WO2017101823A1 - 一种无线帧的传输方法及无线网络设备 - Google Patents

一种无线帧的传输方法及无线网络设备 Download PDF

Info

Publication number
WO2017101823A1
WO2017101823A1 PCT/CN2016/110188 CN2016110188W WO2017101823A1 WO 2017101823 A1 WO2017101823 A1 WO 2017101823A1 CN 2016110188 W CN2016110188 W CN 2016110188W WO 2017101823 A1 WO2017101823 A1 WO 2017101823A1
Authority
WO
WIPO (PCT)
Prior art keywords
subframe
transmission
radio frame
network device
wireless network
Prior art date
Application number
PCT/CN2016/110188
Other languages
English (en)
French (fr)
Inventor
王婷
李元杰
张健
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP20191368.8A priority Critical patent/EP3823402B1/en
Priority to EP16874880.4A priority patent/EP3376816B1/en
Publication of WO2017101823A1 publication Critical patent/WO2017101823A1/zh
Priority to US16/011,128 priority patent/US10405343B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0833Random access procedures, e.g. with 4-step access
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • H04W74/006Transmission of channel access control information in the downlink, i.e. towards the terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/002Transmission of channel access control information
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W74/00Wireless channel access
    • H04W74/08Non-scheduled access, e.g. ALOHA
    • H04W74/0866Non-scheduled access, e.g. ALOHA using a dedicated channel for access
    • H04W74/0891Non-scheduled access, e.g. ALOHA using a dedicated channel for access for synchronized access

Definitions

  • the present invention relates to the field of wireless communication technologies, and in particular, to a method for transmitting a wireless frame and a wireless network device.
  • a physical random access channel (PRACH) is used for random access, which is a way for user equipment to perform initial connection, handover, connection re-establishment, and resume uplink synchronization.
  • the PRACH scheduling transmission refers to a process of determining a preamble Preamble sequence of an access channel by information interaction between wireless network devices in a wireless communication system.
  • Embodiments of the present invention provide a method for transmitting a radio frame and a radio network device, so as to implement PRACH scheduling transmission between radio network devices based on cooperation of radio frames of different structures.
  • a first aspect of the embodiments of the present invention provides a method for transmitting a radio frame, including:
  • the second wireless network device receives the PRACH trigger information sent by the first wireless network device, where the PRACH trigger information is carried in the first transmission subframe in the first radio frame;
  • the second wireless network device sends a preamble Preamble sequence to the first wireless network device, and the Preamble sequence is carried in a second transmission subframe of the second radio frame, in response to the PRACH trigger information;
  • the preset first mapping relationship between the subframe number of the first transmission subframe and the subframe number of the second transmission subframe, and the structure and location of the transmission subframe in the first radio frame The structure of the transmission subframe in the second radio frame is different.
  • PRACH scheduling transmission of the wireless communication system can be implemented based on wireless frame cooperation of different structures.
  • the second wireless network device after the second wireless network device sends, to the first wireless network device, a Preamble sequence that is carried in a second transmission subframe of the second radio frame, the second The wireless network device also performs the following operations:
  • the second radio network device detects the RAR sent by the first radio network device in a random access response RAR time window, and the RAR sent by the first radio network device is carried in a third transmission subframe, and the RAR time
  • the window includes N transmission subframes, the third transmission subframe is any one of the N transmission subframes, and the N is a positive integer;
  • the subframe number of the first transmission subframe of the RAR time window and the subframe number of the second transmission subframe have a preset second mapping relationship.
  • the second wireless network device after the transmitting, by the first wireless network device, the Preamble sequence of the second transmission subframe that is carried in the second radio frame, the second wireless network device further performs The following operations:
  • the second radio network device detects the RAR sent by the first radio network device in a random access response RAR time window, and the RAR sent by the first radio network device is carried in a third transmission subframe, and the RAR time
  • the window includes N transmission subframes, and the N is a positive integer
  • the subframe number of the first transmission subframe of the RAR time window and the subframe number of the first transmission subframe have a preset third mapping relationship.
  • the second wireless network device further performs the following operations:
  • the second radio network device detects that the ith transmission subframe of the RAR time window carries the PDCCH information of the random access radio network temporary identifier RA-RNTI scrambled, and the PDCCH information corresponds to Include the Preamble sequence in the downlink data block, and send an uplink shared channel UL-SCH data block carried in the fourth transmission subframe to the first radio network device;
  • the subframe number of the fourth transmission subframe and the subframe number of the ith transmission subframe of the RAR time window have a preset fourth mapping relationship, where i is less than or equal to the N Positive integer.
  • a second aspect of the embodiments of the present invention provides a method for transmitting a radio frame, including:
  • the first wireless network device sends the physical random access channel PRACH triggering information to the second wireless network device, where the PRACH trigger information is carried in the first transmission subframe in the first radio frame;
  • the first wireless network device receives a preamble Preamble sequence that is sent by the second wireless network device in response to the PRACH trigger information, where the Preamble sequence is carried in a second transmission subframe of the second radio frame;
  • the preset first mapping relationship between the subframe number of the first transmission subframe and the subframe number of the second transmission subframe, and the structure and location of the transmission subframe in the first radio frame The structure of the transmission subframe in the second radio frame is different.
  • the first wireless network device receives, by the second wireless network device, the second transmission subframe that is sent by using the PRACH trigger information and is carried by the second radio frame. After the Preamble sequence, the first wireless network device also performs the following operations:
  • a random access response (RAR) carried in a third transmission subframe where the third transmission subframe is any one of N transmission subframes
  • the N transmission subframes constitute a RAR time window for detecting the RAR, where N is a positive integer greater than one;
  • the subframe number of the first transmission subframe of the RAR time window and the subframe number of the second transmission subframe have a preset second mapping relationship.
  • the first wireless network device receives, by the second wireless network device, the second wireless frame that is sent in response to the PRACH trigger information After transmitting the Preamble sequence of the subframe, the first wireless network device also performs the following operations:
  • the first wireless network device sends a random access response (RAR) to the second wireless network device, where the RAR is carried in a third transmission subframe, and the third transmission subframe is any one of N transmission subframes. Transmitting a subframe, the N transmission subframes constituting an RAR time window for detecting the RAR, where N is a positive integer greater than one;
  • the subframe number of the first transmission subframe of the RAR time window and the subframe number of the first transmission subframe have a preset third mapping relationship.
  • the first wireless network device further performs the following operations:
  • the first radio network device receives an uplink shared channel UL-SCH data block sent by the second radio network device, where the UL-SCH data block is carried in a fourth transmission subframe, and the UL-SCH data block And the second radio network device detects that the ith transmission subframe of the RAR time window carries the physical downlink control channel PDCCH information that is scrambled by the random access radio network temporary identifier RA-RNTI, and the PDCCH information Transmitted in the case that the corresponding downlink data block includes the Preamble sequence;
  • the subframe number of the fourth transmission subframe and the subframe number of the ith transmission subframe of the RAR time window have a preset fourth mapping relationship, where i is less than or equal to the positive of the N Integer.
  • a third aspect of the embodiments of the present invention provides a method for transmitting a radio frame, including:
  • the time unit index of the first transmission time unit and the time unit index of the second transmission time unit have a preset first mapping relationship, and the structure and location of the transmission time unit in the first radio frame The structure of the transmission time unit in the second radio frame is different.
  • the PRACH scheduling of the wireless communication system can be implemented based on the wireless frame cooperation of different structures. transmission.
  • the second wireless network device after the second wireless network device sends, to the first wireless network device, a Preamble sequence that is carried in a second transmission time unit of the second radio frame, the second The wireless network device also performs the following operations:
  • the second radio network device detects, in a random access response RAR time window, the RAR sent by the first radio network device, where the RAR sent by the first radio network device is carried in a third transmission time unit, and the RAR time
  • the window includes N transmission time units, and the third transmission time unit is any one of the N transmission time units, and the N is a positive integer;
  • the time unit index of the first transmission time unit of the RAR time window and the time unit index of the second transmission time unit have a preset second mapping relationship.
  • the second wireless network device after the transmitting, by the first wireless network device, the Preamble sequence of the second transmission time unit carried in the second radio frame, the second wireless network device further performs The following operations:
  • the second radio network device detects, in a random access response RAR time window, the RAR sent by the first radio network device, where the RAR sent by the first radio network device is carried in a third transmission time unit, and the RAR time
  • the window includes N transmission time units, and the N is a positive integer
  • the time unit index of the first transmission time unit of the RAR time window has a preset third mapping relationship with the time unit index of the first transmission time unit.
  • the second wireless network device further performs the following operations:
  • the second radio network device detects that the ith transmission time unit of the RAR time window carries the physical downlink control channel PDCCH information that is scrambled by the random access radio network temporary identifier RA-RNTI, and the PDCCH information corresponds to Include the Preamble sequence in the downlink data block, and send, to the first wireless network device, an uplink shared channel UL-SCH data block carried in a fourth transmission time unit;
  • the time unit index of the fourth transmission time unit and the time unit index of the ith transmission time unit of the RAR time window have a preset fourth mapping relationship, where i is less than or A positive integer equal to the N.
  • a fourth aspect of the embodiments of the present invention provides a method for transmitting a radio frame, including:
  • the first wireless network device sends a physical random access channel PRACH triggering information to the second wireless network device, where the PRACH trigger information is carried in a first transmission time unit in the first radio frame;
  • the time unit index of the first transmission time unit and the time unit index of the second transmission time unit have a preset first mapping relationship, and the structure and location of the transmission time unit in the first radio frame The structure of the transmission time unit in the second radio frame is different.
  • the first wireless network device receives, by the second wireless network device, the second transmission time unit that is sent in the second radio frame and is sent by the second wireless network device in response to the PRACH trigger information. After the Preamble sequence, the first wireless network device also performs the following operations:
  • a random access response (RAR) carried in a third transmission time unit to the second wireless network device, where the third transmission time unit is any one of N transmission time units
  • the N transmission time units constitute a RAR time window for detecting the RAR, and the N is a positive integer greater than 1.
  • the time unit index of the first transmission time unit of the RAR time window and the time unit index of the second transmission time unit have a preset second mapping relationship.
  • the first wireless network device receives, by the second wireless network device, the second transmission time unit carried in the second radio frame, which is sent by the second wireless network device in response to the PRACH trigger information. After the Preamble sequence, the first wireless network device also performs the following operations:
  • a random access response (RAR) to the second wireless network device, where the RAR is carried in a third transmission time unit, and the third transmission time unit is any one of N transmission time units a transmission time unit, the N transmission time units constitute a RAR time window for detecting the RAR, and the N is a positive integer greater than 1;
  • the time unit index of the inter-unit has a preset third mapping relationship.
  • the first wireless network device further performs the following operations:
  • the first wireless network device Receiving, by the first wireless network device, an uplink shared channel UL-SCH data block sent by the second wireless network device, where the UL-SCH data block is carried in a fourth transmission time unit, the UL-SCH data block And determining, by the second wireless network device, that the ith transmission time unit of the RAR time window carries the physical downlink control channel PDCCH information that is scrambled by the random access radio network temporary identifier RA-RNTI, and the PDCCH information Transmitted in the case that the corresponding downlink data block includes the Preamble sequence;
  • the time unit index of the fourth transmission time unit and the time unit index of the ith transmission time unit of the RAR time window have a preset fourth mapping relationship, where i is less than or equal to the positive of the N Integer.
  • a “transmission time unit” (or simply “time unit”) described in the present application may be in a symbol, a subframe, a slot, or a mini slot. Any one may also include at least one subframe, at least one symbol, at least one time slot, or at least one micro time slot.
  • the time unit index refers to the sequence number used to identify the time unit. For example, when the time unit is defined as a subframe, the time unit index corresponds to the subframe number.
  • the structure of the time unit is different, including the duration of the time unit is different and/or the number of symbols, subframes, time slots or minislots included in the time unit is different, for example, the time unit in the first radio frame may include at least One subframe, the time unit in the second radio frame may include at least one time slot; or the time unit in the first radio frame and the second radio frame includes at least one subframe, but the subframe in the first radio frame and The duration of the subframes in the second radio frame is different.
  • radio frame refers to a time domain resource unit defined in wireless communication, and a radio frame may include at least one time unit, for example, a Third Generation Partnership Project (Third Generation Partnership Project, The radio frame defined in 3GPP) TS 36.211 includes a plurality of subframes, each of which contains a plurality of symbols.
  • 3GPP Third Generation Partnership Project
  • the first radio frame and the second radio frame in the present application have different structures, and refer to the first radio frame and the second radio frame.
  • the wireless frame has at least one structure different in the structure of the subcarrier spacing, the cyclic prefix (CP, Cyclic Prefix), and the time unit, for example, the structure of the included time units is different, and/or contains a different number of time units.
  • the first radio frame includes L1 (L1 ⁇ 1) time units, each time unit is defined as one subframe, and the second radio frame includes L2 (L2 ⁇ 1) time units, and L1 is not equal to L2.
  • Each time unit is defined as one subframe.
  • the first radio frame and the second radio frame each include L3 (L3 ⁇ 1) time units, the time unit in the first radio frame includes at least one subframe, and the time unit in the second radio frame includes at least one time unit. Time slot.
  • a fifth aspect of the embodiments of the present invention provides a second wireless network device, where the device has a behavior function that implements the method provided by the foregoing first or third aspect, and the function may be implemented by using hardware or by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • a sixth aspect of the embodiments of the present invention provides a first wireless network device, where the device has a behavior function that implements the method provided by the foregoing second or fourth aspect, and the function may be implemented by using hardware or by hardware.
  • the hardware or software includes one or more modules corresponding to the functions described above.
  • a seventh aspect of an embodiment of the present invention provides a second wireless network device, the device comprising a memory and a processor coupled to the memory.
  • the memory is configured to store instructions
  • the processor is configured to execute the instructions to perform some or all of the steps of any of the methods of the first or third aspect above.
  • An eighth aspect of an embodiment of the present invention provides a first wireless network device, the device comprising a memory and a processor coupled to the memory.
  • the memory is configured to store instructions
  • the processor is configured to execute the instructions to perform some or all of the steps of any of the methods of the second or fourth aspect above.
  • a ninth aspect of the embodiments of the present invention discloses a computer readable storage medium, wherein the computer readable storage medium stores program code executable by a second wireless network device, the program code specifically including the first aspect for performing the above Or an instruction of some or all of the steps of any of the methods of the third aspect.
  • a tenth aspect of the embodiments of the present invention discloses a computer readable storage medium, wherein the computer readable storage medium stores program code executable by a first wireless network device, the program code specifically comprising Or an instruction of some or all of the steps of any of the methods of the fourth aspect.
  • the first transmission subframe is in the same period as the M1 transmission subframes of the second radio frame, and the M1 is an integer greater than one;
  • the subframe l is a subframe number of the second transmission subframe
  • the subframe m is a subframe number of the tth transmission subframe in the M1 transmission subframes, where the n is 0 or A positive integer, the t being a positive integer less than or equal to M1.
  • the Subframe p is a subframe number of the first transmission subframe of the RAR time window
  • the Subframe q is a subframe number of the second transmission subframe
  • r is a positive integer
  • the Subframe p is a subframe number of the first transmission subframe of the RAR time window
  • the Subframe q1 is a subframe number of the transmission subframe in the first radio frame in the transmission period.
  • the first time period is a transmission period of the second transmission subframe
  • r1 is a positive integer
  • the Subframe p is a subframe number of a first transmission subframe of the RAR time window
  • the Subframe q2 is a subframe of a transmission subframe in a first radio frame in a transmission period.
  • the second time period is a transmission period of a transmission subframe in which the subframe number is Subframe q+w
  • the Subframe q is a subframe number of the second transmission subframe
  • the r2 is a positive integer
  • w is a positive integer greater than one.
  • the Subframe x is a subframe number of a first transmission subframe of the RAR time window
  • the Subframe y is a subframe number of the first transmission subframe
  • the value of the z is a positive integer.
  • the RAR time window is in the first radio frame, and the kth transmission subframe after the ith transmission subframe of the RAR time window is in the same period as the M2 transmission subframes of the second radio frame.
  • the M 2 is an integer greater than 1, and the k is 0 or a positive integer;
  • the Subframe a is the subframe number of the fourth transmission subframe
  • the Subframe b1 is the subframe number of the jth transmission subframe in the M2 transmission subframes, where the c1 is 0 or a positive integer, the j being a positive integer less than or equal to M2;
  • the RAR time window is in the second radio frame
  • the Subframe a is a subframe number of the fourth transmission subframe
  • the Subframe b2 is a subframe number of a transmission subframe in a first radio frame in a transmission period, where the third period is a transmission period of the transmission subframe in which the subframe number is Subframe d+k
  • the subframe d is a subframe number of the ith transmission subframe of the RAR time window
  • the c2 is 0 or a positive integer
  • k is 0 or a positive integer.
  • the mapping between the first mapping relationship, the second mapping relationship, the third mapping relationship, and the fourth mapping relationship between the time units and the foregoing subframes is similar, the only difference is that the above mapping relationship is in units of subframes, and in the third aspect or the fourth In the method provided by the aspect, the mapping relationship is in units of time units. It can be understood that the first mapping relationship, the second mapping relationship, the third mapping relationship, and the fourth mapping relationship in the first aspect, the second aspect, the third aspect, or the fourth aspect may further perform other forms according to requirements of the system. The design of this application is not limited thereto.
  • the first radio frame may be a radio frame of a first carrier
  • the second radio frame may be a radio frame of a second carrier, a frequency band of the first carrier
  • the second The frequency band of the carrier can be different.
  • the first carrier may be a carrier whose frequency band is in the centimeter wave frequency band
  • the second carrier may be a carrier whose frequency band is in the millimeter wave frequency band
  • the specific frequency band of the first carrier and the second carrier is not in the embodiment of the present invention. Be the only limit.
  • the first carrier and the second carrier may be different sub-bands or different sub-carriers or different frequency domain parts in the same frequency band.
  • the bandwidth of one frequency band is 20 MHz
  • the first carrier is 5 MHz in 20 MHz
  • the second carrier is another 5 MHz in 20 MHz.
  • Different sub-bands, different sub-carriers or different frequency-domain parts of the same frequency band may correspond to different radio frame structures, for example, different sub-bands of different carriers, different sub-carriers or different frequency-domain parts may be in sub-carrier spacing, cyclic prefix (CP, Cyclic Prefix) and the time unit and the like have at least one structure different.
  • different subcarrier spacings may be 15 kHz, or 30 kHz, or 60 kHz, etc.
  • Different CPs may be normal CPs or extended CPs, and the time units may be defined in various types, such as subframes, time slots, and minislots.
  • the time units on the first carrier and the second carrier are each defined as a subframe, but the first subframe of the first carrier may correspond to multiple second subframes of the second carrier.
  • the frequency band of the first carrier and the frequency band of the second carrier may be the same, but the frame structure used by the first carrier and the frame structure used by the second carrier are different, and the embodiment of the present invention is different.
  • the specific frame structure of the first carrier and the second carrier is not limited.
  • the first wireless network device includes a base station or a user equipment
  • the second wireless network device includes a base station or a user equipment.
  • the subframe number of the transmission subframe is determined, and the time position of the transmission subframe in the radio frame is determined.
  • Both the first wireless network device and the second wireless network device may determine the time position of the transmission subframe by determining the subframe number of the transmission subframe.
  • the second wireless network device and the first wireless network device perform transmission of the first wireless frame and the second wireless frame, and the first wireless network device sends the first wireless network device to the first wireless network device.
  • the PRACH trigger information of the first transmission subframe in the radio frame after the second radio network device receives the PRACH trigger information, based on the subframe number of the first transmission subframe defined in the preset first mapping relationship, and the second radio frame.
  • the structure of the transmission subframe is different. It can be seen that the wireless network device in the solution can implement the PRACH scheduling transmission between the wireless network devices based on the cooperation of the wireless frames of different structures.
  • FIG. 1 is a simplified application scenario diagram of a communication system according to an embodiment of the present invention.
  • FIG. 1.1 is a schematic diagram of a frame structure applicable to a scheme for supporting cross-carrier PRACH scheduling transmission specified in an existing protocol
  • FIG. 2 is a schematic flowchart diagram of a method for transmitting a radio frame according to an embodiment of a first method of the present invention
  • FIG. 2.1 is a diagram showing an example of a frame structure of a radio frame including a first mapping relationship according to an embodiment of the present disclosure
  • FIG. 2.1-a is a diagram showing an example of a frame structure of another radio frame including a first mapping relationship according to an embodiment of the present invention.
  • FIG. 2.2 is a diagram showing an example of a frame structure of a radio frame including a second mapping relationship according to an embodiment of the present disclosure
  • FIG. 2.3 is a diagram showing an example of a frame structure of another radio frame including a second mapping relationship according to an embodiment of the present disclosure
  • FIG. 2.3-a is a diagram showing an example of a frame structure of another radio frame including a second mapping relationship according to an embodiment of the present invention
  • FIG. 2.4 is a diagram showing an example of a frame structure of another radio frame including a second mapping relationship according to an embodiment of the present disclosure
  • FIG. 2.4-a is a diagram showing an example of a frame structure of another radio frame including a second mapping relationship according to an embodiment of the present invention
  • FIG. 2.5 is a diagram showing an example of a frame structure of a radio frame including a third mapping relationship according to an embodiment of the present disclosure
  • 2.6 is a diagram showing an example of a frame structure of a radio frame including a fourth mapping relationship according to an embodiment of the present invention
  • Figure 2.6-a is a diagram showing an example of a frame structure of another radio frame including a fourth mapping relationship according to an embodiment of the present invention
  • 2.7 is a diagram showing an example of a frame structure of a radio frame including a fourth mapping relationship according to an embodiment of the present invention
  • FIG. 2.7-a is a diagram showing an example of a frame structure of another radio frame including a fourth mapping relationship according to an embodiment of the present invention
  • FIG. 3 is a schematic structural diagram of a user equipment according to an embodiment of the present disclosure.
  • FIG. 4 is a schematic structural diagram of a base station according to an embodiment of the present invention.
  • FIG. 5 is a schematic structural diagram of another user equipment according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic structural diagram of another base station according to an embodiment of the present invention.
  • the technical solution of the embodiment of the present invention can be applied to hybrid network communication of LTE (Long Term Evolution) RAT (radio access technology) and 5G (the 5th generation mobile communication technology) RAT.
  • LTE Long Term Evolution
  • 5G the 5th generation mobile communication technology
  • the LTE RAT may be, for example, an FDD (Frequency Division Dual) system of LTE or a TDD (Time Division Duplexing) system or a full duplex system of LTE.
  • FIG. 1 is a simplified network architecture diagram of a communication system according to an embodiment of the present invention.
  • the communication system includes at least one or more network side devices and one or more terminals, wherein the terminal includes a user equipment (UE), and the network side device includes a base station and network control. Or mobile switching center, etc.
  • the terminal can communicate with the network side device, or can communicate with another terminal, such as D2D (device to device) or M2M (machine to machine) scenario.
  • Terminal communication can also communicate with another network side device, such as communication between a macro base station and an access point.
  • the wireless network device (including the first wireless network device and the second wireless network device) of the embodiment of the present invention includes the network side device and/or the terminal in the wireless communication system.
  • the network architecture of the communication system is described by taking the first wireless network device as the base station and the second wireless network device as the application scenario of the user equipment.
  • the first wireless network device and the second wireless network device are user devices.
  • the first wireless network device and the second wireless network device are both base stations, or the first wireless network device is a user equipment, and the second wireless network device is a base station, which is similar to the embodiment, and is not described in this embodiment.
  • the base station includes various types of devices capable of providing a base station function.
  • a device that provides a base station function in a 2G (2-Generation wireless telephone technology) network includes a BTS (base transceiver station).
  • the transceiver station) and the BSC (base station controller), the 3G (3rd-Generation, 3rd generation mobile communication technology) network, and the device providing the base station function include a Node B (NodeB) and an RNC (radio network controller).
  • the controller provides a base station function in the 4th (4th Generation Mobile Communication) network, including an eNB (evolved NodeB), and provides a base station function in a WLAN (Wireless LAN).
  • the device is an AP (Access Point).
  • the user equipment is a terminal device, including a mobile terminal device and a non-mobile terminal device. User equipment can be distributed in the network.
  • User equipments have different names in different networks, such as: terminals, mobile stations, subscriber units, stations, cellular phones, personal digital assistants, wireless modems, wireless communication devices, handheld Equipment, laptops, cordless phones, wireless local loop stations, etc.
  • the user equipment can communicate with one or more core networks via a RAN (Radio Access Network) (access portion of the wireless communication network), for example, exchange voice and/or data with the wireless access network.
  • RAN Radio Access Network
  • the frame structure of the first radio frame on the first carrier is the same as the frame structure of the second radio frame on the second carrier.
  • the UE receives the PDCCH (Physical Downlink Control Channel)
  • the PRACH triggering information is carried on the first transmission subframe of the first radio frame of the first carrier, and the UE sends the subframe to the base station in response to the received PRACH trigger information.
  • Preamble sequence the Preamble sequence is carried in a second transmission subframe of a second radio frame of the second carrier, the subframe number is Subframe i+k2 (k2 is greater than or equal to 6), and the subframe number is The transmission period of the transmission subframe of the Subframe i is at the same time period as the first transmission subframe of the subframe number Subframe n.
  • the prior art has proposed the foregoing interaction process to implement PRACH scheduling transmission between the base station and the user equipment.
  • the frame structure of the radio frame is different, for example, in the case of CA (Carrier Aggregation) of the hybrid network communication system of the LTE RAT and the 5G RAT, one subframe of one carrier corresponds to multiple subcarriers of another carrier. Frames, there is currently no feasible interaction procedure to implement PRACH scheduling transmission between wireless network devices.
  • CA Carrier Aggregation
  • the “subframe” or “transmission subframe” described in this application refers to a “time unit” or a “transmission time unit”, a structure or duration of a time unit in the time domain, etc., which can be set according to system requirements. This application does not limit this.
  • the one time unit may also be directly defined as a symbol, a time slot or a minislot, or the like, or include at least one symbol, at least one subframe, at least one time slot, or at least one micro time slot, etc., which is implemented by the present invention.
  • the solution of the example may also be applied to time units such as symbols, time slots or mini-slots, or to time units such as at least one symbol, at least one subframe, at least one time slot or at least one micro-slot, etc.
  • time units such as symbols, time slots or mini-slots
  • time units such as at least one symbol, at least one subframe, at least one time slot or at least one micro-slot, etc.
  • the subframe is a time unit, and will not be described again.
  • FIG. 2 is a wireless frame transmission side provided by an embodiment of the method of the present invention.
  • the flow chart of the method, as shown in FIG. 2, the wireless frame transmission method includes the following steps:
  • the first wireless network device sends, to the second wireless network device, physical random access channel PRACH trigger information of the first transmission subframe that is carried in the first radio frame.
  • the PRACH trigger information may specifically be a physical downlink control channel command PDCCH order.
  • the second wireless network device receives the physical random access channel PRACH trigger information carried by the first transmission subframe in the first radio frame sent by the first radio network device.
  • the second wireless network device sends a preamble Preamble sequence of the second transmission subframe that is carried in the second radio frame to the first radio network device in response to the PRACH trigger information.
  • the preset first mapping relationship between the subframe number of the first transmission subframe and the subframe number of the second transmission subframe, and the structure and location of the transmission subframe in the first radio frame The structure of the transmission subframe in the second radio frame is different.
  • the first wireless network device receives a preamble Preamble sequence of the second transmission subframe that is sent by the second wireless network device and is sent by the second radio frame in response to the PRACH trigger information.
  • the preset first mapping relationship between the subframe number of the first transmission subframe and the subframe number of the second transmission subframe, and the structure and location of the transmission subframe in the first radio frame The structure of the transmission subframe in the second radio frame is different.
  • the preset first mapping relationship may be pre-written by the developer into the second wireless network device and the first wireless network device, or may be sent to the second wireless network device by using other service devices in the communication system. And the first wireless network device sends, or the first wireless network device sends the signaling indicating the preset first mapping relationship to the second wireless network device, where the first mapping relationship is specifically obtained by the embodiment of the present invention.
  • the method is not limited.
  • the second wireless network device and the first wireless network device perform transmission of the first wireless frame and the second wireless frame, and the first wireless network device sends the first wireless network device to the first wireless network device.
  • the PRACH trigger information of the first transmission subframe in the radio frame after the second radio network device receives the PRACH trigger information, based on the subframe number of the first transmission subframe defined in the preset first mapping relationship, and the second radio frame.
  • the PRACH scheduling transmission between the wireless network devices wherein the structure of the transmission subframe in the first radio frame is different from the structure of the transmission subframe in the second radio frame, and it can be seen that the wireless network device in the solution can be different based on different Collaboration of structured radio frames to implement PRACH scheduled transmissions between wireless network devices.
  • the first transmission subframe is in the same period as the M1 transmission subframes of the second radio frame, and the M1 is an integer greater than one;
  • the subframe l is a subframe number of the second transmission subframe
  • the subframe m is a subframe number of the tth transmission subframe in the M1 transmission subframes, where the n is 0 or A positive integer, the t being a positive integer less than or equal to M1.
  • FIG. 2.1 is a diagram showing an example of a frame structure of a radio frame including a first mapping relationship according to an embodiment of the present invention.
  • the value of M1 is 5, that is, the first transmission subframe in the first radio frame and the five transmission subframes in the second radio frame are in the same period
  • t The value is 1, that is, the subframe number Subframe m is the subframe number of the first transmission subframe in the above five transmission subframes
  • the subframe number Subframe l of the second transmission subframe is the subframe number Subframe m+6.
  • the transmission subframe corresponding to the start time of the M1 transmission subframes may be determined based on the following operation. Transmission subframe;
  • Obtaining a start time of the first transmission subframe determining that the transmission subframe whose start time of the subframe is closest to the start time of the first transmission subframe is the first transmission subframe of the M1 transmission subframes.
  • FIG. 2.1-a is another embodiment of the present invention.
  • the value of M1 is 5
  • the start time of the transmission subframe m is closest to the start time of the first transmission subframe
  • the transmission subframe m is determined to be 5 transmissions.
  • the first transmission subframe of the subframe the value of t is 1, that is, the subframe number
  • Subframe m is the subframe number of the first transmission subframe of the above five transmission subframes
  • the value of n is 6, by the subframe number.
  • the value of M1 is 5, that is, the first transmission subframe in the first radio frame and the five transmission subframes in the second radio frame are in the same period
  • t The value is 5, that is, the subframe number Subframe m is the subframe number of the fifth transmission subframe in the above five transmission subframes
  • the subframe number Subframe l of the second transmission subframe is the subframe number Subframe m+5.
  • the value of M1 is 5, that is, the first transmission subframe in the first radio frame and the five transmission subframes in the second radio frame are in the same period
  • t The value is 4, that is, the subframe number Subframe m is the subframe number of the 4th transmission subframe in the above 5 transmission subframes
  • the subframe number Subframe l of the second transmission subframe is the subframe number Subframe m+3.
  • the first wireless network device receives a preamble Preamble of a second transmission subframe that is sent by the second wireless network device and is sent by the second radio network device in the second radio frame.
  • a random access response (RAR) carried in a third transmission subframe where the third transmission subframe is any one of N transmission subframes
  • the N transmission subframes constitute a RAR time window for detecting the RAR, where N is a positive integer greater than one;
  • the subframe number of the first transmission subframe of the RAR time window and the subframe number of the second transmission subframe have a preset second mapping relationship.
  • the second radio network device detects the RAR sent by the first radio network device in a random access response RAR time window, and the RAR sent by the first radio network device is carried in the third transport sub a frame, the RAR time window includes N transmission subframes, the third transmission subframe is any one of the N transmission subframes, and the N is a positive integer;
  • the subframe number of the first transmission subframe of the RAR time window and the subframe number of the second transmission subframe have a preset second mapping relationship.
  • the Subframe p is a subframe number of the first transmission subframe of the RAR time window
  • the Subframe q is a subframe number of the second transmission subframe
  • the r is a positive integer
  • the transmission subframe is in the second radio frame, and the mapping relationship of the subframe number is that the first transmission subframe of the RAR time window is the rth transmission subframe after the second transmission subframe.
  • FIG. 2.2 is a diagram showing an example of a frame structure of a radio frame including a second mapping relationship according to an embodiment of the present invention
  • the Subframe p is a subframe number of the first transmission subframe of the RAR time window
  • the Subframe q1 is a subframe number of the transmission subframe in the first radio frame in the transmission period.
  • the first time period is a transmission period of the second transmission subframe
  • r1 is a positive integer
  • FIG. 2.3 is a diagram showing an example of a frame structure of another radio frame including a second mapping relationship according to an embodiment of the present invention
  • the transmission period of the transmission subframe in which the subframe number is Subframe q is the first period
  • the transmission period of the second transmission subframe may be adjacent to the first radio frame.
  • the partial transmission periods of the two transmission subframes are coincident.
  • the subframe number of any one of the two transmission subframes needs to be determined as the Subframe q1, and the subcarriers of the two transmission subframes are assumed.
  • the frame number is Subframe q1a and Subframe q1a+1, respectively, the wireless network device may determine that the subframe number Subframe q1a is the Subframe q1, or determine that the Subframe q1a+1 is the Subframe q1, and it is also noted that the The determining strategy of the preset subframe number Subframe q1 in the first wireless network device and the second wireless network device should be the same.
  • FIG. 2.3-a is a diagram showing an example of a frame structure of another radio frame including a second mapping relationship according to an embodiment of the present invention.
  • the transmission period of the second transmission subframe whose subframe number is Subframe q1 is the first period
  • the first period and the subframe number are Subframe q1a
  • the sub-frame number The partial transmission period of the transmission subframe whose frame number is Subframe q1a+1 coincides.
  • the subframe number Subframe p of the first transmission subframe of the RAR time window is Subframe q1a+2.
  • the Subframe p is a subframe number of a first transmission subframe of the RAR time window
  • the Subframe q2 is a subframe number of a transmission subframe in a first radio frame in a transmission period.
  • the second time period is a transmission period of a transmission subframe in which the subframe number is Subframe q+w
  • the Subframe q is a subframe number of the second transmission subframe
  • the r2 is a positive integer
  • w is greater than A positive integer of 1.
  • FIG. 2.4 is a diagram showing an example of a frame structure of another radio frame including a second mapping relationship according to an embodiment of the present invention
  • the transmission period is the second period, and the transmission period of the transmission subframe whose subframe number is Subframe q2 includes the second period,
  • the subframe number Subframe p of the transmission subframe is Subframe q2+1.
  • the transmission period of the transmission subframe in which the subframe number is Subframe q+w may be the first The partial transmission periods of the adjacent two transmission subframes in the radio frame are coincident.
  • the subframe number of any one of the two transmission subframes needs to be determined as the Subframe q2.
  • the subframe numbers of the two transmission subframes are Subframe q2a and Subframe q2a+1, respectively, and the wireless network device may determine that the subframe number Subframe q2a is the subframe q2, or the wireless network device may determine that the subframe q2a+1 is The Subframe q2 is further described.
  • the determining strategy of the preset subframe number Subframe q2 in the first wireless network device and the second wireless network device should be the same.
  • FIG. 2.4-a is a diagram showing an example of a frame structure of another radio frame including a second mapping relationship according to an embodiment of the present invention.
  • the transmission period of the transmission subframe whose subframe number is Subframe q+3 is the second period, and the second period and the subframe number are Subframe q2a, and the sub-frame number
  • the subframe number Subframe p of the first transmission subframe of the RAR time window is Subframe q2a+1.
  • the first wireless network device receives a preamble Preamble of a second transmission subframe that is sent by the second wireless network device and is sent by the second radio network device in the second radio frame.
  • a random access response (RAR) carried in a third transmission subframe where the third transmission subframe is any one of N transmission subframes
  • the N transmission subframes constitute a RAR time window for detecting the RAR, where N is a positive integer greater than one;
  • the subframe number of the first transmission subframe of the RAR time window and the subframe number of the first transmission subframe have a preset third mapping relationship.
  • the second radio network device detects the RAR sent by the first radio network device in a random access response RAR time window, and the RAR sent by the first radio network device is carried in a third transmission subframe, and the RAR time
  • the window includes N transmission subframes, the third transmission subframe is any one of the N transmission subframes, and the N is a positive integer;
  • the subframe number of the first transmission subframe of the RAR time window and the subframe number of the first transmission subframe have a preset third mapping relationship.
  • the Subframe x is a subframe number of a first transmission subframe of the RAR time window
  • the Subframe y is a subframe number of the first transmission subframe
  • the value of the z is a positive integer.
  • FIG. 2.5 is a diagram showing an example of a frame structure of a radio frame including a third mapping relationship according to an embodiment of the present invention
  • the subframe number of the first transmission subframe is Subframe y
  • the subframe number Subframe p of the first transmission subframe of the window is Subframe y+3.
  • the method further includes:
  • the second radio network device detects that the ith transmission subframe of the RAR time window carries the PDCCH information of the random access radio network temporary identifier RA-RNTI scrambled, and the PDCCH information corresponds to Include the Preamble sequence in the downlink data block, and send an uplink shared channel UL-SCH data block carried in the fourth transmission subframe to the first radio network device;
  • the subframe number of the fourth transmission subframe and the subframe number of the ith transmission subframe of the RAR time window have a preset fourth mapping relationship, where i is less than or equal to the N Positive integer.
  • the first wireless network device receives an uplink shared channel UL-SCH data block that is sent by the second wireless network device and is carried by the fourth transmission subframe, where the UL-SCH data block is the second wireless network.
  • the device detects that the ith transmission subframe of the RAR time window carries the PDCCH information of the random access radio network temporary identifier RA-RNTI scrambled, and the downlink data block corresponding to the PDCCH information includes Transmitted in the case of the Preamble sequence;
  • the subframe number of the fourth transmission subframe and the subframe number of the ith transmission subframe of the RAR time window have a preset fourth mapping relationship, where i is less than or equal to the N Positive integer.
  • the RAR time window is in the first radio frame, and the kth transmission subframe after the ith transmission subframe of the RAR time window is in the same period as the M2 transmission subframes of the second radio frame.
  • the M 2 is an integer greater than 1, and the k is 0 or a positive integer;
  • the Subframe a is the subframe number of the fourth transmission subframe
  • the Subframe b1 is the subframe number of the jth transmission subframe in the M2 transmission subframes, where the c1 is 0 or a positive integer, the j being a positive integer less than or equal to M2;
  • FIG. 2.6 is a diagram showing an example of a frame structure of a radio frame including a fourth mapping relationship according to an embodiment of the present invention
  • the RAR time window is in the first radio frame
  • i takes a value of 1
  • k has a value of 0,
  • M2 has a value of 5, that is,
  • the first transmission subframe of the RAR time window is in the same period as the five transmission subframes in the second radio frame
  • the value of j is 1, that is, the subframe number of the first transmission subframe of the five transmission subframes.
  • the subframe number Subframe a of the fourth transmission subframe is Subframe b1+6.
  • the RAR time window is in the first radio frame
  • i takes a value of 2
  • the value of k is 0, and the value of M2 is 5, that is,
  • the second transmission subframe of the RAR time window is in the same period as the five transmission subframes in the second radio frame
  • the value of j is 5, that is, the subframe number of the fifth transmission subframe of the five transmission subframes is Subframe b1
  • Subframe a is Subframe b1+6.
  • the RAR time window is in the first radio frame
  • the value of i is 2
  • the value of k is 2
  • the value of M2 is 5, that is,
  • the second transmission subframe after the second transmission subframe of the RAR time window is in the same period as the five transmission subframes in the second radio frame
  • the value of j is 1, that is, the first of the five transmission subframes.
  • the subframe number of the transmission subframe is Subframe b1
  • the subframe number Subframe a of the fourth transmission subframe is Subframe b1+0.
  • the transmission subframe corresponding to the start time of the M2 transmission subframes may be determined based on the following operation. Transmission subframe;
  • FIG. 2.6-a is a diagram showing an example of a frame structure of another radio frame including a fourth mapping relationship according to an embodiment of the present invention.
  • the value of M2 is 5, the value of i is 2, the value of k is 2, the start time of the transmission subframe m and the 2nd of the RAR time window.
  • the start time of the second transmission subframe after the transmission subframe is the closest, and the transmission subframe m is determined to be the first transmission subframe of the five transmission subframes, and the value of j is 4, that is, the above five transmission subframes
  • the RAR time window is in the second radio frame
  • the Subframe a is a subframe number of the fourth transmission subframe
  • the Subframe b2 is a subframe number of a transmission subframe in a first radio frame in a transmission period, where the third period is a transmission period of the transmission subframe in which the subframe number is Subframe d+k
  • the subframe d is a subframe number of the ith transmission subframe of the RAR time window
  • the c2 is 0 or a positive integer
  • k is 0 or a positive integer.
  • FIG. 2.7 is a diagram showing an example of a frame structure of a radio frame including a fourth mapping relationship according to an embodiment of the present invention
  • the value of i is 5
  • the subframe number of the 5th transmission subframe of the RAR time window is Subframe d
  • the value of k is 4, that is,
  • the transmission period of the transmission subframe in which the subframe number is Subframe d+4 is the third period.
  • the transmission period of the transmission subframe in which the subframe number is Subframe b2 includes the third period, and the value of c2 is 0.
  • the value of i is 1, that is, the subframe number of the first transmission subframe of the RAR time window is Subframe d
  • the value of k is 3. That is, the transmission period of the transmission subframe whose subframe number is Subframe d+3 is the third period, and the transmission period of the subframe number is Subframe b2 transmission subframe includes the third period, the value of c2 is 1, and the subframe number is Subframe.
  • the transmission period of the transmission subframe in which the subframe number is Subframe d+k may be the first The partial transmission periods of the two transmission subframes in the radio frame are coincident.
  • the subframe number of any one of the two transmission subframes needs to be determined as the Subframe b2, and the two transmissions are assumed.
  • the subframe number of the subframe is Subframe b2a and Subframe b2a+1, respectively, the wireless network device may determine that the subframe number Subframe b2a is the Subframe b2, or the wireless network device may determine that the Subframe b2a+1 is the Subframe b2. .
  • FIG. 2.7-a is a diagram showing an example of a frame structure of another radio frame including a second mapping relationship according to an embodiment of the present invention.
  • the value of i is 5
  • the subframe number of the 5th transmission subframe of the RAR time window is Subframe d
  • the value of k is 4, that is, the sub- The transmission period of the transmission subframe whose frame number is Subframe d+4 is the third period
  • the third period coincides with the partial transmission period of the transmission subframe in which the subframe number in the first radio frame is Subframe b2a and Subframe b2a+1.
  • a is Subframe b2a+0.
  • both the second wireless network device and the first wireless network device may determine the time position of the transmission subframe by determining the subframe number of the transmission subframe.
  • FIG. 3 is a schematic structural diagram of a second wireless network device according to an embodiment of the present invention.
  • the second wireless network device is a second wireless network device in the method for transmitting a wireless frame described in FIG. 2.
  • the second wireless network device in the embodiment of the present invention may include at least a receiving unit 310 and a sending unit 320, where:
  • the receiving unit 310 is configured to receive physical random access channel PRACH trigger information carried by the first transmission subframe in the first radio frame sent by the first radio network device;
  • the sending unit 320 is configured to send, according to the PRACH trigger information, a preamble Preamble sequence of a second transmission subframe that is carried in a second radio frame to the first radio network device, where the first transmission subframe is a preset first mapping relationship between the subframe number and the subframe number of the second transmission subframe, a structure of the transmission subframe in the first radio frame, and a transmission subframe in the second radio frame The structure is different.
  • the second radio network device further includes:
  • a first detecting unit configured to detect, in a random access response RAR time window, an RAR sent by the first wireless network device, where the RAR sent by the first wireless network device is carried in a third transmission subframe,
  • the RAR time window includes N transmission subframes, the third transmission subframe is any one of the N transmission subframes, and the N is a positive integer;
  • the subframe number of the first transmission subframe of the RAR time window and the subframe number of the second transmission subframe have a preset second mapping relationship.
  • the Subframe p is a subframe number of the first transmission subframe of the RAR time window
  • the Subframe q is a subframe number of the second transmission subframe
  • r is a positive integer
  • the Subframe p is a subframe number of the first transmission subframe of the RAR time window
  • the Subframe q1 is a subframe number of the transmission subframe in the first radio frame in the transmission period.
  • the first time period is a transmission period of the second transmission subframe
  • r1 is a positive integer
  • the Subframe p is a subframe number of a first transmission subframe of the RAR time window
  • the Subframe q2 is a subframe number of a transmission subframe in a first radio frame in a transmission period.
  • the second time period is a transmission period of a transmission subframe in which the subframe number is Subframe q+w
  • the Subframe q is a subframe number of the second transmission subframe
  • the r2 is a positive integer
  • w is greater than A positive integer of 1.
  • the second radio network device further includes:
  • a second detecting unit configured to detect, in a random access response RAR time window, an RAR sent by the first wireless network device, where the RAR sent by the first wireless network device is carried in a third transmission subframe, and the RAR time
  • the window includes N transmission subframes, and the N is a positive integer
  • the subframe number of the first transmission subframe of the RAR time window and the subframe number of the first transmission subframe have a preset third mapping relationship.
  • the Subframe x is a subframe number of the first transmission subframe of the RAR time window, where The Subframe y is a subframe number of the first transmission subframe, and the value of z is a positive integer.
  • the first transmission subframe is in the same period as the M1 transmission subframes of the second radio frame, and the M1 is an integer greater than 1.
  • the subframe l is a subframe number of the second transmission subframe
  • the subframe m is a subframe number of the tth transmission subframe in the M1 transmission subframes, where the n is 0 or A positive integer, the t being a positive integer less than or equal to M1.
  • FIG. 4 is a schematic structural diagram of a first wireless network device according to an embodiment of the present invention, where the first wireless network device is the first wireless network device in the method for transmitting a wireless frame described in FIG. 2.
  • the first wireless network device in the embodiment of the present invention may include at least a sending unit 410 and a receiving unit 420, where:
  • the sending unit 410 is configured to send, to the second wireless network device, physical random access channel PRACH trigger information of the first transmission subframe that is carried in the first radio frame;
  • the receiving unit 420 is configured to receive a preamble Preamble sequence of the second transmission subframe that is sent by the second wireless network device in response to the PRACH trigger information, where the first transmission subframe a preset first mapping relationship between the subframe number and the subframe number of the second transmission subframe, a structure of the transmission subframe in the first radio frame, and a transmission subframe in the second radio frame The structure of the frame is different.
  • the sending unit 410 further uses to:
  • a random access response (RAR) carried in a third transmission subframe where the third transmission subframe is any one of N transmission subframes, and the N transmission sub-frames
  • the frame composition is used to detect a RAR time window of the RAR, where N is a positive integer greater than one;
  • the Subframe p is a subframe number of the first transmission subframe of the RAR time window
  • the Subframe q is a subframe number of the second transmission subframe
  • r is a positive integer
  • the Subframe p is a subframe number of the first transmission subframe of the RAR time window
  • the Subframe q1 is a subframe number of the transmission subframe in the first radio frame in the transmission period.
  • the first time period is a transmission period of the second transmission subframe
  • r1 is a positive integer
  • the Subframe p is a subframe number of a first transmission subframe of the RAR time window
  • the Subframe q2 is a subframe number of a transmission subframe in a first radio frame in a transmission period.
  • the second time period is a transmission period of a transmission subframe in which the subframe number is Subframe q+w
  • the Subframe q is a subframe number of the second transmission subframe
  • the r2 is a positive integer
  • w is greater than A positive integer of 1.
  • the sending unit 410 further uses to:
  • a random access response (RAR) carried in a third transmission subframe where the third transmission subframe is any one of N transmission subframes, and the N transmission sub-frames
  • the frame composition is used to detect a RAR time window of the RAR, where N is a positive integer greater than one;
  • the subframe number of the first transmission subframe of the RAR time window and the subframe number of the first transmission subframe have a preset third mapping relationship.
  • the Subframe x is a subframe number of a first transmission subframe of the RAR time window
  • the Subframe y is a subframe number of the first transmission subframe
  • the value of the z is a positive integer.
  • the first transmission subframe is the same as the M1 transmission subframes of the second radio frame.
  • the M1 is an integer greater than one;
  • the subframe l is a subframe number of the second transmission subframe
  • the subframe m is a subframe number of the tth transmission subframe in the M1 transmission subframes, where the n is 0 or A positive integer, the t being a positive integer less than or equal to M1.
  • FIG. 5 is a schematic structural diagram of still another second wireless network device according to an embodiment of the present invention.
  • the second wireless network device may include: at least one processor 501, such as a CPU, at least one communication bus 502. At least one modulator/demodulator 503, memory 504, wireless interface 505.
  • the communication bus 502 is used to implement connection communication between these components;
  • the wireless interface 505 is used for signaling or data communication with other node devices;
  • the memory 504 may be a high speed RAM memory or a nonvolatile memory (non -volatile memory), such as at least one disk storage.
  • the memory 504 may also be at least one storage device located away from the processor 501.
  • a set of program codes is stored in the memory 504, and the processor 501 is configured to call the program code stored in the memory 504 to perform the following operations:
  • the subframe numbers of the transmission subframes have a preset first mapping relationship, and the structure of the transmission subframes in the first radio frame is different from the structure of the transmission subframes in the second radio frame.
  • the first transmission subframe is in the same period as the M1 transmission subframes of the second radio frame, and the M1 is an integer greater than 1.
  • the subframe l is a subframe number of the second transmission subframe
  • the subframe m is a subframe number of the tth transmission subframe in the M1 transmission subframes, where the n is 0 or A positive integer, the t being a positive integer less than or equal to M1.
  • the second wireless network device may be, for example, a user equipment.
  • FIG. 6 is a schematic structural diagram of still another first wireless network device according to an embodiment of the present invention.
  • the first wireless network device may include: at least one processor 601, such as a CPU, at least one communication bus 602. At least one modulator/demodulator 603, memory 604, wireless interface 605.
  • the communication bus 602 is used to implement connection communication between these components;
  • the wireless interface 605 is used for signaling or data communication with other node devices;
  • the memory 604 may be a high speed RAM memory or a nonvolatile memory (non -volatile memory), such as at least one disk storage.
  • the memory 604 may also be at least one storage device located away from the foregoing processor 601.
  • a set of program codes is stored in the memory 604, and the processor 601 is configured to call the program code stored in the memory 604 to perform the following operations:
  • the first transmission subframe is in the same period as the M1 transmission subframes of the second radio frame, and the M1 is an integer greater than 1.
  • the subframe l is a subframe number of the second transmission subframe
  • the subframe m is a subframe number of the tth transmission subframe in the M1 transmission subframes, where the n is 0 or A positive integer, the t being a positive integer less than or equal to M1.
  • the first wireless network device may be, for example, a base station.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (ROM), or a random access memory (RAM).

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本发明实施例公开了一种无线帧的传输方法及无线网络设备,包括:接收第一无线网络设备发送的第一无线帧中的第一传输子帧承载的物理随机接入信道PRACH触发信息;响应所述PRACH触发信息,向所述第一无线网络设备发送承载于第二无线帧的第二传输子帧的前导码Preamble序列,所述第一传输子帧的子帧号与所述第二传输子帧的子帧号之间具有预设第一映射关系,所述第一无线帧中的传输子帧的结构与所述第二无线帧中的传输子帧的结构不同。相应的,本发明实施例还公开了一种无线网络设备。采用本发明,可以基于不同结构的无线帧的协作,实现无线网络设备之间的PRACH调度传输。

Description

一种无线帧的传输方法及无线网络设备
本发明要求2015年12月18日递交的发明名称为“一种无线帧的传输方法及无线网络设备”的申请号201510956990.0的在先申请优先权,上述在先申请的内容以引入的方式并入本文本中。
技术领域
本发明涉及无线通信技术领域,尤其涉及一种无线帧的传输方法及无线网络设备。
背景技术
无线通信系统中,PRACH(Physical Random Access Channel,物理随机接入信道)用于随机接入,是用户设备进行初始连接、切换、连接重建立,重新恢复上行同步的途径。PRACH调度传输是指无线通信系统中无线网络设备之间通过信息交互确定接入信道的前导码Preamble序列的过程。
针对上述PRACH调度传输需求,现有协议中提出了具体的交互方案来实现基站与用户设备之间的PRACH调度传输,但该现有交互方案仅适用于上行传输子帧的帧结构和下行传输子帧的帧结构相同的应用场景,而针对传输子帧的帧结构不同的应用场景,目前还没有用于实现无线网络设备之间的PRACH调度传输的方案。
发明内容
本发明实施例提供了一种无线帧的传输方法及无线网络设备,以期基于不同结构的无线帧的协作,实现无线网络设备之间的PRACH调度传输。
本发明实施例第一方面提供了一种无线帧的传输方法,包括:
第二无线网络设备接收第一无线网络设备发送的PRACH触发信息,所述PRACH触发信息承载于第一无线帧中的第一传输子帧;
所述第二无线网络设备响应所述PRACH触发信息,向所述第一无线网络设备发送前导码Preamble序列,所述Preamble序列承载于第二无线帧的第二传输子帧;
其中,所述第一传输子帧的子帧号与所述第二传输子帧的子帧号之间具有预设第一映射关系,所述第一无线帧中的传输子帧的结构与所述第二无线帧中的传输子帧的结构不同。
如此,可以基于不同结构的无线帧协作实现无线通信系统的PRACH调度传输。
在第一方面第一种可能的实现方式中,所述第二无线网络设备向所述第一无线网络设备发送承载于第二无线帧的第二传输子帧的Preamble序列之后,所述第二无线网络设备还执行以下操作:
所述第二无线网络设备在随机接入响应RAR时间窗中检测所述第一无线网络设备发送的RAR,所述第一无线网络设备发送的RAR承载于第三传输子帧,所述RAR时间窗包括N个传输子帧,所述第三传输子帧是所述N个传输子帧中的任意一个传输子帧,所述N为正整数;
所述RAR时间窗的首个传输子帧的子帧号与所述第二传输子帧的子帧号之间具有预设第二映射关系。
在第一方面第二种可能的实现方式中,所述向所述第一无线网络设备发送承载于第二无线帧的第二传输子帧的Preamble序列之后,所述第二无线网络设备还执行以下操作:
所述第二无线网络设备在随机接入响应RAR时间窗中检测所述第一无线网络设备发送的RAR,所述第一无线网络设备发送的RAR承载于第三传输子帧,所述RAR时间窗包括N个传输子帧,所述N为正整数;
所述RAR时间窗的首个传输子帧的子帧号与所述第一传输子帧的子帧号之间具有预设第三映射关系。
结合第一方面第一种或第二种可能的实现方式,在第一方面第三种可能的实现方式中,所述第二无线网络设备还执行以下操作:
所述第二无线网络设备若检测到所述RAR时间窗的第i个传输子帧承载有随机接入无线网络临时标识RA-RNTI加扰的物理下行控制信道PDCCH信息,且所述PDCCH信息对应的下行数据块中包括所述Preamble序列,则向所述第一无线网络设备发送承载于第四传输子帧的上行共享信道UL-SCH数据块;
其中,所述第四传输子帧的子帧号与所述RAR时间窗的第i个传输子帧的子帧号之间具有预设第四映射关系,所述i为小于或等于所述N的正整数。
本发明实施例第二方面提供了一种无线帧的传输方法,包括:
第一无线网络设备向第二无线网络设备发送物理随机接入信道PRACH触发信息,所述PRACH触发信息承载于第一无线帧中的第一传输子帧;
所述第一无线网络设备接收所述第二无线网络设备响应所述PRACH触发信息而发送的前导码Preamble序列,所述Preamble序列承载于第二无线帧的第二传输子帧;
其中,所述第一传输子帧的子帧号与所述第二传输子帧的子帧号之间具有预设第一映射关系,所述第一无线帧中的传输子帧的结构与所述第二无线帧中的传输子帧的结构不同。
在第二方面第一种可能的实现方式中,所述第一无线网络设备接收所述第二无线网络设备响应所述PRACH触发信息而发送的承载于第二无线帧的第二传输子帧的Preamble序列之后,所述第一无线网络设备还执行以下操作:
所述第一无线网络设备向所述第二无线网络设备发送承载于第三传输子帧的随机接入响应RAR,所述第三传输子帧是N个传输子帧中的任意一个传输子帧,所述N个传输子帧组成用于检测所述RAR的RAR时间窗,所述N为大于1的正整数;
所述RAR时间窗的首个传输子帧的子帧号与所述第二传输子帧的子帧号之间具有预设第二映射关系。
在第二方面第二种可能的实现方式中,所述第一无线网络设备接收所述第二无线网络设备响应所述PRACH触发信息而发送的承载于第二无线帧的第二 传输子帧的Preamble序列之后,所述第一无线网络设备还执行以下操作:
所述第一无线网络设备向所述第二无线网络设备发送随机接入响应RAR,所述RAR承载于第三传输子帧,所述第三传输子帧是N个传输子帧中的任意一个传输子帧,所述N个传输子帧组成用于检测所述RAR的RAR时间窗,所述N为大于1的正整数;
所述RAR时间窗的首个传输子帧的子帧号与所述第一传输子帧的子帧号之间具有预设第三映射关系。
结合第二方面第一种或第二种可能的实现方式,在第二方面第三种可能的实现方式中,所述第一无线网络设备还执行以下操作:
所述第一无线网络设备接收所述第二无线网络设备发送的上行共享信道UL-SCH数据块,其中,所述UL-SCH数据块承载于第四传输子帧,所述UL-SCH数据块是所述第二无线网络设备在检测到所述RAR时间窗的第i个传输子帧承载有随机接入无线网络临时标识RA-RNTI加扰的物理下行控制信道PDCCH信息,且所述PDCCH信息对应的下行数据块中包括所述Preamble序列的情况下发送的;
所述第四传输子帧的子帧号与所述RAR时间窗的第i个传输子帧的子帧号之间具有预设第四映射关系,所述i为小于或等于所述N的正整数。
本发明实施例第三方面提供了一种无线帧的传输方法,包括:
第二无线网络设备接收第一无线网络设备发送的PRACH触发信息,所述PRACH触发信息承载于第一无线帧中的第一传输时间单位;
所述第二无线网络设备响应所述PRACH触发信息,向所述第一无线网络设备发送前导码Preamble序列,所述Preamble序列承载于第二无线帧的第二传输时间单位;
其中,所述第一传输时间单位的时间单位索引与所述第二传输时间单位的时间单位索引之间具有预设第一映射关系,所述第一无线帧中的传输时间单位的结构与所述第二无线帧中的传输时间单位的结构不同。
如此,可以基于不同结构的无线帧协作实现无线通信系统的PRACH调度 传输。
在第三方面第一种可能的实现方式中,所述第二无线网络设备向所述第一无线网络设备发送承载于第二无线帧的第二传输时间单位的Preamble序列之后,所述第二无线网络设备还执行以下操作:
所述第二无线网络设备在随机接入响应RAR时间窗中检测所述第一无线网络设备发送的RAR,所述第一无线网络设备发送的RAR承载于第三传输时间单位,所述RAR时间窗包括N个传输时间单位,所述第三传输时间单位是所述N个传输时间单位中的任意一个传输时间单位,所述N为正整数;
所述RAR时间窗的首个传输时间单位的时间单位索引与所述第二传输时间单位的时间单位索引之间具有预设第二映射关系。
在第三方面第二种可能的实现方式中,所述向所述第一无线网络设备发送承载于第二无线帧的第二传输时间单位的Preamble序列之后,所述第二无线网络设备还执行以下操作:
所述第二无线网络设备在随机接入响应RAR时间窗中检测所述第一无线网络设备发送的RAR,所述第一无线网络设备发送的RAR承载于第三传输时间单位,所述RAR时间窗包括N个传输时间单位,所述N为正整数;
所述RAR时间窗的首个传输时间单位的时间单位索引与所述第一传输时间单位的时间单位索引之间具有预设第三映射关系。
结合第三方面第一种或第二种可能的实现方式,在第三方面第三种可能的实现方式中,所述第二无线网络设备还执行以下操作:
所述第二无线网络设备若检测到所述RAR时间窗的第i个传输时间单位承载有随机接入无线网络临时标识RA-RNTI加扰的物理下行控制信道PDCCH信息,且所述PDCCH信息对应的下行数据块中包括所述Preamble序列,则向所述第一无线网络设备发送承载于第四传输时间单位的上行共享信道UL-SCH数据块;
其中,所述第四传输时间单位的时间单位索引与所述RAR时间窗的第i个传输时间单位的时间单位索引之间具有预设第四映射关系,所述i为小于或 等于所述N的正整数。
本发明实施例第四方面提供了一种无线帧的传输方法,包括:
第一无线网络设备向第二无线网络设备发送物理随机接入信道PRACH触发信息,所述PRACH触发信息承载于第一无线帧中的第一传输时间单位;
所述第一无线网络设备接收所述第二无线网络设备响应所述PRACH触发信息而发送的前导码Preamble序列,所述Preamble序列承载于第二无线帧的第二传输时间单位;
其中,所述第一传输时间单位的时间单位索引与所述第二传输时间单位的时间单位索引之间具有预设第一映射关系,所述第一无线帧中的传输时间单位的结构与所述第二无线帧中的传输时间单位的结构不同。
在第四方面第一种可能的实现方式中,所述第一无线网络设备接收所述第二无线网络设备响应所述PRACH触发信息而发送的承载于第二无线帧的第二传输时间单位的Preamble序列之后,所述第一无线网络设备还执行以下操作:
所述第一无线网络设备向所述第二无线网络设备发送承载于第三传输时间单位的随机接入响应RAR,所述第三传输时间单位是N个传输时间单位中的任意一个传输时间单位,所述N个传输时间单位组成用于检测所述RAR的RAR时间窗,所述N为大于1的正整数;
所述RAR时间窗的首个传输时间单位的时间单位索引与所述第二传输时间单位的时间单位索引之间具有预设第二映射关系。
在第四方面第二种可能的实现方式中,所述第一无线网络设备接收所述第二无线网络设备响应所述PRACH触发信息而发送的承载于第二无线帧的第二传输时间单位的Preamble序列之后,所述第一无线网络设备还执行以下操作:
所述第一无线网络设备向所述第二无线网络设备发送随机接入响应RAR,所述RAR承载于第三传输时间单位,所述第三传输时间单位是N个传输时间单位中的任意一个传输时间单位,所述N个传输时间单位组成用于检测所述RAR的RAR时间窗,所述N为大于1的正整数;
所述RAR时间窗的首个传输时间单位的时间单位索引与所述第一传输时 间单位的时间单位索引之间具有预设第三映射关系。
结合第四方面第一种或第二种可能的实现方式,在第四方面第三种可能的实现方式中,所述第一无线网络设备还执行以下操作:
所述第一无线网络设备接收所述第二无线网络设备发送的上行共享信道UL-SCH数据块,其中,所述UL-SCH数据块承载于第四传输时间单位,所述UL-SCH数据块是所述第二无线网络设备在检测到所述RAR时间窗的第i个传输时间单位承载有随机接入无线网络临时标识RA-RNTI加扰的物理下行控制信道PDCCH信息,且所述PDCCH信息对应的下行数据块中包括所述Preamble序列的情况下发送的;
所述第四传输时间单位的时间单位索引与所述RAR时间窗的第i个传输时间单位的时间单位索引之间具有预设第四映射关系,所述i为小于或等于所述N的正整数。
本申请中所述的一个“传输时间单位”(或简称为“时间单位”),可以是符号(symbol)、子帧(subframe)、时隙(slot)或者微时隙(mini slot)中的任意一种,也可以包含至少一个子帧、至少一个符号、至少一个时隙或者至少一个微时隙。时间单位索引是指用于标识时间单位的序号,例如,当时间单位定义为子帧时,时间单位索引对应子帧号。时间单位的结构不同,包括时间单位的持续时间不同和/或时间单位所包含的符号、子帧、时隙或者微时隙的个数不同,例如,第一无线帧中的时间单位可以包含至少一个子帧,第二无线帧中的时间单位可以包含至少一个时隙;或者第一无线帧和第二无线帧中的时间单位都包含至少一个子帧,但第一无线帧中的子帧与第二无线帧中的子帧的持续时间不同。
本申请中所述的“无线帧”,是指无线通信中定义的一种时域资源单位,一个无线帧中可以包含至少一个时间单位,例如,第三代合作伙伴计划(Third Generation Partnership Project,3GPP)TS36.211中所定义的无线帧中包含多个子帧,每个子帧中包含多个符号。
本申请中的第一无线帧和第二无线帧的结构不同,是指第一无线帧和第二 无线帧在子载波间隔、循环前缀(CP,Cyclic Prefix)以及时间单位等结构上有至少一个结构是不同,例如,包含的时间单位的结构不同,和/或包含不同数量的时间单位。例如,第一无线帧中包含L1(L1≥1)个时间单位,每个时间单位定义为一个子帧,第二无线帧中包含L2(L2≥1)个时间单位,且L1不等于L2,每个时间单位定义为一个子帧。再如,第一无线帧和第二无线帧中均包含L3(L3≥1)个时间单位,第一无线帧中的时间单位包含至少一个子帧,第二无线帧中的时间单位包含至少一个时隙。
本发明实施例第五方面提供了一种第二无线网络设备,该设备具有实现上述第一方面或第三方面提供的方法的行为功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
本发明实施例第六方面提供了一种第一无线网络设备,该设备具有实现上述第二方面或第四方面提供的方法的行为功能,所述功能可以通过硬件实现,也可以通过硬件执行相应的软件实现。所述硬件或软件包括一个或多个与上述功能相对应的模块。
本发明实施例第七方面提供了一种第二无线网络设备,该设备包括存储器以及和所述存储器耦合的处理器。所述存储器被配置用于存储指令,处理器被配置用于运行所述指令以执行上述第一方面或第三方面任一方法的部分或全部步骤。
本发明实施例第八方面提供了一种第一无线网络设备,该设备包括存储器以及和所述存储器耦合的处理器。所述存储器被配置用于存储指令,处理器被配置用于运行所述指令以执行上述第二方面或第四方面任一方法的部分或全部步骤。
本发明实施例第九方面公开了一种计算机可读存储介质,其中,该计算机可读存储介质存储有第二无线网络设备可执行的程序代码,该程序代码具体包括用于执行上述第一方面或第三方面任一方法的部分或全部步骤的指令。
本发明实施例第十方面公开了一种计算机可读存储介质,其中,该计算机可读存储介质存储有第一无线网络设备可执行的程序代码,该程序代码具体包括用于执行上述第二方面或第四方面任一方法的部分或全部步骤的指令。
在一些可能的实现方式中,所述第一传输子帧与所述第二无线帧的M1个传输子帧处于相同时段,所述M1为大于1的整数;
所述预设第一映射关系满足公式:Subframe l=Subframe m+n;
其中,所述Subframe l为所述第二传输子帧的子帧号,所述Subframe m为所述M1个传输子帧中的第t个传输子帧的子帧号,所述n为0或正整数,所述t为小于或等于M1的正整数。
在一些可能的实现方式中,所述预设第二映射关系满足公式:Subframe p=Subframe q+r;
其中,所述Subframe p为所述RAR时间窗的首个传输子帧的子帧号,所述Subframe q为所述第二传输子帧的子帧号,所述r为正整数;
或者,
所述预设第二映射关系满足公式:Subframe p=Subframe q1+r1;
其中,所述Subframe p为所述RAR时间窗的首个传输子帧的子帧号,所述Subframe q1为传输时段包括第一时段的第一无线帧中的传输子帧的子帧号,所述第一时段是所述第二传输子帧的传输时段,所述r1为正整数;
或者,
所述预设第二映射关系满足公式:Subframe p=Subframe q2+r2;
其中,所述Subframe p为所述RAR时间窗的首个传输子帧的子帧号,所述Subframe q2为传输时段包括第二时段的第一无线帧中的传输子帧的子帧 号,所述第二时段是子帧号为Subframe q+w的传输子帧的传输时段,所述Subframe q为所述第二传输子帧的子帧号,所述r2为正整数,所示w为大于1的正整数。
在一些可能的实现方式中,
所述预设第三映射关系满足公式:Subframe x=Subframe y+z;
其中,所述Subframe x为所述RAR时间窗的首个传输子帧的子帧号,所述Subframe y为所述第一传输子帧的子帧号,所述z的值为正整数。
在一些可能的实现方式中,
所述RAR时间窗处于所述第一无线帧中,所述RAR时间窗的第i个传输子帧之后的第k个传输子帧与所述第二无线帧的M2个传输子帧处于相同时段,所述M2为大于1的整数,所述k为0或正整数;
所述预设第四映射关系满足公式:Subframe a=Subframe b1+c1;
其中,所述Subframe a为所述第四传输子帧的子帧号,所述Subframe b1为所述M2个传输子帧中的第j个传输子帧的子帧号,所述c1为0或正整数,所述j为小于或等于M2的正整数;
或者,
所述RAR时间窗处于所述第二无线帧中;
所述预设第四映射关系满足公式:Subframe a=Subframe b2+c2;
其中,所述Subframe a为所述第四传输子帧的子帧号,所述Subframe b2为传输时段包括第三时段的第一无线帧中的传输子帧的子帧号,所述第三时段是子帧号为Subframe d+k的传输子帧的传输时段,所述Subframe d为所述RAR时间窗的第i个传输子帧的子帧号,所述c2为0或正整数,所述k为0或正整数。
可选的,在第三方面或第四方面所提供的方法中,时间单位之间具有的第一映射关系、第二映射关系、第三映射关系以及第四映射关系与上述子帧间的映射关系类似,不同仅在于上述映射关系以子帧为单位,而在第三方面或第四 方面所提供的方法中,映射关系以时间单位为单位。可以理解的,在第一方面、第二方面、第三方面或第四方面中的第一映射关系、第二映射关系、第三映射关系以及第四映射关系还可以根据系统的需求进行其他形式的设计,本申请对此不做限定。
在一些可能的实现方式中,所述第一无线帧可以是第一载波的无线帧,所述第二无线帧可以是第二载波的无线帧,所述第一载波的频段和所述第二载波的频段可以不同。在一个具体的实现方式中,第一载波可以是频段处于厘米波频段的载波,第二载波可以是频段处于毫米波频段的载波,本发明实施例对第一载波和第二载波的具体频段不做唯一限定。在另一个具体的实现方式中,所述第一载波和第二载波可以是同一频段内的不同子频段或者不同子载波或者不同的频域部分。示例的,一个频段的带宽为20MHz,第一载波为20MHz中的5MHz,第二载波为20MHz中的另外5MHz。同一频段的不同子频段、不同子载波或者不同频域部分可以对应不同的无线帧结构,比如同一载波的不同子频段、不同子载波或者不同频域部分可以在子载波间隔、循环前缀(CP,Cyclic Prefix)以及时间单位等结构上有至少一个结构是不同的。例如,不同的子载波间隔可以为15kHz,或者30kHz,或者60kHz等,不同的CP可以为正常CP或者扩展CP等,时间单位可以定义多种,比如子帧,时隙,微时隙等。例如,在一个具体的实现方式中,第一载波和第二载波上的时间单位均定义为子帧,但第一载波的第一子帧可以对应第二载波的多个第二子帧。
在另一些可能的实现方式中,所述第一载波的频段和所述第二载波的频段也可以相同,但第一载波采用的帧结构和第二载波采用的帧结构不同,本发明实施例对第一载波和第二载波的具体帧结构不做唯一限定。
所述第一无线网络设备包括基站或用户设备,所述第二无线网络设备包括基站或用户设备。此外,由于传输子帧的子帧号与传输子帧的时间位置是一一对应的,因此,确定了传输子帧的子帧号,也就确定了传输子帧在无线帧中的时间位置。上述第一无线网络设备和第二无线网络设备均可以通过确定传输子帧的子帧号来确定传输子帧的时间位置。
由上可见,本发明实施例中,第二无线网络设备与第一无线网络设备进行第一无线帧和第二无线帧的传输,第一无线网络设备向第二无线网络设备发送承载于第一无线帧中的第一传输子帧的PRACH触发信息,第二无线网络设备接收PRACH触发信息之后,基于预设第一映射关系中限定的第一传输子帧的子帧号与第二无线帧中的第二传输子帧的子帧号之间的对应关系,以及接收的第一传输子帧的子帧号,确定第二传输子帧的子帧号,并向第一无线网络设备发送承载于第二传输子帧的Preamble序列,从而实现第二无线网络设备与第一无线网络设备之间的PRACH调度传输,其中,上述第一无线帧中的传输子帧的结构与第二无线帧中的传输子帧的结构不同,可见,本方案中的无线网络设备能够基于不同结构的无线帧的协作,来实现无线网络设备之间的PRACH调度传输。
附图说明
下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍。
图1是本发明实施例提供的一种通信系统的简化应用场景图;
图1.1是现有协议中规定的支持跨载波的PRACH调度传输的方案所适用的帧结构示意图;
图2是本发明实施例提供的一种本发明第一方法实施例提供的一种无线帧传输方法的流程示意图;
图2.1是本发明实施例提供的一种包含第一映射关系的无线帧的帧结构示例图;
图2.1-a是本发明实施例提供的另一种包含第一映射关系的无线帧的帧结构示例图。
图2.2是本发明实施例提供的一种包括第二映射关系的无线帧的帧结构示例图;
图2.3是本发明实施例提供的另一种包括第二映射关系的无线帧的帧结构示例图;
图2.3-a是本发明实施例提供的另一种包括第二映射关系的无线帧的帧结构示例图;
图2.4是本发明实施例提供的另一种包括第二映射关系的无线帧的帧结构示例图;
图2.4-a是本发明实施例提供的另一种包括第二映射关系的无线帧的帧结构示例图;
图2.5是本发明实施例提供的一种包括第三映射关系的无线帧的帧结构示例图;
图2.6是本发明实施例提供的一种包括第四映射关系的无线帧的帧结构示例图;
图2.6-a是本发明实施例提供的另一种包括第四映射关系的无线帧的帧结构示例图;
图2.7是本发明实施例提供的一种包括第四映射关系的无线帧的帧结构示例图;
图2.7-a是本发明实施例提供的另一种包括第四映射关系的无线帧的帧结构示例图;
图3是本发明实施例提供的一种用户设备的结构示意图;
图4是本发明实施例提供的一种基站的结构示意图;
图5是本发明实施例提供的另一种用户设备的结构示意图;
图6是本发明实施例提供的另一种基站的结构示意图。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行描述。
本发明实施例的技术方案可以应用于LTE(Long Term Evolution,长期演进)RAT(radio access technology,无线接入技术)和5G(the 5th Generation,第五代移动通信技术)RAT的混合组网通信系统,或者其他多载波通信系统,或者是同一载波中有多种帧结构的通信系统,具体的无线通信系统在本发明中 不做限定。其中,所述LTE RAT例如可以是LTE的FDD(Frequency Division Dual,频分双工)系统或LTE的TDD(Time Division Duplexing,时分双工)系统或全双工系统等。请参阅图1,图1是本发明实施例提供的一种通信系统的简化的网络架构图。如图所示,该通信系统中至少包括一个或多个网络侧设备和一个或多个终端,其中,所述终端包括用户设备(User Equiment,UE),所述网络侧设备包括基站、网络控制器或移动交换中心等。终端可以与网络侧设备进行通信,也可以与另一终端进行通信,如D2D(device to device,设备对设备)或M2M(machine to machine,机器对机器)场景下的通信,网络侧设备可以跟终端通信,也可以跟另一网络侧设备通信,如宏基站和接入点之间的通信。
本发明实施例的无线网络设备(包括第一无线网络设备和第二无线网络设备)包括上述无线通信系统中的网络侧设备和/或终端。
现以第一无线网络设备为基站,第二无线网络设备为用户设备的应用场景为例,对通信系统网络架构进行说明,其它情况(第一无线网络设备和第二无线网络设备均为用户设备,或者,第一无线网络设备和第二无线网络设备均为基站,或者,第一无线网络设备为用户设备,第二无线网络设备为基站)与之类似,本实施例不再赘述。其中,所述基站包括能够提供基站功能的各类设备,例如,2G(2-Generation wireless telephone technology,第二代手机通信技术规格)网络中提供基站功能的设备包括BTS(base transceiver station,基地无线收发站)和BSC(base station controller,基站控制器),3G(3rd-Generation,第三代移动通信技术)网络中提供基站功能的设备包括节点B(NodeB)和RNC(radio network controller,无线网络控制器),4G(4th Generation mobile communication,第四代移动通信技术)网络中提供基站功能的设备包括eNB(evolved NodeB,演进的节点),在WLAN(Wireless LAN,无线局域网)中,提供基站功能的设备为AP(Access Point,接入点)。所述用户设备是一种终端设备,包括可移动的终端设备和不可移动的终端设备。用户设备可分布于网络中,在不同的网络中用户设备有不同的名称,例如:终端,移动台,用户单元,站台,蜂窝电话,个人数字助理,无线调制解调器,无线通信设备,手持 设备,膝上型电脑,无绳电话,无线本地环路台等。该用户设备可以经RAN(Radio Access Network,无线接入网)(无线通信网络的接入部分)与一个或多个核心网进行通信,例如与无线接入网交换语音和/或数据。
为便于理解本发明实施例的技术方案,这里介绍一下现有无线通信协议标准中规定的用户设备与基站之间的支持跨载波的物理随机接入信道PRACH调度传输的方案。请参阅图1.1,如图所示,第一载波上的第一无线帧与第二载波上的第二无线帧的帧结构相同,若UE接收到PDCCH(Physical Downlink Control Channel,物理下行控制信道)中的PRACH触发信息,所述PRACH触发信息承载于第一载波的第一无线帧的子帧号为Subframe n的第一传输子帧上,则UE响应该接收到的PRACH触发信息,向基站发送随机接入前导码Preamble序列,所述Preamble序列承载于第二载波的第二无线帧的子帧号为Subframe i+k2(k2大于或等于6)的第二传输子帧中,子帧号为Subframe i的传输子帧的传输时段与子帧号为Subframe n的第一传输子帧处于同一时段。
可见,针对第一无线帧的帧结构和第二无线帧的帧结构相同的应用场景,现有技术已提出了如上交互过程来实现基站与用户设备之间的PRACH调度传输。但针对无线帧的帧结构不同的应用场景,如LTE RAT和5G RAT的混合组网通信系统的CA(Carrier Aggregation,载波聚合)的场景下,一个载波的一个子帧对应另一个载波的多个子帧,目前还没有提出可行的交互流程来实现无线网络设备之间的PRACH调度传输。
本申请中所述的“子帧”或者“传输子帧”是指一个“时间单位”或者一个“传输时间单位”,一个时间单位在时域上的结构或者时长等,可以根据系统需求进行设定,本申请对此不做限定。可选的,所述一个时间单位还可以直接定义为符号、时隙或者微时隙等,或者包含至少一个符号、至少一个子帧、至少一个时隙或者至少一个微时隙等,本发明实施例的方案也可以应用于符号、时隙或者微时隙等时间单位,或者应用于至少一个符号、至少一个子帧、至少一个时隙或者至少一个微时隙等时间单位上,具体实施方式与以子帧为一个时间单位时相同,不再赘述。
基于此,请参阅图2,图2是本发明方法实施例提供的一种无线帧传输方 法的流程示意图,如图2所示,该无线帧传输方法包括以下步骤:
S201,第一无线网络设备向第二无线网络设备发送承载于第一无线帧中的第一传输子帧的物理随机接入信道PRACH触发信息;
其中,所述PRACH触发信息具体可以是物理下行控制信道指令PDCCH order。
S202,所述第二无线网络设备接收第一无线网络设备发送的第一无线帧中的第一传输子帧承载的物理随机接入信道PRACH触发信息;
S203,所述第二无线网络设备响应所述PRACH触发信息,向所述第一无线网络设备发送承载于第二无线帧的第二传输子帧的前导码Preamble序列;
其中,所述第一传输子帧的子帧号与所述第二传输子帧的子帧号之间具有预设第一映射关系,所述第一无线帧中的传输子帧的结构与所述第二无线帧中的传输子帧的结构不同。
S204,所述第一无线网络设备接收所述第二无线网络设备响应所述PRACH触发信息而发送的承载于第二无线帧的第二传输子帧的前导码Preamble序列;
其中,所述第一传输子帧的子帧号与所述第二传输子帧的子帧号之间具有预设第一映射关系,所述第一无线帧中的传输子帧的结构与所述第二无线帧中的传输子帧的结构不同。
需要注意的是,所述预设第一映射关系可以是由开发人员预先写入第二无线网络设备和第一无线网络设备中,或者是通过通信系统中的其他服务设备向第二无线网络设备和第一无线网络设备发送,或者是第一无线网络设备向第二无线网络设备发送指示所述预设第一映射关系的信令等,本发明实施例对所述第一映射关系的具体获取方式不做唯一限定。
可以看出,本发明实施例中,第二无线网络设备与第一无线网络设备进行第一无线帧和第二无线帧的传输,第一无线网络设备向第二无线网络设备发送承载于第一无线帧中的第一传输子帧的PRACH触发信息,第二无线网络设备接收PRACH触发信息之后,基于预设第一映射关系中限定的第一传输子帧的子帧号与第二无线帧中的第二传输子帧的子帧号之间的对应关系,以及接收的 第一传输子帧的子帧号,确定第二传输子帧的子帧号,并向第一无线网络设备发送承载于第二传输子帧的Preamble序列,从而实现第二无线网络设备与第一无线网络设备之间的PRACH调度传输,其中,上述第一无线帧中的传输子帧的结构与第二无线帧中的传输子帧的结构不同,可见,本方案中的无线网络设备能够基于不同结构的无线帧的协作,来实现无线网络设备之间的PRACH调度传输。
可选的,本发明实施例中,
所述第一传输子帧与所述第二无线帧的M1个传输子帧处于相同时段,所述M1为大于1的整数;
所述预设第一映射关系满足公式:Subframe l=Subframe m+n;
其中,所述Subframe l为所述第二传输子帧的子帧号,所述Subframe m为所述M1个传输子帧中的第t个传输子帧的子帧号,所述n为0或正整数,所述t为小于或等于M1的正整数。
举例来说,请参阅图2.1,图2.1是本发明实施例提供的一种包含第一映射关系的无线帧的帧结构示例图。
在图2.1的示例无线帧结构Case1中,可以看出,M1的值为5,即第一无线帧中的第一传输子帧与第二无线帧的5个传输子帧处于相同时段,t的值为1,即子帧号Subframe m为上述5个传输子帧中的第1个传输子帧的子帧号,n的值为6,由子帧号Subframe l=Subframe m+n可以确定,第二传输子帧的子帧号Subframe l为子帧号Subframe m+6。
此外,当上述第一无线帧的子帧的开始时刻和上述第二无线帧的子帧的开始时刻不同步时,上述M1个传输子帧的开始时刻和结束时刻与所述第一传输子帧的开始时刻和结束时刻可能不是完全同步的,此种情况下,可以基于如下操作确定所述M1个传输子帧的开始时刻对应的传输子帧,即所述M1个传输子帧中的首个传输子帧;
获取第一传输子帧的开始时刻,确定子帧的开始时刻与第一传输子帧的开始时刻最接近的传输子帧为所述M1个传输子帧的首个传输子帧。
举例来说,请参阅图2.1-a,图2.1-a是本发明实施例提供的另一种包含第 一映射关系的无线帧的帧结构示例图。
在图2.1-a的示例无线帧结构中,可以看出,M1的值为5,传输子帧m的开始时刻与第一传输子帧的开始时刻最接近,确定传输子帧m为5个传输子帧的首个传输子帧,t的值为1,即子帧号Subframe m为上述5个传输子帧中的第1个传输子帧的子帧号,n的值为6,由子帧号Subframe l=Subframe m+n可以确定,第二传输子帧的子帧号Subframe l为子帧号Subframe m+6。
在图2.1的示例无线帧结构Case2中,可以看出,M1的值为5,即第一无线帧中的第一传输子帧与第二无线帧的5个传输子帧处于相同时段,t的值为5,即子帧号Subframe m为上述5个传输子帧中的第5个传输子帧的子帧号,n的值为5,由子帧号Subframe l=Subframe m+n可以确定,第二传输子帧的子帧号Subframe l为子帧号Subframe m+5。
在图2.1的示例无线帧结构Case3中,可以看出,M1的值为5,即第一无线帧中的第一传输子帧与第二无线帧的5个传输子帧处于相同时段,t的值为4,即子帧号Subframe m为上述5个传输子帧中的第4个传输子帧的子帧号,n的值为3,由子帧号Subframe l=Subframe m+n可以确定,第二传输子帧的子帧号Subframe l为子帧号Subframe m+3。
可选的,本发明实施例中,所述第一无线网络设备接收所述第二无线网络设备响应所述PRACH触发信息而发送的承载于第二无线帧的第二传输子帧的前导码Preamble序列之后,
所述第一无线网络设备向所述第二无线网络设备发送承载于第三传输子帧的随机接入响应RAR,所述第三传输子帧是N个传输子帧中的任意一个传输子帧,所述N个传输子帧组成用于检测所述RAR的RAR时间窗,所述N为大于1的正整数;
所述RAR时间窗的首个传输子帧的子帧号与所述第二传输子帧的子帧号之间具有预设第二映射关系。
所述第二无线网络设备在随机接入响应RAR时间窗中检测所述第一无线网络设备发送的RAR,所述第一无线网络设备发送的RAR承载于第三传输子 帧,所述RAR时间窗包括N个传输子帧,所述第三传输子帧是所述N个传输子帧中的任意一个传输子帧,所述N为正整数;
所述RAR时间窗的首个传输子帧的子帧号与所述第二传输子帧的子帧号之间具有预设第二映射关系。
进一步可选的,本发明实施例中,
所述预设第二映射关系满足公式:Subframe p=Subframe q+r;
其中,所述Subframe p为所述RAR时间窗的首个传输子帧的子帧号,所述Subframe q为所述第二传输子帧的子帧号,所述r为正整数;由于第二传输子帧处于第二无线帧中,有上述子帧号的映射关系可知,所述RAR时间窗的首个传输子帧是所述第二传输子帧之后的第r个传输子帧。
举例来说,请参阅图2.2,图2.2是本发明实施例提供的一种包括第二映射关系的无线帧的帧结构示例图;
在图2.2所示的示例无线帧结构中,可以看出,图中子帧号Subframe q为第二传输子帧的子帧号,r的值为5,由子帧号Subframe p=Subframe q+r可以确定,RAR时间窗的首个传输子帧的子帧号Subframe p为Subframe q+5,即RAR时间窗的首个传输子帧是所述第二传输子帧之后的第5个传输子帧。
进一步可选的,本发明实施例中,
所述预设第二映射关系满足公式:Subframe p=Subframe q1+r1;
其中,所述Subframe p为所述RAR时间窗的首个传输子帧的子帧号,所述Subframe q1为传输时段包括第一时段的第一无线帧中的传输子帧的子帧号,所述第一时段是所述第二传输子帧的传输时段,所述r1为正整数;
举例来说,请参阅图2.3,图2.3是本发明实施例提供的另一种包括第二映射关系的无线帧的帧结构示例图;
在图2.3所示的示例无线帧结构中,可以看出,图中子帧号为Subframe q的传输子帧的传输时段为第一时段,子帧号为Subframe q1的传输子帧的传输时段包括所述第一时段,r1的值为2,由子帧号Subframe p=Subframe q1+r1可以确定,RAR时间窗的首个传输子帧的子帧号Subframe p为Subframe q1+2。
此外,当上述第一无线帧的子帧的开始时刻和上述第二无线帧的子帧的开始时刻不同步时,上述第二传输子帧的传输时段可能与第一无线帧中的相邻的2个传输子帧的部分传输时段重合,此种情况下,需要从所述2个传输子帧中确定任意一个传输子帧的子帧号为上述Subframe q1,假设该2个传输子帧的子帧号分别为Subframe q1a和Subframe q1a+1,则无线网络设备可以确定子帧号Subframe q1a为所述Subframe q1,或者,确定Subframe q1a+1为所述Subframe q1,另外需要注意的是,所述第一无线网络设备和所述第二无线网络设备中预设的子帧号Subframe q1的确定策略应相同。
举例来说,请参阅图2.3-a,图2.3-a是本发明实施例提供的另一种包含第二映射关系的无线帧的帧结构示例图。
在图2.3-a的示例无线帧结构中,可以看出,子帧号为Subframe q1的第二传输子帧的传输时段为第一时段,该第一时段与子帧号为Subframe q1a、以及子帧号为Subframe q1a+1的传输子帧的部分传输时段重合,子帧号Subframe q1确定策略为Subframe q1=Subframe q1a,r1的值为2,由子帧号Subframe p=Subframe q1+r1可以确定,RAR时间窗的首个传输子帧的子帧号Subframe p为Subframe q1a+2。
进一步可选的,本发明实施例中,
所述预设第二映射关系满足公式:Subframe p=Subframe q2+r2;
其中,所述Subframe p为所述RAR时间窗的首个传输子帧的子帧号,所述Subframe q2为传输时段包括第二时段的第一无线帧中的传输子帧的子帧号,所述第二时段是子帧号为Subframe q+w的传输子帧的传输时段,所述Subframe q为所述第二传输子帧的子帧号,所述r2为正整数,所示w为大于1的正整数。
举例来说,请参阅图2.4,图2.4是本发明实施例提供的另一种包括第二映射关系的无线帧的帧结构示例图;
在图2.4所示的示例无线帧结构Case1中,可以看出,图中第二传输子帧的子帧号为Subframe q,w=3,即子帧号为Subframe q+3的传输子帧的传输时段为第二时段,子帧号为Subframe q2的传输子帧的传输时段包括第二时段, r2的值为1,由子帧号Subframe p=Subframe q2+r2可以确定,RAR时间窗的首个传输子帧的子帧号Subframe p为Subframe q2+1。
在图2.4所示的示例无线帧结构Case2中,可以看出,图中第二传输子帧的子帧号为Subframe q,w=3,即子帧号为Subframe q+3的传输子帧的传输时段为第二时段,子帧号为Subframe q2的传输子帧的传输时段包括第二时段,r2的值为1,由子帧号Subframe p=Subframe q2+r2可以确定,RAR时间窗的首个传输子帧的子帧号Subframe p为Subframe q2+1。
此外,当上述第一无线帧的子帧的开始时刻和上述第二无线帧的子帧的开始时刻不同步时,上述子帧号为Subframe q+w的传输子帧的传输时段可能与第一无线帧中的相邻的2个传输子帧的部分传输时段重合,此种情况下,需要从所述2个传输子帧中确定任意一个传输子帧的子帧号为上述Subframe q2,假设该2个传输子帧的子帧号分别为Subframe q2a和Subframe q2a+1,则无线网络设备可以确定子帧号Subframe q2a为所述Subframe q2,或者,无线网络设备也可以确定Subframe q2a+1为所述Subframe q2,另外需要注意的是,所述第一无线网络设备和所述第二无线网络设备中预设的子帧号Subframe q2的确定策略应相同。
举例来说,请参阅图2.4-a,图2.4-a是本发明实施例提供的另一种包含第二映射关系的无线帧的帧结构示例图。
在图2.4-a的示例无线帧结构中,可以看出,子帧号为Subframe q+3的传输子帧的传输时段为第二时段,该第二时段与子帧号为Subframe q2a、以及子帧号为Subframe q2a+1的传输子帧的部分传输时段重合,子帧号Subframe q2确定策略为Subframe q2=Subframe q2a,r2的值为1,由子帧号Subframe p=Subframe q2+r2可以确定,RAR时间窗的首个传输子帧的子帧号Subframe p为Subframe q2a+1。
可选的,本发明实施例中,所述第一无线网络设备接收所述第二无线网络设备响应所述PRACH触发信息而发送的承载于第二无线帧的第二传输子帧的前导码Preamble序列之后,
所述第一无线网络设备向所述第二无线网络设备发送承载于第三传输子帧的随机接入响应RAR,所述第三传输子帧是N个传输子帧中的任意一个传输子帧,所述N个传输子帧组成用于检测所述RAR的RAR时间窗,所述N为大于1的正整数;
所述RAR时间窗的首个传输子帧的子帧号与所述第一传输子帧的子帧号之间具有预设第三映射关系。
所述第二无线网络设备在随机接入响应RAR时间窗中检测所述第一无线网络设备发送的RAR,所述第一无线网络设备发送的RAR承载于第三传输子帧,所述RAR时间窗包括N个传输子帧,所述第三传输子帧是所述N个传输子帧中的任意一个传输子帧,所述N为正整数;
所述RAR时间窗的首个传输子帧的子帧号与所述第一传输子帧的子帧号之间具有预设第三映射关系。
进一步可选的,本发明实施例中,
所述预设第三映射关系满足公式:Subframe x=Subframe y+z;
其中,所述Subframe x为所述RAR时间窗的首个传输子帧的子帧号,所述Subframe y为所述第一传输子帧的子帧号,所述z的值为正整数。
举例来说,请参阅图2.5,图2.5是本发明实施例提供的一种包括第三映射关系的无线帧的帧结构示例图;
在图2.5所示的示例无线帧结构中,可以看出,第一传输子帧的子帧号为Subframe y,z的值为3,由子帧号Subframe x=Subframe y+z可以确定,RAR时间窗的首个传输子帧的子帧号Subframe p为Subframe y+3。
可选的,本发明实施例中,所述方法还包括:
所述第二无线网络设备若检测到所述RAR时间窗的第i个传输子帧承载有随机接入无线网络临时标识RA-RNTI加扰的物理下行控制信道PDCCH信息,且所述PDCCH信息对应的下行数据块中包括所述Preamble序列,则向所述第一无线网络设备发送承载于第四传输子帧的上行共享信道UL-SCH数据块;
其中,所述第四传输子帧的子帧号与所述RAR时间窗的第i个传输子帧的子帧号之间具有预设第四映射关系,所述i为小于或等于所述N的正整数。
所述第一无线网络设备接收所述第二无线网络设备发送的承载于第四传输子帧的上行共享信道UL-SCH数据块,其中,所述UL-SCH数据块是所述第二无线网络设备在检测到所述RAR时间窗的第i个传输子帧承载有随机接入无线网络临时标识RA-RNTI加扰的物理下行控制信道PDCCH信息,且所述PDCCH信息对应的下行数据块中包括所述Preamble序列的情况下发送的;
其中,所述第四传输子帧的子帧号与所述RAR时间窗的第i个传输子帧的子帧号之间具有预设第四映射关系,所述i为小于或等于所述N的正整数。
进一步可选的,本发明实施例中,
所述RAR时间窗处于所述第一无线帧中,所述RAR时间窗的第i个传输子帧之后的第k个传输子帧与所述第二无线帧的M2个传输子帧处于相同时段,所述M2为大于1的整数,所述k为0或正整数;
所述预设第四映射关系满足公式:Subframe a=Subframe b1+c1;
其中,所述Subframe a为所述第四传输子帧的子帧号,所述Subframe b1为所述M2个传输子帧中的第j个传输子帧的子帧号,所述c1为0或正整数,所述j为小于或等于M2的正整数;
举例来说,请参阅图2.6,图2.6是本发明实施例提供的一种包括第四映射关系的无线帧的帧结构示例图;
在图2.6所示的示例无线帧结构Case1中,可以看出,所述RAR时间窗处于所述第一无线帧中,i取值为1,k的值为0,M2的值为5,即RAR时间窗的第1个传输子帧与第二无线帧中的5个传输子帧处于相同时段,j的值为1,即上述5个传输子帧的第1个传输子帧的子帧号为Subframe b1,c1的值为6,由Subframe a=Subframe b1+c1可以确定,第四传输子帧的子帧号Subframe a为Subframe b1+6。
在图2.6所示的示例无线帧结构Case2中,可以看出,所述RAR时间窗处于所述第一无线帧中,i取值为2,k的值为0,M2的值为5,即RAR时间窗的第2个传输子帧与第二无线帧中的5个传输子帧处于相同时段,j的值为 5,即上述5个传输子帧的第5个传输子帧的子帧号为Subframe b1,由c1的值为6,由Subframe a=Subframe b1+c1可以确定,第四传输子帧的子帧号Subframe a为Subframe b1+6。
在图2.6所示的示例无线帧结构Case3中,可以看出,所述RAR时间窗处于所述第一无线帧中,i的值为2,k的值为2,M2的值为5,即RAR时间窗的第2个传输子帧之后的第2个传输子帧与第二无线帧中的5个传输子帧处于相同时段,j的值为1,即上述5个传输子帧的第1个传输子帧的子帧号为Subframe b1,由c1的值为0,由Subframe a=Subframe b1+c1可以确定,第四传输子帧的子帧号Subframe a为Subframe b1+0。
此外,当上述第一无线帧的子帧的开始时刻和上述第二无线帧的子帧的开始时刻不同步时,上述M2个传输子帧的开始时刻和结束时刻与所述第一传输子帧的开始时刻和结束时刻可能不是完全同步的,此种情况下,可以基于如下操作确定所述M2个传输子帧的开始时刻对应的传输子帧,即所述M2个传输子帧中的首个传输子帧;
获取所述RAR时间窗的第i个传输子帧之后的第k个传输子帧的开始时刻,确定子帧的开始时刻与所述第k个传输子帧的开始时刻最接近的传输子帧为所述M2个传输子帧的首个传输子帧。
举例来说,请参阅图2.6-a,图2.6-a是本发明实施例提供的另一种包含第四映射关系的无线帧的帧结构示例图。
在图2.6-a的示例无线帧结构中,可以看出,M2的值为5,i的值为2,k的值为2,传输子帧m的开始时刻与所述RAR时间窗的第2个传输子帧之后的第2个传输子帧的开始时刻最接近,确定传输子帧m为5个传输子帧的首个传输子帧,j的值为4,即上述5个传输子帧的第4个传输子帧的子帧号为Subframe b1,c1的值为0,由Subframe a=Subframe b1+c1可以确定,第四传输子帧的子帧号Subframe a为Subframe b1+0。
进一步可选的,本发明实施例中,
所述RAR时间窗处于所述第二无线帧中;
所述预设第四映射关系满足公式:Subframe a=Subframe b2+c2;
其中,所述Subframe a为所述第四传输子帧的子帧号,所述Subframe b2为传输时段包括第三时段的第一无线帧中的传输子帧的子帧号,所述第三时段是子帧号为Subframe d+k的传输子帧的传输时段,所述Subframe d为所述RAR时间窗的第i个传输子帧的子帧号,所述c2为0或正整数,所述k为0或正整数。
举例来说,请参阅图2.7,图2.7是本发明实施例提供的一种包括第四映射关系的无线帧的帧结构示例图;
在图2.7所示的示例无线帧结构Case1中,可以看出,i的值为5,所述RAR时间窗的第5个传输子帧的子帧号为Subframe d,k的值为4,即子帧号为Subframe d+4的传输子帧的传输时段为第三时段,对应的,子帧号为Subframe b2的传输子帧的传输时段包括所述第三时段,c2的值为0,由子帧号Subframe a=Subframe b2+c2可以确定,第四传输子帧的子帧号Subframe a为Subframe b2+0;
在图2.7所示的示例无线帧结构Case2中,可以看出,i的值为1,即所述RAR时间窗的第1个传输子帧的子帧号为Subframe d,k的值为3,即子帧号为Subframe d+3的传输子帧的传输时段为第三时段,子帧号为Subframe b2传输子帧的传输时段包括所述第三时段,c2的值为1,由子帧号Subframe a=Subframe b2+c2可以确定,第四传输子帧的子帧号Subframe a为Subframe b2+1。
此外,当上述第一无线帧的子帧的开始时刻和上述第二无线帧的子帧的开始时刻不同步时,上述子帧号为Subframe d+k的传输子帧的传输时段可能与第一无线帧中的2个传输子帧的部分传输时段重合,此种情况下,需要从所述2个传输子帧中确定任意一个传输子帧的子帧号为上述Subframe b2,假设该2个传输子帧的子帧号分别为Subframe b2a和Subframe b2a+1,则无线网络设备可以确定子帧号Subframe b2a为所述Subframe b2,或者,无线网络设备也可以确定Subframe b2a+1为所述Subframe b2。
举例来说,请参阅图2.7-a,图2.7-a是本发明实施例提供的另一种包含第二映射关系的无线帧的帧结构示例图。
在图2.7-a的示例无线帧结构中,可以看出,i的值为5,所述RAR时间窗的第5个传输子帧的子帧号为Subframe d,k的值为4,即子帧号为Subframe d+4的传输子帧的传输时段为第三时段,该第三时段与第一无线帧中的子帧号为Subframe b2a、Subframe b2a+1的传输子帧的部分传输时段重合,若预存的子帧号Subframe b2的确定策略为Subframe b2=Subframe b2a+1,c2的值为0,由子帧号Subframe a=Subframe b2+c2可以确定,第四传输子帧的子帧号Subframe a为Subframe b2a+0。
需要指出的是,由于传输子帧的子帧号与传输子帧的时间位置是一一对应的,因此,确定了传输子帧的子帧号,也就确定了传输子帧在无线帧中的时间位置。上述第二无线网络设备和第一无线网络设备均可以通过确定传输子帧的子帧号来确定传输子帧的时间位置。
图3是本发明实施例中一种第二无线网络设备的结构示意图,该第二无线网络设备为图2所描述的无线帧的传输方法中的第二无线网络设备。如图所示本发明实施例中的第二无线网络设备至少可以包括接收单元310和发送单元320,其中:
所述接收单元310,用于接收第一无线网络设备发送的第一无线帧中的第一传输子帧承载的物理随机接入信道PRACH触发信息;
所述发送单元320,用于响应所述PRACH触发信息,向所述第一无线网络设备发送承载于第二无线帧的第二传输子帧的前导码Preamble序列,所述第一传输子帧的子帧号与所述第二传输子帧的子帧号之间具有预设第一映射关系,所述第一无线帧中的传输子帧的结构与所述第二无线帧中的传输子帧的结构不同。
可选的,所述发送单元320向所述第一无线网络设备发送承载于第二无线帧的第二传输子帧的Preamble序列之后,所述第二无线网络设备还包括:
第一检测单元,用于在随机接入响应RAR时间窗中检测所述第一无线网络设备发送的RAR,所述第一无线网络设备发送的RAR承载于第三传输子帧, 所述RAR时间窗包括N个传输子帧,所述第三传输子帧是所述N个传输子帧中的任意一个传输子帧,所述N为正整数;
所述RAR时间窗的首个传输子帧的子帧号与所述第二传输子帧的子帧号之间具有预设第二映射关系。
可选的,所述预设第二映射关系满足公式:Subframe p=Subframe q+r;
其中,所述Subframe p为所述RAR时间窗的首个传输子帧的子帧号,所述Subframe q为所述第二传输子帧的子帧号,所述r为正整数;
或者,
所述预设第二映射关系满足公式:Subframe p=Subframe q1+r1;
其中,所述Subframe p为所述RAR时间窗的首个传输子帧的子帧号,所述Subframe q1为传输时段包括第一时段的第一无线帧中的传输子帧的子帧号,所述第一时段是所述第二传输子帧的传输时段,所述r1为正整数;
或者,
所述预设第二映射关系满足公式:Subframe p=Subframe q2+r2;
其中,所述Subframe p为所述RAR时间窗的首个传输子帧的子帧号,所述Subframe q2为传输时段包括第二时段的第一无线帧中的传输子帧的子帧号,所述第二时段是子帧号为Subframe q+w的传输子帧的传输时段,所述Subframe q为所述第二传输子帧的子帧号,所述r2为正整数,所示w为大于1的正整数。
可选的,所述发送单元320向所述第一无线网络设备发送承载于第二无线帧的第二传输子帧的Preamble序列之后,所述第二无线网络设备还包括:
第二检测单元,用于在随机接入响应RAR时间窗中检测所述第一无线网络设备发送的RAR,所述第一无线网络设备发送的RAR承载于第三传输子帧,所述RAR时间窗包括N个传输子帧,所述N为正整数;
所述RAR时间窗的首个传输子帧的子帧号与所述第一传输子帧的子帧号之间具有预设第三映射关系。
可选的,所述预设第三映射关系满足公式:Subframe x=Subframe y+z;
其中,所述Subframe x为所述RAR时间窗的首个传输子帧的子帧号,所 述Subframe y为所述第一传输子帧的子帧号,所述z的值为正整数。
可选的,所述第一传输子帧与所述第二无线帧的M1个传输子帧处于相同时段,所述M1为大于1的整数;
所述预设第一映射关系满足公式:Subframe l=Subframe m+n;
其中,所述Subframe l为所述第二传输子帧的子帧号,所述Subframe m为所述M1个传输子帧中的第t个传输子帧的子帧号,所述n为0或正整数,所述t为小于或等于M1的正整数。
需要指出的是,以上只是对本发明实施例中第二无线网络设备的简述,具体实现过程、实施方式和示例,详见图2所描述的实施例,这里不再赘述。
图4是本发明实施例中一种第一无线网络设备的结构示意图,该第一无线网络设备为图2所描述的无线帧的传输方法中的第一无线网络设备。如图所示本发明实施例中的第一无线网络设备至少可以包括发送单元410和接收单元420,其中:
所述发送单元410,用于向第二无线网络设备发送承载于第一无线帧中的第一传输子帧的物理随机接入信道PRACH触发信息;
所述接收单元420,用于接收所述第二无线网络设备响应所述PRACH触发信息而发送的承载于第二无线帧的第二传输子帧的前导码Preamble序列,所述第一传输子帧的子帧号与所述第二传输子帧的子帧号之间具有预设第一映射关系,所述第一无线帧中的传输子帧的结构与所述第二无线帧中的传输子帧的结构不同。
可选的,所述接收单元420接收所述第二无线网络设备响应所述PRACH触发信息而发送的承载于第二无线帧的第二传输子帧的Preamble序列之后,所述发送单元410还用于:
向所述第二无线网络设备发送承载于第三传输子帧的随机接入响应RAR,所述第三传输子帧是N个传输子帧中的任意一个传输子帧,所述N个传输子帧组成用于检测所述RAR的RAR时间窗,所述N为大于1的正整数;
所述RAR时间窗的首个传输子帧的子帧号与所述第二传输子帧的子帧号 之间具有预设第二映射关系。
可选的,所述预设第二映射关系满足公式:Subframe p=Subframe q+r;
其中,所述Subframe p为所述RAR时间窗的首个传输子帧的子帧号,所述Subframe q为所述第二传输子帧的子帧号,所述r为正整数;
或者,
所述预设第二映射关系满足公式:Subframe p=Subframe q1+r1;
其中,所述Subframe p为所述RAR时间窗的首个传输子帧的子帧号,所述Subframe q1为传输时段包括第一时段的第一无线帧中的传输子帧的子帧号,所述第一时段是所述第二传输子帧的传输时段,所述r1为正整数;
或者,
所述预设第二映射关系满足公式:Subframe p=Subframe q2+r2;
其中,所述Subframe p为所述RAR时间窗的首个传输子帧的子帧号,所述Subframe q2为传输时段包括第二时段的第一无线帧中的传输子帧的子帧号,所述第二时段是子帧号为Subframe q+w的传输子帧的传输时段,所述Subframe q为所述第二传输子帧的子帧号,所述r2为正整数,所示w为大于1的正整数。
可选的,所述接收单元420接收所述第二无线网络设备响应所述PRACH触发信息而发送的承载于第二无线帧的第二传输子帧的Preamble序列之后,所述发送单元410还用于:
向所述第二无线网络设备发送承载于第三传输子帧的随机接入响应RAR,所述第三传输子帧是N个传输子帧中的任意一个传输子帧,所述N个传输子帧组成用于检测所述RAR的RAR时间窗,所述N为大于1的正整数;
所述RAR时间窗的首个传输子帧的子帧号与所述第一传输子帧的子帧号之间具有预设第三映射关系。
可选的,所述预设第三映射关系满足公式:Subframe x=Subframe y+z;
其中,所述Subframe x为所述RAR时间窗的首个传输子帧的子帧号,所述Subframe y为所述第一传输子帧的子帧号,所述z的值为正整数。
可选的,所述第一传输子帧与所述第二无线帧的M1个传输子帧处于相同 时段,所述M1为大于1的整数;
所述预设第一映射关系满足公式:Subframe l=Subframe m+n;
其中,所述Subframe l为所述第二传输子帧的子帧号,所述Subframe m为所述M1个传输子帧中的第t个传输子帧的子帧号,所述n为0或正整数,所述t为小于或等于M1的正整数。
需要指出的是,以上只是对本发明实施例中第二无线网络设备的简述,具体实现过程、实施方式和示例,详见图2所描述的实施例,这里不再赘述。
图5是本发明实施例中的又一种第二无线网络设备的结构示意图,如图5所示,该第二无线网络设备可以包括:至少一个处理器501,例如CPU,至少一个通信总线502,至少一个调制/解调器503,存储器504,无线接口505。其中,通信总线502用于实现这些组件之间的连接通信;无线接口505用于与其他节点设备进行信令或数据的通信;存储器504可以是高速RAM存储器,也可以是非易失的存储器(non-volatile memory),例如至少一个磁盘存储器。可选的,存储器504还可以是至少一个位于远离前述处理器501的存储装置。存储器504中存储一组程序代码,处理器501用于调用存储器504中存储的程序代码,执行以下操作:
接收第一无线网络设备发送的第一无线帧中的第一传输子帧承载的物理随机接入信道PRACH触发信息;
响应所述PRACH触发信息,向所述第一无线网络设备发送承载于第二无线帧的第二传输子帧的前导码Preamble序列,所述第一传输子帧的子帧号与所述第二传输子帧的子帧号之间具有预设第一映射关系,所述第一无线帧中的传输子帧的结构与所述第二无线帧中的传输子帧的结构不同。
可选的,所述第一传输子帧与所述第二无线帧的M1个传输子帧处于相同时段,所述M1为大于1的整数;
所述预设第一映射关系满足公式:Subframe l=Subframe m+n;
其中,所述Subframe l为所述第二传输子帧的子帧号,所述Subframe m为所述M1个传输子帧中的第t个传输子帧的子帧号,所述n为0或正整数,所述t为小于或等于M1的正整数。
其中,所述第二无线网络设备例如可以是用户设备。
图6是本发明实施例中的又一种第一无线网络设备的结构示意图,如图6所示,该第一无线网络设备可以包括:至少一个处理器601,例如CPU,至少一个通信总线602,至少一个调制/解调器603,存储器604,无线接口605。其中,通信总线602用于实现这些组件之间的连接通信;无线接口605用于与其他节点设备进行信令或数据的通信;存储器604可以是高速RAM存储器,也可以是非易失的存储器(non-volatile memory),例如至少一个磁盘存储器。可选的,存储器604还可以是至少一个位于远离前述处理器601的存储装置。存储器604中存储一组程序代码,处理器601用于调用存储器604中存储的程序代码,执行以下操作:
向第二无线网络设备发送承载于第一无线帧中的第一传输子帧的物理随机接入信道PRACH触发信息;
接收所述第二无线网络设备响应所述PRACH触发信息而发送的承载于第二无线帧的第二传输子帧的前导码Preamble序列,所述第一传输子帧的子帧号与所述第二传输子帧的子帧号之间具有预设第一映射关系,所述第一无线帧中的传输子帧的结构与所述第二无线帧中的传输子帧的结构不同。
可选的,所述第一传输子帧与所述第二无线帧的M1个传输子帧处于相同时段,所述M1为大于1的整数;
所述预设第一映射关系满足公式:Subframe l=Subframe m+n;
其中,所述Subframe l为所述第二传输子帧的子帧号,所述Subframe m为所述M1个传输子帧中的第t个传输子帧的子帧号,所述n为0或正整数,所述t为小于或等于M1的正整数。
其中,所述第一无线网络设备例如可以是基站。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明较佳实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (22)

  1. 一种无线帧的传输方法,其特征在于,所述方法包括:
    接收第一无线网络设备发送的第一无线帧中的第一传输子帧承载的物理随机接入信道PRACH触发信息;
    响应所述PRACH触发信息,向所述第一无线网络设备发送承载于第二无线帧的第二传输子帧的前导码Preamble序列,所述第一传输子帧的子帧号与所述第二传输子帧的子帧号之间具有预设第一映射关系,所述第一无线帧中的传输子帧的结构与所述第二无线帧中的传输子帧的结构不同。
  2. 根据权利要求1所述的方法,其特征在于,所述向所述第一无线网络设备发送承载于第二无线帧的第二传输子帧的Preamble序列之后,所述方法还包括:
    在随机接入响应RAR时间窗中检测所述第一无线网络设备发送的RAR,所述第一无线网络设备发送的RAR承载于第三传输子帧,所述RAR时间窗包括N个传输子帧,所述第三传输子帧是所述N个传输子帧中的任意一个传输子帧,所述N为正整数;
    所述RAR时间窗的首个传输子帧的子帧号与所述第二传输子帧的子帧号之间具有预设第二映射关系。
  3. 根据权利要求2任一项所述的方法,其特征在于,
    所述预设第二映射关系满足公式:Subframe p=Subframe q+r;
    其中,所述Subframe p为所述RAR时间窗的首个传输子帧的子帧号,所述Subframe q为所述第二传输子帧的子帧号,所述r为正整数;
    或者,
    所述预设第二映射关系满足公式:Subframe p=Subframe q1+r1;
    其中,所述Subframe p为所述RAR时间窗的首个传输子帧的子帧号,所 述Subframe q1为传输时段包括第一时段的第一无线帧中的传输子帧的子帧号,所述第一时段是所述第二传输子帧的传输时段,所述r1为正整数;
    或者,
    所述预设第二映射关系满足公式:Subframe p=Subframe q2+r2;
    其中,所述Subframe p为所述RAR时间窗的首个传输子帧的子帧号,所述Subframe q2为传输时段包括第二时段的第一无线帧中的传输子帧的子帧号,所述第二时段是子帧号为Subframe q+w的传输子帧的传输时段,所述Subframe q为所述第二传输子帧的子帧号,所述r2为正整数,所示w为大于1的正整数。
  4. 根据权利要求1所述的方法,其特征在于,
    所述向所述第一无线网络设备发送承载于第二无线帧的第二传输子帧的Preamble序列之后,所述方法还包括:
    在随机接入响应RAR时间窗中检测所述第一无线网络设备发送的RAR,所述第一无线网络设备发送的RAR承载于第三传输子帧,所述RAR时间窗包括N个传输子帧,所述N为正整数;
    所述RAR时间窗的首个传输子帧的子帧号与所述第一传输子帧的子帧号之间具有预设第三映射关系。
  5. 根据权利要求4任一项所述的方法,其特征在于,
    所述预设第三映射关系满足公式:Subframe x=Subframe y+z;
    其中,所述Subframe x为所述RAR时间窗的首个传输子帧的子帧号,所述Subframe y为所述第一传输子帧的子帧号,所述z的值为正整数。
  6. 根据权利要求2-5任一项所述的方法,其特征在于,所述方法还包括:
    若检测到所述RAR时间窗的第i个传输子帧承载有随机接入无线网络临时标识RA-RNTI加扰的物理下行控制信道PDCCH信息,且所述PDCCH信息对应的下行数据块中包括所述Preamble序列,则向所述第一无线网络设备 发送承载于第四传输子帧的上行共享信道UL-SCH数据块;
    所述第四传输子帧的子帧号与所述RAR时间窗的第i个传输子帧的子帧号之间具有预设第四映射关系,所述i为小于或等于所述N的正整数。
  7. 根据权利要求6所述的方法,其特征在于,
    所述RAR时间窗处于所述第一无线帧中,所述RAR时间窗的第i个传输子帧之后的第k个传输子帧与所述第二无线帧的M2个传输子帧处于相同时段,所述M2为大于1的整数,所述k为0或正整数;
    所述预设第四映射关系满足公式:Subframe a=Subframe b1+c1;
    其中,所述Subframe a为所述第四传输子帧的子帧号,所述Subframe b1为所述M2个传输子帧中的第j个传输子帧的子帧号,所述c1为0或正整数,所述j为小于或等于M2的正整数;
    或者,
    所述RAR时间窗处于所述第二无线帧中;
    所述预设第四映射关系满足公式:Subframe a=Subframe b2+c2;
    其中,所述Subframe a为所述第四传输子帧的子帧号,所述Subframe b2为传输时段包括第三时段的第一无线帧中的传输子帧的子帧号,所述第三时段是子帧号为Subframe d+k的传输子帧的传输时段,所述Subframe d为所述RAR时间窗的第i个传输子帧的子帧号,所述c2为0或正整数,所述k为0或正整数。
  8. 根据权利要求1-7任一项所述的方法,其特征在于,
    所述第一传输子帧与所述第二无线帧的M1个传输子帧处于相同时段,所述M1为大于1的整数;
    所述预设第一映射关系满足公式:Subframe l=Subframe m+n;
    其中,所述Subframe l为所述第二传输子帧的子帧号,所述Subframe m为所述M1个传输子帧中的第t个传输子帧的子帧号,所述n为0或正整数, 所述t为小于或等于M1的正整数。
  9. 一种无线帧的传输方法,其特征在于,所述方法包括:
    向第二无线网络设备发送承载于第一无线帧中的第一传输子帧的物理随机接入信道PRACH触发信息;
    接收所述第二无线网络设备响应所述PRACH触发信息而发送的承载于第二无线帧的第二传输子帧的前导码Preamble序列,所述第一传输子帧的子帧号与所述第二传输子帧的子帧号之间具有预设第一映射关系,所述第一无线帧中的传输子帧的结构与所述第二无线帧中的传输子帧的结构不同。
  10. 根据权利要求9所述的方法,其特征在于,所述接收所述第二无线网络设备响应所述PRACH触发信息而发送的承载于第二无线帧的第二传输子帧的Preamble序列之后,所述方法还包括:
    向所述第二无线网络设备发送承载于第三传输子帧的随机接入响应RAR,所述第三传输子帧是N个传输子帧中的任意一个传输子帧,所述N个传输子帧组成用于检测所述RAR的RAR时间窗,所述N为大于1的正整数;
    所述RAR时间窗的首个传输子帧的子帧号与所述第二传输子帧的子帧号之间具有预设第二映射关系。
  11. 根据权利要求10所述的方法,其特征在于,
    所述预设第二映射关系满足公式:Subframe p=Subframe q+r;
    其中,所述Subframe p为所述RAR时间窗的首个传输子帧的子帧号,所述Subframe q为所述第二传输子帧的子帧号,所述r为正整数;
    或者,
    所述预设第二映射关系满足公式:Subframe p=Subframe q1+r1;
    其中,所述Subframe p为所述RAR时间窗的首个传输子帧的子帧号,所述Subframe q1为传输时段包括第一时段的第一无线帧中的传输子帧的子帧号,所述第一时段是所述第二传输子帧的传输时段,所述r1为正整数;
    或者,
    所述预设第二映射关系满足公式:Subframe p=Subframe q2+r2;
    其中,所述Subframe p为所述RAR时间窗的首个传输子帧的子帧号,所 述Subframe q2为传输时段包括第二时段的第一无线帧中的传输子帧的子帧号,所述第二时段是子帧号为Subframe q+w的传输子帧的传输时段,所述Subframe q为所述第二传输子帧的子帧号,所述r2为正整数,所示w为大于1的正整数。
  12. 根据权利要求9所述的方法,其特征在于,所述接收所述第二无线网络设备响应所述PRACH触发信息而发送的承载于第二无线帧的第二传输子帧的Preamble序列之后,所述方法还包括:
    向所述第二无线网络设备发送承载于第三传输子帧的随机接入响应RAR,所述第三传输子帧是N个传输子帧中的任意一个传输子帧,所述N个传输子帧组成用于检测所述RAR的RAR时间窗,所述N为大于1的正整数;
    所述RAR时间窗的首个传输子帧的子帧号与所述第一传输子帧的子帧号之间具有预设第三映射关系。
  13. 根据权利要求12所述的方法,其特征在于,
    所述预设第三映射关系满足公式:Subframe x=Subframe y+z;
    其中,所述Subframe x为所述RAR时间窗的首个传输子帧的子帧号,所述Subframe y为所述第一传输子帧的子帧号,所述z的值为正整数。
  14. 根据权利要求10-13任一项所述的方法,其特征在于,所述向所述第二无线网络设备发送承载于第三传输子帧的随机接入响应RAR之后,所述方法还包括:
    接收所述第二无线网络设备发送的上行共享信道UL-SCH数据块,其中,所述UL-SCH数据块承载于第四传输子帧,所述UL-SCH数据块是所述第二无线网络设备在检测到所述RAR时间窗的第i个传输子帧承载有随机接入无线网络临时标识RA-RNTI加扰的物理下行控制信道PDCCH信息,且所述PDCCH信息对应的下行数据块中包括所述Preamble序列的情况下发送的;
    所述第四传输子帧的子帧号与所述RAR时间窗的第i个传输子帧的子帧号之间具有预设第四映射关系,所述i为小于或等于所述N的正整数。
  15. 根据权利要求14所述的方法,其特征在于,
    所述RAR时间窗处于所述第一无线帧中,所述RAR时间窗的第i个传输 子帧之后的第k个传输子帧与所述第二无线帧的M2个传输子帧处于相同时段,所述M2为大于1的整数,所述k为0或正整数;
    所述预设第四映射关系满足公式:Subframe a=Subframe b1+c1;
    其中,所述Subframe a为所述第四传输子帧的子帧号,所述Subframe b1为所述M2个传输子帧中的第j个传输子帧的子帧号,所述c1为0或正整数,所述j为小于或等于M2的正整数;
    或者,
    所述RAR时间窗处于所述第二无线帧中;
    所述预设第四映射关系满足公式:Subframe a=Subframe b2+c2;
    其中,所述Subframe a为所述第四传输子帧的子帧号,所述Subframe b2为传输时段包括第三时段的第一无线帧中的传输子帧的子帧号,所述第三时段是子帧号为Subframe d+k的传输子帧的传输时段,所述Subframe d为所述RAR时间窗的第i个传输子帧的子帧号,所述c2为0或正整数,所述k为0或正整数。
  16. 根据权利要求9-15任一项所述的方法,其特征在于,
    所述第一传输子帧与所述第二无线帧的M1个传输子帧处于相同时段,所述M1为大于1的整数;
    所述预设第一映射关系满足公式:Subframe l=Subframe m+n;
    其中,所述Subframe l为所述第二传输子帧的子帧号,所述Subframe m为所述M1个传输子帧中的第t个传输子帧的子帧号,所述n为0或正整数,所述t为小于或等于M1的正整数。
  17. 一种第二无线网络设备,其特征在于,包括:
    接收单元,用于接收第一无线网络设备发送的第一无线帧中的第一传输子帧承载的物理随机接入信道PRACH触发信息;
    发送单元,用于响应所述PRACH触发信息,向所述第一无线网络设备发送承载于第二无线帧的第二传输子帧的前导码Preamble序列,所述第一传输子帧的子帧号与所述第二传输子帧的子帧号之间具有预设第一映射关系,所述第一无线帧中的传输子帧的结构与所述第二无线帧中的传输子帧的结构不同。
  18. 根据权利要求17所述的第二无线网络设备,其特征在于,
    所述第一传输子帧与所述第二无线帧的M1个传输子帧处于相同时段,所述M1为大于1的整数;
    所述预设第一映射关系满足公式:Subframe l=Subframe m+n;
    其中,所述Subframe l为所述第二传输子帧的子帧号,所述Subframe m为所述M1个传输子帧中的第t个传输子帧的子帧号,所述n为0或正整数,所述t为小于或等于M1的正整数。
  19. 一种第一无线网络设备,其特征在于,包括:
    发送单元,用于向第二无线网络设备发送承载于第一无线帧中的第一传输子帧的物理随机接入信道PRACH触发信息;
    接收单元,用于接收所述第二无线网络设备响应所述PRACH触发信息而发送的承载于第二无线帧的第二传输子帧的前导码Preamble序列,所述第一传输子帧的子帧号与所述第二传输子帧的子帧号之间具有预设第一映射关系,所述第一无线帧中的传输子帧的结构与所述第二无线帧中的传输子帧的结构不同。
  20. 根据权利要求19所述的第一无线网络设备,其特征在于,
    所述第一传输子帧与所述第二无线帧的M1个传输子帧处于相同时段,所述M1为大于1的整数;
    所述预设第一映射关系满足公式:Subframe l=Subframe m+n;
    其中,所述Subframe l为所述第二传输子帧的子帧号,所述Subframe m为所述M1个传输子帧中的第t个传输子帧的子帧号,所述n为0或正整数,所述t为小于或等于M1的正整数。
  21. 一种第二无线网络设备,其特征在于,包括处理器、存储器、通信接口和总线,所述处理器、所述通信接口和所述存储器通过所述总线完成相互间的通信;
    所述存储器存储有可执行程序代码;
    所述处理器用于调用所述存储器中的可执行程序代码,执行如权利要求1至权利要求8任一项所描述的方法。
  22. 一种第一无线网络设备,其特征在于,包括处理器、存储器、通信接口和总线,所述处理器、所述通信接口和所述存储器通过所述总线完成相互间的通信;
    所述存储器存储有可执行程序代码;
    所述处理器用于调用所述存储器中的可执行程序代码,执行如权利要求9至权利要求16任一项所描述的方法。
PCT/CN2016/110188 2015-12-18 2016-12-15 一种无线帧的传输方法及无线网络设备 WO2017101823A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
EP20191368.8A EP3823402B1 (en) 2015-12-18 2016-12-15 Radio frame transmission method, apparatus and computer-readable storage medium
EP16874880.4A EP3376816B1 (en) 2015-12-18 2016-12-15 Radio frame transmission method and wireless network device
US16/011,128 US10405343B2 (en) 2015-12-18 2018-06-18 Radio frame transmission method and wireless network device

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201510956990.0A CN106900072B (zh) 2015-12-18 2015-12-18 一种无线帧的传输方法及无线网络设备
CN201510956990.0 2015-12-18

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/011,128 Continuation US10405343B2 (en) 2015-12-18 2018-06-18 Radio frame transmission method and wireless network device

Publications (1)

Publication Number Publication Date
WO2017101823A1 true WO2017101823A1 (zh) 2017-06-22

Family

ID=59055852

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2016/110188 WO2017101823A1 (zh) 2015-12-18 2016-12-15 一种无线帧的传输方法及无线网络设备

Country Status (4)

Country Link
US (1) US10405343B2 (zh)
EP (2) EP3823402B1 (zh)
CN (2) CN111225449A (zh)
WO (1) WO2017101823A1 (zh)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11166322B2 (en) * 2017-08-09 2021-11-02 Lg Electronics Inc. Method for performing random access process and apparatus therefor
CN109392125B (zh) * 2017-08-10 2023-04-18 华为技术有限公司 通信方法和设备
US11997604B2 (en) * 2019-11-13 2024-05-28 Nokia Technologies Oy Wake-up signal with random access response

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130242730A1 (en) * 2012-03-16 2013-09-19 Interdigital Patent Holdings, Inc. Random access procedures in wireless systems
CN103379072A (zh) * 2012-04-20 2013-10-30 电信科学技术研究院 一种信号传输方法及装置
CN103796330A (zh) * 2012-11-02 2014-05-14 电信科学技术研究院 随机接入信道的传输及接收方法和设备
CN103916974A (zh) * 2013-01-07 2014-07-09 华为技术有限公司 一种前导序列的传输方法、装置及系统

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101841922B (zh) * 2009-03-16 2015-01-28 中兴通讯股份有限公司 选择随机接入资源的方法及终端
KR20130085357A (ko) * 2009-06-22 2013-07-29 알까뗄 루슨트 업링크 동기화를 확립하기 위한 방법 및 디바이스
CN102202415B (zh) * 2011-05-18 2019-01-22 中兴通讯股份有限公司 一种物理随机接入信道的传输方法和系统
CN103716895B (zh) * 2012-09-29 2020-11-17 中兴通讯股份有限公司 物理随机接入信道的资源确定方法及装置
WO2015034301A1 (en) * 2013-09-04 2015-03-12 Lg Electronics Inc. Method and apparatus for aggregation of frequency division duplex and time division duplex

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20130242730A1 (en) * 2012-03-16 2013-09-19 Interdigital Patent Holdings, Inc. Random access procedures in wireless systems
CN103379072A (zh) * 2012-04-20 2013-10-30 电信科学技术研究院 一种信号传输方法及装置
CN103796330A (zh) * 2012-11-02 2014-05-14 电信科学技术研究院 随机接入信道的传输及接收方法和设备
CN103916974A (zh) * 2013-01-07 2014-07-09 华为技术有限公司 一种前导序列的传输方法、装置及系统

Also Published As

Publication number Publication date
EP3376816A4 (en) 2018-11-21
US20180302921A1 (en) 2018-10-18
EP3823402A1 (en) 2021-05-19
CN106900072B (zh) 2020-02-14
CN106900072A (zh) 2017-06-27
CN111225449A (zh) 2020-06-02
EP3376816A1 (en) 2018-09-19
US10405343B2 (en) 2019-09-03
EP3823402B1 (en) 2023-11-08
EP3376816B1 (en) 2020-09-09

Similar Documents

Publication Publication Date Title
US11832175B2 (en) Adding of a secondary base station based on a backhaul interface
US11844117B2 (en) Two-step random-access procedure in unlicensed bands
US12022517B2 (en) Non-scheduling resource based data sending method and apparatus thereof
US9191868B2 (en) Method of timing reference management
CN108990103B (zh) 处理调度请求的装置及方法
US11019652B2 (en) Parallel scheduling request process management
KR102444600B1 (ko) 정보 전송 방법 및 장치
WO2018204770A1 (en) Scheduling request in a wireless device and wireless network
US11177915B2 (en) Uplink reference signal sending method, uplink reference signal method, and apparatus
US11122630B2 (en) Information sending method and apparatus and information receiving method and apparatus
JP2016540436A (ja) D2dサブフレームの信号設計
HUE035560T2 (en) Wireless device, first network node and their procedures
AU2015380135B2 (en) Method, terminal, and base station for asynchronous uplink transmission
US20170135101A1 (en) Method and Apparatus for Determining Data Transmission
US10405343B2 (en) Radio frame transmission method and wireless network device
US20180324799A1 (en) Radio frame transmission method and wireless network device
US9210706B2 (en) Mobile communication devices and methods for physical downlink control channel (PDCCH) monitoring
WO2022161506A1 (zh) 数据传输方法、装置、用户设备、网络设备及存储介质
WO2018028678A1 (zh) 一种同步信号发送方法及装置
CN118556447A (zh) 覆盖增强方法及相关设备

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 16874880

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2016874880

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE