WO2022161506A1 - 数据传输方法、装置、用户设备、网络设备及存储介质 - Google Patents

数据传输方法、装置、用户设备、网络设备及存储介质 Download PDF

Info

Publication number
WO2022161506A1
WO2022161506A1 PCT/CN2022/079917 CN2022079917W WO2022161506A1 WO 2022161506 A1 WO2022161506 A1 WO 2022161506A1 CN 2022079917 W CN2022079917 W CN 2022079917W WO 2022161506 A1 WO2022161506 A1 WO 2022161506A1
Authority
WO
WIPO (PCT)
Prior art keywords
resource
data
configuration information
frequency domain
transmitting
Prior art date
Application number
PCT/CN2022/079917
Other languages
English (en)
French (fr)
Inventor
王苗
Original Assignee
北京紫光展锐通信技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 北京紫光展锐通信技术有限公司 filed Critical 北京紫光展锐通信技术有限公司
Publication of WO2022161506A1 publication Critical patent/WO2022161506A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0446Resources in time domain, e.g. slots or frames
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA

Definitions

  • the present application relates to the field of communication technologies, and in particular, to a data transmission method, apparatus, user equipment, network equipment and storage medium.
  • Non-RedCap UEs include Enhanced Mobile Broadband (eMBB) UEs and Ultra Reliable Low Latency Communications (URLLC) UEs.
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra Reliable Low Latency Communications
  • RedCap UEs and non-RedCap UEs may access the same cell.
  • the UE when the UE transmits some messages, in order to obtain the frequency diversity gain, the UE can hop the frequency in the time slot. Since the maximum bandwidth supported by the non-RedCap UE is 100MHz, and the maximum configurable bandwidth of the initial uplink BWP is 100MHz, the initial uplink BWP is likely to exceed the maximum bandwidth of 20MHz supported by the RedCap UE itself.
  • RedCap UEs when no dedicated initial uplink BWP is configured, RedCap UEs and non-RedCap UEs share initial UL BWP, and the initial uplink BWP may exceed 20MHz, when the UE hops frequency within the time slot, according to the requirements of the existing protocol , the frequency interval between the two hops will be greater than the maximum bandwidth supported by the RedCap UE, so that the RedCap UE needs to adjust the center frequency between the two hops, and it takes a certain amount of time to perform radio frequency modulation.
  • the time between two adjacent hops should be continuous, so that the UE does not have time to perform radio frequency modulation.
  • the network can configure a dedicated initial uplink BWP for the RedCap UE to complete the frequency hopping transmission of data in the time slot.
  • the problem to be solved in this application is: how to complete the frequency hopping transmission of data in the time slot when the network does not configure a dedicated initial uplink BWP for the RedCap UE.
  • an embodiment of the present application provides a data transmission method, the method includes:
  • the time domain resource configured by the resource configuration information is located in a time slot;
  • the first data is transmitted.
  • the first data is sent in a radio resource control connection establishment request in a four-step random access procedure, or the first data is sent after a random access preamble is sent in a two-step random access procedure.
  • the resource configuration information includes: time domain resource configuration information and frequency domain resource configuration information;
  • the frequency domain resource configuration information includes: frequency domain resource length information for transmitting the first data, starting frequency domain location information of the first resource of the first data, and frequency hopping indication information.
  • the determining of the first resource and the second resource for transmitting the first data includes:
  • the starting frequency domain location information of the first resource of the first data Based on the starting frequency domain location information of the first resource of the first data, the starting frequency domain location information of the second resource of the first data, and the length information of the frequency domain resource for transmitting the first data, Determine the frequency domain positions corresponding to the first resource and the second resource of the first data, where the total bandwidth of the first resource and the second resource in the frequency domain is less than or equal to the maximum bandwidth supported by the user equipment.
  • the starting frequency domain position of the second resource of the first data is the sum of the starting frequency domain position of the first resource of the first data and a preset corresponding frequency domain offset value.
  • the frequency domain offset value is or
  • the frequency domain offset value is or It is the minimum value of the number of physical resource blocks corresponding to the initial uplink BWP and the number of physical resource blocks corresponding to the maximum bandwidth supported by the user equipment.
  • the first data is sending feedback whether the PUCCH established by radio resource control is correctly received.
  • the resource configuration information is index value information in a preset PUCCH resource mapping table
  • the preset PUCCH resource mapping table includes: index value information, physical resource block offset value information corresponding to the index value, and initial CS index value set information.
  • the resource configuration information to determine the first resource and the second resource used for transmitting the first data includes:
  • N CS represents the number of initial CS index values corresponding to the index value
  • the total bandwidth of the first resource and the second resource in the frequency domain is less than or equal to the user equipment The maximum bandwidth supported by the device.
  • the determining the first resource and the second resource for transmitting the first data based on the resource configuration information includes:
  • N CS represents the number of initial CS index values corresponding to the index value
  • the total bandwidth of the first resource and the second resource in the frequency domain is less than or equal to the maximum bandwidth supported by the user equipment.
  • the determining, based on the resource configuration information, the first resource and the second resource for transmitting the first data includes:
  • the time domain resource length configured by the resource configuration information is greater than or equal to the sum of the time domain resource length used for radio frequency modulation and the time domain resource length used for transmitting the first data
  • the embodiment of the present application also provides another data transmission method, and the method includes:
  • the time domain resource configured by the resource configuration information is located in a time slot;
  • the total bandwidth of the first resource and the second resource in the frequency domain is less than or equal to the maximum bandwidth supported by the user equipment, or the interval between the first resource and the second resource in the time domain Greater than or equal to the duration used for RF FM.
  • the embodiment of the present application also provides a data transmission device, the device includes:
  • a first receiving unit configured to receive resource configuration information for transmitting the first data;
  • the time domain resource configured by the resource configuration information is located in a time slot;
  • a determining unit configured to determine, based on the resource configuration information, a first resource and a second resource for transmitting the first data, where the total bandwidth of the first resource and the second resource in the frequency domain is less than or is equal to the maximum bandwidth supported by the user equipment, or, the interval between the first resource and the second resource in the time domain is greater than or equal to the duration used for radio frequency modulation;
  • a transmission unit configured to transmit the first data on the first resource and the second resource.
  • An embodiment of the present application further provides a user equipment, where the user equipment includes the above-mentioned data transmission apparatus.
  • the embodiment of the present application also provides a data transmission device, the device includes:
  • a first sending unit configured to send resource configuration information for transmitting the first data;
  • the time domain resource configured by the resource configuration information is located in a time slot;
  • a second receiving unit configured to receive the first data on the first resource and the second resource
  • the total bandwidth of the first resource and the second resource in the frequency domain is less than or equal to the maximum bandwidth supported by the user equipment, or the interval between the first resource and the second resource in the time domain Greater than or equal to the duration used for RF FM.
  • An embodiment of the present application further provides a network device, where the network device includes the above-mentioned data transmission apparatus.
  • Embodiments of the present application further provide a computer-readable storage medium, on which a computer program is stored, and the computer program is executed by a processor to implement the steps of any one of the above-mentioned methods.
  • An embodiment of the present application further provides an apparatus, including a memory and a processor, the memory stores a computer program that can run on the processor, and the processor executes any of the above when running the computer program the steps of the method.
  • An embodiment of the present application further provides an apparatus, including a memory and a processor, the memory stores a computer program that can run on the processor, and the processor executes any of the above when running the computer program the steps of the method.
  • the first resource and the second resource for transmitting the first data are The total bandwidth in the frequency domain is less than or equal to the maximum bandwidth supported by the user equipment, so that the frequency interval between the first resource and the second resource of the first data is within the maximum bandwidth supported by the user equipment, so the user equipment does not need to perform
  • the data can be transmitted by the radio frequency modulation, and the frequency hopping transmission in the time slot is completed.
  • the interval between the first resource and the second resource in the time domain greater than or equal to the duration used for radio frequency modulation, data transmission requiring frequency hopping within a time slot is completed.
  • FIG. 1 is a schematic diagram of the architecture of a communication system
  • FIG. 2 is a schematic diagram of signaling interaction of a four-step random access process
  • 3 is a schematic diagram of signaling interaction between two random access procedures
  • FIG. 6 is a schematic diagram of determining time-frequency resources in an embodiment of the present application.
  • FIG. 7 is a schematic diagram of another determination of time-frequency resources in an embodiment of the present application.
  • FIG. 9 is a schematic structural diagram of a data transmission device in an embodiment of the present application.
  • FIG. 10 is a schematic structural diagram of another data transmission apparatus in an embodiment of the present application.
  • FIG. 1 shows a possible communication system to which the data transmission method provided by the embodiment of the present application is applicable.
  • the architecture of the communication system includes: a base station and a plurality of user equipments (user equipment 1, user equipment as shown in the figure) 2. User equipment 3 and user equipment 4). in:
  • the base station is configured to provide wireless access services for user equipment in a cell controlled by the base station.
  • the base station controls cell 1 and cell 2, which are user equipment in cell 1 (user equipment 1 and user equipment 2 in FIG. 1 ) and user equipment in cell 2, respectively (User equipment 3 and user equipment 4 in FIG. 1 ) provide wireless access services.
  • the multiple user equipments are used to perform data services by accessing the base station to which the cell where the cell belongs.
  • user equipment 1 and user equipment 2 are both within the coverage of cell 1 controlled by the base station, and both access the base station to perform data services
  • user equipment 3 and user equipment 4 are both within the coverage area of cell 1 controlled by the base station.
  • the multiple user equipments need to establish connections with the base station through a random access procedure, so that the multiple user equipments can perform data services by accessing the base station.
  • the communication system shown in FIG. 1 is only an example, and is not limited to include the base station and multiple user equipments shown in FIG. 1 .
  • the communication system may also include multiple base stations and other devices, which are not specifically listed here.
  • the UE may perform intra-slot frequency hopping, for example, in a contention-based or non-contention-based random access process. It can be understood that, when performing uplink transmission in other situations or scenarios, intra-slot frequency hopping may also be required, and the specific application scenario is not limited.
  • FIG. 2 is a schematic diagram of signaling interaction between a UE and a base station gNB in a four-step random access process.
  • the specific random access process is as follows:
  • Step 101 the UE sends a random access request Msg1 to the gNB.
  • Random Access Preamble namely Msg1.
  • the random access request Msg1 includes a random access preamble (random access preamble) code.
  • Step 102 the gNB sends a random access response Msg2 to the UE.
  • the random access response (Random Access Response), namely Msg2, is the response message of the base station after receiving the random access request Msg1.
  • Step 103 the UE sends a radio resource control connection request Msg3 to the gNB.
  • Radio resource control connection request (Scheduled Transmission), namely Msg3.
  • the RRC connection request Msg3 includes the PUSCH to be transmitted.
  • Step 104 the UE receives the RRC setup Msg4.
  • Radio resource control establishment (Contention Resolution), namely Msg4.
  • the identifier of the UE is included in the RRC establishment Msg4, which is used to notify the UE that the random access is successful.
  • the UE after receiving the radio resource control establishment Msg4, the UE will feed back uplink control information to the base station to inform the base station whether the radio resource control establishment Msg4 is correctly received.
  • the downlink control information is sent to the UE through a physical uplink control channel (Physical Uplink Control Channel, PUCCH).
  • PUCCH Physical Uplink Control Channel
  • PUCCH Physical Uplink Control Channel
  • the UE is sending the random access message Msg3, and for the PUSCH that needs to be transmitted, the UE can complete the data transmission by means of frequency hopping within the time slot.
  • the UE may also use the mode of frequency hopping within the time slot to complete the transmission of the PUCCH.
  • FIG. 3 is a schematic diagram of signaling interaction between the UE and the base station gNB in the two-step random access process.
  • the specific random access process is as follows:
  • Step 201 the UE sends a first message MsgA to the gNB.
  • the first message MsgA includes random access preamble information and PUSCH to be transmitted.
  • the UE sends the random access preamble to the gNB first, and then sends the PUSCH to be transmitted.
  • Step 202 the gNB sends a second message MsgB to the UE.
  • the second message MsgB may include the sequence number of the random access preamble, the temporary identity of the cell wireless network and the identity of the UE with successful access.
  • the UE when the UE sends the first message MsgA, for the PUSCH that needs to be transmitted, the UE can complete data transmission by means of frequency hopping within the time slot.
  • the so-called intra-slot frequency hopping refers to a transmission block, which is divided into multiple parts, which are respectively sent at multiple frequency domain positions on the same channel.
  • the time domain resource of the transmission block is located in a time slot, the frequency domain position corresponding to each part of the data is different, and each frequency domain position sends a part of the transmission block.
  • the transport block is divided into N parts, and the intra-slot frequency hopping can be divided into N hops, where N ⁇ 2 and a positive integer. For example, if a transmission block is divided into two parts and sent at two different frequency domain positions on the same channel, the frequency hopping mode in the time slot is two hops. One part of the transport block is called the first hop of the transport block, and the other part is called the second hop of the transport block.
  • time domain resources are not additionally configured for the UE to perform radio frequency modulation.
  • the so-called temporal continuity between two adjacent hops refers to: in the time domain resources configured by the base station for transmitting the transport block, the end moment of the first hop of the transport block, that is, the transport block The start time of the second hop, or the end time of the second hop of the transport block, that is, the start time of the first hop of the transport block.
  • the network can configure a dedicated initial uplink BWP for the RedCap UE to complete the frequency hopping transmission of data in the time slot.
  • the initial uplink BWP is likely to exceed the maximum bandwidth of 20MHz supported by the RedCap UE itself.
  • the UE transmits the radio resource control connection request Msg3, the PUSCH in the first message MsgA, or feedback radio resources
  • the frequency interval between two hops may be greater than the maximum bandwidth supported by the RedCap UE, resulting in the RedCap UE needing to adjust the center frequency between the two hops, namely It takes a certain amount of time to perform radio frequency (RF) frequency modulation (retuning) to adjust the current center frequency point to the center frequency point of the next hop (ie, RF frequency modulation), and then the data can be transmitted by frequency hopping within the time slot.
  • RF radio frequency
  • the present application provides a data transmission method.
  • the user equipment controls the first resource for transmitting the first data and the first resource for transmitting the first data.
  • the total bandwidth of the resources in the frequency domain is less than or equal to the maximum bandwidth supported by the user equipment, or, the interval between the first resource and the second resource for transmitting the first data in the time domain is greater than or equal to the duration used for radio frequency modulation.
  • the device has completed the frequency hopping transmission of data in the time slot.
  • an embodiment of the present application provides a data transmission method, and the method may include the following steps:
  • Step 31 Receive resource configuration information for transmitting the first data; the time domain resource configured by the resource configuration information is located in a time slot.
  • the first data may be any data to be transmitted that requires frequency hopping transmission in a time slot.
  • the resource configuration information may include: time domain resource configuration information and frequency domain resource configuration information.
  • the time-domain resource configuration information and the frequency-domain resource configuration information used for transmitting the first data may be received in various ways.
  • the time-domain resource configuration information and the frequency-domain resource configuration information may also be in various forms, which are not specifically limited.
  • the base station may send time domain resource configuration information and frequency domain resource configuration information through an access response message Msg2.
  • the base station may send time domain resource configuration information and frequency domain resource configuration information by means of broadcasting or the like.
  • the time domain resource configuration information of the first data may include initial orthogonal frequency division multiplexing (Orthogonal Frequency Division Multiplexing, OFDM) symbol identification information for transmitting the first data, time domain
  • OFDM Orthogonal Frequency Division Multiplexing
  • the total length of the resource can be specifically represented by the start and length indicator (The Start and Length Indicator, SLIV) value.
  • the frequency domain resource configuration information of the first data may include: total length of frequency domain resources, initial resource block identification information of the first hop, and frequency hopping indication information. For details, refer to Table 1. In this embodiment, is the minimum value of the number of physical resource blocks corresponding to the initial uplink BWP and the number of physical resource blocks corresponding to the maximum bandwidth supported by the user equipment; the frequency hopping indication information N UL, hop and the resource block offset RB offset of the second hop one by one correspond.
  • the value of N UL,hop can be: 0, 1.
  • the RB offset can be (that is, right 1/2 rounded down), (that is, right 1/4 rounded down).
  • the value of N UL,hop can be: 00, 01, 10, 11.
  • the RB offset can be and
  • the base station may transmit the PUCCH resource mapping table to the UE in advance by means of broadcasting, and then use the index value of the PUCCH resource mapping table to indicate the time-frequency resource corresponding to the index value as the time-frequency resource. Time-frequency resources for transmitting PUCCH.
  • the PUCCH resource mapping table may include the index value Index information, the first OFDM symbol (First symbol) identification information corresponding to the index value Index, and the first symbol corresponding to the index value for transmission.
  • the PUCCH resource mapping table may further include: PUCCH format information PUCCH format corresponding to the index value Index, resource block offset and the set information of the initial CS index value corresponding to the index value.
  • Step 32 Based on the resource configuration information, determine a first resource and a second resource for transmitting the first data, and the total bandwidth of the first resource and the second resource in the frequency domain is less than or equal to the user The maximum bandwidth supported by the device.
  • the user equipment can determine, based on the frequency domain resource configuration information, the device used for transmitting the first data. frequency domain resources, so that the total bandwidth of the first resource and the second resource in the frequency domain is less than or equal to the maximum bandwidth supported by the user equipment, that is, the first hop of the first data and the The frequency interval between the second hops of a data is within the initial upstream BWP.
  • the first resource may be understood as a time-frequency resource occupied by one hop of the first data.
  • the second resource is an understandable time-frequency resource occupied by another hop of the first data.
  • the first resource and the second resource in the frequency domain refers to the frequency domain resource from the frequency domain start position of the first resource to the frequency domain end position of the second resource.
  • the first resource and the The total bandwidth of the second resource in the frequency domain refers to the frequency domain resource from the start position of the second resource in the frequency domain to the end position of the frequency domain of the first resource.
  • the total bandwidth of the first resource and the second resource in the frequency domain is also referred to as the resource span between the first resource and the second resource, that is, the first data two-hop resource resource span between.
  • the user equipment may decide how to determine the time domain resource and the frequency domain resource for frequency hopping transmission of the first data based on the instruction of the base station.
  • the user equipment can also decide how to determine the time domain resources and frequency domain resources for frequency hopping transmission of the first data. For example, when the user equipment detects that in the resource configuration information, the resource span between the two-hop resources configured by the base station for the UE to transmit the first data exceeds the maximum bandwidth that the UE can support, the data transmission in the embodiment of the present application may be adopted.
  • the method includes determining time domain resources and frequency domain resources for frequency hopping transmission of the first data.
  • the UE can transmit the first data according to the configuration of the base station. data, no additional adjustment of the two-hop resource is required.
  • the resource span between the so-called two-hop resources for transmitting the first data does not exceed the maximum bandwidth that the UE can support.
  • the initial uplink BWP contains 270 PRBs
  • the initial RB is 1
  • the number of RBs that can be used continuously is 2
  • the number of RBs that can be used continuously is 2.
  • the RBs used by a hop are RB1 and RB2.
  • SCS 15kHz
  • the second hop uses the 136th (1+270/2) and 137th RB.
  • the 54th (1+106/2) and 55th RBs used by the second hop is less than the maximum bandwidth supported by the UE.
  • the frequency domain resource configuration information when the first data is PUSCH, for example, in the frequency domain resource configuration information of the RRC connection request Msg3, referring to Table 1, the frequency domain resource configuration information includes: frequency hopping indication information N UL,hop .
  • the frequency domain resource configuration information also includes: a resource indication value (Resource Indication Value, RIV).
  • RIV Resource Indication Value
  • RBstart(0) is the starting frequency domain location information of the first resource
  • the frequency domain resources corresponding to the first resource are RBstart(0), RBstart(0)+1, ... RBstart(0)+L.
  • the frequency domain configuration information of the first message MsgA is frequencyStartMsgA-PUSCH, nrofPRBs-perMsgA-PO and msgA-HoppingBits, RBstart can be obtained through frequencyStartMsgA-PUSCH, and nrofPRBs-perMsgA-PO is the number of consecutive PRBs available to the UE , msgA-HoppingBits corresponds to N UL, hop in Table 1.
  • the starting frequency domain location information of the first resource of the first data Based on the starting frequency domain location information of the first resource of the first data and the frequency hopping indication information, determine the starting frequency domain location information of the second resource of the first data, and then based on the first The starting frequency domain location information of the first resource of the data, the starting frequency domain location information of the second resource of the first data, and the length information of the frequency domain resource used for transmitting the first data, determine the first The frequency domain positions corresponding to the first resource and the second resource of the data, and the total bandwidth of the first resource and the second resource in the frequency domain is less than or equal to the maximum bandwidth supported by the user equipment.
  • the starting frequency domain position of the second resource of the first data is the sum of the starting frequency domain position of the first resource of the first data and a preset corresponding frequency domain offset value.
  • formula (1) can be used to determine the starting resource block RB start (1) of the second resource:
  • RB start (1) RB start (0)+RB offset (1)
  • RB start (0) is a start resource block identifier of the first resource.
  • the frequency domain offset value is the same as the initial uplink BWP. and the maximum bandwidth supported by the user equipment related, where the initial upstream BWP and maximum bandwidth where N represents N frequency-domain resource units, and the frequency-domain resource units may be physical resource blocks (PRBs), and of course, may also be equivalent to physical resource blocks.
  • the frequency domain resource unit is a PRB.
  • the starting resource block RBstart(1) of the second hop of the first data is the 54th RB, between RB start (0) and RB start (1)
  • the frequency spacing is less than the maximum bandwidth supported by the user equipment
  • the specific occupation of the first resource and the second resource can be determined. Resource location.
  • the frequency domain resource configuration information corresponding to the index value indicated in the preset PUCCH resource mapping table is used as the frequency domain resource configuration information.
  • the preset PUCCH resource mapping table includes: index value information, resource block offset and the set information of the initial CS index value corresponding to the index value.
  • the UE determines that, according to the configuration of the base station, the resource span between two hops of the first data exceeds the maximum bandwidth supported by the UE, then when determining the frequency domain resources used for transmitting the first data, the first resource of the first data
  • the starting physical resource block is:
  • the starting physical resource block of the second resource of the first data is: or Therefore, the resource span between the first resource and the second resource is within the maximum bandwidth supported by the UE.
  • r PUCCH is the PUCCH resource indicator field (resource indicator field) in the downlink control information (DCI) configured by the base station and the configuration information for the PDCCH type (Type0-PDCCH) Determine, refer to 3GPP 38.213-g30 9.2.1 for details, N CS represents the number of initial CS index values corresponding to the index value; The number of physical resource blocks corresponding to the maximum bandwidth supported by the user equipment.
  • the first hop starting physical resource block of the first data is:
  • the starting physical resource block of the second hop is:
  • the resource span between two hops of the first data is within the maximum bandwidth supported by the UE.
  • the frequency domain resource corresponding to the index value indicated in the preset PUCCH resource mapping table is used as the frequency domain resource configuration information.
  • the preset PUCCH resource mapping table includes: index value information, resource block offset and the set information of the initial CS index value corresponding to the index value.
  • the starting physical resource block of the first resource of the first data may also be:
  • the starting physical resource block of the second resource of the first data may also be: or at this time, The maximum bandwidth supported by the user equipment.
  • the first hop starting physical resource block of the first data is:
  • the starting physical resource block of the second hop is:
  • the resource span between the first hop of the first data and the second hop of the first data is located at the maximum bandwidth supported by the UE, and The time domain resources configured by the base station are kept unchanged, thereby preventing the user equipment from performing radio frequency modulation.
  • Step 33 Transmit the first data on the first resource and the second resource.
  • the total length of time domain resources configured by the base station for transmitting the first data is L OFDM symbols, L ⁇ 14.
  • the OFDM symbols are the time domain resources used by the first hop of the first data, and the remaining OFDM symbols are the time domain resources used by the second hop of the first data.
  • the starting OFDM symbol of the time domain resource used by the first data is the twelfth OFDM symbol
  • the length of the time domain resource used to transmit PUCCH is 2 OFDM symbols.
  • the 12th OFDM symbol may be used as the time domain resource used by the first hop of the first data
  • the 13th OFDM symbol may be used as the time domain resource used by the second hop of the first data.
  • the first data may be transmitted.
  • the frequency domain resource for transmitting the first data when the frequency domain resource for transmitting the first data is determined based on the frequency domain resource configuration information, the first resource for transmitting the first data is different from the first resource for transmitting the first data.
  • the total bandwidth of the second data resource in the frequency domain is less than or equal to the maximum bandwidth supported by the user equipment, that is, the frequency interval between two adjacent hops is within the maximum bandwidth supported by the user equipment, so the user equipment does not need to perform radio frequency modulation.
  • the data is transmitted, and the frequency hopping transmission of the data in the time slot is completed.
  • the embodiment of the present application further provides another data transmission method, and the method may include the following steps:
  • Step 51 Receive resource configuration information for transmitting the first data; the time domain resource configured by the resource configuration information is located in a time slot.
  • the time-domain resource configuration information of the first data may include initial OFDM symbol identification information for transmitting the first data, and the total length of time-domain resources.
  • the frequency domain resource configuration information of the first data may include: total length of frequency domain resources, initial resource block identification information of the first hop, and frequency hopping indication information.
  • Table 3 Indicates the number of physical resource blocks corresponding to the initial uplink BWP.
  • the frequency hopping indication information N UL, hop is in one-to-one correspondence with the resource block offset RB offset of the second hop.
  • the value of N UL,hop can be: 0, 1.
  • the RB offset can be (that is, right 1/2 rounded down), (that is, right 1/4 rounded down).
  • the value of N UL,hop can be: 00, 01, 10, 11.
  • the RB offset can be and the reserved value (Reserved).
  • the base station may transmit the PUCCH resource mapping table to the UE in advance by means of broadcasting, and then by indicating the index value of the PUCCH resource mapping table, the time corresponding to the index value
  • the frequency resource is used as the time-frequency resource for transmitting the PUCCH.
  • the frequency domain resource configuration information includes: resource block offset and the set information of the initial CS index value corresponding to the index value, as shown in Table 4.
  • Step 52 Based on the resource configuration information, determine a first resource and a second resource for transmitting the first data, and the interval between the first resource and the second resource in the time domain is greater than or equal to that used for transmitting the first data.
  • the duration of the RF frequency modulation is greater than or equal to that used for transmitting the first data.
  • the UE may first determine whether the resource span between two hops of the first data exceeds the maximum bandwidth supported by the UE according to the configuration of the base station.
  • the data transmission method described in Embodiment 2 is used to determine the first resource and the second resource of the first data, otherwise, according to the existing 3GPP The protocol requires that the first resource and the second resource be determined.
  • the time domain resource length configured by the resource configuration information is greater than or equal to the duration used for radio frequency modulation.
  • the first resource may be the time-frequency resource occupied by the first hop of the first data
  • the second resource may be the time-frequency resource occupied by the second hop of the first data .
  • the first resource may also be the time-frequency resource occupied by the second hop of the first data
  • the second resource may also be the time-frequency resource occupied by the first hop of the first data.
  • part of the time-domain resources configured in the time-domain resource configuration information is used for radio frequency modulation between frequency-domain frequency hopping, and the remaining part of the time-domain resources are used as time-domain resources for actually transmitting the first data, so that the On the basis of continuous time domain resources between two hops, radio frequency modulation is performed to complete frequency modulation transmission.
  • the length of time domain resources required for radio frequency modulation may be pre-agreed by means of an agreement or the like.
  • the base station can also be acquired in other ways. The base station determines the initial resource block of the time domain resource and the time domain resource length actually used to transmit the PUCCH based on the time domain resource length required for radio frequency modulation.
  • the time domain resource configuration information configured by the base station for transmitting the first data includes the start symbol identification information for transmitting the first data and the total length of the domain resources
  • the time domain resource length required for radio frequency modulation is combined with , the time domain resource length for transmitting the first data can be determined.
  • the total length of time domain resources configured by the base station for transmitting the first data is L OFDM symbols, and L ⁇ 14.
  • the length of time domain resources required for radio frequency modulation is x OFDM symbols
  • the length of time domain resources occupied by the first hop and the second hop of the first data is L-x, that is, the length of remaining time domain resources is L-x.
  • the remaining time domain resources are divided into a first remaining time domain resource and a second remaining time domain resource with a length of L-x
  • the time domain position of the first hop of the first data is the time domain resource occupied by the first remaining time domain resource.
  • the time domain position of the second hop of the first data is the time domain resources occupied by the second remaining time domain resources.
  • the time domain resources occupied by the first hop of the first data may be equal to the time domain resources occupied by the second hop of the first data, that is, the first remaining time domain resources and The second remaining time domain resources have the same length.
  • the lengths of the first remaining time domain resources and the second remaining time domain resources may also be different.
  • Step 53 Transmit the first data on the first resource and the second resource.
  • the following two schemes may be used to determine the frequency domain resource for transmitting the first data.
  • the frequency domain resource configuration information of the first data may include: total length of frequency domain resources, initial resource block identification information of the first hop, and frequency hopping indication information. For details, please refer to Table 3.
  • RB start (0) is the initial resource block identifier of the first hop
  • the start RB start (0) of the first hop is the 120th RB
  • the start of the second hop That is, the starting resource block of the second hop is the 40th RB.
  • the frequency domain resource configuration information includes: resource block offset and the set information of the initial CS index value corresponding to the index value, as shown in Table 4.
  • the start of the frequency domain resource of the first resource start of the frequency domain resource of the second resource or the start of the frequency domain resource of the second resource
  • the value of determines whether the first hop or the second hop uses r PUCCH is determined by the configuration of the base station, and r PUCCH is related to and N CS to jointly determine the frequency domain resources for PUCCH transmission, for details, refer to the definition in 38.213-g30 9.2.1. and N CS , which can be determined based on the index configured by the base station in Table 4.
  • the base station may introduce a signaling in a system message (SIB) to indicate whether Embodiment 1 or Embodiment 2 is used.
  • SIB system message
  • the base station instructs to use the second embodiment the user equipment adopts the frequency hopping of the second embodiment to transmit the first data.
  • the base station instructs to use Embodiment 1 the user equipment transmits the first data by frequency hopping according to Embodiment 1.
  • the frequency hopping in a time slot is two hops as an example for description. It can be understood that the frequency hopping in the time slot can also be more than three hops, and the data transmission method in the embodiment of the present application can be used for frequency hopping transmission regardless of the number of frequency hopping.
  • the data transmission method in the embodiment of the present application is not only applicable to frequency hopping transmission within a time slot in a random access process, but also applicable to frequency hopping transmission within a time slot in other scenarios, which is not limited here.
  • radio frequency modulation between frequency domain frequency hopping is performed on some time domain resources configured in the time domain resource configuration information, The remaining part of the time domain resources are used as the time domain resources for transmitting the first data, and the frequency domain resources configured by the frequency domain resource configuration information are used to transmit the first data by frequency hopping, thereby ensuring that the adjacent two The time between the second frequency hopping is continuous, and a certain time can be used for radio frequency modulation, thus completing the data transmission that needs to be frequency hopping in the time slot.
  • the implementation of the present application also provides a data transmission method, the method includes the following steps:
  • Step 61 Send resource configuration information for transmitting the first data; the time domain resource configured by the resource configuration information is located in a time slot.
  • Step 62 Receive the first data on the first resource and the second resource.
  • the total bandwidth of the first resource and the second resource in the frequency domain is less than or equal to the maximum bandwidth supported by the user equipment, or the interval between the first resource and the second resource in the time domain Greater than or equal to the duration used for RF FM.
  • steps 61 and 62 specific reference may be made to the above descriptions about steps 31 to 33 and steps 51 to 53 for implementation.
  • the method may further include the following steps:
  • the data transmission apparatus 70 may include: a first receiving unit 71 , a determining unit 72 and a transmitting unit 73 . in:
  • the first receiving unit 71 is configured to receive resource configuration information for transmitting the first data; the time domain resource configured by the resource configuration information is located in a time slot;
  • the determining unit 72 is configured to determine, based on the resource configuration information, a first resource and a second resource for transmitting the first data, and the total amount of the first resource and the second resource in the frequency domain.
  • the bandwidth is less than or equal to the maximum bandwidth supported by the user equipment, or the interval between the first resource and the second resource in the time domain is greater than or equal to the duration used for radio frequency modulation;
  • the transmitting unit 73 is configured to transmit the first data on the first resource and the second resource.
  • An embodiment of the present application further provides a user equipment, where the user equipment includes the above-mentioned data transmission apparatus 70 .
  • User equipment in the embodiments of this application may refer to access user equipment, subscriber units, subscriber stations, mobile stations, mobile stations, remote stations, remote user equipment, mobile equipment, user terminals, terminals, wireless communication equipment, user agents or user device.
  • the user equipment may also be a cellular phone, a cordless phone, a Session Initiation Protocol (SIP) phone, a Wireless Local Loop (WLL) station, a Personal Digital Assistant (PDA), a wireless communication Functional handheld devices, computing devices or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, user equipment devices in future 5G networks or in future evolved Public Land Mobile Networks (PLMN) user equipment, etc., which are not limited here.
  • SIP Session Initiation Protocol
  • WLL Wireless Local Loop
  • PDA Personal Digital Assistant
  • an embodiment of the present application further provides another data transmission apparatus 80 .
  • the data transmission apparatus 80 may include: a first sending unit 81 and a second receiving unit 82 . in:
  • the first sending unit 81 is configured to send resource configuration information for transmitting the first data; the time domain resource configured by the resource configuration information is located in a time slot;
  • the second receiving unit 82 configured to receive the first data on the first resource and the second resource
  • the total bandwidth of the first resource and the second resource in the frequency domain is less than or equal to the maximum bandwidth supported by the user equipment, or the interval between the first resource and the second resource in the time domain Greater than or equal to the duration used for RF FM.
  • An embodiment of the present application further provides a network device, and the base station includes the above-mentioned data transmission apparatus 80 .
  • the network device in this embodiment of the present application may be a base station (Base Transceiver Station, BTS) in a Global System of Mobile communication (GSM) system or a Code Division Multiple Access (Code Division Multiple Access, CDMA), or It is a base station (NodeB, NB) in a Wideband Code Division Multiple Access (WCDMA) system, an evolved base station (Evolutional NodeB, eNB or eNodeB) in an LTE system, or a 5G system or NR
  • BTS Base Transceiver Station
  • GSM Global System of Mobile communication
  • CDMA Code Division Multiple Access
  • NodeB, NB Wideband Code Division Multiple Access
  • Evolutional NodeB, eNB or eNodeB evolved base station
  • LTE Long Term Evolution
  • 5G system or NR 5G system or NR
  • the data transmission device 70 and the data transmission device 80 may be: a chip or a chip module during specific implementation.
  • the data transmission apparatus 70 and the data transmission apparatus 80 may be: a chip or a chip module during specific implementation.
  • the data transmission apparatus 70 and the data transmission apparatus 80 reference may be made to the above-mentioned related descriptions, which will not be repeated here.
  • Embodiments of the present application further provide another computer-readable storage medium, which stores computer instructions, and when the computer instructions are executed, executes the steps of any of the control methods for the electronic device in the foregoing embodiments, which will not be described again.
  • the computer-readable storage medium may include: ROM, RAM, magnetic disk or optical disk, and the like.
  • the embodiment of the present application further provides another apparatus, the apparatus may include a memory and a processor, the memory stores computer instructions that can be executed on the processor, and when the processor executes the computer instructions The steps of executing any one of the data transmission methods in the foregoing embodiments will not be repeated.
  • the embodiment of the present application further provides another apparatus, the base station may include a memory and a processor, the memory stores computer instructions that can be executed on the processor, and when the processor executes the computer instructions The steps of executing any one of the data transmission methods in the foregoing embodiments will not be repeated.
  • each module/unit included in each device and product described in the above-mentioned embodiments it may be a software module/unit, a hardware module/unit, or a part of a software module/unit and a part of a hardware module/unit .
  • each module/unit included therein may be implemented by hardware such as circuits, or at least some modules/units may be implemented by a software program.
  • the remaining (if any) part of the modules/units can be implemented by hardware such as circuits; for each device and product applied to or integrated in the chip module, the modules/units contained therein can be They are all implemented by hardware such as circuits, and different modules/units can be located in the same component (such as a chip, circuit module, etc.) or in different components of the chip module, or at least some modules/units can be implemented by software programs.
  • the software program runs on the processor integrated inside the chip module, and the remaining (if any) part of the modules/units can be implemented by hardware such as circuits; for each device and product applied to or integrated in the terminal, each module contained in it
  • the units/units may all be implemented in hardware such as circuits, and different modules/units may be located in the same component (eg, chip, circuit module, etc.) or in different components in the terminal, or at least some of the modules/units may be implemented in the form of software programs Realization, the software program runs on the processor integrated inside the terminal, and the remaining (if any) part of the modules/units can be implemented in hardware such as circuits.

Landscapes

  • Engineering & Computer Science (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请涉及一种数据传输方法、装置、用户设备、网络设备及存储介质。所述方法包括:接收用于传输第一数据的资源配置信息;所述资源配置信息配置的时域资源位于一个时隙内;基于所述资源配置信息,确定用于传输所述第一数据的第一资源及第二资源,所述第一资源和所述第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽,或者,所述第一资源和所述第二资源在时域上的间隔大于或等于用于射频调频的时长;在所述第一资源和所述第二资源上,传输所述第一数据。应用上述方案,可以完成时隙内跳频传输数据。

Description

数据传输方法、装置、用户设备、网络设备及存储介质
本申请要求于2021年1月26日提交中国专利局、申请号为CN202110106501.8、名称为“数据传输方法、装置、用户设备、网络设备及存储介质”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,具体涉及一种数据传输方法、装置、用户设备、网络设备及存储介质。
背景技术
第三代合作伙伴计划(3rd Generation Partnership Project,3GPP)协议中,用户设备(User Equipment,UE)分为轻量UE(Reduced Capability UE,RedCap UE)及非轻量UE(non Reduced Capability UE,non-RedCap UE)。non-RedCap UE包括增强移动宽带(eMBB)UE及超可靠低延迟通信(URLLC)UE。
在实际应用中,RedCap UE及non-RedCap UE可能接入同一小区。具体随机接入过程中,UE在传输部分消息时,为获得频率分集增益,可在时隙内跳频。由于non-RedCap UE支持的最大带宽为100MHz,初始上行BWP可配置的最大带宽为100MHz,因此,初始上行BWP很有可能会超过RedCap UE本身所支持的最大带宽20MHz。对于RedCap UE,当没有配置专用的初始上行BWP,RedCap UE和non-RedCap UE共用初始UL BWP时,且初始上行BWP可能超过20MHz时,UE在时隙内跳频时,根据现有协议的要求,两跳之间频率间隔将大于RedCap UE支持的最大带宽,导致两跳之间RedCap UE需要调整中心频点,需要一定的时间进行射频调频。
然而,根据现有协议要求,UE在时隙内跳频时,相邻两跳之间在时间上应是连续的,导致UE没有时间进行射频调频。
在实际应用中,网络可以为RedCap UE配置一个专门的初始上行BWP,以完成时隙内跳频传输数据。
然而,当网络不为RedCap UE配置一个专门的初始上行BWP时,如何完成时隙内跳频传输数据,成为亟待解决的问题。
申请内容
本申请要解决的问题是:当网络不为RedCap UE配置一个专门的初始上行BWP时,如何完成时隙内跳频传输数据。
为解决上述问题,本申请实施例提供了一种数据传输方法,所述方法包括:
接收用于传输第一数据的资源配置信息;所述资源配置信息配置的时域资源位于一个时隙内;
基于所述资源配置信息,确定用于传输所述第一数据的第一资源及第二资源,所述第一资源和所述第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽,或者,所述第一资源和所述第二资源在时域上的间隔大于或等于用于射频调频的时长;
在所述第一资源和所述第二资源上,传输所述第一数据。
可选地,在四步随机接入过程的无线资源控制连接建立请求中发送所述第一数据,或者在两步随机接入过程发送随机接入前导码后发送所述第一数据。
可选地,所述资源配置信息包括:时域资源配置信息及频域资源配置信息;
所述频域资源配置信息包括:用于传输所述第一数据的频域资源长度信息,所述第一数据的第一资源的起始频域位置信息,及跳频指示信息。
可选地,所述确定用于传输所述第一数据的第一资源及第二资源,包括:
基于所述第一数据的第一资源的起始频域位置信息,及所述跳频指示信息,确定所述第一数据的第二资源的起始频域位置信息;
基于所述第一数据的第一资源的起始频域位置信息、第一数据的第二资源的起始频域位置信息及所述用于传输所述第一数据的频域资源长度信息,确定所述第一数据的第一资源及第二资源对应的频域位置,所述第一资源和所述第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽。
可选地,所述第一数据的第二资源的起始频域位置,为所述第一数据的第一资源的起始频域位置与预设的相应频域偏移值之和。
可选地,当用于传输第一数据的频域资源对应的资源块的数量小于50时,所述频域偏移值为
Figure PCTCN2022079917-appb-000001
Figure PCTCN2022079917-appb-000002
当用于传输第一数据的频域资源对应的资源块的数量大于或等于50时,所述频域偏移值为
Figure PCTCN2022079917-appb-000003
Figure PCTCN2022079917-appb-000004
为初始上行BWP对应的物理资源块数量和用户设备所支持的最大带宽对应的物理资源块数量的最小值。
可选地,所述第一数据为发送反馈是否正确接收到无线资源控制建立的PUCCH。
可选地,所述资源配置信息为预设PUCCH资源映射表中的索引值信息;
其中,所述预设PUCCH资源映射表包括:索引值信息,与索引值对应的物理资源块偏移值信息及初始CS索引值集合信息。
可选地,所述资源配置信息,确定用于传输所述第一数据的第一资源及第二资源,包括:
确定所述第一数据的第一资源的起始物理资源块为:
Figure PCTCN2022079917-appb-000005
确定所述第一数据的第二资源的起始物理资源块为:
Figure PCTCN2022079917-appb-000006
Figure PCTCN2022079917-appb-000007
其中,
Figure PCTCN2022079917-appb-000008
表示所述索引值对应的物理资源块偏移值;r PUCCH由基站配置决定,N CS表示与所述索引值对应的初始CS索引值的个数;
Figure PCTCN2022079917-appb-000009
为初始上行BWP对应的物理资源块数量和用户设备所支持的最大带宽对应的物理资源块数的最小值;所述第一资源和所述第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽。
可选地,所述基于所述资源配置信息,确定用于传输第一数据的第一资源及第二资源,包括:
确定所述第一数据的第一资源的起始物理资源块为:
Figure PCTCN2022079917-appb-000010
确定所述第一数据的第二资源的起始物理资源块为:
Figure PCTCN2022079917-appb-000011
Figure PCTCN2022079917-appb-000012
其中,
Figure PCTCN2022079917-appb-000013
表示所述索引值对应的物理资源块偏移值;r PUCCH由基站配置决定,N CS表示与所述索引值对应的初始CS索引值的个数;
Figure PCTCN2022079917-appb-000014
为用户设备所支持的最大带宽对应的物理资源块数;所述第一资源和所述第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽。
可选地,所述基于所述资源配置信息,确定用于传输所述第一数据的第一资源及第二资源,包括:
在资源配置信息配置的部分时域资源上进行频域跳频间的射频调频,使用剩余部分时域资源作为用于传输第一数据的时域资源,并使用所述资源配置信息配置的频域资源,传输所述第一数据;
其中,所述资源配置信息配置的时域资源长度,大于或等于用于射频调频的时域资源长度与用于传输所述第一数据的时域资源长度之和
本申请实施例还提供了另一种数据传输方法,所述方法包括:
发送用于传输第一数据的资源配置信息;所述资源配置信息配置的时域资源位于一个时隙内;
在第一资源及第二资源上接收所述第一数据;
其中,所述第一资源和所述第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽,或者,所述第一资源和所述第二资源在时域上的间隔大于或等于用于射频调频的时长。
本申请实施例还提供了一种数据传输装置,所述装置包括:
第一接收单元,用于接收用于传输第一数据的资源配置信息;所述资源配置信息配置的时域资源位于一个时隙内;
确定单元,用于基于所述资源配置信息,确定用于传输所述第一数据的第一资源及第二资源,所述第一资源和所述第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽,或者,所述第一资源和所述第二资源在时域上的间隔大于或等于用于射频调频的时长;
传输单元,用于在所述第一资源和所述第二资源上,传输所述第一数据。
本申请实施例还提供了一种用户设备,所述用户设备包括上述的数据传输装置。
本申请实施例还提供了一种数据传输装置,所述装置包括:
第一发送单元,用于发送用于传输第一数据的资源配置信息;所述资源配置信息配置的时域资源位于一个时隙内;
第二接收单元,用于在第一资源及第二资源上接收所述第一数据;
其中,所述第一资源和所述第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽,或者,所述第一资源和所述第二资源在时域上的间隔大于或等于用于射频调频的时长。
本申请实施例还提供了一种网络设备,所述网络设备包括上述的数据传输装置。
本申请实施例还提供了一种计算机可读存储介质,其上存储有计算机程序,所述计算机程序被处理器执行,以实现上述任一种所述方法的步骤。
本申请实施例还提供了一种装置,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述任一种所述方法的步骤。
本申请实施例还提供了一种装置,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行上述任一种所述方法的步骤。
与现有技术相比,本申请实施例的技术方案具有以下优点:
应用本申请的方案,在基于所述资源配置信息,确定用于传输第一数据的第一资源及第二资源时,一种方案中,通过使得传输第一数据的第一资源和第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽,可以使得第一数据的第一资源和第二资源之间频率间隔,位于用户设备支持的最大带宽以内,故用户设备无须进行射频调频即可传输数据,完成了时隙内跳频传输数据。另一种方案中,通过使得所述第一资源和所述第二资源在时域上的间隔大于或等于用于射频调频的时长,从而完成了需要在时隙内跳频的数据传输。
附图说明
为了更清楚地说明本申请实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是一种通信系统的架构示意图;
图2是一种四步随机接入过程的信令交互示意图;
图3是一种两随机接入过程的信令交互示意图;
图4是本申请实施例中一种数据传输方法的流程图;
图5是本申请实施例中另一种数据传输方法的流程图;
图6是本申请实施例中一种确定时频资源的示意图;
图7是本申请实施例中另一种确定时频资源的示意图;
图8是本申请实施例中另一种数据传输方法的流程图;
图9是本申请实施例中一种数据传输装置的结构示意图;
图10是本申请实施例中另一种数据传输装置的结构示意图。
具体实施方式
图1示出了本申请实施例提供的数据传输方法适用的一种可能的通信系统,所述通信系统的架构包括:基站和多个用户设备(如图中所示的用户设备1、用户设备2、用户设备3和用户设备4)。其中:
所述基站,用于为所述基站控制的小区中的用户设备提供无线接入服务。例如, 图1所示,所述基站控制小区1和小区2,分别为所述小区1中的用户设备(如图1中的用户设备1和用户设备2)和所述小区2中的用户设备(如图1中的用户设备3和用户设备4)提供无线接入服务。
所述多个用户设备,用于通过接入所在小区归属的基站进行数据业务。例如,图1中用户设备1、用户设备2均在所述基站控制的小区1的覆盖范围内,均接入所述基站进行数据业务;用户设备3、用户设备4均在所述基站控制的小区2的覆盖范围内,均接入所述基站进行数据业务。
具体的,所述多个用户设备需要通过随机接入流程与所述基站建立连接,以使所述多个用户设备实现通过接入所述基站进行数据业务。
需要说明的是,图1所示的通信系统仅仅作为一个示例,不限于包括图1中所示的基站和多个用户设备。所述通信系统还可以包括多个基站,以及其它设备,具体此处不再列举。
在实际应用中,对于待传输数据,为获得频率分集增益,UE可以进行时隙内跳频,比如,在基于竞争或非竞争的随机接入过程中。可以理解的是,在其它情形或场景中进行上行传输时,也可能需要进行时隙内跳频,具体应用场景不作限定。
下面分别以基于竞争随机接入过程和基于非竞争的随机接入过程为例,对本申请中数据传输方法进行详细描述。
图2为一种四步随机接入过程中UE与基站gNB之间的信令交互示意图。具体随机接入过程如下:
步骤101,UE向gNB发送随机接入请求Msg1。
随机接入请求(Random Access Preamble),即Msg1。在具体实施中,随机接入请求Msg1包含随机接入前导(random access preamble)码。
步骤102,gNB向UE发送随机接入响应Msg2。
随机接入响应(Random Access Response)即Msg2是基站在接收到随机接入请求Msg1后的响应消息。
步骤103,UE向gNB发送无线资源控制连接请求Msg3。
无线资源控制连接请求(Scheduled Transmission),即Msg3。
所述无线资源控制连接请求Msg3中包括需要传输的PUSCH。
步骤104,UE接收无线资源控制建立Msg4。
无线资源控制建立(Contention Resolution),即Msg4。无线资源控制建立Msg4中包含所述UE的标识,用于通知所述UE随机接入成功。
在具体实施中,UE接收无线资源控制建立Msg4后,会向基站反馈上行控制信息,以告知基站是否正确收到无线资源控制建立Msg4。所述下行控制信通过物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)发送至UE,为了描述方便,本申请实施例中用于向基站反馈是否正确收到无线资源控制建立Msg4的上行控制信息,简称为PUCCH。
在图2示出的随机接入过程中,UE在发送随机接入消息Msg3,对于其中需要传输的PUSCH,UE可采用时隙内跳频的方式,完成数据发送。UE收到冲突解决消息Msg4 后反馈上行控制信息时,也可采用时隙内跳频的方式,完成PUCCH的发送。
图3为两步随机接入过程中UE与基站gNB之间的信令交互示意图。
具体随机接入过程如下:
步骤201,UE向gNB发送第一消息MsgA。
所述第一消息MsgA中包括随机接入前导码信息及需要传输的PUSCH。UE先向gNB发送随机接入前导码,然后再发送需要传输的PUSCH。
步骤202,gNB向UE发送第二消息MsgB。
所述第二消息MsgB可以包括随机接入前导的序列编号、小区无线网络临时标识和接入成功的UE标识。
在图3示出的随机接入过程中,UE在发送第一消息MsgA时,对于其中需要传输的PUSCH,UE可采用时隙内跳频的方式,完成数据传输。
所谓时隙内跳频,是指一个传输块,拆分成多个部分,分别在同一信道的多个频域位置上发送。其中,该传输块的时域资源位于一个时隙内,每部分数据对应的频域位置不同,每个频域位置发送的是该传输块的一部分。
该传输块被拆分N部分,时隙内跳频可以分为N跳,N≥2且为正整数。例如,将一个传输块分为两部分,分别在同一信道上的两个不同频域位置发送,则时隙内跳频的模式是两跳。将该传输块的其中一部分称为该传输块的第一跳,另一部分称为该传输块的第二跳。
现有协议中规定,当需要进行时隙内跳频传输时,相邻两跳之间在时间上应是连续的,即并未额外配置时域资源供UE进行射频调频。
以N=2为例,所谓相邻两跳之间在时间上连续是指:基站配置的用于传输该传输块的时域资源中,该传输块第一跳的结束时刻,即该传输块第二跳的起始时刻,或者,该传输块第二跳的结束时刻,即该传输块第一跳的起始时刻。
在实际应用中,网络可以为RedCap UE配置一个专门的初始上行BWP,以完成时隙内跳频传输数据。
然而,由于non-RedCap UE支持的最大带宽为100MHz,初始上行BWP可配置的最大带宽为100MHz,因此,初始上行BWP很有可能会超过RedCap UE本身所支持的最大带宽20MHz。此时,对于RedCap UE,若没有配置专用的初始上行BWP,RedCap UE和non-RedCap UE共用初始UL BWP时,UE在传输无线资源控制连接请求Msg3、第一消息MsgA中的PUSCH或反馈无线资源控制建立Msg4是否正确接收的PUCCH时,若需要时隙内跳频,则两跳之间的频率间隔可能大于RedCap UE支持的最大带宽,导致RedCap UE在两跳之间需要调整中心频点,即需要一定的时间进行射频(Radio Frequency,RF)调频(retuning),来将当前中心频点调整至下一跳的中心频点(即射频调频)后,才能进行时隙内跳频传输数据。
当网络不为RedCap UE配置一个专门的初始上行BWP时,如何完成时隙内跳频传输数据,成为亟待解决的问题。
针对该问题,本申请提供了一种数据传输方法,用户设备在基于所述频域资源配置信息,确定用于传输第一数据的频域资源时,控制传输第一数据的第一资源和第二 资源在频域上的总带宽小于或等于用户设备所支持的最大带宽,或者,传输第一数据的第一资源和第二资源在时域上的间隔大于或等于用于射频调频的时长用户设备,完成了时隙内跳频传输数据。
为使本申请的上述目的、特征和优点能够更为明显易懂,下面结合附图对本申请的具体实施例作详细地说明。
实施例1
参照图4,本申请实施例提供了一种数据传输方法,所述方法可以包括如下步骤:
步骤31,接收用于传输第一数据的资源配置信息;所述资源配置信息配置的时域资源位于一个时隙内。
在具体实施中,所述第一数据可以为需要时隙内跳频传输的任意待传输数据。
在具体实施中,所述资源配置信息可以包括:时域资源配置信息及频域资源配置信息。用于传输第一数据的时域资源配置信息及频域资源配置信息,可以采用多种方式接收。所述时域资源配置信息及频域资源配置信息,也可以为多种形式,具体不作限定。
比如,参照图2,在四步随机接入过程中,当所述第一数据为PUSCH时,基站可以通过接入响应消息Msg2发送时域资源配置信息及频域资源配置信息。参照图3,在基于两步随机接入过程中,当所述第一数据为PUSCH时,基站可以通过广播等方式,发送时域资源配置信息及频域资源配置信息。
当所述第一数据为PUSCH时,所述第一数据的时域资源配置信息可以包括传输第一数据的起始正交频分复用(Orthogonal Frequency Division Multiplexing,OFDM)符号标识信息,及时域资源的总长度,具体可以通过起始及长度指示(The Start and Length Indicator,SLIV)值表示。
表1
Figure PCTCN2022079917-appb-000015
所述第一数据的频域资源配置信息可以包括:频域资源总长度、第一跳的起始资源块标识信息及跳频指示信息。具体可以参照表1,本实施例中,
Figure PCTCN2022079917-appb-000016
为初始上行BWP对应的物理资源块数量和用户设备所支持的最大带宽对应的物理资源块数的最小值;跳频指示信息N UL,hop与第二跳的资源块偏移量RB offset一一对应。
如表1所示,当
Figure PCTCN2022079917-appb-000017
时,N UL,hop的取值可以为:0、1。相应地,RB offset可以为
Figure PCTCN2022079917-appb-000018
(即对
Figure PCTCN2022079917-appb-000019
的1/2向下取整)、
Figure PCTCN2022079917-appb-000020
(即对
Figure PCTCN2022079917-appb-000021
的1/4向下取整)。 当
Figure PCTCN2022079917-appb-000022
时,N UL,hop的取值可以为:00、01、10、11。相应地,RB offset可以为
Figure PCTCN2022079917-appb-000023
Figure PCTCN2022079917-appb-000024
Figure PCTCN2022079917-appb-000025
又如,UE向基站反馈PUCCH前,基站可以预先通过广播的方式,将PUCCH资源映射表发送给UE,再通过指示PUCCH资源映射表的索引值,将所述索引值对应的时频资源,作为传输PUCCH的时频资源。
表2
Figure PCTCN2022079917-appb-000026
在具体实施中,如表2所示,PUCCH资源映射表可以索引值Index信息,与所述索引值Index对应的起始OFDM符号(First symbol)标识信息,与所述索引值对应的用于传输PUCCH的时域资源总长度(Number of symbols)信息。
如表2所示,所述PUCCH资源映射表还可以包括:与所述索引值Index对应的PUCCH格式信息PUCCH format,资源块偏移量
Figure PCTCN2022079917-appb-000027
及与所述索引值对应的初始CS索引值的集合信息。
步骤32,基于所述资源配置信息,确定用于传输所述第一数据的第一资源及第二资源,所述第一资源和所述第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽。
在具体实施中,对于任意第一数据,只要接收到基站发送的时域资源配置信息及频域资源配置信息,用户设备即可基于所述频域资源配置信息,确定用于传输第一数 据的频域资源,使得所述第一资源和所述第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽,也就是使得所述第一数据的第一跳与所述第一数据的第二跳之间频率间隔,位于初始上行BWP以内。
本申请的实施例中,所述第一资源,可以理解为第一数据的一跳所占用的时频资源。所述第二资源,可以理解的所述第一数据的另一跳所占用的时频资源。
当所述第一资源为第一数据的第一跳所占用的时频资源,而所述第二资源为第一数据的第二跳所占用的时频资源时,所述第一资源和所述第二资源在频域上的总带宽,指的是自第一资源的频域起始位置至第二资源的频域结束位置之间的频域资源。当所述第一资源为第一数据的第二跳所占用的时频资源,而所述第二资源为第一数据的第一跳所占用的时频资源时,所述第一资源和所述第二资源在频域上的总带宽,指的是自第二资源的频域起始位置至第一资源的频域结束位置之间的频域资源。本申请的实施例中,所述第一资源和所述第二资源在频域上的总带宽,也称为第一资源与第二资源之间的资源跨度,也即第一数据两跳资源之间的资源跨度。
在具体实施中,用户设备可以基于基站的指示,决定如何确定跳频传输第一数据的时域资源及频域资源。当然,用户设备也可以自行决定如何确定跳频传输第一数据的时域资源及频域资源。比如,用户设备可以在检测到资源配置信息中,基站为UE传输第一数据所配置的两跳资源之间的资源跨度超过UE所能支持的最大带宽时,采用本申请实施例中的数据传输方法,确定跳频传输第一数据的时域资源及频域资源。若用户设备检测到资源配置信息中,基站为UE传输第一数据所配置的两跳资源之间的资源跨度,未超过UE所能支持的最大带宽时,则UE可以按照基站的配置传输第一数据,无须对进行两跳资源的额外调整。
所谓传输第一数据的两跳资源之间的资源跨度不超过UE所能支持的最大带宽,比如,初始上行BWP包含270个PRB,起始RB是1,可连续使用的RB数是2,第一跳使用的RB是RB1和RB2。SCS=15kHz时,当N UL,hop=00时,根据协议现在的方法,第二跳使用的是第136(1+270/2)和137个RB。而采用本申请的方案,如图5所示,第二跳使用的第54(1+106/2)和55个RB。第1个RB(即RB1)至第55个RB之间的资源跨度小于UE所支持的最大带宽。
在一实施例中,当所述第一数据为PUSCH时,例如,在无线资源控制连接请求Msg3的频域资源配置信息,参照表1,所述频域资源配置信息包括:跳频指示信息N UL,hop。除跳频指示信息N UL,hop外,频域资源配置信息还包括:资源指示值(Resource Indication Value,RIV)。根据RIV和初始UL BWP的带宽,可确定UE传输上行所使用的连续资源块中的起始资源块的序号RBstart的数值和UE可使用的连续资源块的个数。
具体地,确定用于传输第一数据的频域资源时,可以先基于基站配置的RIV,确定UE传输上行所使用的连续资源块中的起始资源块的序号RBstart的数值和UE使用的连续资源块的数量L。RBstart(0)为第一资源的起始频域位置信息,第一资源对应的频域资源为RBstart(0),RBstart(0)+1,……RBstart(0)+L。
又如,第一消息MsgA的频域配置信息是frequencyStartMsgA-PUSCH、 nrofPRBs-perMsgA-PO和msgA-HoppingBits,通过frequencyStartMsgA-PUSCH可获得RBstart,nrofPRBs-perMsgA-PO为UE可使用的连续PRB的个数,msgA-HoppingBits对应表1里的N UL,hop
基于所述第一数据的第一资源的起始频域位置信息,及所述跳频指示信息,确定所述第一数据的第二资源的起始频域位置信息,再基于所述第一数据的第一资源的起始频域位置信息、第一数据的第二资源的起始频域位置信息及所述用于传输所述第一数据的频域资源长度信息,确定所述第一数据的第一资源及第二资源对应的频域位置,所述第一资源和所述第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽。
在具体实施中,所述第一数据的第二资源的起始频域位置,为所述第一数据的第一资源的起始频域位置与预设的相应频域偏移值之和。具体可以采用公式(1)确定第二资源的起始资源块RB start(1):
RB start(1)=RB start(0)+RB offset      (1)
其中,RB start(0)为第一资源的起始资源块标识。
在本申请的实施例中,所述频域偏移值与初始上行BWP
Figure PCTCN2022079917-appb-000028
和用户设备所支持的最大带宽
Figure PCTCN2022079917-appb-000029
相关,其中,初始上行BWP
Figure PCTCN2022079917-appb-000030
和最大带宽
Figure PCTCN2022079917-appb-000031
中的N表示N个频域资源单元,所述频域资源单元可以为物理资源块(PRB),当然也可以为物理资源块对等。本申请的实施例中,所述频域资源单元为PRB。
在具体实施中,子载波间隔为15kHz时,
Figure PCTCN2022079917-appb-000032
当子载波间隔为30kHz时,
Figure PCTCN2022079917-appb-000033
以SCS=15kHz,
Figure PCTCN2022079917-appb-000034
RBstart(0)=1,N UL,hop=00为例,所述第一数据第二跳的起始资源块RBstart(1)为第54RB,RB start(0)与RB start(1)之间的频率间隔小于用户设备所支持的最大带宽
Figure PCTCN2022079917-appb-000035
需要说明的是,在本申请的实施例中,与现有技术不同的是:当N UL,hop的取值为11时,为了简化公式并使得第一数据相邻两跳之间的频率间隔小于
Figure PCTCN2022079917-appb-000036
RB offset的取值为
Figure PCTCN2022079917-appb-000037
而非现有技术中的保留值(Reserved)。
确定第一资源及第二资源的起始资源块后,基于基站预先配置的第一资源及第二资源分别可使用的连续PRB的个数,即可确定第一资源及第二资源占用的具体资源位置。
在本申请的另一实施例中,当所述第一数据为PUCCH时,参照表2,将预设PUCCH资源映射表中所指示的索引值对应的频域资源配置信息,作为频域资源配置信息。此时,所述预设PUCCH资源映射表包括:索引值信息,资源块偏移量
Figure PCTCN2022079917-appb-000038
及与所述索引值对应的初始CS索引值的集合信息。
此时,若
Figure PCTCN2022079917-appb-000039
且UE判定按照基站的配置,第一数据两跳之间的资源跨度超过UE所支持的最大带宽,则确定用于传输第一数据的频域资源时,所述第一数据的第一资源的起始物理资源块为:
Figure PCTCN2022079917-appb-000040
所述第一数据的第二 资源的起始物理资源块为:
Figure PCTCN2022079917-appb-000041
Figure PCTCN2022079917-appb-000042
由此使得第一资源及第二资源之间的资源跨度在UE所支持的最大带宽以内。
其中,
Figure PCTCN2022079917-appb-000043
表示所述索引值对应的物理资源块偏移值;r PUCCH是基站配置的由下行控制信息(DCI)中的PUCCH资源指示域(resource indicator field)和对PDCCH类型(Type0-PDCCH)的配置信息决定,具体参见3GPP 38.213-g30 9.2.1,N CS表示与所述索引值对应的初始CS索引值的数量;
Figure PCTCN2022079917-appb-000044
为用户设备所支持的最大带宽对应的物理资源块数。
比如,当Index=0,r PUCCH=7,
Figure PCTCN2022079917-appb-000045
时,所述第一数据第一跳起始物理资源块为:
Figure PCTCN2022079917-appb-000046
第二跳起始物理资源块为:
Figure PCTCN2022079917-appb-000047
第一数据两跳之间的资源跨度在UE所支持的最大带宽以内。
在本申请的另一实施例中,当所述第一数据为PUCCH时,参照表2,将预设PUCCH资源映射表中所指示的索引值对应的频域资源,作为频域资源配置信息。此时,所述预设PUCCH资源映射表包括:索引值信息,资源块偏移量
Figure PCTCN2022079917-appb-000048
及与所述索引值对应的初始CS索引值的集合信息。
此时,若
Figure PCTCN2022079917-appb-000049
且UE判定按照基站的配置,第一数据两跳之间的资源跨度超过UE所支持的最大带宽,则所述第一数据的第一资源的起始物理资源块也可以为:
Figure PCTCN2022079917-appb-000050
相应地,所述第一数据的第二资源的起始物理资源块也可以为:
Figure PCTCN2022079917-appb-000051
Figure PCTCN2022079917-appb-000052
此时,
Figure PCTCN2022079917-appb-000053
为用户设备所支持的最大带宽。
比如,当Index=15,r PUCCH=7,
Figure PCTCN2022079917-appb-000054
时,所述第一数据第一跳起始物理资源块为:
Figure PCTCN2022079917-appb-000055
第二跳起始物理资源块为:
Figure PCTCN2022079917-appb-000056
通过改变第一数据第一跳及第二跳使用的频域资源,使得第一数据的第一跳与所述第一数据的第二跳之间资源跨度,位于UE所支持的最大带宽,而保持基站配置的时域资源不变,由此可以避免用户设备进行射频调频。
步骤33,在所述第一资源和所述第二资源上,传输所述第一数据。
在具体实施中,当所述第一数据为PUSCH时,假设基站配置的用于传输第一数据的时域资源总长度为L个OFDM符号,L≤14,通常情况下,前
Figure PCTCN2022079917-appb-000057
个OFDM符号为第一数据第一跳使用的时域资源,剩下的OFDM符号为第一数据第二跳使用的时域资源。
当所述第一数据为PUCCH时,参照表2,在Index=1时,第一数据使用的时域资源的起始OFDM符号为第12个OFDM符号,用于传输PUCCH的时域资源长度为2个OFDM符号。具体可以将第12个OFDM符号作为第一数据第一跳使用的时域资源,而将第13个OFDM符号作为第一数据第二跳使用的时域资源。
确定所配置的时域资源及调整后的频域资源后,传输第一数据即可。
由上述内容可知,本申请实施例中数据传输方法,在基于所述频域资源配置信息,确定用于传输第一数据的频域资源时,由于传输第一数据的第一资源与传输第一数据的第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽,即相邻两跳的频率间隔在用户设备所支持的最大带宽以内,故用户设备无须进行射频调频即可传输数据,完成了时隙内跳频传输数据。
实施例2
参照图6,本申请实施例还提供了另一种数据传输方法,所述方法可以包括如下步骤:
步骤51,接收用于传输第一数据的资源配置信息;所述资源配置信息配置的时域资源位于一个时隙内。
当所述第一数据为PUSCH时,所述第一数据的时域资源配置信息可以包括传输第一数据的起始OFDM符号标识信息,及时域资源的总长度。
相应地,所述第一数据的频域资源配置信息可以包括:频域资源总长度、第一跳的起始资源块标识信息及跳频指示信息。具体可以参照表3,在本实施例中,
Figure PCTCN2022079917-appb-000058
表示初始上行BWP所对对应的物理资源块的数。跳频指示信息N UL,hop与第二跳的资源块偏移量RB offset一一对应。
表3
Figure PCTCN2022079917-appb-000059
如表3所示,当
Figure PCTCN2022079917-appb-000060
时,N UL,hop的取值可以为:0、1。相应地,RB offset可以为
Figure PCTCN2022079917-appb-000061
(即对
Figure PCTCN2022079917-appb-000062
的1/2向下取整)、
Figure PCTCN2022079917-appb-000063
(即对
Figure PCTCN2022079917-appb-000064
的1/4向下取整)。当
Figure PCTCN2022079917-appb-000065
时,N UL,hop的取值可以为:00、01、10、11。相应地,RB offset可以为
Figure PCTCN2022079917-appb-000066
Figure PCTCN2022079917-appb-000067
及保留值(Reserved)。
在另一实施例中,UE向基站反馈PUCCH前,基站可以预先通过广播的方式,将PUCCH 资源映射表发送给UE,再通过指示PUCCH资源映射表的索引值,将所述索引值对应的时频资源,作为传输PUCCH的时频资源。
相应地,频域资源配置信息包括:资源块偏移量
Figure PCTCN2022079917-appb-000068
及与所述索引值对应的初始CS索引值的集合信息,如表4所示。
表4
Figure PCTCN2022079917-appb-000069
步骤52,基于所述资源配置信息,确定用于传输所述第一数据的第一资源及第二资源,所述第一资源和所述第二资源在时域上的间隔大于或等于用于射频调频的时长。
在具体实施中,UE在获得资源配置信息后,可以先判断按照基站的配置,第一数据两跳之间的资源跨度是否超过UE所支持的最大带宽。当第一数据两跳之间的资源跨度超过UE所支持的最大带宽时,采用实施例2中描述的数据传输方法,确定第一数据的第一资源及第二资源,否则,按照现有3GPP协议要求确定第一资源及第二资源即可。
在具体实施中,为了使得所述第一资源和所述第二资源在时域上的间隔大于或等于用于射频调频的时长,所述资源配置信息配置的时域资源长度,大于或等于用于射频调频的时域资源长度与用于传输PUCCH的时域资源长度之和。其中,所述第一资源,可以为第一数据的第一跳所占用的时频资源,相应地,所述第二资源,可以为所述第一数据的第二跳所占用的时频资源。当然,所述第一资源也可以为第一数据的第二跳所占用的时频资源,所述第二资源也可以为第一数据的第一跳所占用的时频资源。
此时,将时域资源配置信息配置的部分时域资源,用于频域跳频间的射频调频,剩余部分时域资源作为实际传输第一数据的时域资源,由此可以在基站配置的两跳之间时域资源连续的基础上,进行射频调频,完成调频传输。
需要说明的是,在实际应用中,射频调频所需时域资源长度,可以通过协议等方式预先约定。基站也可以通过其它方式获取。基站基于射频调频所需时域资源长度,确定时域资源的起始资源块及实际用于传输PUCCH的时域资源长度。
在具体实施中,当基站配置的用于传输第一数据的时域资源配置信息包括传输第一数据的起始符号标识信息及时域资源的总长度时,结合射频调频所需的时域资源长度,可以确定用于传输第一数据的时域资源长度。
假设基站配置的用于传输第一数据的时域资源总长度为L个OFDM符号,L≤14。进行射频调频所需的时域资源长度为x个OFDM符号,第一数据的第一跳及第二跳共占用的时域资源长度为L-x个,即剩余时域资源长度为L-x个。将剩余时域资源长度为L-x个分为第一剩余时域资源及第二剩余时域资源,所述第一数据的第一跳的时域位置即第一剩余时域资源占用的时域资源,所述第一数据的第二跳的时域位置即第二剩余时域资源占用的时域资源。所述第一数据的第一跳传输结束时刻,即射频调频的起始时刻。射频调频的结束时刻,即第一数据第二跳传输的起始时刻。
在本申请的一实施例中,可以令所述第一数据的第一跳占用的时域资源,与所述第一数据第二跳占用的时域资源相等,即第一剩余时域资源及第二剩余时域资源长度相等。当然,在其它实施例中,第一剩余时域资源及第二剩余时域资源长度也可以不等。
参照图7,L=6,x=2时,第一剩余时域资源及第二剩余时域资源长度分别为(L-x)/2=2,其中,第一数据第一跳使用的时域资源为第1个OFDM符号和第2个OFDM符号,第一数据第二跳使用的时域资源为第5个OFDM符号和第6个OFDM符号,射频调频使用的时域资源为第3个OFDM符号和第4个OFDM符号。
步骤53,在所述第一资源和所述第二资源上,传输所述第一数据。
当所述第一资源和所述第二资源在时域上的间隔大于或等于用于射频调频的时长时,相应地,可以采用以下两种方案确定用于传输第一数据的频域资源。
方案1:所述第一数据的频域资源配置信息可以包括:频域资源总长度、第一跳的起始资源块标识信息及跳频指示信息。具体可以参照表3。
结合表3,可以采用如下公式(2),确定第二跳的起始资源块RB start(1):
Figure PCTCN2022079917-appb-000070
其中,RB start(0)为第一跳的起始资源块标识,
Figure PCTCN2022079917-appb-000071
例如,当
Figure PCTCN2022079917-appb-000072
N UL,hop=00,RB start=120,则第一跳的起始RB start(0)为第120个RB,第二跳的起始
Figure PCTCN2022079917-appb-000073
即第二跳的起始资源块为第40个RB。
方案2:频域资源配置信息包括:资源块偏移量
Figure PCTCN2022079917-appb-000074
及与所述索引值对应的初始CS索引值的集合信息,如表4所示。
此时,传输第一数据的第一资源及第二资源中,其中第一资源的频域资源的起始
Figure PCTCN2022079917-appb-000075
第二资源的频域资源的起始
Figure PCTCN2022079917-appb-000076
Figure PCTCN2022079917-appb-000077
或第二资源的频域资源的起始
Figure PCTCN2022079917-appb-000078
Figure PCTCN2022079917-appb-000079
其中,
Figure PCTCN2022079917-appb-000080
的取值决定第一跳还是第二跳使用的是
Figure PCTCN2022079917-appb-000081
r PUCCH由基站的配置决定,r PUCCH
Figure PCTCN2022079917-appb-000082
及N CS共同决定PUCCH传输的频域资源,具体可以参照38.213-g30 9.2.1的定义。
Figure PCTCN2022079917-appb-000083
及N CS,可以基于表4基站配置的index决定。
Figure PCTCN2022079917-appb-000084
在具体实施中,基站可以在系统消息(SIB)中引入一条信令,用来指示使用实施例1还是实施例2。当基站指示使用实施例2时,用户设备采用实施例2跳频传输所述第一数据。当基站指示使用实施例1时,用户设备实施例1跳频传输所述第一数据。本申请的实施例中,以时隙内跳频为两跳为例进行描述。可以理解的是,时隙内跳频也可以为三跳以上,无论跳频次数如何,均可以采用本申请实施例中的数据传输方法进行跳频传输。
需要说明的是,本申请实施例中的数据传输方法,不仅适用于随机接入过程中的时隙内跳频传输,还适用于其它场景下的时隙内跳频传输,此处不作限定。
由上述内容可知,本申请实施例中的数据传输方法,当需要在时隙内跳频传输数据时,在时域资源配置信息配置的部分时域资源上进行频域跳频间的射频调频,使用剩余部分时域资源作为用于传输第一数据的时域资源,并使用所述频域资源配置信息配置的频域资源,跳频传输所述第一数据,由此既可以保证相邻两次跳频之间在时间上连续,又可以有一定的时间用于射频调频,从而完成了需要在时隙内跳频的数据传输。
为了使本领域技术人员更好地理解和实现本申请,以下对基站侧对应的方法步骤及基站、用户设备、计算机可读存储介质进行详细描述。
参照图8,本申请实施还提供了一种数据传输方法,所述方法包括如下步骤:
步骤61,发送用于传输第一数据的资源配置信息;所述资源配置信息配置的时域资源位于一个时隙内。
步骤62,在第一资源及第二资源上接收所述第一数据。
其中,所述第一资源和所述第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽,或者,所述第一资源和所述第二资源在时域上的间隔大于或等于用于射频调频的时长。
关于步骤61及62,具体可以参照上述关于步骤31至33以及步骤51至53的描述进行实施。
在一实施例中,所述方法还可以包括如下步骤:
参照图9,本申请实施例提供了一种数据传输装置70,所述数据传输装置70可以包括:第一接收单元71、确定单元72及传输单元73。其中:
所述第一接收单元71,用于接收用于传输第一数据的资源配置信息;所述资源配置信息配置的时域资源位于一个时隙内;
所述确定单元72,用于基于所述资源配置信息,确定用于传输所述第一数据的第 一资源及第二资源,所述第一资源和所述第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽,或者,所述第一资源和所述第二资源在时域上的间隔大于或等于用于射频调频的时长;
所述传输单元73,用于在所述第一资源和所述第二资源上,传输所述第一数据。
本申请实施例还提供了一种用户设备,所述用户设备包括上述的数据传输装置70。
本申请实施例中的用户设备,可以指接入用户设备、用户单元、用户站、移动站、移动台、远方站、远程用户设备、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。用户设备还可以是蜂窝电话、无绳电话、会话启动协议(Session Initiation Protocol,SIP)电话、无线本地环路(Wireless Local Loop,WLL)站、个人数字处理(Personal Digital Assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备,未来5G网络中的用户设备设备或者未来演进的公用陆地移动通信网络(Public Land Mobile Network,PLMN)中的用户设备等,此处并不限定。
参照图10,本申请实施例还提供了另一种数据传输装置80,所述数据传输装置80可以包括:第一发送单元81及第二接收单元82。其中:
所述第一发送单元81,用于发送用于传输第一数据的资源配置信息;所述资源配置信息配置的时域资源位于一个时隙内;
所述第二接收单元82,用于在第一资源及第二资源上接收所述第一数据;
其中,所述第一资源和所述第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽,或者,所述第一资源和所述第二资源在时域上的间隔大于或等于用于射频调频的时长。
本申请实施例还提供了一种网络设备,所述基站包括上述的数据传输装置80。
本申请实施例中的网络设备,可以是全球移动通讯(Global System of Mobile communication,GSM)系统或码分多址(Code Division Multiple Access,CDMA)中的基站(Base Transceiver Station,BTS),也可以是宽带码分多址(Wideband Code Division Multiple Access,WCDMA)系统中的基站(NodeB,NB),还可以是LTE系统中的演进型基站(Evolutional NodeB,eNB或eNodeB),或者5G系统或NR的基站(gNB)此处不作并不限定。
需要说明的是,所述数据传输装置70及数据传输装置80(虚拟装置),在具体实现时,可以是:芯片、或者芯片模组。关于所述数据传输装置70及数据传输装置80具体功能单元,可以参照上述相关不再的描述,此处不再赘述。
本申请实施例还提供了另一种计算机可读存储介质,其上存储有计算机指令,所述计算机指令运行时执行上述实施例中任一种所述电子设备的控制方法步骤,不再赘述。
在具体实施中,所述计算机可读存储介质可以包括:ROM、RAM、磁盘或光盘等。
本申请实施例还提供了另一种装置,所述装置可以包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述实施例中任一种所述数据传输方法的步骤,不再赘述。
本申请实施例还提供了另一种装置,所述基站可以包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机指令,所述处理器运行所述计算机指令时执行上述实施例中任一种所述数据传输方法的步骤,不再赘述。
关于上述实施例中描述的各个装置、产品包含的各个模块/单元,其可以是软件模块/单元,也可以是硬件模块/单元,或者也可以部分是软件模块/单元,部分是硬件模块/单元。例如,对于应用于或集成于芯片的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于芯片模组的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于芯片模组的同一组件(例如芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于芯片模组内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现;对于应用于或集成于终端的各个装置、产品,其包含的各个模块/单元可以都采用电路等硬件的方式实现,不同的模块/单元可以位于终端内同一组件(例如,芯片、电路模块等)或者不同组件中,或者,至少部分模块/单元可以采用软件程序的方式实现,该软件程序运行于终端内部集成的处理器,剩余的(如果有)部分模块/单元可以采用电路等硬件方式实现。
虽然本申请披露如上,但本申请并非限定于此。任何本领域技术人员,在不脱离本申请的精神和范围内,均可作各种更动与修改,因此本申请的保护范围应当以权利要求所限定的范围为准。

Claims (19)

  1. 一种数据传输方法,其特征在于,包括:
    接收用于传输第一数据的资源配置信息;所述资源配置信息配置的时域资源位于一个时隙内;
    基于所述资源配置信息,确定用于传输所述第一数据的第一资源及第二资源,所述第一资源和所述第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽,或者,所述第一资源和所述第二资源在时域上的间隔大于或等于用于射频调频的时长;
    在所述第一资源和所述第二资源上,传输所述第一数据。
  2. 如权利要求1所述的数据传输方法,其特征在于,在四步随机接入过程的无线资源控制连接建立请求中发送所述第一数据,或者在两步随机接入过程发送随机接入前导码后发送所述第一数据。
  3. 如权利要求2所述的数据传输方法,其特征在于,所述资源配置信息包括:时域资源配置信息及频域资源配置信息;
    所述频域资源配置信息包括:用于传输所述第一数据的频域资源长度信息,所述第一数据的第一资源的起始频域位置信息,及跳频指示信息。
  4. 如权利要求3所述的数据传输方法,其特征在于,所述确定用于传输所述第一数据的第一资源及第二资源,包括:
    基于所述第一数据的第一资源的起始频域位置信息,及所述跳频指示信息,确定所述第一数据的第二资源的起始频域位置信息;
    基于所述第一数据的第一资源的起始频域位置信息、第一数据的第二资源的起始频域位置信息及所述用于传输所述第一数据的频域资源长度信息,确定所述第一数据的第一资源及第二资源对应的频域位置,所述第一资源和所述第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽。
  5. 如权利要求4所述的数据传输方法,其特征在于,所述第一数据的第二资源的起始频域位置,为所述第一数据的第一资源的起始频域位置与预设的相应频域偏移值之和。
  6. 如权利要求4所述的数据传输方法,其特征在于,
    当用于传输第一数据的频域资源对应的资源块的数量小于50时,所述频域偏移值为
    Figure PCTCN2022079917-appb-100001
    Figure PCTCN2022079917-appb-100002
    当用于传输第一数据的频域资源对应的资源块的数量大于或等于50时,所述频域偏移值为
    Figure PCTCN2022079917-appb-100003
    Figure PCTCN2022079917-appb-100004
    为初始上行BWP对应的物理资源块数量和用户设备所支持的最大带宽对应的物理资源块数量的最小值。
  7. 如权利要求1所述的数据传输方法,其特征在于,所述第一数据为发送反馈是否正确接收到无线资源控制建立的PUCCH。
  8. 如权利要求7所述的数据传输方法,其特征在于,所述资源配置信息为预设PUCCH资源映射表中的索引值信息;
    其中,所述预设PUCCH资源映射表包括:索引值信息,与索引值对应的物理资源块偏移值信息及初始CS索引值集合信息。
  9. 如权利要求8所述的数据传输方法,其特征在于,基于所述资源配置信息,确定用于传输所述第一数据的第一资源及第二资源,包括:
    确定所述第一数据的第一资源的起始物理资源块为:
    Figure PCTCN2022079917-appb-100005
    确定所述第一数据的第二资源的起始物理资源块为:
    Figure PCTCN2022079917-appb-100006
    Figure PCTCN2022079917-appb-100007
    其中,
    Figure PCTCN2022079917-appb-100008
    表示所述索引值对应的物理资源块偏移值;r PUCCH由基站配置决定,N CS表示与所述索引值对应的初始CS索引值的个数;
    Figure PCTCN2022079917-appb-100009
    为初始上行BWP对应的物理资源块数量和用户设备所支持的最大带宽对应的物理资源块数的最小值;所述第一资源和所述第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽。
  10. 如权利要求8所述的数据传输方法,其特征在于,所述基于所述资源配置信息,确定用于传输第一数据的第一资源及第二资源,包括:
    确定所述第一数据的第一资源的起始物理资源块为:
    Figure PCTCN2022079917-appb-100010
    确定所述第一数据的第二资源的起始物理资源块为:
    Figure PCTCN2022079917-appb-100011
    Figure PCTCN2022079917-appb-100012
    其中,
    Figure PCTCN2022079917-appb-100013
    表示所述索引值对应的物理资源块偏移值;r PUCCH由基站配置决定,N CS表示与所述索引值对应的初始CS索引值的个数;
    Figure PCTCN2022079917-appb-100014
    为用户设备所支持的最大带宽对应的物理资源块数;所述第一资源和所述第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽。
  11. 如权利要求1所述的数据传输方法,其特征在于,所述基于所述资源配置信息,确定用于传输所述第一数据的第一资源及第二资源,包括:
    在资源配置信息配置的部分时域资源上进行频域跳频间的射频调频,使用剩余部分时域资源作为用于传输第一数据的时域资源,并使用所述资源配置信息配置的频域资源,传输所述第一数据;
    其中,所述资源配置信息配置的时域资源长度,大于或等于用于射频调频的时域资源长度与用于传输所述第一数据的时域资源长度之和。
  12. 一种数据传输方法,其特征在于,包括:
    发送用于传输第一数据的资源配置信息;所述资源配置信息配置的时域资源位于一个时隙内;
    在第一资源及第二资源上接收所述第一数据;
    其中,所述第一资源和所述第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽,或者,所述第一资源和所述第二资源在时域上的间隔大于或等于用于射频调频的时长。
  13. 一种数据传输装置,其特征在于,包括:
    第一接收单元,用于接收用于传输第一数据的资源配置信息;所述资源配置信息配置的时域资源位于一个时隙内;
    确定单元,用于基于所述资源配置信息,确定用于传输所述第一数据的第一资源及第二资源,所述第一资源和所述第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽,或者,所述第一资源和所述第二资源在时域上的间隔大于或等于用于射频调频的时长;
    传输单元,用于在所述第一资源和所述第二资源上,传输所述第一数据。
  14. 一种用户设备,其特征在于,包括权利要求13所述的数据传输装置。
  15. 一种数据传输装置,其特征在于,包括:
    第一发送单元,用于发送用于传输第一数据的资源配置信息;所述资源配置信息配置的时域资源位于一个时隙内;
    第二接收单元,用于在第一资源及第二资源上接收所述第一数据;
    其中,所述第一资源和所述第二资源在频域上的总带宽小于或等于用户设备所支持的最大带宽,或者,所述第一资源和所述第二资源在时域上的间隔大于或等于用于射频调频的时长。
  16. 一种网络设备,其特征在于,包括权利要15所述的数据传输装置。
  17. 一种计算机可读存储介质,其特征在于,其上存储有计算机程序,所述计算机程序被处理器执行,以实现权利要求1至12任一项所述方法的步骤。
  18. 一种装置,其特征在于,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行权利要求1至11任一项所述方法的步骤。
  19. 一种装置,其特征在于,包括存储器和处理器,所述存储器上存储有能够在所述处理器上运行的计算机程序,所述处理器运行所述计算机程序时执行权利要求12所述方法的步骤。
PCT/CN2022/079917 2021-01-26 2022-03-09 数据传输方法、装置、用户设备、网络设备及存储介质 WO2022161506A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN202110106501.8A CN114793358A (zh) 2021-01-26 2021-01-26 数据传输方法、装置、用户设备、网络设备及存储介质
CN202110106501.8 2021-01-26

Publications (1)

Publication Number Publication Date
WO2022161506A1 true WO2022161506A1 (zh) 2022-08-04

Family

ID=82459911

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2022/079917 WO2022161506A1 (zh) 2021-01-26 2022-03-09 数据传输方法、装置、用户设备、网络设备及存储介质

Country Status (2)

Country Link
CN (1) CN114793358A (zh)
WO (1) WO2022161506A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN118019114A (zh) * 2022-11-09 2024-05-10 华为技术有限公司 一种通信方法及装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160226639A1 (en) * 2015-01-29 2016-08-04 Gang Xiong System and methods for support of frequency hopping for ues with reduced bandwidth support
WO2016161661A1 (zh) * 2015-04-10 2016-10-13 华为技术有限公司 一种信息传输方法、设备及系统
CN109511171A (zh) * 2017-09-15 2019-03-22 华为技术有限公司 一种通信方法及设备
CN110476388A (zh) * 2017-03-30 2019-11-19 高通股份有限公司 用于单载波波形的控制资源集的频率跳跃

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160226639A1 (en) * 2015-01-29 2016-08-04 Gang Xiong System and methods for support of frequency hopping for ues with reduced bandwidth support
WO2016161661A1 (zh) * 2015-04-10 2016-10-13 华为技术有限公司 一种信息传输方法、设备及系统
CN110476388A (zh) * 2017-03-30 2019-11-19 高通股份有限公司 用于单载波波形的控制资源集的频率跳跃
CN109511171A (zh) * 2017-09-15 2019-03-22 华为技术有限公司 一种通信方法及设备

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
CMCC: "Discussion on UE complexity reduction", 3GPP TSG RAN WG1 #104-E; R1-2101049, 3RD GENERATION PARTNERSHIP PROJECT (3GPP), SOPHIA-ANTIPOLIS CEDEX ; FRANCE, 18 January 2021 (2021-01-18), e-Meeting; 20210125 - 20210205, XP051970628 *

Also Published As

Publication number Publication date
CN114793358A (zh) 2022-07-26

Similar Documents

Publication Publication Date Title
KR102643247B1 (ko) 무선 통신 시스템에서 2 스텝 랜덤 액세스 절차 중에 msga 재송신을 처리하기 위한 방법 및 장치
TWI658709B (zh) 指示以及實現新ue能力的方法以及裝置
WO2019098019A1 (en) Communication system
US20190215802A1 (en) Methods And Apparatuses For Resource Management In A Multi-Carrier Telecommunications System
JP7389863B2 (ja) 無線通信システムにおいて、周波数ホッピングを介してアップリンク伝送を実行するための方法及びそのための装置
AU2015302362B2 (en) A wireless device, a first network node and methods therein
CN111165060B (zh) 随机接入方法、装置以及通信系统
CN111066362B (zh) 在无线通信系统中使用载波聚合发送或接收信号的方法和设备
EP3614777A1 (en) Method and device for transmitting data
TW202019228A (zh) 確定先聽後說及通道存取優先順序類別的方法及使用者設備
WO2020200017A1 (zh) 一种通信方法及装置
US11330556B2 (en) Persistent paging occasion collision avoidance for multi-sim user equipments
JP2010263629A (ja) ハンドオーバー方法、移動端末および基地局
JP2020502918A (ja) 上りリンク伝送制御方法及びその装置、通信システム
JP2022520046A (ja) 情報送信方法及び装置、並びに情報受信方法及び装置
US20230345525A1 (en) Random access method, and electronic device and storage medium
WO2022161506A1 (zh) 数据传输方法、装置、用户设备、网络设备及存储介质
JP2024069386A (ja) アップリンク伝送方法及び装置
US10405343B2 (en) Radio frame transmission method and wireless network device
EP3512253A1 (en) Communication method, base station and terminal
WO2021016048A1 (en) Delay for handover, rrc re-establishment and rrc connection release with redirection in 2-step rach
CN110234136B (zh) 一种lte上行载波同步方法和装置
CN113595708A (zh) 一种跨载波传输方法及装置、终端设备
US20220248477A1 (en) Random access channel message repetition indication for retransmission
EP3334232A1 (en) Terminal device, communication method, and integrated circuit

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 22745377

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 16.11.2023)