WO2022134037A1 - 时间段的配置方法及装置、通信设备及存储介质 - Google Patents

时间段的配置方法及装置、通信设备及存储介质 Download PDF

Info

Publication number
WO2022134037A1
WO2022134037A1 PCT/CN2020/139534 CN2020139534W WO2022134037A1 WO 2022134037 A1 WO2022134037 A1 WO 2022134037A1 CN 2020139534 W CN2020139534 W CN 2020139534W WO 2022134037 A1 WO2022134037 A1 WO 2022134037A1
Authority
WO
WIPO (PCT)
Prior art keywords
ssb
time period
transmission delay
cell
serving cell
Prior art date
Application number
PCT/CN2020/139534
Other languages
English (en)
French (fr)
Inventor
熊艺
杨星
Original Assignee
北京小米移动软件有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京小米移动软件有限公司 filed Critical 北京小米移动软件有限公司
Priority to PCT/CN2020/139534 priority Critical patent/WO2022134037A1/zh
Priority to CN202080004175.3A priority patent/CN114982271A/zh
Priority to US18/269,220 priority patent/US20240080687A1/en
Priority to EP20966602.3A priority patent/EP4271031A4/en
Publication of WO2022134037A1 publication Critical patent/WO2022134037A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W24/00Supervisory, monitoring or testing arrangements
    • H04W24/08Testing, supervising or monitoring using real traffic
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1851Systems using a satellite or space-based relay
    • H04B7/18513Transmission in a satellite or space-based system
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/14Relay systems
    • H04B7/15Active relay systems
    • H04B7/185Space-based or airborne stations; Stations for satellite systems
    • H04B7/1853Satellite systems for providing telephony service to a mobile station, i.e. mobile satellite service
    • H04B7/18539Arrangements for managing radio, resources, i.e. for establishing or releasing a connection
    • H04B7/18541Arrangements for managing radio, resources, i.e. for establishing or releasing a connection for handover of resources
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/08Access restriction or access information delivery, e.g. discovery data delivery
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W48/00Access restriction; Network selection; Access point selection
    • H04W48/16Discovering, processing access restriction or access information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/0035Synchronisation arrangements detecting errors in frequency or phase
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W84/00Network topologies
    • H04W84/02Hierarchically pre-organised networks, e.g. paging networks, cellular networks, WLAN [Wireless Local Area Network] or WLL [Wireless Local Loop]
    • H04W84/04Large scale networks; Deep hierarchical networks
    • H04W84/06Airborne or Satellite Networks

Definitions

  • the present disclosure relates to the technical field of wireless communication, but is not limited to the technical field of wireless communication, and in particular, to a time period configuration method and apparatus for measuring a Synchronization Signal Block (SSB), a communication device, and a storage medium.
  • SSB Synchronization Signal Block
  • the 5th Generation (5th Generation, 5G) NR introduces non-terrestrial networks (NTN).
  • the NTN includes: 5G satellite communication network. Considering the high altitude of the satellite from the earth, the transmission delay of the NTN network is relatively large. At the same time, different types of NTN networks have different transmission delays corresponding to satellites at different altitudes.
  • Embodiments of the present disclosure provide a time period configuration update method and apparatus, a communication device, and a storage medium for measuring a time period of an SSB.
  • a first aspect of an embodiment of the present disclosure provides a method for configuring a time period for measuring SSB, including:
  • the SSB of the neighboring cell is detected, wherein the time period for measuring the SSB includes: an SSB measurement timing configuration (SSB measurement timing configuration, SMTC) window and/or a measurement gap (measurement gap);
  • SSB measurement timing configuration SSB measurement timing configuration, SMTC
  • measurement gap measurement gap
  • the update indication information is reported, wherein the update indication information is used for the network side to update the time period configuration; the time period configuration includes the indication information for determining the time period for measuring the SSB.
  • a second aspect of the embodiments of the present disclosure provides a method for configuring a time period for measuring an SSB, wherein, when applied to a serving cell, the method includes:
  • the time period configuration of the time period for measuring the SSB is updated, wherein the time period configuration includes indication information for determining the time period for measuring the SSB.
  • a third aspect of the embodiments of the present disclosure provides an apparatus for configuring a time period of a synchronization signal block SSB, which is applied in a terminal, and the apparatus includes:
  • a measurement module configured to detect the SSB of a neighboring cell within a time period for measuring SSB, wherein the time period for measuring SSB includes: SSB measurement timing configuration SMTC window and/or measurement gap;
  • the reporting module is configured to report update indication information according to the detection result of the SSB, wherein the update indication information is used for the network side to update the time period configuration; the time period configuration includes the indication information used to determine the time period for measuring the SSB .
  • a fourth aspect of the embodiments of the present disclosure provides an apparatus for configuring a time period for measuring an SSB, wherein, when applied to a serving cell, the method includes:
  • a second receiving module configured to receive update indication information reported by the terminal based on the detection result of the SSB of the neighboring cell
  • the update module is configured to update the time period configuration of the time period for measuring the SSB according to the update indication information.
  • a fifth aspect of the embodiments of the present disclosure provides a communication device, including a processor, a transceiver, a memory, and an executable program stored on the memory and capable of being run by the processor, wherein the processor runs the executable program During the program, the method for configuring the time period for measuring the SSB as provided in the foregoing first aspect or the second aspect is performed.
  • a sixth aspect of the embodiments of the present disclosure provides a computer storage medium, where an executable program is stored in the computer storage medium; after the executable program is executed by a processor, the measurement provided in the foregoing first aspect or the second aspect can be implemented How to configure the time period of SSB.
  • the time period configuration of the time period for measuring the SSB of the adjacent cell is determined according to the detection result of the SSB of the adjacent cell by the terminal.
  • the fixed time period configuration of the time period for measuring the SSB of a length is relatively , which can reduce unnecessary resource occupation or the situation that the SSB of the neighboring cell cannot be successfully measured.
  • unnecessary updates can be reduced and signaling overhead can be reduced.
  • FIG. 1 is a schematic structural diagram of a wireless communication system according to an exemplary embodiment
  • FIG. 2 is a schematic structural diagram of an NTN system according to an exemplary embodiment
  • FIG. 3 is a schematic flowchart of a method for updating a period configuration of a period of time for measuring an SSB according to an exemplary embodiment
  • FIG. 4 is a schematic flowchart of a time period configuration update method for measuring a time period of an SSB according to an exemplary embodiment
  • FIG. 5 is a schematic flowchart of a time period configuration update method for measuring a time period of an SSB according to an exemplary embodiment
  • FIG. 6 is a schematic structural diagram of an apparatus for updating a time period configuration for measuring a time period of an SSB according to an exemplary embodiment
  • FIG. 7 is a schematic structural diagram of a time period configuration updating apparatus for measuring a time period of an SSB according to an exemplary embodiment
  • FIG. 8 is a schematic structural diagram of a terminal according to an exemplary embodiment
  • Fig. 9 is a schematic structural diagram of a satellite according to an exemplary embodiment.
  • first, second, third, etc. may be used in embodiments of the present disclosure to describe various pieces of information, such information should not be limited to these terms. These terms are only used to distinguish the same type of information from each other.
  • the first information may also be referred to as the second information, and similarly, the second information may also be referred to as the first information.
  • the word "if” as used herein can be interpreted as "at the time of” or "when” or "in response to determining.”
  • FIG. 1 shows a schematic structural diagram of a wireless communication system provided by an embodiment of the present disclosure.
  • the wireless communication system is a communication system based on cellular mobile communication technology, and the wireless communication system may include: several UEs 11 and several base stations 12 .
  • the UE11 may be a device that provides voice and/or data connectivity to the user.
  • the UE11 may communicate with one or more core networks via a Radio Access Network (RAN), and the UE11 may be an IoT UE, such as a sensor device, a mobile phone (or "cellular" phone) and an IoT-enabled UE.
  • RAN Radio Access Network
  • the UE's computer for example, may be a stationary, portable, pocket-sized, hand-held, computer-built-in, or vehicle-mounted device.
  • a station For example, a station (Station, STA), a subscriber unit (subscriber unit), a subscriber station (subscriber station), a mobile station (mobile station), a mobile station (mobile), a remote station (remote station), an access point, a remote UE ( remote terminal), access UE (access terminal), user device (user terminal), user agent (user agent), user equipment (user device), or user UE (user equipment, UE).
  • the UE11 may also be a device of an unmanned aerial vehicle.
  • the UE 11 may also be an in-vehicle device, for example, a trip computer with a wireless communication function, or a wireless communication device connected to an external trip computer.
  • the UE11 may also be a roadside device, for example, may be a streetlight, a signal light, or other roadside device having a wireless communication function.
  • the base station 12 may be a network-side device in a wireless communication system.
  • the wireless communication system may be a fourth generation mobile communication (the 4th generation mobile communication, 4G) system, also known as a long term evolution (Long Term Evolution, LTE) system; or, the wireless communication system may also be a 5G system, Also known as new radio (NR) system or 5G NR system.
  • the wireless communication system may also be a next-generation system of the 5G system.
  • the access network in the 5G system can be called NG-RAN (New Generation-Radio Access Network, a new generation of radio access network).
  • the MTC system may be a network-side device in a wireless communication system.
  • the base station 12 may be an evolved base station (eNB) used in the 4G system.
  • the base station 12 may also be a base station (gNB) that adopts a centralized distributed architecture in a 5G system.
  • eNB evolved base station
  • gNB base station
  • the base station 12 adopts a centralized distributed architecture it usually includes a centralized unit (central unit, CU) and at least two distributed units (distributed unit, DU).
  • the centralized unit is provided with a protocol stack of a Packet Data Convergence Protocol (PDCP) layer, a Radio Link Control Protocol (Radio Link Control, RLC) layer, and a Media Access Control (Media Access Control, MAC) layer; distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 12 is not limited in this embodiment of the present disclosure.
  • PDCP Packet Data Convergence Protocol
  • RLC Radio Link Control Protocol
  • MAC Media Access Control
  • distribution A physical (Physical, PHY) layer protocol stack is set in the unit, and the specific implementation manner of the base station 12 is not limited in this embodiment of the present disclosure.
  • a wireless connection can be established between the base station 12 and the UE 11 through a wireless air interface.
  • the wireless air interface is a wireless air interface based on the fourth generation mobile communication network technology (4G) standard; or, the wireless air interface is a wireless air interface based on the fifth generation mobile communication network technology (5G) standard, such as
  • the wireless air interface is a new air interface; alternatively, the wireless air interface may also be a wireless air interface based on a 5G next-generation mobile communication network technology standard.
  • the above wireless communication system may further include a network management device 13 .
  • the network management device 13 may be a core network device in a wireless communication system, for example, the network management device 13 may be a mobility management entity (Mobility Management Entity) in an evolved packet core network (Evolved Packet Core, EPC). MME).
  • the network management device may also be other core network devices, such as a serving gateway (Serving GateWay, SGW), a public data network gateway (Public Data Network GateWay, PGW), a policy and charging rules functional unit (Policy and Charging Rules) Function, PCRF) or home subscriber server (Home Subscriber Server, HSS), etc.
  • the implementation form of the network management device 13 is not limited in this embodiment of the present disclosure.
  • the cell radius is small, and the transmission delay gap between the UE and different cells is very small, which is much smaller than the length of the SMTC window/measurement gap.
  • the overlapping range of different satellite coverage areas is also large.
  • SA satellite
  • the UE may also be within the coverage of satellite 2/satellite 3. .
  • the UE needs to perform the measurement of the neighboring cells covered by the satellite 2 or the satellite 3, and the influence of the transmission delay difference needs to be considered.
  • the satellite (SA1) is the serving cell satellite
  • the satellite (SA2) is the adjacent cell satellite.
  • the transmission delay of the UE receiving the signal from the serving cell can be expressed as T1g (transmission delay of the feeder link) + T1u (transmission delay of the service link), and the transmission delay of the UE receiving the signal of the neighboring cell is: T2u+T2g.
  • the transmission delay difference is T1g+T1u-(T2g+T2u).
  • the UE may miss the SSB/CSI-RS measurement window and thus will not be able to perform measurements on the configured reference signals.
  • an embodiment of the present disclosure provides a time period configuration update method for measuring a time period of an SSB, which is applied to a terminal, and the method includes:
  • S110 Detect the SSB of a neighboring cell within a time period for measuring SSB, where the time period for measuring SSB includes: an SMTC window and/or a measurement gap;
  • S120 Report update indication information according to the detection result of the SSB, where the update indication information is used for the network side to update the time period configuration; the time period configuration includes indication information for determining the time period for measuring the SSB.
  • the configuration method for measuring the time period of the synchronization signal block SSB can be applied to various types of terminals, including but not limited to: mobile phones, tablet computers, wearable devices, and in-vehicle devices Or various types of smart devices.
  • the smart devices include but are not limited to: smart home devices, smart office devices, or smart teaching devices.
  • the terminal provided in the embodiment of the present disclosure may be a terminal capable of accessing an NTN cell, for example, a satellite communication terminal. Of course, in some cases, some terminals support the communication between the TN cell and the NTN cell at the same time.
  • An NTN cell is a communication cell within the NTN system.
  • the TN cell may include: a cell formed by a terrestrial base station.
  • the neighbor cell may be an NTN cell of the serving cell.
  • the serving cell here may also be an NTN cell or a TN cell.
  • the terminal will determine the time period for measuring the SSB according to the period configuration that has been received for determining the measurement of the SSB, for example, determine the distribution position of the time period for measuring the SSB in the time domain, and/or the time for measuring the SSB segment duration, etc.
  • the SSB of the neighboring cell is detected, and the detection result of whether the SSB of the neighboring cell is successfully detected will be obtained. If the time period in which the SSB is measured is an SMTC window, the corresponding time period configuration may be an SMTC configuration.
  • the corresponding time period configuration may be a measurement gap configuration.
  • the detection result may at least indicate whether the SSB of the corresponding neighboring cell is detected.
  • the detection result while indicating whether the SSB of the corresponding neighboring cell is detected, may also indicate the number of SSBs detected in the time period for measuring the SSB determined according to the current period configuration, and/or, Reference Signal Receiving Power (RSRP) of the SSB and Reference Signal Receiving Quality (RSRQ) of the SSB.
  • RSRP Reference Signal Receiving Power
  • RSS Reference Signal Receiving Quality
  • the detection result it can be determined whether the current time period for measuring the SSB can meet the measurement requirement of the SSB of the neighboring cell, and then it is determined whether the current time period configuration needs to be updated according to the measurement requirement.
  • the terminal may receive a neighbor cell list from the serving cell of the terminal, where the neighbor cell list has cell identifiers of the neighbor cells.
  • the terminal When detecting the SSB of a neighboring cell within the time period for measuring the SSB, it may be determined whether the terminal has detected the SSB of one or more neighboring cells according to the cell identifier in the neighboring cell list.
  • the SSB may include: a primary synchronization signal.
  • the SSB includes a primary synchronization signal and a secondary synchronization signal.
  • the SSB includes: a primary synchronization signal, a secondary synchronization signal, and a PBCH (Physical Broadcast Channel, physical broadcast channel).
  • PBCH Physical Broadcast Channel, physical broadcast channel
  • the update indication information may be reported according to the detection result of the SSB. In this way, after receiving the update indication information, the network side can update the time period configuration of the time period for measuring the SSB under the trigger of the update indication information or according to the information content of the update indication information.
  • the update instruction information may only be an update instruction
  • the network side receives the update instruction and determines the time period in which the measured SSB needs to be updated, and how to update it and the update basis can be determined according to a preset update strategy, For example, the time period for measuring the SSB is increased according to a preset step size, and the like.
  • the update indication information carries a transmission delay difference.
  • the transmission delay difference may include:
  • the first transmission delay difference is: the transmission delay between the terminal and the serving cell and the difference between the terminal and the neighboring cell in the neighboring cell group where the SSB detection fails.
  • the second transmission delay difference is: the transmission delay between the terminal and the serving cell and the difference between the terminal and the neighboring cell in the neighboring cell group where the SSB detection is successful are located The difference in transmission delay between neighboring cells.
  • the S120 may include: determining, according to the detection result of the SSB, a transmission delay difference between the terminal and the transmission of the serving cell and the neighboring cell, respectively; and according to the transmission delay If not, report the update indication information.
  • update indication information including but not limited to at least one of the following:
  • the bitmap is different from the transmission delay, and different bits in the bitmap indicate different neighboring cells.
  • the transmission delay difference carried in the update indication information may be the aforementioned first transmission delay difference.
  • the time period for updating the SSB measurement here includes, but is not limited to: updating the duration of the time period for measuring the SSB and/or updating the time domain position of the time period for measuring the SSB, and the like.
  • the serving cell may send the updated time period configuration to the terminal by means of broadcast, multicast or unicast.
  • the serving cell may send the time period configuration to the terminal through RRC signaling.
  • the time period for measuring the SSB can be divided into two types, one is an SMTC window, and the other is a measurement gap.
  • the SMTC window is when the serving cell and the neighboring cell use the same frequency band, that is, when the serving cell and the neighboring cell are co-frequency cells with each other, the terminal can perform the SSB measurement of the neighboring cell within the SMTC window. If the serving cell and the neighboring cell are inter-frequency cells, the terminal may also need to replace the antenna parameters when measuring the SSB of the neighboring cell. Therefore, the time period for measuring the SSB includes a measurement gap that is longer than the duration of the SMTC window. and the corresponding SMTC window. When the serving cell and the neighboring cell are inter-frequency cells, the terminal performs SSB measurement on the neighboring cell within the SMTC window included in the measurement gap. In an inter-frequency system, the measurement gap may include one or more SMTC windows.
  • the update indication information is reported, and the network side is triggered to perform the necessary update of the time period for measuring the SSB, thereby reducing the unnecessary update of the time period for measuring the SSB. Therefore, signaling consumption caused by frequent update of the time period for measuring SSB is reduced, and the phenomenon of SSB detection failure or resource waste in neighboring cells caused by the fixed setting of the time period for measuring SSB is too long or too short.
  • the interaction between the terminal and the base station involved in the update of the time period for measuring SSB so the time period for measuring SSB is not a one-way update, thereby reducing the incompatibility of the current time period for updating the time period used by the terminal to measure SSB.
  • the time period during which the SSB is measured for the communication scenario. Therefore, the method for updating the time period for measuring the SSB provided by the embodiment of the present disclosure has the characteristics of low signaling overhead and the setting of the time period for measuring the SSB meets the SSB measurement requirement of the current neighbor cell.
  • the S120 may include:
  • the update indication information is reported.
  • the terminal can report the update indication information according to the detection result at this time, so as to trigger the network side (the network side at this time includes but not limited to: the serving cell) to update the configuration of the time period for measuring the SSB, and then the terminal can measure the SSB according to the updated configuration. configuration of the time period, and re-determine the time period for measuring the SSB. If the SSB of the neighboring cell is measured within the time period of the updated SSB, there is a high probability that the SSB of each neighboring cell to be detected can be successfully detected.
  • S120 may include: determining, according to the detection result, that the SSB detection of at least one neighboring cell fails.
  • the method further includes:
  • the update indication information is not reported, that is, the reporting of the update indication information is stopped or blocked; thus, unnecessary signaling overhead is reduced.
  • the S120 may include:
  • S122 Report the update indication information according to the first transmission delay difference.
  • the initial period configuration may be: the first configuration of the period for determining the SSB delivered by the network side to the terminal.
  • the period configuration of the first SSB measurement period obtained by the terminal entering the current serving cell may be divided into an initial period configuration and a non-initial period configuration.
  • the initial period configuration is: the terminal obtains the first period configuration of the time period for measuring the SSB after entering the serving cell, and the period configurations after the first period configuration are all the non-initial period configurations.
  • the initial period configuration may be: a period configuration broadcast by the serving cell.
  • the time period configuration of the currently used time period for measuring the SSB is not the initial time period configuration, it means that the terminal already knows which neighboring cells the current serving cell has.
  • the base station can update the time for measuring SSB according to the previously stored transmission delay difference between the terminal’s transmission to the serving cell and the adjacent cell and the currently reported first transmission delay difference part.
  • the transmission delay difference here can be one of the following:
  • the update indication information may not carry any information such as the cell identity of the neighboring cell, which directly or indirectly indicates that the SSB detection fails the neighboring cell.
  • the update indication information may not carry any information such as the cell identity of the neighboring cell, which directly or indirectly indicates that the SSB detection fails the neighboring cell.
  • this is only an example of updating the indication information, and the specific implementation is not limited to this example.
  • S120 may directly include: according to the detection result of the SSB, at least determining a first transmission delay difference between the transmission of the terminal and the serving cell and the neighboring cell for which the SSB detection fails; The first transmission delay difference is reported, and the update indication information is reported.
  • the cell list of the serving cell is synchronized with the neighboring cells.
  • the terminal obtains the initial period configuration after entering the serving cell, and can also determine which neighboring cells are SSB detection failed.
  • the terminal does not need to determine whether the currently used period configuration is the initial period configuration.
  • the method further includes:
  • the SSB of the same neighbor cell fails to be detected within the time period for measuring the SSB for M consecutive times, it is determined that the detection result of the SSB corresponding to the neighbor cell is a failure; wherein, the M is any positive integer.
  • the terminal is no longer a neighbor cell that fails to detect the SSB once, and determines that the SSB detection of the neighbor cell fails, but only after M consecutive SSB detection failures.
  • the SSB detection of the neighbor cell fails.
  • the terminal may find that the SSB detection fails in a process of detecting a neighboring cell, and then the terminal may determine that the SSB detection of the corresponding neighboring cell fails.
  • the method further includes:
  • N number of SSBs are not successfully detected when measuring the SSBs of neighboring cells within a time period for measuring SSBs, it is determined that one SSB detection fails; and/or, within a time period for measuring SSBs When measuring the SSBs of neighboring cells, N number of the SSBs are successfully detected, and it is determined that one SSB detection is successful;
  • the N is less than or equal to the total number of SSBs configured by the corresponding neighboring cell in one SSB measurement time period.
  • An SSB detection of a neighboring cell is an SSB detection within a time period for measuring the SSB, and each SSB in the SSB set (SSB burst or SSB burst set) is detected.
  • an SSB set includes: one or more SSBs.
  • N may be less than the total number of SSBs configured in the SSB set.
  • the S121 may include:
  • the update indication information is reported according to the time period configuration and the first transmission delay difference.
  • time period configurations for measuring SSB There are different types of time period configurations for measuring SSB, which can be divided into time period configurations with different granularities according to the scope of action.
  • the public period configuration is aimed at all neighboring cells of the serving cell
  • the group period configuration is aimed at a neighboring cell group of the serving cell, and a neighboring cell group includes one or more neighboring cells;
  • the cell period configuration is for a single neighboring cell of the serving cell.
  • the information content of the update indication information may be different. Through the difference of the information content of the update indication information, the base station can quickly and targetedly perform the update instruction information on the neighboring cells after receiving the update indication information. Update of the time period during which SSB measurements were made.
  • the updating updates the period configuration of the time period for measuring the SSB of the neighboring cell corresponding to the first transmission delay difference, including: At least one of the following:
  • the update indication information indicating the first delay difference range is reported according to the first transmission delay difference, wherein the common period configuration determines the time period for measuring the SSB , used for SSB measurement of all neighboring cells of the serving cell; the first delay difference range is: according to the transmission delay between the terminal and the serving cell and the difference between the terminal and all neighboring cells It is determined by the difference between the transmission delays;
  • the update indication information indicating the second delay difference range is reported according to the first transmission delay difference, wherein the group period configuration is used to determine the service A time period for measuring SSB shared by all neighboring cells in a neighboring cell group of a cell;
  • the second delay difference range is: according to the transmission delay between the terminal and the serving cell and the difference between the terminal and the serving cell Determined by the difference between the transmission delays between the neighboring cells in the neighboring cell group where the neighboring cell that fails the SSB detection is located;
  • the update indication information indicating the first transmission delay difference is reported according to the first transmission delay difference; wherein the cell period configuration is used to determine whether the service The time period during which the SSB of one of the neighbor cells of the cell is measured.
  • the transmission delay differences corresponding to all neighboring cells of the serving cell are also determined, and the indication information is updated throughout the The range where the transmission delay difference corresponding to all neighboring cells is reported.
  • the first transmission delay difference is p1; the transmission delays of other neighboring cells are px, and x is any positive integer indicating the neighboring cells; then the update indication information may carry max(p1, px) and min(p1, px).
  • the first delay difference range may be indicated by max(p1, px) and min(p1, px).
  • the transmission delay difference corresponding to the adjacent cells is: the difference between the transmission delays of the terminal to the serving cell and the adjacent cell respectively.
  • the first transmission delay difference is p1; the transmission delays of other neighboring cells in the neighboring cell group are py, and y is any positive integer indicating other neighboring cells in the neighboring cell group except for the neighboring cell that fails the SSB detection;
  • the update indication information may carry max(p1, py) and min(p1, py).
  • the second delay difference range may be indicated by max(p1, py) and min(p1, py). If the time period for the current SSB measurement is determined according to the cell time period configuration, after the first transmission delay difference is determined, the update indication information can directly carry the first transmission delay difference and the neighbor cell whose direct or indirect SSB detection fails. Just update the instructions.
  • the reporting of update indication information according to the detection result of the SSB measurement includes:
  • the update indication information is reported according to the second transmission delay difference.
  • the terminal If the time period currently used by the terminal to measure the SSB of the neighbor cell is determined according to the initial time period configuration, the terminal has not established a connection with the serving cell and cannot receive the unicast neighbor cell list. At this time, the terminal can report the transmission delay differences corresponding to all adjacent cells for which its own SSB has been successfully detected to the serving cell; the base station of the serving cell can determine whether the terminal has missed to detect the SSB of one or more adjacent cells; and It is further determined whether the time period for measuring the SSB needs to be updated.
  • the difference between the transmission delay between the terminal and the serving cell and the transmission delay between the terminal and the corresponding neighboring cell is: according to the location of the terminal, the ephemeris information of the serving cell, and the The ephemeris information of the corresponding neighboring cell is determined.
  • the ephemeris information of the serving cell is used to determine the position of the serving satellite of the serving cell; the ephemeris information of the neighboring cell is used to determine the position of the neighboring cell satellite of the neighboring cell.
  • the method further includes: receiving the ephemeris information of the serving cell and the ephemeris information of the neighboring cell sent by the serving cell.
  • the ephemeris information may be broadcast, multicast or unicast by the serving cell.
  • the terminal may receive the ephemeris information of the serving cell and/or the ephemeris information of the neighboring cells on the broadcast channel, the multicast channel or the unicast channel.
  • the terminal determines the transmission delay between itself and the serving cell and neighboring cells, it can determine the transmission delay according to the distance between its own location and the position of the serving satellite of the serving cell, based on the distance and the transmission rate of the wireless signal. ; Then, by calculating the difference between the transmission delay of the serving cell and the transmission delay of the neighboring cell, the transmission delay difference such as the first transmission delay difference and/or the second transmission delay difference is obtained.
  • the transmission rate of the wireless signal may be approximately equal to: the speed of light.
  • the terminal may query the preset correspondence between the distance and the transmission delay, and may also simply determine the transmission delay between the terminal and the serving cell and the neighboring cell, respectively.
  • one neighbor cell corresponds to one frequency point or one carrier.
  • an embodiment of the present disclosure provides a time period update method for measuring SSB, wherein, when applied to a serving cell, the method includes:
  • S210 Receive update indication information reported by the terminal based on the detection result of the SSB of the neighboring cell;
  • S220 Update the time period configuration of the time period for measuring the SSB according to the update indication information, where the time period configuration includes indication information for determining the time period for measuring the SSB.
  • the method for updating the time period for measuring the SSB can be applied to the serving cell, and at this time, the execution subject for executing S210 to S220 may be a serving satellite of the serving cell or the like.
  • the serving satellites include but are not limited to: Geostationary Earth Orbiting (GEO) satellites and/or Low Earth Orbiting (LEO) satellites.
  • GEO Geostationary Earth Orbiting
  • LEO Low Earth Orbiting
  • the time period of the SSB measurement of the adjacent cell by the terminal is updated.
  • the network side can deliver the new time period configuration to the terminal for use by the terminal.
  • the network updates the time period configuration through the update indication information reported according to the SSB detection results of the neighboring cells, and has the characteristics of being able to dynamically and flexibly adjust the time period for measuring the SSB, and at the same time, it has the characteristics of low signaling overhead.
  • the update indication information is: reported when the terminal determines that the SSB detection of at least one neighboring cell fails according to the SSB detection result.
  • the update indication information may carry the transmission delay difference or not carry the transmission delay difference.
  • the S220 may include: based on the transmission delay difference carried in the update indication information, updating the time period configuration of the time period for measuring the SSB.
  • the transmission delay difference carried in the update indication information here may include: at least one of the first transmission delay difference and the second transmission delay difference in the foregoing terminal-side embodiment.
  • S220 may include:
  • the update indication information carrying the first transmission delay difference and according to the type of the period configuration corresponding to the first transmission delay difference, update the measured SSB of the neighboring cell corresponding to the first transmission delay difference
  • the time period configuration of the time period; the first transmission delay difference is: the transmission delay between the terminal and the serving cell and the difference between the transmission delay between the terminal and the neighboring cell in the neighboring cell group where the SSB detection failed.
  • the type of time period configuration includes at least one of the following:
  • a neighboring cell group includes: one or more neighboring cells of the serving cell;
  • the updating updates the period configuration of the time period for measuring the SSB of the neighboring cell corresponding to the first transmission delay difference, including: At least one of the following:
  • the common time period configuration In response to the time period configuration corresponding to the first transmission delay difference being a common time period configuration, the common time period configuration is updated; wherein, the common time period configuration is used for: a measurement SSB shared by all neighboring cells of the serving cell time period;
  • the group period configuration is updated, wherein the group period configuration is used to determine all neighbors in a neighboring cell group of the serving cell.
  • the cell period configuration in response to the period configuration corresponding to the first transmission delay difference being a cell period configuration, wherein the cell period configuration is used to determine a measurement on a neighbor cell of the serving cell The time period of the SSB.
  • the updating of the time period configuration of the time period for measuring the SSB according to the update indication information includes:
  • the time period configuration is updated according to the preset information for adjusting the reference value and the reference value.
  • the motion trajectories of the satellites are also different; the speed of the terminal itself will affect the measurement of the SSB of the adjacent cell by the terminal.
  • preset information is introduced to correct the reference value determined based on the update indication information.
  • the preset information includes at least one of the following:
  • Ephemeris information of the serving satellite of the serving cell
  • Ephemeris information of the neighboring cell satellites of the neighboring cells
  • the ephemeris information of the neighbor cell satellite and/or the serving satellite can be used to locate the position of the neighbor cell satellite and the position of the serving satellite, respectively.
  • the movement speed of the terminal may be represented by a specific speed value, or it may be represented by a speed level where the movement speed of the terminal is located.
  • the method further includes:
  • the initial period configuration of the period for measuring the SSB is determined.
  • composition of the default delay difference range includes one of the following:
  • the first minimum value is: the transmission delay from any position in the serving cell to the serving cell minus the transmission delay from the corresponding position to any neighboring cell
  • the minimum value of ; the first maximum value is: the maximum value of the transmission delay from any position in the serving cell to the serving cell minus the maximum value of the transmission delay from the corresponding position to any neighboring cell;
  • the second minimum value is: the transmission delay when any position in the serving cell reaches any neighboring cell, minus the transmission delay when the corresponding position reaches the serving cell
  • the minimum value of the delay is: the transmission delay of any adjacent cell at any position in the serving cell, minus the maximum value of the transmission delay of the serving cell at the corresponding position;
  • the transmission delay difference range determined according to historical data.
  • the coverage of the serving cell includes only 2 positions, the positions A and B, including two adjacent cells and 2 corresponding adjacent cell satellites; the delay from position A to SA (serving satellite) is 10, and the terminal to NA1 (Neighboring cell satellite 1) delay is 132, terminal to NA2 (neighboring cell satellite 2) delay is 9, position B to SA (serving satellite) delay is 110, to NA1 (neighboring cell satellite 1) The delay is 22.
  • the time delay of NA2 (neighboring cell satellite 2) is 10.
  • the transmission delay difference range is [-122, 100], and -122 is the first minimum value; 100 is the first maximum value. If the second minimum value to the second maximum value is adopted, the transmission delay difference range is [-100, 122], and -100 is the first minimum value; 122 is the first maximum value.
  • the serving cell currently accessed by the terminal has already been accessed by other terminals, and other terminals will also report the delay difference range determined based on the transmission delay difference to the cell, which is determined for one terminal in the embodiment of the present disclosure.
  • the initial time period configuration of its access to the serving cell can be determined according to the range of the maximum delay difference reported by other terminals, so it has the characteristics of simple implementation.
  • the historical data may be: the time period configuration for the current terminal may be determined by the serving cell according to the transmission delay difference range used by the current terminal and/or other terminals in the time period configuration used at the historical moment.
  • the updating the time period configuration of the time period for measuring the SSB according to the update indication information includes:
  • the period configuration is updated; wherein the second transmission delay difference is: the difference between the terminal and the serving cell difference between the transmission delay between the terminals and the transmission delays between the terminal and each adjacent cell in the adjacent cell group where the SSB successfully detects.
  • the method further includes: issuing ephemeris information, wherein the ephemeris information includes: ephemeris information of a serving satellite of a serving cell and/or ephemeris information of a neighboring cell satellite of a neighboring cell.
  • the delivered ephemeris information is used for the terminal to determine the aforementioned first transmission delay difference and/or second transmission delay difference.
  • the delivery of the ephemeris information may be broadcast, multicast or unicast delivery.
  • the embodiment of the present disclosure proposes the following enhancement solution for the SMTC window/measurement gap (Measurement GAP) applicable to the NTN system.
  • a trade-off is made between the resources occupied by the SMTC window/measurement gap and the update frequency, This makes it possible to reduce the impact of the SMTC window/measurement gap on data transmission and reception by using less RRC signaling to update the configuration of the UE.
  • the UE performs the SSB measurement of the neighbor cell according to the received SMTC window/measurement gap configuration.
  • the UE finds that the SSB of a neighbor cell cannot be detected through the existing SMTC window/measurement gap configuration, the UE reports that the neighbor cell cannot be detected.
  • the indication of the SSB of the cell (the indication may include the identification (Identification, ID) of the neighbor cell), the transmission delay difference is updated, and reported to the network through an RRC message.
  • the UE needs to update the transmission delay difference range between the serving cell and all neighboring cells;
  • the UE only needs to update the transmission delay difference between the serving cell and the neighboring cell that cannot detect the SSB.
  • the UE only needs to update the range of the transmission delay difference between the serving cell and the neighboring cells to be measured in the group of neighboring cells that cannot detect SSB;
  • the network configures or updates the SMTC window/measurement gap according to the transmission delay difference.
  • the network configures or updates the common SMTC window/measurement gap according to the range of the transmission delay difference.
  • the network configures or updates the SMTC window/measurement gap of the neighboring cell according to the transmission delay difference of the neighboring cell.
  • the network configures or updates the SMTC window/measurement gap of the neighboring cell group to be measured according to the range of the transmission delay difference of the group.
  • the network may determine the offset value (offset) according to the type of satellite (LEO/GEO/MEO), the movement trajectory of the satellite, and the moving speed of the UE (low speed, medium speed, high speed), and adjust or expand the SMTC window/ Configuration of the measurement gap.
  • the offset value here may be determined according to the predetermined information as described above.
  • the calibration value is corrected according to the offset value to obtain the final value of the SMTC window/measurement gap, thereby generating a new SMTC window configuration and/or measurement Gap configuration.
  • Both the SMTC window configuration and the measurement gap configuration are one of the foregoing time period configurations.
  • the network may update the corresponding SMTC window/measurement gap only after the network receives the indication reported by the UE that the SSB of a certain neighboring cell cannot be detected, and the corresponding transmission delay difference update information.
  • the configuration of the initial SMTC window/measurement gap is configured by the network according to the maximum transmission delay difference information in the cell.
  • the configuration of the initial SMTC window/measurement gap may correspond to the aforementioned initial period configuration.
  • the UE reports the transmission delay difference information of the corresponding satellite based on the neighboring cell that can detect the SSB for the first time, and the network updates the configuration of the SMTC window/measurement gap accordingly.
  • the UE may store a list of neighboring cells whose SSBs have been detected after the previous N SMTC window/measurement gap updates, so as to determine whether the latest SMTC window/measurement gap configuration will fail to detect the SSB of the neighboring cells in the list. happening.
  • a counter X is defined, and if X corresponding to a certain neighboring cell is greater than a specified number, it is determined that the UE cannot detect the SSB of this neighboring cell through the existing SMTC window/measurement gap configuration.
  • the inability to detect the SSB here is a specific embodiment of the foregoing SSB detection failure.
  • the specified number here includes, but is limited to, M mentioned in the preceding embodiments.
  • X is incremented by 1, and when the UE detects the SSB of a certain neighbor cell within a certain SMTC/gap measurement gap, then The corresponding X is cleared.
  • the UE can detect the SSB of a neighbor cell in a certain SMTC/gap measurement gap, including:
  • the SMTC/gap measurement gap can contain all SSB signals
  • the SMTC/gap measurement gap can contain at least n SSB signals, and n is not less than 1.
  • the UE calculates the transmission delay difference between the UE in the serving cell and the neighboring cell to be measured according to its own location information and the ephemeris information of the serving cell satellite and the neighboring cell satellite.
  • the UE can obtain the position of the satellite through the ephemeris information, then calculate the distance between the UE and the satellite, obtain the transmission delay of the UE in the cell covered by the satellite by dividing the distance by the speed of light, and use the transmission delay of the serving cell to reduce the transmission delay.
  • the transmission delay difference can be obtained from the transmission delay of the neighboring cell, and the value range of this value is a real number.
  • the transmission delay difference of the feeder link between the serving cell and the neighboring cell it can be compensated at the network side, and the UE only needs to calculate the transmission delay difference of the service link part.
  • the UE needs to obtain the ephemeris information of the satellites corresponding to the serving cell and neighboring cells:
  • the network directly provides the UE with the ephemeris information of the serving cell and the satellites corresponding to the neighboring cells;
  • the UE obtains the identities of the satellites corresponding to the serving cell and neighboring cells through the network, and then obtains their ephemeris information according to its own pre-configured information.
  • the neighbor cell may be a certain frequency point or a certain cell.
  • an embodiment of the present disclosure provides an apparatus for configuring a time period of a synchronization signal block SSB, which is applied to a terminal, and the apparatus includes:
  • the measurement module 610 is configured to detect the SSB of a neighboring cell within a time period for measuring SSB, wherein the time period for measuring SSB includes: SSB measurement timing configuration SMTC window and/or measurement gap;
  • the reporting module 620 is configured to report update indication information according to the detection result of the SSB, wherein the update indication information is used for the network side to update the time period configuration; the time period configuration includes an indication for determining the time period for measuring the SSB information.
  • the measurement module 610 and the reporting module 620 may be program modules; after the program modules are executed by the processor, they can measure the SSB of a neighboring cell, and obtain a detection result according to the measurement of the SSB. to report the update instruction information.
  • the measurement module 610 and the reporting module 620 may be software-hardware combination modules; the software-hardware combination modules include, but are not limited to, programmable arrays.
  • the programmable arrays include, but are not limited to, complex programmable arrays and/or field programmable arrays.
  • the measurement module 610 and the reporting module 620 may be pure hardware modules; the pure hardware modules include, but are not limited to, application specific integrated circuits.
  • the reporting module 620 is configured to report the update indication information in response to the SSB detection of at least one neighboring cell failing according to the SSB detection result.
  • the reporting module 620 is configured to, in response to that the time period configuration is not the initial time period configuration, at least determine that the terminal fails to detect the serving cell and the SSB, respectively, according to the SSB detection result.
  • the first transmission delay difference between the transmissions of the neighboring cells; the update indication information is reported according to the first transmission delay difference.
  • the reporting module 620 is configured to determine, according to the detection result of the SSB, the transmission delay difference between the terminal and the transmission of the serving cell and the neighboring cell respectively; If the delay is poor, report the update indication information.
  • the apparatus further includes:
  • a first determining module configured to fail to detect the SSB of the same neighboring cell within the time period for measuring the SSB for M consecutive times, and determine that the detection result of the SSB corresponding to the neighboring cell is a failure; wherein the M is any positive integer.
  • the apparatus further includes:
  • the second determining module is configured to fail to successfully detect N said SSBs when measuring the SSBs of the neighboring cells within a time period for measuring the SSBs, and determine that one SSB detection fails; and/or, in a N successfully detected SSBs during the SSB measurement of the neighboring cell within the time period for measuring the SSBs, and it is determined that one SSB detection is successful;
  • the N is less than or equal to the total number of SSBs configured by the corresponding neighboring cell in one SSB measurement time period.
  • the reporting module 620 is configured to configure the time period configuration of the time period for measuring the SSB and the first transmission delay difference according to the time period configuration, and report the update indication information.
  • the reporting module 620 is configured to perform at least one of the following:
  • the update indication information indicating the first delay difference range is reported according to the first transmission delay difference, wherein the common period configuration determines the time period for measuring the SSB , used for SSB measurement of all neighboring cells of the serving cell; the first delay difference range is: according to the transmission delay between the terminal and the serving cell and the difference between the terminal and all neighboring cells It is determined by the difference between the transmission delays;
  • the update indication information indicating the second delay difference range is reported according to the first transmission delay difference, wherein the group period configuration is used to determine the service A time period for measuring SSB shared by all neighboring cells in a neighboring cell group of a cell;
  • the second delay difference range is: according to the transmission delay between the terminal and the serving cell and the difference between the terminal and the serving cell The difference between the transmission delays between the neighboring cells in the neighboring cell group where the neighboring cell where the SSB detection fails;
  • the update indication information indicating the first transmission delay difference is reported according to the first transmission delay difference; wherein the cell period configuration is used to determine whether the service The time period during which the SSB of one of the neighbor cells of the cell is measured.
  • the reporting module 620 is configured to, in response to the time period configuration being an initial time period configuration, determine, according to the detection result of the SSB, that the terminal is respectively connected to the serving cell and the neighbors whose SSB detection is successful.
  • the second transmission delay difference between the transmissions of the cells; the update indication information is reported according to the second transmission delay difference.
  • the difference between the transmission delay between the terminal and the serving cell and the transmission delay between the terminal and the corresponding neighboring cell is: according to the location of the terminal, the service The ephemeris information of the cell and the ephemeris information of the corresponding neighboring cell are determined.
  • the ephemeris information of the serving cell is used to determine the position of the serving satellite of the serving cell;
  • the ephemeris information of the neighbor cell is used to determine the position of the neighbor cell satellite of the neighbor cell.
  • the apparatus further includes:
  • the first receiving module is configured to receive the ephemeris information of the serving cell and the ephemeris information of the neighboring cell sent by the serving cell.
  • an embodiment of the present disclosure provides a configuration of a time period for measuring SSB, wherein, when applied to a serving cell, the method includes:
  • the second receiving module 710 is configured to receive update indication information reported by the terminal based on the detection result of the SSB of the neighboring cell;
  • the updating module 720 is configured to update the time period configuration of the time period for measuring the SSB according to the update indication information; wherein the time period configuration includes indication information for determining the time period for measuring the SSB.
  • the second receiving module 710 and the updating module 720 may be program modules; after the program modules are executed by the processor, they can receive the update indication information reported by the terminal and update the time period configuration.
  • the second receiving module 710 and the updating module 720 may be software-hardware combination modules; the software-hardware combination modules include but are not limited to: programmable arrays.
  • the programmable array includes, but is not limited to: complex programmable array and/or field programmable array.
  • the second receiving module 710 and the updating module 720 may be pure hardware modules; the pure hardware modules include but are not limited to: application specific integrated circuits.
  • the update module 720 is configured to update the time period configuration of the time period for measuring the SSB based on the transmission delay difference carried in the update indication information.
  • the update module 720 is configured to, based on the update indication information carrying a first transmission delay difference, according to the time period of the SSB measurement of the neighboring cell corresponding to the first transmission delay difference Time period configuration, update the time period configuration of the time period for measuring the SSB of the neighboring cell corresponding to the first transmission delay difference;
  • the first transmission delay difference is: the terminal sum and the serving cell, respectively The difference between the transmission delay of and the transmission delay between the terminal and all neighboring cells.
  • the update module 720 is configured to perform at least one of the following:
  • the common time period configuration In response to the time period configuration corresponding to the first transmission delay difference being a common time period configuration, the common time period configuration is updated; wherein the common time period configuration is used for: measuring the SSB shared by all neighboring cells of the serving cell time period;
  • the group period configuration is updated, wherein the group period configuration is used to determine all neighbors in a neighboring cell group of the serving cell.
  • the cell period configuration is updated, wherein the cell period configuration is used to determine the measurement SSB of a neighboring cell of the serving cell. period.
  • the update module 720 is configured to determine a reference value according to the update indication information; and update the time period configuration according to preset information for adjusting the reference value and the reference value.
  • the preset information includes at least one of the following:
  • Ephemeris information of the serving satellite of the serving cell
  • Ephemeris information of the neighboring cell satellites of the neighboring cells
  • the apparatus further comprises:
  • the third determining module is configured to determine the initial period configuration of the period for measuring the SSB according to the default transmission delay difference range.
  • composition of the default delay difference range includes one of the following:
  • the first minimum value is: the transmission delay from any position in the serving cell to the serving cell minus the transmission delay from the corresponding position to any neighboring cell
  • the minimum value of ; the first maximum value is: the maximum value of the transmission delay from any position in the serving cell to the serving cell minus the maximum value of the transmission delay from the corresponding position to any neighboring cell;
  • the second minimum value is: the transmission delay when any position in the serving cell reaches any neighboring cell, minus the transmission delay when the corresponding position reaches the serving cell
  • the minimum value of the delay is: the transmission delay of any adjacent cell at any position in the serving cell, minus the maximum value of the transmission delay of the serving cell at the corresponding position;
  • the transmission delay difference range determined according to historical data.
  • the update module 720 is configured to update the period configuration based on the update indication information carrying a second transmission delay difference corresponding to the initial period configuration; wherein the second The transmission delay difference is: the difference between the transmission delay between the terminal and the serving cell and the transmission delay between the terminal and the neighboring cells in the neighboring cell group where the SSB detection is successful. value.
  • the apparatus further comprises:
  • the sending module is configured to deliver ephemeris information, wherein the ephemeris information includes: ephemeris information of a serving satellite of a serving cell and/or ephemeris information of a neighboring cell satellite of a neighboring cell.
  • the updating of the time period configuration of the time period for measuring the SSB according to the update indication information includes:
  • the time period configuration is updated according to the update indication information and the transmission delay of the feeder link, wherein the feeder link includes: the transmission delay of the feeder link between the gateway and the serving cell, and/or the gateway The transmission delay of the feeder link with neighboring cells.
  • Embodiments of the present disclosure provide a communication device, including:
  • memory for storing processor-executable instructions
  • the processor is connected to the memory;
  • the processor is configured to execute the method for updating the period configuration of the period for measuring the SSB provided by any of the foregoing technical solutions.
  • the processor may include various types of storage media, which are non-transitory computer storage media that can continue to memorize information stored thereon after the communication device is powered down.
  • the communication device includes a satellite or a terminal.
  • the processor may be connected to the memory through a bus or the like, for reading the executable program stored on the memory, for example, at least one of the methods shown in FIG. 3 to FIG. 5 .
  • FIG. 8 is a block diagram of a terminal 800 according to an exemplary embodiment.
  • satellite 800 may be a mobile phone, computer, digital broadcast user equipment, messaging device, game console, tablet device, medical device, fitness device, personal digital assistant, and the like.
  • the satellite 800 may include one or more of the following components: a processing component 802, a memory 804, a power supply component 806, a multimedia component 808, an audio component 810, an input/output (I/O) interface 812, a sensor component 814, and communication component 816.
  • the processing component 802 generally controls the overall operations of the satellite 800, such as operations associated with display, telephone calls, data communications, camera operations, and recording operations.
  • the processing component 802 can include one or more processors 820 to execute instructions to perform all or some of the steps of the methods described above.
  • processing component 802 may include one or more modules that facilitate interaction between processing component 802 and other components.
  • processing component 802 may include a multimedia module to facilitate interaction between multimedia component 808 and processing component 802.
  • Memory 804 is configured to store various types of data to support operations at satellite 800 . Examples of such data include instructions for any application or method operating on the satellite 800, contact data, phonebook data, messages, pictures, videos, and the like. Memory 804 may be implemented by any type of volatile or nonvolatile storage device or combination thereof, such as static random access memory (SRAM), electrically erasable programmable read only memory (EEPROM), erasable Programmable Read Only Memory (EPROM), Programmable Read Only Memory (PROM), Read Only Memory (ROM), Magnetic Memory, Flash Memory, Magnetic or Optical Disk.
  • SRAM static random access memory
  • EEPROM electrically erasable programmable read only memory
  • EPROM erasable Programmable Read Only Memory
  • PROM Programmable Read Only Memory
  • ROM Read Only Memory
  • Magnetic Memory Flash Memory
  • Magnetic or Optical Disk Magnetic Disk
  • Power component 806 provides power to various components of satellite 800 .
  • Power components 806 may include a power management system, one or more power sources, and other components associated with generating, managing, and distributing power to satellite 800 .
  • Multimedia component 808 includes a screen that provides an output interface between the satellite 800 and the user.
  • the screen may include a liquid crystal display (LCD) and a touch panel (TP). If the screen includes a touch panel, the screen may be implemented as a touch screen to receive input signals from a user.
  • the touch panel includes one or more touch sensors to sense touch, swipe, and gestures on the touch panel. The touch sensor may not only sense the boundaries of a touch or swipe action, but also detect the duration and pressure associated with the touch or swipe action.
  • the multimedia component 808 includes a front-facing camera and/or a rear-facing camera. When the satellite 800 is in an operation mode, such as a shooting mode or a video mode, the front camera and/or the rear camera may receive external multimedia data. Each of the front and rear cameras can be a fixed optical lens system or have focal length and optical zoom capability.
  • Audio component 810 is configured to output and/or input audio signals.
  • audio component 810 includes a microphone (MIC) that is configured to receive external audio signals when satellite 800 is in operating modes, such as calling mode, recording mode, and voice recognition mode.
  • the received audio signal may be further stored in memory 804 or transmitted via communication component 816 .
  • audio component 810 also includes a speaker for outputting audio signals.
  • the I/O interface 812 provides an interface between the processing component 802 and a peripheral interface module, which may be a keyboard, a click wheel, a button, or the like. These buttons may include, but are not limited to: home button, volume buttons, start button, and lock button.
  • Sensor assembly 814 includes one or more sensors for providing various aspects of the status assessment of satellite 800 .
  • the sensor assembly 814 can detect the on/off state of the device 800, the relative positioning of the components, such as the display and keypad of the satellite 800, and the sensor assembly 814 can also detect changes in the position of the satellite 800 or a component of the satellite 800 , the presence or absence of user contact with the satellite 800 , the satellite 800 azimuth or acceleration/deceleration and the temperature change of the satellite 800 .
  • Sensor assembly 814 may include a proximity sensor configured to detect the presence of nearby objects in the absence of any physical contact.
  • Sensor assembly 814 may also include a light sensor, such as a CMOS or CCD image sensor, for use in imaging applications.
  • the sensor assembly 814 may also include an acceleration sensor, a gyroscope sensor, a magnetic sensor, a pressure sensor, or a temperature sensor.
  • Communication component 816 is configured to facilitate wired or wireless communications between satellite 800 and other devices. Satellite 800 can access wireless networks based on communication standards, such as WiFi, 2G or 3G, or a combination thereof. In one exemplary embodiment, the communication component 816 receives broadcast signals or broadcast related information from an external broadcast management system via a broadcast channel. In an exemplary embodiment, the communication component 816 also includes a near field communication (NFC) module to facilitate short-range communication.
  • NFC near field communication
  • the NFC module may be implemented based on radio frequency identification (RFID) technology, infrared data association (IrDA) technology, ultra-wideband (UWB) technology, Bluetooth (BT) technology and other technologies.
  • RFID radio frequency identification
  • IrDA infrared data association
  • UWB ultra-wideband
  • Bluetooth Bluetooth
  • satellite 800 may be implemented by one or more application specific integrated circuits (ASICs), digital signal processors (DSPs), digital signal processing devices (DSPDs), programmable logic devices (PLDs), field programmable A gate array (FPGA), controller, microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • ASICs application specific integrated circuits
  • DSPs digital signal processors
  • DSPDs digital signal processing devices
  • PLDs programmable logic devices
  • FPGA field programmable A gate array
  • controller microcontroller, microprocessor or other electronic component implementation is used to perform the above method.
  • non-transitory computer-readable storage medium including instructions, such as a memory 804 including instructions, executable by the processor 820 of the satellite 800 to perform the method described above.
  • the non-transitory computer-readable storage medium may be ROM, random access memory (RAM), CD-ROM, magnetic tape, floppy disk, optical data storage device, and the like.
  • an embodiment of the present disclosure shows the structure of a satellite.
  • the satellite 900 may be provided as a network side device.
  • satellite 900 includes a processing component 922, which further includes one or more processors, and a memory resource, represented by memory 932, for storing instructions executable by processing component 922, such as application programs.
  • An application program stored in memory 932 may include one or more modules, each corresponding to a set of instructions.
  • the processing component 922 is configured to execute instructions to execute any of the aforementioned methods applied to the satellite, eg, the methods shown in FIGS. 3-5 .
  • the satellite 900 may also include a power supply assembly 926 configured to perform power management of the satellite 900, a wired or wireless network interface 950 configured to connect the satellite 900 to a network, and an input output (I/O) interface 958.
  • Satellite 900 can operate based on an operating system stored in memory 932, such as Windows ServerTM, Mac OS XTM, UnixTM, LinuxTM, FreeBSDTM or the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Computer Security & Cryptography (AREA)
  • Physics & Mathematics (AREA)
  • Astronomy & Astrophysics (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • General Physics & Mathematics (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开实施例提供一种时间段的配置方法及装置、通信设备及存储介质。用于测量同步信号块SSB的时间段的配置方法,应用于终端中,所述方法包括:在测量SSB的时间段内,检测邻小区的SSB,其中,所述测量SSB的时间段包括:SSB测量定时配置SMTC窗口和/或测量间隙;根据所述SSB的检测结果,上报更新指示信息,其中,所述更新指示信息用于网络侧更新时段配置;所述时段配置包括用于确定测量SSB的时间段的指示信息。

Description

时间段的配置方法及装置、通信设备及存储介质 技术领域
本公开涉及无线通信技术领域但不限于无线通信技术领域,尤其涉及一种用于测量同步信号块(Synchronization Signal Block,SSB)的时间段配置方法及装置、通信设备及存储介质。
背景技术
第五代移动通信(5th Generation,5G)NR引入了非陆地网络(Non-terrestrial networks,NTN)。该NTN包括:5G卫星通信网,考虑到卫星离地球的高度较高,使得NTN网络的传输时延较大。于此同时,不同类型的NTN网络,不同高度的卫星对应的传输时延也不相同。
发明内容
本公开实施例提供一种测量SSB的时间段的时段配置更新方法及装置、通信设备及存储介质。
本公开实施例第一方面提供一种测量SSB的时间段的配置方法,包括:
在测量SSB的时间段内,检测邻小区的SSB,其中,所述测量SSB的时间段包括:SSB测量定时配置(SSB measurement timing configuration,SMTC)窗口和/或测量间隙(measurement gap);
根据所述SSB的检测结果,上报更新指示信息,其中,所述更新指示信息,用于网络侧更新时段配置;所述时段配置包括用于确定测量SSB的时间段的指示信息。
本公开实施例第二方面提供一种测量SSB的时间段的配置方法,其中,应用于服务小区中,所述方法包括:
接收终端基于对邻小区的SSB的检测结果上报的更新指示信息;
根据所述更新指示信息,更新测量SSB的时间段的时段配置,其中,所述时段配置包括用于确定测量SSB的时间段的指示信息。
本公开实施例第三方面提供一种用于测量同步信号块SSB的时间段的配置装置,应用于终端中,所述装置包括:
测量模块,被配置为在测量SSB的时间段内,检测邻小区的SSB,其中,所述测量SSB的时间段包括:SSB测量定时配置SMTC窗口和/或测量间隙;
上报模块,被配置为根据所述SSB的检测结果,上报更新指示信息,其中,所述更新指示信息用于网络侧更新时段配置;所述时段配置包括用于确定测量SSB的时间段的指示信息。
本公开实施例第四方面提供一种测量SSB的时间段的配置装置,其中,应用于服务小区中,所述方法包括:
第二接收模块,被配置为接收终端基于对邻小区的SSB的检测结果上报的更新指示信息;
更新模块,被配置为根据所述更新指示信息,更新测量SSB的时间段的时段配置。
本公开实施例第五方面提供一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如前述第一方面或第二方面提供的测量SSB的时间段的配置方法。
本公开实施例第六方面提供一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现前述的第一方面或第二方面提供的测量SSB的时间段的配置方法。
本公开实施例提供的技术方案,对测量邻小区的SSB的时间段的时段配置,是根据终端对邻小区的SSB的检测结果确定,如此,相对一个长度的测量SSB的时间段的固定时段配置,可以减少不必要的资源占用或者出现无法成功测量邻小区的SSB的情况。与此同时,相对于网络侧通过无线资源控制(Radio Resource Control,RRC)信令频发更新测量SSB的时间段的时段配置,可以减少不必要的更新,减少信令开销。
应当理解的是,以上的一般描述和后文的细节描述仅是示例性和解释性的,并不能限制本公开实施例。
附图说明
此处的附图被并入说明书中并构成本说明书的一部分,示出了符合本发明实施例,并与说明书一起用于解释本发明实施例的原理。
图1是根据一示例性实施例示出的一种无线通信系统的结构示意图;
图2是根据一示例性实施例示出的一种NTN系统的结构示意图;
图3是根据一示例性实施例示出的测量SSB的时间段的时段配置更新方法的流程示意图;
图4是根据一示例性实施例示出的一种测量SSB的时间段的时段配置更新方法的流程示意图;
图5是根据一示例性实施例示出的一种测量SSB的时间段的时段配置更新方法的流程示意图;
图6是根据一示例性实施例示出的一种测量SSB的时间段的时段配置更新装置的结构示意图;
图7是根据一示例性实施例示出的一种测量SSB的时间段的时段配置更新装置的结构示意图;
图8是根据一示例性实施例示出的一种终端的结构示意图;
图9是根据一示例性实施例示出的一种卫星的结构示意图。
具体实施方式
这里将详细地对示例性实施例进行说明,其示例表示在附图中。下面的描述涉及附图时,除非另有表示,不同附图中的相同数字表示相同或相似的要素。以下示例性实施例中所描述的实施方式并不代表与本发明实施例相一致的所有实施方式。相反,它们仅是与如所附权利要求书中所详述的、 本发明实施例的一些方面相一致的装置和方法的例子。
在本公开实施例使用的术语是仅仅出于描述特定实施例的目的,而非旨在限制本公开实施例。在本公开实施例和所附权利要求书中所使用的单数形式的“一种”、“”和“该”也旨在包括多数形式,除非上下文清楚地表示其他含义。还应当理解,本文中使用的术语“和/或”是指并包含一个或多个相关联的列出项目的任何或所有可能组合。
应当理解,尽管在本公开实施例可能采用术语第一、第二、第三等来描述各种信息,但这些信息不应限于这些术语。这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本公开实施例范围的情况下,第一信息也可以被称为第二信息,类似地,第二信息也可以被称为第一信息。取决于语境,如在此所使用的词语“如果”可以被解释成为“在……时”或“当……时”或“响应于确定”。
请参考图1,其示出了本公开实施例提供的一种无线通信系统的结构示意图。如图1所示,无线通信系统是基于蜂窝移动通信技术的通信系统,该无线通信系统可以包括:若干个UE11以及若干个基站12。
其中,UE11可以是指向用户提供语音和/或数据连通性的设备。UE11可以经无线接入网(Radio Access Network,RAN)与一个或多个核心网进行通信,UE11可以是物联网UE,如传感器设备、移动电话(或称为“蜂窝”电话)和具有物联网UE的计算机,例如,可以是固定式、便携式、袖珍式、手持式、计算机内置的或者车载的装置。例如,站(Station,STA)、订户单元(subscriber unit)、订户站(subscriber station)、移动站(mobile station)、移动台(mobile)、远程站(remote station)、接入点、远程UE(remote terminal)、接入UE(access terminal)、用户装置(user terminal)、用户代理(user agent)、用户设备(user device)、或用户UE(user equipment,UE)。或者,UE11也可以是无人飞行器的设备。或者,UE11也可以是车载设备,比如,可以是具有无线通信功能的行车电脑,或者是外接行车电脑的无线通信设备。或者,UE11也可以是路边设备,比如,可以是具有无线通信功能的路灯、信号灯或者其它路边设备等。
基站12可以是无线通信系统中的网络侧设备。其中,该无线通信系统可以是第四代移动通信技术(the 4th generation mobile communication,4G)系统,又称长期演进(Long Term Evolution,LTE)系统;或者,该无线通信系统也可以是5G系统,又称新空口(new radio,NR)系统或5G NR系统。或者,该无线通信系统也可以是5G系统的再下一代系统。其中,5G系统中的接入网可以称为NG-RAN(New Generation-Radio Access Network,新一代无线接入网)。或者,MTC系统。
其中,基站12可以是4G系统中采用的演进型基站(eNB)。或者,基站12也可以是5G系统中采用集中分布式架构的基站(gNB)。当基站12采用集中分布式架构时,通常包括集中单元(central unit,CU)和至少两个分布单元(distributed unit,DU)。集中单元中设置有分组数据汇聚协议(Packet Data Convergence Protocol,PDCP)层、无线链路层控制协议(Radio Link Control,RLC)层、媒体访问控制(Media Access Control,MAC)层的协议栈;分布单元中设置有物理(Physical,PHY)层协议栈,本公开实施例对基站12的具体实现方式不加以限定。
基站12和UE11之间可以通过无线空口建立无线连接。在不同的实施方式中,该无线空口是基于第四代移动通信网络技术(4G)标准的无线空口;或者,该无线空口是基于第五代移动通信网络技术(5G)标准的无线空口,比如该无线空口是新空口;或者,该无线空口也可以是基于5G的更下一代移动通信网络技术标准的无线空口。
在一些实施例中,UE11之间还可以建立E2E(End to End,端到端)连接。比如车联网通信(vehicle to everything,V2X)中的V2V(vehicle to vehicle,车对车)通信、V2I(vehicle to Infrastructure,车对路边设备)通信和V2P(vehicle to pedestrian,车对人)通信等场景。
在一些实施例中,上述无线通信系统还可以包含网络管理设备13。
若干个基站12分别与网络管理设备13相连。其中,网络管理设备13可以是无线通信系统中的核心网设备,比如,该网络管理设备13可以是演进的数据分组核心网(Evolved Packet Core,EPC)中的移动性管理实体(Mobility Management Entity,MME)。或者,该网络管理设备也可以是其它的核心网设备,比如服务网关(Serving GateWay,SGW)、公用数据网网关(Public Data Network GateWay,PGW)、策略与计费规则功能单元(Policy and Charging Rules Function,PCRF)或者归属签约用户服务器(Home Subscriber Server,HSS)等。对于网络管理设备13的实现形态,本公开实施例不做限定。
在地面网络(Terrestrial Networks,TN)TN系统中,小区半径小,UE与不同的小区之间的传输时延差距很小,远小于SMTC窗口/测量间隙的长度。但是在NTN系统中,由于小区半径大,不同卫星覆盖区域的重叠范围也较大,当卫星(Satellite,SA)1为UE提供服务时,UE也可能正处于卫星2/卫星3的覆盖范围内。考虑到UE的移动性,UE需要执行卫星2或卫星3的覆盖的邻小区的测量,需要考虑传输时延差的影响。如图2所示:其中卫星(SA1)为服务小区卫星,卫星(SA2)为邻小区卫星。UE接收服务小区信号的传输时延可以表示为T1g(馈线链路(feeder link)的传输时延)+T1u(服务链路(service link)传输时延),UE接收邻小区信号的传输时延为:T2u+T2g。传输时延差为T1g+T1u-(T2g+T2u)。考虑到不同的卫星与UE和地面站之间的距离不同,UE接收服务小区的信号与接收邻小区信号之间的传输时延将会有很大的差距,即T1g+T1u-(T2g+T2u)将不会趋近于0,可能会大于SMTC窗口/测量间隙的时间长度。
如果SMTC窗口/测量间隙(Measurement Gap)配置不考虑传输时延差异,UE可能会错过SSB/CSI-RS测量窗,因此将无法在配置的参考信号上执行测量。
如图3所示,本公开实施例提供一种测量SSB的时间段的时段配置更新方法,应用于终端中,所述方法包括:
S110:在测量SSB的时间段内,检测邻小区的SSB,其中,所述测量SSB的时间段包括:SMTC窗口和/或测量间隙;
S120:根据所述SSB的检测结果,上报更新指示信息,其中,所述更新指示信息,用于网络侧更新时段配置;所述时段配置包括用于确定测量SSB的时间段的指示信息。
在本公开实施例中,该用于测量同步信号块SSB的时间段的配置方法,可应用于各种类型的终 端,该终端包括但不限于:手机、平板电脑、可穿戴式设备、车载设备或者各种类型的智能设备。该智能设备包括但不限于:智能家居设备、智能办公设备或者智能教学设备。
本公开实施例中提供终端可为能够接入到NTN小区的终端,例如,卫星通信终端。当然在一些情况下,有的终端同时支持TN小区和NTN小区的通信。NTN小区为NTN系统内的通信小区。TN小区可包括:地面基站形成的小区。
本公开实施例中,所述邻小区可为服务小区的NTN小区。此处的服务小区也可以是NTN小区或者TN小区。
在本公开实施例中,终端会根据已接收到用于确定测量SSB的时段配置确定测量SSB的时间段,例如确定测量SSB的时间段在时域上的分布位置,和/或测量SSB的时间段的时间长度等。
在根据时段配置确定的测量SSB的时间段内,对邻小区的SSB进行检测,会得到是否成功检测到邻小区的SSB的检测结果。若该测量SSB的时间段为SMTC窗口,则对应的时段配置可为SMTC配置。
若该测量SSB的时间段为测量间隙,则对应的时段配置可为测量间隙配置。
示例性地,所述检测结果,至少可指示是否检测到对应邻小区的SSB。
示例性地,所述检测结果,在指示是否检测到对应邻小区的SSB的同时,还可以指示在根据当前时段配置确定的测量SSB的时间段内检测到的SSB的个数,和/或,SSB的参考信号接收功率(Reference Signal Receiving Power,RSRP)、SSB的参考信号接收质量(Reference Signal Receiving Qualityr,RSRQ)。
根据该检测结果,可以当前测量SSB的时间段是否能够满足对邻小区的SSB的测量需求,进而根据测量需求确定出是否需要更新当前的时段配置。
终端可以从终端的服务小区接收邻小区列表,该邻小区列表中具有邻小区的小区标识。
在测量SSB的时间段内检测邻小区的SSB时,可以根据邻小区列表中的小区标识,确定终端是否有没有检测到某一个或多个邻小区的SSB。
在一个实施例中,该SSB可包括:主同步信号。
在另一个实施例中,所述SSB包括:主同步信号和辅同步信号。
在还有一个实施例中,所述SSB包括:主同步信号、辅同步信号和PBCH(Physical Broadcast Channel,物理广播信道)。
在本公开实施例中,终端在进行邻小区的SSB测量,根据检测结果发现至少有一个邻小区的SSB检测失败时,则说明当前的测量SSB的时间段可能不适宜终端对邻小区的测量,为了实现对邻小区的SSB的检测成功,则可根据SSB的检测结果,上报更新指示信息。如此,网络侧接收到该更新指示信息之后,可以在更新指示信息的触发下或者根据更新指示信息的信息内容,更新测量SSB的时间段的时段配置。
在一个实施例中,所述更新指示信息可仅为更新指令,网络侧接收到该更新指令,确定出需要更新测量SSB的时间段,具体如何更新以及更新依据,可以根据预设更新策略确定,例如,按照预 设步长增大测量SSB的时间段等。
在另一个实施例中,所述更新指示信息携带有传输时延差。该传输时延差可包括:
第一传输时延差;所述第一传输时延差是:所述终端和所述服务小区之间的传输时延与所述终端和所述SSB检测失败的邻小区所在邻小区组内的各邻小区之间的传输时延的差值;
和/或,
第二传输时延差;所述第二传输时延差是:所述终端和所述服务小区之间的传输时延与所述终端和所述SSB检测成功的邻小区所在邻小区组内的各邻小区之间的传输时延的差值。
即在一个实施例中,所述S120可包括:根据所述SSB的检测结果,确定终端分别与所述服务小区和所述邻小区的传输之间的传输时延差;根据所述传输时延差,上报所述更新指示信息。
示例性地,所述更新指示信息的内容有多种,包括但不限于以下至少之一:
SSB检测失败的邻小区的小区标识和传输时延差;
比特位图和传输时延差,比特位图中的不同比特指示不同的邻小区。在一个实施例中,该更新指示信息携带的传输时延差,可为前述第一传输时延差。
当然以上仅是对更新指示信息的内容的举例,具体实现时不局限于此。
此处的更新测量SSB的时间段包括但不限于:更新测量SSB的时间段的时长和/或更新测量SSB的时间段的时域位置等。
在时段配置被更新之后,服务小区可通过广播、组播或者单播的方式将更新后的时段配置发送给终端。示例性地,服务小区会通过RRC信令将时段配置发送给终端。
在本公开实施例中,该测量SSB的时间段可以分为两种,一种是:SMTC窗口,另一种是测量间隙(measurement gap)。
SMTC窗口是在服务小区和邻小区使用相同的频带,即服务小区和邻小区互为同频小区时,终端可以在SMTC窗口内进行邻小区的SSB测量。若服务小区和邻小区互为异频小区,则终端在对邻小区的SSB测量时还可能需要涉及天线参数的更换,因此此时测量SSB的时间段包括比SMTC窗口的时长更大的测量间隙和相应的SMTC窗口。在服务小区和邻小区互为异频小区时,终端在测量间隙包含的SMTC窗口内对邻小区进行SSB测量。在异频系统中,所述测量间隙可以包括一个或多个SMTC窗口。
总之,在本公开实施例中,根据对邻小区的SSB的检测结果,上报更新指示信息,触发网络侧进行测量SSB的时间段有必要的更新,从而减少不必要的测量SSB的时间段更新,从而减少测量SSB的时间段频繁更新所产生的信令消耗,也减少了测量SSB的时间段固定设置的过长或者过短引起的邻小区的SSB检测失败或者资源浪费现象。
与此同时,测量SSB的时间段的更新涉及的终端和基站之间的交互,因此测量SSB的时间段并非单向更新,从而减少了终端自行用于更新测量SSB的时间段形成的不适应当前通信场景的测量SSB的时间段。故本公开实施例提供的测量SSB的时间段的更新方法,具有信令开销小及测量SSB的时间段的设置满足当前邻小区的SSB测量需求的特点。
在一些实施例中,所述S120可包括:
响应于根据所述SSB的检测结果至少有一个邻小区的SSB检测失败,上报所述更新指示信息。
在至少有一个邻小区的SSB检测失败,可认为:至少有一个邻小区发射的SSB终端没有检测到,则可能存在在当前测量SSB的时间段设置的不当的现象,为了成功检测邻小区的SSB,终端此时可以根据检测结果,上报更新指示信息,以触发网络侧(此时的网络侧包括但不限于:服务小区)更新测量SSB的时间段的配置,进而终端可以根据更新后的测量SSB的时间段的配置,重新确定测量SSB的时间段。在更新后的SSB的时间段内测量邻小区的SSB,就会有很大概率能够成功检测到每一个需要检测的邻小区的SSB。
示例性地,若所述更新指示信息携带的是所述第二传输时延差,则S120可包括:根据检测结果确定出有至少一个邻小区的SSB检测失败。
在一个实施例中,所述方法还包括:
响应于根据SSB的检测结果确定终端成功检测到所有邻小区的SSB,则不上报所述更新指示信息,即停止或屏蔽所述更新指示信息的上报;如此减少不必要的信令开销。
在一个实施例中,如图4所示,所述S120可包括:
S121:响响应于所述时段配置不是初始时段配置,根据所述SSB的检测结果,至少确定终端分别与所述服务小区和所述SSB检测失败的邻小区的传输之间的第一传输时延差;
S122:根据所述第一传输时延差,上报所述更新指示信息。
初始时段配置可为:网络侧下发给终端的首个用于确定SSB的时段的配置。
示例性地,根据终端进入到当前服务小区拿到的首个测量SSB的时间段的时段配置,可以将时段配置分为初始时段配置和非初始时段配置。初始时段配置为:终端进入到该服务小区后获取测量SSB的时间段的首个时段配置,首个时段配置之后的时段配置都是所述非初始的时段配置。
示例性地,该初始时段配置可为:服务小区广播的时段配置。
如果终端进入该服务小区之后,当前使用的测量SSB的时间段的时段配置不是所述初始时段配置,则说明终端已经知晓了当前服务小区有哪些邻小区。
若当前基站存储了确定当前应用的测量SSB的时间段的各个传输时延差,则将当前SSB检测失败的邻小区和服务小区分别到终端的传输之间的传输时延差(即所述第一传输时延差)上报给基站,则基站可以根据之前存储的终端分别到服务小区和邻小区的传输之间的传输时延差和当前上报的第一传输时延差,更新测量SSB的时间段。
此处传输时延差可为以下之一:
终端到邻小区的传输时延减去终端到服务小区的传输时延的差值;
终端到服务小区的传输时延减去终端到邻小区的传输时延的差值;
在一个实施例中,更新指示信息可以不用携带邻小区的小区标识等直接或间接指示SSB检测失败的邻小区的任意信息。当然这仅是对更新指示信息的一种举例,具体实现时不限于这种举例。
在一个实施例中,S120可直接包括:根据所述SSB的检测结果,至少确定终端分别与所述服务 小区和所述SSB检测失败的邻小区的传输之间的第一传输时延差;根据所述第一传输时延差,上报所述更新指示信息。
例如,针对初始时段配置下发的过程时同步带上服务小区的邻小区的小区列表,在这种情况下,终端进入该服务小区后拿到的是初始时段配置,也可以确定出哪些邻小区的SSB检测失败。
即在一些情况下终端不用确定当前使用的时段配置是否为初始时段配置。
在一个实施例中,所述方法还包括:
在连续M次所述测量SSB的时间段内检测同一个邻小区的SSB失败,确定对应所述邻小区的所述SSB的检测结果为失败;其中,所述M为任意正整数。
为了确保检测结果的精确性,在本公开实施例中终端不再是邻小区的一次SSB检测失败,就认定邻小区的SSB检测失败,而是在连续M次的SSB检测失败之后,才确定该邻小区的SSB检测失败。
当然在另一个实施例中,终端可以在对邻小区的一次检测过程中发现SSB检测失败,则可以确定对应邻小区的SSB检测失败。
在一个实施例中,所述方法还包括:
在一个所述测量SSB的时间段内对邻小区的所述SSB测量时未能成功检测到N个所述SSB,确定一次SSB检测失败;和/或,在一个所述测量SSB的时间段内对邻小区的所述SSB测量时成功检测到N个所述SSB,确定一次SSB检测成功;
其中,所述N小于或等于对应邻小区在一个所述测量SSB的时间段内配置的SSB的总个数。
对邻小区的一次SSB检测为在一个测量SSB的时间段内的SSB检测,检测SSB集合(SSB burst或者SSB burst set)中各个SSB。而一个SSB集合包括:一个或多个SSB。
在一次测量时,若成功检测N个SSB,则可认为本次测量是检测成功的。N可小于所述SSB集合内配置的SSB总个数。
在这种方式中,相当于可以进一步精确前述对邻小区的SSB的检测结果。
在一个实施例中,所述S121可包括:
根据所述时段配置及所述第一传输时延差,上报所述更新指示信息。
测量SSB的时间段的配置有不同种类型,按照作用范围可以划分成不同粒度的时段配置。
公共时段配置,针对的是服务小区的所有邻小区;
组时段配置,针对的是服务小区的一个邻小区组,而一个邻小区组包括一个或多个邻小区;
小区时段配置,针对的是服务小区的单个邻小区。
由于时段配置的类型不同,使得更新指示信息的信息内容可以会有差异,通过更新指示信息的信息内容的差异化,使得基站在接收到更新指示信息,可以快速的有针对性的进行对邻小区进行SSB测量的时间段的更新。
在一个实施例中,所述根据与所述第一传输时延差对应的时段配置的类型,更新与所述第一传输时延差对应的邻小区的测量SSB的时间段的时段配置,包括以下至少之一:
响应于所述时段配置为公共时段配置,根据所述第一传输时延差,上报指示第一时延差范围的所述更新指示信息,其中,所述公共时段配置确定的测量SSB的时间段,用于对所述服务小区的所有邻小区的SSB测量;所述第一时延差范围是:根据所述终端和所述服务小区之间的传输时延与所述终端和所有邻小区之间的传输时延的差值确定的;
响应于所述时段配置为组时段配置,根据所述第一传输时延差,上报指示第二时延差范围的所述更新指示信息,其中,所述组时段配置,用于确定所述服务小区的一个邻小区组内所有邻小区共用的测量SSB的时间段;所述第二时延差范围是:根据所述终端和所述服务小区之间的传输时延与所述终端和所述SSB检测失败的邻小区所在邻小区组内的各邻小区之间的传输时延的差值确定的;
响应于所述时段配置为小区时段配置,根据所述第一传输时延差,上报指示第一传输时延差的所述更新指示信息;其中,所述小区时段配置用于确定对所述服务小区的一个邻小区的测量SSB的时间段。
若当前测量SSB的时间段是根据公共时段配置确定的,则在确定出第一传输时延差同时,还是确定出该服务小区的所有邻小区对应的传输时延差,并在整个更新指示信息中上报所有邻小区对应的传输时延差所在的范围。
例如,第一传输时延差为p1;其他邻小区的传输时延为px,x为指示邻小区的任意正整数;则所述更新指示信息可以携带max(p1,px)和min(p1,px)。示例性地,所述第一时延差范围可以用max(p1,px)和min(p1,px)来指示。
若当前测量SSB的时间段是根据组时段配置确定的,则在确定出第一传输时延差同时,还是确定出SSB检测失败的邻小区所在邻小区组内其他的邻小区对应的传输时延差,此处的邻小区对应的传输时延差都为:终端分别到服务小区和邻小区的传输时延的差。
例如,第一传输时延差为p1;该邻小区组内其他邻小区的传输时延为py,y为指示该邻小区组内除SSB检测失败的邻小区的其他邻小区的任意正整数;则所述更新指示信息可以携带max(p1,py)和min(p1,py)。示例性地,所述第二时延差范围可以用max(p1,py)和min(p1,py)来指示。若当前测量SSB的时间段是根据小区时段配置确定的,则在确定出第一传输时延差,可以直接在更新指示信息携带第一传输时延差及直接或间接SSB检测失败的邻小区的更新指示信息即可。
在一个实施例中,所述根据所述SSB测量的检测结果,上报更新指示信息,包括:
响应于所述时段配置是初始时段配置,根据所述SSB的检测结果,确定终端分别与所述服务小区和所述SSB检测成功的邻小区的传输之间的第二传输时延差;
根据所述第二传输时延差,上报所述更新指示信息。
若当前用于终端对邻小区的SSB进行测量的时间段是根据初始时段配置确定的,则终端尚未和服务小区建立连接,无法接收到单播的邻小区列表。此时,终端可以将自身SSB检测成功的所有邻小区对应的传输时延差都上报给服务小区;供服务小区的基站确定出终端是否有漏检测到某一个或多个邻小区的SSB;并进一步确定是否需要更新测量SSB的时间段。
,所述终端和所述服务小区之间的传输时延与所述终端和对应邻小区之间的传输时延的差值是:根据所述终端的位置、所述服务小区的星历信息及所述对应邻小区的星历信息确定的。
在一个实施例中,所述服务小区的星历信息,用于确定服务小区的服务卫星的位置;所述邻小区的星历信息,用于确定所述邻小区的邻小区卫星的位置。
在一个实施例中,所述方法还包括:接收服务小区发送的所述服务小区的星历信息及所述邻小区的星历信息。
例如,所述星历信息可为:服务小区广播、组播或者单播的。如此,终端可以在广播信道、组播信道或者单播信道上接收所述服务小区的星历信息和/或邻小区的星历信息。
终端在确定自身分别与服务小区和邻小区之间的传输时延,可以根据自身所在位置与服务小区的服务卫星的位置之间的距离,基于距离和无线信号的传输速率,确定出传输时延;然后通过将与服务小区的传输时延和邻小区的传输时延之间差值,就得到了第一传输时延差和/或第二传输时延差等传输时延差。在一个实施例中,该无线信号的传输速率可以近似等于:光速。
在另一个实施例中,在确定距离之后,终端可以查询距离与传输时延之间的预设对应关系,也可以简便的确定出终端分别与服务小区和邻小区之间的传输时延。
在一些实施例中,通信网关(Gateway,GW)与服务小区之间馈线链路(feeder link)的传输时延,GW与邻小区之间馈线链路的传输时延,在更新测量SSB的时间段之前,由服务小区自动补偿,从而通过更新得到最合适进行邻小区的SSB测量的时间段。
在一个实施例中,一个邻小区对应于一个频点或一个载波。
如图5所示,本公开实施例提供一种测量SSB的时间段更新方法,其中,应用于服务小区中,所述方法包括:
S210:接收终端基于对邻小区的SSB的检测结果上报的更新指示信息;
S220:根据所述更新指示信息,更新测量SSB的时间段的时段配置,其中,所述时段配置包括用于确定测量SSB的时间段的指示信息。
该测量SSB的时间段更新方法可应用于服务小区中,此时执行S210至S220的执行主体可为服务小区的服务卫星等。
该服务卫星包括但不限于:地球同步轨道(Geostationary Earth Orbiting,GEO)卫星和/或近地(Low Earth Orbiting,LEO)卫星。
接收终端上报的更新指示信息,会根据更新指示信息,更新终端对邻小区的SSB测量的时间段。
若基站更新测量SSB的时间段,则会产生新的时段配置。网络侧在生成新的时段配置,可以将新的时段配置下发给终端,供终端使用。
网络通过这种根据邻小区的SSB检测结果上报的更新指示信息,更新时段配置,具有能够动态灵活的调整测量SSB的时间段的特点,与此同时具有信令开销小的特点。
例如,在一个实施例中,所述更新指示信息为:终端根据SSB的检测结果确定出至少一个邻小区的SSB检测失败时上报的。
该更新指示信息的信息内容等相关描述可以参见前述对应的实施例,此处就不再重复了。
所述更新指示信息可携带有传输时延差或者不携带传输时延差。
示例性地,所述S220可包括:基于所述更新指示信息携带的传输时延差,更新测量SSB的时间段的时段配置。
此处的所述更新指示信息携带的传输时延差,可包括:前述终端侧实施例中的第一传输时延差和第二传输时延差中的至少一个。
在一个实施例中,所S220可包括:
基于所述更新指示信息携带有第一传输时延差,根据与所述第一传输时延差对应的时段配置的类型,更新与所述第一传输时延差对应的邻小区的测量SSB的时间段的时段配置;所述第一传输时延差为:所述终端和所述服务小区之间的传输时延与所述终端和所述SSB检测失败的邻小区所在邻小区组内的各邻小区之间的传输时延的差值。
一方面为了减少不必要时段配置的更新,另一方面为了减少全部更新导致的时段配置下发所消耗的信令开销大现象,在本公开实施例中,仅对SSB检测失败的邻小区关联的时段配置进行更新。
所述时段配置的类型包括以下至少之一:
针对服务小区所有邻小区的公共时段配置;
针对服务小区一个邻小区组的组时段配置,一个邻小区组包括:服务小区的一个或多个邻小区;
针对服务小区的单个邻小区的小区时段配置。
在一个实施例中,所述根据与所述第一传输时延差对应的时段配置的类型,更新与所述第一传输时延差对应的邻小区的测量SSB的时间段的时段配置,包括以下至少之一:
响应于与所述第一传输时延差对应的时段配置为公共时段配置,更新所述公共时段配置;其中,所述公共时段配置,用于:所述服务小区的所有邻小区共用的测量SSB的时间段;
响应于与所述第一传输时延差对应的时段配置为组时段配置,更新所述组时段配置,其中,所述组时段配置,用于确定所述服务小区的一个邻小区组内所有邻小区共用的测量SSB的时间段;
响应于与所述第一传输时延差对应的时段配置为小区时段配置,更新所述小区时段配置,其中,其中,所述小区时段配置用于确定对所述服务小区的一个邻小区的测量SSB的时间段。
在一个实施例中,所述根据所述更新指示信息,更新测量SSB的时间段的时段配置,包括:
根据所述更新指示信息,确定基准值;
根据调整所述基准值的预设信息及所述基准值,更新所述时段配置。
由于NTN系统中提供NTN小区的卫星有多种,卫星的运动轨迹也有不同;终端自身的速度都会影响终端对邻小区的SSB的测量。
故在本公开实施例中,为了提供最为合适的测量SSB的时间段的时段配置,会引入预设信息来校正基于更新指示信息确定的基准值。
在一个实施例中,所述预设信息包括以下至少之一:
所述服务小区的服务卫星的类型;
所述邻小区的邻小区卫星的类型;
所述服务小区的服务卫星的星历信息;
所述邻小区的邻小区卫星的星历信息;
所述终端的运动速度。
邻小区卫星和/或服务卫星的星历信息,可分别用于定位邻小区卫星的位置和服务卫星的位置。例如,所述终端的运动速度可以用:具体的速度值来体现,也可以使用终端的运动速度所在速度等级来体现。
在一个实施例中,所述方法还包括:
根据默认传输时延差范围,确定所述测量SSB的时间段的初始时段配置。
示例性地,所述默认时延差范围的构成包括以下之一:
第一极小值到第一极大值,其中,所述第一极小值为:所述服务小区内任意位置到达服务小区的传输时延减去对应位置到达任意一个邻小区的传输时延的最小值;所述第一极大值为:所述服务小区内任意位置到达服务小区的传输时延减去对应位置到达任意邻小区的传输时延的最大值;
第二极小值到第二极大值,其中,所述第二极小值为:所述服务小区内任意位置达到任意一个邻小区传输时延,减去对应位置达到所述服务小区的传输时延的最小值;所述第二极大值为:所述服务小区内任意位置达到任意一个邻小区传输时延,减去对应位置达到所述服务小区的传输时延的最大值;
所述服务小区内已接入终端上报的最大传输时延差范围;
根据历史数据确定的传输时延差范围。
示例性地,服务小区覆盖范围内只包含2个位置,位置A和B,包含两个邻小区和对应的邻小区卫星2个;位置A到SA(服务卫星)时延为10,终端到NA1(邻小区卫星1)时延为132,终端到NA2(邻小区卫星2)的时延为9,位置B到SA(服务卫星)时延为110,到NA1(邻小区卫星1)时延为22,NA2(邻小区卫星2)的时延为10。
若采用第一极小值到第一极大值,则传输时延差范围为[-122,100],-122为所述第一极小值;100为所述第一极大值。若采用第二极小值到第二极大值,则传输时延差范围为[-100,122],-100为所述第一极小值;122为所述第一极大值。
在一个实施例中,终端当前接入的服务小区已经有其他终端接入,其他终端也会向该小区上报基于传输时延差确定的时延差范围,在本公开实施例中为一个终端确定其接入服务小区的初始时段配置,可以根据其他终端上报的最大时延差范围确定,如此,具有实现简单的特点。
在一个实施例中,历史数据可为:可以服务小区根据当前终端和/或其他终端在历史时刻使用的时段配置所采用的传输时延差范围,来确定给当前终端的时段配置。
总之确认默认时延范围的方式有多种,具体实现时不局限于上述任意一种。
在另一个实施例中,所述根据所述更新指示信息,更新测量SSB的时间段的时段配置,包括:
基于所述更新指示信息携带有与所述初始时段配置对应的第二传输时延差,更新所述时段配置; 其中,所述第二传输时延差是:所述终端和所述服务小区之间的传输时延与所述终端和所述SSB检测成功的邻小区所在邻小区组内的各邻小区之间的传输时延的差值。
在一个实施例中,所述方法还包括:下发星历信息,其中,所述星历信息包括:服务小区的服务卫星的星历信息和/或邻小区的邻小区卫星的星历信息。
下发的星历信息,用于供终端确定前述第一传输时延差和/或第二传输时延差。
该星历信息的下发可以是广播、组播或者单播下发。
本公开实施例提出了如下的适用于NTN系统的SMTC窗口/测量间隙(Measurement GAP)的增强方案,在本公开实施例中,在SMTC窗口/测量间隙占用的资源和更新频次之间进行折衷,使得只需用较少的RRC信令来更新UE的配置,就能够降低SMTC窗口/测量间隙对数据传输和接收的影响。
本公开实施例技术方案可如下:
UE根据接收到的SMTC窗口/测量间隙的配置来进行邻小区的SSB测量,当UE发现通过现有的SMTC窗口/测量间隙配置无法检测到某邻小区的SSB,UE则上报无法检测到此邻小区SSB的指示(此指示中可包含此邻小区标识(Identification,ID),更新传输时延差,并通过RRC消息上报给网络。
若网络为所有待测量邻小区配置公共的SMTC窗口/测量间隙,则UE需要更新服务小区与所有邻小区的传输时延差范围;
若网络为每个待测量邻小区配置不同的SMTC窗口/测量间隙,则UE只需要更新服务小区与无法检测到SSB的邻小区的传输时延差。
若网络为每组待测量邻小区配置不同的SMTC窗口/测量间隙,则UE只需要更新服务小区与无法检测到SSB的邻小区所在组的待测邻小区的传输时延差的范围;
网络根据传输时延差来配置或更新SMTC窗口/测量间隙。
示例性地,网络根据传输时延差的范围来配置或更新公共的SMTC窗口/测量间隙。
示例性地,网络根据此邻小区的传输时延差来配置或更新此邻小区的SMTC窗口/测量间隙。
示例性地,网络根据此组的传输时延差的范围来配置或更新此待测邻小区组的SMTC窗口/测量间隙。
示例性地,网络可以根据卫星的类型(LEO/GEO/MEO)、卫星的运动轨迹、UE的移速(低速、中速、高速)来确定偏移值(offset),调整或扩展SMTC窗口/测量间隙的配置。此处的偏移值可为前述根据预定信息确定的。在根据传输时延差或传输时延差范围,确定出一个基准值之后,根据该偏移值校正校准值,得到SMTC窗口/测量间隙的最终值,从而生成新的SMTC窗口配置和/或测量间隙配置。此处的SMTC窗口配置和测量间隙配置均为前述时段配置的一种。
示例性地,只有当网络收到UE上报的无法检测到某邻小区SSB的指示,以及相应的传输时延差更新信息后,网络才可能更新相应的SMTC窗口/测量间隙。
初始的SMTC窗口/测量间隙的配置是网络根据小区内最大传输时延差信息配置的。初始的 SMTC窗口/测量间隙的配置可对应前述的初始时段配置。
UE以首次能检测到SSB的邻小区为基准,上报对应卫星的传输时延差信息,网络据此更新SMTC窗口/测量间隙的配置。
示例性地,UE可以存储前N次SMTC窗口/测量间隙更新后检测到SSB的邻小区的列表,用于判断最新的SMTC窗口/测量间隙配置是否会出现无法检测到表内邻小区的SSB的情况。
示例性地,定义计数器X,若某邻小区对应的X大于规定数目时,则判断UE通过现有的SMTC窗口/测量间隙配置无法检测到此邻小区的SSB。此处的无法检测SSB即为前述SSB检测失败的一种具体体现。此处的规定数目包括但限于前述实施例提到的M。
示例性地,当UE在某一SMTC/间隙测量间隙内无法检测到某邻小区的SSB,则X加1,当UE在某一SMTC/间隙测量间隙内检测到某邻小区的SSB,则其对应的X清零。
示例性地,UE在某一SMTC/间隙测量间隙可以检测到某邻小区的SSB,有:
此SMTC/间隙测量间隙能包含全部的SSB信号;
此SMTC/间隙测量间隙能包含至少n个的SSB信号,n不小于1。
示例性地,UE根据自身的位置信息和服务小区卫星、邻小区卫星的星历信息来计算UE在服务小区和待测邻小区的传输时延差。
示例性地,UE可以通过星历信息获取卫星的位置,然后计算UE与卫星的距离,通过此距离除以光速获得UE在此卫星覆盖的小区的传输时延,利用服务小区的传输时延减去邻小区的传输时延即可获得传输时延差,此值取值范围为实数。
对于服务小区和邻小区的馈线链路(feeder link)的传输时延差,可以在网络端进行补偿,UE只需计算服务链路(service link)部分的传输时延差即可。
示例性地,UE需要获取服务小区以及邻小区对应卫星的星历信息:
网络直接给UE提供服务小区以及邻小区对应卫星的星历信息;
UE通过网络获取所在的服务小区以及邻小区对应的卫星的标识,然后根据自身的预配置信息获取它们的星历信息。
本公开实施例中所述邻小区可以为某一频点或某一小区。
如图6所示,本公开实施例提供一种用于测量同步信号块SSB的时间段的配置装置,应用于终端中,所述装置包括:
测量模块610,被配置为在测量SSB的时间段内,检测邻小区的SSB,其中,所述测量SSB的时间段包括:SSB测量定时配置SMTC窗口和/或测量间隙;
上报模块620,被配置为根据所述SSB的检测结果,上报更新指示信息,其中,所述更新指示信息用于网络侧更新时段配置;所述时段配置包括用于确定测量SSB的时间段的指示信息。
在一个实施例中,所述测量模块610及所述上报模块620可为程序模块;所述程序模块被处理器执行之后,能够实现对邻小区的SSB的测量,并根据测量SSB得到的检测结果,进行更新指示信息的上报。
在另一个实施例中,所述测量模块610和所述上报模块620可为软硬结合模块;所述软硬结合模块包括但不限于:可编程阵列。所述可编程阵列包括但不限于:复杂可编程阵列和/或现场可编程阵列。
在还有一个实施例中,所述测量模块610和所述上报模块620可为纯硬件模块;所述纯硬件模块包括但不限于:专用集成电路。
在一个实施例中,所述上报模块620,被配置为响应于根据所述SSB的检测结果至少有一个邻小区的SSB检测失败,上报所述更新指示信息。
在一个实施例中,所述上报模块620,被配置为响响应于所述时段配置不是初始时段配置,根据所述SSB的检测结果,至少确定终端分别与所述服务小区和所述SSB检测失败的邻小区的传输之间的第一传输时延差;根据所述第一传输时延差,上报所述更新指示信息。
在一个实施例中,所述上报模块620,被配置为根据所述SSB的检测结果,确定终端分别与所述服务小区和所述邻小区的传输之间的传输时延差;根据所述传输时延差,上报所述更新指示信息。
在一个实施例中,所述装置还包括:
第一确定模块,被配置为在连续M次所述测量SSB的时间段内检测同一个邻小区的SSB失败,确定对应所述邻小区的所述SSB的检测结果为失败;其中,所述M为任意正整数。
在一个实施例中,所述装置还包括:
第二确定模块,被配置为在一个所述测量SSB的时间段内对邻小区的所述SSB测量时未能成功检测到N个所述SSB,确定一次SSB检测失败;和/或,在一个所述测量SSB的时间段内对邻小区的所述SSB测量时成功检测到N个所述SSB,确定一次SSB检测成功;
其中,所述N小于或等于对应邻小区在一个所述测量SSB的时间段内配置的SSB的总个数。
在一个实施例中,所述上报模块620,被配置为根据时段配置所述测量SSB的时间段的时段配置及所述第一传输时延差,上报所述更新指示信息。
在一个实施例中,所述上报模块620,被配置执行以下至少之一:
响应于所述时段配置为公共时段配置,根据所述第一传输时延差,上报指示第一时延差范围的所述更新指示信息,其中,所述公共时段配置确定的测量SSB的时间段,用于对所述服务小区的所有邻小区的SSB测量;所述第一时延差范围是:根据所述终端和所述服务小区之间的传输时延与所述终端和所有邻小区之间的传输时延的差值确定的;
响应于所述时段配置为组时段配置,根据所述第一传输时延差,上报指示第二时延差范围的所述更新指示信息,其中,所述组时段配置,用于确定所述服务小区的一个邻小区组内所有邻小区共用的测量SSB的时间段;所述第二时延差范围是:根据所述终端和所述服务小区之间的传输时延与所述终端和所述SSB检测失败的邻小区所在邻小区组内的各邻小区之间的传输时延的差值;
响应于所述时段配置为小区时段配置,根据所述第一传输时延差,上报指示第一传输时延差的所述更新指示信息;其中,所述小区时段配置用于确定对所述服务小区的一个邻小区的测量SSB的时间段。
在一个实施例中,所述上报模块620,被配置为响应于所述时段配置是初始时段配置,根据所述SSB的检测结果,确定终端分别与所述服务小区和所述SSB检测成功的邻小区的传输之间的第二传输时延差;根据所述第二传输时延差,上报所述更新指示信息。
在一个实施例中,,所述终端和所述服务小区之间的传输时延与所述终端和对应邻小区之间的传输时延的差值是:根据所述终端的位置、所述服务小区的星历信息及所述对应邻小区的星历信息确定的。
在一个实施例中,所述服务小区的星历信息,用于确定服务小区的服务卫星的位置;
所述邻小区的星历信息,用于确定所述邻小区的邻小区卫星的位置。
在一个实施例中,所述装置还包括:
第一接收模块,被配置为接收服务小区发送的所述服务小区的星历信息及所述邻小区的星历信息。
如图7所示,本公开实施例提供一种测量SSB的时间段的配置,其中,应用于服务小区中,所述方法包括:
第二接收模块710,被配置为接收终端基于对邻小区的SSB的检测结果上报的更新指示信息;
更新模块720,被配置为根据所述更新指示信息,更新测量SSB的时间段的时段配置;其中,所述时段配置包括用于确定测量SSB的时间段的指示信息。
在一个实施例中,所述第二接收模块710及所述更新模块720可为程序模块;所述程序模块被处理器执行之后,能够实现接收终端上报的更新指示信息并对时段配置进行更新。
在另一个实施例中,所述第二接收模块710及所述更新模块720可为软硬结合模块;所述软硬结合模块包括但不限于:可编程阵列。所述可编程阵列包括但不限于:复杂可编程阵列和/或现场可编程阵列。
在还有一个实施例中,所述第二接收模块710及所述更新模块720可为纯硬件模块;所述纯硬件模块包括但不限于:专用集成电路。
在一个实施例中,所述更新模块720,被配置为基于所述更新指示信息携带的传输时延差,更新测量SSB的时间段的时段配置。
在一个实施例中,所述更新模块720,被配置为基于所述更新指示信息携带有第一传输时延差,根据与所述第一传输时延差对应邻小区的测量SSB的时间段的时段配置,更新与所述第一传输时延差对应的邻小区的测量SSB的时间段的时段配置;所述第一传输时延差为:所述终端和,分别与所述服务小区之间的传输时延与和所述终端和所有邻小区的传输之间的传输时延的差值。
在一个实施例中,所述更新模块720,被配置执行以下至少之一:
响应于与所述第一传输时延差对应的时段配置为公共时段配置,更新所述公共时段配置;其中,所述公共时段配置,用于:所述服务小区的所有邻小区共用的测量SSB的时间段;
响应于与所述第一传输时延差对应的时段配置为组时段配置,更新所述组时段配置,其中,所述组时段配置,用于确定所述服务小区的一个邻小区组内所有邻小区共用的测量SSB的时间段;
响应于与所述第一传输时延差对应的时段配置为小区时段配置,更新所述小区时段配置,其中,所述小区时段配置用于确定对所述服务小区的一个邻小区的测量SSB的时间段。
在一个实施例中,所述更新模块720,被配置为根据所述更新指示信息,确定基准值;根据调整所述基准值的预设信息及所述基准值,更新所述时段配置。
在一个实施例中,所述预设信息包括以下至少之一:
所述服务小区的服务卫星的类型;
所述邻小区的邻小区卫星的类型;
所述服务小区的服务卫星的星历信息;
所述邻小区的邻小区卫星的星历信息;
所述终端的运动速度。
在一个实施例中,所述装置还包括:
第三确定模块,被配置为根据默认传输时延差范围,确定所述测量SSB的时间段的初始时段配置。
在一个实施例中,所述默认时延差范围的构成包括以下之一:
第一极小值到第一极大值,其中,所述第一极小值为:所述服务小区内任意位置到达服务小区的传输时延减去对应位置到达任意一个邻小区的传输时延的最小值;所述第一极大值为:所述服务小区内任意位置到达服务小区的传输时延减去对应位置到达任意邻小区的传输时延的最大值;
第二极小值到第二极大值,其中,所述第二极小值为:所述服务小区内任意位置达到任意一个邻小区传输时延,减去对应位置达到所述服务小区的传输时延的最小值;所述第二极大值为:所述服务小区内任意位置达到任意一个邻小区传输时延,减去对应位置达到所述服务小区的传输时延的最大值;
所述服务小区内已接入终端上报的最大传输时延差范围;
根据历史数据确定的传输时延差范围。
在一个实施例中,所述更新模块720,被配置为基于所述更新指示信息携带有与所述初始时段配置对应的第二传输时延差,更新所述时段配置;其中,所述第二传输时延差是:所述终端和所述服务小区之间的传输时延与所述终端和所述SSB检测成功的邻小区所在邻小区组内的各邻小区之间的传输时延的差值。
在一个实施例中,所述装置还包括:
发送模块,被配置为下发星历信息,其中,所述星历信息包括:服务小区的服务卫星的星历信息和/或邻小区的邻小区卫星的星历信息。
在一个实施例中,所述根据所述更新指示信息,更新测量SSB的时间段的时段配置,包括:
根据所述更新指示信息和馈线链路的传输时延,更新所述时段配置,其中,所述馈线链路包括:网关与服务小区之间的馈线链路的传输时延,和/或,网关与邻小区之间的馈线链路的传输时延。
本公开实施例提供一种通信设备,包括:
用于存储处理器可执行指令的存储器;
处理器,分别存储器连接;
其中,处理器被配置为执行前述任意技术方案提供的测量SSB的时间段的时段配置更新方法。
处理器可包括各种类型的存储介质,该存储介质为非临时性计算机存储介质,在通信设备掉电之后能够继续记忆存储其上的信息。
这里,所述通信设备包括卫星或终端。
所述处理器可以通过总线等与存储器连接,用于读取存储器上存储的可执行程序,例如,如图3至图5所示的方法的至少其中之一。
图8是根据一示例性实施例示出的一种终端800的框图。例如,卫星800可以是移动电话,计算机,数字广播用户设备,消息收发设备,游戏控制台,平板设备,医疗设备,健身设备,个人数字助理等。
参照图8,卫星800可以包括以下一个或多个组件:处理组件802,存储器804,电源组件806,多媒体组件808,音频组件810,输入/输出(I/O)的接口812,传感器组件814,以及通信组件816。
处理组件802通常控制卫星800的整体操作,诸如与显示,电话呼叫,数据通信,相机操作和记录操作相关联的操作。处理组件802可以包括一个或多个处理器820来执行指令,以完成上述的方法的全部或部分步骤。此外,处理组件802可以包括一个或多个模块,便于处理组件802和其他组件之间的交互。例如,处理组件802可以包括多媒体模块,以方便多媒体组件808和处理组件802之间的交互。
存储器804被配置为存储各种类型的数据以支持在卫星800的操作。这些数据的示例包括用于在卫星800上操作的任何应用程序或方法的指令,联系人数据,电话簿数据,消息,图片,视频等。存储器804可以由任何类型的易失性或非易失性存储设备或者它们的组合实现,如静态随机存取存储器(SRAM),电可擦除可编程只读存储器(EEPROM),可擦除可编程只读存储器(EPROM),可编程只读存储器(PROM),只读存储器(ROM),磁存储器,快闪存储器,磁盘或光盘。
电源组件806为卫星800的各种组件提供电力。电源组件806可以包括电源管理系统,一个或多个电源,及其他与为卫星800生成、管理和分配电力相关联的组件。
多媒体组件808包括在所述卫星800和用户之间的提供一个输出接口的屏幕。在一些实施例中,屏幕可以包括液晶显示器(LCD)和触摸面板(TP)。如果屏幕包括触摸面板,屏幕可以被实现为触摸屏,以接收来自用户的输入信号。触摸面板包括一个或多个触摸传感器以感测触摸、滑动和触摸面板上的手势。所述触摸传感器可以不仅感测触摸或滑动动作的边界,而且还检测与所述触摸或滑动操作相关的持续时间和压力。在一些实施例中,多媒体组件808包括一个前置摄像头和/或后置摄像头。当卫星800处于操作模式,如拍摄模式或视频模式时,前置摄像头和/或后置摄像头可以接收外部的多媒体数据。每个前置摄像头和后置摄像头可以是一个固定的光学透镜系统或具有焦距和光学变焦能力。
音频组件810被配置为输出和/或输入音频信号。例如,音频组件810包括一个麦克风(MIC), 当卫星800处于操作模式,如呼叫模式、记录模式和语音识别模式时,麦克风被配置为接收外部音频信号。所接收的音频信号可以被进一步存储在存储器804或经由通信组件816发送。在一些实施例中,音频组件810还包括一个扬声器,用于输出音频信号。
I/O接口812为处理组件802和外围接口模块之间提供接口,上述外围接口模块可以是键盘,点击轮,按钮等。这些按钮可包括但不限于:主页按钮、音量按钮、启动按钮和锁定按钮。
传感器组件814包括一个或多个传感器,用于为卫星800提供各个方面的状态评估。例如,传感器组件814可以检测到设备800的打开/关闭状态,组件的相对定位,例如所述组件为卫星800的显示器和小键盘,传感器组件814还可以检测卫星800或卫星800一个组件的位置改变,用户与卫星800接触的存在或不存在,卫星800方位或加速/减速和卫星800的温度变化。传感器组件814可以包括接近传感器,被配置用来在没有任何的物理接触时检测附近物体的存在。传感器组件814还可以包括光传感器,如CMOS或CCD图像传感器,用于在成像应用中使用。在一些实施例中,该传感器组件814还可以包括加速度传感器,陀螺仪传感器,磁传感器,压力传感器或温度传感器。
通信组件816被配置为便于卫星800和其他设备之间有线或无线方式的通信。卫星800可以接入基于通信标准的无线网络,如WiFi,2G或3G,或它们的组合。在一个示例性实施例中,通信组件816经由广播信道接收来自外部广播管理系统的广播信号或广播相关信息。在一个示例性实施例中,所述通信组件816还包括近场通信(NFC)模块,以促进短程通信。例如,在NFC模块可基于射频识别(RFID)技术,红外数据协会(IrDA)技术,超宽带(UWB)技术,蓝牙(BT)技术和其他技术来实现。
在示例性实施例中,卫星800可以被一个或多个应用专用集成电路(ASIC)、数字信号处理器(DSP)、数字信号处理设备(DSPD)、可编程逻辑器件(PLD)、现场可编程门阵列(FPGA)、控制器、微控制器、微处理器或其他电子元件实现,用于执行上述方法。
在示例性实施例中,还提供了一种包括指令的非临时性计算机可读存储介质,例如包括指令的存储器804,上述指令可由卫星800的处理器820执行以完成上述方法。例如,所述非临时性计算机可读存储介质可以是ROM、随机存取存储器(RAM)、CD-ROM、磁带、软盘和光数据存储设备等。
如图9所示,本公开一实施例示出一种卫星的结构。例如,卫星900可以被提供为一网络侧设备。参照图9,卫星900包括处理组件922,其进一步包括一个或多个处理器,以及由存储器932所代表的存储器资源,用于存储可由处理组件922的执行的指令,例如应用程序。存储器932中存储的应用程序可以包括一个或一个以上的每一个对应于一组指令的模块。此外,处理组件922被配置为执行指令,以执行上述方法前述应用在所述卫星的任意方法,例如,如图3至图5所示方法。
卫星900还可以包括一个电源组件926被配置为执行卫星900的电源管理,一个有线或无线网络接口950被配置为将卫星900连接到网络,和一个输入输出(I/O)接口958。卫星900可以操作基于存储在存储器932的操作系统,例如Windows Server TM,Mac OS XTM,UnixTM,LinuxTM,FreeBSDTM或类似。
本领域技术人员在考虑说明书及实践这里公开的发明后,将容易想到本公开实施例的其它实施方案。本公开旨在涵盖本公开实施例的任何变型、用途或者适应性变化,这些变型、用途或者适应性变化遵循本公开实施例的一般性原理并包括本公开未公开的本技术领域中的公知常识或惯用技术手段。说明书和实施例仅被视为示例性的,本公开实施例的真正范围和精神由下面的权利要求指出。
应当理解的是,本公开实施例并不局限于上面已经描述并在附图中示出的精确结构,并且可以在不脱离其范围进行各种修改和改变。本公开实施例的范围仅由所附的权利要求来限制。

Claims (44)

  1. 一种用于测量同步信号块SSB的时间段的配置方法,应用于终端中,所述方法包括:
    在测量SSB的时间段内,检测邻小区的SSB,其中,所述测量SSB的时间段包括:SSB测量定时配置SMTC窗口和/或测量间隙;
    根据所述SSB的检测结果,上报更新指示信息,其中,所述更新指示信息,用于网络侧更新时段配置;所述时段配置包括用于确定测量SSB的时间段的指示信息。
  2. 根据权利要求1所述的方法,其中,所述根据所述SSB的检测结果,上报更新指示信息,包括:
    响应于根据所述SSB的检测结果确定出至少有一个邻小区的SSB检测失败,上报所述更新指示信息。
  3. 根据权利要求1所述的方法,其中,所述根据所述SSB的检测结果,上报更新指示信息,包括:
    根据所述SSB的检测结果,确定终端分别与所述服务小区和所述邻小区的传输之间的传输时延差;
    根据所述传输时延差,上报所述更新指示信息。
  4. 根据权利要求3所述的方法,其中,所述根据所述SSB的检测结果,确定终端分别与所述服务小区和所述邻小区的传输之间的传输时延差,包括:
    响响应于所述时段配置不是初始时段配置,根据所述SSB的检测结果,至少确定终端分别与所述服务小区和所述SSB检测失败的邻小区的传输之间的第一传输时延差;
    和/或,
    响应于所述时段配置是初始时段配置,根据所述SSB的检测结果,确定终端分别与所述服务小区和所述SSB检测成功的邻小区的传输之间的第二传输时延差。
  5. 根据权利要求3所述的方法,其中,所述方法还包括:
    在连续M次所述测量SSB的时间段内检测同一个邻小区的SSB失败,确定对应所述邻小区的所述SSB的检测结果为失败;其中,所述M为任意正整数。
  6. 根据权利要求4或5所述的方法,其中,所述方法还包括:
    在一个所述测量SSB的时间段内对邻小区的所述SSB测量时未能成功检测到N个所述SSB,确定一次SSB检测失败;
    和/或,
    在一个所述测量SSB的时间段内对邻小区的所述SSB测量时成功检测到N个所述SSB,确定一次SSB检测成功;
    其中,所述N小于或等于对应邻小区在一个所述测量SSB的时间段内配置的SSB的总个数。
  7. 根据权利要求4至6任一项所述的方法,其中,所述根据所述第一传输时延差,上报所述更 新指示信息,包括:
    根据所述时段配置及所述第一传输时延差,上报所述更新指示信息。
  8. 根据权利要求7所述的方法,其中,所述根据所述时段配置及所述第一传输时延差,上报所述更新指示信息,包括以下至少之一:
    响应于所述时段配置为公共时段配置,根据所述第一传输时延差,上报指示第一时延差范围的所述更新指示信息,其中,所述公共时段配置确定的测量SSB的时间段,用于对所述服务小区的所有邻小区的SSB测量;所述第一时延差范围是:根据所述终端和所述服务小区之间的传输时延与所述终端和所有邻小区之间的传输时延的差值确定的;
    响应于所述时段配置为组时段配置,根据所述第一传输时延差,上报指示第二时延差范围的所述更新指示信息,其中,所述组时段配置,用于确定所述服务小区的一个邻小区组内所有邻小区共用的测量SSB的时间段;所述第二时延差范围是:根据所述终端和所述服务小区之间的传输时延与所述终端和所述SSB检测失败的邻小区所在邻小区组内的各邻小区之间的传输时延的差值确定的;
    响应于所述时段配置为小区时段配置,根据所述第一传输时延差,上报指示第一传输时延差的所述更新指示信息;其中,所述小区时段配置用于确定对所述服务小区的一个邻小区的测量SSB的时间段。
  9. 根据权利要求8所述的方法,其中,所述终端和所述服务小区之间的传输时延与所述终端和对应邻小区之间的传输时延的差值是:根据所述终端的位置、所述服务小区的星历信息及所述对应邻小区的星历信息确定的。
  10. 根据权利要求9所述的方法,其中,所述服务小区的星历信息,用于确定服务小区的服务卫星的位置;
    所述邻小区的星历信息,用于确定所述邻小区的邻小区卫星的位置。
  11. 根据权利要求9或10所述的方法,其中,所述方法还包括:
    接收服务小区发送的所述服务小区的星历信息及所述邻小区的星历信息。
  12. 一种测量SSB的时间段的配置方法,其中,应用于服务小区中,所述方法包括:
    接收终端基于对邻小区的SSB的检测结果上报的更新指示信息;
    根据所述更新指示信息,更新测量SSB的时间段的时段配置,其中,所述时段配置包括用于确定测量SSB的时间段的指示信息。
  13. 根据权利要求12所述的方法,其中,所述根据所述更新指示信息,更新测量SSB的时间段的时段配置,包括:
    基于所述更新指示信息携带的传输时延差,更新测量SSB的时间段的时段配置。
  14. 根据权利要求13所述的方法,其中,所述基于所述更新指示信息携带的传输时延差,更新测量SSB的时间段的时段配置,包括:
    基于所述更新指示信息携带有第一传输时延差,根据与所述第一传输时延差对应的时段配置的类型,更新与所述第一传输时延差对应的邻小区的测量SSB的时间段的时段配置;所述第一传输时 延差为:所述终端和所述服务小区之间的传输时延与所述终端和所述SSB检测失败的邻小区所在邻小区组内的各邻小区之间的传输时延的差值;
    和/或,
    基于所述更新指示信息携带有与所述初始时段配置对应的第二传输时延差,更新所述时段配置;其中,所述第二传输时延差是:所述终端和所述服务小区之间的传输时延与所述终端和所述SSB检测成功的邻小区所在邻小区组内的各邻小区之间的传输时延的差值。
  15. 根据权利要求14所述的方法,其中,所述根据与所述第一传输时延差对应的时段配置的类型,更新与所述第一传输时延差对应的邻小区的测量SSB的时间段的时段配置,包括以下至少之一:
    响应于与所述第一传输时延差对应的时段配置为公共时段配置,更新所述公共时段配置;其中,所述公共时段配置,用于:所述服务小区的所有邻小区共用的测量SSB的时间段;
    响应于与所述第一传输时延差对应的时段配置为组时段配置,更新所述组时段配置,其中,所述组时段配置,用于确定所述服务小区的一个邻小区组内所有邻小区共用的测量SSB的时间段;
    响应于与所述第一传输时延差对应的时段配置为小区时段配置,更新所述小区时段配置,其中,所述小区时段配置用于确定对所述服务小区的一个邻小区的测量SSB的时间段。
  16. 根据权利要求13至15任一项所述的方法,其中,所述根据所述更新指示信息,更新测量SSB的时间段的时段配置,包括:
    根据所述更新指示信息,确定基准值;
    根据调整所述基准值的预设信息及所述基准值,更新所述时段配置。
  17. 根据权利要求16所述的方法,其中,所述预设信息包括以下至少之一:
    所述服务小区的服务卫星的类型;
    所述邻小区的邻小区卫星的类型;
    所述服务小区的服务卫星的星历信息;
    所述邻小区的邻小区卫星的星历信息;
    所述终端的运动速度。
  18. 根据权利要求13至17任一项所述的方法,其中,所述方法还包括:
    根据默认传输时延差范围,确定所述测量SSB的时间段的初始时段配置。
  19. 根据权利要求18所述的方法,其中,所述默认时延差范围的构成包括以下之一:
    第一极小值到第一极大值,其中,所述第一极小值为:所述服务小区内任意位置到达服务小区的传输时延减去对应位置到达任意一个邻小区的传输时延的最小值;所述第一极大值为:所述服务小区内任意位置到达服务小区的传输时延减去对应位置到达任意邻小区的传输时延的最大值;
    第二极小值到第二极大值,其中,所述第二极小值为:所述服务小区内任意位置达到任意一个邻小区传输时延,减去对应位置达到所述服务小区的传输时延的最小值;所述第二极大值为:所述服务小区内任意位置达到任意一个邻小区传输时延,减去对应位置达到所述服务小区的传输时延的最大值;
    所述服务小区内已接入终端上报的最大传输时延差范围;
    根据历史数据确定的传输时延差范围。
  20. 根据权利要求12至19任一项所述的方法,其中,所述方法还包括:
    下发星历信息,其中,所述星历信息包括:服务小区的服务卫星的星历信息和/或邻小区的邻小区卫星的星历信息。
  21. 根据权利要求12至20任一项所述的方法,其中,所述根据所述更新指示信息,更新测量SSB的时间段的时段配置,包括:
    根据所述更新指示信息和馈线链路的传输时延,更新所述时段配置,其中,所述馈线链路包括:网关与服务小区之间的馈线链路的传输时延,和/或,网关与邻小区之间的馈线链路的传输时延。
  22. 一种用于测量同步信号块SSB的时间段的配置装置,应用于终端中,所述装置包括:
    测量模块,被配置为在测量SSB的时间段内,检测邻小区的SSB,其中,所述测量SSB的时间段包括:SSB测量定时配置SMTC窗口和/或测量间隙;
    上报模块,被配置为根据所述SSB的检测结果,上报更新指示信息,其中,所述更新指示信息用于网络侧更新时段配置;所述时段配置包括用于确定测量SSB的时间段的指示信息。
  23. 根据权利要求22所述的装置,其中,所述上报模块,被配置为响应于根据所述SSB的检测结果至少有一个邻小区的SSB检测失败,上报所述更新指示信息。
  24. 根据权利要求22所述的装置,其中,所述上报模块,被配置为根据所述SSB的检测结果,确定终端分别与所述服务小区和所述邻小区的传输之间的传输时延差;根据所述传输时延差,上报所述更新指示信息。
  25. 根据权利要求24所述的装置,其中,所述上报模块,被配置为:响应于所述时段配置不是初始时段配置,根据所述SSB的检测结果,至少确定终端分别与所述服务小区和所述SSB检测失败的邻小区的传输之间的第一传输时延差;根据所述第一传输时延差,上报所述更新指示信息;
    和/或,
    所述上报模块,还被配置为响应于所述时段配置是初始时段配置,根据所述SSB的检测结果,确定终端分别与所述服务小区和所述SSB检测成功的邻小区的传输之间的第二传输时延差;根据所述第二传输时延差,上报所述更新指示信息。
  26. 根据权利要求25所述的装置,其中,所述装置还包括:
    第一确定模块,被配置为在连续M次所述测量SSB的时间段内检测同一个邻小区的SSB失败,确定对应所述邻小区的所述SSB的检测结果为失败;其中,所述M为任意正整数。
  27. 根据权利要求25或26所述的装置,其中,所述装置还包括:
    第二确定模块,被配置为在一个所述测量SSB的时间段内对邻小区的所述SSB测量时未能成功检测到N个所述SSB,确定一次SSB检测失败;和/或,在一个所述测量SSB的时间段内对邻小区的所述SSB测量时成功检测到N个所述SSB,确定一次SSB检测成功;
    其中,所述N小于或等于对应邻小区在一个所述测量SSB的时间段内配置的SSB的总个数。
  28. 根据权利要求25至27任一项所述的装置,其中,所述上报模块,被配置为根据时段配置所述测量SSB的时间段的时段配置及所述第一传输时延差,上报所述更新指示信息。
  29. 根据权利要求28所述的装置,其中,所述上报模块,被配置执行以下至少之一:
    响应于所述时段配置为公共时段配置,根据所述第一传输时延差,上报指示第一时延差范围的所述更新指示信息,其中,所述公共时段配置确定的测量SSB的时间段,用于对所述服务小区的所有邻小区的SSB测量;所述第一时延差范围是:根据所述终端和所述服务小区之间的传输时延与所述终端和所有邻小区之间的传输时延的差值确定的;
    响应于所述时段配置为组时段配置,根据所述第一传输时延差,上报指示第二时延差范围的所述更新指示信息,其中,所述组时段配置,用于确定所述服务小区的一个邻小区组内所有邻小区共用的测量SSB的时间段;所述第二时延差范围是:根据所述终端和所述服务小区之间的传输时延与所述终端和所述SSB检测失败的邻小区所在邻小区组内的各邻小区之间的传输时延的差值;
    响应于所述时段配置为小区时段配置,根据所述第一传输时延差,上报指示第一传输时延差的所述更新指示信息;其中,所述小区时段配置用于确定对所述服务小区的一个邻小区的测量SSB的时间段。
  30. 根据权利要求29所述的装置,其中,,所述终端和所述服务小区之间的传输时延与所述终端和对应邻小区之间的传输时延的差值是:根据所述终端的位置、所述服务小区的星历信息及所述对应邻小区的星历信息确定的。
  31. 根据权利要求30所述的装置,其中,所述服务小区的星历信息,用于确定服务小区的服务卫星的位置;
    所述邻小区的星历信息,用于确定所述邻小区的邻小区卫星的位置。
  32. 根据权利要求30或31所述的装置,其中,所述装置还包括:
    第一接收模块,被配置为接收服务小区发送的所述服务小区的星历信息及所述邻小区的星历信息。
  33. 一种测量SSB的时间段的配置装置,其中,应用于服务小区中,所述方法包括:
    第二接收模块,被配置为接收终端基于对邻小区的SSB的检测结果上报的更新指示信息;
    更新模块,被配置为根据所述更新指示信息,更新测量SSB的时间段的时段配置;其中,所述时段配置包括用于确定测量SSB的时间段的指示信息。
  34. 根据权利要求33所述的装置,其中,所述更新模块,被配置为基于所述更新指示信息携带的传输时延差,更新测量SSB的时间段的时段配置。
  35. 根据权利要求34所述的装置,其中,所述更新模块,被配置为基于所述更新指示信息携带有第一传输时延差,根据与所述第一传输时延差对应邻小区的测量SSB的时间段时段配置,更新与所述第一传输时延差对应的邻小区的测量SSB的时间段的时段配置;所述第一传输时延差为:所述终端和所述服务小区之间的传输时延与所述终端和所述SSB检测失败的邻小区所在邻小区组内的各邻小区之间的传输时延的差值;
    和/或,
    所述更新模块,还配置为基于所述更新指示信息携带有与所述初始时段配置对应的第二传输时延差,更新所述时段配置;其中,所述第二传输时延差是:所述终端和所述服务小区之间的传输时延与所述终端和所述SSB检测成功的邻小区所在邻小区组内的各邻小区之间的传输时延的差值。
  36. 根据权利要求35所述的装置,其中,所述更新模块,被配置执行以下至少之一:
    响应于与所述第一传输时延差对应的时段配置为公共时段配置,更新所述公共时段配置;其中,所述公共时段配置,用于:所述服务小区的所有邻小区共用的测量SSB的时间段;
    响应于与所述第一传输时延差对应的时段配置为组时段配置,更新所述组时段配置,其中,所述组时段配置,用于确定所述服务小区的一个邻小区组内所有邻小区共用的测量SSB的时间段;
    响应于与所述第一传输时延差对应的时段配置为小区时段配置,更新所述小区时段配置,其中,其中,所述小区时段配置用于确定对所述服务小区的一个邻小区的测量SSB的时间段。
  37. 根据权利要求33至36任一项所述的装置,其中,所述更新模块,被配置为根据所述更新指示信息,确定基准值;根据调整所述基准值的预设信息及所述基准值,更新所述时段配置。
  38. 根据权利要求37所述的装置,其中,所述预设信息包括以下至少之一:
    所述服务小区的服务卫星的类型;
    所述邻小区的邻小区卫星的类型;
    所述服务小区的服务卫星的星历信息;
    所述邻小区的邻小区卫星的星历信息;
    所述终端的运动速度。
  39. 根据权利要求33至38任一项所述的装置,其中,所述装置还包括:
    第三确定模块,被配置为根据默认传输时延差范围,确定所述测量SSB的时间段的初始时段配置。
  40. 根据权利要求39所述的装置,其中,所述默认时延差范围的构成包括以下之一:
    第一极小值到第一极大值,其中,所述第一极小值为:所述服务小区内任意位置到达服务小区的传输时延减去对应位置到达任意一个邻小区的传输时延的最小值;所述第一极大值为:所述服务小区内任意位置到达服务小区的传输时延减去对应位置到达任意邻小区的传输时延的最大值;
    第二极小值到第二极大值,其中,所述第二极小值为:所述服务小区内任意位置达到任意一个邻小区传输时延,减去对应位置达到所述服务小区的传输时延的最小值;所述第二极大值为:所述服务小区内任意位置达到任意一个邻小区传输时延,减去对应位置达到所述服务小区的传输时延的最大值;
    所述服务小区内已接入终端上报的最大传输时延差范围;
    根据历史数据确定的传输时延差范围。
  41. 根据权利要求33至40任一项所述的装置,其中,所述装置还包括:
    发送模块,被配置为下发星历信息,其中,所述星历信息包括:服务小区的服务卫星的星历信 息和/或邻小区的邻小区卫星的星历信息。
  42. 根据权利要求33至41任一项所述的方法,其中,所述根据所述更新指示信息,更新测量SSB的时间段的时段配置,包括:
    根据所述更新指示信息和馈线链路的传输时延,更新所述时段配置,其中,所述馈线链路包括:网关与服务小区之间的馈线链路的传输时延,和/或,网关与邻小区之间的馈线链路的传输时延。
  43. 一种通信设备,包括处理器、收发器、存储器及存储在存储器上并能够有所述处理器运行的可执行程序,其中,所述处理器运行所述可执行程序时执行如权利要求1至12或13至21任一项提供的方法。
  44. 一种计算机存储介质,所述计算机存储介质存储有可执行程序;所述可执行程序被处理器执行后,能够实现如权利要求1至12或13至21任一项提供的方法。
PCT/CN2020/139534 2020-12-25 2020-12-25 时间段的配置方法及装置、通信设备及存储介质 WO2022134037A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
PCT/CN2020/139534 WO2022134037A1 (zh) 2020-12-25 2020-12-25 时间段的配置方法及装置、通信设备及存储介质
CN202080004175.3A CN114982271A (zh) 2020-12-25 2020-12-25 时间段的配置方法及装置、通信设备及存储介质
US18/269,220 US20240080687A1 (en) 2020-12-25 2020-12-25 Time period configuration method and apparatus, communication device,and storage medium
EP20966602.3A EP4271031A4 (en) 2020-12-25 2020-12-25 PERIOD CONFIGURATION METHOD AND APPARATUS, COMMUNICATION DEVICE AND STORAGE MEDIUM

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/139534 WO2022134037A1 (zh) 2020-12-25 2020-12-25 时间段的配置方法及装置、通信设备及存储介质

Publications (1)

Publication Number Publication Date
WO2022134037A1 true WO2022134037A1 (zh) 2022-06-30

Family

ID=82157267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/139534 WO2022134037A1 (zh) 2020-12-25 2020-12-25 时间段的配置方法及装置、通信设备及存储介质

Country Status (4)

Country Link
US (1) US20240080687A1 (zh)
EP (1) EP4271031A4 (zh)
CN (1) CN114982271A (zh)
WO (1) WO2022134037A1 (zh)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110943818A (zh) * 2018-09-25 2020-03-31 维沃移动通信有限公司 配置方法、接收方法、终端及网络侧设备
CN110972178A (zh) * 2018-09-29 2020-04-07 中国电信股份有限公司 测量方法、系统、基站和计算机可读存储介质
CN111937430A (zh) * 2018-04-05 2020-11-13 瑞典爱立信有限公司 确定用于5g/nr中的测量间隙的测量周期缩放

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114600501A (zh) * 2019-11-06 2022-06-07 华为技术有限公司 一种应用同步信号块的测量方法、终端设备及基站
EP4229782A1 (en) * 2020-10-14 2023-08-23 Nokia Technologies Oy User equipment autonomous adjustment of measurement window for non-terrestrial networks

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111937430A (zh) * 2018-04-05 2020-11-13 瑞典爱立信有限公司 确定用于5g/nr中的测量间隙的测量周期缩放
CN110943818A (zh) * 2018-09-25 2020-03-31 维沃移动通信有限公司 配置方法、接收方法、终端及网络侧设备
CN110972178A (zh) * 2018-09-29 2020-04-07 中国电信股份有限公司 测量方法、系统、基站和计算机可读存储介质

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
HUAWEI, HISILICON: "Discussion on SSB measurement in NTN", 3GPP DRAFT; R2-1915189, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), MOBILE COMPETENCE CENTRE ; 650, ROUTE DES LUCIOLES ; F-06921 SOPHIA-ANTIPOLIS CEDEX ; FRANCE, vol. RAN WG2, no. Reno, USA; 20191118 - 20191122, 8 November 2019 (2019-11-08), Mobile Competence Centre ; 650, route des Lucioles ; F-06921 Sophia-Antipolis Cedex ; France , XP051817074 *
See also references of EP4271031A4 *

Also Published As

Publication number Publication date
EP4271031A1 (en) 2023-11-01
EP4271031A4 (en) 2024-03-06
US20240080687A1 (en) 2024-03-07
CN114982271A (zh) 2022-08-30

Similar Documents

Publication Publication Date Title
WO2022006821A1 (zh) 无线通信的方法、装置、设备及存储介质
WO2022120601A1 (zh) 小区切换方法及装置、通信设备和存储介质
WO2022016431A1 (zh) 切换小区的方法、装置、通信设备及存储介质
WO2022147664A1 (zh) 接入方法、辅助信息处理方法及装置、设备及存储介质
WO2022155972A1 (zh) 小区切换方法及装置、通信设备及存储介质
WO2021179326A1 (zh) 定位方法及装置、通信设备及存储介质
WO2021217306A1 (zh) Prs配置处理方法及装置、通信设备及存储介质
WO2022000361A1 (zh) Ue之间的定位方法及装置、通信设备及存储介质
WO2022021326A1 (zh) 带宽资源复用方法及装置、通信设备及存储介质
US20240098595A1 (en) Method and apparatus for determining handover configuration, and communication device
WO2022000490A1 (zh) 无线通信方法及装置、通信设备及存储介质
WO2022021100A1 (zh) 位置确定方法、装置、通信设备和存储介质
WO2022178723A1 (zh) 测量间隔的配置方法、装置、通信设备及存储介质
WO2022120735A1 (zh) 无线通信的方法、装置、通信设备及存储介质
WO2022141162A1 (zh) 一种通信方法、装置、通信设备和存储介质
WO2022134037A1 (zh) 时间段的配置方法及装置、通信设备及存储介质
WO2022027473A1 (zh) 小区测量处理方法、装置、通信设备及存储介质
WO2022147695A1 (zh) 中继ue选择、信息处理方法及装置、设备及介质
WO2022110057A1 (zh) 无线传输的方法、装置、通信设备及存储介质
CN111727653A (zh) 转移业务的方法、装置、通信设备及存储介质
WO2022188088A1 (zh) 重选小区的方法、装置、通信设备及存储介质
WO2022266838A1 (zh) 小区测量方法、小区测量配置方法及装置、设备及介质
WO2023050039A1 (zh) 信息传输方法、装置、通信设备和存储介质
WO2022205351A1 (zh) 时间偏移值更新方法及装置、通信设备及存储介质
CN118118963A (zh) 小区切换方法及装置、通信设备和存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20966602

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 18269220

Country of ref document: US

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2020966602

Country of ref document: EP

Effective date: 20230725