WO2021056584A1 - 一种通信方法及装置 - Google Patents

一种通信方法及装置 Download PDF

Info

Publication number
WO2021056584A1
WO2021056584A1 PCT/CN2019/109236 CN2019109236W WO2021056584A1 WO 2021056584 A1 WO2021056584 A1 WO 2021056584A1 CN 2019109236 W CN2019109236 W CN 2019109236W WO 2021056584 A1 WO2021056584 A1 WO 2021056584A1
Authority
WO
WIPO (PCT)
Prior art keywords
communication
terminal
dfn
information
frame number
Prior art date
Application number
PCT/CN2019/109236
Other languages
English (en)
French (fr)
Inventor
袁璞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to CN201980100647.2A priority Critical patent/CN114503696B/zh
Priority to PCT/CN2019/109236 priority patent/WO2021056584A1/zh
Publication of WO2021056584A1 publication Critical patent/WO2021056584A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements

Definitions

  • This application relates to the field of mobile communication technology, and in particular to a communication method and device.
  • the Internet of Vehicles means that vehicles can communicate with external devices. For example, communication between vehicles, vehicles and base stations, vehicles and pedestrians enables vehicles to better obtain various traffic information such as real-time road conditions, road information, and pedestrian information, thereby improving driving safety and improving traffic efficiency.
  • the terminal 2 For the terminal 2 outside the coverage of the base station, it cannot obtain the synchronization signal from the base station, so the terminal 2 adopts the global navigation satellite system (GNSS) timing method, that is, obtains the GNSS signal, and the GNSS signal carries the coordinated world
  • GNSS global navigation satellite system
  • the UE can calculate a device-to-device frame number (D2D frame number, DFN) based on the UTC, and use the DFN to synchronize with other terminals that use GNSS timing.
  • D2D frame number, DFN device-to-device frame number
  • terminal 1 and terminal 2 using different synchronization methods may not be able to communicate normally.
  • the embodiments of the present application provide a communication method and device to solve the problem that terminals within the coverage of network equipment and terminals outside the coverage of network equipment may not be able to communicate normally, and to ensure that the terminal and other terminals within its communication range can be based on a unified Synchronize side link communication to improve communication efficiency.
  • an embodiment of the present application provides a communication method, which is executed by a terminal device.
  • the terminal device receives the first information from the network device; the terminal device determines the device-to-device frame number DFN corresponding to the current time according to the first information; the terminal device performs the side link based on the DFN corresponding to the current time Communication.
  • terminal devices within the coverage of the network device configuration use SFN to communicate.
  • terminal devices outside the coverage of network equipment can be synchronized using GNSS timing, that is, DFN. Therefore, terminal devices based on SFN synchronization cannot normally perform side-line communication with terminal devices based on DFN synchronization. Therefore, the embodiment of the present application proposes that the network device can configure terminal devices within the coverage area to use DFN for sidelink communication. In this case, it can be ensured that the terminal device can perform side-link communication with other terminal devices within the communication range based on a unified synchronization method, thereby improving communication efficiency.
  • the synchronization methods of the terminal devices described in the embodiments of this application are the same or uniform, which means that the terminal devices synchronize to the same wireless frame system, in other words, the frame number, subframe number, and frame determined by the terminal device The boundaries etc. are synchronized.
  • the first information includes a current time based on a global navigation satellite system GNSS.
  • the terminal devices within the coverage of the network equipment configuration use SFN for communication, so the terminal devices within the coverage do not need to use DFN when performing sidelink communication, and therefore do not obtain The current time of the GNSS (for example, current UTC).
  • terminal devices within the coverage of the network device configuration can use DFN for sidelink communication, and the terminal device can calculate DFN based on the current time based on GNSS in the first information sent by the network device, without using the GNSS timing method. DFN. Avoid that the terminal device may not be able to receive GNSS signals in some cases.
  • the first information is carried in a system message block SIB.
  • the first information may be carried in any downlink data sent by the network device to the terminal device, and the SIB is only an example and is not a limitation.
  • the first information may be carried in SIB16.
  • SIB16 carries the current UTC based on GNSS, but since the terminal devices within the coverage of the network equipment are configured to use SFN to communicate, when the terminal device performs side link communication, The current UTC in SIB16 will not be parsed.
  • the network equipment configures the terminal device to use DFN for side-link communication, so when the terminal device within the coverage area performs side-link communication, the SIB16 is analyzed to obtain the current UTC, and then the DFN is calculated according to the current UTC.
  • the terminal device receives first indication information from the network device, where the first indication information is used to instruct the terminal device to perform sidelink communication based on the DFN.
  • the first indication information may be a 1-bit index.
  • the terminal device is instructed to use DFN for sidelink communication, and when the first indication information is set to At 1 o'clock, the terminal device is instructed to use SFN for side link communication. Therefore, in the embodiments of the present application, the network equipment can configure the terminal device to use DFN for side-link communication, which can ensure that the terminal device and other terminal devices within the communication range can perform side-link communication based on a unified synchronization method to improve Communication efficiency. In other words, it can be guaranteed that the terminal and other terminals within its communication range can communicate normally on the side link based on the same time base, so as to improve communication efficiency.
  • the first indication information may also be pre-configured, which is not limited in the embodiment of the present application. It is understandable that the pre-configuration method is relatively simple and convenient, and the network device does not need to instruct the terminal device to use SFN or DFN for sidelink communication, which saves signaling expenses.
  • the first indication information is carried in the first field in the system message block SIB.
  • the first indication information may be carried in SIB1 or SIB16. It should be noted that the first information may be carried in any downlink data sent by the network device to the terminal device, and the SIB is only an example and is not a limitation.
  • the first information includes a frame number offset, where the frame number offset is the offset between the DFN and the system frame number SFN at the current time, and the SFN is the The wireless frame number of the communication between the terminal device and the network device.
  • the network device sends the frame number offset between DFN and SFN to the terminal device.
  • the terminal device determines the DFN corresponding to the current time based on the frame number offset, and can also calculate the DFN corresponding to the current time without acquiring the current UTC, and the calculation is relatively simple.
  • the terminal device determining the DFN corresponding to the current time according to the first information includes: the terminal device determines the current time corresponding to the current time based on the frame number offset and the SFN corresponding to the current time DFN.
  • the network device sends the frame number offset between the DFN and SFN to the terminal device, and the terminal device determines the DFN corresponding to the current time based on the frame number offset, without obtaining the current UTC, nor according to the current UTC Calculate the DFN corresponding to the current time, saving calculations and improving communication efficiency.
  • the terminal device transmits the side uplink synchronization signal block S-SSB at the first time, and the S-SSB includes the DFN corresponding to the first time.
  • a terminal device outside the coverage area of a network device can receive a DFN corresponding to the current time sent by a terminal device within the coverage area, and then perform side-by-side communication with the terminal device within the coverage area of the network device based on the DFN. Link communication.
  • an embodiment of the present application also provides a communication method, which is executed by a network device.
  • the network device determines first information, the first information is used to determine the device-to-device frame number DFN corresponding to the current time; the network device sends the first information to the terminal device so that the terminal device corresponds to the current time
  • the DFN performs side-link communication.
  • the network device may configure the terminal device to use DFN for sidelink communication.
  • the terminal device can perform side-link communication with other terminal devices within the communication range based on a unified synchronization method, thereby improving communication efficiency.
  • it can be guaranteed that the terminal and other terminals within its communication range can communicate normally on the side link based on the same time base, so as to improve communication efficiency.
  • the first information includes a current time based on a global navigation satellite system GNSS.
  • the network device configures the terminal device to use DFN for sidelink communication.
  • the terminal device can calculate the DFN based on the current time based on GNSS in the first information sent by the network device, without using the GNSS timing method to calculate the DFN.
  • the first information is carried in a system message block SIB.
  • the first information may be carried in any downlink data sent by the network device to the terminal device, and the SIB is only an example and is not a limitation.
  • the network device sends first indication information to the terminal device, where the first indication information is used to instruct the terminal device to perform sidelink communication based on the DFN.
  • the SIB sent by the network device to the terminal device carries 1 bit first indication information.
  • the terminal device is instructed to use DFN for sidelink communication.
  • the terminal device is instructed to use DFN for sidelink communication.
  • the terminal device is instructed to use DFN for sidelink communication.
  • the network equipment can configure different side-link synchronization methods for different terminal devices. For example, for unknown terminal devices that access the cell, the network equipment can configure it to use DFN for side-link communication.
  • the unknown terminal device cannot perform side-link communication with the terminal device configured to use SFN for side-link communication, which can alleviate the influence of the unknown terminal device on the security of network communication within the coverage of the network device.
  • the first indication information may also be pre-configured, which is not limited in the embodiment of the present application. It is understandable that the pre-configuration method is relatively simple and convenient, and the network device does not need to instruct the terminal device to use SFN or DFN for sidelink communication, which saves signaling expenses. It should be understood that, compared to the pre-configuration mode, the first indication information instructs the terminal device to use SFN or DFN for side link communication in a more flexible manner. For example, the same terminal device can use different side links in different time periods. Link synchronization mode. That is, the terminal device can perform side-link communication on different time bases at different times.
  • the first indication information is carried in the first field in the system message block SIB.
  • the first indication information may be carried in SIB1 or SIB16. It should be noted that the first information may be carried in any downlink data sent by the network device to the terminal device, and the SIB is only an example and is not a limitation.
  • the first information includes a frame number offset, the frame number offset being the offset between the DFN and the system frame number SFN at the current time, and the SFN Is a wireless frame number used for communication between the network device and the terminal device.
  • the network device sends the frame number offset between the DFN and the SFN to the terminal device, and there is no need to additionally send the current UTC.
  • the terminal device can determine the DFN corresponding to the current time based on the frame number offset, and the calculation method is simpler. Therefore, network equipment can save signaling overhead.
  • an embodiment of the present application also provides a communication device, including: a transceiving unit and a processing unit; wherein the transceiving unit is configured to receive first information from a network device; and the processing unit is configured to receive first information based on the first information
  • the device-to-device frame number DFN corresponding to the current time is determined; the transceiver unit is further configured to perform sidelink communication based on the DFN corresponding to the current time.
  • the first information includes a current time based on a global navigation satellite system GNSS.
  • the first information is carried in a system message block SIB.
  • the transceiver unit is further configured to: receive first indication information from the network device, where the first indication information is used to instruct the terminal device to perform sidelink communication based on the DFN.
  • the first indication information is carried in the first field in the system message block SIB.
  • the first information includes a frame number offset, where the frame number offset is the offset between the DFN and the system frame number SFN at the current time, and the SFN is the The wireless frame number of the communication between the terminal device and the network device.
  • the processing unit is specifically configured to determine the DFN corresponding to the current time based on the frame number offset and the SFN corresponding to the current time.
  • the transceiver unit is further configured to send a side uplink synchronization signal block S-SSB at a first time, and the S-SSB includes a DFN corresponding to the first time.
  • the communication device provided in the third aspect described above may be a terminal device, or a chip applied in a terminal device, or other combination devices, components, etc. that can realize the functions of the terminal device.
  • the transceiver unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing unit may be a processor, such as a central processing unit (CPU).
  • the transceiver unit may be a radio frequency unit
  • the processing unit may be a processor.
  • the transceiver unit may be an input/output interface of the chip system, and the processing unit may be a processor of the chip system.
  • an embodiment of the present application further provides a communication device, including: a processing unit, configured to determine a first message, the first message being used to determine the device-to-device frame number DFN corresponding to the current time, and the current time corresponding to the device-to-device frame number DFN
  • the DFN is used for the terminal device to perform side-link communication; the transceiver unit is used for sending the first information to the terminal device.
  • the first information includes a current time based on a global navigation satellite system GNSS.
  • the first information is carried in a system message block SIB.
  • the receiving unit is further configured to send first indication information to the terminal device, where the first indication information is used to instruct the terminal device to perform sidelink communication based on the DFN.
  • the first indication information is carried in the first field in the system message block SIB.
  • the first information includes a frame number offset, the frame number offset being the offset between the DFN and the system frame number SFN at the current time, and the SFN Is a wireless frame number used for communication between the network device and the terminal device.
  • the communication device in the foregoing embodiment may be a network device, or may be a chip applied to the network device or other combination devices or components that can realize the functions of the foregoing network device.
  • the transceiver unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing unit may be a processor, such as a central processing unit (CPU).
  • the transceiver unit may be a radio frequency unit
  • the processing unit may be a processor.
  • the transceiver unit may be an input/output interface of the chip system, and the processing unit may be a processor of the chip system.
  • an embodiment of the present application also provides a communication device, including: a transceiver and a processor; wherein the transceiver is configured to receive first information from a network device; and the processor is configured to receive first information from a network device; The device-to-device frame number DFN corresponding to the current time is determined; the transceiver is further configured to perform sidelink communication based on the DFN corresponding to the current time.
  • the first information includes a current time based on a global navigation satellite system GNSS.
  • the first information is carried in a system message block SIB.
  • the transceiver is further configured to: receive first indication information from the network device, where the first indication information is used to instruct the terminal device to perform sidelink communication based on the DFN.
  • the first indication information is carried in the first field in the system message block SIB.
  • the first information includes a frame number offset, where the frame number offset is the offset between the DFN and the system frame number SFN at the current time, and the SFN is the The wireless frame number of the communication between the terminal device and the network device.
  • the processor is specifically configured to determine the DFN corresponding to the current time based on the frame number offset and the SFN corresponding to the current time.
  • the transceiver is further configured to send a side uplink synchronization signal block S-SSB at a first time, and the S-SSB includes a DFN corresponding to the first time.
  • an embodiment of the present application also provides a communication device, including a transceiver and a processor, and the processor is configured to determine a first message, and the first message is used to determine the device-to-device frame number DFN corresponding to the current time, The DFN corresponding to the current time is used for the terminal device to perform sidelink communication; the receiver is used for sending the first information to the terminal device.
  • the first information includes a current time based on a global navigation satellite system GNSS.
  • the first information is carried in a system message block SIB.
  • the receiver is further configured to send first indication information to the terminal device, where the first indication information is used to instruct the terminal device to perform sidelink communication based on the DFN.
  • the first indication information is carried in the first field in the system message block SIB.
  • the first information includes a frame number offset, the frame number offset being the offset between the DFN and the system frame number SFN at the current time, and the SFN Is a wireless frame number used for communication between the network device and the terminal device.
  • an embodiment of the present application also provides a communication device.
  • the communication device may be the terminal device in the above method design.
  • the communication device may be a terminal device, or a chip provided in the terminal device.
  • the communication device includes: a communication interface for sending and receiving information, or in other words, for communicating with other devices; and a processor, where the processor is coupled with the communication interface.
  • the communication device may further include a memory for storing computer executable program code.
  • the communication device may not include a memory, and the memory may be located outside the communication device.
  • the program code stored in the memory includes instructions, and when the processor executes the instructions, the communication device is caused to execute the foregoing first aspect or the method in any one of the possible implementation manners of the first aspect.
  • the communication interface may be a transceiver in the communication device, for example, implemented by an antenna, a feeder, and a codec in the communication device.
  • the communication interface may be an input/output interface of the chip, such as input/output pins.
  • an embodiment of the present application also provides a communication device.
  • the communication device may be a network device in the above method design.
  • the communication device includes: a communication interface for sending and receiving information, or in other words, for communicating with other devices; and a processor, where the processor is coupled with the communication interface.
  • the communication device may further include a memory for storing computer executable program code.
  • the communication device may not include a memory, and the memory may be located outside the communication device.
  • the program code stored in the memory includes instructions, and when the processor executes the instructions, the communication device is caused to execute the foregoing second aspect or the method in any one of the possible implementation manners of the second aspect.
  • the communication interface may be a transceiver in the access network device, for example, implemented by an antenna, a feeder, and a codec in the access network device.
  • the communication interface may be an input/output interface of the chip, such as input/output pins.
  • an embodiment of the present application also provides a communication system, including: a network device and a terminal device; the terminal device can implement all or part of the method steps of the terminal device in the technical solution provided in the first aspect, the network The device can implement all or part of the method steps of the network device in the technical solution provided in the foregoing second aspect.
  • an embodiment of the present application also provides a computer-readable storage medium, the computer-readable storage medium stores a computer program, and when the computer program runs on a computer, the computer executes the first aspect described above. Or the method described in any one of the possible implementations of the first aspect, or, when the computer program is running on a computer, the computer executes the second aspect or any one of the possible implementations of the second aspect. The method described in the implementation mode.
  • the embodiments of the present application also provide a computer program product, the computer program product includes a computer program, when the computer program runs on a computer, the computer is caused to execute the first aspect or the first aspect.
  • the method described in any one of the possible implementation manners, or when the computer program runs on a computer, causes the computer to execute the above-mentioned second aspect or any one of the possible implementation manners of the second aspect The method described.
  • Fig. 1 is a schematic diagram of an application scenario of the prior art
  • Figure 2 is a schematic diagram of an application scenario provided by an embodiment of the application
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of this application.
  • FIG. 4 is a schematic diagram of the terminal determining the DFN of the current time according to an embodiment of the application
  • FIG. 5 is a schematic diagram of the terminal determining the DFN of the current time according to an embodiment of the application
  • FIG. 6 is a schematic diagram of the terminal determining the DFN of the current time according to an embodiment of the application.
  • FIG. 7 is a schematic flowchart of another communication method provided by an embodiment of this application.
  • FIG. 8 is a schematic structural diagram of a terminal device provided by an embodiment of this application.
  • FIG. 9 is a schematic structural diagram of another terminal device provided by an embodiment of this application.
  • FIG. 10 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • FIG. 11 is a schematic structural diagram of another network device provided by an embodiment of this application.
  • FIG. 15 is a schematic structural diagram of a network device provided by an embodiment of this application.
  • WCDMA wideband code division multiple access
  • E-UTRAN evolved universal terrestrial radio access network
  • NG-RAN next generation radio access network
  • LTE long term evolution
  • WiMAX worldwide interoperability for microwave access
  • 5G future 5th Generation
  • NR new generation of radio access technology
  • 6G system future communication system
  • the word "exemplary” is used to mean serving as an example, illustration, or illustration. Any embodiment or implementation described as an “example” in this application should not be construed as being more preferable or advantageous than other embodiments or implementations. To be precise, the term example is used to present the concept in a concrete way.
  • Terminals include devices that provide users with voice and/or data connectivity. Specifically, they include devices that provide users with voice, or include devices that provide users with data connectivity, or include devices that provide users with voice and/or data connectivity.
  • Data connectivity equipment For example, it may include a handheld device with a wireless connection function, or a processing device connected to a wireless modem.
  • the terminal can communicate with the core network via a radio access network (RAN), exchange voice or data with the RAN, or exchange voice and data with the RAN.
  • RAN radio access network
  • the terminal may include user equipment (UE), wireless terminal, mobile terminal, device-to-device communication (device-to-device, D2D) terminal, vehicle to everything (V2X) terminal, machine-to-machine/ Machine-to-machine/machine-type communications (M2M/MTC) terminals, internet of things (IoT) terminals, subscriber units, subscriber stations, mobile stations station), remote station (remote station), access point (access point, AP), remote terminal (remote terminal), access terminal (access terminal), user terminal (user terminal), user agent (user agent), or User equipment (user device), etc.
  • UE user equipment
  • D2D device-to-device communication
  • V2X vehicle to everything
  • M2M/MTC machine-to-machine/ Machine-to-machine/machine-type communications
  • IoT internet of things
  • subscriber units subscriber stations, mobile stations station
  • remote station remote station
  • access point access point
  • AP remote terminal
  • remote terminal remote terminal
  • access terminal access
  • a mobile phone or called a "cellular" phone
  • a computer with a mobile terminal, a portable, pocket-sized, hand-held, and a mobile device with a built-in computer, and so on.
  • PCS personal communication service
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital assistants
  • restricted devices such as devices with low power consumption, or devices with limited storage capabilities, or devices with limited computing capabilities. Examples include barcodes, radio frequency identification (RFID), sensors, global positioning system (GPS), laser scanners and other information sensing equipment.
  • RFID radio frequency identification
  • GPS global positioning system
  • laser scanners and other information sensing equipment.
  • the terminal may also be a wearable device.
  • Wearable devices can also be called wearable smart devices or smart wearable devices, etc. It is a general term for using wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes Wait.
  • a wearable device is a portable device that is directly worn on the body or integrated into the user's clothes or accessories. Wearable devices are not only a kind of hardware device, but also realize powerful functions through software support, data interaction, and cloud interaction.
  • wearable smart devices include full-featured, large-sized, complete or partial functions that can be achieved without relying on smart phones, such as smart watches or smart glasses, and only focus on a certain type of application function, and need to cooperate with other devices such as smart phones.
  • Use such as all kinds of smart bracelets, smart helmets, smart jewelry, etc. for physical sign monitoring.
  • the various terminals described above if they are located on a vehicle (for example, placed in a vehicle or installed in a vehicle), can be regarded as a vehicle-mounted terminal.
  • the vehicle-mounted terminal is, for example, also called an on-board unit (OBU).
  • OBU on-board unit
  • the terminal may also include a relay. Or it can be understood that all that can communicate with the base station can be regarded as a terminal.
  • the device used to implement the function of the terminal may be a terminal, or a device capable of supporting the terminal to implement the function, such as a chip system, and the device may be installed in the terminal.
  • the chip system may be composed of chips, or may include chips and other discrete devices.
  • the device used to implement the functions of the terminal is an example to describe the technical solutions provided by the embodiments of the present application.
  • Network equipment for example, including access network (AN) equipment, such as a base station (e.g., access point), may refer to equipment that communicates with wireless terminals through one or more cells over the air interface in the access network, Or, for example, a network device in a vehicle-to-everything (V2X) technology is a roadside unit (RSU).
  • the base station can be used to convert received air frames and IP packets into each other, and act as a router between the terminal and the rest of the access network, where the rest of the access network can include the IP network.
  • the RSU can be a fixed infrastructure entity that supports V2X applications, and can exchange messages with other entities that support V2X applications.
  • the network equipment can also coordinate the attribute management of the air interface.
  • the network equipment may include a long term evolution (LTE) system or an evolved base station (NodeB or eNB or e-NodeB, evolutional Node B) in a long term evolution-advanced (LTE-A) system, Or it can also include the next generation node B (gNB) in the new radio (NR) system (also referred to as the NR system) in the 5th generation (5G) mobile communication technology (the 5th generation, 5G), or it can also Including a centralized unit (CU) and a distributed unit (DU) in a cloud radio access network (cloud radio access network, Cloud RAN) system, which is not limited in the embodiment of the present application.
  • LTE long term evolution
  • NodeB or eNB or e-NodeB, evolutional Node B evolution-advanced
  • LTE-A long term evolution-advanced
  • gNB next generation node B
  • NR new radio
  • 5G 5th generation
  • 5G 5th generation
  • CU
  • the network equipment may also include core network equipment.
  • the core network equipment includes, for example, access and mobility management functions (AMF).
  • AMF access and mobility management functions
  • the device used to implement the function of the network device may be a network device, or a device capable of supporting the network device to implement the function, such as a chip system, and the device may be installed in the network device.
  • the device used to implement the functions of the network equipment is a network device as an example to describe the technical solutions provided in the embodiments of the present application.
  • Uu port Universal user network interface (user to network interface universal, Uu), referred to as Uu interface, defines the communication protocol between the terminal and the network device.
  • Uu interface is the terminal and the network The interface used for wireless communication between devices.
  • the terminal connects to the network device through the Uu port.
  • the main function of the Uu port is the processing of broadcasting, paging, and RRC connection.
  • the PC5 interface is the interface for wireless communication between two V2X terminals, that is, in V2X
  • the terminal implements side link communication through the PC5 interface.
  • the V2X terminal is a terminal with V2X function.
  • the sidelink is A direct link connection between two V2X terminals.
  • Two V2X terminals can establish a side link connection before transmitting data on the side link.
  • the V2X terminal as the initiator sends the establishment of the side link to the network device. Link connection request. If the network device agrees to the V2X terminal to establish a side link connection, it will send configuration information for establishing a side link connection to the V2X terminal.
  • the V2X terminal communicates with another V2X terminal according to the configuration information sent by the network device.
  • the terminal establishes a side link connection.
  • the configuration information may include frequency bandwidth, wireless frames used in side link communication, and so on.
  • the system frame number SFN is a wireless frame for communication between the terminal and the network device. Specifically, the terminal realizes synchronization with the network device based on the SFN, and then communicates with the network device. Generally, a terminal within the coverage of a network device (such as a base station) will obtain a synchronization signal (SS) or a synchronization signal block (SSB) sent by the network device, and the terminal will parse the SS or SSB to obtain the SFN, and then use it The SFN communicates with the base station.
  • SS synchronization signal
  • SSB synchronization signal block
  • the device-to-device frame number DFN is the timing frame obtained when the terminal uses GNSS timing.
  • a terminal acquires a GNSS signal, and the GNSS signal includes UTC.
  • the terminal can calculate a DFN based on the UTC and a preset formula, and then communicate with other terminals based on the DFN. It should be understood that the other terminals also use GNSS timing Way to time. Among them, the preset formula will be introduced later.
  • the time domain resource includes one or more time units.
  • the time unit can be a radio frame, subframe, time slot, symbol, etc.
  • one radio frame may include multiple subframes, one subframe may include one or more time slots (slot), and one time slot may include at least one symbol (symbol).
  • time slots can have different time slot types, and different time slot types include different numbers of symbols, such as ordinary time slots or regular time slots, mini slots, and so on.
  • the regular time slot can contain 12 symbols (corresponding to the regular cyclic prefix) or 14 symbols (corresponding to the long cyclic prefix), etc.;
  • the mini slot mini slot contains less than the number of symbols in the regular time slot For example, mini slot contains less than 7 symbols.
  • time synchronization is required.
  • time is expressed in the form of wireless frames, subframes, time slots, symbols, etc.
  • the time synchronization between the two devices can be wireless frame synchronization.
  • the frame number of the wireless frame, the frame number of the subframe, the number of the time slot, etc. are used to distinguish the time. Therefore, taking the wireless frame synchronization as an example, the wireless frame synchronization of two devices can be two devices
  • the current time is synchronized with the frame number of the wireless frame. For example, the frame number of the wireless frame corresponding to the current time of the sender is #0, and the frame number of the wireless frame corresponding to the current time of the receiver is also #0.
  • “Multiple” refers to two or more than two. In view of this, “multiple” may also be understood as “at least two” in the embodiments of the present application. "At least one” can be understood as one or more, for example, one, two or more. For example, including at least one means including one, two or more, and it does not limit which ones are included. For example, if at least one of A, B, and C is included, then A, B, C, A and B, A and C, B and C, or A and B and C are included. In the same way, the understanding of "at least one" and other descriptions is similar.
  • ordinal numbers such as “first” and “second” mentioned in the embodiments of the present application are used to distinguish multiple objects, and are not used to limit the order, timing, priority, or importance of multiple objects.
  • first terminal and the second terminal are only used to distinguish different terminals, but not to limit the priority or importance of the two terminals.
  • a synchronization signal is obtained from the base station.
  • the synchronization signal carries SFN, and terminal 1 communicates based on SFN.
  • terminal 1 communicates with the base station based on SFN, and also includes terminal 1 Based on SFN, it performs side-link communication with other terminals in the coverage area.
  • the GNSS timing mode that is, the DFN mode synchronization can be adopted.
  • the terminal 2 and the terminal 1 will inevitably not be able to perform side-link communication normally.
  • the terminal 2 is within the communication range of the terminal 1, the two cannot perform the side-link communication.
  • the terminal 1 is based on SFN synchronization, and the terminal 2 is based on DFN synchronization. Therefore, in this scenario, terminal 1 and terminal 2 cannot perform sidelink communication normally.
  • synchronization information can also be obtained from other terminals. If other terminals also use GNSS timing, then the synchronization information obtained by terminal 2 includes DFN, that is, terminal 2 synchronizes based on DFN. In this scenario, the terminal 2 and the terminal 1 will inevitably not be able to perform side link communication normally. Because the terminal 1 is based on SFN synchronization, and the terminal 2 is based on DFN synchronization. Therefore, in this scenario, terminal 1 and terminal 2 cannot normally perform sidelink communication.
  • the embodiment of the application proposes that the network device can configure the terminal device to use DFN for side-link communication, which can ensure that the terminal device can communicate with other terminal devices within the communication range based on a unified synchronization method for side-link communication, improving communication effectiveness.
  • the synchronization methods of the terminal devices described in the embodiments of the present application are the same or uniform, which means that the terminal devices synchronize to the same wireless frame system, in other words, the frame number, subframe number, and frame determined by the terminal device The boundaries etc. are synchronized.
  • V2X vehicle-to-everything
  • V2X specifically includes a vehicle-to-vehicle (V2V), a vehicle-to-everything (Vehicle-to-Vehicle), and a vehicle-to-vehicle (V2V).
  • V2P vehicle-to-vehicle
  • V2I vehicle-to-everything
  • V2N vehicle-to-vehicle
  • V2V refers to LTE-based inter-vehicle communication
  • V2P refers to LTE-based communication between vehicles and people (including pedestrians, cyclists, drivers, or passengers);
  • V2I refers to LTE-based vehicles and roadside devices (RSU) communication.
  • V2N refers to the communication between LTE-based vehicles and base stations/networks.
  • FIG. 2 is a schematic diagram of an application scenario provided by an embodiment of this application.
  • the application scenario shown in FIG. 2 is a V2N scenario, which includes a network device, a terminal 1 and a terminal 2.
  • the network device in FIG. 2 is, for example, an access network device, such as a base station.
  • the access network equipment corresponds to different equipment in different systems.
  • the 4th generation mobile communication technology (the 4th generation, 4G) system it can correspond to the eNB
  • the 5G system corresponds to the access network equipment in 5G, for example, gNB.
  • the terminal in FIG. 2 is a vehicle-mounted terminal or a car as an example, but the terminal in the embodiment of the present application is not limited to this.
  • the terminal 2 is located outside the coverage area of the base station, and the terminal 2 is synchronized based on GNSS timing, that is, the terminal 2 uses DFN to communicate with other terminals.
  • the base station can configure terminal 1 to use DFN for sidelink communication. Specifically, the base station can send first information to terminal 1, and terminal 1 determines the DFN corresponding to the current time based on the first information, so terminal 1 can perform side link based on the DFN. Line communication. Therefore, the terminal 1 and the terminal 2 can communicate based on the same synchronization method. Therefore, the communication method provided by the embodiment of the present application can solve the problem that the terminal 1 within the coverage area of the base station and the terminal 2 outside the coverage area of the base station have different synchronization methods and cannot communicate normally. The specific implementation process will be introduced later.
  • the communication method provided by the embodiments of the present application unifies the synchronization mode of terminals in different scenarios; among them, terminals in different scenarios include terminal 1 within the coverage area of the base station and terminals outside the coverage area. 2. Specifically, the base station sends the first information for determining the DFN to the terminal 1, so that the terminal 1 can use the same synchronization method as the terminal 2 to solve the problem that the terminal 1 and the terminal 2 cannot communicate normally. Therefore, the communication method provided by the embodiment of the present application can be applied to any scenario where the synchronization mode of the terminal in different scenarios needs to be unified.
  • the terminals in different scenarios may be one in the coverage of the base station and one outside the coverage of the base station; or one is in the LTE system and the other is in the 5G system, and the synchronization modes of the terminals in the LTE system and the 5G system are different.
  • the terminal 1 within the coverage of the base station uses DFN for side-link communication.
  • the synchronization signal can be obtained from the terminal 1.
  • the synchronization signal carries DFN, then terminal 2 can also obtain DFN when it is unable to implement GNSS timing.
  • "the situation where GNSS timing cannot be achieved” may include the inability to obtain GNSS signals, or the strength of the obtained GNSS signals is too small. That is to say, the communication method provided in the embodiment of the present application provides another DFN-based synchronization method, which is different from the traditional GNSS timing method.
  • terminal 1 can use SFN to communicate with network equipment, and use DFN to communicate with other terminals, terminal 1 is flexible in synchronization mode, and can take into account both side link and main link (ie, terminal 1 Communication link with network equipment).
  • FIG. 3 is a schematic flowchart of a communication method provided by an embodiment of this application. This method can be applied to the application scenario shown in FIG. 2 or any of the application scenarios mentioned above.
  • the process of this method includes:
  • the network device sends first indication information to the first terminal, where the first indication information is used to instruct the first terminal to perform sidelink communication based on the DFN.
  • the first indication information may be from a network device, or may be pre-configured. Therefore, S301 may not need to be executed, so S301 is represented by a dotted line in FIG. 3.
  • the SIB sent by the network device to the first terminal carries 1 bit of first indication information.
  • the first indication information When the first indication information is set to 1, it means that the first terminal uses SFN for sidelink communication.
  • the first indication information is set to 0, it indicates that the first terminal uses DFN to perform sidelink communication.
  • the first indication information may be an index (index).
  • the first indication information may be carried in any type of SIB among SIB1-SIBN, such as SIB1, SIB16, and so on.
  • the pre-configuration may be that the first terminal uses DFN or SFN for side link communication by default.
  • the pre-configuration may include OAM configuration or be preset in the terminal.
  • the pre-configuration information can be pre-set in the SIM card, the first terminal installs the SIM card, reads the pre-configuration information from the SIM card, and determines whether the first terminal uses DFN or SFN for side link communication according to the pre-configuration information .
  • the pre-configuration information includes a 1-bit index. When the index is set to 0, the first terminal determines to use DFN for side link communication according to the pre-configuration information. If the index is configured to 1, The first terminal determines to use SFN for side link communication according to the pre-configuration information.
  • S301 may be executed periodically, that is, the network device may periodically send the first indication information to the first terminal actively, or the first terminal may send the first indication information to the network device before sidelink communication is required. Sending a request, and the network device sends the first indication information to the first terminal based on the request.
  • the first terminal has not connected to the network device.
  • the first terminal only connects to the network device based on the system message after receiving the system message sent by the network device. .
  • the system message carries the first indication information.
  • Accessing the network device by the first terminal may include first accessing the network device or reconnecting to the network device.
  • the terminal accesses the network device for the first time, it can obtain the SIB sent by the network device, and the SIB carries the first indication information; for another example, when the terminal reconnects to the network device, it can obtain the reconnection response sent by the network device.
  • the reconnection response carries the first indication information.
  • the first terminal Before S301, the first terminal has accessed the network device, and in the process of communicating with the network device, the first terminal receives the first indication information sent by the network device, and the first indication information may carry In any downlink data.
  • S302 The first terminal receives the first information sent by the network device.
  • the first terminal determines the device-to-device frame number DFN corresponding to the current time according to the first information.
  • the first indication information may be carried in the first field in the SIB, and the first information may be carried in the first field, or carried in other fields in the SIB.
  • the first indication information may be carried in SIB1
  • the first information may be carried in SIB16.
  • the first information carries the current time based on GNSS, for example, the current time may be the current UTC.
  • S304 may have at least two implementation manners. Two possible implementation manners are listed below.
  • the first terminal can determine the DFN corresponding to the UTC according to the UTC and a preset formula. When the first terminal performs sidelink communication at a certain moment, it can add a corresponding subframe to the determined DFN. The number of subframes obtained after the increase is the DFN corresponding to the certain moment.
  • the preset formula can be as follows:
  • DFN floor(0.1*(Tcurrent-Tref-offsetDFN))mod 1024;
  • Frame number (SubframeNumber) floor(Tcurrent-Tref-offsetDFN)) mod 10;
  • Tcurrent is the current UTC carried in the first information, expressed in milliseconds.
  • Tref is the reference UTC time, which is the Gregorian calendar time 1900-01-01 00:00:00, expressed in milliseconds.
  • offsetDFN is a configuration parameter, the default is 0, expressed in milliseconds. Therefore, the start time and frame number of the DFN can be obtained through the above formula.
  • the current UTC carried in the first information is 00:00:10
  • the first terminal determines that the start time of the corresponding DFN is T1 according to the current UTC and the first preset formula.
  • the frame number is determined to be subframe #1, and then every 1ms from subframe #1 is a subframe.
  • Each subframe can be set in sequence. Since the number of each subsequent subframe is adjusted to the same number as the GNSS, the first terminal implements DFN-based synchronization. Assuming that the first terminal needs to perform sidelink communication at a certain moment, the corresponding subframe at that moment
  • the side-link communication is performed on the frame, for example, the side-link communication is performed on the subframe #3 shown in FIG. 4.
  • Manner 2 After the first terminal receives the first information and obtains the current UTC in the first information, it can start timing on the basis of the current UTC. When the first terminal needs to perform sidelink communication at a certain time, it can be based on The current UTC timing and the foregoing preset formula determine the DFN corresponding to the certain moment, and then use the DFN to perform sidelink communication.
  • the current UTC carried in the first information is T1, and the first terminal performs timing based on T1.
  • T2 is recorded, the start time and number of the DFN corresponding to T2 are calculated based on the recorded T2 and the aforementioned preset formula.
  • the starting time of the corresponding DFN calculated based on T2 is T3, and the frame number is subframe #1, then every 1 ms from subframe #1 is one subframe. Each subframe can be set in sequence.
  • the first terminal determines the start time and number of the DFN according to the current UTC in the first information, and then performs frame synchronization.
  • the first terminal does not perform frame synchronization temporarily, but counts a period of time based on the current UTC in the first information, and then determines the start time and number of the DFN based on the current timing. Perform frame synchronization.
  • the first information includes the frame number offset, and the frame number offset is the offset between the DFN and the SFN corresponding to the current time.
  • a possible implementation is that after obtaining the current UTC, the network device can determine the start time and frame number of the corresponding DFN based on the current UTC and the aforementioned preset formula, and then determine the SFN frame number corresponding to the start time , And then determine the frame number offset between the DFN and SFN.
  • the network device determines that the start time of DFN is T1 according to UTC, the frame number of DFN is #1, and the corresponding SFN frame number is #3. Therefore, the frame number offset between DFN and SFN is a backward delay of 2 frame numbers.
  • the first terminal When the first terminal needs to perform sidelink transmission at a certain time, it can determine the SFN frame number corresponding to the time, and then determine the DFN corresponding to the time according to the offset between the SFN frame number and the frame number Frame number. For example, referring to FIG. 6, if the first terminal determines that it is necessary to perform side-link transmission on the SFN with frame number #4, it will perform side-link communication on DFN with frame number #2.
  • the first information carries the frame number offset between DFN and SFN.
  • the first terminal can directly perform frame synchronization according to the frame number offset, and the network The device does not need to additionally send the current UTC, and the first terminal does not need to calculate complicated calculations to determine the DFN, which is more efficient for the terminal.
  • the second terminal obtains the GNSS signal, and calculates the DFN based on the current UTC in the GNSS signal.
  • the DFN frame synchronization is realized by using the GNSS timing mode. Specifically, the second terminal determines the DFN corresponding to the current time from the current UTC in the GNSS signal, and then based on the current UTC and the foregoing preset formula. For the specific implementation process, refer to the foregoing content, and details are not repeated here.
  • S305 The first terminal performs side link communication based on the DFN.
  • the first terminal is the DFN calculated by the current UTC sent by the network device. Therefore, the synchronization mode of the first terminal and the second terminal are the same, and side-link communication can be performed.
  • the first terminal may send a synchronization signal to the second terminal outside the coverage area of the network device.
  • the synchronization signal carries the DFN corresponding to the current time.
  • the first terminal and the second terminal can also achieve frame synchronization, thereby achieving communication.
  • FIG. 7 is a schematic flowchart of another communication method provided by an embodiment of this application. As shown in Figure 7, the process of the method includes:
  • the first terminal receives first information sent by a network device.
  • the first terminal determines to determine a DFN corresponding to the current time based on the first information.
  • the second terminal receives the side uplink synchronization signal block S-SSB sent by the first terminal, where the S-SSB carries the DFN corresponding to the current time.
  • the first terminal may periodically broadcast the S-SSB, and the S-SSB carries the DFN corresponding to the current time.
  • GNSS signal detection can be performed first.
  • the GNSS signal is not detected, or the strength of the detected GNSS signal is lower than the threshold, it can receive signals sent by other terminals.
  • Synchronization signal or synchronization signal block the second terminal may also first detect the synchronization signal of other terminals and then perform GNSS detection, which is not limited in the embodiment of the present application.
  • S704 The first terminal and the second terminal perform sidelink communication based on the DFN corresponding to the current time.
  • a new synchronization method that is, a terminal outside the coverage of a network device can obtain synchronization information from a terminal within the coverage of the network device, and the synchronization information carries the current time.
  • Corresponding DFN therefore, for terminals outside the coverage area of network equipment, when GNSS signals cannot be obtained, or when the strength of the obtained GNSS signals is low, GNSS timing can be realized, even without obtaining GNSS signals. GNSS timing.
  • FIG. 8 is a schematic block diagram of a communication device 800 provided by an embodiment of the application.
  • the communication device 800 may be the first terminal mentioned above. As shown in FIG. 8, the communication device 800 includes:
  • the transceiver unit 810 is configured to receive first information from a network device
  • the processing unit 812 is configured to determine the device-to-device frame number DFN corresponding to the current time according to the first information
  • the transceiver unit 810 is further configured to perform sidelink communication based on the DFN corresponding to the current time.
  • the first information includes a current time based on a global navigation satellite system GNSS.
  • GNSS global navigation satellite system
  • the first information is carried in a system message block SIB.
  • the transceiving unit 810 is further configured to: receive first indication information from the network device, where the first indication information is used to instruct the terminal device to perform sidelink communication based on the DFN.
  • the first indication information is carried in the first field in the system message block SIB.
  • the first information includes a frame number offset, where the frame number offset is the offset between the DFN and the system frame number SFN at the current time, and the SFN is used for the terminal The wireless frame number of the communication between the device and the network device.
  • the processing unit 812 is specifically configured to determine the DFN corresponding to the current time based on the frame number offset and the SFN corresponding to the current time.
  • the transceiver unit 810 is further configured to send a side uplink synchronization signal block S-SSB at a first time, and the S-SSB includes a DFN corresponding to the first time.
  • the processing unit 812 in the embodiment of the present application may be implemented by a processor or processor-related circuit components.
  • the transceiver unit 810 may include a receiving unit and a sending unit.
  • the transceiver unit 810 may be implemented by a transceiver or transceiver-related circuit components.
  • the communication device 800 in the foregoing embodiment may be a terminal device, or may be a chip applied to a terminal device or other combination devices or components that can realize the foregoing terminal functions.
  • the transceiver unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing unit may be a processor, such as a central processing unit (CPU).
  • the transceiver unit may be a radio frequency unit
  • the processing unit may be a processor.
  • the transceiver unit may be an input/output interface of the chip system, and the processing unit may be a processor of the chip system.
  • an embodiment of the present application also provides a communication device 900, which may be the first terminal mentioned above.
  • the communication device 900 includes a processor 910, a memory 920, and a transceiver 930.
  • the memory 920 stores instructions or programs
  • the processor 910 is configured to execute the instructions or programs stored in the memory 920.
  • the processor 910 is used to perform the operations performed by the processing unit 812 in the foregoing embodiment
  • the transceiver 930 is used to perform the operations performed by the transceiver unit 810 in the foregoing embodiment.
  • the communication device 800 or the communication device 900 in the embodiment of the present application may correspond to the first terminal in the communication method shown in FIG. 3 or FIG. 7 in the embodiment of the present application, and each module in the communication device 800 or the communication device 900 The operations and/or functions of are used to implement the corresponding procedures of the respective methods of the first terminal in FIG. 3 or FIG. 7 respectively. For the sake of brevity, details are not described herein again.
  • FIG. 10 is a schematic block diagram of a communication apparatus 1000 provided by an embodiment of the application.
  • the communication apparatus 1000 may be the aforementioned network device.
  • the communication device 1000 includes:
  • the processing unit 1010 determines first information, where the first information is used to determine the DFN corresponding to the current time, and the DFN corresponding to the current time is used for the terminal device to perform sidelink communication;
  • the transceiver unit 1012 is further configured to send first information to the terminal device.
  • the first information includes a current time based on a global navigation satellite system GNSS.
  • GNSS global navigation satellite system
  • the first information is carried in a system message block SIB.
  • the transceiver unit 1012 is further configured to send first indication information to the terminal device, where the first indication information is used to instruct the terminal device to perform sidelink communication based on DFN.
  • the first indication information is carried in the first field in the system message block SIB.
  • the first information includes a frame number offset, the frame number offset being the offset between the DFN and the system frame number SFN at the current time, and the SFN is used for all The wireless frame number of the communication between the network device and the terminal device.
  • the processing unit 1010 in the embodiment of the present application may be implemented by a processor or processor-related circuit components.
  • the transceiver unit 1012 may include a receiving unit and a sending unit.
  • the transceiver unit 1012 may be implemented by a transceiver or transceiver-related circuit components.
  • the communication device 1000 in the foregoing embodiment may be a network device, or may be a chip applied to a network device or other combination devices or components that can realize the functions of the foregoing network device.
  • the transceiver unit may be a transceiver, which may include an antenna and a radio frequency circuit, etc.
  • the processing unit may be a processor, such as a central processing unit (CPU).
  • the transceiver unit may be a radio frequency unit
  • the processing unit may be a processor.
  • the transceiver unit may be an input/output interface of the chip system, and the processing unit may be a processor of the chip system.
  • an embodiment of the present application further provides a communication device 1100, and the communication device 1100 may be the aforementioned network device.
  • the communication device 1100 includes a processor 1110, a memory 1120, and a transceiver 1130.
  • the memory 1120 stores instructions or programs
  • the processor 1110 is configured to execute instructions or programs stored in the memory 1120.
  • the processor 1110 may perform the operations performed by the processing unit 1010 in the foregoing embodiment
  • the transceiver 1130 is configured to perform the operations performed by the transceiving unit 1012 in the foregoing embodiment.
  • the communication device 1000 or the communication device 1100 of the embodiment of the present application may correspond to the network device in the communication method shown in FIG. 3 or FIG. 7 of the embodiment of the present application, and each module in the communication device 1000 or the communication device 1100 The operations and/or functions of are used to implement the corresponding procedures of the respective methods of the network device in FIG. 3 or FIG. 7 respectively. For the sake of brevity, details are not described herein again.
  • the embodiment of the present application also provides a computer-readable storage medium on which a computer program is stored.
  • the program When the program is executed by a processor, it can realize the process related to the first terminal in the communication method provided in the foregoing method embodiment.
  • the embodiments of the present application also provide a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, it can implement the process related to the network device in the communication method provided in the foregoing method embodiment.
  • FIG. 12 shows a simplified schematic diagram of the structure of the terminal. It is easy to understand and easy to illustrate.
  • the terminal uses a mobile phone as an example.
  • the terminal includes a processor, a memory, a radio frequency circuit, an antenna, and an input and output device.
  • the processor is mainly used to process the communication protocol and communication data, and to control the terminal, execute the software program, and process the data of the software program.
  • the memory is mainly used to store software programs and data.
  • the radio frequency circuit is mainly used for the conversion of baseband signal and radio frequency signal and the processing of radio frequency signal.
  • the antenna is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input and output devices such as touch screens, display screens, keyboards, etc., are mainly used to receive data input by users and output data to users. It should be noted that some types of terminals may not have input and output devices.
  • the processor When data needs to be sent, the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit.
  • the radio frequency circuit performs radio frequency processing on the baseband signal and sends the radio frequency signal to the outside in the form of electromagnetic waves through the antenna.
  • the radio frequency circuit receives the radio frequency signal through the antenna, converts the radio frequency signal into a baseband signal, and outputs the baseband signal to the processor, and the processor converts the baseband signal into data and processes the data.
  • only one memory and processor are shown in FIG. 12. In actual end products, there may be one or more processors and one or more memories.
  • the memory may also be referred to as a storage medium or storage device.
  • the memory may be set independently of the processor, or may be integrated with the processor, which is not limited in the embodiment of the present application.
  • the antenna and radio frequency circuit with the transceiving function can be regarded as the transceiving unit of the terminal, and the processor with the processing function can be regarded as the processing unit of the terminal.
  • the terminal includes a transceiver unit 1210 and a processing unit 1220.
  • the transceiving unit may also be referred to as a transceiver, a transceiver, a transceiving device, and so on.
  • the processing unit may also be called a processor, a processing board, a processing module, a processing device, and so on.
  • the device for implementing the receiving function in the transceiver unit 1210 can be regarded as the receiving unit, and the device for implementing the sending function in the transceiver unit 1210 as the sending unit, that is, the transceiver unit 1210 includes a receiving unit and a sending unit.
  • the transceiver unit may sometimes be called a transceiver, a transceiver, or a transceiver circuit.
  • the receiving unit may sometimes be called a receiver, a receiver, or a receiving circuit.
  • the transmitting unit may sometimes be called a transmitter, a transmitter, or a transmitting circuit.
  • transceiving unit 1210 is used to perform the sending and receiving operations on the terminal side in the foregoing method embodiment, and the processing unit 1220 is used to perform other operations on the terminal in addition to the transceiving operation in the foregoing method embodiment.
  • the transceiver unit 1210 is used to perform step 301, step 302, step 305, and so on in FIG. 3.
  • the transceiving unit 1210 is also used to perform other transceiving steps on the terminal side in the embodiment of the present application.
  • the processing unit 1220 is configured to execute step 303 in FIG. 3, and/or the processing unit 1220 is further configured to execute other processing steps on the terminal side in the embodiment of the present application.
  • the transceiver unit 1210 is configured to execute step 701, step 703, step 704, etc. in FIG. 7.
  • the transceiving unit 1210 is also used to perform other transceiving steps on the terminal side in the embodiment of the present application.
  • the processing unit 1220 is used for step 702 in FIG. 7 or to perform other processing steps on the terminal side in the embodiment of the present application.
  • the device shown in FIG. 13 can be referred to.
  • the device can perform functions similar to the processor 910 in FIG. 9.
  • the device includes a processor 1310, a data sending processor 1320, and a data receiving processor 1330.
  • the processing unit 812 in the foregoing embodiment may be the processor 1310 in FIG. 13 and completes corresponding functions.
  • the transceiving unit 1210 in the foregoing embodiment may be the sending data processor 1320 and/or the receiving data processor 1330 in FIG. 13.
  • the channel encoder and the channel decoder are shown in FIG. 13, it can be understood that these modules do not constitute a restrictive description of this embodiment, and are only illustrative.
  • FIG. 14 shows another form of the terminal of this embodiment.
  • the terminal 1400 includes modules such as a modulation subsystem, a central processing subsystem, and a peripheral subsystem.
  • the terminal in this embodiment may be the modulation subsystem therein.
  • the modulation subsystem may include a processor 1403 and an interface 1404.
  • the processor 1403 completes the function of the aforementioned processing unit 812
  • the interface 1404 completes the function of the aforementioned transceiver unit 810.
  • the modulation subsystem includes a memory 1406, a processor 1403, and a program stored in the memory 1406 and running on the processor.
  • the processor 1403 implements the method of the terminal in the foregoing method embodiment when the program is executed.
  • the memory 1406 can be non-volatile or volatile, and its location can be located inside the modulation subsystem or in the processing device 1400, as long as the memory 1406 can be connected to the The processor 1403 is fine.
  • the network device 1500 includes one or more radio frequency units, such as a remote radio unit (RRU) 1510 and one or more baseband units (BBU) (also referred to as digital units, digital units, DU) 1520.
  • RRU 1510 may be called a transceiver module, which corresponds to the transceiver unit 1012 in FIG. 10.
  • the transceiver unit may also be called a transceiver, a transceiver circuit, or a transceiver, etc., which may include at least one antenna 1511 ⁇ RF unit 1512.
  • the RRU 1510 part is mainly used for receiving and sending of radio frequency signals and conversion of radio frequency signals and baseband signals, for example, for sending instruction information to the terminal.
  • the 1510 part of the BBU is mainly used for baseband processing, control of the base station, and so on.
  • the RRU 1510 and the BBU 1520 may be physically set together, or may be physically separated, that is, a distributed base station.
  • the BBU 1520 is the control center of the base station, and may also be called a processing module, which may correspond to the processing unit 1010 in FIG. 10, and is mainly used to complete baseband processing functions, such as channel coding, multiplexing, modulation, and spreading.
  • the BBU processing module
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, to generate the foregoing indication information.
  • the BBU 1520 may be composed of one or more single boards, and multiple single boards may jointly support a radio access network (such as an LTE network) of a single access standard, or support different access standards. Wireless access network (such as LTE network, 5G network or other networks).
  • the BBU 1520 also includes a memory 1521 and a processor 1522.
  • the memory 1521 is used to store necessary instructions and data.
  • the processor 1522 is used to control the base station to perform necessary actions, for example, used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment.
  • the memory 1521 and the processor 1522 may serve one or more single boards. In other words, the memory and the processor can be set separately on each board. It can also be that multiple boards share the same memory and processor. In addition, necessary circuits can be provided on each board.
  • processors mentioned in the embodiment of this application may be a central processing unit (Central Processing Unit, CPU), or other general-purpose processors, digital signal processors (Digital Signal Processors, DSPs), and application-specific integrated circuits (Central Processing Unit, CPU).
  • CPU Central Processing Unit
  • DSPs Digital Signal Processors
  • CPU Application Specific Integrated Circuit
  • FPGA Field Programmable Gate Array
  • the general-purpose processor may be a microprocessor or the processor may also be any conventional processor or the like.
  • the memory mentioned in the embodiments of the present application may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory can be read-only memory (Read-Only Memory, ROM), programmable read-only memory (Programmable ROM, PROM), erasable programmable read-only memory (Erasable PROM, EPROM), and electrically available Erase programmable read-only memory (Electrically EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (Random Access Memory, RAM), which is used as an external cache.
  • RAM static random access memory
  • DRAM dynamic random access memory
  • DRAM synchronous dynamic random access memory
  • DDR SDRAM Double Data Rate Synchronous Dynamic Random Access Memory
  • Enhanced SDRAM, ESDRAM Enhanced Synchronous Dynamic Random Access Memory
  • Synchronous Link Dynamic Random Access Memory Synchronous Link Dynamic Random Access Memory
  • DR RAM Direct Rambus RAM
  • the processor is a general-purpose processor, DSP, ASIC, FPGA or other programmable logic device, discrete gate or transistor logic device, or discrete hardware component
  • the memory storage module
  • the size of the sequence number of the above-mentioned processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not correspond to the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • the disclosed system, device, and method may be implemented in other ways.
  • the device embodiments described above are merely illustrative, for example, the division of the units is only a logical function division, and there may be other divisions in actual implementation, for example, multiple units or components may be combined or It can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, and may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, they may be located in one place, or they may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objectives of the solutions of the embodiments.
  • the functional units in the various embodiments of the present application may be integrated into one processing unit, or each unit may exist alone physically, or two or more units may be integrated into one unit.
  • the function is implemented in the form of a software functional unit and sold or used as an independent product, it can be stored in a computer readable storage medium.
  • the technical solution of the present application essentially or the part that contributes to the existing technology or the part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium, including Several instructions are used to make a computer device (which may be a personal computer, a server, or a network device, etc.) execute all or part of the steps of the method described in each embodiment of the present application.
  • the aforementioned storage media include: U disk, mobile hard disk, read-only memory (Read-Only Memory, ROM), random access memory (Random Access Memory, RAM), magnetic disk or optical disk and other media that can store program code .

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种通信方法及装置,可以应用于车联网,例如V2X、LTE-V、V2V等,或可以用于D2D,智能驾驶,智能网联车等领域。终端装置接收来自网络设备的第一信息;所述终端装置根据所述第一信息确定当前时间对应的设备到设备帧号DFN;所述终端装置基于所述当前时间对应的DFN进行侧行链路通信。因此,终端装置可以使用DFN进行侧行链路通信,因此,网络设备覆盖范围内的终端装置能够与网络设备覆盖范围外的终端装置正常进行侧行链路通信。

Description

一种通信方法及装置 技术领域
本申请涉及移动通信技术领域,尤其涉及一种通信方法及装置。
背景技术
车联网(vehicle to everything,V2X),指的是车辆可以与外界设备进行通信。比如,车辆与车辆、车辆与基站、车辆与行人之间的通信,使得车辆能够较好的获得实时路况、道路信息、行人信息等各种交通信息,进而提高驾驶安全性、提高交通效率。
目前,基于长期演进(long term evolution,LTE)的车与外界(vehicle-to-everything,V2X)场景中,终端存在两种同步方式,具体的参见图1所示,对于基站覆盖范围内的终端1,从基站处获取同步信号,该同步信号中可以携带系统帧号(system frame number,SFN),终端1基于该SFN与基站同步。对于基站覆盖范围之外的终端2,无法从该基站获取同步信号,所以终端2采用全球导航卫星系统(global navigation satellite system,GNSS)授时的方式,即获取GNSS信号,该GNSS信号中携带协调世界时间(coordinated universal time,UTC),UE可以基于该UTC计算设备到设备帧号(D2D frame number,DFN),使用该DFN与其它的使用GNSS授时的终端同步。
因此,使用不同同步方式的终端1和终端2可能无法正常通信。
发明内容
本申请实施例提供一种通信方法及装置,以解决网络设备覆盖范围内的终端和网络设备覆盖范围外的终端可能无法正常通信的问题,保证终端和其通信范围内的其他终端能够基于统一的同步方式进行侧行链路通信,提高通信效率。
第一方面,本申请实施例提供一种通信方法,该方法由终端装置执行。终端装置接收来自网络设备的第一信息;所述终端装置根据所述第一信息确定当前时间对应的设备到设备帧号DFN;所述终端装置基于所述当前时间对应的DFN进行侧行链路通信。
需要说明的是,根据现有的同步机制,网络设备配置覆盖范围内的终端装置使用SFN进行通信。但是,网络设备覆盖范围外的终端装置可以是使用GNSS授时即DFN的方式同步,因此,基于SFN同步的终端装置无法与基于DFN同步的终端装置正常的进行侧行通信。因此,本申请实施例提出网络设备可以配置覆盖范围内的终端装置使用DFN进行侧行链路通信。这种情况下,可以保证终端装置可以与通信范围内的其他终端装置能够基于统一的同步方式进行侧行链路通信,提高通信效率。
需要说明的是,本申请实施例中描述的终端装置的同步方式相同或统一,指的是终端装置同步到相同的无线帧系统,换句话说,终端装置确定的帧号、子帧号及帧边界等是同步的。
在一种可能的设计中,所述第一信息包括基于全球导航卫星系统GNSS的当前时间。
可以理解的是,根据现有的同步机制,网络设备配置覆盖范围内的终端装置使用SFN进行通信,所以覆盖范围内的终端装置进行侧行链路通信时不需要使用DFN,也就不获取基于GNSS的当前时间(例如,当前UTC)。本申请中,网络设备配置覆盖范围内的终端装置可以使用DFN进行侧行链路通信,终端装置可以基于网络设备发送的第一信息中的基于GNSS的当前时间计算DFN,无需使用GNSS授时方式计算DFN。避免在一些情况下终端装置可能无法接收到GNSS信号。
在一种可能的设计中,所述第一信息承载在系统消息块SIB中。
需要说明的是,第一信息可以承载在网络设备向终端装置发送的任一下行数据中,SIB仅是举例,不是限定。
示例性的,第一信息可以承载在SIB16中。需要说明的是,根据现有的通信协议,SIB16中携带基于GNSS的当前UTC,但由于网络设备覆盖范围内的终端装置被配置使用SFN进行通信,所以,终端装置进行侧行链路通信时,不会解析SIB16中的当前UTC。本申请中,网络设备配置终端装置使用DFN进行侧行链路通信,所以覆盖范围内的终端装置进行侧行链路通信时,解析SIB16得到当前UTC,然后根据所述当前UTC计算DFN。
在一种可能的设计中,终端装置接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示所述终端装置基于DFN进行侧行链路通信。
示例性的,第一指示信息可以是1bit的索引(index),当该第一指示信息被设置为0时,指示终端装置使用DFN进行侧行链路通信,当该第一指示信息被设置为1时,指示终端装置使用SFN进行侧行链路通信。因此,本申请实施例中,网络设备可以配置终端装置使用DFN进行侧行链路通信,可以保证终端装置与通信范围内的其他终端装置能够基于统一的同步方式进行侧行链路通信,以提高通信效率。换句话说,可以保证终端和其通信范围内的其他终端能够基于相同的时间基准在侧行链路上正常通信,以提高通信效率。
当然,第一指示信息也可以是预配置的,本申请实施例不作限定。可以理解的是,预配置的方式较为简单便捷,网络设备不需要指示终端装置使用SFN或者DFN进行侧行链路通信,节省信令开支。
在一种可能的设计中,所述第一指示信息承载在系统消息块SIB中的第一字段。
例如,第一指示信息可以携带于SIB1或SIB16中。需要说明的是,第一信息可以承载在网络设备向终端装置发送的任一下行数据中,SIB仅是举例,不是限定。
在一种可能的设计中,所述第一信息包括帧号偏移量,所述帧号偏移量为当前时间所述DFN和系统帧号SFN之间的偏移量,所述SFN为用于所述终端装置与所述网络设备之间通信的无线帧号。
需要说明的是,网络设备将DFN与SFN之间的帧号偏移量发送给终端装置。终端装置基于该帧号偏移量确定当前时间对应的DFN,无需获取当前UTC,也能计算当前时间对应的DFN,而且计算相对简单。
在一种可能的设计中,终端装置根据第一信息确定当前时间对应的DFN,包括:所述终端装置基于所述帧号偏移量和所述当前时间对应的SFN,确定所述当前时间对应的DFN。
可以理解的是,网络设备将DFN与SFN之间的帧号偏移量发送给终端装置,终端装置基于该帧号偏移量确定当前时间对应的DFN,无需获取当前UTC,也无需根据当前UTC计算当前时间对应的DFN,节省计算量,提升通信效率。
在一种可能的设计中,终端装置在第一时间发送侧行链路同步信号块S-SSB,所述 S-SSB中包括所述第一时间对应的DFN。
可以理解的是,本申请实施例中,网络设备覆盖范围外终端装置可以接收覆盖范围内的终端装置发送的当前时间对应的DFN,然后基于该DFN与网络设备覆盖范围内的终端装置进行侧行链路通信。
第二方面,本申请实施例还提供一种通信方法,该方法由网络设备执行。网络设备确定第一信息,所述第一信息用于确定当前时间对应的设备到设备帧号DFN;所述网络设备向终端装置发送第一信息,以使所述终端装置基于所述当前时间对应的DFN进行侧行链路通信。
因此,本申请实施例中,网络设备可以配置终端装置使用DFN进行侧行链路通信。这种情况下,可以保证终端装置可以与通信范围内的其他终端装置能够基于统一的同步方式进行侧行链路通信,提高通信效率。换句话说,可以保证终端和其通信范围内的其他终端能够基于相同的时间基准在侧行链路上正常通信,以提高通信效率。
在一种可能的设计中,所述第一信息包括基于全球导航卫星系统GNSS的当前时间。
本申请中,网络设备配置终端装置使用DFN进行侧行链路通信,终端装置可以基于网络设备发送的第一信息中的基于GNSS的当前时间计算DFN,无需使用GNSS授时方式计算DFN。
在一种可能的设计中,所述第一信息承载在系统消息块SIB中。
需要说明的是,第一信息可以承载在网络设备向终端装置发送的任一下行数据中,SIB仅是举例,不是限定。
在一种可能的设计中,网络设备向所述终端装置发送第一指示信息,所述第一指示信息用于指示所述终端装置基于DFN进行侧行链路通信。
例如,网络设备向终端装置发送的SIB中携带1bit的第一指示信息,当该第一指示信息被设置为0时,指示终端装置使用DFN进行侧行链路通信,当该第一指示信息被设置为1时,指示终端装置使用SFN进行侧行链路通信。因此,网络设备可以为不同的终端装置配置不同的侧行链路同步方式,例如,对于接入小区的未知终端装置,网络设备可以将其配置为使用DFN进行侧行链路通信,那么所述未知终端装置无法与被配置使用SFN进行侧行链路通信的终端装置进行侧行链路通信,可以缓解所述未知终端装置对网络设备覆盖范围内的网络通信安全的影响。
当然,第一指示信息也可以是预配置的,本申请实施例不作限定。可以理解的是,预配置的方式较为简单便捷,网络设备不需要指示终端装置使用SFN或者DFN进行侧行链路通信,节省信令开支。应当理解的是,相对于预配置的方式,通过第一指示信息指示终端装置使用SFN或DFN进行侧行链路通信的方式较为灵活,例如,同一终端装置可以在不同时间段使用不同的侧行链路同步方式。即终端装置可以在不同时间以不同的时间基准进行侧行链路通信。
在一种可能的设计中,所述第一指示信息承载在系统消息块SIB中的第一字段。
例如,第一指示信息可以携带于SIB1或SIB16中。需要说明的是,第一信息可以承载在网络设备向终端装置发送的任一下行数据中,SIB仅是举例,不是限定。
在一种可能的设计中,所述第一信息包括帧号偏移量,所述帧号偏移量为所述当前时间所述DFN和系统帧号SFN之间的偏移量,所述SFN为用于所述网络设备与所述终端装置之间通信的无线帧号。
可以理解的是,网络设备将DFN与SFN之间的帧号偏移量发送给终端装置,可以无需额外发送当前UTC。终端装置可以基于帧号偏移量确定当前时间对应的DFN,计算方式更简单。因此,网络设备可以节省信令开销。
第三方面,本申请实施例还提供一种通信装置,包括:收发单元和处理单元;其中,收发单元,用于接收来自网络设备的第一信息;处理单元,用于根据所述第一信息确定当前时间对应的设备到设备帧号DFN;所述收发单元,还用于基于所述当前时间对应的DFN进行侧行链路通信。
在一种可能的设计中,所述第一信息包括基于全球导航卫星系统GNSS的当前时间。
在一种可能的设计中,所述第一信息承载在系统消息块SIB中。
在一种可能的设计中,所述收发单元还用于:接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示所述终端装置基于DFN进行侧行链路通信。
在一种可能的设计中,所述第一指示信息承载在系统消息块SIB中的第一字段。
在一种可能的设计中,所述第一信息包括帧号偏移量,所述帧号偏移量为当前时间所述DFN和系统帧号SFN之间的偏移量,所述SFN为用于所述终端装置与所述网络设备之间通信的无线帧号。
在一种可能的设计中,所述处理单元具体用于:基于所述帧号偏移量和所述当前时间对应的SFN,确定所述当前时间对应的DFN。
在一种可能的设计中,所述收发单元还用于:在第一时间发送侧行链路同步信号块S-SSB,所述S-SSB中包括所述第一时间对应的DFN。
需要说明的是,上述第三方面提供的通信装置可以是终端设备,也可以是应用于终端设备中的芯片或者其他可实现上述终端设备功能的组合器件、部件等。当装置是终端设备时,收发单元可以是收发器,可以包括天线和射频电路等,处理单元可以是处理器,例如:中央处理单元(central processing unit,CPU)。当装置是具有上述终端设备功能的部件时,收发单元可以是射频单元,处理单元可以是处理器。当装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理单元可以是芯片系统的处理器。
第四方面,本申请实施例还提供一种通信装置,包括:处理单元,用于确定第一消息,第一消息用于确定当前时间对应的设备到设备帧号DFN,所述当前时间对应的DFN用于终端装置进行侧行链路通信;收发单元,用于向所述终端装置发送第一信息。
在一种可能的设计中,所述第一信息包括基于全球导航卫星系统GNSS的当前时间。
在一种可能的设计中,所述第一信息承载在系统消息块SIB中。
在一种可能的设计中,所述收到单元还用于:向所述终端装置发送第一指示信息,所述第一指示信息用于指示所述终端装置基于DFN进行侧行链路通信。
在一种可能的设计中,所述第一指示信息承载在系统消息块SIB中的第一字段。
在一种可能的设计中,所述第一信息包括帧号偏移量,所述帧号偏移量为所述当前时间所述DFN和系统帧号SFN之间的偏移量,所述SFN为用于所述网络设备与所述终端装置之间通信的无线帧号。
需要说明的是,上述实施例中的通信装置可以是网络设备,也可以是应用于网络设备中的芯片或者其他可实现上述网络设备功能的组合器件、部件等。当装置是网络设备时,收发单元可以是收发器,可以包括天线和射频电路等,处理单元可以是处理器,例如:中央处理单元(central processing unit,CPU)。当装置是具有上述网络设备功能的部件时, 收发单元可以是射频单元,处理单元可以是处理器。当装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理单元可以是芯片系统的处理器。
第五方面,本申请实施例还提供一种通信装置,包括:收发器和处理器;其中,收发器,用于接收来自网络设备的第一信息;处理器,用于根据所述第一信息确定当前时间对应的设备到设备帧号DFN;所述收发器,还用于基于所述当前时间对应的DFN进行侧行链路通信。
在一种可能的设计中,所述第一信息包括基于全球导航卫星系统GNSS的当前时间。
在一种可能的设计中,所述第一信息承载在系统消息块SIB中。
在一种可能的设计中,所述收发器还用于:接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示所述终端装置基于DFN进行侧行链路通信。
在一种可能的设计中,所述第一指示信息承载在系统消息块SIB中的第一字段。
在一种可能的设计中,所述第一信息包括帧号偏移量,所述帧号偏移量为当前时间所述DFN和系统帧号SFN之间的偏移量,所述SFN为用于所述终端装置与所述网络设备之间通信的无线帧号。
在一种可能的设计中,所述处理器具体用于:基于所述帧号偏移量和所述当前时间对应的SFN,确定所述当前时间对应的DFN。
在一种可能的设计中,所述收发器还用于:在第一时间发送侧行链路同步信号块S-SSB,所述S-SSB中包括所述第一时间对应的DFN。
第六方面,本申请实施例还提供一种通信装置,包括:收发器和处理器,处理器,用于确定第一消息,第一消息用于确定当前时间对应的设备到设备帧号DFN,所述当前时间对应的DFN用于终端装置进行侧行链路通信;所述收到器,用于向所述终端装置发送第一信息。
在一种可能的设计中,所述第一信息包括基于全球导航卫星系统GNSS的当前时间。
在一种可能的设计中,所述第一信息承载在系统消息块SIB中。
在一种可能的设计中,所述收到器还用于:向所述终端装置发送第一指示信息,所述第一指示信息用于指示所述终端装置基于DFN进行侧行链路通信。
在一种可能的设计中,所述第一指示信息承载在系统消息块SIB中的第一字段。
在一种可能的设计中,所述第一信息包括帧号偏移量,所述帧号偏移量为所述当前时间所述DFN和系统帧号SFN之间的偏移量,所述SFN为用于所述网络设备与所述终端装置之间通信的无线帧号。
第七方面,本申请实施例还提供一种通信装置。该通信装置可以为上述方法设计中的终端装置。示例性地,所述通信装置可以是终端设备,或者为设置在终端设备中的芯片。该通信装置包括:通信接口,用于进行信息的收发,或者说,用于与其他装置进行通信;以及处理器,处理器与通信接口耦合。可选的,该通信装置还可以包括存储器,用于存储计算机可执行程序代码。或者,该通信装置也可以不包括存储器,存储器可以位于该通信装置外部。其中,存储器所存储的程序代码包括指令,当处理器执行所述指令时,使该通信装置执行上述第一方面或第一方面的任意一种可能的实施方式中的方法。
其中,如果通信装置是终端设备,通信接口可以是通信装置中的收发器,例如通过所述通信装置中的天线、馈线和编解码器等实现。或者,如果通信装置为设置在终端设备中的芯片,则所述通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第八方面,本申请实施例还提供一种通信装置。该通信装置可以为上述方法设计中的网络设备。该通信装置包括:通信接口,用于进行信息的收发,或者说,用于与其他装置进行通信;以及处理器,处理器与通信接口耦合。可选的,该通信装置还可以包括存储器,用于存储计算机可执行程序代码。或者,该通信装置也可以不包括存储器,存储器可以位于该通信装置外部。其中,存储器所存储的程序代码包括指令,当处理器执行所述指令时,使该通信装置执行上述第二方面或第二方面的任意一种可能的实施方式中的方法。
其中,如果通信装置为基站等接入网设备,所述通信接口可以是接入网设备中的收发器,例如通过所述接入网设备中的天线、馈线和编解码器等实现。或者,如果通信装置为设置在基站等接入网设备中的芯片,则所述通信接口可以是该芯片的输入/输出接口,例如输入/输出管脚等。
第九方面,本申请实施例还提供一种通信系统,包括:网络设备,终端装置;所述终端装置能够实现前述第一方面提供的技术方案中终端装置的全部或部分方法步骤,所述网络设备能够实现前述第二方面提供的技术方案中网络设备的全部或部分方法步骤。
第十方面,本申请实施例还提供一种计算机可读存储介质,所述计算机可读存储介质存储有计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第一方面或第一方面的任意一种可能的实施方式中所述的方法,或者,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第二方面或第二方面的任意一种可能的实施方式中所述的方法。
第十一方面,本申请实施例还提供一种计算机程序产品,所述计算机程序产品包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第一方面或第一方面的任意一种可能的实施方式中所述的方法,或者,当所述计算机程序在计算机上运行时,使得所述计算机执行上述第二方面或第二方面的任意一种可能的实施方式中所述的方法。
附图说明
图1为现有技术的应用场景的示意图;
图2为本申请一实施例提供的应用场景的示意图;
图3为本申请一实施例提供的一种通信方法的流程示意图;
图4为本申请一实施例提供的终端确定当前时间的DFN的示意图;
图5为本申请一实施例提供的终端确定当前时间的DFN的示意图;
图6为本申请一实施例提供的终端确定当前时间的DFN的示意图;
图7为本申请一实施例提供的另一种通信方法的流程示意图;
图8为本申请一实施例提供的一种终端装置的结构示意图;
图9为本申请一实施例提供的另一种终端装置的结构示意图;
图10为本申请一实施例提供的一种网络设备的结构示意图;
图11为本申请一实施例提供的另一种网络设备的结构示意图;
图12-图14为本申请一实施例提供的终端的结构示意图;
图15为本申请一实施例提供的网络设备的结构示意图。
具体实施方式
为了使本申请实施例的目的、技术方案和优点更加清楚,下面将结合附图对本申请实施例作进一步地详细描述。
本申请实施例的技术方案可以应用于各种通信系统,例如:宽带码分多址移动通信系统(wideband code division multiple access,WCDMA),演进的全球陆地无线接入网络(evolved universal terrestrial radio access network,E-UTRAN)系统,下一代无线接入网络(next generation radio access network,NG-RAN)系统,长期演进(long term evolution,LTE)系统,全球互联微波接入(worldwide interoperability for microwave access,WiMAX)通信系统,未来的第五代(5th Generation,5G)系统,如新一代无线接入技术(new radio access technology,NR),及未来的通信系统,如6G系统等。
本申请实施例描述的业务场景(或应用场景)是为了更加清楚的说明本申请实施例的技术方案,并不构成对于本申请实施例提供的技术方案的限定,本领域普通技术人员可知,随着新业务场景的出现,本申请实施例提供的技术方案对于类似的技术问题,同样适用。
另外,在本申请实施例中,“示例的”一词用于表示作例子、例证或说明。本申请中被描述为“示例”的任何实施例或实现方案不应被解释为比其它实施例或实现方案更优选或更具优势。确切而言,使用示例的一词旨在以具体方式呈现概念。
以下,对本申请实施例中的部分用语进行解释说明,以便于本领域技术人员理解。
1)终端(terminal),包括向用户提供语音和/或数据连通性的设备,具体的,包括向用户提供语音的设备,或包括向用户提供数据连通性的设备,或包括向用户提供语音和数据连通性的设备。例如可以包括具有无线连接功能的手持式设备、或连接到无线调制解调器的处理设备。该终端可以经无线接入网(radio access network,RAN)与核心网进行通信,与RAN交换语音或数据,或与RAN交互语音和数据。该终端可以包括用户设备(user equipment,UE)、无线终端、移动终端、设备到设备通信(device-to-device,D2D)终端、车到一切(vehicle to everything,V2X)终端、机器到机器/机器类通信(machine-to-machine/machine-type communications,M2M/MTC)终端、物联网(internet of things,IoT)终端、订户单元(subscriber unit)、订户站(subscriber station),移动站(mobile station)、远程站(remote station)、接入点(access point,AP)、远程终端(remote terminal)、接入终端(access terminal)、用户终端(user terminal)、用户代理(user agent)、或用户装备(user device)等。例如,可以包括移动电话(或称为“蜂窝”电话),具有移动终端的计算机,便携式、袖珍式、手持式、计算机内置的移动装置等。例如,个人通信业务(personal communication service,PCS)电话、无绳电话、会话发起协议(session initiation protocol,SIP)话机、无线本地环路(wireless local loop,WLL)站、个人数字助理(personal digital assistant,PDA)、等设备。还包括受限设备,例如功耗较低的设备,或存储能力有限的设备,或计算能力有限的设备等。例如包括条码、射频识别(radio frequency identification,RFID)、传感器、全球定位系统(global positioning system,GPS)、激光扫描器等信息传感设备。
作为示例而非限定,在本申请实施例中,该终端还可以是可穿戴设备。可穿戴设备也可以称为穿戴式智能设备或智能穿戴式设备等,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式 智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能头盔、智能首饰等。
而如上介绍的各种终端,如果位于车辆上(例如放置在车辆内或安装在车辆内),都可以认为是车载终端,车载终端例如也称为车载单元(on-board unit,OBU)。
本申请实施例中,终端还可以包括中继(relay)。或者理解为,能够与基站进行数据通信的都可以看作终端。
本申请实施例中,用于实现终端的功能的装置可以是终端,也可以是能够支持终端实现该功能的装置,例如芯片系统,该装置可以被安装在终端中。本申请实施例中,芯片系统可以由芯片构成,也可以包括芯片和其他分立器件。本申请实施例提供的技术方案中,以用于实现终端的功能的装置是终端为例,描述本申请实施例提供的技术方案。
2)网络设备,例如包括接入网(access network,AN)设备,例如基站(例如,接入点),可以是指接入网中在空口通过一个或多个小区与无线终端通信的设备,或者例如,一种车到一切(vehicle-to-everything,V2X)技术中的网络设备为路侧单元(road side unit,RSU)。基站可用于将收到的空中帧与IP分组进行相互转换,作为终端与接入网的其余部分之间的路由器,其中接入网的其余部分可包括IP网络。RSU可以是支持V2X应用的固定基础设施实体,可以与支持V2X应用的其他实体交换消息。网络设备还可协调对空口的属性管理。例如,网络设备可以包括长期演进(long term evolution,LTE)系统或高级长期演进(long term evolution-advanced,LTE-A)中的演进型基站(NodeB或eNB或e-NodeB,evolutional Node B),或者也可以包括第五代移动通信技术(the 5th generation,5G)新空口(new radio,NR)系统(也简称为NR系统)中的下一代节点B(next generation node B,gNB)或者也可以包括云接入网(cloud radio access network,Cloud RAN)系统中的集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU),本申请实施例并不限定。
网络设备还可以包括核心网设备,核心网设备例如包括访问和移动管理功能(access and mobility management function,AMF)等。
本申请实施例中,用于实现网络设备的功能的装置可以是网络设备,也可以是能够支持网络设备实现该功能的装置,例如芯片系统,该装置可以被安装在网络设备中。在本申请实施例提供的技术方案中,以用于实现网络设备的功能的装置是网络设备为例,描述本申请实施例提供的技术方案。
3)通用用户网络接口(user to network interface universal,Uu),简称Uu口,又称之为Uu接口,定义了终端与网络设备之间的通信协议,在V2X场景中,Uu接口是终端和网络设备之间用于无线通信的接口,终端通过Uu口接入到网络设备,Uu口的主要功能为广播、寻呼、以及RRC连接的处理。
4)近场通信(proximity communication,PC),例如PC5,规定了终端与终端之间的通信协议,在V2X场景中,PC5接口是两个V2X终端之间用于无线通信的接口,即在V2X场景中,终端通过PC5接口实现侧行链路通信。其中,V2X终端为具有V2X功能的终端。
5)侧行链路(sidelink),也可以称为边链路、副链路或辅链路(supplementary link等,本申请实施例对此名称不作限定。在V2X场景中,侧行链路为两V2X终端之间的直连链路连接。两个V2X终端在进行侧行链路的数据传输之前,可以建立侧行链路连接。比如, 作为发起方的V2X终端向网络设备发送建立侧行链路连接的请求,网络设备如果同意该V2X终端建立侧行链路连接,则向该V2X终端发送建立侧行链路连接的配置信息,该V2X终端根据网络设备发送的配置信息与另一V2X终端建立侧行链路连接。其中,配置信息可以包括频率带宽、进行侧行链路通信时使用的无线帧等等。
6)系统帧号SFN,是终端与网络设备之间通信的无线帧,具体的,终端基于SFN实现与网络设备的同步,然后与网络设备通信。通常,处于网络设备(例如基站)覆盖范围内的终端会获取网络设备发送的同步信号(synchronization signal,SS)或同步信号块(synchronization signal block,SSB),终端解析SS或SSB获得SFN,然后使用该SFN与基站通信。
7)设备到设备帧号DFN,是终端使用GNSS授时时,获取的定时帧。例如,终端获取GNSS信号,该GNSS信号中包括UTC,终端可以基于该UTC和预设公式计算出一个DFN,然后基于该DFN与其他终端通信,应该理解的是,所述其他终端也是使用GNSS授时方式来定时。其中,预设公式将在后文介绍。
8)时间单元,时域资源包括一个或多个时间单元,时间单元可以是无线帧、子帧、时隙、符号等。其中,一个无线帧可以包括多个子帧,一个子帧可以包括一个或多个时隙(slot),一个时隙可以包括至少一个符号(symbol)。例如,一个无线帧为10毫秒(ms),其中包括10个子帧,每个子帧1ms,每个子帧包括K个时隙,每个时隙为1/K ms,K=子载波间隔(subcarrier spacing)/15;每个时隙中包括一个或多个symbol。其中,时隙可以有不同的时隙类型,不同的时隙类型包括的符号个数不一样,如普通时隙或常规时隙、迷你时隙(mini slot)等。其中,常规时隙可以包含12个符号(对应常规循环前缀cyclic prefix)或14个符号(对应长循环前缀cyclic prefix)等;迷你时隙(mini slot)含有的符号数小于常规时隙的符号数,例如,mini slot包含小于7个符号。
需要说明的是,两个设备通信之前,需要进行时间同步,在通信系统中,时间以无线帧、子帧、时隙、符号等形式表示,所以两个设备的时间同步可以是无线帧同步,或者,子帧同步,时隙同步,符号同步等。目前,为了区分不同时间,使用无线帧的帧号,子帧的帧号、时隙的编号等来区分时间,所以,以无线帧同步为例,两个设备的无线帧同步可以是两个设备当前时间对无线帧的帧号是同步的,例如,发送方的当前时间对应的无线帧的帧号是#0,接收方当前时间对应的无线帧的帧号也是#0。
9)本申请实施例中的术语“系统”和“网络”可被互换使用。“多个”是指两个或两个以上,鉴于此,本申请实施例中也可以将“多个”理解为“至少两个”。“至少一个”,可理解为一个或多个,例如理解为一个、两个或更多个。例如,包括至少一个,是指包括一个、两个或更多个,而且不限制包括的是哪几个。例如,包括A、B和C中的至少一个,那么包括的可以是A、B、C,A和B,A和C,B和C,或A和B和C。同理,对于“至少一种”等描述的理解,也是类似的。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,字符“/”,如无特殊说明,一般表示前后关联对象是一种“或”的关系。
除非有相反的说明,本申请实施例提及“第一”、“第二”等序数词用于对多个对象进行区分,不用于限定多个对象的顺序、时序、优先级或者重要程度。例如第一终端和第二终端,只是为了区分不同的终端,并不是限制这两个终端的优先级或重要程度等。
下面介绍现有的同步机制。
以图1为例,对于基站覆盖范围内的终端1,从基站处获取同步信号,该同步信号中携带SFN,终端1基于SFN进行通信,其中,包括终端1基于SFN与基站通信,也包括终端1基于SFN与覆盖范围内的其它终端进行侧行链路通信。
对于基站覆盖范围之外的终端2,可以采用GNSS授时的方式,即DFN的方式同步。这种场景下,终端2和终端1必然无法正常的进行侧行链路通信,即便终端2处于终端1的通信范围内,二者也无法进行侧行链路通信。因为,终端1基于SFN同步,而终端2基于DFN同步。因此,这种场景下,终端1和终端2无法正常进行侧行链路通信。
对于基站覆盖范围之外的终端2,还可以从其它终端处获取同步信息,若其它终端也是采用GNSS授时的方式,那么终端2获取的同步信息中包括DFN,即终端2基于DFN的方式同步。这种场景下,终端2和终端1也必然无法正常的进行侧行链路通信。因为,终端1基于SFN同步,而终端2基于DFN同步。因此,这种场景下,终端1和终端2也无法正常进行侧行链路通信。
因此,本申请实施例提出网络设备可以配置终端装置使用DFN进行侧行链路通信,可以保证终端装置可以与通信范围内的其他终端装置能够基于统一的同步方式进行侧行链路通信,提高通信效率。
需要理解的是,本申请实施例中描述的终端装置的同步方式相同或统一,指的是终端装置同步到相同的无线帧系统,换句话说,终端装置确定的帧号、子帧号及帧边界等是同步的。
下面介绍本申请实施例所涉及的应用场景。
本申请实施例提供的通信方法可以应用在车与外界(vehicle-to-everything,V2X)场景,其中,V2X具体又包括车与车(Vehicle-to-Vehicle,V2V)、车与行人(Vehicle-to-Pedestrian,V2P)、车与路侧基础设施(Vehicle-to-Infrastructure,V2I)、车与应用服务器(Vehicle-to-Network,V2N)四种应用场景。V2V指的是基于LTE的车辆间通信;V2P指的是基于LTE的车辆与人(包括行人、骑自行车的人、司机、或乘客)的通信;V2I指的是基于LTE的车辆与路边装置(RSU)的通信,V2N指的是基于LTE的车辆与基站/网络的通信。
参见图2,为本申请实施例提供的一种应用场景的示意图。图2所示的应用场景为V2N场景,该场景中包括网络设备、终端1和终端2。需要说明的是,图2中的网络设备例如为接入网设备,例如基站。其中,接入网设备在不同的系统对应不同的设备,例如在第四代移动通信技术(the 4th generation,4G)系统中可以对应eNB,在5G系统中对应5G中的接入网设备,例如gNB。其中,图2中的终端是以车载终端或车为例,但本申请实施例中的终端不限于此。
如图2所示,终端2位于基站的覆盖范围之外,终端2基于GNSS授时同步,即终端2使用DFN与其他终端通信。基站可以配置终端1使用DFN进行侧行链路通信,具体的,基站可以向终端1发送第一信息,终端1基于该第一信息确定当前时间对应的DFN,所以终端1可以基于该DFN进行侧行链路通信。因此,终端1与终端2基于相同的同步方式,可以通信。因此,本申请实施例提供的通信方法可以解决基站覆盖范围内的终端1与基站覆盖范围之外的终端2同步方式不同,而无法正常通信的问题。具体的实现过程将在后文介绍。
通过以上描述可知,本申请实施例提供的通信方法,统一了处于不同场景下的终端的 同步方式;其中,处于不同场景下的终端包括,处于基站覆盖范围内的终端1和覆盖范围外的终端2。具体的,通过基站发送用于确定DFN的第一信息给终端1,使得终端1可以使用与终端2同样的同步方式,以解决终端1和终端2无法正常通信的问题。因此,本申请实施例提供的通信方法,可以适用于任何的、需要统一不同场景下的终端的同步方式的场景。其中,不同场景下的终端可以是一个处于基站覆盖范围内,一个处于基站覆盖范围外;或者,一个处于LTE系统,另一个处于5G系统,而LTE系统和5G系统中终端的同步方式不同。
当然,除了上述场景之外,还可以适用于其它场景。例如,基站覆盖范围内的终端1使用DFN进行侧行链路通信,对于基站覆盖外的终端2,在无法实现GNSS授时的情况下,可以从该终端1处获取同步信号,该同步信号中携带DFN,那么终端2在无法实现GNSS授时的情况下,也可以得到DFN。其中,“无法实现GNSS授时的情况”可以包括,无法获取GNSS信号,或者获取的GNSS信号的强度太小。也就是说,本申请实施例提供的通信方法,提供了另一种基于DFN的同步方式,该方式区别于传统的GNSS授时方式。
需要说明的是,继续参见图2所示,对于终端1可以使用SFN与网络设备通信,而使用DFN与其他终端通信,终端1同步方式灵活,可以兼顾侧行链路与主链路(即终端1与网络设备之间的通信链路)。
参见图3所示,为本申请实施例提供的通信方法的流程示意图。该方法可以适用于图2所示的应用场景,或上述提到的任何应用场景。该方法的流程包括:
S301,网络设备向第一终端发送第一指示信息,该第一指示信息用于指示第一终端基于DFN进行侧行链路通信。
需要说明的是,本申请实施例中,第一指示信息可以是来自网络设备的,也可以是预配置的。因此,S301可以无需执行,所以图3中S301以虚线表示。
例如,网络设备向第一终端发送的SIB中携带1比特(bit)的第一指示信息,该第一指示信息被设置为1时,表征第一终端使用SFN进行侧行链路通信,当该第一指示信息被设置为0时,表征第一终端使用DFN进行侧行链路通信。示例性的,第一指示信息可以是索引(index)。示例性的,第一指示信息可以承载在SIB1-SIBN中的任意一类SIB中,例如SIB1、SIB16等。
其中,预配置可以是第一终端默认使用DFN或SFN进行侧行链路通信。预配置可以包括OAM配置,或者预先设置在终端中。例如,预配置信息可以预先设置于SIM卡中,第一终端安装SIM卡,从SIM卡中读取该预配置信息,根据该预配置信息确定第一终端使用DFN还是SFN进行侧行链路通信。例如,所述预配置信息中包括1bit的索引,当该索引被设置为0时,第一终端根据所述预配置信息确定使用DFN进行侧行链路通信,若该索引被配置为1时,第一终端根据所述预配置信息确定使用SFN进行侧行链路通信。
需要说明的是,S301可以周期性的执行,即,网络设备周期性的,主动的向第一终端发送第一指示信息,或者,第一终端需要进行侧行链路通信之前,可以向网络设备发送请求,网络设备基于该请求向第一终端发送第一指示信息。
需要说明的是,一种可能的情况为,在S301之前,第一终端尚未接入到网络设备,例如,第一终端接收到网络设备发送的系统消息后,才基于系统消息接入到网络设备。在该系统消息中携带所述第一指示信息。第一终端接入网络设备可以包括首次接入网络设备,或重连接到网络设备。例如,终端首次接入网络设备时,可以获取网络设备发送的SIB, 该SIB中携带所述第一指示信息;又如,终端重连接到网络设备时,可以获取网络设备发送的重连接响应,该重连接响应中携带所述第一指示信息。
另一种可能的情况为,在S301之前,第一终端已经接入到网络设备,第一终端与网络设备通信的过程中,接收网络设备发送的第一指示信息,该第一指示信息可以携带于任一下行数据中。
S302,第一终端接收网络设备发送的第一信息。
S303,第一终端根据第一信息确定当前时间对应的设备到设备帧号DFN。
需要说明的是,前文中,第一指示信息可以承载于SIB中的第一字段,第一信息可以承载于所述第一字段中,或者承载于SIB中的其它字段中。示例性的,第一指示信息可以承载于SIB1中,第一信息可以承载于SIB16中。
情况1,第一信息中携带基于GNSS的当前时间,例如该当前时间可以是当前UTC。
可选的,这种情况下,S304可以有至少两种实现方式,以下列举两种可能的实现方式。
方式1,第一终端可以根据该UTC和预设公式确定与该UTC对应的DFN,第一终端在某个时刻进行侧行链路通信时,可以在确定出的DFN基础上增加相应的子帧个数,增加后得到的子帧是所述某个时刻对应的DFN。其中,预设公式可以如下:
DFN=floor(0.1*(Tcurrent-Tref-offsetDFN))mod 1024;
帧号(SubframeNumber)=floor(Tcurrent-Tref-offsetDFN))mod 10;
其中,Tcurrent是所述第一信息中携带的当前UTC,以毫秒表示。Tref是参考UTC时间,为格里高利历时间1900-01-01 00:00:00,以毫秒表示。offsetDFN是一个配置参数,缺省为0,以毫秒表示。因此,通过上述公式可以得到DFN的起始时刻以及帧号。
举例来说,参见图4所示,第一信息中携带的当前UTC为00:00:10,第一终端根据该当前UTC和上述第一个预设公式确定对应的DFN的起始时刻为T1,然后根据上述第二个公式,确定帧号为子帧#1,则从子帧#1开始每1ms即一个子帧。每个子帧可以依次设置编号。由于后续的每个子帧的编号调整为与GNSS相同的编号,因此,第一终端实现基于DFN的同步,假设第一终端需要在某个时刻进行侧行链路通信,则在该时刻对应的子帧上进行侧行链路通信,例如,在图4所示子帧#3上进行侧行链路通信。
方式2,第一终端接收到第一信息,获取第一信息中的当前UTC之后,可以在当前UTC基础上开始计时,第一终端在某个时刻需要进行侧行链路通信时,可以根据基于所述当前UTC的计时和上述预设公式确定所述某个时刻对应的DFN,然后使用该DFN进行侧行链路通信。
举例来说,参见图5所示,第一信息中携带的当前UTC为T1,第一终端以T1为准,进行计时。当记录到T2时,再基于记录的T2和前述预设公式计算T2对应的DFN的起始时刻和编号。示例性的,参见图5所示,假设基于T2计算出的对应的DFN的起始时刻为T3,帧号为子帧#1,则从子帧#1开始每1ms即一个子帧。每个子帧可以依次设置编号。
可以理解的是,上述方式1中,第一终端获取第一信息之后,根据第一信息中的当前UTC确定DFN的起始时刻和编号,然后进行帧同步。在方式2中,第一终端获取第一信息之后,暂时不进行帧同步,而是以第一信息中的当前UTC为准计时一段时间,然后再基于当前计时确定DFN的起始时刻和编号,进行帧同步。
情况2,第一信息中包括帧号偏移量,所述帧号偏移量为当前时间对应的DFN和SFN之间的偏移量。
一种可能的实现方式为,网络设备获取当前UTC之后,可以基于该当前UTC和前述预设公式,确定对应的DFN的起始时刻和帧号,然后确定该起始时刻对应的SFN的帧号,然后确定该DFN与SFN之间的帧号偏移量。示例性的,参见图6所示,网络设备根据UTC确定DFN的起始时刻为T1,DFN的帧号为#1,对应的SFN帧号为#3。因此DFN与SFN之间的帧号偏移量为向后延迟2个帧号。当第一终端需要在某个时刻进行侧行链路传输时,可以确定所述时刻对应的SFN帧号,然后根据该SFN帧号与所述帧号偏移量,确定所述时刻对应的DFN帧号。例如,参见图6所示,若第一终端确定需要在帧号为#4的SFN上进行侧行链路传输,则在帧号为#2的DFN上进行侧行链路通信。
可以理解的是,情况2中,第一信息中携带DFN和SFN之间的帧号偏移量,第一终端接收到第一信息之后,可以直接根据该帧号偏移量进行帧同步,网络设备也无需额外发送当前UTC,第一终端也无需计算复杂的计算才能确定DFN,对于终端而言,效率较高。
S304,第二终端获取GNSS信号,并基于该GNSS信号中的当前UTC计算DFN。
可以理解的是,对于处于网络设备的覆盖范围之外的第二终端使用GNSS授时的方式实现DFN帧同步。具体的,第二终端从GNSS信号中的当前UTC,然后基于当前UTC和前述的预设公式确定当前时间对应的DFN,具体实现过程参见前述内容,在此不重复赘述。
S305,第一终端基于DFN进行侧行链路通信。
需要说明的是,本申请不限定S304与S301、S302、S303之间的执行顺序。
上述过程中,第一终端是网络设备发送的当前UTC计算的DFN。因此,第一终端和第二终端的同步方式相同,可以进行侧行链路通信。
在另一些实施例中,处于网络设备覆盖范围内的第一终端被配置为使用DFN进行侧行链路通信之后,第一终端可以向处于网络设备覆盖范围外的第二终端发送同步信号,该同步信号中携带当前时间对应的DFN。这样的话,第一终端和第二终端也可以实现帧同步,进而实现通信。参见图7所示,为本申请实施例提供的另一种通信方法的流程示意图。如图7所示,该方法的流程包括:
S701,第一终端接收网络设备发送的第一信息。
S702,第一终端确定基于所述第一信息,确定当前时间对应的DFN。
关于S701-S702的描述可以参见图3所示的实施例。
S703,第二终端接收第一终端发送侧行链路同步信号块S-SSB,该S-SSB中携带所述当前时间对应的DFN。
示例性的,第一终端可以周期性的广播S-SSB,该S-SSB中携带当前时间对应的DFN。
需要说明的是,对于网络设备覆盖范围之外的第二终端,可以先进行GNSS信号检测,当未检测到GNSS信号,或者,检测到GNSS信号的强度低于阈值时,可以接收其它终端发送的同步信号或同步信号块;当然,第二终端也可以先检测其它终端的同步信号,然后进行GNSS检测,本申请实施例不作限定。
S704,第一终端和第二终端基于所述当前时间对应的DFN进行侧行链路通信。
因此,图7所示的实施例中,提供了一种新的同步方式,即网络设备覆盖范围外的终端可以从该网络设备覆盖范围内的终端处获取同步信息,该同步信息中携带当前时间对应的DFN;因此,对于网络设备覆盖范围外的终端而言,在无法获取到GNSS信号,或者,获取的GNSS信号的强度较小时,也可以实现GNSS授时,甚至无需获取GNSS信号,也可以实现GNSS授时。
上文描述了本申请实施例提供的通信方法,下文将描述本申请实施例提供的通信装置。
图8为本申请实施例提供的通信装置800的示意性框图,该通信装置800可以是上文中的第一终端。如图8所示,通信装置800包括:
收发单元810,用于接收来自网络设备的第一信息;
处理单元812,用于根据所述第一信息确定当前时间对应的设备到设备帧号DFN;
所述收发单元810,还用于基于所述当前时间对应的DFN进行侧行链路通信。
可选的,所述第一信息包括基于全球导航卫星系统GNSS的当前时间。
可选的,所述第一信息承载在系统消息块SIB中。
可选的,收发单元810还用于:接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示所述终端装置基于DFN进行侧行链路通信。
可选的,所述第一指示信息承载在系统消息块SIB中的第一字段。
可选的,所述第一信息包括帧号偏移量,所述帧号偏移量为当前时间所述DFN和系统帧号SFN之间的偏移量,所述SFN为用于所述终端装置与所述网络设备之间通信的无线帧号。
可选的,处理单元812具体用于:基于所述帧号偏移量和所述当前时间对应的SFN,确定所述当前时间对应的DFN。
可选的,收发单元810还用于:在第一时间发送侧行链路同步信号块S-SSB,所述S-SSB中包括所述第一时间对应的DFN。
应理解,本申请实施例中的处理单元812可以由处理器或处理器相关电路组件实现,可选的,收发单元810可以包括接收单元和发送单元。例如,收发单元810可以由收发器或收发器相关电路组件实现。
需要说明的是,上述实施例中的通信装置800可以是终端设备,也可以是应用于终端设备中的芯片或者其他可实现上述终端功能的组合器件、部件等。当装置是终端设备时,收发单元可以是收发器,可以包括天线和射频电路等,处理单元可以是处理器,例如:中央处理单元(central processing unit,CPU)。当装置是具有上述终端设备功能的部件时,收发单元可以是射频单元,处理单元可以是处理器。当装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理单元可以是芯片系统的处理器。
如图9所示,本申请实施例还提供一种通信装置900,该通信装置900可以是上文中的第一终端。该通信装置900包括处理器910,存储器920与收发器930,其中,存储器920中存储指令或程序,处理器910用于执行存储器920中存储的指令或程序。存储器920中存储的指令或程序被执行时,该处理器910用于执行上述实施例中处理单元812执行的操作,收发器930用于执行上述实施例中收发单元810执行的操作。
应理解,本申请实施例的通信装置800或通信装置900可对应于本申请实施例图3或图7所示的通信方法中的第一终端,并且通信装置800或通信装置900中的各个模块的操作和/或功能分别为了实现图3或图7中第一终端的各个方法的相应流程,为了简洁,在此不再赘述。
图10为本申请实施例提供的通信装置1000的示意性框图,该通信装置1000可以是上文中的网络设备。该通信装置1000包括:
处理单元1010,确定第一信息,该第一信息用于确定当前时间对应的DFN,所述当前时间对应的DFN用于终端装置进行侧行链路通信;
收发单元1012,还用于向所述终端装置发送第一信息。
可选的,所述第一信息包括基于全球导航卫星系统GNSS的当前时间。
可选的,所述第一信息承载在系统消息块SIB中。
可选的,收发单元1012还用于:向所述终端装置发送第一指示信息,所述第一指示信息用于指示所述终端装置基于DFN进行侧行链路通信。
可选的,所述第一指示信息承载在系统消息块SIB中的第一字段。
可选的,所述第一信息包括帧号偏移量,所述帧号偏移量为所述当前时间所述DFN和系统帧号SFN之间的偏移量,所述SFN为用于所述网络设备与所述终端装置之间通信的无线帧号。
应理解,本申请实施例中的处理单元1010可以由处理器或处理器相关电路组件实现,可选的,收发单元1012可以包括接收单元和发送单元。例如,收发单元1012可以由收发器或收发器相关电路组件实现。
需要说明的是,上述实施例中的通信装置1000可以是网络设备,也可以是应用于网络设备中的芯片或者其他可实现上述网络设备功能的组合器件、部件等。当装置是网络设备时,收发单元可以是收发器,可以包括天线和射频电路等,处理单元可以是处理器,例如:中央处理单元(central processing unit,CPU)。当装置是具有上述网络设备功能的部件时,收发单元可以是射频单元,处理单元可以是处理器。当装置是芯片系统时,收发单元可以是芯片系统的输入输出接口、处理单元可以是芯片系统的处理器。
如图11所示,本申请实施例还提供一种通信装置1100,该通信装置1100可以是上文中的网络设备。该通信装置1100包括处理器1110,存储器1120与收发器1130,其中,存储器1120中存储指令或程序,处理器1110用于执行存储器1120中存储的指令或程序。存储器1120中存储的指令或程序被执行时,处理器1110可以执行上述实施例中处理单元1010执行的操作,收发器1130用于执行上述实施例中收发单元1012执行的操作。
应理解,本申请实施例的通信装置1000或通信装置1100可对应于本申请实施例的图3或图7所示的通信方法中的网络设备,并且通信装置1000或通信装置1100中的各个模块的操作和/或功能分别为了实现图3或图7中网络设备的各个方法的相应流程,为了简洁,在此不再赘述。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的通信方法中与第一终端相关的流程。
本申请实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时可以实现上述方法实施例提供的通信方法中与网络设备相关的流程。
当终端装置是终端时,图12示出了一种简化的终端的结构示意图。便于理解和图示方便,图12中,终端以手机作为例子。如图12所示,终端包括处理器、存储器、射频电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对终端进行控制,执行软件程序,处理软件程序的数据等。存储器主要用于存储软件程序和数据。射频电路主要用于基带信号与射频信号的转换以及对射频信号的处理。天线主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。需要说明的是,有些种类的终端可以不具有输入输出装置。
当需要发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电 路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。为便于说明,图12中仅示出了一个存储器和处理器。在实际的终端产品中,可以存在一个或多个处理器和一个或多个存储器。存储器也可以称为存储介质或者存储设备等。存储器可以是独立于处理器设置,也可以是与处理器集成在一起,本申请实施例对此不做限制。
在本申请实施例中,可以将具有收发功能的天线和射频电路视为终端的收发单元,将具有处理功能的处理器视为终端的处理单元。如图12所示,终端包括收发单元1210和处理单元1220。收发单元也可以称为收发器、收发机、收发装置等。处理单元也可以称为处理器,处理单板,处理模块、处理装置等。可选的,可以将收发单元1210中用于实现接收功能的器件视为接收单元,将收发单元1210中用于实现发送功能的器件视为发送单元,即收发单元1210包括接收单元和发送单元。收发单元有时也可以称为收发机、收发器、或收发电路等。接收单元有时也可以称为接收机、接收器、或接收电路等。发送单元有时也可以称为发射机、发射器或者发射电路等。
应理解,收发单元1210用于执行上述方法实施例中终端侧的发送操作和接收操作,处理单元1220用于执行上述方法实施例中终端上除了收发操作之外的其他操作。
例如,在一种实现方式中,收发单元1210用于执行图3中步骤301、步骤302,步骤305等。当然,收发单元1210还用于执行本申请实施例中终端侧的其他收发步骤。处理单元1220用于执行图3中的步骤303,和/或处理单元1220还用于执行本申请实施例中终端侧的其他处理步骤。
又例如,在再一种实现方式中,收发单元1210用于执行图7中步骤701、步骤703、步骤704等。收发单元1210还用于执行本申请实施例中终端侧的其他收发步骤。处理单元1220,用于图7中的步骤702,或执行本申请实施例中终端侧的其他处理步骤。
当终端装置是终端时,可以参照图13所示的设备。作为一个例子,该设备可以完成类似于图9中处理器910的功能。在图13中,该设备包括处理器1310,发送数据处理器1320,接收数据处理器1330。上述实施例中的处理单元812可以是图13中的处理器1310,并完成相应的功能。上述实施例中的收发单元1210可以是图13中的发送数据处理器1320,和/或接收数据处理器1330。虽然图13中示出了信道编码器、信道解码器,但是可以理解这些模块并不对本实施例构成限制性说明,仅是示意性的。
图14示出本实施例的终端的另一种形式。终端1400中包括调制子系统、中央处理子系统、周边子系统等模块。本实施例中的终端可以是其中的调制子系统。具体的,该调制子系统可以包括处理器1403,接口1404。其中处理器1403完成上述处理单元812的功能,接口1404完成上述收发单元810的功能。作为另一种变形,该调制子系统包括存储器1406、处理器1403及存储在存储器1406上并可在处理器上运行的程序,该处理器1403执行该程序时实现上述方法实施例中终端的方法。需要注意的是,所述存储器1406可以是非易失性的,也可以是易失性的,其位置可以位于调制子系统内部,也可以位于处理装置1400中,只要该存储器1406可以连接到所述处理器1403即可。
如图15所示,为本申请实施例提供的一种网络设备1500的示意图。网络设备1500包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)1510和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)1520。所述RRU 1510可以称为收发模块,与图10中的收发单元1012对应,可选地,该收发单元还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1511和射频单元1512。所述RRU 1510部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端发送指示信息。所述BBU 1510部分主要用于进行基带处理,对基站进行控制等。所述RRU 1510与BBU 1520可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU 1520为基站的控制中心,也可以称为处理模块,可以与图10中的处理单元1010对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理模块)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,生成上述指示信息等。
在一个示例中,所述BBU 1520可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU 1520还包括存储器1521和处理器1522。所述存储器1521用以存储必要的指令和数据。所述处理器1522用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程。所述存储器1521和处理器1522可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,本申请实施例中提及的处理器可以是中央处理单元(Central Processing Unit,CPU),还可以是其他通用处理器、数字信号处理器(Digital Signal Processor,DSP)、专用集成电路(Application Specific Integrated Circuit,ASIC)、现成可编程门阵列(Field Programmable Gate Array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件等。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。
还应理解,本申请实施例中提及的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(Read-Only Memory,ROM)、可编程只读存储器(Programmable ROM,PROM)、可擦除可编程只读存储器(Erasable PROM,EPROM)、电可擦除可编程只读存储器(Electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(Random Access Memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(Static RAM,SRAM)、动态随机存取存储器(Dynamic RAM,DRAM)、同步动态随机存取存储器(Synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(Double Data Rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(Enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(Synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(Direct Rambus RAM,DR RAM)。
需要说明的是,当处理器为通用处理器、DSP、ASIC、FPGA或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件时,存储器(存储模块)集成在处理器中。
应注意,本文描述的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三 种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。另外,本文中字符“/”,一般表示前后关联对象是一种“或”的关系。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (30)

  1. 一种通信方法,其特征在于,所述方法包括:
    终端装置接收来自网络设备的第一信息;
    所述终端装置根据所述第一信息确定当前时间对应的设备到设备帧号DFN;
    所述终端装置基于所述当前时间对应的DFN进行侧行链路通信。
  2. 如权利要求1所述的方法,其特征在于,所述第一信息包括基于全球导航卫星系统GNSS的当前时间。
  3. 如权利要求1或2所述的方法,其特征在于,所述第一信息承载在系统消息块SIB中。
  4. 如权利要求1-3任一所述的方法,其特征在于,所述方法还包括:
    所述终端装置接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示所述终端装置基于DFN进行侧行链路通信。
  5. 如权利要求4所述的方法,其特征在于,所述第一指示信息承载在系统消息块SIB中的第一字段。
  6. 如权利要求1-5任一所述的方法,其特征在于,所述第一信息包括帧号偏移量,所述帧号偏移量为所述当前时间所述DFN与系统帧号SFN之间的偏移量,所述SFN为用于所述终端装置与所述网络设备之间通信的无线帧号。
  7. 如权利要求6所述的方法,其特征在于,所述终端装置根据第一信息确定当前时间对应的DFN,包括:
    所述终端装置基于所述帧号偏移量和所述当前时间对应的SFN,确定所述当前时间对应的DFN。
  8. 如权利要求1-7任一所述的方法,其特征在于,所述方法还包括:
    所述终端装置在第一时间发送侧行链路同步信号块S-SSB,所述S-SSB中包括所述第一时间对应的DFN。
  9. 一种通信方法,其特征在于,所述方法包括:
    网络设备确定第一信息,所述第一信息用于确定当前时间对应的设备到设备帧号DFN,所述当前时间对应的DFN用于终端装置进行侧行链路通信;
    所述网络设备向终端装置发送所述第一信息。
  10. 如权利要求9所述的方法,其特征在于,所述第一信息包括基于全球导航卫星系统GNSS的当前时间。
  11. 如权利要求9或10所述的方法,其特征在于,所述第一信息承载在系统消息块SIB中。
  12. 如权利要求9-11任一所述的方法,其特征在于,所述方法还包括:
    所述网络设备向所述终端装置发送第一指示信息,所述第一指示信息用于指示所述终端装置基于DFN进行侧行链路通信。
  13. 如权利要求12所述的方法,其特征在于,所述第一指示信息承载在系统消息块SIB中的第一字段。
  14. 如权利要求9-13任一所述的方法,其特征在于,所述第一信息包括帧号偏移量,所述帧号偏移量为所述当前时间所述DFN和系统帧号SFN之间的偏移量,所述SFN为用于所述网络设备与所述终端装置之间通信的无线帧号。
  15. 一种通信装置,其特征在于,包括:
    收发单元,用于接收来自网络设备的第一信息;
    处理单元,用于根据所述第一信息确定当前时间对应的设备到设备帧号DFN;
    所述收发单元,还用于基于所述当前时间对应的DFN进行侧行链路通信。
  16. 如权利要求15所述的通信装置,其特征在于,所述第一信息包括基于全球导航卫星系统GNSS的当前时间。
  17. 如权利要求15或16所述的通信装置,其特征在于,所述第一信息承载在系统消息块SIB中。
  18. 如权利要求15-17任一所述的通信装置,其特征在于,所述收发单元还用于:
    接收来自所述网络设备的第一指示信息,所述第一指示信息用于指示所述终端装置基于DFN进行侧行链路通信。
  19. 如权利要求18所述的通信装置,其特征在于,所述第一指示信息承载在系统消息块SIB中的第一字段。
  20. 如权利要求15-19任一所述的通信装置,其特征在于,所述第一信息包括帧号偏移量,所述帧号偏移量为所述当前时间所述DFN和系统帧号SFN之间的偏移量,所述SFN为用于所述终端装置与所述网络设备之间通信的无线帧号。
  21. 如权利要求20所述的通信装置,其特征在于,所述处理单元具体用于:
    基于所述帧号偏移量和所述当前时间对应的SFN,确定所述当前时间对应的DFN。
  22. 如权利要求15-21任一所述的通信装置,其特征在于,所述收发单元还用于:
    在第一时间发送侧行链路同步信号块S-SSB,所述S-SSB中包括所述第一时间对应的DFN。
  23. 一种通信装置,其特征在于,包括:
    处理单元,用于确定第一信息,所述第一信息用于确定当前时间对应的设备到设备帧号DFN,所述当前时间对应的DFN用于终端装置进行侧行链路通信;
    收发单元,用于向所述终端装置发送第一信息。
  24. 如权利要求23所述的通信装置,其特征在于,所述第一信息包括基于全球导航卫星系统GNSS的当前时间。
  25. 如权利要求23或24所述的通信装置,其特征在于,所述第一信息承载在系统消息块SIB中。
  26. 如权利要求23-25任一所述的通信装置,其特征在于,所述收发单元还用于:
    向所述终端装置发送第一指示信息,所述第一指示信息用于指示所述终端装置基于DFN进行侧行链路通信。
  27. 如权利要求26所述的通信装置,其特征在于,所述第一指示信息承载在系统消息块SIB中的第一字段。
  28. 如权利要求23-27任一所述的通信装置,其特征在于,所述第一信息包括帧号偏移量,所述帧号偏移量为所述当前时间所述DFN和系统帧号SFN之间的偏移量,所述SFN为用于所述网络设备与所述终端装置之间通信的无线帧号。
  29. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令,当其在计算机上运行时,使得计算机执行如权利要求1~8中任一所述的方法。
  30. 一种计算机可读存储介质,其特征在于,所述计算机可读存储介质中存储有指令, 当其在计算机上运行时,使得计算机执行如权利要求9~14中任一所述的方法。
PCT/CN2019/109236 2019-09-29 2019-09-29 一种通信方法及装置 WO2021056584A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980100647.2A CN114503696B (zh) 2019-09-29 一种通信方法及装置
PCT/CN2019/109236 WO2021056584A1 (zh) 2019-09-29 2019-09-29 一种通信方法及装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/109236 WO2021056584A1 (zh) 2019-09-29 2019-09-29 一种通信方法及装置

Publications (1)

Publication Number Publication Date
WO2021056584A1 true WO2021056584A1 (zh) 2021-04-01

Family

ID=75165470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/109236 WO2021056584A1 (zh) 2019-09-29 2019-09-29 一种通信方法及装置

Country Status (1)

Country Link
WO (1) WO2021056584A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023066589A1 (en) * 2021-10-21 2023-04-27 Nokia Technologies Oy Method of requesting and delivery of sib9 based accurate time synchronization via sidelink relay user equipment

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105992331A (zh) * 2015-01-29 2016-10-05 中兴通讯股份有限公司 通信处理方法、装置及用户设备
CN106465312A (zh) * 2014-03-14 2017-02-22 三星电子株式会社 用于设备到设备通信网络中的同步的方法和装置
WO2018088951A1 (en) * 2016-11-11 2018-05-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for synchronization
US20190254093A1 (en) * 2015-02-26 2019-08-15 Nec Corporation System and method for data communication

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106465312A (zh) * 2014-03-14 2017-02-22 三星电子株式会社 用于设备到设备通信网络中的同步的方法和装置
CN105992331A (zh) * 2015-01-29 2016-10-05 中兴通讯股份有限公司 通信处理方法、装置及用户设备
US20190254093A1 (en) * 2015-02-26 2019-08-15 Nec Corporation System and method for data communication
WO2018088951A1 (en) * 2016-11-11 2018-05-17 Telefonaktiebolaget Lm Ericsson (Publ) Method and apparatus for synchronization

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CATT: "Consideration on DFN offset", 3GPP TSG-RAN WG2 MEETING #97 R2-1701238, 17 February 2017 (2017-02-17), XP051223442 *
HUAWEI ET AL.: "Remaining issues on DFN offset", 3GPP TSG RAN WG2 MEETING #97 R2-1701373, 17 February 2017 (2017-02-17), XP051223501 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023066589A1 (en) * 2021-10-21 2023-04-27 Nokia Technologies Oy Method of requesting and delivery of sib9 based accurate time synchronization via sidelink relay user equipment

Also Published As

Publication number Publication date
CN114503696A (zh) 2022-05-13

Similar Documents

Publication Publication Date Title
EP3879876B1 (en) Wireless communication method and terminal device
WO2021051364A1 (zh) 一种通信方法、装置及设备
WO2021000688A1 (zh) 一种发送、接收能力信息的方法及设备
EP3337256B1 (en) Method and device for processing proximity services in multiple carriers
WO2021056584A1 (zh) 一种通信方法及装置
WO2021134659A1 (zh) 一种中继传输的方法和设备
WO2021026929A1 (zh) 一种通信方法及装置
WO2021212510A1 (zh) 一种通信方法及装置
CN113473590B (zh) 一种通信方法及装置
WO2021159511A1 (zh) 一种资源指示和确定方法及相关装置
WO2021212505A1 (zh) 一种通信方法、装置及系统
WO2021138854A1 (zh) 一种信号发送、接收方法、装置及设备
CN114503696B (zh) 一种通信方法及装置
WO2021134763A1 (zh) 一种恢复传输的方法、装置及设备
WO2021088063A1 (zh) 一种通信方法及装置
WO2021031026A1 (zh) 一种下行控制信息dci的传输方法及装置
WO2023241288A1 (zh) 一种唤醒信号传输方法及通信系统
CN112584343B (zh) 通信方法及相关产品
US20230056703A1 (en) Communication Method and Communication Apparatus
WO2022257796A1 (zh) 通信方法和通信装置
WO2022151266A1 (zh) 一种媒体接入访问mac信令适用时间的确定方法和装置
WO2023123229A1 (zh) 无线通信的方法、终端设备和网络设备
WO2023024009A1 (zh) 一种节能信号的传输资源的确定方法及装置、终端设备
WO2022188078A1 (zh) 无线通信的方法、终端设备和网络设备
WO2021228053A1 (zh) 一种通信方法、装置及存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19946448

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19946448

Country of ref document: EP

Kind code of ref document: A1