station mobile station
  • remote station remote station
  • access terminal remote user equipment
  • the user equipment 110 may also be a device of an unmanned aerial vehicle.
  • the user equipment 110 may also be an in-vehicle device, for example, a trip computer with a wireless communication function, or a wireless user equipment connected to an external trip computer.
  • the user equipment 110 may also be a roadside device, for example, may be a street light, a signal light, or other roadside devices with a wireless communication function.
  • the base station 120 may be a network-side device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication (the 4th generation mobile communication, 4G) system, also known as a long term evolution (Long Term Evolution, LTE) system; or, the wireless communication system may also be a 5G system, Also known as New Radio System or 5G NR System.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, a new generation of radio access network).
  • the base station 120 may be an evolved base station (eNB) used in the 4G system.
  • the base station 120 may also be a base station (gNB) that adopts a centralized distributed architecture in a 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 120 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a protocol stack of a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control Protocol (Radio Link Control, RLC) layer, and a Media Access Control (Media Access Control, MAC) layer; distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 120 is not limited in this embodiment of the present disclosure.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control Protocol
  • MAC Media Access Control
  • distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 120 is not limited in this embodiment of the present disclosure.
  • a wireless connection can be established between the base station 120 and the user equipment 110 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a 5G next-generation mobile communication network technology standard.
  • an E2E (End to End, end-to-end) connection may also be established between the user equipments 110 .
  • V2V vehicle to vehicle, vehicle-to-vehicle
  • V2I vehicle to Infrastructure, vehicle-to-roadside equipment
  • V2P vehicle to pedestrian, vehicle-to-person communication in vehicle-to-everything (V2X) communication etc. scene.
  • the above-mentioned user equipment may be regarded as the terminal equipment of the following embodiments.
  • the above wireless communication system may further include a network management device 130 .
  • the network management device 130 may be a core network device in a wireless communication system.
  • the network management device 130 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device may also be other core network devices, such as a serving gateway (Serving GateWay, SGW), a public data network gateway (Public Data Network GateWay, PGW), a policy and charging rule functional unit (Policy and Charging Rules) Function, PCRF) or home subscriber server (Home Subscriber Server, HSS), etc.
  • the implementation form of the network management device 130 is not limited in this embodiment of the present disclosure.
  • Satellite communication can be communication between radio communication stations on the ground using communication satellites as relay stations to forward radio waves.
  • the communication function of the communication satellite includes at least one of the following: receiving a signal, changing the frequency of the signal, amplifying the signal, retransmitting the signal, and positioning.
  • the wireless communication network may be a network that integrates a mobile communication network and a satellite communication network.
  • the mobile communication network includes a base station 21, and the satellite communication network includes a communication satellite 22 and a gateway station 23 of the communication satellite.
  • the base station 21 may establish a wireless communication connection with the gateway station 23 .
  • the terminal 24 can establish a wireless communication connection with the base station 21 .
  • Terminal 24 may establish a wireless communication connection with satellite 22 .
  • the terminal 24 may be a multi-mode terminal, and the multi-mode terminal is a terminal that supports both wireless communication with the satellite 22 and wireless communication with the base station 21 .
  • the reference signal used for time-frequency tracking is called Tracking Reference Signal (TRS, Tracking Reference Signal).
  • TRS Tracking Reference Signal
  • Time domain tracking and delay spread estimation The tracking range depends on the frequency domain density of the tracking reference signal (TRS), and the tracking accuracy depends on the frequency domain bandwidth of the tracking reference signal (TRS).
  • the tracking range depends on the time-domain density of the tracking reference signal (TRS) and the time-domain period of the tracking reference signal (TRS).
  • paging needs to support the function of notifying the incoming call (call coming) and the function of notifying the system message update (SI update).
  • Paging is divided into two parts: paging control information (paging DCI) and paging message (paging message).
  • the paging control information is scheduled by the downlink control information (DCI, Downlink Control Information) carried by the Physical Downlink Control Channel (PDCCH, Physical Downlink Control Channel), and the paging message is scheduled on the physical downlink shared channel (PDSCH, Physical Downlink Control Information). Downlink Shared Channel).
  • DCI Downlink Control Information
  • PDSCH Physical Downlink Control Information
  • PDSCH Physical Downlink Control Information
  • the search space of the Physical Downlink Control Channel (PDCCH) for scheduling paging control information is configured by the network side.
  • the terminal needs to monitor the paging control information on the Physical Downlink Control Channel (PDCCH) at a certain time. If the paging control information indicates that a paging message will be sent on some time-frequency resources on the Physical Downlink Shared Channel (PDSCH), the terminal will decode the paging message on the time-frequency resource to obtain the call arrival information or System information update information.
  • PDCCH Physical Downlink Control Channel
  • PDSCH Physical Downlink Shared Channel
  • this embodiment provides a method for wireless communication, which is applied to a satellite, wherein the method includes:
  • Step 31 Send the configuration information of the tracking reference signal (TRS) of at least one beam to the terminal;
  • TRS tracking reference signal
  • the configuration information is at least used to indicate the first time domain position of the tracking reference signal (TRS) sent by the satellite; the tracking reference signal (TRS) is used for synchronization between the terminal and the satellite; the first time domain position is used for the terminal Determine the wake-up time of the terminal in the radio resource control (RRC) idle state.
  • TRS tracking reference signal
  • RRC radio resource control
  • the satellite may be a flying base station.
  • the base station may be an interface device for the terminal to access the network.
  • the base station may be various types of base stations, for example, a base station of a third generation mobile communication (3G) network, a base station of a fourth generation mobile communication (4G) network, a base station of a fifth generation mobile communication (5G) network, or other Evolved base station.
  • the satellite may be a Low Earth Orbiting (LEO, Low Earth Orbiting).
  • LEO Low Earth Orbiting
  • the satellite may also be a medium orbit satellite (MEO, Medium Earth Orbiting) or a geostationary orbit satellite (GEO, Geostationary Earth Orbiting).
  • the satellite may be deployed in an airspace where the density of ground base stations is small and the wireless communication environment is poor. For example, remote mountain and ocean airspaces.
  • the terminal may be, but is not limited to, a mobile phone, a wearable device, a vehicle-mounted terminal, a roadside unit (RSU, Road Side Unit), a smart home terminal, an industrial sensing device, and/or a medical device, etc.
  • a mobile phone a wearable device
  • vehicle-mounted terminal a roadside unit (RSU, Road Side Unit)
  • RSU Road Side Unit
  • smart home terminal an industrial sensing device, and/or a medical device, etc.
  • the terminal may be a multi-mode terminal, and the multi-mode terminal may be a terminal that supports both wireless communication with the satellite and wireless communication with the base station.
  • area 1 is a cell 41 covered by a satellite 43 , and the cell 41 includes a plurality of satellite beams 42 .
  • the terminal will select the beam with the best wireless communication quality to communicate with the satellite.
  • the satellite may be the configuration information sent to the terminal in a unicast manner. In another embodiment, the satellite may transmit the configuration information to the terminal by broadcasting.
  • the configuration information may be sent to the terminal when the terminal is in a radio resource control (RRC) connected state or in a radio resource control (RRC) disconnected state.
  • RRC radio resource control
  • the satellite can send the configuration information to the terminal through system messages, radio resource control (RRC, Radio Resource Control) signaling or downlink control information (DCI, Downlink Control Information) signaling.
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the satellite can send the configuration information to each terminal through a system message. In this way, multiplexing of Radio Resource Control (RRC) signaling, system messages or downlink control information, etc. is realized, and the compatibility of signaling is improved.
  • the terminal when the terminal performs wireless communication with the satellite, there may be a delay in data transmission between the terminal and the satellite. Due to the large distance between the terminal and the satellite, the data transmission is affected by uncertain factors (eg, propagation medium, etc.), which will cause the magnitude of the delay to change with time, that is, there is delay jitter. At this time, even if the communication between the terminal and the satellite is synchronized by eliminating the delay, due to the existence of delay jitter, the data transmission between the terminal and the satellite may be unstable in synchronization. Therefore, the satellite can send a tracking reference signal (TRS) to the terminal, and the terminal can further adjust the synchronization parameters based on the tracking reference signal (TRS), which can reduce the asynchronous situation caused by the delay jitter.
  • TRS tracking reference signal
  • a tracking reference signal may be used for synchronization between the terminal and the satellite.
  • the terminal can calculate a synchronization parameter to achieve synchronization according to the received tracking reference signal (TRS). And based on the synchronization parameter, the time for the terminal and/or the satellite to transmit data is adjusted in time, so as to reduce the asynchronous situation caused by factors such as time delay jitter, and ensure the quality of wireless communication.
  • the terminal calculates a synchronization parameter for realizing synchronization when it is determined that the tracking reference signal (TRS) carries the identification information of the terminal according to the received tracking reference signal (TRS).
  • the synchronization parameter for realizing synchronization is not calculated, and the tracking reference signal (TRS) is directly ignored.
  • the terminals in the cell may be divided into multiple groups, and each terminal has group information of the group to which it belongs.
  • the identification information may be group information.
  • the satellite may separately group terminals in a radio resource control (RRC) connected state or terminals in a radio resource control (RRC) disconnected state.
  • RRC radio resource control
  • the satellite can evenly distribute the terminal to each group according to the maximum number of groups that can be divided and the unique identifier of the currently connected terminal.
  • the satellite does not know which terminals reside in a cell, and the satellite can judge the terminal in the cell according to the tracking area update (TAU, Track Area Update) reported by the terminal. Terminals are possible, and then the terminals are evenly distributed to each group according to the maximum number of groups that can be divided and the unique identifier of each terminal.
  • the unique identifier of the terminal may be a Subscriber Identity Module (SIM) number of a Subscriber Identity Module (SIM, Subscriber Identity Module) included in the terminal.
  • SIM Subscriber Identity Module
  • the configuration information of the Tracking Reference Signal may be generated by the satellite according to network requirements. For example, in the A time period, the network measures the delay jitter information of wireless communication with the terminal, and determines that the delay jitter during wireless communication is relatively large, and can generate the configuration of the tracking reference signal (TRS) according to the delay jitter information. information.
  • the generation of the configuration information of the tracking reference signal (TRS) may be to update the configuration information of the tracking reference signal (TRS) to generate the updated configuration information of the new tracking reference signal (TRS).
  • the satellite may directly acquire the configuration information of the tracking reference signal (TRS) in the preset rule.
  • the preset rule may be a preset in the communication standard.
  • the first time domain location may be a frame (Frame) location, a slot (slot) location, and/or a symbol (symbol) location.
  • the first time domain location may be prior to the location where the satellite transmits the paging control information.
  • the first time domain location may be located before the location where the satellite transmits the paging control information, and the first time domain location is adjacent to the location where the satellite transmits the paging control information.
  • the more accurate the synchronization parameter determined based on the tracking reference signal (TRS) to achieve synchronization will be, so that the synchronization between the terminal and the satellite will be more accurate.
  • the terminal can accurately receive the paging control information sent by the satellite.
  • the wake-up time of the terminal in the radio resource control (RRC) idle state may be determined according to the first time domain location.
  • the first time domain position and the wake-up moment may be separated by N symbols. where N is greater than or equal to zero.
  • the first time domain position and the wake-up moment may be separated by 2 symbols.
  • the first time domain position is located at the position of the fifth symbol of the A slot, and can be set to wake up the terminal in the third symbol of the A slot, so that the terminal only needs to wait for 2 symbols to receive the tracking reference signal , reducing the long waiting time before receiving the tracking reference signal.
  • the maximum time interval between the first time domain location and the preset wake-up time may be smaller than the discontinuous connection reception period in the radio resource control (RRC) idle state discontinuous reception (DRX, Discontinuous Reception) mechanism The duration of the on duration in .
  • RRC radio resource control
  • DRX Discontinuous Reception
  • the number N of symbols separated between the first time domain position and the wake-up moment may be set to be greater than the value a.
  • the number N of symbols between the first time domain position and the wake-up time may be set to be less than the b value.
  • TRS tracking reference signal
  • the satellite may transmit a tracking reference signal (TRS) on each beam before transmitting paging control information to the terminal.
  • the time domain resource location where the paging control information is sent may be adjacent to the first time domain location where the tracking reference signal (TRS) is sent.
  • the transmission beam includes beam 1 and beam 2.
  • the time domain position of the tracking reference signal (TRS) sent through beam 1 is position 1, and the paging control information is sent on the physical downlink control channel (PDCCH) through beam 1.
  • the time domain position is position 2, and position 1 is adjacent to position 2.
  • the time domain position of sending tracking reference signal (TRS) through beam 2 is position 3, and the time domain position of sending paging control information on the physical downlink control channel (PDCCH) through beam 2 is position 4, and position 3 is adjacent to position 4 .
  • the tracking reference signal may carry group information of the terminal.
  • the satellite may repeatedly transmit the Tracking Reference Signal (TRS) on the first beam before transmitting the paging control information to the terminal.
  • the time domain resource location where the paging control information is sent may be adjacent to the first time domain location where the tracking reference signal (TRS) is sent.
  • the transmission beam includes beam 1 and beam 2.
  • the time domain positions of the tracking reference signal (TRS) sent through beam 1 are position 1 and position 2 (second time domain position), and the physical downlink control channel is transmitted through beam 1 in the physical downlink control channel.
  • the time domain position for sending paging control information on the (PDCCH) is position 3, position 1 is adjacent to position 2, and position 2 is adjacent to position 3.
  • the time domain position where the paging control information is sent on the physical downlink control channel (PDCCH) through beam 2 is position 4 .
  • the tracking reference signal may carry group information of the terminal.
  • the synchronization parameters obtained by the terminal based on the tracking reference signal repeatedly sent by the satellite will be more accurate, so that the synchronization between the terminal and the satellite is more accurate, and the terminal and the satellite can transmit data more accurately, so that the data transmission will be more reliable.
  • the terminal after receiving the configuration information, can determine the location before the first time domain, wake up the terminal in time at the wake-up time, receive the tracking reference signal (TRS) at the first time domain location, and use the tracking A reference signal (TRS) is used for synchronization.
  • the detection time of the tracking reference signal (TRS) can be shorter, so that the synchronization time will be shorter and the power of the terminal will be lower .
  • the first time domain position is located before the second time domain position where the satellite sends the paging control information; wherein the paging control information is used to indicate the time-frequency domain resources for the satellite to send the paging message.
  • the paging control information may be sent on a physical downlink control channel (PDCCH).
  • the terminal monitors the paging control information on the Physical Downlink Control Channel (PDCCH). If the paging control information indicates that a paging message will be sent on some time-frequency resources on the physical downlink shared channel (PDSCH), the terminal will decode the paging message on the time-frequency resource to obtain the call arrival information or System information update information.
  • PDCCH Physical Downlink control channel
  • PDSCH physical downlink shared channel
  • the terminal since the first time domain position is located before the second time domain position where the satellite sends the paging control information, the terminal will receive the tracking reference signal ( TRS), and determine the synchronization parameters to achieve synchronization based on the received tracking reference signal (TRS). And use the synchronization parameter to synchronize, so that the wireless communication between the terminal and the satellite is synchronized, so that the paging control information can be acquired more reliably.
  • TRS tracking reference signal
  • TRS tracking reference signal
  • a method for wireless communication is provided in this embodiment, and the method further includes:
  • Step 71 Repeatedly sending a Tracking Reference Signal (TRS) at a plurality of first time domain positions.
  • TRS Tracking Reference Signal
  • the tracking reference signal may be sent at least twice consecutively.
  • the terminal may determine a synchronization parameter for realizing synchronization based on the received tracking reference signal (TRS).
  • the synchronization parameter may be an average value of the synchronization parameters obtained twice.
  • the tracking reference signal includes grouping information of the terminal; wherein, the grouping information is used to indicate the terminal monitoring the paging control information.
  • Multiple terminals can be divided into multiple terminal groups, and the grouping information can be used for grouping of terminals.
  • the grouping information includes: group identification.
  • the terminal receiving the grouping information may determine whether to receive the foregoing paging control information according to the group in which the terminal is located.
  • the terminal receiving the tracking reference signal (TRS) determines that the packet information is the packet information of the terminal, it monitors the paging control information. Otherwise, the paging control information is not monitored.
  • the group described by terminal A is group A.
  • terminal A receives the tracking reference signal (TRS) and determines that the tracking reference signal (TRS) carries the grouping information "A" of terminal A, the paging control information to monitor.
  • the tracking reference signal (TRS) does not carry the grouping information "A" of the terminal A, the paging control information will not be monitored.
  • this embodiment provides a method for wireless communication, which is applied to a terminal, where the method includes:
  • Step 81 receiving the configuration information of the tracking reference signal (TRS) of at least one beam sent by the satellite;
  • TRS tracking reference signal
  • the configuration information is at least used to indicate the first time domain position (TRS) sent by the satellite; (TRS) is used for synchronization between the terminal and the satellite; the first time domain position is used to determine the radio resource control (RRC). ) the wake-up time of the terminal in the idle state.
  • TRS first time domain position
  • RRC radio resource control
  • the satellite may be a flying base station.
  • the base station may be an interface device for the terminal to access the network.
  • the base station may be various types of base stations, for example, a base station of a third generation mobile communication (3G) network, a base station of a fourth generation mobile communication (4G) network, a base station of a fifth generation mobile communication (5G) network, or other Evolved base station.
  • the satellites may include low-orbit satellites (LEO, Low Earth Orbiting), medium-orbit satellites (MEO, Medium Earth Orbiting), or geosynchronous orbit satellites (GEO, Geostationary Earth Orbiting).
  • the satellite may be deployed in an airspace where the density of ground base stations is small and the wireless communication environment is poor. For example, remote mountain and ocean airspaces.
  • the terminal may be, but is not limited to, a mobile phone, a wearable device, a vehicle-mounted terminal, a roadside unit (RSU, Road Side Unit), a smart home terminal, an industrial sensing device, and/or a medical device, etc.
  • a mobile phone a wearable device
  • vehicle-mounted terminal a roadside unit (RSU, Road Side Unit)
  • RSU Road Side Unit
  • smart home terminal an industrial sensing device, and/or a medical device, etc.
  • the terminal may be a multi-mode terminal, and the multi-mode terminal may be a terminal that supports both wireless communication with the satellite and wireless communication with the base station.
  • the area 1 is a cell 41 covered by a satellite 43 , and the cell 41 includes a plurality of satellite beams 42 .
  • the terminal will select the beam with the best wireless communication quality to communicate with the satellite.
  • the terminal may receive configuration information sent by the satellite to the terminal in a unicast manner. In another embodiment, the terminal may receive configuration information sent by the satellite to the terminal in a broadcast manner.
  • the configuration information may be sent to the terminal when the terminal is in a radio resource control (RRC) connected state or in a radio resource control (RRC) disconnected state.
  • RRC radio resource control
  • the satellite can send the configuration information to the terminal through system messages, radio resource control (RRC, Radio Resource Control) signaling or downlink control information (DCI, Downlink Control Information) signaling.
  • RRC Radio Resource Control
  • DCI Downlink Control Information
  • the satellite can send the configuration information to each terminal through a system message. In this way, multiplexing of radio resource control (RRC) signaling, system messages, and downlink control information, etc. is realized, and the compatibility of signaling is improved.
  • the terminal when the terminal performs wireless communication with the satellite, there may be a delay in data transmission between the terminal and the satellite. Due to the large distance between the terminal and the satellite, the data transmission is affected by uncertain factors (eg, propagation medium, etc.), which will cause the magnitude of the delay to change with time, that is, there is delay jitter. At this time, even if the communication between the terminal and the satellite is synchronized by eliminating the delay, due to the existence of delay jitter, the data transmission between the terminal and the satellite may be unstable in synchronization. Therefore, the satellite can send a tracking reference signal (TRS) to the terminal, and the terminal can further adjust the synchronization parameters based on the tracking reference signal (TRS), which can reduce the asynchronous situation caused by the delay jitter.
  • TRS tracking reference signal
  • a tracking reference signal may be used for synchronization between the terminal and the satellite.
  • the terminal can calculate a synchronization parameter to achieve synchronization according to the received tracking reference signal (TRS). And based on the synchronization parameter, the time for the terminal and/or the satellite to transmit data is adjusted in time, so as to reduce the asynchronous situation caused by factors such as time delay jitter, and ensure the quality of wireless communication.
  • the terminal calculates a synchronization parameter for realizing synchronization when it is determined that the tracking reference signal (TRS) carries the identification information of the terminal according to the received tracking reference signal (TRS).
  • the synchronization parameter for realizing synchronization is not calculated, and the tracking reference signal (TRS) is directly ignored.
  • the terminals in the cell may be divided into a plurality of groups, and each terminal has group information of the respective groups.
  • the identification information may be group information.
  • the satellite may separately group terminals in a radio resource control (RRC) connected state or terminals in a radio resource control (RRC) disconnected state.
  • RRC radio resource control
  • the satellite can evenly distribute the terminal to each group according to the maximum number of groups that can be divided and the unique identifier of the currently connected terminal.
  • the satellite does not know which terminals reside in a cell, and the satellite can judge the terminal in the cell according to the tracking area update (TAU, Track Area Update) reported by the terminal. Terminals are possible, and then the terminals are evenly distributed to each group according to the maximum number of groups that can be divided and the unique identifier of each terminal.
  • the unique identifier of the terminal may be a Subscriber Identity Module (SIM) number of a Subscriber Identity Module (SIM, Subscriber Identity Module) included in the terminal.
  • SIM Subscriber Identity Module
  • the configuration information of the Tracking Reference Signal may be generated by the satellite according to network requirements. For example, in the A time period, the network measures the delay jitter information of wireless communication with the terminal, and determines that the delay jitter during wireless communication is relatively large, and can generate the configuration of the tracking reference signal (TRS) according to the delay jitter information. information.
  • the generation of the configuration information of the tracking reference signal (TRS) may be to update the configuration information of the tracking reference signal (TRS) to generate the updated configuration information of the new tracking reference signal (TRS).
  • the satellite may directly acquire the configuration information of the tracking reference signal (TRS) in the preset rule.
  • the preset rule may be a preset in the communication standard.
  • the first time domain location may be a frame (Frame) location, a slot (slot) location, and/or a symbol (symbol) location.
  • the first time domain location may be prior to the location where the satellite transmits the paging control information.
  • the first time domain location may be located before the location where the satellite transmits the paging control information, and the first time domain location is adjacent to the location where the satellite transmits the paging control information.
  • the more accurate the synchronization parameter determined based on the tracking reference signal (TRS) to achieve synchronization will be, so that the synchronization between the terminal and the satellite will be more accurate.
  • the terminal can accurately receive the paging control information sent by the satellite.
  • the wake-up time of the terminal in the radio resource control (RRC) idle state may be determined according to the first time domain location.
  • the first time domain position and the wake-up moment may be separated by N symbols. where N is greater than or equal to zero.
  • the first time domain position and the wake-up moment may be separated by 2 symbols.
  • the first time domain position is located at the position of the fifth symbol of the A slot, and can be set to wake up the terminal in the third symbol of the A slot, so that the terminal only needs to wait for 2 symbols to receive the tracking reference signal , reducing the long waiting time before receiving the tracking reference signal.
  • the number N of symbols separated between the first time domain position and the wake-up moment may be set to be greater than the value a.
  • the number N of symbols between the first time domain position and the wake-up time may be set to be less than the b value.
  • TRS tracking reference signal
  • the satellite may transmit a tracking reference signal (TRS) on each beam before transmitting paging control information to the terminal.
  • the time domain resource location where the paging control information is sent may be adjacent to the first time domain location where the tracking reference signal (TRS) is sent.
  • the transmission beam includes beam 1 and beam 2
  • the time domain position of sending the tracking reference signal (TRS) through beam 1 is position 1
  • the paging control information is sent on the physical downlink control channel (PDCCH) through beam 1
  • the time domain position of is position 2, and position 1 is adjacent to position 2.
  • the time domain position of sending tracking reference signal (TRS) through beam 2 is position 3, and the time domain position of sending paging control information on the physical downlink control channel PDCCH through beam 2 is position 4, and position 3 is adjacent to position 4.
  • the tracking reference signal may carry group information of the terminal.
  • the satellite may repeatedly transmit a Tracking Reference Signal (TRS) on the first beam before transmitting the paging control information to the terminal.
  • the time domain resource location where the paging control information is sent may be adjacent to the first time domain location where the tracking reference signal (TRS) is sent.
  • the transmission beam includes beam 1 and beam 2
  • the time domain positions of the tracking reference signal (TRS) sent through beam 1 are position 1 and beam 2
  • the paging control is sent on the physical downlink control channel PDCCH through beam 1
  • the time domain position of the information is position 3, position 1 is adjacent to position 2, and position 2 is adjacent to position 3.
  • the time domain position for sending the paging control information on the physical downlink control channel PDCCH through beam 2 is position 4 .
  • the tracking reference signal may carry group information of the terminal.
  • the synchronization parameters obtained by the terminal based on the tracking reference signal repeatedly sent by the satellite will be more accurate, so that the synchronization between the terminal and the satellite is more accurate, and the terminal and the satellite can transmit data more accurately, so that the data transmission will be more reliable.
  • the terminal after receiving the configuration information, can determine before the first time domain position, wake up the terminal in time at the wake-up time, and receive the configuration information at the first time domain position.
  • a tracking reference signal (TRS) is used, and synchronization is performed using the tracking reference signal (TRS).
  • TRS tracking reference signal
  • the detection time of the tracking reference signal (TRS) can be shorter, so that the synchronization time is shorter and the terminal's Power will be lower.
  • this embodiment provides a method for wireless communication, wherein the method further includes:
  • Step 91 wakes up the terminal at the preset wake-up moment before the first time domain position; wherein, the preset wake-up moment is determined according to the first time domain position;
  • the preset wake-up time of the terminal in the radio resource control (RRC) idle state may be determined according to the first time domain location.
  • the first time domain position and the preset wake-up time may be separated by N symbols. where N is greater than or equal to zero.
  • the first time domain position and the preset wake-up moment may be separated by 2 symbols.
  • the first time domain position is located at the position of the fifth symbol of the A slot, and can be set to wake up the terminal in the third symbol of the A slot, so that the terminal only needs to wait for 2 symbols to receive the tracking reference signal , reducing the long waiting time before receiving the tracking reference signal.
  • the maximum time interval between the first time domain location and the preset wake-up time may be smaller than the discontinuous connection reception period in the radio resource control (RRC) idle state discontinuous reception (DRX, Discontinuous Reception) mechanism The duration of the on duration in .
  • RRC radio resource control
  • DRX Discontinuous Reception
  • the number N of symbols between the first time domain position and the preset wake-up moment may be set to be greater than the value a.
  • the number N of symbols between the first time domain position and the preset wake-up time may be set to be less than the b value.
  • a>b the smaller the number of symbols N separated between the first time domain position and the preset wake-up time, the more accurate the synchronization parameters determined according to the tracking reference signal (TRS) to achieve synchronization will be, so that the synchronization between the terminal and the satellite will be more accurate. Accurate, the terminal and satellite can transmit data more accurately, so the data transmission will be more reliable.
  • TRS tracking reference signal
  • Step 92 at the first time domain position, receive a tracking reference signal (TRS) sent by the satellite.
  • TRS tracking reference signal
  • the terminal may be at the first time domain location and repeatedly receive a tracking reference signal (TRS) sent by the satellite
  • TRS tracking reference signal
  • the terminal may receive the tracking reference signal (TRS) sent by the satellite at least twice in a row. Each time the terminal receives a tracking reference signal (TRS), it may determine a synchronization parameter for realizing synchronization based on the received tracking reference signal (TRS).
  • the synchronization parameter may be an average value of the synchronization parameters obtained twice.
  • the first time domain position is located before the second time domain position where the satellite sends the paging control information; wherein the paging control information is used to indicate the time-frequency domain resources for the satellite to send the paging message.
  • the paging control information may be sent on a physical downlink control channel (PDCCH).
  • the terminal monitors the paging control information on the Physical Downlink Control Channel (PDCCH). If the paging control information indicates that a paging message will be sent on some time-frequency resources on the physical downlink shared channel (PDSCH), the terminal will decode the paging message on the time-frequency resource to obtain the call arrival information or System information update information.
  • PDCCH Physical Downlink control channel
  • PDSCH physical downlink shared channel
  • the terminal since the first time domain position is located before the second time domain position where the satellite sends the paging control information, the terminal will receive the tracking reference signal ( TRS), and determine the synchronization parameters to achieve synchronization based on the received tracking reference signal (TRS). And use the synchronization parameter to synchronize, so that the wireless communication between the terminal and the satellite is synchronized, so that the paging control information can be acquired more reliably.
  • TRS tracking reference signal
  • TRS tracking reference signal
  • a method for wireless communication is provided in this embodiment, wherein the method further includes:
  • Step 101 receiving a tracking reference signal (TRS) sent by a satellite;
  • TRS tracking reference signal
  • the terminal may wake up at a position separated by 2 symbols before the first time domain position, and receive a tracking reference signal (TRS) repeatedly transmitted by the satellite at the first time domain position.
  • TRS tracking reference signal
  • Step 102 using a tracking reference signal (TRS) to determine a synchronization parameter for synchronization between the terminal and the satellite.
  • TRS tracking reference signal
  • the terminal when the satellite repeatedly transmits the Tracking Reference Signal (TRS) at the first time domain position, the terminal may base on the received Tracking Reference Signal (TRS) each time after receiving the Tracking Reference Signal (TRS). Determines the synchronization parameters that achieve synchronization.
  • the synchronization parameter may be an average value of the synchronization parameters obtained twice.
  • this embodiment provides a method for wireless communication, wherein the tracking reference signal (TRS) includes grouping information of the terminal; the method further includes:
  • Step 111 Determine to monitor the paging control information based on the indication of the grouping information.
  • Multiple terminals can be divided into multiple terminal groups, and the grouping information can be used for terminal grouping.
  • the grouping information includes: group identification.
  • the terminal receiving the grouping information may determine whether to receive the foregoing paging control information according to the group in which the terminal is located.
  • the terminal receiving the tracking reference signal (TRS) determines that the packet information is the packet information of the terminal, it monitors the paging control information. Otherwise, the paging control information is not monitored.
  • the group described by terminal A is group A.
  • terminal A receives the tracking reference signal (TRS) and determines that the tracking reference signal (TRS) carries the grouping information "A" of terminal A, the paging control information to monitor.
  • the tracking reference signal (TRS) does not carry the grouping information "A" of the terminal A, the paging control information will not be monitored.
  • this embodiment provides an apparatus for wireless communication, which is applied to a satellite, wherein the apparatus includes a sending module 121, wherein,
  • the sending module 121 is configured to send the configuration information of the tracking reference signal (TRS) of at least one beam to the terminal;
  • TRS tracking reference signal
  • the configuration information is at least used to indicate the first time domain position of the tracking reference signal (TRS) sent by the satellite; the tracking reference signal (TRS) is used for synchronization between the terminal and the satellite; the first time domain position is used for the terminal Determine the wake-up time of the terminal in the radio resource control (RRC) idle state.
  • TRS tracking reference signal
  • RRC radio resource control
  • the sending module 121 is further configured to: the first time domain position is located before the second time domain position where the satellite sends the paging control information; wherein the paging control information is used to instruct the satellite to send the paging message time-frequency domain resources.
  • the sending module 121 is further configured to: at the first time domain position, repeatedly send a tracking reference signal (TRS).
  • TRS tracking reference signal
  • the sending module 121 is further configured to include a tracking reference signal (TRS) including grouping information of the terminal, wherein the grouping information is used to indicate the terminal monitoring the paging control information.
  • TRS tracking reference signal
  • this embodiment provides an apparatus for wireless communication, which is applied to a terminal.
  • the apparatus includes a receiving module, wherein:
  • a receiving module 131 configured to receive configuration information of a tracking reference signal (TRS) of at least one beam sent by the satellite;
  • TRS tracking reference signal
  • the configuration information is at least used to indicate the first time domain position of the tracking reference signal (TRS) sent by the satellite; the tracking reference signal (TRS) is used for synchronization between the terminal and the satellite; the first time domain position is used for the terminal Determine the wake-up time of the terminal in the radio resource control (RRC) idle state.
  • TRS tracking reference signal
  • RRC radio resource control
  • the apparatus includes a wake-up module 132, wherein,
  • the wake-up module 132 is further configured to wake up the terminal at a preset wake-up time before the first time-domain position; wherein, the preset wake-up time is determined according to the first time-domain position;
  • the receiving module 131 is further configured to: at the first time domain position, receive a tracking reference signal (TRS) sent by the satellite.
  • TRS tracking reference signal
  • the receiving module 131 is further configured to: the first time domain position is located before the second time domain position where the satellite sends the paging control information; wherein the paging control information is used to instruct the satellite to send the paging message time-frequency domain resources.
  • the apparatus further includes a synchronization module 132, wherein,
  • the receiving module 131 is further configured to receive a tracking reference signal (TRS) sent by the satellite;
  • TRS tracking reference signal
  • the synchronization module 132 is further configured to use a tracking reference signal (TRS) to determine a synchronization parameter for synchronization between the terminal and the satellite.
  • TRS tracking reference signal
  • the tracking reference signal includes grouping information of the terminal; the apparatus further includes a monitoring module 131, wherein the monitoring module 131 is further configured to determine to monitor the paging control information based on the indication of the grouping information.
  • Embodiments of the present disclosure also provide a communication device, including:
  • the processor is connected to the antenna and the memory respectively, and is configured to control the antenna to send and receive wireless signals by executing an executable program stored in the memory, and can execute the steps of the wireless network access method provided by any of the foregoing embodiments.
  • the communication device provided in this embodiment may be the aforementioned terminal or base station.
  • the terminal may be various human-mounted terminals or vehicle-mounted terminals.
  • the base station may be various types of base stations, for example, a 4G base station or a 5G base station.
  • the antennas may be various types of antennas, for example, mobile antennas such as 3G antennas, 4G antennas, or 5G antennas; the antennas may also include: WiFi antennas or wireless charging antennas.
  • the memory may include various types of storage media, which are non-transitory computer storage media that can continue to memorize the information stored thereon after the communication device is powered off.
  • the processor may be connected to the antenna and the memory through a bus or the like, and is used to read an executable program stored in the memory, for example, at least one of the methods shown in any embodiment of the present disclosure.
  • Embodiments of the present disclosure further provide a non-transitory computer-readable storage medium, where an executable program is stored in the non-transitory computer-readable storage medium, wherein, when the executable program is executed by a processor, the wireless network provided in any of the foregoing embodiments is implemented
  • the steps of the access method are, for example, at least one of the methods shown in any embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a structure of a terminal.
  • the present embodiment provides a terminal 800, which may specifically be a mobile phone, a computer, a digital broadcasting terminal, a messaging device, a game console, a tablet device, a medical device, a fitness device, a personal digital assistant, etc. .
  • the terminal 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, and communication component 816.
  • the processing component 802 generally controls the overall operations of the terminal 800, such as operations associated with display, phone calls, data communications, camera operations, and recording operations.
  • the processing component 802 can include one or more processors 820 to execute instructions to perform all or some of the steps of the methods described above.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operation at device 800 . Examples of such data include instructions for any application or method operating on the terminal 800, contact data, phonebook data, messages, pictures, videos, and the like. Memory 804 may be implemented by any type of volatile or nonvolatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power supply assembly 806 provides power to various components of terminal 800 .
  • Power supply components 806 may include a power management system, one or more power supplies, and other components associated with generating, managing, and distributing power to terminal 800 .
  • Multimedia component 808 includes screens that provide an output interface between terminal 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. A touch sensor can sense not only the boundaries of a touch or swipe action, but also the duration and pressure associated with the touch or swipe action.
  • the multimedia component 808 includes a front-facing camera and/or a rear-facing camera. When the device 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 810 is configured to output and/or input audio signals.
  • the audio component 810 includes a microphone (MIC) that is configured to receive external audio signals when the terminal 800 is in an operating mode, such as a calling mode, a recording mode, and a voice recognition mode.
  • the received audio signal may be further stored in memory 804 or transmitted via communication component 816 .
  • audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 814 includes one or more sensors for providing various aspects of the status assessment of terminal 800 .
  • the sensor component 814 can detect the open/closed state of the device 800, the relative positioning of components, such as the display and keypad of the terminal 800, the sensor component 814 can also detect the position change of the terminal 800 or a component of the terminal 800, the user The presence or absence of contact with the terminal 800, the orientation or acceleration/deceleration of the terminal 800 and the temperature change of the terminal 800.
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communication between terminal 800 and other devices.
  • the terminal 800 can access a wireless network based on a communication standard, such as Wi-Fi, 2G or 3G, or a combination thereof.
  • the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel.
  • the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • terminal 800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 804 including instructions, which are executable by the processor 820 of the terminal 800 to perform the above method.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • the terminal may be used to implement the aforementioned method, for example, the method of any embodiment of the present disclosure.
  • an embodiment of the present disclosure provides a structure of a base station.
  • the base station 900 may be provided as a network-side device.
  • base station 900 includes processing component 922, which further includes one or more processors, and a memory resource represented by memory 932 for storing instructions executable by processing component 922, such as application programs.
  • An application program stored in memory 932 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to perform any of the foregoing methods, eg, as in any of the embodiments of the present disclosure.
  • Base station 900 may also include a power supply assembly 926 configured to perform power management of base station 900, a wired or wireless network interface 950 configured to connect base station 900 to a network, and an input output (I/O) interface 958.
  • Base station 900 may operate based on an operating system stored in memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.
  • the wireless network interface 950 includes, but is not limited to, the antenna of the aforementioned communication device.
  • Other embodiments of the present application will readily occur to those skilled in the art upon consideration of the specification and practice of the invention disclosed herein. This application is intended to cover any variations, uses, or adaptations of the present application that follow the general principles of the present application and include common knowledge or conventional techniques in the art not disclosed by this disclosure .
  • the specification and examples are to be regarded as exemplary only, with the true scope and spirit of the application being indicated by the following claims.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • General Physics & Mathematics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供了一种无线通信的方法,应用于卫星,其中,方法包括:向终端发送至少一个波束的跟踪参考信号TRS的配置信息;其中,配置信息,至少用于指示卫星发送的TRS的第一时域位置;TRS用于终端与卫星之间的同步;第一时域位置,用于终端确定处于无线资源控制RRC空闲态的终端的唤醒时刻。

Description

无线通信的方法、装置、设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种无线通信的方法、装置、设备及存储介质。
背景技术
随着无线通信的不断发展,人们提出了全球无死角信号覆盖的需求,但地面的无线通信并不能满足这个需求的一些应用场景(例如,孤岛和沙漠的信号覆盖等)。因此,需要通过卫星进行信号覆盖。在地面无线通信网络中,所有基站都部署在地球上。而在非地面无线通信网络中,基站的部分或者全部功能将会被部署到卫星中。卫星位于高空,卫星离地球有很远的距离。例如,地球同步轨道卫星运行高度为35786km,低轨卫星运行高度通常在300-1500km之间,中轨卫星运行高度通常在7000-25000km之间。
在基于新空口(NR,New Radio)的非陆地无线通信(NTN,Non Terrisal Network)架构中,因为传播信道距离等物理因素,导致终端与基站的同步比地面的蜂窝系统性能要差。在同等终端硬件条件下,终端接收卫星的预同步时间更长。
发明内容
本公开实施例公开了一种无线通信的方法,应用于卫星,其中,所述方法包括:
向终端发送至少一个波束的跟踪参考信号(TRS)的配置信息;
其中,所述配置信息,至少用于指示所述卫星发送的所述跟踪参考信号(TRS)的第一时域位置;所述跟踪参考信号(TRS)用于所述终端与所 述卫星之间的同步;所述第一时域位置,用于终端确定处于无线资源控制(RRC)空闲态的所述终端的唤醒时刻。
在一个实施例中,所述第一时域位置位于所述卫星发送寻呼控制信息的第二时域位置之前;其中,所述寻呼控制信息,用于指示所述卫星发送寻呼消息的时频域资源。
在一个实施例中,所述方法,还包括:
在多个所述第一时域位置上,重复发送所述跟踪参考信号(TRS)。
在一个实施例中,所述跟踪参考信号(TRS)包含所述终端的分组信息;其中,所述分组信息,用于指示监听所述寻呼控制信息的所述终端。
根据本公开实施例的第二方面,提供一种无线通信的方法,应用于终端,所述方法包括:
接收卫星发送的至少一个波束的跟踪参考信号(TRS)的配置信息;
其中,所述配置信息,至少用于指示所述卫星发送的所述跟踪参考信号(TRS)的第一时域位置;所述跟踪参考信号(TRS)用于所述终端与所述卫星之间的同步;所述第一时域位置,用于终端确定处于无线资源控制(RRC)空闲态的所述终端的唤醒时刻。
在一个实施例中,所述方法,还包括:
在所述第一时域位置之前的预设唤醒时刻唤醒所述终端;其中,所述预设唤醒时刻是根据所述第一时域位置确定的;
在所述第一时域位置上,接收所述卫星发送的所述跟踪参考信号(TRS)。
在一个实施例中,所述第一时域位置位于所述卫星发送寻呼控制信息的第二时域位置之前;其中,所述寻呼控制信息,用于指示所述卫星发送寻呼消息的时频域资源。
在一个实施例中,所述方法,还包括:
接收所述卫星发送的所述跟踪参考信号(TRS);
利用所述跟踪参考信号(TRS)确定所述终端与所述卫星之间进行同步的同步参数。
在一个实施例中,所述跟踪参考信号(TRS)包含所述终端的分组信息;所述方法,还包括:
基于所述分组信息的指示确定对寻呼控制信息进行监测。
根据本公开实施例的第三方面,提供一种无线通信的装置,应用于卫星,其中,所述装置包括发送模块,其中,
所述发送模块,被配置为向终端发送至少一个波束的跟踪参考信号(TRS)的配置信息;
其中,所述配置信息,至少用于指示所述卫星发送的所述跟踪参考信号(TRS)的第一时域位置;所述跟踪参考信号(TRS)用于所述终端与所述卫星之间的同步;所述第一时域位置,用于终端确定处于无线资源控制(RRC)空闲态的所述终端的唤醒时刻。
在一个实施例中,所述发送模块,还被配置为:所述第一时域位置位于所述卫星发送寻呼控制信息的第二时域位置之前;其中,所述寻呼控制信息,用于指示所述卫星发送寻呼消息的时频域资源。
在一个实施例中,所述发送模块,还被配置为:在多个所述第一时域位置上,重复发送所述跟踪参考信号(TRS)。
在一个实施例中,所述发送模块,还被配置为所述跟踪参考信号(TRS)包含所述终端的分组信息;其中,所述分组信息,用于指示监听所述寻呼控制信息的所述终端。
根据本公开实施例的第四方面,提供一种无线通信的装置,应用于终端,所述装置包括接收模块,其中,所述接收模块,被配置为接收卫星发送的至少一个波束的跟踪参考信号(TRS)的配置信息;
其中,所述配置信息,至少用于指示所述卫星发送的所述跟踪参考信号(TRS)的第一时域位置;所述跟踪参考信号(TRS)用于所述终端与所 述卫星之间的同步;所述第一时域位置,用于终端确定处于无线资源控制(RRC)空闲态的所述终端的唤醒时刻。
在一个实施例中,所述装置包括唤醒模块,其中,
所述唤醒模块,还被配置为在所述第一时域位置之前的预设唤醒时刻唤醒所述终端;其中,所述预设唤醒时刻是根据所述第一时域位置确定的;
所述接收模块,还被配置为:在所述第一时域位置上,接收所述卫星发送的所述跟踪参考信号(TRS)。
在一个实施例中,所述接收模块,还被配置为:所述第一时域位置位于所述卫星发送寻呼控制信息的第二时域位置之前;其中,所述寻呼控制信息,用于指示所述卫星发送寻呼消息的时频域资源。
在一个实施例中,所述装置还包括同步模块,其中,
所述接收模块,还被配置为接收所述卫星发送的所述跟踪参考信号(TRS);
所述同步模块,还被配置为利用所述跟踪参考信号(TRS)确定所述终端与所述卫星之间进行同步的同步参数。
在一个实施例中,所述跟踪参考信号(TRS)包含所述终端的分组信息;所述装置还包括监测模块,其中,所述监测模块,还被配置为基于所述分组信息的指示确定对寻呼控制信息进行监测。
根据本公开实施例的第五方面,提供一种设备,所述设备,包括:
处理器;
用于存储所述处理器可执行指令的存储器;
其中,所述处理器被配置为:用于运行所述可执行指令时,实现本公开任意实施例所述的方法。
根据本公开实施例的第六方面,提供一种计算机存储介质,所述计算机存储介质存储有计算机可执行程序,所述可执行程序被处理器执行时实现本公开任意实施例所述的方法。
本公开实施例中,向终端发送至少一个波束的跟踪参考信号(TRS)的配置信息;其中,所述配置信息,至少用于指示所述卫星发送的所述跟踪参考信号(TRS)的第一时域位置;所述跟踪参考信号(TRS)用于所述终端与所述卫星之间的同步;所述第一时域位置,用于确定处于无线资源控制(RRC)空闲态的所述终端的唤醒时刻。这样,终端在接收到所述配置信息后,就能够在所述第一时域位置之前确定,在所述唤醒时刻及时唤醒所述终端,在第一时域位置接收所述跟踪参考信号(TRS),并利用所述跟踪参考信号(TRS)进行同步。相较于固定周期并周期性地唤醒终端对所述跟踪参考信号(TRS)进行检测的方式,对所述跟踪参考信号(TRS)的检测时间可以更短,从而同步时间会更短且终端的功率会更低。
附图说明
图1是根据一示例性实施例提供的一种无线通信系统的结构示意图。
图2是根据一示例性实施例提供的一种无线通信系统的结构示意图。
图3是根据一示例性实施例提供的一种无线通信的方法的流程图。
图4是根据一示例性实施例提供的一种波束发送的方法的示意图。
图5是根据一示例性实施例提供的一种无线通信的方法的示意图。
图6是根据一示例性实施例提供的一种无线通信的方法的示意图。
图7是根据一示例性实施例提供的一种无线通信的方法的流程图。
图8是根据一示例性实施例提供的一种无线通信的方法的流程图。
图9是根据一示例性实施例提供的一种无线通信的方法的流程图。
图10是根据一示例性实施例提供的一种无线通信的方法的流程图。
图11是根据一示例性实施例提供的一种无线通信的方法的流程图。
图12是根据一示例性实施例提供的一种无线通信的装置的示意图。
图13是根据一示例性实施例提供的一种无线通信的装置的示意图。
图14为本公开一个实施例提供的一种终端的结构示意图。
图15为本公开一个实施例提供的一种基站的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本公开实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、本公开实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
出于简洁和便于理解的目的,本文在表征大小关系时,所使用的术语为“大于”或“小于”。但对于本领域技术人员来说,可以理解:术语“大于”也涵盖了“大于等于”的含义,“小于”也涵盖了“小于等于”的含义。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个用户设备110以及若干个基站120。
其中,用户设备110可以是指向用户提供语音和/或数据连通性的设备。 用户设备110可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,用户设备110可以是物联网用户设备,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网用户设备的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程用户设备(remote terminal)、接入用户设备(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户设备(user equipment)。或者,用户设备110也可以是无人飞行器的设备。或者,用户设备110也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线用户设备。或者,用户设备110也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站120可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。
其中,基站120可以是4G系统中采用的演进型基站(eNB)。或者,基站120也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站120采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层 的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站120的具体实现方式不加以限定。
基站120和用户设备110之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,用户设备110之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
这里,上述用户设备可认为是下面实施例的终端设备。
在一些实施例中,上述无线通信系统还可以包含网络管理设备130。
若干个基站120分别与网络管理设备130相连。其中,网络管理设备130可以是无线通信系统中的核心网设备,比如,该网络管理设备130可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备130的实现形态,本公开实施例不做限定。
为了方便对本公开任一实施例的理解,首先,对无线通信网络进行说明。
卫星通信可以是地面上的无线电通信站之间利用通信卫星作为中继站 转发无线电波进行的通信。通信卫星的通信功能包括以下至少之一:接收信号、改变信号的频率、放大信号、转发信号和定位。
在一个实施例中,请参见图2,无线通信网络可以是融合移动通信网络和卫星通信网络的网络。其中,移动通信网络包括基站21,卫星通信网络包括通信卫星22和该通信卫星的信关站23。
在一个实施例中,基站21可以和信关站23建立无线通信连接。终端24可以和基站21建立无线通信连接。终端24可以和卫星22建立无线通信连接。这里,终端24可以为多模终端,多模终端为既支持与卫星22进行无线通信又支持与基站21进行无线通信的终端。
在终端与卫星进行通信的过程中,在根据主同步信号(PSS,Primary Synchronization Signal)和辅同步信号(SSS,Secondary Synchronization Signal)达到同步之后,还需要对信道进行时频跟踪(Time or Frequency Tracking)。用于时频跟踪的参考信号称为跟踪参考信号(TRS,Tracking Reference Signal)。跟踪参考信号(TRS)的功能可以划分为独立的两个方面:
1、时域跟踪和时延扩展估计:跟踪范围取决于跟踪参考信号(TRS)的频域密度,跟踪精度取决于跟踪参考信号(TRS)的频域带宽。
2、频域跟踪和多普勒扩展估计:跟踪范围取决于跟踪参考信号(TRS)的时域密度、跟踪参考信号(TRS)的时域周期。
在5G系统中,与长期演进(LTE,Long Term Evolution)系统一样,寻呼(paging)需要支持通知呼叫到来(call coming)的功能,以及支持通知系统消息更新(SI update)等功能。寻呼分为两部分:寻呼控制信息(paging DCI)和寻呼消息(paging message)。并且,寻呼控制信息被物理下行控制信道(PDCCH,Physical Downlink Control Channel)承载的下行控制信息(DCI,Downlink Control Information)所调度,寻呼消息在被调度到的物理下行共享信道(PDSCH,Physical Downlink Shared Channel)上发送。调 度寻呼控制信息的物理下行控制信道(PDCCH)的搜索空间由网络侧所配置。终端需要在某个时刻监测物理下行控制信道(PDCCH)上的寻呼控制信息。如果寻呼控制信息指示有寻呼消息会在物理下行共享信道(PDSCH)上的某一些时频资源上发送,那么终端将会在该时频资源上解码寻呼消息,获得呼叫到来的信息或系统信息更新的信息。
如图3所示,本实施例中提供一种无线通信的方法,应用于卫星,其中,该方法包括:
步骤31,向终端发送至少一个波束的跟踪参考信号(TRS)的配置信息;
其中,配置信息,至少用于指示卫星发送的跟踪参考信号(TRS)的第一时域位置;跟踪参考信号(TRS)用于终端与卫星之间的同步;第一时域位置,用于终端确定处于无线资源控制(RRC)空闲态的终端的唤醒时刻。
该卫星可以是飞行的基站。该基站可以为终端接入网络的接口设备。这里,基站可以为各种类型的基站,例如,第三代移动通信(3G)网络的基站、第四代移动通信(4G)网络的基站、第五代移动通信(5G)网络的基站或其它演进型基站。这里,卫星可以为低轨卫星(LEO,Low Earth Orbiting)。需要说明的是,随着卫星无线通信网络的演进,卫星还可以是中轨卫星(MEO,Medium Earth Orbiting)或者地球同步轨道卫星(GEO,Geostationary EarthOrbiting)等。
在一个实施例中,该卫星可以是部署在地面基站密度较小、无线通信环境差的空域。例如,偏远的山区和海洋所在空域。
该终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。
该终端可以是多模终端,该多模终端可以为既支持与卫星进行无线通 信又支持与基站进行无线通信的终端。
在一个实施例中,请参见图4,区域1为卫星43覆盖的小区41,该小区41包含多个卫星波束(satellite beam)42。这里,终端会选择无线通信质量最好的波束与卫星进行通信。
在一个实施例中,卫星可以是通过单播方式向终端发送的配置信息。在另一个实施例中,卫星可以是通过广播方式向终端发送配置信息。
在一个实施例中,该配置信息可以在终端处于无线资源控制(RRC)连接态或者处于无线资源控制(RRC)非连接态时发送给终端。对于处于无线资源控制(RRC)连接态的终端,卫星可以将该配置信息通过系统消息、无线资源控制(RRC,Radio Resource Control)信令或者下行控制信息(DCI,Downlink Control Information)信令发送给各终端。对于处于无线资源控制(RRC)非连接态的终端,卫星可以将该配置信息通过系统消息发送给各终端。这样,实现了无线资源控制(RRC)信令、系统消息或下行控制信息等的复用,提升了信令的兼容性。
在一个实施例中,终端在于卫星进行无线通信时,终端与卫星之间的数据传输会存在时延。由于终端与卫星之间的距离较大,数据传输受到不确定因素的影响(例如,传播介质等),会导致时延的大小跟随时间变化,即存在时延抖动。此时,即使通过消除时延的方式对终端与卫星之间的通信进行了同步,由于时延抖动的存在,终端与卫星之间的数据传输会存在同步不稳定的情况。因此,卫星可以向终端发送跟踪参考信号(TRS),终端基于该跟踪参考信号(TRS)进一步进行同步参数的调整可以减少时延抖动导致的不同步情况。
在一个实施例中,跟踪参考信号(TRS)可以用于终端与卫星之间的同步。当终端和卫星之间存在不同步的情况时,终端可以根据接收到的跟踪参考信号(TRS)计算出实现同步的同步参数。并基于该同步参数及时调整终端和/或卫星传输数据的时间,减少因时延抖动等因素导致的不同步情况, 确保无线通信质量。
在一个实施例中,终端根据接收到的跟踪参考信号(TRS),当确定跟踪参考信号携带了终端的标识信息时,进行实现同步的同步参数的计算。当确定参考信号没有携带终端的标识信息时,不进行实现同步的同步参数的计算,直接忽略该跟踪参考信号(TRS)。这里,可以是将小区内的终端划分为多个组,每个终端都具有所在组的组信息。这里,标识信息可以是组信息。
在一个实施例中,卫星可以分别对处于无线资源控制(RRC)连接态的终端或处于无线资源控制(RRC)非连接态的终端进行分组。对于处于无线资源控制(RRC)连接态的终端,卫星可以根据能划分的最大组数以及当前连接的终端的唯一标识,将终端平均分配到各个组中。对于处于无线资源控制(RRC)非连接态的终端,卫星并不知道驻留在一个小区中的终端有哪些,卫星可以根据终端上报的跟踪区更新(TAU,Track Area Update)判断此小区中的终端可能有哪些,然后根据能划分的最大组数以及各终端的唯一标识,将终端平均分配到各个组中。这里,终端的唯一标识可以是终端所包含的用户识别模块(SIM,Subscriber Identity Module)的用户识别模块(SIM)号。
在一个实施例中,跟踪参考信号(TRS)的配置信息可以是卫星根据网络需求生成的。例如,在A时间段,网络通过对与终端进行无线通信的时延抖动信息进行测量,确定进行无线通信时的时延抖动较大,可以根据时延抖动信息生成跟踪参考信号(TRS)的配置信息。这里,生成跟踪参考信号(TRS)的配置信息可以是对跟踪参考信号(TRS)的配置信息进行更新,生成经过更新后的新的跟踪参考信号(TRS)的配置信息。
在一个实施例中,可以是卫星直接获取预设规则中的该跟踪参考信号(TRS)的配置信息。该预设规则可以是通信标准中的预配置。
在一个实施例中,第一时域位置可以是帧(Frame)的位置、时隙(slot) 的位置和/或符号(symbol)的位置。在一个实施例中,第一时域位置可以是位于卫星发送寻呼控制信息的位置之前。例如,第一时域位置可以是位于卫星发送寻呼控制信息的位置之前,且第一时域位置与卫星发送寻呼控制信息的位置相邻。
在一个实施例中,第一时域位置与卫星发送寻呼控制信息的位置之间相隔的时间单位越少,第一时域位置与卫星发送寻呼控制信息的位置的信号的时延抖动情况类似,基于该跟踪参考信号(TRS)确定的实现同步的同步参数会越准确,使得终端与卫星之间的同步更加精确。终端能够准确地接收卫星发送的寻呼控制信息。
在一个实施例中,可以是根据第一时域位置确定处于无线资源控制(RRC)空闲态的终端的唤醒时刻。第一时域位置与唤醒时刻可以是相隔N个符号。其中,N大于或等于零。例如,第一时域位置与唤醒时刻可以是相隔2个符号。第一时域位置位于A时隙的第5个符号的位置,可以设置在A时隙的第3个符号唤醒终端,这样,终端只需要等待2个符号的时间就可以接收到该跟踪参考信号,减少了接收跟踪参考信号前的长时间的等待时间。
在一个实施例中,第一时域位置与预设唤醒时刻之间的最大时间间隔可以是小于无线资源控制(RRC)空闲态非连续接收(DRX,Discontinuous Reception)机制中的非连续接续接收周期中的苏醒时间段(on duration)的时长。
在一个实施例中,当网络进行无线通信的时延抖动大于设置阈值时,可以设置第一时域位置与唤醒时刻之间相隔的符号个数N大于a值。当网络进行无线通信的时延抖动小于设置阈值时,可以设置第一时域位置与唤醒时刻的符号个数N小于b值。这里a>b。这里,第一时域位置与唤醒时刻之间相隔的符号个数N越小,根据跟踪参考信号(TRS)确定的实现同步的同步参数会越准确,使得终端与卫星之间的同步更加精确,终端与卫 星能够更加准确地进行数据传输,从而数据传输会更加可靠。
在一个实施例中,卫星可以是在每个波束上向终端发送寻呼控制信息之前,先发送跟踪参考信号(TRS)。这里,发送寻呼控制信息的时域资源位置可以是与发送跟踪参考信号(TRS)的第一时域位置相邻。请参见图5,发送波束包括波束1和波束2,通过波束1发送跟踪参考信号(TRS)的时域位置为位置1,通过波束1在物理下行控制信道(PDCCH)上发送寻呼控制信息的时域位置为位置2,位置1与位置2相邻。通过波束2发送跟踪参考信号(TRS)的时域位置为位置3,通过波束2在物理下行控制信道(PDCCH)上发送寻呼控制信息的时域位置为位置4,位置3与位置4相邻。这里,跟踪参考信号可以携带终端的组信息。
在一个实施例中,卫星可以是在第一个波束上向终端发送寻呼控制信息之前,先重复发送跟踪参考信号(TRS)。这里,发送寻呼控制信息的时域资源位置可以是与发送跟踪参考信号(TRS)的第一时域位置相邻。请参见图6,发送波束包括波束1和波束2,通过波束1发送跟踪参考信号(TRS)的时域位置为位置1和位置2(第二时域位置),通过波束1在物理下行控制信道(PDCCH)上发送寻呼控制信息的时域位置为位置3,位置1与位置2相邻,位置2与位置3相邻。通过波束2在物理下行控制信道(PDCCH)上发送寻呼控制信息的时域位置为位置4。这里,跟踪参考信号可以携带终端的组信息。这里,终端基于接收到的卫星重复发送的跟踪参考信号获得的实现同步的同步参数会更加准确,使得终端与卫星之间的同步更加精确,终端与卫星能够更加准确地进行数据传输,从而数据传输会更加可靠。
在本公开实施例中,终端在接收到配置信息后,就能够在第一时域位置之前确定,在唤醒时刻及时唤醒终端,在第一时域位置接收跟踪参考信号(TRS),并利用跟踪参考信号(TRS)进行同步。相较于固定周期并周期性地唤醒终端对跟踪参考信号(TRS)进行检测的方式,对跟踪参考信号(TRS)的检测时间可以更短,从而同步时间会更短且终端的功率会更低。
在一个实施例中,第一时域位置位于卫星发送寻呼控制信息的第二时域位置之前;其中,寻呼控制信息,用于指示卫星发送寻呼消息的时频域资源。
在一个实施例中,寻呼控制信息可以是在物理下行控制信道(PDCCH)上发送。终端会监测物理下行控制信道(PDCCH)上的寻呼控制信息。如果寻呼控制信息指示有寻呼消息会在物理下行共享信道(PDSCH)上的某一些时频资源上发送,那么终端将会在该时频资源上解码寻呼消息,获得呼叫到来的信息或者系统信息更新的信息。
这里,由于第一时域位置位于卫星发送寻呼控制信息的第二时域位置之前,终端在监测物理下行控制信道(PDCCH)上的寻呼控制信息之前,唤醒后会接收到跟踪参考信号(TRS),并基于接收到的跟踪参考信号(TRS)确定实现同步的同步参数。并利用该同步参数进行同步,使得终端与卫星之间的无线通信同步,从而能够更加可靠地获取到该寻呼控制信息。
如图7所示,本实施例中提供一种无线通信的方法,该方法,还包括:
步骤71,在多个第一时域位置上,重复发送跟踪参考信号(TRS)。
在一个实施例中,可以是连续至少两次发送跟踪参考信号(TRS)。终端每次在接收到跟踪参考信号(TRS)后,都可以基于接收到的跟踪参考信号(TRS)确定实现同步的同步参数。这里,同步参数可以是两次获得的同步参数的平均值。利用该同步参数进行同步,使得终端与卫星之间的无线通信同步,从而能够更加可靠地获取到该寻呼控制信息。
在一个实施例中,跟踪参考信号(TRS)包含终端的分组信息;其中,分组信息,用于指示监听寻呼控制信息的终端。
多个终端可以分为多个终端组,该分组信息可用于终端的分组。该分组信息包括:组标识。接收到该分组信息的终端,可以根据终端所在的分组,确定是否接收前述寻呼控制信息。
在一个实施例中,接收跟踪参考信号(TRS)的终端确定分组信息为该 终端的分组信息时,对寻呼控制信息进行监听。否则,不对寻呼控制信息进行监听。例如,终端A所述的分组为分组A,当终端A接收到跟踪参考信号(TRS),并确定跟踪参考信号(TRS)携带有终端A的分组信息“A”,则会对寻呼控制信息进行监听。当确定跟踪参考信号(TRS)没有携带终端A的分组信息“A”,则不会对寻呼控制信息进行监听。
如图8所示,本实施例中提供一种无线通信的方法,应用于终端,其中,该方法包括:
步骤81,接收卫星发送的至少一个波束的跟踪参考信号(TRS)的配置信息;
其中,配置信息,至少用于指示卫星发送的(TRS)的第一时域位置;(TRS)用于终端与卫星之间的同步;第一时域位置,用于确定处于无线资源控制(RRC)空闲态的终端的唤醒时刻。
该卫星可以是飞行的基站。该基站可以为终端接入网络的接口设备。这里,基站可以为各种类型的基站,例如,第三代移动通信(3G)网络的基站、第四代移动通信(4G)网络的基站、第五代移动通信(5G)网络的基站或其它演进型基站。这里,卫星可以包含低轨卫星(LEO,Low Earth Orbiting)、中轨卫星(MEO,Medium Earth Orbiting)或地球同步轨道卫星(GEO,Geostationary EarthOrbiting)等。
在一个实施例中,该卫星可以是部署在地面基站密度较小、无线通信环境差的空域。例如,偏远的山区和海洋所在空域。
该终端可以是但不限于是手机、可穿戴设备、车载终端、路侧单元(RSU,Road Side Unit)、智能家居终端、工业用传感设备和/或医疗设备等。
该终端可以是多模终端,该多模终端可以为既支持与卫星进行无线通信又支持与基站进行无线通信的终端。
在一个实施例中,请再次参见图4,区域1为卫星43覆盖的小区41,该小区41包含多个卫星波束(satellite beam)42。这里,终端会选择无线通信质量最好的波束与卫星进行通信。
在一个实施例中,终端可以是接收卫星通过单播方式向终端发送的配置信息。在另一个实施例中,终端可以是接收卫星通过广播方式向终端发送的配置信息。
在一个实施例中,该配置信息可以在终端处于无线资源控制(RRC)连接态或者处于无线资源控制(RRC)非连接态时发送给终端。对于处于无线资源控制(RRC)连接态的终端,卫星可以将该配置信息通过系统消息、无线资源控制(RRC,Radio Resource Control)信令或者下行控制信息(DCI,Downlink Control Information)信令发送给各终端。对于处于无线资源控制(RRC)非连接态的终端,卫星可以将该配置信息通过系统消息发送给各终端。这样,实现了无线资源控制(RRC)信令、系统消息和下行控制信息等的复用,提升了信令的兼容性。
在一个实施例中,终端在于卫星进行无线通信时,终端与卫星之间的数据传输会存在时延。由于终端与卫星之间的距离较大,数据传输受到不确定因素的影响(例如,传播介质等),会导致时延的大小跟随时间变化,即存在时延抖动。此时,即使通过消除时延的方式对终端与卫星之间的通信进行了同步,由于时延抖动的存在,终端与卫星之间的数据传输会存在同步不稳定的情况。因此,卫星可以向终端发送跟踪参考信号(TRS),终端基于该跟踪参考信号(TRS)进一步进行同步参数的调整可以减少时延抖动导致的不同步情况。
在一个实施例中,跟踪参考信号(TRS)可以用于终端与卫星之间的同步。当终端和卫星之间存在不同步的情况时,终端可以根据接收到的跟踪参考信号(TRS)计算出实现同步的同步参数。并基于该同步参数及时调整终端和/或卫星传输数据的时间,减少因时延抖动等因素导致的不同步情况, 确保无线通信质量。
在一个实施例中,终端根据接收到的跟踪参考信号(TRS),当确定跟踪参考信号携带了终端的标识信息时,进行实现同步的同步参数的计算。当确定参考信号没有携带终端的标识信息时,不进行实现同步的同步参数的计算,直接忽略该跟踪参考信号(TRS)。这里,可以是将小区内的终端划分为多个组,每个终端都具有各自所述分组的组信息。这里,标识信息可以是组信息。
在一个实施例中,卫星可以分别对处于无线资源控制(RRC)连接态的终端或处于无线资源控制(RRC)非连接态的终端进行分组。对于处于无线资源控制(RRC)连接态的终端,卫星可以根据能划分的最大组数以及当前连接的终端的唯一标识,将终端平均分配到各个组中。对于处于无线资源控制(RRC)非连接态的终端,卫星并不知道驻留在一个小区中的终端有哪些,卫星可以根据终端上报的跟踪区更新(TAU,Track Area Update)判断此小区中的终端可能有哪些,然后根据能划分的最大组数以及各终端的唯一标识,将终端平均分配到各个组中。这里,终端的唯一标识可以是终端所包含的用户识别模块(SIM,Subscriber Identity Module)的用户识别模块(SIM)号。
在一个实施例中,跟踪参考信号(TRS)的配置信息可以是卫星根据网络需求生成的。例如,在A时间段,网络通过对与终端进行无线通信的时延抖动信息进行测量,确定进行无线通信时的时延抖动较大,可以根据时延抖动信息生成跟踪参考信号(TRS)的配置信息。这里,生成跟踪参考信号(TRS)的配置信息可以是对跟踪参考信号(TRS)的配置信息进行更新,生成经过更新后的新的跟踪参考信号(TRS)的配置信息。
在一个实施例中,可以是卫星直接获取预设规则中的该跟踪参考信号(TRS)的配置信息。该预设规则可以是通信标准中的预配置。
在一个实施例中,第一时域位置可以是帧(Frame)的位置、时隙(slot) 的位置和/或符号(symbol)的位置。在一个实施例中,第一时域位置可以是位于卫星发送寻呼控制信息的位置之前。例如,第一时域位置可以是位于卫星发送寻呼控制信息的位置之前,且第一时域位置与卫星发送寻呼控制信息的位置相邻。
在一个实施例中,第一时域位置与卫星发送寻呼控制信息的位置之间相隔的时间单位越少,第一时域位置与卫星发送寻呼控制信息的位置的信号的时延抖动情况类似,基于该跟踪参考信号(TRS)确定的实现同步的同步参数会越准确,使得终端与卫星之间的同步更加精确。终端能够准确地接收卫星发送的寻呼控制信息。
在一个实施例中,可以是根据第一时域位置确定处于无线资源控制(RRC)空闲态的终端的唤醒时刻。第一时域位置与唤醒时刻可以是相隔N个符号。其中,N大于或等于零。例如,第一时域位置与唤醒时刻可以是相隔2个符号。第一时域位置位于A时隙的第5个符号的位置,可以设置在A时隙的第3个符号唤醒终端,这样,终端只需要等待2个符号的时间就可以接收到该跟踪参考信号,减少了接收跟踪参考信号前的长时间的等待时间。
在一个实施例中,当网络进行无线通信的时延抖动大于设置阈值时,可以设置第一时域位置与唤醒时刻之间相隔的符号个数N大于a值。当网络进行无线通信的时延抖动小于设置阈值时,可以设置第一时域位置与唤醒时刻的符号个数N小于b值。这里a>b。这里,第一时域位置与唤醒时刻之间相隔的符号个数N越小,根据跟踪参考信号(TRS)确定的实现同步的同步参数会越准确,使得终端与卫星之间的同步更加精确,终端与卫星能够更加准确地进行数据传输,从而数据传输会更加可靠。
在一个实施例中,卫星可以是在每个波束上向终端发送寻呼控制信息之前,先发送跟踪参考信号(TRS)。这里,发送寻呼控制信息的时域资源位置可以是与发送跟踪参考信号(TRS)的第一时域位置相邻。请再次参见 图5,发送波束包括波束1和波束2,通过波束1发送跟踪参考信号(TRS)的时域位置为位置1,通过波束1在物理下行控制信道(PDCCH)上发送寻呼控制信息的时域位置为位置2,位置1与位置2相邻。通过波束2发送跟踪参考信号(TRS)的时域位置为位置3,通过波束2在物理下行控制信道PDCCH上发送寻呼控制信息的时域位置为位置4,位置3与位置4相邻。这里,跟踪参考信号可以携带终端的组信息。
在一个实施例中,卫星可以是在第一个波束上向终端发送寻呼控制信息前,先重复发送跟踪参考信号(TRS)。这里,发送寻呼控制信息的时域资源位置可以是与发送跟踪参考信号(TRS)的第一时域位置相邻。请再次参见图6,发送波束包括波束1和波束2,通过波束1发送跟踪参考信号(TRS)的时域位置为位置1和波束2,通过波束1在物理下行控制信道PDCCH上发送寻呼控制信息的时域位置为位置3,位置1与位置2相邻,位置2与位置3相邻。通过波束2在物理下行控制信道PDCCH上发送寻呼控制信息的时域位置为位置4。这里,跟踪参考信号可以携带终端的组信息。这里,终端基于接收到的卫星重复发送的跟踪参考信号获得的实现同步的同步参数会更加准确,使得终端与卫星之间的同步更加精确,终端与卫星能够更加准确地进行数据传输,从而数据传输会更加可靠。
在本公开实施例中,终端在接收到所述配置信息后,就能够在所述第一时域位置之前确定,在所述唤醒时刻及时唤醒所述终端,在第一时域位置接收所述跟踪参考信号(TRS),并利用所述跟踪参考信号(TRS)进行同步。相较于固定周期并周期性地唤醒终端对所述跟踪参考信号(TRS)进行检测的方式,对所述跟踪参考信号(TRS)的检测时间可以更短,从而同步时间会更短且终端的功率会更低。
如图9所示,本实施例中提供一种无线通信的方法,其中,该方法,还包括:
步骤91,在第一时域位置之前的预设唤醒时刻唤醒终端;其中,预设 唤醒时刻是根据第一时域位置确定的;
在一个实施例中,可以是根据第一时域位置确定处于无线资源控制(RRC)空闲态的终端的预设唤醒时刻。第一时域位置与预设唤醒时刻可以是相隔N个符号。其中,N大于或等于零。例如,第一时域位置与预设唤醒时刻可以是相隔2个符号。第一时域位置位于A时隙的第5个符号的位置,可以设置在A时隙的第3个符号唤醒终端,这样,终端只需要等待2个符号的时间就可以接收到该跟踪参考信号,减少了接收跟踪参考信号前的长时间的等待时间。
在一个实施例中,第一时域位置与预设唤醒时刻之间的最大时间间隔可以是小于无线资源控制(RRC)空闲态非连续接收(DRX,Discontinuous Reception)机制中的非连续接续接收周期中的苏醒时间段(on duration)的时长。
在一个实施例中,当网络进行无线通信的时延抖动大于设置阈值时,可以设置第一时域位置与预设唤醒时刻之间相隔的符号个数N大于a值。当网络进行无线通信的时延抖动小于设置阈值时,可以设置第一时域位置与预设唤醒时刻的符号个数N小于b值。这里a>b。这里,第一时域位置与预设唤醒时刻之间相隔的符号个数N越小,根据跟踪参考信号(TRS)确定的实现同步的同步参数会越准确,使得终端与卫星之间的同步更加精确,终端与卫星能够更加准确地进行数据传输,从而数据传输会更加可靠。
步骤92,在第一时域位置上,接收卫星发送的跟踪参考信号(TRS)。
在一个实施例中,终端可以是在第一时域位置上,重复接收卫星发送的跟踪参考信号(TRS)
在一个实施例中,可以是终端连续连续至少两次接收卫星发送的跟踪参考信号(TRS)。终端每次在接收到跟踪参考信号(TRS)后,都可以基于接收到的跟踪参考信号(TRS)确定实现同步的同步参数。这里,同步参数可以是两次获得的同步参数的平均值。利用该同步参数进行同步,使得 终端与卫星之间的无线通信同步,从而能够更加可靠地获取到该寻呼控制信息。
在一个实施例中,第一时域位置位于卫星发送寻呼控制信息的第二时域位置之前;其中,寻呼控制信息,用于指示卫星发送寻呼消息的时频域资源。
在一个实施例中,寻呼控制信息可以是在物理下行控制信道(PDCCH)上发送。终端会监测物理下行控制信道(PDCCH)上的寻呼控制信息。如果寻呼控制信息指示有寻呼消息会在物理下行共享信道(PDSCH)上的某一些时频资源上发送,那么终端将会在该时频资源上解码寻呼消息,获得呼叫到来的信息或者系统信息更新的信息。
这里,由于第一时域位置位于卫星发送寻呼控制信息的第二时域位置之前,终端在监测物理下行控制信道(PDCCH)上的寻呼控制信息之前,苏醒后会接收到跟踪参考信号(TRS),并基于接收到的跟踪参考信号(TRS)确定实现同步的同步参数。并利用该同步参数进行同步,使得终端与卫星之间的无线通信同步,从而能够更加可靠地获取到该寻呼控制信息。
如图10所示,本实施例中提供一种无线通信的方法,其中,该方法,还包括:
步骤101,接收卫星发送的跟踪参考信号(TRS);
在一个实施例中,终端可以是在第一时域位置之前相隔2个符号的位置上被唤醒,在第一时域位置接收卫星重复发送的跟踪参考信号(TRS)。
步骤102,利用跟踪参考信号(TRS)确定终端与卫星之间进行同步的同步参数。
在一个实施例中,当卫星在第一时域位置重复发送跟踪参考信号(TRS)时,终端每次在接收到跟踪参考信号(TRS)后,都可以基于接收到的跟踪参考信号(TRS)确定实现同步的同步参数。这里,同步参数可以是两次获得的同步参数的平均值。利用该同步参数进行同步,使得终端与卫星之间 的无线通信同步,从而能够更加可靠地获取到该寻呼控制信息。
如图11所示,本实施例中提供一种无线通信的方法,其中,跟踪参考信号(TRS)包含终端的分组信息;该方法,还包括:
步骤111,基于分组信息的指示确定对寻呼控制信息进行监测。
多个终端可以分为多个终端组,该分组信息可用于终端分组。该分组信息包括:组标识。接收到该分组信息的终端,可以根据终端所在的分组,确定是否接收前述寻呼控制信息。
在一个实施例中,接收跟踪参考信号(TRS)的终端确定分组信息为该终端的分组信息时,对寻呼控制信息进行监听。否则,不对寻呼控制信息进行监听。例如,终端A所述的分组为分组A,当终端A接收到跟踪参考信号(TRS),并确定跟踪参考信号(TRS)携带有终端A的分组信息“A”,则会对寻呼控制信息进行监听。当确定跟踪参考信号(TRS)没有携带终端A的分组信息“A”,则不会对寻呼控制信息进行监听。
如图12所示,本实施例中提供一种无线通信的装置,应用于卫星,其中,该装置包括发送模块121,其中,
发送模块121,被配置为向终端发送至少一个波束的跟踪参考信号(TRS)的配置信息;
其中,配置信息,至少用于指示卫星发送的跟踪参考信号(TRS)的第一时域位置;跟踪参考信号(TRS)用于终端与卫星之间的同步;第一时域位置,用于终端确定处于无线资源控制(RRC)空闲态的终端的唤醒时刻。
在一个实施例中,发送模块121,还被配置为:第一时域位置位于卫星发送寻呼控制信息的第二时域位置之前;其中,寻呼控制信息,用于指示卫星发送寻呼消息的时频域资源。
在一个实施例中,发送模块121,还被配置为:在第一时域位置上,重 复发送跟踪参考信号(TRS)。
在一个实施例中,发送模块121,还被配置为跟踪参考信号(TRS)包含终端的分组信息;其中,分组信息,用于指示监听寻呼控制信息的终端。
如图13所示,本实施例中提供一种无线通信的装置,应用于终端,装置包括接收模块,其中,
接收模块131,被配置为接收卫星发送的至少一个波束的跟踪参考信号(TRS)的配置信息;
其中,配置信息,至少用于指示卫星发送的跟踪参考信号(TRS)的第一时域位置;跟踪参考信号(TRS)用于终端与卫星之间的同步;第一时域位置,用于终端确定处于无线资源控制(RRC)空闲态的终端的唤醒时刻。
在一个实施例中,装置包括唤醒模块132,其中,
唤醒模块132,还被配置为在第一时域位置之前的预设唤醒时刻唤醒终端;其中,预设唤醒时刻是根据第一时域位置确定的;
接收模块131,还被配置为:在第一时域位置上,接收卫星发送的跟踪参考信号(TRS)。
在一个实施例中,接收模块131,还被配置为:第一时域位置位于卫星发送寻呼控制信息的第二时域位置之前;其中,寻呼控制信息,用于指示卫星发送寻呼消息的时频域资源。
在一个实施例中,该装置还包括同步模块132,其中,
接收模块131,还被配置为接收卫星发送的跟踪参考信号(TRS);
同步模块132,还被配置为利用跟踪参考信号(TRS)确定终端与卫星之间进行同步的同步参数。
在一个实施例中,跟踪参考信号(TRS)包含终端的分组信息;该装置还包括监测模块131,其中,监测模块131,还被配置为基于分组信息的指示确定对寻呼控制信息进行监测。
关于上述实施例中的装置,其中各个模块执行操作的具体方式已经在有关该方法的实施例中进行了详细描述,此处将不做详细阐述说明。
本公开实施例还提供一种通信设备,包括:
天线;
存储器;
处理器,分别与天线及存储器连接,用于通过执行存储在存储器上的可执行程序,控制天线收发无线信号,并能够执行前述任意实施例提供的无线网络接入方法的步骤。
本实施例提供的通信设备可为前述的终端或基站。该终端可为各种人载终端或车载终端。基站可为各种类型的基站,例如,4G基站或5G基站等。
天线可为各种类型的天线、例如,3G天线、4G天线或5G天线等移动天线;天线还可包括:WiFi天线或无线充电天线等。
存储器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
处理器可以通过总线等与天线和存储器连接,用于读取存储器上存储的可执行程序,例如,本公开任一个实施例所示方法的至少其中之一。
本公开实施例还提供一种非临时性计算机可读存储介质,非临时性计算机可读存储介质存储有可执行程序,其中,可执行程序被处理器执行时实现前述任意实施例提供的无线网络接入方法的步骤,例如,本公开任一个实施例所示方法的至少其中之一。
如图14所示,本公开一个实施例提供一种终端的结构。
参照图14所示终端800本实施例提供一种终端800,该终端具体可 是移动电话,计算机,数字广播终端,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图14,终端800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制终端800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在设备800的操作。这些数据的示例包括用于在终端800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为终端800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为终端800生成、管理和分配电力相关联的组件。
多媒体组件808包括在终端800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。触摸传感器可以不仅感测触摸或滑动动作的 边界,而且还检测与触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当设备800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC),当终端800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为终端800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如组件为终端800的显示器和小键盘,传感器组件814还可以检测终端800或终端800一个组件的位置改变,用户与终端800接触的存在或不存在,终端800方位或加速/减速和终端800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于终端800和其他设备之间有线或无线方式的通信。终端800可以接入基于通信标准的无线网络,如Wi-Fi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播 信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,终端800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由终端800的处理器820执行以完成上述方法。例如,非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
该终端可以用于实现前述的方法,例如,本公开任一个实施例的方法。
如图15所示,本公开一个实施例提供一种基站的结构。例如,基站900可以被提供为一网络侧设备。参照图15,基站900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述任意方法,例如,如本公开任一个实施例的方法。
基站900还可以包括一个电源组件926被配置为执行基站900的电源管理,一个有线或无线网络接口950被配置为将基站900连接到网络, 和一个输入输出(I/O)接口958。基站900可以操作基于存储在存储器932的操作系统,例如Windows ServerTM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
该无线网络接口950包括但不限于前述通信设备的天线。本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本申请的其它实施方案。本申请旨在涵盖本申请的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本申请的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本申请的真正范围和精神由下面的权利要求指出。
应当理解的是,本申请并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本申请的范围仅由所附的权利要求来限制。

Claims (20)

  1. 一种无线通信的方法,应用于卫星,其中,所述方法包括:
    向终端发送至少一个波束的跟踪参考信号TRS的配置信息;
    其中,所述配置信息,至少用于指示所述卫星发送的所述TRS的第一时域位置;所述TRS用于所述终端与所述卫星之间的同步;所述第一时域位置,用于所述终端确定处于无线资源控制RRC空闲态的所述终端的唤醒时刻。
  2. 根据权利要求1所述的方法,其中,所述第一时域位置位于所述卫星发送寻呼控制信息的第二时域位置之前;其中,所述寻呼控制信息,用于指示所述卫星发送寻呼消息的时频域资源。
  3. 根据权利要求2所述的方法,其中,所述方法,还包括:
    在多个所述第一时域位置上,重复发送所述TRS。
  4. 根据权利要求2或3所述的方法,其中,所述TRS包含所述终端的分组信息;其中,所述分组信息,用于指示监听所述寻呼控制信息的所述终端。
  5. 一种无线通信的方法,应用于终端,所述方法包括:
    接收卫星发送的至少一个波束的跟踪参考信号TRS的配置信息;
    其中,所述配置信息,至少用于指示所述卫星发送的所述TRS的第一时域位置;所述TRS用于所述终端与所述卫星之间的同步;所述第一时域位置,用于所述终端确定处于无线资源控制RRC空闲态的所述终端的唤醒时刻。
  6. 根据权利要求5所述的方法,其中,所述方法,还包括:
    在所述第一时域位置之前的预设唤醒时刻唤醒所述终端;其中,所述预设唤醒时刻是根据所述第一时域位置确定的;
    在所述第一时域位置上,接收所述卫星发送的所述TRS。
  7. 根据权利要求5所述的方法,其中,所述第一时域位置位于所述卫星发送寻呼控制信息的第二时域位置之前;其中,所述寻呼控制信息,用于指示所述卫星发送寻呼消息的时频域资源。
  8. 根据权利要求5所述的方法,其中,所述方法,还包括:
    接收所述卫星发送的所述TRS;
    利用所述TRS确定所述终端与所述卫星之间进行同步的同步参数。
  9. 根据权利要求7或8所述的方法,其中,所述TRS包含所述终端的分组信息;所述方法,还包括:
    基于所述分组信息的指示确定对寻呼控制信息进行监测。
  10. 一种无线通信的装置,应用于卫星,其中,所述装置包括发送模块,其中,
    所述发送模块,被配置为向终端发送至少一个波束的跟踪参考信号TRS的配置信息;
    其中,所述配置信息,至少用于指示所述卫星发送的所述TRS的第一时域位置;所述TRS用于所述终端与所述卫星之间的同步;所述第一时域位置,用于所述终端确定处于无线资源控制RRC空闲态的所述终端的唤醒时刻。
  11. 根据权利要求10所述的装置,其中,所述发送模块,还被配置为:所述第一时域位置位于所述卫星发送寻呼控制信息的第二时域位置之前;其中,所述寻呼控制信息,用于指示所述卫星发送寻呼消息的时频域资源。
  12. 根据权利要求11所述的装置,其中,所述发送模块,还被配置为:在多个所述第一时域位置上,重复发送所述TRS。
  13. 根据权利要求11或12所述的装置,其中,所述发送模块,还被配置为所述TRS包含所述终端的分组信息;其中,所述分组信息,用于指示监听所述寻呼控制信息的所述终端。
  14. 一种无线通信的装置,应用于终端,所述装置包括接收模块,其 中,所述接收模块,被配置为接收卫星发送的至少一个波束的跟踪参考信号TRS的配置信息;
    其中,所述配置信息,至少用于指示所述卫星发送的所述TRS的第一时域位置;所述TRS用于所述终端与所述卫星之间的同步;所述第一时域位置,用于所述终端确定处于无线资源控制RRC空闲态的所述终端的唤醒时刻。
  15. 根据权利要求14所述的装置,其中,所述装置包括唤醒模块,其中,
    所述唤醒模块,还被配置为在所述第一时域位置之前的预设唤醒时刻唤醒所述终端;其中,所述预设唤醒时刻是根据所述第一时域位置确定的;
    所述接收模块,还被配置为:在所述第一时域位置上,接收所述卫星发送的所述TRS。
  16. 根据权利要求14所述的装置,其中,所述接收模块,还被配置为:所述第一时域位置位于所述卫星发送寻呼控制信息的第二时域位置之前;其中,所述寻呼控制信息,用于指示所述卫星发送寻呼消息的时频域资源。
  17. 根据权利要求14所述的装置,其中,所述装置还包括同步模块,其中,
    所述接收模块,还被配置为接收所述卫星发送的所述TRS;
    所述同步模块,还被配置为利用所述TRS确定所述终端与所述卫星之间进行同步的同步参数。
  18. 根据权利要求16或17所述的装置,其中,所述TRS包含所述终端的分组信息;所述装置还包括监测模块,其中,所述监测模块,还被配置为基于所述分组信息的指示确定对寻呼控制信息进行监测。
  19. 一种通信设备,其中,包括:
    天线;
    存储器;
    处理器,分别与所述天线及存储器连接,被配置为通执行存储在所述存储器上的计算机可执行指令,控制所述天线的收发,并能够实现权利要求1至4或权利要求5至权利要求9任一项提供的方法。
  20. 一种计算机存储介质,所述计算机存储介质存储有计算机可执行指令,所述计算机可执行指令被处理器执行后能够实现权利要求1至4或权利要求5至权利要求9任一项提供的方法。
PCT/CN2020/101116 2020-07-09 2020-07-09 无线通信的方法、装置、设备及存储介质 WO2022006821A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
EP20944823.2A EP4181587A4 (en) 2020-07-09 2020-07-09 WIRELESS COMMUNICATIONS METHOD AND APPARATUS, DEVICE AND STORAGE MEDIUM
PCT/CN2020/101116 WO2022006821A1 (zh) 2020-07-09 2020-07-09 无线通信的方法、装置、设备及存储介质
US18/003,832 US20230261829A1 (en) 2020-07-09 2020-07-09 Wireless communication method and apparatus, device, and storage medium
CN202080001471.8A CN111937450B (zh) 2020-07-09 2020-07-09 无线通信的方法、装置、设备及存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/101116 WO2022006821A1 (zh) 2020-07-09 2020-07-09 无线通信的方法、装置、设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022006821A1 true WO2022006821A1 (zh) 2022-01-13

Family

ID=73335269

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/101116 WO2022006821A1 (zh) 2020-07-09 2020-07-09 无线通信的方法、装置、设备及存储介质

Country Status (4)

Country Link
US (1) US20230261829A1 (zh)
EP (1) EP4181587A4 (zh)
CN (1) CN111937450B (zh)
WO (1) WO2022006821A1 (zh)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210360580A1 (en) * 2020-05-15 2021-11-18 Qualcomm Incorporated Dynamic power sharing and tracking in a communications network
CN114630399A (zh) * 2020-12-11 2022-06-14 索尼公司 电子设备、无线通信方法和计算机可读存储介质
CN112753254A (zh) * 2020-12-31 2021-05-04 北京小米移动软件有限公司 接收控制方法和装置
CN114765503B (zh) * 2021-01-15 2024-01-30 大唐移动通信设备有限公司 信号接收方法、发送方法、终端、网络设备和存储介质
CN114765504A (zh) * 2021-01-15 2022-07-19 大唐移动通信设备有限公司 发送位置确定方法、通信设备和存储介质
WO2022165778A1 (zh) * 2021-02-05 2022-08-11 北京小米移动软件有限公司 信号配置方法、装置、通信设备和存储介质
WO2022178820A1 (zh) * 2021-02-26 2022-09-01 北京小米移动软件有限公司 寻呼早期指示指示方法、装置、通信设备和存储介质
CN115150922A (zh) * 2021-03-31 2022-10-04 维沃移动通信有限公司 信号检测方法、信息发送方法、装置、设备和存储介质
US20220322281A1 (en) * 2021-04-06 2022-10-06 Mediatek Inc. Enhancements on signaling of tracking reference signal (trs) configuration update for idle mode or inactive mode user equipment (ue)
CN113543173A (zh) * 2021-06-29 2021-10-22 中国电子科技集团公司电子科学研究院 卫星5g融合网络的网元部署架构和网元部署方法
CN116233994A (zh) * 2021-12-06 2023-06-06 华为技术有限公司 通信方法及装置
CN117278110B (zh) * 2023-11-20 2024-02-02 上海卫星互联网研究院有限公司 一种卫星网络的孤岛卫星处理方法、装置及设备

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018175813A1 (en) * 2017-03-24 2018-09-27 Intel IP Corporation Tracking reference signals for new radio
CN110268673A (zh) * 2017-02-15 2019-09-20 高通股份有限公司 跟踪参考信号配置设计
CN111096023A (zh) * 2017-09-11 2020-05-01 苹果公司 用于参考信号的配置的方法和装置
CN111373825A (zh) * 2018-07-25 2020-07-03 联发科技股份有限公司 针对ue功率节省的唤醒信号操作

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013133658A1 (ko) * 2012-03-09 2013-09-12 엘지전자 주식회사 동기 트랙킹을 수행하는 방법 및 이를 이용한 무선기기
US10548079B2 (en) * 2017-02-06 2020-01-28 Qualcomm Incorporated Tracking reference signal for new radio
US10750444B2 (en) * 2017-08-18 2020-08-18 Qualcomm Incorporated Advanced grant indicator and aperiodic tracking reference signal in discontinuous reception
EP3676981A1 (en) * 2017-08-29 2020-07-08 Apple Inc. Apparatuses, methods and computer programs for a base station transceiver, a user equipment and an entity of a mobile communication system
CN109842937B (zh) * 2017-09-20 2021-11-19 维沃移动通信有限公司 信息传输方法、网络设备、终端及计算机可读存储介质
US20200287678A1 (en) * 2017-09-29 2020-09-10 Convida Wireless, Llc Time and frequency tracking reference signals in new radio
CN110012524B (zh) * 2018-01-05 2022-02-08 维沃移动通信有限公司 时频同步方法、网络设备和终端
US11456830B2 (en) * 2018-01-09 2022-09-27 Qualcomm Incorporated Aperiod tracking reference signal
US10813078B2 (en) * 2018-02-23 2020-10-20 Hughes Network Systems, Llc Satellite paging efficiency
CN111919414B (zh) * 2018-04-06 2023-03-10 华为技术有限公司 用于基于触发传输的时间和频率跟踪信号的系统和方法
EP3840484A4 (en) * 2018-08-13 2022-03-30 Beijing Xiaomi Mobile Software Co., Ltd. WAKE-UP METHOD, WAKE-UP DEVICE, ELECTRONIC DEVICE AND COMPUTER-READABLE STORAGE MEDIA

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110268673A (zh) * 2017-02-15 2019-09-20 高通股份有限公司 跟踪参考信号配置设计
WO2018175813A1 (en) * 2017-03-24 2018-09-27 Intel IP Corporation Tracking reference signals for new radio
CN111096023A (zh) * 2017-09-11 2020-05-01 苹果公司 用于参考信号的配置的方法和装置
CN111373825A (zh) * 2018-07-25 2020-07-03 联发科技股份有限公司 针对ue功率节省的唤醒信号操作

Non-Patent Citations (3)

* Cited by examiner, † Cited by third party
Title
FRAUNHOFER IIS, FRAUNHOFER HHI: "NTN NR impacts due to phase noise", 3GPP DRAFT; R1-1805130 NTN NR IMPACTS PHASE NOISE, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Sanya, China; 20180416 - 20180420, 15 April 2018 (2018-04-15), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051427386 *
See also references of EP4181587A4 *
THALES: "NR-NTN: Description of cell search and synchronization to support the Non- Terrestrial Network deployment scenarios", 3GPP DRAFT; R1-1720539, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG1, no. Reno, USA; 20171127 - 20171201, 17 November 2017 (2017-11-17), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051369032 *

Also Published As

Publication number Publication date
US20230261829A1 (en) 2023-08-17
EP4181587A1 (en) 2023-05-17
CN111937450A (zh) 2020-11-13
CN111937450B (zh) 2023-10-10
EP4181587A4 (en) 2024-04-10

Similar Documents

Publication Publication Date Title
WO2022006821A1 (zh) 无线通信的方法、装置、设备及存储介质
WO2022094809A1 (zh) 中继ue的重选方法、装置、通信设备及存储介质
WO2023077460A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022147664A1 (zh) 接入方法、辅助信息处理方法及装置、设备及存储介质
WO2022155972A1 (zh) 小区切换方法及装置、通信设备及存储介质
WO2022000361A1 (zh) Ue之间的定位方法及装置、通信设备及存储介质
WO2022183456A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022052024A1 (zh) 参数配置方法、装置、通信设备和存储介质
WO2022061739A1 (zh) 传输时延补偿方法、装置、通信设备和存储介质
US20240098595A1 (en) Method and apparatus for determining handover configuration, and communication device
WO2022000490A1 (zh) 无线通信方法及装置、通信设备及存储介质
WO2022120735A1 (zh) 无线通信的方法、装置、通信设备及存储介质
WO2022056847A1 (zh) 终端的定位方法、装置、通信设备及存储介质
WO2022155886A1 (zh) 无线通信的方法、装置、通信设备及存储介质
WO2022027473A1 (zh) 小区测量处理方法、装置、通信设备及存储介质
WO2022110057A1 (zh) 无线传输的方法、装置、通信设备及存储介质
WO2022205341A1 (zh) 测量间隔预配置处理方法、装置、通信设备及存储介质
WO2022061717A1 (zh) 生效时间确定方法、装置、通信设备和存储介质
US20240098667A1 (en) Timing adjustment method and apparatus, communication device, and storage medium
WO2022141162A1 (zh) 一种通信方法、装置、通信设备和存储介质
WO2022140951A1 (zh) 通信方法及装置、通信设备和存储介质
WO2022021271A1 (zh) 波束切换方法及装置、网络设备、终端及存储介质
WO2022036597A1 (zh) 信息处理方法、装置及计算机可读存储介质
WO2022134037A1 (zh) 时间段的配置方法及装置、通信设备及存储介质
WO2022188088A1 (zh) 重选小区的方法、装置、通信设备及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944823

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020944823

Country of ref document: EP

Effective date: 20230209

NENP Non-entry into the national phase

Ref country code: DE