WO2018059481A1 - 数据发送、接收方法及装置 - Google Patents

数据发送、接收方法及装置 Download PDF

Info

Publication number
WO2018059481A1
WO2018059481A1 PCT/CN2017/103963 CN2017103963W WO2018059481A1 WO 2018059481 A1 WO2018059481 A1 WO 2018059481A1 CN 2017103963 W CN2017103963 W CN 2017103963W WO 2018059481 A1 WO2018059481 A1 WO 2018059481A1
Authority
WO
WIPO (PCT)
Prior art keywords
time
length
timing advance
uplink
ofdm symbols
Prior art date
Application number
PCT/CN2017/103963
Other languages
English (en)
French (fr)
Inventor
陈冬雷
郝鹏
夏树强
左志松
张峻峰
Original Assignee
中兴通讯股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中兴通讯股份有限公司 filed Critical 中兴通讯股份有限公司
Priority to EP17854931.7A priority Critical patent/EP3522469B1/en
Publication of WO2018059481A1 publication Critical patent/WO2018059481A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W56/00Synchronisation arrangements
    • H04W56/004Synchronisation arrangements compensating for timing error of reception due to propagation delay
    • H04W56/0045Synchronisation arrangements compensating for timing error of reception due to propagation delay compensating for timing error by altering transmission time
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L27/00Modulated-carrier systems
    • H04L27/26Systems using multi-frequency codes
    • H04L27/2601Multicarrier modulation systems
    • H04L27/2626Arrangements specific to the transmitter only
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0058Allocation criteria
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0078Timing of allocation

Definitions

  • the present disclosure relates to the field of communications, and in particular, to a data transmitting and receiving method and apparatus.
  • LTE Long Term Evolution
  • FDD Frequency Division Duplex
  • TDD Time Division Duplex
  • N TA-offset the terminal remains unchanged throughout the communication process and is a standard set point.
  • the cyclic prefix length of the first symbol in each slot in the LTE subframe and the cyclic prefix of the other six symbols (Cyclic Prefix, CP for short) If the lengths are different, there will be a problem that the symbols in the frames that are not offset by the timing are not aligned, as shown in FIG. 2. Under the timing advance offset N1 TA-offset , 2 symbols are not aligned in every 7 symbols, and under the timing advance offset N2 TA-offset , 4 symbols are not aligned every 7 symbols.
  • the inter-symbol alignment is performed as much as possible, and the value of the fixed timing advance offset N TA-offset needs to be appropriately set.
  • the timing advance offset is an integer multiple of 7 symbol lengths, there is a problem of symbol misalignment, such as the symbol marked as shown in FIG.
  • the uplink base unit and the uplink reference unit have different fixed timing advance offsets, the uplink base unit and the uplink reference unit are not aligned with the uplink symbols.
  • the embodiments of the present disclosure provide a data sending and receiving method and apparatus, to at least solve the problem that the uplink basic unit and the uplink reference unit exist when the uplink basic unit and the uplink reference unit have different fixed timing advance offsets in the related art.
  • a data transmitting method including: determining one or more orthogonal frequency division multiplexing OFDM symbols for transmitting data in an uplink basic unit, wherein a start of the uplink basic unit The transmission time is preset with respect to a start transmission time of the downlink basic unit, and the preset advance time is determined according to the dynamic timing advance amount and the timing advance offset; and the data is sent on the determined one or more OFDM symbols.
  • a data receiving method including: determining one or more orthogonal frequency division multiplexing OFDM symbols for receiving data transmitted by a terminal in an uplink basic unit, wherein the uplink The start transmission time of the basic unit is preset with respect to the start transmission time of the downlink basic unit, and the preset advance time is determined according to the dynamic timing advance amount and the timing advance offset; the determined one or more OFDM The data transmitted by the terminal is received on the symbol.
  • a data transmitting apparatus including: a determining module, configured to determine one or more orthogonal frequency division multiplexing OFDM symbols used for transmitting data in an uplink basic unit, where The start transmission time of the uplink basic unit is preset with respect to the start transmission time of the downlink basic unit, and the preset advance time is determined according to the dynamic timing advance amount and the timing advance offset; the sending module is set to be determined. Transmitting data on the one or more OFDM symbols.
  • a data receiving apparatus comprising: a determining module, configured to determine one or more orthogonal frequency division multiplexing OFDM symbols for receiving data transmitted by a terminal in an uplink basic unit, The start sending time of the uplink basic unit is preset with respect to a start sending time of the downlink basic unit, and the preset advance time is determined according to the dynamic timing advance amount and the timing advance offset; the receiving module is set to Receiving data transmitted by the terminal on the determined one or more OFDM symbols.
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing one or more orthogonal frequency division multiplexing OFDM symbols for receiving data transmitted by the terminal within the uplink base unit, wherein the beginning of the uplink base unit
  • the transmission time is preset with respect to a start transmission time of the downlink basic unit, and the preset advance time is determined according to the dynamic timing advance amount and the timing advance offset; and the received one or more OFDM symbols are received.
  • the data sent by the terminal is configured to store program code for performing one or more orthogonal frequency division multiplexing OFDM symbols for receiving data transmitted by the terminal within the uplink base unit, wherein the beginning of the uplink base unit
  • the transmission time is preset with respect to a start transmission time of the downlink basic unit, and the preset advance time is determined according to the dynamic timing advance amount and the timing advance offset; and the received one or more OFDM symbols are received.
  • the data sent by the terminal is configured to store program code for performing one or more orthogonal frequency division multiplexing OFDM
  • a storage medium is also provided.
  • the storage medium is configured to store program code for performing one or more orthogonal frequency division multiplexing OFDM symbols for receiving data transmitted by the terminal within the uplink base unit, wherein the beginning of the uplink base unit
  • the transmission time is preset with respect to a start transmission time of the downlink basic unit, and the preset advance time is determined according to the dynamic timing advance amount and the timing advance offset; and the received one or more OFDM symbols are received.
  • the data sent by the terminal is configured to store program code for performing one or more orthogonal frequency division multiplexing OFDM symbols for receiving data transmitted by the terminal within the uplink base unit, wherein the beginning of the uplink base unit
  • the transmission time is preset with respect to a start transmission time of the downlink basic unit, and the preset advance time is determined according to the dynamic timing advance amount and the timing advance offset; and the received one or more OFDM symbols are received.
  • the data sent by the terminal is configured to store program code for performing one or more orthogonal frequency division multiplexing OFDM
  • a processor for running a program wherein the program is executed to perform the method of any of the above.
  • the advance timing of the start transmission time of the uplink basic unit with respect to the start transmission time of the downlink basic unit is determined according to the dynamic timing advance amount and the timing advance offset, it is possible to solve the related basic uplink unit and uplink in the related art.
  • the reference unit has different fixed timing advance offsets, the uplink symbol of the uplink basic unit and the uplink reference unit are not aligned, thereby reducing the interference between users and reducing the implementation complexity.
  • FIG. 1 is a schematic diagram of a timing relationship between uplink and downlink frames in LTE in the related art
  • FIG. 2 is a schematic diagram of symbol misalignment caused by fixed timing advance in the related art
  • FIG. 3 is a hardware structural block of a mobile terminal of a data transmitting method according to an embodiment of the present disclosure
  • FIG. 5 is a flowchart of a data receiving method according to an embodiment of the present disclosure.
  • FIG. 6 is a schematic diagram of symbol multiplexing of different subcarrier spacings in a preferred embodiment of the present disclosure
  • FIG. 7 is a first schematic diagram of a NB-IoT terminal coexisting with an NR terminal on the same carrier according to a preferred embodiment of the present disclosure
  • FIG. 8 is a second schematic diagram of a NB-IoT terminal coexisting with an NR terminal on the same carrier according to a preferred embodiment of the present disclosure
  • FIG. 9 is a schematic diagram of coexistence of NR eMBB service and URLLC service on the same carrier according to a preferred embodiment of the present disclosure
  • FIG. 10 is a first schematic diagram 1 of supporting NR technology using LTE MBSFN subframes according to a preferred embodiment of the present disclosure
  • FIG. 11 is a second schematic diagram of supporting NR technology using LTE MBSFN subframes according to a preferred embodiment of the present disclosure
  • FIG. 12 is a block diagram 1 of a structure of a data transmitting apparatus according to an embodiment of the present disclosure
  • FIG. 13 is a block diagram 2 of a structure of a data transmitting apparatus according to an embodiment of the present disclosure.
  • FIG. 14 is a block diagram 1 of a structure of a data receiving apparatus according to an embodiment of the present disclosure.
  • 15 is a block diagram 2 of a structure of a data receiving apparatus according to an embodiment of the present disclosure.
  • 16 is a structural block diagram of a terminal according to an embodiment of the present disclosure.
  • FIG. 17 is a structural block diagram of a base station according to an embodiment of the present disclosure.
  • FIG. 18 is a structural block diagram of a communication network system in accordance with an embodiment of the present disclosure.
  • FIG. 3 is a hardware structural block diagram of a mobile terminal of a data transmitting method according to an embodiment of the present disclosure.
  • mobile terminal 30 may include one or more (only one shown) processor 32 (processor 32 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA)
  • processor 32 may include, but is not limited to, a processing device such as a microprocessor MCU or a programmable logic device FPGA)
  • a memory 34 for storing data
  • a transmission device 36 for communication functions.
  • the structure shown in FIG. 3 is merely illustrative and does not limit the structure of the above electronic device.
  • the mobile terminal 30 may also include more or fewer components than those shown in FIG. 3, or have a different configuration than that shown in FIG.
  • the memory 34 may be provided as a software program and a module for storing application software, such as program instructions/modules corresponding to the data transmission method in the embodiment of the present disclosure, and the processor 32 executes each by executing a software program and a module stored in the memory 304.
  • a functional application and data processing, that is, the above method is implemented.
  • Memory 34 may include high speed random access memory and may also include non-volatile memory such as one or more magnetic storage devices, flash memory, or other non-volatile solid state memory.
  • memory 34 may further include memory remotely located relative to processor 32, which may be connected to mobile terminal 30 over a network. Examples of such networks include, but are not limited to, the Internet, intranets, local area networks, mobile communication networks, and combinations thereof.
  • Transmission device 36 is arranged to receive or transmit data via a network.
  • the network optional examples described above may include a wireless network provided by a communication provider of the mobile terminal 30.
  • the transmission device 36 includes a Network Interface Controller (NIC) that can be connected to other network devices through a base station to communicate with the Internet.
  • the transmission device 36 can be a Radio Frequency (RF) module for communicating with the Internet wirelessly.
  • NIC Network Interface Controller
  • RF Radio Frequency
  • FIG. 4 It is a flowchart of a data sending method according to an embodiment of the present disclosure. As shown in FIG. 4, the process includes the following steps:
  • Step S402 determining one or more OFDM symbols for transmitting data in the uplink basic unit, where a start transmission time of the uplink basic unit is preset with an advance time relative to a start transmission time of the downlink basic unit, the preset advance time Determined according to the dynamic timing advance amount and the timing advance offset;
  • Step S404 transmitting data on the determined one or more OFDM symbols.
  • the advance timing of the start sending time of the uplink basic unit with respect to the start sending time of the downlink basic unit is determined according to the dynamic timing advance amount and the timing advance offset, and the related basic technology has the uplink basic unit and the uplink reference unit.
  • the uplink symbols of the uplink basic unit and the uplink reference unit are not aligned, which reduces inter-user interference and reduces implementation complexity.
  • the uplink basic unit may be in multiple forms, for example, the uplink basic unit includes n 1 (Orthogonal Frequency Division Multiplexing, OFDM for short) symbols, and the first S OFDM symbols of n 1 OFDM symbols
  • the prefix has a first time length
  • the cyclic prefix of the S+1th OFDM symbol has a second time length, and at least one of the remaining n 1 -S-1 OFDM symbols except the first S+1 OFDM symbols
  • the cyclic prefix has the second length of time, wherein n 1 OFDM symbols have the same valid data length, the first time length is less than the second time length, S ⁇ n 1 , and S and n 1 are positive integers.
  • the uplink basic unit includes n 1 OFDM symbols, and an additional cyclic prefix or gap exists between the S OFDM symbol and the S+1 OFDM symbol of the n 1 OFDM symbol, except for the previous S+1 There is an additional cyclic prefix identical to the extra cyclic prefix between the remaining n 1 -S-1 OFDM symbols except OFDM symbols, or there is a gap equal to the gap, where n 1 OFDM symbols have The same cyclic prefix length and valid data length, the same cyclic prefix length is the first time length, in which neither information nor any information is received, S ⁇ n 1 , S and n 1 are positive integers.
  • the downlink basic unit may have the same time as the uplink basic unit. length.
  • the timing advance offset may be configured by a base station by using a Radio Resource Control (RRC) message, where the dynamic timing advance may be controlled by a base station through a media access control (Media Access Control, referred to as The MAC) control unit or the timing advance command located in the random access response is dynamically configured.
  • RRC Radio Resource Control
  • the MAC media access control
  • the length of the S OFDM symbols may be a first timing advance time offset of the uplink basic unit with respect to the uplink reference unit, or a part of the first timing advance time offset of the uplink basic unit with respect to the uplink reference unit, and uplink
  • the start transmission time of the reference unit has a second timing advance time offset relative to the start transmission time of the downlink reference unit
  • the downlink reference unit has the same start transmission time as the downlink basic unit
  • the uplink reference unit has the same length of time as the uplink basic unit.
  • the downlink reference unit has the same length of time as the downlink base unit, wherein the first timing advance time offset and the second timing advance time offset are both greater than zero.
  • the uplink reference unit may include an n 2 symbol, where the length of the S OFDM symbols is a part of the first timing advance time offset of the uplink basic unit with respect to the uplink reference unit, the first timing advance time offset
  • SC single carrier frequency division multiple access
  • the first timing advance time offset may be obtained according to the third timing advance time offset and the second timing advance time offset, where the third timing advance time offset is determined according to the timing advance offset,
  • the three timing advance time offset is a part of the preset advance time, and the third timing advance time offset is greater than 0 and less than or equal to the preset advance time.
  • the subcarrier spacing corresponding to the symbol in the uplink reference unit, n 2 , the length of the uplink reference unit, and the length of the cyclic prefix of the symbol in the uplink reference unit may be in multiple manners, for example, in the uplink reference unit.
  • the subcarrier spacing corresponding to the symbol is 15 kHz
  • the value of n 2 is 14
  • the length of the uplink reference unit is 1 ms
  • the eighth symbol in the uplink reference unit is the same as the cyclic prefix of the first symbol, both being 160*Ts.
  • the subcarrier spacing corresponding to the symbol in the uplink reference unit is 30 kHz
  • the value of n 2 is 14
  • the length of the uplink reference unit is 0.5 ms
  • the eighth symbol in the uplink reference unit and the first symbol are The cyclic prefixes are the same, both are 160*Ts1
  • the subcarrier spacing corresponding to the symbol in the uplink reference unit is 60 kHz
  • the value of n 2 is 14
  • the length of the uplink reference unit is 0.25 ms
  • the eighth symbol and the first symbol in the uplink reference unit are 160*Ts2
  • each parameter may also be other values that satisfy the following scenarios: the subcarrier spacing corresponding to the OFDM symbol in the uplink reference unit is 15*2 b kHz, and the value of n 2 is 14, the uplink reference unit The length of time is 1/2 b ms, and the eighth OFDM symbol in the uplink reference unit has the same cyclic prefix as the first OFDM symbol, both being 160*Tsb, except for the eighth OFDM symbol and the first OFDM symbol.
  • the subcarrier spacing corresponding to the OFDM symbol in the uplink basic unit may be 2 m *15*2 b kHz, and the value of n 1 may be 14*2 m , and the first time length may be 144*2 -m *Ts, S can be a positive integer multiple of 2 m , and m is one of the following: 0, 1, 2, 3, and b is a non-negative integer.
  • the uplink basic unit and the uplink reference unit may have the following relationship: the uplink basic unit has a first timing advance time offset with respect to the uplink reference unit, and the start transmission time of the uplink reference unit has a start transmission time relative to the downlink reference unit.
  • the second timing advance time offset, the downlink reference unit and the downlink basic unit have the same start transmission time, the uplink reference unit and the uplink basic unit have the same length of time, and the downlink reference unit and the downlink basic unit have the same length of time, where Both the first timing advance time offset and the second timing advance time offset are greater than zero.
  • the uplink reference unit may have multiple structures.
  • the uplink reference unit and the 1 ms subframe in the LTE have the same time length and symbol structure under the normal cyclic prefix, and the value of the first timing advance time offset is One element in the set C or the subset of the set C is the same, the set C is ⁇ x
  • the time length of the uplink reference unit is 0.5 ms
  • the time domain symbol structure is the same as that of the 1 ms subframe in the LTE under the normal cyclic prefix, and the OFDM symbol or the SC-FDMA symbol is reduced to half.
  • the value of the offset is the same as the one in the set C or the subset of the set C, and the set C is ⁇ x
  • x the length of the first k OFDM symbols or the SC-FDMA symbols in the uplink reference unit or the uplink reference unit
  • the time length of the uplink reference unit is 0.25 ms
  • the time domain symbol structure is the same as the OFDM symbol or SC-FDMA symbol in the normal cyclic prefix in the 1 ms subframe in LTE is reduced to a quarter
  • the first The value of the timing advance time offset is the same as the one in the set C or the subset of the set C
  • the set C is ⁇ x
  • x the length or the uplink of the first k OFDM symbols or SC-FDMA symbols in the uplink reference unit.
  • a data receiving method operating at a base station is also provided in this embodiment.
  • the hardware structure of the base station may include one or more processors, a memory for storing data, and a transmission device for communication functions, the functions of the processor of the base station being similar to the functions of the processor 32, the function of the memory of the base station Similar to the function of the memory 34, the function of the transmission device of the base station is similar to that of the transmission device 36.
  • a base station may also include more or fewer components, or different configurations.
  • FIG. 5 is a flowchart of a data receiving method according to an embodiment of the present disclosure, as shown in FIG. The process includes the following steps:
  • Step S502 determining one or more OFDM symbols for receiving data sent by the terminal in the uplink basic unit, where a start transmission time of the uplink basic unit is preset with an advance time relative to a start transmission time of the downlink basic unit, and the preset advance time The time is determined according to the dynamic timing advance and the timing advance offset;
  • Step S504 receiving data sent by the terminal on the determined one or more OFDM symbols.
  • the advance timing of the start sending time of the uplink basic unit with respect to the start sending time of the downlink basic unit is determined according to the dynamic timing advance amount and the timing advance offset, and the related basic technology has the uplink basic unit and the uplink reference unit.
  • the uplink symbols of the uplink basic unit and the uplink reference unit are not aligned, which reduces inter-user interference and reduces implementation complexity.
  • the uplink basic unit may be in multiple forms, for example, the uplink basic unit includes n 1 OFDM symbols, and the cyclic prefix of the first S OFDM symbols of the n 1 OFDM symbols has a first time length, the S a cyclic prefix of +1 OFDM symbol has a second time length, and a cyclic prefix of at least one OFDM symbol of the remaining n 1 -S-1 OFDM symbols except the first S+1 OFDM symbols has the second time length, wherein, n 1 OFDM symbols have the same effective data length, the first time length is less than the second time length, and S ⁇ n 1 , S and n 1 are positive integers.
  • the uplink basic unit includes n 1 OFDM symbols, and an additional cyclic prefix or gap exists between the S OFDM symbol and the S+1 OFDM symbol of the n 1 OFDM symbol, except for the previous S+1 There is an additional cyclic prefix identical to the extra cyclic prefix between the remaining n 1 -S-1 OFDM symbols except OFDM symbols, or there is a gap equal to the gap, where n 1 OFDM symbols have The same cyclic prefix length and valid data length, the same cyclic prefix length is the first time length, in which neither information nor any information is received, S ⁇ n 1 , S and n 1 are positive integers.
  • the downlink basic unit and the uplink basic unit may have the same length of time.
  • the foregoing timing advance offset may be configured to the terminal by using an RRC message.
  • the dynamic timing advance may be dynamically configured to the terminal by a MAC control unit or a timing advance command located in the random access response.
  • the length of the S OFDM symbols may be a first timing advance time offset of the uplink basic unit with respect to the uplink reference unit, or a part of the first timing advance time offset of the uplink basic unit with respect to the uplink reference unit, and uplink
  • the start transmission time of the reference unit has a second timing advance time offset relative to the start transmission time of the downlink reference unit
  • the downlink reference unit has the same start transmission time as the downlink basic unit
  • the uplink reference unit has the same length of time as the uplink basic unit.
  • the downlink reference unit has the same length of time as the downlink base unit, wherein the first timing advance time offset and the second timing advance time offset are both greater than zero.
  • the first timing advance time offset may be obtained according to the third timing advance time offset and the second timing advance time offset, where the third timing advance time offset is determined according to the timing advance offset,
  • the three timing advance time offset is a part of the preset advance time, and the third timing advance time offset is greater than 0 and less than or equal to the preset advance time.
  • the subcarrier spacing corresponding to the symbol in the uplink reference unit, n 2 , the length of the uplink reference unit, and the length of the cyclic prefix of the symbol in the uplink reference unit may be in multiple manners, for example, in the uplink reference unit.
  • the subcarrier spacing corresponding to the symbol is 15 kHz
  • the value of n 2 is 14
  • the length of the uplink reference unit is 1 ms
  • the eighth symbol in the uplink reference unit is the same as the cyclic prefix of the first symbol, both being 160*Ts.
  • the subcarrier spacing corresponding to the symbol in the uplink reference unit is 30 kHz
  • the value of n 2 is 14
  • the length of the uplink reference unit is 0.5 ms
  • the eighth symbol in the uplink reference unit and the first symbol are The cyclic prefixes are the same, both are 160*Ts1
  • the subcarrier spacing corresponding to the symbol in the uplink reference unit is 60 kHz
  • the value of n 2 is 14
  • the length of the uplink reference unit is 0.25 ms
  • the eighth symbol and the first symbol in the uplink reference unit are 160*Ts2
  • the value of each parameter may also be other values that satisfy the following scenarios: the subcarrier spacing corresponding to the symbol in the uplink reference unit is 15*2 b kHz, the value of n 2 is 14, and the time of the uplink reference unit.
  • the length is 1/2 b ms
  • the eighth symbol in the uplink reference unit has the same cyclic prefix as the first symbol, both being 160*Tsb, except for the eighth symbol and the first symbol in the uplink reference unit.
  • the subcarrier spacing corresponding to the OFDM symbol in the uplink basic unit may be 2 m *15*2 b kHz, and the value of n 1 may be 14*2 m , and the first time length may be 144*2 -m *Ts, S can be a positive integer multiple of 2 m , and m is one of the following: 0, 1, 2, 3, and b is a non-negative integer.
  • the uplink basic unit and the uplink reference unit may have the following relationship: the uplink basic unit has a first timing advance time offset with respect to the uplink reference unit, and the start transmission time of the uplink reference unit has a start transmission time relative to the downlink reference unit.
  • the second timing advance time offset, the downlink reference unit and the downlink basic unit have the same start transmission time, the uplink reference unit and the uplink basic unit have the same length of time, and the downlink reference unit and the downlink basic unit have the same length of time, where Both the first timing advance time offset and the second timing advance time offset are greater than zero.
  • the uplink reference unit may have multiple structures.
  • the uplink reference unit and the 1 ms subframe in the LTE have the same time length and symbol structure under the normal cyclic prefix, and the value of the first timing advance time offset is One element in the set C or the subset of the set C is the same, and the set C is ⁇ x
  • x the first k OFDM symbols or SC-FDMA symbols in the uplink reference unit
  • the time length of the uplink reference unit is 0.5 ms
  • the time domain symbol structure is the same as that of the 1 ms subframe in the LTE under the normal cyclic prefix, and the OFDM symbol or the SC-FDMA symbol is reduced to half.
  • the value of the offset is the same as the one in the set C or the subset of the set C, and the set C is ⁇ x
  • x the length of the first k OFDM symbols or the SC-FDMA symbols in the uplink reference unit or the uplink reference unit
  • the time length of the uplink reference unit is 0.25 ms
  • the time domain symbol structure is proportional to the OFDM symbol or the SC-FDMA symbol in the normal cyclic prefix of the 1 ms subframe in the LTE system is reduced to a quarter.
  • the value of the first timing advance time offset is the same as the one in the set C or the subset of the set C, and the set C is ⁇ x
  • x the time of the first k OFDM symbols or the SC-FDMA symbol in the uplink reference unit
  • a downlink frame of an uplink frame with respect to the same frame number in an access system is transmitted at least in advance by N TA-offset for a long time.
  • the base station dynamically adjusts another dynamic timing advance amount N TA according to the transmission delay of the terminal to the base station, and the terminal obtains the final transmission timing according to the dynamic timing advance amount and the fixed timing advance offset, thereby ensuring that signals of different users are simultaneously achieved.
  • the base station maintains the orthogonality of the uplink.
  • the first 4 symbols for the subcarrier spacing of 60 kHz are aligned with the first symbol with a subcarrier spacing of 15 kHz as shown in Fig. 6, wherein the length of the cyclic prefix and the length of the valid data for each symbol with a subcarrier spacing of 60 kHz are The subcarrier spacing is one quarter of the corresponding portion of the 15 kHz symbol.
  • the 2nd, 3rd, and 4th symbol cyclic prefixes with subcarrier spacing of 60kHz can also maintain the same cyclic prefix length as the symbol with the 5th subcarrier spacing of 60kHz.
  • the first sub-segment The cyclic prefix length of symbols with a carrier spacing of 60 kHz will become longer, as shown in the lowermost part of Figure 6.
  • the uplink symbol of the uplink basic unit and the uplink reference unit are not aligned, and a new symbol structure needs to be provided for the uplink basic unit. Therefore, the purpose of aligning the uplink basic unit with the uplink reference unit symbol is achieved.
  • the timing advance offset is a fixed value.
  • eMBB Enhanced Mobile Broadband
  • URLLC Ultra-low Latency Communication
  • FDM frequency division multiplexing
  • N TA-offset needs to introduce a dynamic configuration.
  • FIG. 7 is a first schematic diagram of a NB-IoT terminal coexisting with an NR terminal on the same carrier in accordance with a preferred embodiment of the present disclosure.
  • the base station simultaneously supports the services of the NR eMBB, the NR URLLC, and the NB-IoT terminal on the same carrier.
  • the uplink subframe i of the NB-IoT terminal is the uplink reference unit i
  • the downlink subframe i is the downlink reference unit.
  • the NB-IoT terminal uplink subframe i has a length of 1 ms and includes 14 OFDM symbols, and the subcarrier spacing corresponding to the symbol is 15 kHz.
  • the transmission of the uplink subframe i of the NR terminal has a timing advance time offset T1 with respect to the start transmission time of the uplink subframe i of the NB-IoT terminal, and the complete symbol is not performed.
  • T1 is an OFDM symbol with a 160*Ts length cyclic prefix.
  • T1 is an OFDM symbol with a 144*Ts length cyclic prefix, and the remaining 13 symbols still adopt the symbol structure of the first 13 symbols in the NB-IoT uplink subframe i, ensuring that in one sub- During the frame time, the NR terminal is always aligned with the upstream symbol of the NB-IoT terminal.
  • the uplink basic unit is the NR 1ms uplink subframe i, and when used for the eMBB service, the used subcarrier spacing is 15 kHz, the number of OFDM symbols included in the 1 ms subframe length is 14, and the value of S is 1.
  • the subcarrier spacing used is 60 kHz
  • the number of OFDM symbols included in 1 ms is 56
  • the value of S is 4, and the 5th to 8th symbols and the 33rd to 36th symbols are compared.
  • the downlink basic unit is the NR 1ms downlink subframe i, and the downlink basic unit and the downlink reference unit have the same start transmission time.
  • data transmission when transmitting uplink data, data transmission may be performed by using a scheduling unit composed of one or more 15 kHz OFDM symbols in a 1 ms subframe.
  • data transmission when transmitting uplink data, data transmission may be performed by using a scheduling unit composed of one or more 60 kHz OFDM symbols in a 1 ms subframe.
  • FIG. 8 is a second schematic diagram of a NB-IoT terminal coexisting with an NR terminal on the same carrier according to a preferred embodiment of the present disclosure.
  • the uplink symbols are not aligned.
  • the base station simultaneously supports the services of the NR eMBB, the NR URLLC, and the NB-IoT terminal on the same carrier.
  • the uplink subframe i of the NB-IoT terminal is an uplink reference unit
  • the downlink subframe i is a downlink reference unit.
  • the uplink subframe i of the NB-IoT terminal has a length of 1 ms and includes 14 OFDM symbols, and the subcarrier spacing corresponding to the symbol is 15 kHz.
  • the transmission of the uplink subframe i of the NR URLLC terminal has a timing advance time offset T1 with respect to the start transmission time of the NB-IoT uplink subframe i, before the complete symbol alignment is performed.
  • T1 is an OFDM symbol with a 160*Ts length cyclic prefix, and the NR URLLC terminal and the NB-IoT terminal always have a symbol misalignment problem.
  • T1 is an OFDM symbol with a 144*Ts length cyclic prefix, and the remaining 13 symbols still adopt the symbol structure of the first 13 symbols in the NB-IoT uplink subframe, ensuring one subframe.
  • the NRURLLC terminal is always aligned with the NB-IoT terminal upstream symbol.
  • the uplink basic unit is an NR URLLC 1 ms uplink subframe i, and the used subcarrier spacing is 60 kHz, the number of OFDM symbols included in the 1 ms subframe length is 56, and the value of S is 4, in the 4th and 5th.
  • the downlink basic unit is the NR URLLC 1ms downlink subframe i, and the downlink basic unit and the downlink reference unit have the same start transmission time.
  • the NR eMBB terminal uplink subframe i has the same start transmission time as the NB-IoT terminal uplink subframe i, that is, the timing advance offset N TA-offset is also 0, and for the NR URLLC terminal, when accessing the system As with the NR eMBB terminal, the uplink subframe i and the NB-IoT terminal uplink subframe i have the same start transmission time.
  • the uplink subframe i of the NRURLLC is transmitted relative to the downlink subframe by RRC signaling.
  • the start transmission time of i is reconfigured as a LTE OFDM symbol length with a subcarrier spacing of 144*Ts length cyclic prefix equal to 15 kHz.
  • data transmission may be performed by using a scheduling unit composed of one or more 60 kHz OFDM symbols in a 1 ms subframe.
  • FIG. 9 is a schematic diagram of coexistence of NR eMBB service and URLLC service in the same carrier according to a preferred embodiment of the present disclosure.
  • the eMBB terminal has the capability to access the system through the eMBB related technology and then switch to the URLLC service.
  • the base station simultaneously supports the services of the NR eMBB terminal and the NR URLLC terminal on the same carrier. The lowermost part of the URLLC terminal in FIG.
  • the timing advance time offset is reconfigured through the RRC message, as in the middle portion of FIG.
  • the uplink subframe i of the NR eMBB service terminal is an uplink reference unit
  • the downlink subframe i is a downlink reference unit
  • the uplink subframe i of the URLLC service terminal is an uplink basic unit
  • the downlink subframe i is a downlink basic unit.
  • the downlink reference unit has the same start transmission time as the downlink base unit.
  • the transmission of the uplink reference unit has a timing advance time offset T2 relative to the start transmission time of the downlink reference unit, where T2 is the length of time of the first 3 OFDM symbols of the LTE 1 ms subframe with the subcarrier spacing equal to 15 kHz.
  • T2 is the length of time of the first 3 OFDM symbols of the LTE 1 ms subframe with the subcarrier spacing equal to 15 kHz.
  • T1 was an OFDM symbol with a 160*Ts length cyclic prefix, and the NR URLLC terminal and the eMBB terminal always had a symbol misalignment problem.
  • T1 is an OFDM symbol with a 144*Ts length cyclic prefix, and the remaining 13 symbols still adopt the symbol structure of the first 13 symbols in the eMBB terminal uplink subframe i, ensuring one subframe.
  • the NR URLLC terminal is always aligned with the eMBB terminal upstream symbol.
  • the uplink basic unit is an NR URLLC 1ms uplink subframe i
  • the used subcarrier spacing is 60 kHz
  • the number of OFDM symbols included in the 1 ms subframe is 56
  • the value of S is 4, the 5th to 8th symbols.
  • the 33rd to 36th symbols are longer than other symbols.
  • the uplink reference unit is NR eMBB 1ms uplink subframe i, the subcarrier spacing is 15 kHz, the number of OFDM symbols included in the 1 ms subframe is 14, and all OFDM within the LTE 1 ms subframe with the symbol structure and subcarrier spacing is 15 kHz.
  • the symbol structure is the same.
  • data transmission may be performed by using a scheduling unit composed of one or more 60 kHz OFDM symbols in a 1 ms subframe.
  • FIG. 10 is a first schematic diagram of an NR technology supported by a LTE Multicast Broadcast Single Frequency Network (MBSFN) subframe according to a preferred embodiment of the present disclosure.
  • the base station supports the services of the LTE terminal and the NR terminal simultaneously on the same carrier, and supports the NR technology by using the MBSFN subframe of the LTE.
  • the uplink subframe i of the terminal supporting the LTE and the NR technology and the LTE terminal have the same timing advance time offset relative to the downlink subframe i. Therefore, the fast feedback cannot be implemented well.
  • the timing advance time offset is reconfigured for the terminal through the RRC message, as shown in FIG.
  • the uplink subframe i of the terminal supporting both the LTE and the NR technologies is an uplink reference unit
  • the downlink subframe i is a downlink reference unit.
  • the uplink subframe i of the terminal supporting only the LTE technology is an uplink basic unit
  • the downlink subframe i is a downlink basic unit.
  • the downlink reference unit has the same start transmission time as the downlink base unit.
  • T1 timing advance time offset
  • Ts 1/30720 ms
  • both LTE and NR are supported.
  • Technology terminals and terminals that only support LTE technology always have symbol misalignment problems.
  • T1 is the length of two OFDM symbols with a 144*Ts length cyclic prefix plus the first 7 OFDM symbols of the LTE 1ms subframe with a subcarrier spacing equal to 15 kHz, and the remaining 5 symbols are still used.
  • the uplink basic unit is an uplink subframe i supporting both LTE and NR technology terminals, and the subcarrier spacing is 15 kHz, the number of OFDM symbols included in the 1 ms subframe is 14, and the value of S is 2, in the first
  • the uplink reference unit is an uplink subframe i of the terminal supporting the LTE technology, and the subcarrier spacing is 15 kHz, and the number of OFDM symbols included in the 1 ms subframe is 14.
  • data may be transmitted using a scheduling unit composed of one or more 15 kHz OFDM symbols in a 1 ms subframe.
  • the main purpose of the preferred embodiment is to solve the problem that the uplink symbol is not aligned with the uplink reference unit when the uplink basic unit and the uplink reference unit have different fixed timing advance offsets N TA-offset .
  • a method of symbol alignment over the length of a unit By this method, the interference caused by the misalignment of the uplink symbols can be reduced, and the implementation complexity due to the misalignment of the symbols can be reduced.
  • the timing advance offset amount N TA-offset needs to be dynamically configured in some scenarios, and the recommended configuration value is given according to the principle of minimizing uplink interference.
  • the technical solution provided by the preferred embodiment can solve the problem that when the uplink basic unit and the uplink reference unit have different fixed timing advance offsets N TA-offset , the uplink basic unit and the uplink reference unit always exist.
  • Uplink symbol misalignment issues reduce inter-user interference while reducing implementation complexity.
  • the method according to the above embodiment can be implemented by means of software plus a necessary general hardware platform, and of course, by hardware, but in many cases, the former is A better implementation.
  • the technical solution of the present disclosure may be soft in essence or in part contributing to the prior art.
  • the form of the product is stored in a storage medium (such as ROM / RAM, disk, CD), including a number of instructions to make a terminal device (can be a mobile phone, computer, server, or network)
  • the device, etc. performs the methods described in various embodiments of the present disclosure.
  • a data transmitting device is provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • the term “module” may implement a combination of software and/or hardware of a predetermined function.
  • the apparatus described in the following embodiments is preferably implemented in software, hardware, or a combination of software and hardware, is also possible and contemplated.
  • FIG. 12 is a structural block diagram 1 of a data transmitting apparatus according to an embodiment of the present disclosure. As shown in FIG. 12, the apparatus includes:
  • the determining module 122 is configured to determine one or more OFDM symbols for transmitting data in the uplink basic unit, where a start sending time of the uplink basic unit is preset with an advance time relative to a start sending time of the downlink basic unit, and the preset advance time The time is determined according to the dynamic timing advance and the timing advance offset;
  • the sending module 124 is coupled to the determining module 122 and configured to transmit data on the determined one or more OFDM symbols.
  • the uplink basic unit may include n 1 OFDM symbols, the cyclic prefix of the first S OFDM symbols of the n 1 OFDM symbols has a first time length, and the cyclic prefix of the S+1 OFDM symbol has a second time The cyclic prefix of at least one of the remaining n 1 -S-1 OFDM symbols except the first S+1 OFDM symbols has a second time length, wherein n 1 OFDM symbols have the same valid data length The first time length is less than the second time length, and S ⁇ n 1 , S and n 1 are positive integers.
  • the uplink basic unit may include n 1 OFDM symbols, and an additional cyclic prefix or gap exists between the S OFDM symbol and the S+1 OFDM symbol of the n 1 OFDM symbol, except for the previous S+ There is an additional cyclic prefix identical to the extra cyclic prefix between the remaining n 1 -S-1 OFDM symbols except 1 OFDM symbol, or there is a gap equal to the gap, where n 1 OFDM symbols have the same
  • the cyclic prefix length and the effective data length, the same cyclic prefix length is the first time length, neither transmitting nor receiving any information in the gap, S ⁇ n 1 , S and n 1 are positive integers.
  • FIG. 13 is a block diagram showing the structure of a data transmitting apparatus according to an embodiment of the present disclosure. As shown in FIG. 13, the apparatus includes, in addition to all the modules shown in FIG. 12, the following:
  • the configuration module 132 is configured to configure a timing advance offset according to the radio resource control RRC message sent by the base station, and/or dynamically configure the dynamic timing advance according to the configuration information of the base station, where the configuration information is carried in the media access control MAC control
  • the unit is either in the timing advance command in the random access response.
  • the time length of the S OFDM symbols may be a first timing advance time offset of the uplink basic unit with respect to the uplink reference unit, or a part of the first timing advance time offset of the uplink basic unit with respect to the uplink reference unit, and the uplink reference
  • the start transmission time of the unit has a second timing advance time offset relative to the start transmission time of the downlink reference unit
  • the downlink reference unit has the same start transmission time as the downlink basic unit
  • the uplink reference unit has the same length of time as the uplink basic unit
  • the downlink The reference unit has the same length of time as the downlink basic unit, wherein the first timing advance time offset and the second timing advance time offset are both greater than zero.
  • the determining module 122 is further configured to determine, according to the third timing advance time offset and the second timing advance time offset, the first timing advance time offset, wherein the third timing advance time offset is based on the timing advance bias The shift amount is determined, the third timing advance time offset is a part of the preset advance time, and the third timing advance time offset is greater than 0 and less than or equal to the preset advance time.
  • a data receiving device is provided, which is used to implement the above-mentioned embodiments and preferred embodiments, and has not been described again.
  • FIG. 14 is a structural block diagram 1 of a data receiving apparatus according to an embodiment of the present disclosure. As shown in FIG. 14, the apparatus includes:
  • the determining module 142 is configured to determine one or more OFDM symbols used in the uplink basic unit for receiving data sent by the terminal, where the start sending time of the uplink basic unit is relative to The start time of the downlink basic unit is preset in advance, and the preset advance time is determined according to the dynamic timing advance amount and the timing advance offset;
  • the receiving module 144 is coupled to the determining module 142, and configured to receive data sent by the terminal on the determined one or more OFDM symbols.
  • the uplink basic unit may include n 1 OFDM symbols, the cyclic prefix of the first S OFDM symbols of the n 1 OFDM symbols has a first time length, and the cyclic prefix of the S+1 OFDM symbol has a second time The cyclic prefix of at least one of the remaining n 1 -S-1 OFDM symbols except the first S+1 OFDM symbols has a second time length, wherein n 1 OFDM symbols have the same valid data length The first time length is less than the second time length, and S ⁇ n 1 , S and n 1 are positive integers.
  • the uplink basic unit may include n 1 OFDM symbols, and an additional cyclic prefix or gap exists between the S OFDM symbol and the S+1 OFDM symbol of the n 1 OFDM symbol, except for the previous S+ There is an additional cyclic prefix identical to the extra cyclic prefix between the remaining n 1 -S-1 OFDM symbols except 1 OFDM symbol, or there is a gap equal to the gap, where n 1 OFDM symbols have the same
  • the cyclic prefix length and the effective data length, the same cyclic prefix length is the first time length, neither transmitting nor receiving any information in the gap, S ⁇ n 1 , S and n 1 are positive integers.
  • the apparatus includes: in addition to all the modules shown in FIG. 14, the apparatus further includes:
  • the configuration module 152 is configured to configure a timing advance offset to the terminal by using a radio resource control RRC message, and/or a dynamic timing advance by a medium access control MAC control unit or a timing advance command located in the random access response Dynamically configured to the terminal.
  • the time length of the S OFDM symbols may be a first timing advance time offset of the uplink basic unit with respect to the uplink reference unit, or a part of the first timing advance time offset of the uplink basic unit with respect to the uplink reference unit, and the uplink reference
  • the start transmission time of the unit has a second timing advance time offset with respect to the start transmission time of the downlink reference unit
  • the downlink reference unit has the same start transmission time as the downlink basic unit
  • the uplink reference unit and the uplink basic unit have
  • the downlink reference unit has the same length of time as the downlink base unit, wherein the first timing advance time offset and the second timing advance time offset are both greater than zero.
  • the determining module 142 is further configured to determine, according to the third timing advance time offset and the second timing advance time offset, the first timing advance time offset, wherein the third timing advance time offset is based on the timing advance bias The shift amount is determined, the third timing advance time offset is a part of the preset advance time, and the third timing advance time offset is greater than 0 and less than or equal to the preset advance time.
  • each of the above modules may be implemented by software or hardware.
  • the foregoing may be implemented by, but not limited to, the foregoing modules are all located in the same processor; or, the above modules are in any combination.
  • the forms are located in different processors.
  • a terminal, a base station, and a communication network system are provided.
  • the terminal, the base station, and the communication network system may be used to implement the foregoing embodiments and preferred embodiments, and are not described herein again.
  • the terminal includes a processor 162 and a transmission device 164, which will be described below.
  • the processor 162 is configured to determine one or more OFDM symbols for transmitting data in the uplink basic unit, where a start transmission time of the uplink basic unit is preset with an advance time relative to a start transmission time of the downlink basic unit, and the preset advance time The time is determined according to the dynamic timing advance and the timing advance offset;
  • Transmission device 164 coupled to processor 162, is configured to transmit data on the determined one or more OFDM symbols.
  • the uplink basic unit may include n 1 OFDM symbols, the cyclic prefix of the first S OFDM symbols of the n 1 OFDM symbols has a first time length, and the cyclic prefix of the S+1 OFDM symbol has a second time The cyclic prefix of at least one of the remaining n 1 -S-1 OFDM symbols except the first S+1 OFDM symbols has a second time length, wherein n 1 OFDM symbols have the same valid data length The first time length is less than the second time length, and S ⁇ n 1 , S and n 1 are positive integers.
  • the uplink basic unit may include n 1 OFDM symbols, and an additional cyclic prefix or gap exists between the S OFDM symbol and the S+1 OFDM symbol of the n 1 OFDM symbol, except for the previous S+ There is an additional cyclic prefix identical to the extra cyclic prefix between the remaining n 1 -S-1 OFDM symbols except 1 OFDM symbol, or there is a gap equal to the gap, where n 1 OFDM symbols have the same
  • the cyclic prefix length and the effective data length, the same cyclic prefix length is the first time length, neither transmitting nor receiving any information in the gap, S ⁇ n 1 , S and n 1 are positive integers.
  • the processor 162 may be further configured to: configure a timing advance offset according to a radio resource control RRC message sent by the base station, and/or dynamically configure a dynamic timing advance according to the configuration information of the base station, where the configuration information is carried in The MAC Control Unit or a timing advance command located in the random access response.
  • the time length of the S OFDM symbols may be a first timing advance time offset of the uplink basic unit with respect to the uplink reference unit, or a part of the first timing advance time offset of the uplink basic unit with respect to the uplink reference unit, and the uplink reference
  • the start transmission time of the unit has a second timing advance time offset relative to the start transmission time of the downlink reference unit
  • the downlink reference unit has the same start transmission time as the downlink basic unit
  • the uplink reference unit has the same length of time as the uplink basic unit
  • the downlink The reference unit has the same length of time as the downlink basic unit, wherein the first timing advance time offset and the second timing advance time offset are both greater than zero.
  • the processor 162 may be further configured to determine a first timing advance time offset according to the third timing advance time offset and the second timing advance time offset, where the third timing advance time offset is based on the timing advance bias The shift amount is determined, the third timing advance time offset is a part of the preset advance time, and the third timing advance time offset is greater than 0 and less than or equal to the preset advance time.
  • the base station includes a processor 172 and a transmission device 174, which will be described below.
  • the processor 172 is configured to determine one or more OFDM symbols in the uplink basic unit for receiving data sent by the terminal, where a start sending time of the uplink basic unit is preset with an advance time relative to a start sending time of the downlink basic unit, Preset lead time is based on dynamic The timing advance and the timing advance offset are determined;
  • the transmitting device 174 is coupled to the processor 172 and configured to receive data transmitted by the terminal on the determined one or more OFDM symbols.
  • the uplink basic unit may include n 1 OFDM symbols, the cyclic prefix of the first S OFDM symbols of the n 1 OFDM symbols has a first time length, and the cyclic prefix of the S+1 OFDM symbol has a second time The cyclic prefix of at least one of the remaining n 1 -S-1 OFDM symbols except the first S+1 OFDM symbols has a second time length, wherein n 1 OFDM symbols have the same valid data length The first time length is less than the second time length, and S ⁇ n 1 , S and n 1 are positive integers.
  • the uplink basic unit may include n 1 OFDM symbols, and an additional cyclic prefix or gap exists between the S OFDM symbol and the S+1 OFDM symbol of the n 1 OFDM symbol, except for the previous S+ There is an additional cyclic prefix identical to the extra cyclic prefix between the remaining n 1 -S-1 OFDM symbols except 1 OFDM symbol, or there is a gap equal to the gap, where n 1 OFDM symbols have the same
  • the cyclic prefix length and the effective data length, the same cyclic prefix length is the first time length, neither transmitting nor receiving any information in the gap, S ⁇ n 1 , S and n 1 are positive integers.
  • the processor 172 may be further configured to configure a timing advance offset to the terminal by using a radio resource control RRC message, and/or dynamically timed by a MAC control unit or a timing advance command located in the random access response.
  • the advance amount is dynamically configured to the terminal.
  • the time length of the S OFDM symbols may be a first timing advance time offset of the uplink basic unit with respect to the uplink reference unit, or a part of the first timing advance time offset of the uplink basic unit with respect to the uplink reference unit, and the uplink reference
  • the start transmission time of the unit has a second timing advance time offset relative to the start transmission time of the downlink reference unit
  • the downlink reference unit has the same start transmission time as the downlink basic unit
  • the uplink reference unit has the same length of time as the uplink basic unit
  • the downlink The reference unit has the same length of time as the downlink basic unit, wherein the first timing advance time offset and the second timing advance time offset are both greater than zero.
  • the processor 172 is further configured to be based on the third timing advance time offset and the first The second timing advance time offset determines a first timing advance time offset, wherein the third timing advance time offset is determined according to the timing advance offset, and the third timing advance time offset is a part of the preset advance time, and the third timing The advance time offset is greater than 0 and less than or equal to the preset advance time.
  • FIG. 18 is a structural block diagram of a communication network system according to an embodiment of the present disclosure.
  • the communication network system includes a terminal 182 and a base station 184.
  • the terminal 182 includes a first processor 1822 and a first transmission device 1824.
  • 184 includes a second processor 1842 and a second transmission device 1844, wherein the communication network system is described below.
  • the first processor 1822 is configured to determine one or more OFDM symbols used for transmitting data in the uplink basic unit, where a start sending time of the uplink basic unit is preset with a preset advance time relative to a start sending time of the downlink basic unit, Setting the advance time according to the dynamic timing advance amount and the timing advance offset;
  • a first transmission device 1824 coupled to the first processor 1822, configured to send data to the base station on the determined one or more OFDM symbols;
  • the second processor 1842 is configured to determine one or more OFDM symbols in the uplink basic unit for receiving data sent by the terminal;
  • the second transmission device 1844 is coupled to the second processor 1842 and configured to receive data transmitted by the terminal on the determined one or more OFDM symbols.
  • the uplink basic unit may include n 1 OFDM symbols, the cyclic prefix of the first S OFDM symbols of the n 1 OFDM symbols has a first time length, and the cyclic prefix of the S+1 OFDM symbol has a second time The cyclic prefix of at least one of the remaining n 1 -S-1 OFDM symbols except the first S+1 OFDM symbols has a second time length, wherein n 1 OFDM symbols have the same valid data length The first time length is less than the second time length, and S ⁇ n 1 , S and n 1 are positive integers.
  • the uplink basic unit may include n 1 OFDM symbols, and an additional cyclic prefix or gap exists between the S OFDM symbol and the S+1 OFDM symbol of the n 1 OFDM symbol, except for the previous S+ There is an additional cyclic prefix identical to the extra cyclic prefix between the remaining n 1 -S-1 OFDM symbols except 1 OFDM symbol, or there is a gap equal to the gap, where n 1 OFDM symbols have the same
  • the cyclic prefix length and the effective data length, the same cyclic prefix length is the first time length, neither transmitting nor receiving any information in the gap, S ⁇ n 1 , S and n 1 are positive integers.
  • the second processor 1842 may be further configured to configure the timing advance offset to the terminal by using a radio resource control RRC message, and/or by using a MAC control unit or a timing advance command located in the random access response.
  • the dynamic timing advance is dynamically configured to the terminal; the first processor 1822 is further configured to configure the timing advance offset according to the RRC message sent by the base station, and/or dynamically configure the dynamic timing advance according to the configuration information of the base station, where The configuration information is carried in a MAC Control Element or a Timing Advance Command located in the random access response.
  • Embodiments of the present disclosure provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • S1 Determine one or more OFDM symbols used for sending data in the uplink basic unit, where a start transmission time of the uplink basic unit is preset with an advance time relative to a start transmission time of the downlink basic unit, and the preset advance time is according to dynamic timing.
  • the advance amount and the timing advance offset are determined;
  • the storage medium is further configured to store program code for performing the following steps: the uplink base unit includes n 1 OFDM symbols, and the cyclic prefix of the first S OFDM symbols of the n 1 OFDM symbols has a first time length a cyclic prefix of the S+1th OFDM symbol has a second time length, and a cyclic prefix of at least one of the remaining n 1 -S-1 OFDM symbols except the first S+1 OFDM symbols has a second time Length, wherein n 1 OFDM symbols have the same valid data length, the first time length is less than the second time length, S ⁇ n 1 , S and n 1 are positive integers.
  • the storage medium is further configured to store program code for performing the following steps: n 1 OFDM symbols, n 1 OFDM symbols, and S+1 OFDM symbols in the uplink basic unit There is an additional cyclic prefix or gap between them, and there is an additional cyclic prefix identical to the extra cyclic prefix between the remaining n 1 -S-1 OFDM symbols except the first S+1 OFDM symbols, or there is one
  • the storage medium is further arranged to store program code for performing the steps of: the downlink base unit has the same length of time as the uplink base unit.
  • the storage medium is further arranged to store program code for performing the step of: the timing advance offset is configured by the base station via a radio resource control RRC message.
  • the storage medium is further arranged to store program code for performing the step of dynamically configuring the dynamic timing advance by the base station via a medium access control MAC control unit or a timing advance command located in the random access response.
  • the storage medium is further configured to store program code for performing: the time length of the S OFDM symbols is a first timing advance time offset of the uplink basic unit with respect to the uplink reference unit, or the uplink basic unit is relatively uplink a part of the first timing advance time offset of the reference unit, the start transmission time of the uplink reference unit has a second timing advance time offset with respect to the start transmission time of the downlink reference unit, and the downlink reference unit has the same start transmission time as the downlink basic unit
  • the uplink reference unit has the same length of time as the uplink basic unit, and the downlink reference unit and the downlink basic unit have the same length of time, wherein the first timing advance time offset and the second timing advance time offset are both greater than zero.
  • the storage medium is further configured to store program code for performing the following steps:
  • the timing advance time offset is obtained according to the third timing advance time offset and the second timing advance time offset, wherein the third timing advance time offset is determined according to the timing advance offset, and the third timing advance time offset is Set a part of the advance time, the third timing advance time offset is greater than 0, less than or equal to the preset advance time.
  • the storage medium is further configured to store program code for performing the following steps: the subcarrier spacing corresponding to the symbol in the uplink reference unit is 15 kHz, the value of n 2 is 14 , and the length of the uplink reference unit is 1 ms.
  • the storage medium is further configured to store program code for performing the following steps: the subcarrier spacing corresponding to the OFDM symbol in the uplink basic unit is 2 m *15 kHz, and the value of n 1 is 14*2 m , The length of time is 144*2 -m *Ts, the value of S is a positive integer multiple of 2 m , and the value of m is one of the following: 0, 1, 2, 3.
  • the storage medium is further configured to store program code for performing the following steps: the subcarrier spacing corresponding to the OFDM symbol in the uplink basic unit is 2 m * 30 kHz, and the value of n 1 is 14 * 2 m , The length of time is 144*2 -m *Ts, the value of S is a positive integer multiple of 2 m , and the value of m is one of the following: 0, 1, 2, 3.
  • the storage medium is further configured to store program code for performing the following steps: the subcarrier spacing corresponding to the symbol in the uplink basic unit is 2 m * 60 kHz, and the value of n 1 is 14 * 2 m , the first The length of time is 144*2 -m *Ts, the value of S is a positive integer multiple of 2 m , and the value of m is one of the following: 0, 1, 2, 3.
  • the storage medium is further configured to store program code for performing the following steps: the uplink base unit has a first timing advance time offset with respect to the uplink reference unit, and the start transmission time of the uplink reference unit is transmitted relative to the start of the downlink reference unit
  • the time reference has a second timing advance time offset
  • the downlink reference unit has the same start transmission time as the downlink basic unit
  • the uplink reference unit has the same length of time as the uplink basic unit
  • the downlink reference unit has the same length of time as the downlink basic unit.
  • the first timing advance time offset and the second timing advance time offset are both greater than zero.
  • the storage medium is further configured to store program code for performing the following steps: the uplink reference unit and the 1 ms subframe in LTE have the same time length and symbol structure under the normal cyclic prefix, and the first timing advance time offset
  • the value of the shift is the same as the one in the set C or the subset of the set C, and the set C is ⁇ x
  • x the length of the first k OFDM symbols or SC-FDMA symbols in the uplink reference unit or the former in the uplink reference unit
  • the storage medium is further configured to store program code for performing the following steps: the time length of the uplink reference unit is 0.5 ms, and the time domain symbol structure and the 1 ms subframe in LTE are in the normal cyclic prefix. Or the SC-FDMA symbols are scaled down to the same half, and the value of the first timing advance time offset is the same as one element in the subset of the set C or the set C, and the set C is ⁇ x
  • x the front of the uplink reference unit
  • the storage medium is further configured to store program code for performing the following steps:
  • the time length of the row reference unit is 0.25 ms, and the time domain symbol structure is the same as the 1 ms subframe in LTE, which is proportional to the OFDM symbol or SC-FDMA symbol under the normal cyclic prefix, and is equal to one quarter, the first timing advance time.
  • the value of the offset is the same as the one in the set C or the subset of the set C, and the set C is ⁇ x
  • x the length of the first k OFDM symbols or the SC-FDMA symbols in the uplink reference unit or the uplink reference unit
  • Embodiments of the present disclosure provide a storage medium.
  • the foregoing storage medium may be configured to store program code for performing the following steps:
  • S1 Determine one or more orthogonal frequency division multiplexing OFDM symbols used by the uplink basic unit to receive data sent by the terminal, where a start sending time of the uplink basic unit is preset in advance with respect to a start sending time of the downlink basic unit. Time, the preset advance time is determined according to the dynamic timing advance amount and the timing advance offset;
  • the storage medium is further configured to store program code for performing the following steps: the uplink base unit includes n 1 OFDM symbols, and the cyclic prefix of the first S OFDM symbols of the n 1 OFDM symbols has a first time length a cyclic prefix of the S+1th OFDM symbol has a second time length, and a cyclic prefix of at least one of the remaining n 1 -S-1 OFDM symbols except the first S+1 OFDM symbols has a second time Length, wherein n 1 OFDM symbols have the same valid data length, the first time length is less than the second time length, S ⁇ n 1 , S and n 1 are positive integers.
  • the storage medium is further configured to store program code for performing the following steps: n 1 OFDM symbols, n 1 OFDM symbols, and S+1 OFDM symbols in the uplink basic unit There is an additional cyclic prefix or gap between them, and there is an additional cyclic prefix identical to the extra cyclic prefix between the remaining n 1 -S-1 OFDM symbols except the first S+1 OFDM symbols, or there is one
  • the storage medium is further arranged to store program code for performing the steps of: the downlink base unit has the same length of time as the uplink base unit.
  • the storage medium is further arranged to store program code for performing the step of: the timing advance offset is configured by the base station to the terminal via a radio resource control RRC message.
  • the storage medium is further configured to store program code for performing the following steps: the dynamic timing advance is dynamically configured by the base station to the terminal through a medium access control MAC control unit or a timing advance command located in the random access response .
  • the storage medium is further configured to store program code for performing: the time length of the S OFDM symbols is a first timing advance time offset of the uplink basic unit with respect to the uplink reference unit, or the uplink basic unit is relatively uplink a part of the first timing advance time offset of the reference unit, the start transmission time of the uplink reference unit has a second timing advance time offset with respect to the start transmission time of the downlink reference unit, and the downlink reference unit has the same start transmission time as the downlink basic unit
  • the uplink reference unit has the same length of time as the uplink basic unit, and the downlink reference unit and the downlink basic unit have the same length of time, wherein the first timing advance time offset and the second timing advance time offset are both greater than zero.
  • the storage medium is further configured to store program code for performing the following steps: the first timing advance time offset is obtained according to the third timing advance time offset and the second timing advance time offset, wherein the third timing The advance time offset is determined according to the timing advance offset, the third timing advance time offset is a part of the preset advance time, and the third timing advance time offset is greater than 0, Less than or equal to the preset advance time.
  • the storage medium is further configured to store program code for performing the following steps: the subcarrier spacing corresponding to the symbol in the uplink reference unit is 15 kHz, the value of n 2 is 14 , and the length of the uplink reference unit is 1 ms.
  • the storage medium is further configured to store program code for performing the following steps: the subcarrier spacing corresponding to the OFDM symbol in the uplink basic unit is 2 m *15 kHz, and the value of n 1 is 14*2 m , The length of time is 144*2 -m *Ts, the value of S is a positive integer multiple of 2 m , and the value of m is one of the following: 0, 1, 2, 3.
  • the storage medium is further configured to store program code for performing the following steps: the subcarrier spacing corresponding to the OFDM symbol in the uplink basic unit is 2 m * 30 kHz, and the value of n 1 is 14 * 2 m , The length of time is 144*2 -m *Ts, the value of S is a positive integer multiple of 2 m , and the value of m is one of the following: 0, 1, 2, 3.
  • the storage medium is further configured to store program code for performing the following steps: the subcarrier spacing corresponding to the symbol in the uplink basic unit is 2 m * 60 kHz, and the value of n 1 is 14 * 2 m , the first The length of time is 144*2 -m *Ts, the value of S is a positive integer multiple of 2 m , and the value of m is one of the following: 0, 1, 2, 3.
  • the storage medium is further configured to store program code for performing the following steps: the uplink base unit has a first timing advance time offset with respect to the uplink reference unit, and the start transmission time of the uplink reference unit is transmitted relative to the start of the downlink reference unit
  • the time reference has a second timing advance time offset
  • the downlink reference unit has the same start transmission time as the downlink basic unit
  • the uplink reference unit has the same length of time as the uplink basic unit
  • the downlink reference unit has the same length of time as the downlink basic unit.
  • the first timing advance time offset and the second timing advance time offset are both greater than zero.
  • the storage medium is further configured to store program code for performing the following steps: the uplink reference unit and the 1 ms subframe in the Long Term Evolution System LTE have the same time length and symbol structure under the normal cyclic prefix, the first timing The value of the advance time offset is the same as the one in the set C or the subset of the set C, and the set C is ⁇ x
  • the storage medium is further configured to store program code for performing the following steps: the time length of the uplink reference unit is 0.5 ms, and the time domain symbol structure and the 1 ms subframe in the Long Term Evolution system LTE are under a normal cyclic prefix.
  • Each OFDM symbol or SC-FDMA symbol is scaled down to half the same, and the value of the first timing advance time offset is the same as one element in the set C or a subset of the set C, and the set C is ⁇ x
  • x uplink reference
  • the storage medium is further configured to store program code for performing the following steps: the time length of the uplink reference unit is 0.25 ms, and the time domain symbol structure and the 1 ms subframe in the Long Term Evolution system LTE are under a normal cyclic prefix.
  • Each OFDM symbol or SC-FDMA symbol is scaled down to a quarter, the value of the first timing advance time offset and the set or set in C
  • set C is ⁇ x
  • x time length of the first k OFDM symbols or SC-FDMA symbols in the uplink reference unit or the first k OFDM symbols or SC-FDMA symbols in the uplink reference unit
  • the foregoing storage medium may include, but not limited to, a USB flash drive, a Read-Only Memory (ROM), a Random Access Memory (RAM), a mobile hard disk, and a magnetic memory.
  • ROM Read-Only Memory
  • RAM Random Access Memory
  • a mobile hard disk e.g., a hard disk
  • magnetic memory e.g., a hard disk
  • the processor performs, according to the stored program code in the storage medium, determining one or more orthogonal frequency division multiplexing OFDM symbols used for transmitting data in the uplink basic unit, where the uplink basic
  • the start transmission time of the unit is preset with respect to the start transmission time of the downlink basic unit, and the preset advance time is determined according to the dynamic timing advance amount and the timing advance offset; and the data is transmitted on the determined one or more OFDM symbols.
  • the processor performs, according to the stored program code in the storage medium, that: the uplink basic unit includes n 1 OFDM symbols, and the cyclic prefix of the first S OFDM symbols of the n 1 OFDM symbols has a first For a length of time, the cyclic prefix of the S+1th OFDM symbol has a second time length, and the cyclic prefix of at least one of the remaining n 1 -S-1 OFDM symbols except the first S+1 OFDM symbols has a second length of time, wherein n 1 OFDM symbols have the same valid data length, the first time length is less than the second time length, and S ⁇ n 1 , S and n 1 are positive integers.
  • the processor in accordance with the program code stored in the storage medium is performed: the base unit comprises an uplink OFDM symbol n 1, S n 1 OFDM symbol and the second OFDM symbols S + 1 There is an additional cyclic prefix or gap between the OFDM symbols, and there is an additional cyclic prefix identical to the extra cyclic prefix between the remaining n 1 -S-1 OFDM symbols except the first S+1 OFDM symbols. Or there is a gap that is the same as the gap, where n 1 OFDM symbols have the same cyclic prefix length and valid data length, and the same cyclic prefix length is the first time length, and neither information nor any information is received in the gap. S ⁇ n 1 , S and n 1 are positive integers.
  • the processor executes according to the stored program code in the storage medium: the downlink basic unit has the same length of time as the uplink basic unit.
  • the processor performs, according to the stored program code in the storage medium: the timing advance offset is configured by the base station by using a radio resource control RRC message.
  • the processor performs, according to the stored program code in the storage medium: the dynamic timing advance is dynamically performed by the base station by using a media access control MAC control unit or a timing advance command located in the random access response. Configuration.
  • the processor performs, according to the stored program code in the storage medium, that the length of the S OFDM symbols is the first timing advance time offset of the uplink basic unit with respect to the uplink reference unit, or the uplink basic a part of the first timing advance time offset of the unit relative to the uplink reference unit, the start transmission time of the uplink reference unit has a second timing advance time offset with respect to the start transmission time of the downlink reference unit, and the downlink reference unit and the downlink basic unit have the same Starting the transmission time, the uplink reference unit has the same length of time as the uplink basic unit, and the downlink reference unit and the downlink basic unit have the same length of time, wherein the first timing advance time offset and the second timing advance time offset are both greater than 0 .
  • the processor performs, according to the stored program code in the storage medium, that the uplink reference unit includes n 2 symbols, and the length of the S OFDM symbols is the uplink basic unit and the uplink reference unit.
  • the processor performs, according to the stored program code in the storage medium, that the first timing advance time offset is obtained according to the third timing advance time offset and the second timing advance time offset, where
  • the third timing advance time offset is determined according to the timing advance offset, and the third timing advance time offset is a part of the preset advance time, and the third timing advance time offset is greater than 0 and less than or equal to the preset advance time.
  • the processor performs, according to the stored program code in the storage medium, that the subcarrier spacing corresponding to the OFDM symbol in the uplink basic unit is 2 m *15 kHz, and the value of n 1 is 14*2.
  • the first time length is 144*2 -m *Ts
  • the value of S is a positive integer multiple of 2 m
  • the value of m is one of the following: 0, 1, 2, 3.
  • the processor performs, according to the stored program code in the storage medium, that the subcarrier spacing corresponding to the symbol in the uplink reference unit is 30 kHz, the value of n 2 is 14, and the time of the uplink reference unit is The length is 0.5 ms, and the eighth symbol in the uplink reference unit has the same cyclic prefix as the first symbol, both being 160*Ts1, and the symbols other than the eighth symbol and the first symbol in the uplink reference unit.
  • the processor performs, according to the stored program code in the storage medium, that the subcarrier spacing corresponding to the OFDM symbol in the uplink basic unit is 2 m * 30 kHz, and the value of n 1 is 14 * 2 m , the first time length is 144*2 -m *Ts, the value of S is a positive integer multiple of 2 m , and the value of m is one of the following: 0, 1, 2, 3.
  • the processor performs, according to the stored program code in the storage medium, that the subcarrier spacing corresponding to the symbol in the uplink reference unit is 60 kHz, the value of n 2 is 14, and the time of the uplink reference unit is The length is 0.25 ms, and the eighth symbol in the uplink reference unit has the same cyclic prefix as the first symbol, both being 160*Ts2, and the symbols other than the eighth symbol and the first symbol in the uplink reference unit.
  • the processor performs, according to the stored program code in the storage medium, that the subcarrier spacing corresponding to the symbol in the uplink basic unit is 2 m *60 kHz, and the value of n 1 is 14*2 m.
  • the first time length is 144*2 -m *Ts, the value of S is a positive integer multiple of 2 m , and the value of m is one of the following: 0, 1, 2, 3.
  • the processor performs, according to the stored program code in the storage medium, that the uplink basic unit has a first timing advance time offset with respect to the uplink reference unit, and the start transmission time of the uplink reference unit is relative to the downlink reference unit.
  • the start transmission time has a second timing advance time offset
  • the downlink reference unit has the same start transmission time as the downlink basic unit
  • the uplink reference unit has the same time length as the uplink basic unit
  • the downlink reference unit has the same same as the downlink basic unit.
  • the length of time, wherein the first timing advance time offset and the second timing advance time offset are both greater than zero.
  • the processor performs, according to the stored program code in the storage medium, that the uplink reference unit and the 1 ms subframe in the Long Term Evolution (LTE) system have the same time length and symbol structure under the normal cyclic prefix.
  • the value of the first timing advance time offset is the same as the one in the set C or the subset of the set C, and the set C is ⁇ x
  • the processor performs, according to the stored program code in the storage medium, that the time length of the uplink reference unit is 0.5 ms, and the time domain symbol structure is common to the 1 ms subframe in the LTE system.
  • Each OFDM symbol or SC-FDMA symbol under the cyclic prefix is proportionally reduced to half the same, and the value of the first timing advance time offset is the same as one element in the set C or a subset of the set C, and the set C is ⁇ x
  • the processor performs, according to the stored program code in the storage medium, that the time length of the uplink reference unit is 0.25 ms, and the time domain symbol structure is common to the 1 ms subframe in the LTE system.
  • Each OFDM symbol or SC-FDMA symbol under a cyclic prefix The scaling is reduced to a quarter, and the timing advance time offset T1 is the same as one element in the set C or the subset of the set C.
  • the set C is ⁇ x
  • x the first k OFDM in the uplink reference unit
  • the processor performs, according to the stored program code in the storage medium, determining one or more orthogonal frequency division multiplexing OFDM symbols for receiving data sent by the terminal in the uplink basic unit, where The start transmission time of the uplink basic unit is preset with respect to the start transmission time of the downlink basic unit, and the preset advance time is determined according to the dynamic timing advance amount and the timing advance offset; on the determined one or more OFDM symbols Receive data sent by the terminal.
  • the processor performs, according to the stored program code in the storage medium, that: the uplink basic unit includes n 1 OFDM symbols, and the cyclic prefix of the first S OFDM symbols of the n 1 OFDM symbols has a first For a length of time, the cyclic prefix of the S+1th OFDM symbol has a second time length, and the cyclic prefix of at least one of the remaining n 1 -S-1 OFDM symbols except the first S+1 OFDM symbols has a second length of time, wherein n 1 OFDM symbols have the same valid data length, the first time length is less than the second time length, and S ⁇ n 1 , S and n 1 are positive integers.
  • the processor in accordance with the program code stored in the storage medium is performed: the base unit comprises an uplink OFDM symbol n 1, S n 1 OFDM symbol and the second OFDM symbols S + 1 There is an additional cyclic prefix or gap between the OFDM symbols, and there is an additional cyclic prefix identical to the extra cyclic prefix between the remaining n 1 -S-1 OFDM symbols except the first S+1 OFDM symbols. Or there is a gap that is the same as the gap, where n 1 OFDM symbols have the same cyclic prefix length and valid data length, and the same cyclic prefix length is the first time length, and neither information nor any information is received in the gap. S ⁇ n 1 , S and n 1 are positive integers.
  • the processor executes according to the stored program code in the storage medium.
  • the processor performs, according to the stored program code in the storage medium: the timing advance offset is configured by the base station to the terminal by using a radio resource control RRC message.
  • the processor performs, according to the stored program code in the storage medium: the dynamic timing advance is dynamically performed by the base station by using a media access control MAC control unit or a timing advance command located in the random access response. Configured to the terminal.
  • the processor performs, according to the stored program code in the storage medium, that the length of the S OFDM symbols is the first timing advance time offset of the uplink basic unit with respect to the uplink reference unit, or the uplink basic a part of the first timing advance time offset of the unit relative to the uplink reference unit, the start transmission time of the uplink reference unit has a second timing advance time offset with respect to the start transmission time of the downlink reference unit, and the downlink reference unit and the downlink basic unit have the same Starting the transmission time, the uplink reference unit has the same length of time as the uplink basic unit, and the downlink reference unit and the downlink basic unit have the same length of time, wherein the first timing advance time offset and the second timing advance time offset are both greater than 0 .
  • the processor performs, according to the stored program code in the storage medium, that the uplink reference unit includes n 2 symbols, and the length of the S OFDM symbols is the uplink basic unit and the uplink reference unit.
  • the processor performs, according to the stored program code in the storage medium, that the first timing advance time offset is obtained according to the third timing advance time offset and the second timing advance time offset, where
  • the third timing advance time offset is determined according to the timing advance offset, and the third timing advance time offset is a part of the preset advance time, and the third timing advance time offset is greater than 0 and less than or equal to the preset advance time.
  • the processor performs, according to the stored program code in the storage medium, that the subcarrier spacing corresponding to the OFDM symbol in the uplink basic unit is 2 m *15 kHz, and the value of n 1 is 14*2.
  • the first time length is 144*2 -m *Ts
  • the value of S is a positive integer multiple of 2 m
  • the value of m is one of the following: 0, 1, 2, 3.
  • the processor performs, according to the stored program code in the storage medium, that the subcarrier spacing corresponding to the symbol in the uplink reference unit is 30 kHz, the value of n 2 is 14, and the time of the uplink reference unit is The length is 0.5 ms, and the eighth symbol in the uplink reference unit has the same cyclic prefix as the first symbol, both being 160*Ts1, and the symbols other than the eighth symbol and the first symbol in the uplink reference unit.
  • the processor performs, according to the stored program code in the storage medium, that the subcarrier spacing corresponding to the OFDM symbol in the uplink basic unit is 2 m * 30 kHz, and the value of n 1 is 14 * 2 m , the first time length is 144*2 -m *Ts, the value of S is a positive integer multiple of 2 m , and the value of m is one of the following: 0, 1, 2, 3.
  • the processor performs, according to the stored program code in the storage medium, that the subcarrier spacing corresponding to the symbol in the uplink reference unit is 60 kHz, the value of n 2 is 14, and the time of the uplink reference unit is The length is 0.25 ms, and the eighth symbol in the uplink reference unit has the same cyclic prefix as the first symbol, both being 160*Ts2, and the symbols other than the eighth symbol and the first symbol in the uplink reference unit.
  • the processor performs, according to the stored program code in the storage medium, that the subcarrier spacing corresponding to the symbol in the uplink basic unit is 2 m *60 kHz, and the value of n 1 is 14*2 m.
  • the first time length is 144*2 -m *Ts, the value of S is a positive integer multiple of 2 m , and the value of m is one of the following: 0, 1, 2, 3.
  • the processor performs, according to the stored program code in the storage medium, that the uplink basic unit has a first timing advance time offset with respect to the uplink reference unit, and the start transmission time of the uplink reference unit is relative to the downlink reference unit.
  • the start transmission time has a second timing advance time offset
  • the downlink reference unit has the same start transmission time as the downlink basic unit
  • the uplink reference unit has the same time length as the uplink basic unit
  • the downlink reference unit has the same same as the downlink basic unit.
  • the length of time, wherein the first timing advance time offset and the second timing advance time offset are both greater than zero.
  • the processor performs, according to the stored program code in the storage medium, that the uplink reference unit and the 1 ms subframe in the Long Term Evolution (LTE) system have the same time length and symbol structure under the normal cyclic prefix.
  • the value of the first timing advance time offset is the same as the one in the set C or the subset of the set C, and the set C is ⁇ x
  • the processor performs, according to the stored program code in the storage medium, that the time length of the uplink reference unit is 0.5 ms, and the time domain symbol structure is common to the 1 ms subframe in the LTE system.
  • Each OFDM symbol or SC-FDMA symbol under the cyclic prefix is proportionally reduced to half the same, and the value of the first timing advance time offset is the same as one element in the set C or a subset of the set C, and the set C is ⁇ x
  • the processor performs, according to the stored program code in the storage medium, that the time length of the uplink reference unit is 0.25 ms, and the time domain symbol structure is common to the 1 ms subframe in the LTE system.
  • Each OFDM symbol or SC-FDMA symbol under the cyclic prefix is scaled down to a quarter, and the timing advance time offset T1 is the same as an element in the set C or a subset of the set C, and the set C is ⁇ x
  • x time length of the first k OFDM symbols or SC-FDMA symbols in the uplink reference unit or the first k in the uplink reference unit
  • Embodiments of the present disclosure also provide a processor for running a program, wherein the program executes the steps of any of the above methods when executed.
  • modules or steps of the present disclosure described above can be implemented by a general-purpose computing device that can be centralized on a single computing device or distributed across a network of multiple computing devices. Alternatively, they may be implemented by program code executable by the computing device such that they may be stored in the storage device by the computing device and, in some cases, may be different from the order herein.
  • the steps shown or described are performed, or they are separately fabricated into individual integrated circuit modules, or a plurality of modules or steps thereof are fabricated as a single integrated circuit module. As such, the disclosure is not limited to any specific combination of hardware and software.
  • the present disclosure relates to the field of communications, and in particular, to a data transmitting and receiving method and apparatus. Determining, according to the dynamic timing advance amount and the timing advance offset, an advance amount of the start transmission time of the uplink basic unit with respect to the start transmission time of the downlink basic unit, which may solve the problem that the uplink basic unit and the uplink reference unit have different fixed timings in the related art.
  • the offset is advanced, the uplink symbol of the uplink basic unit and the uplink reference unit are not aligned, which reduces the interference between users and reduces the implementation complexity.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本公开提供了一种数据发送、接收方法及装置,其中,该方法包括:确定上行基本单元内用于发送数据的一个或多个正交频分复用OFDM符号,其中,所述上行基本单元的开始发送时间相对于下行基本单元的开始发送时间提前预设提前时间,所述预设提前时间根据动态定时提前量和定时提前偏移量确定;在确定的所述一个或多个OFDM符号上发送数据。通过本公开,解决了相关技术中存在上行基本单元与上行参考单元具有不同的固定定时提前偏移量时,上行基本单元与上行参考单元存在的上行符号不对齐的问题,达到了减少用户间干扰、降低实现复杂度的效果。

Description

数据发送、接收方法及装置 技术领域
本公开涉及通信领域,具体而言,涉及一种数据发送、接收方法及装置。
背景技术
在长期演进(Long Term Evolution,简称为LTE)标准中,对于频分双工(Frequency Division Duplex,简称为FDD)和时分双工(Time Division Duplex,简称为TDD)系统在进行定时描述时,都引入了一个固定大小的定时提前偏移量NTA-offset,如图1所示,该定时提前偏移量对于FDD系统,取值为0,对于TDD系统取值为624*Ts,Ts=1/30720ms,FDD或TDD终端在接入系统中上行帧相对相同帧编号的下行帧至少要提前NTA-offset长时间发送。对于固定的定时提前偏移量NTA-offset,终端在整个通信过程中都保持不变且为标准设定值。
在对帧进行固定的NTA-offset定时提前偏移之后,由于LTE子帧中每个时隙内第1个符号的循环前缀长度与其他6个符号的循环前缀(Cyclic Prefix,简称为CP)长度不相同,会存在与没有进行定时提前偏移的帧中的符号不对齐的问题,如图2所示。在定时提前偏移量N1TA-offset下,每7个符号中有2个符号不对齐,在定时提前偏移量N2TA-offset下,每7个符号有4个符号不对齐。为了减少第一上行基本单元或者第二上行基本单元与上行参考单元之间的干扰,尽量做到符号间对齐,需要合理设置固定定时提前偏移量NTA-offset的取值。但是无论如何设置固定的定时提前偏移量,除非定时提前偏移量是7个符号长度的整数倍,否则都存在有符号不对齐的问题,如图2中所示被标记出来的符号。
因此,相关技术中存在上行基本单元与上行参考单元具有不同的固定定时提前偏移量时,上行基本单元与上行参考单元存在的上行符号不对齐的问题。
发明内容
本公开实施例提供了一种数据发送、接收方法及装置,以至少解决相关技术中存在上行基本单元与上行参考单元具有不同的固定定时提前偏移量时,上行基本单元与上行参考单元存在的上行符号不对齐的问题。
根据本公开的一个实施例,提供了一种数据发送方法,包括:确定上行基本单元内用于发送数据的一个或多个正交频分复用OFDM符号,其中,所述上行基本单元的开始发送时间相对于下行基本单元的开始发送时间提前预设提前时间,所述预设提前时间根据动态定时提前量和定时提前偏移量确定;在确定的所述一个或多个OFDM符号上发送数据。
根据本公开的另一个实施例,提供了一种数据接收方法,包括:确定上行基本单元内用于接收终端发送的数据的一个或多个正交频分复用OFDM符号,其中,所述上行基本单元的开始发送时间相对于下行基本单元的开始发送时间提前预设提前时间,所述预设提前时间根据动态定时提前量和定时提前偏移量确定;在确定的所述一个或多个OFDM符号上接收所述终端发送的数据。
根据本公开的又一个实施例,提供了一种数据发送装置,包括:确定模块,设置为确定上行基本单元内用于发送数据的一个或多个正交频分复用OFDM符号,其中,所述上行基本单元的开始发送时间相对于下行基本单元的开始发送时间提前预设提前时间,所述预设提前时间根据动态定时提前量和定时提前偏移量确定;发送模块,设置为在确定的所述一个或多个OFDM符号上发送数据。
根据本公开的又一个实施例,提供了一种数据接收装置,包括:确定模块,设置为确定上行基本单元内用于接收终端发送的数据的一个或多个正交频分复用OFDM符号,其中,所述上行基本单元的开始发送时间相对于下行基本单元的开始发送时间提前预设提前时间,所述预设提前时间根据动态定时提前量和定时提前偏移量确定;接收模块,设置为在确定的所述一个或多个OFDM符号上接收所述终端发送的数据。
根据本公开的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:确定上行基本单元内用于接收终端发送的数据的一个或多个正交频分复用OFDM符号,其中,所述上行基本单元的开始发送时间相对于下行基本单元的开始发送时间提前预设提前时间,所述预设提前时间根据动态定时提前量和定时提前偏移量确定;在确定的所述一个或多个OFDM符号上接收所述终端发送的数据。
根据本公开的又一个实施例,还提供了一种存储介质。该存储介质设置为存储用于执行以下步骤的程序代码:确定上行基本单元内用于接收终端发送的数据的一个或多个正交频分复用OFDM符号,其中,所述上行基本单元的开始发送时间相对于下行基本单元的开始发送时间提前预设提前时间,所述预设提前时间根据动态定时提前量和定时提前偏移量确定;在确定的所述一个或多个OFDM符号上接收所述终端发送的数据。
根据本公开的又一个实施例,还提供了一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行上述任一项所述的方法。
通过本公开,由于根据动态定时提前量和定时提前偏移量确定上行基本单元的开始发送时间相对于下行基本单元的开始发送时间的提前量,因此,可以解决相关技术中存在上行基本单元与上行参考单元具有不同的固定定时提前偏移量时,上行基本单元与上行参考单元存在的上行符号不对齐的问题,达到减少用户间干扰、降低实现复杂度的效果。
附图说明
此处所说明的附图用来提供对本公开的进一步理解,构成本申请的一部分,本公开的示意性实施例及其说明用于解释本公开,并不构成对本公开的不当限定。在附图中:
图1是相关技术中LTE中上下行帧之间的定时关系示意图;
图2是相关技术中固定定时提前导致的符号不对齐问题示意图;
图3是本公开实施例的一种数据发送方法的移动终端的硬件结构框 图;
图4是根据本公开实施例的数据发送方法的流程图;
图5是根据本公开实施例的数据接收方法的流程图;
图6是本公开优选实施例中不同子载波间隔符号复用示意图;
图7是根据本公开优选实施例的NB-IoT终端与NR终端在相同载波共存的示意图一;
图8是根据本公开优选实施例的NB-IoT终端与NR终端在相同载波共存的示意图二;
图9是根据本公开优选实施例的NR eMBB业务和URLLC业务在相同载波共存示意图;
图10是根据本公开优选实施例的利用LTE MBSFN子帧支持NR技术示意图一;
图11是根据本公开优选实施例的利用LTE MBSFN子帧支持NR技术示意图二;
图12是根据本公开实施例的数据发送装置的结构框图一;
图13是根据本公开实施例的数据发送装置的结构框图二;
图14是根据本公开实施例的数据接收装置的结构框图一;
图15是根据本公开实施例的数据接收装置的结构框图二;
图16是根据本公开实施例的终端的结构框图;
图17是根据本公开实施例的基站的结构框图;
图18是根据本公开实施例的通信网络系统的结构框图。
具体实施方式
下文中将参考附图并结合实施例来详细说明本公开。需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。
需要说明的是,本公开的说明书和权利要求书及上述附图中的术语 “第一”、“第二”等是用于区别类似的对象,而不必用于描述特定的顺序或先后次序。
实施例1
本申请实施例1所提供的方法实施例可以在移动终端、基站、计算机终端或者类似的装置中执行。以运行在移动终端上为例,图3是本公开实施例的一种数据发送方法的移动终端的硬件结构框图。如图3所示,移动终端30可以包括一个或多个(图中仅示出一个)处理器32(处理器32可以包括但不限于微处理器MCU或可编程逻辑器件FPGA等的处理装置)、用于存储数据的存储器34、以及用于通信功能的传输装置36。本领域普通技术人员可以理解,图3所示的结构仅为示意,其并不对上述电子装置的结构造成限定。例如,移动终端30还可包括比图3中所示更多或者更少的组件,或者具有与图3所示不同的配置。
存储器34可设置为存储应用软件的软件程序以及模块,如本公开实施例中的数据发送方法对应的程序指令/模块,处理器32通过运行存储在存储器304内的软件程序以及模块,从而执行各种功能应用以及数据处理,即实现上述的方法。存储器34可包括高速随机存储器,还可包括非易失性存储器,如一个或者多个磁性存储装置、闪存、或者其他非易失性固态存储器。在一些实例中,存储器34可进一步包括相对于处理器32远程设置的存储器,这些远程存储器可以通过网络连接至移动终端30。上述网络的实例包括但不限于互联网、企业内部网、局域网、移动通信网及其组合。
传输装置36设置为经由一个网络接收或者发送数据。上述的网络可选实例可包括移动终端30的通信供应商提供的无线网络。在一个实例中,传输装置36包括一个网络适配器(Network Interface Controller,简称为NIC),其可通过基站与其他网络设备相连从而可与互联网进行通讯。在一个实例中,传输装置36可以为射频(Radio Frequency,简称为RF)模块,其用于通过无线方式与互联网进行通讯。
在本实施例中提供了一种运行于上述移动终端的数据发送方法,图4 是根据本公开实施例的数据发送方法的流程图,如图4所示,该流程包括如下步骤:
步骤S402,确定上行基本单元内用于发送数据的一个或多个OFDM符号,其中,该上行基本单元的开始发送时间相对于下行基本单元的开始发送时间提前预设提前时间,该预设提前时间根据动态定时提前量和定时提前偏移量确定;
步骤S404,在确定的一个或多个OFDM符号上发送数据。
通过上述步骤,根据动态定时提前量和定时提前偏移量确定上行基本单元的开始发送时间相对于下行基本单元的开始发送时间的提前量,解决了相关技术中存在上行基本单元与上行参考单元具有不同的固定定时提前偏移量时,上行基本单元与上行参考单元存在的上行符号不对齐问题,减少了用户间干扰、降低了实现复杂度。
可选地,上述上行基本单元可以采用多种形式,例如,该上行基本单元内包括n1个(Orthogonal Frequency Division Multiplexing,简称为OFDM)符号,n1个OFDM符号的前S个OFDM符号的循环前缀具有第一时间长度,第S+1个OFDM符号的循环前缀具有第二时间长度,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号中至少有一个OFDM符号的循环前缀具有该第二时间长度,其中,n1个OFDM符号具有相同的有效数据长度,第一时间长度小于第二时间长度,S<n1,S和n1为正整数。又例如,该上行基本单元内包括n1个OFDM符号,n1个OFDM符号的第S个OFDM符号和第S+1个OFDM符号之间存在一个额外的循环前缀或间隙,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号之间存在一个与该额外的循环前缀相同的额外的循环前缀,或者存在一个与该间隙相同的间隙,其中,n1个OFDM符号具有相同的循环前缀长度和有效数据长度,相同的循环前缀长度为第一时间长度,在该间隙内既不发送也不接收任何信息,S<n1,S和n1为正整数。
可选地,上述下行基本单元与上述上行基本单元可以具有相同的时间 长度。
可选地,上述定时提前偏移量可以由基站通过无线资源控制(Radio Resource Control,简称为RRC)消息进行配置,上述动态定时提前量可以由基站通过媒体接入控制(Media Access Control,简称为MAC)控制单元或位于随机接入响应中的定时提前命令进行动态配置。
可选地,S个OFDM符号的时间长度可以为上行基本单元相对上行参考单元的第一定时提前时间偏移,或者为上行基本单元相对上行参考单元的第一定时提前时间偏移的一部分,上行参考单元的开始发送时间相对下行参考单元的开始发送时间具有第二定时提前时间偏移,下行参考单元与下行基本单元具有相同的开始发送时间,上行参考单元与上行基本单元具有相同的时间长度,下行参考单元与下行基本单元具有相同的时间长度,其中,第一定时提前时间偏移和第二定时提前时间偏移均大于0。
可选地,上行参考单元可以包括n2符号,在S个OFDM符号的时间长度为上行基本单元相对上行参考单元的第一定时提前时间偏移的一部分的情况下,第一定时提前时间偏移内还包括上行参考单元内的前0.5*n2个符号的时间长度,其中,上行参考单元内的上述符号可以是OFDM符号或者单载波频分多址(Sigal Carrier Frequency Division Multiple Access,简称为SC-FDMA),n2=2*w,w为正整数。
可选地,上述第一定时提前时间偏移可以根据第三定时提前时间偏移和上述第二定时提前时间偏移得到,其中,第三定时提前时间偏移根据定时提前偏移量确定,第三定时提前时间偏移是预设提前时间的一部分,第三定时提前时间偏移大于0,小于或等于预设提前时间。
可选地,上行参考单元内的符号对应的子载波间隔、n2、上行参考单元的时间长度以及上行参考单元内的符号的循环前缀的长度可以采用多种方式,例如,上行参考单元内的符号对应的子载波间隔为15kHz,n2的取值为14,上行参考单元的时间长度为1ms,上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts,上行参考单元内的除第八 个符号和第一个符号以外的其他符号的循环前缀长度为144*Ts,其中,Ts=1/30720ms。又例如,上行参考单元内的符号对应的子载波间隔为30kHz,n2的取值为14,上行参考单元的时间长度为0.5ms,上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts1,上行参考单元内的除第八个符号和第一个符号以外的其他符号的循环前缀长度为144*Ts1,其中,Ts1=1/61440ms。再例如,上行参考单元内的符号对应的子载波间隔为60kHz,n2的取值为14,上行参考单元的时间长度为0.25ms,上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts2,上行参考单元内的除第八个符号和第一个符号以外的其他符号的循环前缀长度为144*Ts2,其中,Ts2=1/122880m。
可选地,上述各参数的取值也可以为其他满足如下场景的值:上行参考单元内OFDM符号对应的子载波间隔为15*2bkHz,n2的取值为14,上行参考单元的时间长度为1/2bms,上行参考单元内的第八个OFDM符号和第一个OFDM符号的循环前缀相同,均为160*Tsb,除第八个OFDM符号和第一个OFDM符号以外的其他OFDM符号的循环前缀长度为144*Tsb,其中,Tsb=1/(30720*2b)ms,b为非负整数。
可选地,上行基本单元内的OFDM符号对应的子载波间隔可以为2m*15*2bkHz,n1的取值可以为14*2m,第一时间长度可以为144*2-m*Ts,S的可以取值为2m的正整数倍,m的取值为以下之一:0,1,2,3,b的取值为非负整数。
可选地,上行基本单元与上行参考单元之间可以具备如下关系:上行基本单元相对上行参考单元具有第一定时提前时间偏移,上行参考单元的开始发送时间相对下行参考单元的开始发送时间具有第二定时提前时间偏移,下行参考单与下行基本单元具有相同的开始发送时间,上行参考单元与上行基本单元具有相同的时间长度,下行参考单元与下行基本单元具有相同的时间长度,其中,第一定时提前时间偏移和第二定时提前时间偏移均大于0。
可选地,上行参考单元可以具备多种结构,例如,上行参考单元与LTE中的1ms子帧在普通循环前缀下具有相同的时间长度和符号结构,第一定时提前时间偏移的取值与集合C中或者集合C的子集中的一个元素相同,集合C为{x|x=上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts,0<k<14,k为正整数},其中,Ts=1/30720ms。又例如,上行参考单元的时间长度为0.5ms,其时域符号结构与LTE中的1ms子帧在普通循环前缀下各OFDM符号或者SC-FDMA符号成比例缩小到一半相同,第一定时提前时间偏移的取值与集合C中或者集合C的子集中的一个元素相同,集合C为{x|x=上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts1,0<k<14,k为正整数},其中,Ts1=1/61440ms。再例如,上行参考单元的时间长度为0.25ms,其时域符号结构与LTE中的1ms子帧在普通循环前缀下各OFDM符号或者SC-FDMA符号成比例缩小到四分之一相同,第一定时提前时间偏移的取值与集合C中或者集合C的子集中的一个元素相同,集合C为{x|x=上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts2,0<k<14,k为正整数},其中,Ts2=1/122880ms。
在本实施例中还提供了一种运行于基站的数据接收方法。该基站的硬件结构可以包括一个或多个处理器、用于存储数据的存储器以及用于通信功能的传输装置,该基站的处理器的功能与处理器32的功能类似,该基站的存储器的功能与存储器34的功能类似,该基站的传输装置的功能与传输装置36的功能类似。本领域普通技术人员可以理解,上述基站的结构仅为示意,其并不对上述基站的结构造成限定,更不会对本实施例中的数据接收方法造成限定。例如,基站还可包括更多或者更少的组件,或者不同的配置。
图5是根据本公开实施例的数据接收方法的流程图,如图5所示,该 流程包括如下步骤:
步骤S502,确定上行基本单元内用于接收终端发送的数据的一个或多个OFDM符号,其中,上行基本单元的开始发送时间相对于下行基本单元的开始发送时间提前预设提前时间,预设提前时间根据动态定时提前量和定时提前偏移量确定;
步骤S504,在确定的一个或多个OFDM符号上接收终端发送的数据。
通过上述步骤,根据动态定时提前量和定时提前偏移量确定上行基本单元的开始发送时间相对于下行基本单元的开始发送时间的提前量,解决了相关技术中存在上行基本单元与上行参考单元具有不同的固定定时提前偏移量时,上行基本单元与上行参考单元存在的上行符号不对齐问题,减少了用户间干扰、降低了实现复杂度。
可选地,上述上行基本单元可以采用多种形式,例如,该上行基本单元内包括n1个OFDM符号,n1个OFDM符号的前S个OFDM符号的循环前缀具有第一时间长度,第S+1个OFDM符号的循环前缀具有第二时间长度,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号中至少有一个OFDM符号的循环前缀具有该第二时间长度,其中,n1个OFDM符号具有相同的有效数据长度,第一时间长度小于第二时间长度,S<n1,S和n1为正整数。又例如,该上行基本单元内包括n1个OFDM符号,n1个OFDM符号的第S个OFDM符号和第S+1个OFDM符号之间存在一个额外的循环前缀或间隙,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号之间存在一个与该额外的循环前缀相同的额外的循环前缀,或者存在一个与该间隙相同的间隙,其中,n1个OFDM符号具有相同的循环前缀长度和有效数据长度,相同的循环前缀长度为第一时间长度,在该间隙内既不发送也不接收任何信息,S<n1,S和n1为正整数。
可选地,上述下行基本单元与上述上行基本单元可以具有相同的时间长度。
可选地,上述定时提前偏移量可以通过RRC消息配置给该终端,上 述动态定时提前量可以通过MAC控制单元或位于随机接入响应中的定时提前命令动态配置给该终端。
可选地,S个OFDM符号的时间长度可以为上行基本单元相对上行参考单元的第一定时提前时间偏移,或者为上行基本单元相对上行参考单元的第一定时提前时间偏移的一部分,上行参考单元的开始发送时间相对下行参考单元的开始发送时间具有第二定时提前时间偏移,下行参考单元与下行基本单元具有相同的开始发送时间,上行参考单元与上行基本单元具有相同的时间长度,下行参考单元与下行基本单元具有相同的时间长度,其中,第一定时提前时间偏移和第二定时提前时间偏移均大于0。
可选地,上行参考单元内可以包括n2个符号,在S个OFDM符号的时间长度为上行基本单元相对上行参考单元的第一定时提前时间偏移的一部分的情况下,第一定时提前时间偏移内还包括上行参考单元内的前0.5*n2个符号的时间长度,其中,上行参考单元内的符号可以为OFDM符号或者SC-FDMA符号,n2=2*w,w为正整数。
可选地,上述第一定时提前时间偏移可以根据第三定时提前时间偏移和上述第二定时提前时间偏移得到,其中,第三定时提前时间偏移根据定时提前偏移量确定,第三定时提前时间偏移是预设提前时间的一部分,第三定时提前时间偏移大于0,小于或等于预设提前时间。
可选地,上行参考单元内的符号对应的子载波间隔、n2、上行参考单元的时间长度以及上行参考单元内的符号的循环前缀的长度可以采用多种方式,例如,上行参考单元内的符号对应的子载波间隔为15kHz,n2的取值为14,上行参考单元的时间长度为1ms,上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts,上行参考单元内的除第八个符号和第一个符号以外的其他符号的循环前缀长度为144*Ts,其中,Ts=1/30720ms。又例如,上行参考单元内的符号对应的子载波间隔为30kHz,n2的取值为14,上行参考单元的时间长度为0.5ms,上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts1,上行参 考单元内的除第八个符号和第一个符号以外的其他符号的循环前缀长度为144*Ts1,其中,Ts1=1/61440ms。再例如,上行参考单元内的符号对应的子载波间隔为60kHz,n2的取值为14,上行参考单元的时间长度为0.25ms,上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts2,上行参考单元内的除第八个符号和第一个符号以外的其他符号的循环前缀长度为144*Ts2,其中,Ts2=1/122880m。
可选地,各参数的取值也可以为其他满足如下场景的值:上行参考单元内的符号对应的子载波间隔为15*2bkHz,n2的取值为14,上行参考单元的时间长度为1/2bms,上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Tsb,上行参考单元内的除第八个符号和第一个符号以外的其他符号的循环前缀长度为144*Tsb,其中,Tsb=1/(30720*2b)ms,b为非负整数,
可选地,上行基本单元内的OFDM符号对应的子载波间隔可以为2m*15*2bkHz,n1的取值可以为14*2m,第一时间长度可以为144*2-m*Ts,S的可以取值为2m的正整数倍,m的取值为以下之一:0,1,2,3,b的取值为非负整数。
可选地,上行基本单元与上行参考单元之间可以具备如下关系:上行基本单元相对上行参考单元具有第一定时提前时间偏移,上行参考单元的开始发送时间相对下行参考单元的开始发送时间具有第二定时提前时间偏移,下行参考单与下行基本单元具有相同的开始发送时间,上行参考单元与上行基本单元具有相同的时间长度,下行参考单元与下行基本单元具有相同的时间长度,其中,第一定时提前时间偏移和第二定时提前时间偏移均大于0。
可选地,上行参考单元可以具备多种结构,例如,上行参考单元与LTE中的1ms子帧在普通循环前缀下具有相同的时间长度和符号结构,第一定时提前时间偏移的取值与集合C中或者集合C的子集中的一个元素相同,集合C为{x|x=上行参考单元中前k个OFDM符号或者SC-FDMA符号的 时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts,0<k<14,k为正整数},其中,Ts=1/30720ms。又例如,上行参考单元的时间长度为0.5ms,其时域符号结构与LTE中的1ms子帧在普通循环前缀下各OFDM符号或者SC-FDMA符号成比例缩小到一半相同,第一定时提前时间偏移的取值与集合C中或者集合C的子集中的一个元素相同,集合C为{x|x=上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts1,0<k<14,k为正整数},其中,Ts1=1/61440ms。再例如,上行参考单元的时间长度为0.25ms,其时域符号结构与长期演进系统LTE中的1ms子帧在普通循环前缀下各OFDM符号或者SC-FDMA符号成比例缩小到四分之一相同,第一定时提前时间偏移的取值与集合C中或者集合C的子集中的一个元素相同,集合C为{x|x=上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts2,0<k<14,k为正整数},其中,Ts2=1/122880ms。
基于上述实施例及优选实施方式,为说明方案的整个流程交互,在本优选实施例中,提供了一种数据传输方法。下面对该方法进行说明。
相关技术中,在FDD或TDD系统中,终端在接入系统中上行帧相对相同帧编号的下行帧至少要提前NTA-offset长时间发送。此外,基站根据终端到基站的传输时延动态调整另一个动态定时提前量NTA,终端根据动态定时提前量和固定的定时提前偏移量得到最终的发送定时,从而保证不同用户的信号同时达到基站,保持上行链路的正交性。
在第三代合作伙伴计划(3rd Generation Partnership Project,简称为3GPP)新空口(New Radio,简称为NR)标准制定过程中,当采用不同的子载波间隔的符号进行复用时,会存在符号不对齐问题,如图6所示,其本质原因也是因为每7个符号中,第1个符号的CP长度与其他6个符号的CP长度不相同引起的。而在3GPP RAN1#86次会议中,已经通过符号对齐作为NR的工作假定。
为了解决由于不同的子载波间隔导致的符号不对齐的问题,基于每个符号成比例缩小长度的方案被提出。如图6中针对子载波间隔为60kHz的前4个符号与子载波间隔为15kHz的第1个符号对齐,其中子载波间隔为60kHz的每个符号的循环前缀的长度和有效数据的长度都是子载波间隔为15kHz符号相应部分的四分之一。作为可替代的方案,子载波间隔为60kHz的第2、3、4个符号循环前缀也能保持与第5个子载波间隔为60kHz的符号具有相同的循环前缀长度,为了符号对齐,这样第1个子载波间隔为60kHz的符号的循环前缀长度将变的更长,如图6中最下面部分所示。为了解决上述上行基本单元与上行参考单元具有不同的固定定时提前偏移量时,上行基本单元与上行参考单元存在的上行符号不对齐的问题,也需要针对上行基本单元提供一种新的符号结构,从而达到上行基本单元与上行参考单元符号对齐的目的。
像上面的描述一样,在LTE中,定时提前偏移量是固定值,在NR FDD中,考虑增强型移动宽带(Enhance Mobile Broadband,简称为eMBB)业务和超高可靠性与超低时延通信(Ultra Reliable&Low Latency Communication,简称为URLLC)业务在同一个参考参数(reference numerology)集上接入系统,在RAN1#86次会议上,对于eMBB和URLLC上行传输,可以采用频分复用(Frequency Division Mutiplexing,简称为FDM)方式半静态的进行资源共享,因此,对于需要进入URLLC业务的终端,根据定时的需要,可以在半静态配置的资源内,调整自己的定时提前偏移量,因此,对于定时提前偏移量量NTA-offset需要引入动态配置的方式。
下面分别结合不同的实例对本优选实施例的数据传输方法进行说明。
实例1:
图7是根据本公开优选实施例的NB-IoT终端与NR终端在相同载波共存的示意图一。如图7所示,窄带物联网(Narrow Band Internet of Things,简称为NB-IoT)终端与NR终端在相同载波共存时,存在的上行符号不 对齐情况。该实例中,基站在同一载波上同时支持NR eMBB、NR URLLC以及NB-IoT终端的业务。NB-IoT终端的上行子帧i为上行参考单元i,下行子帧i为下行参考单元,上行子帧i的发送相对下行子帧i的开始发送时间具有定时提前时间偏移T2,其中T2=0,NB-IoT终端上行子帧i长度为1ms,包括14个OFDM符号,符号对应的子载波间隔采用15kHz。对于使用NR eMBB或URLLC的终端,为了进行快速反馈,NR终端的上行子帧i的发送相对NB-IoT终端上行子帧i的开始发送时间具有定时提前时间偏移T1,在未进行完全的符号对齐之前,T1为一个具有160*Ts长度循环前缀的OFDM符号,NR终端和NB-IoT终端始终存在符号不对齐问题,其中,Ts=1/30720ms。进行符号对齐操作后,T1为一个具有144*Ts长度循环前缀的OFDM符号,剩下的13个符号仍采用NB-IoT上行子帧i中的前13个符号的符号结构,保证了在一个子帧时间内,NR终端始终与NB-IoT终端上行符号对齐。
该实例中,上行基本单元为NR 1ms上行子帧i,当用于eMBB业务时,采用的子载波间隔为15kHz,1ms子帧长度内包括的OFDM符号数为14,S的取值为1,在第2个符号以及第9个符号是相比其他符号具有更长循环前缀的符号,它们的循环前缀长度为160*Ts,其他更短符号的循环前缀长度为144*Ts,Ts=1/30720ms。当用于URLLC业务时,采用的子载波间隔为60kHz,1ms包括的OFDM符号数为56,S的取值为4,第5至第8个符号以及第33至第36个符号都是相比其他符号具有更长循环前缀的符号,它们的循环前缀长度为160*Ts2,其他更短符号的循环前缀长度为144*Ts2,Ts2=1/122880ms。下行基本单元为NR 1ms下行子帧i,下行基本单元与下行参考单元具有相同的开始发送时间。对于NR eMBB终端,在发送上行数据时,可以采用1ms子帧内的1个或多个15kHz的OFDM符号组成的调度单元进行数据发送。对于NR URLLC终端,在发送上行数据时,可以采用1ms子帧内的1个或多个60kHz的OFDM符号组成的调度单元进行数据发送。
实例2:
图8是根据本公开优选实施例的NB-IoT终端与NR终端在相同载波共存的示意图二。如图8所示,NB-IoT终端与NR终端在相同载波共存时,存在的上行符号不对齐情况。该实例中,基站在同一载波上同时支持NR eMBB、NR URLLC以及NB-IoT终端的业务。NB-IoT终端的上行子帧i为上行参考单元,下行子帧i为下行参考单元,上行子帧i的发送相对下行子帧i的开始发送时间具有定时提前时间偏移T2,其中T2=0,NB-IoT终端的上行子帧i长度为1ms,包括14个OFDM符号,符号对应的子载波间隔采用15kHz。对于使用NR URLLC的终端,为了进行快速反馈,NR URLLC终端的上行子帧i的发送相对NB-IoT上行子帧i的开始发送时间具有定时提前时间偏移T1,在未进行完全的符号对齐之前,T1为一个具有160*Ts长度循环前缀的OFDM符号,NR URLLC终端和NB-IoT终端始终存在符号不对齐问题。进行符号对齐操作后,T1为一个具有144*Ts长度循环前缀的OFDM符号,剩下的13个符号仍采用NB-IoT上行子帧中的前13个符号的符号结构,保证了在一个子帧时间内,NRURLLC终端始终与NB-IoT终端上行符号对齐。
该实例中,上行基本单元为NR URLLC 1ms上行子帧i,采用的子载波间隔为60kHz,1ms子帧长度内包括的OFDM符号数为56,S的取值为4,在第4和第5个符号之间存在一个额外的循环前缀,在第32和第33个符号之间也存在一个额外的循环前缀,每个OFDM符号的循环前缀的长度为144*Ts2,Ts2=1/122880ms。下行基本单元为NR URLLC 1ms下行子帧i,下行基本单元与下行参考单元具有相同的开始发送时间。
该实例中,NR eMBB终端上行子帧i与NB-IoT终端上行子帧i具有相同的开始发送时间,即定时提前偏移量NTA-offset也为0,对于NR URLLC终端,接入系统时,跟NR eMBB终端一样,上行子帧i与NB-IoT终端上行子帧i具有相同的开始发送时间,当接入系统后,通过RRC信令将NRURLLC的上行子帧i的发送相对下行子帧i的开始发送时间重配为一个具有144*Ts长度循环前缀的子载波间隔等于15kHz的LTE OFDM符号长度。对于NR URLLC终端,在发送上行数据时,可以采用1ms子帧内的1个 或多个60kHz的OFDM符号组成的调度单元进行数据发送。
实例3:
图9是根据本公开优选实施例的NR eMBB业务和URLLC业务在相同载波共存示意图,如图9所示,NR eMMB终端与URLLC终端在相同载波上共存时,存在的上行符号不对齐问题的示意图。对于URLLC终端,具有eMBB终端的能力,即能通过eMBB相关技术接入系统,然后切换到URLLC业务。该实施例中,基站在同一载波上同时支持NR eMBB终端、NR URLLC终端的业务。图9中的最下面部分URLLC终端与eMBB终端的上行子帧i相对下行子帧i具有相同的定时提前时间偏移,此时对于URLLC终端不能较好的实现快速反馈。因此,当具有URLLC业务能力的终端接入系统后,通过RRC消息重新配置了定时提前时间偏移,如图6中的中间部分。此时,NR eMBB业务终端的上行子帧i为上行参考单元,下行子帧i为下行参考单元。URLLC业务终端的上行子帧i为上行基本单元,下行子帧i为下行基本单元。下行参考单元与下行基本单元具有相同的开始发送时间。上行参考单元的发送相对下行参考单元的开始发送时间具有定时提前时间偏移T2,其中T2为子载波间隔等于15kHz的LTE 1ms子帧的前3个OFDM符号的时间长度。对于使用NR URLLC的终端,为了进行快速反馈,NR URLLC终端的上行子帧i的发送相对NReMBB业务终端的上行子帧i的开始发送时间具有定时提前时间偏移T1,在未进行完全的符号对齐之前,T1为一个具有160*Ts长度循环前缀的OFDM符号,NR URLLC终端和eMBB终端始终存在符号不对齐问题。进行符号对齐操作后,T1为一个具有144*Ts长度循环前缀的OFDM符号,剩下的13个符号仍采用eMBB终端上行子帧i中的前13个符号的符号结构,保证了在一个子帧时间内,NR URLLC终端始终与eMBB终端上行符号对齐。
该实例中,上行基本单元为NR URLLC 1ms上行子帧i,采用的子载波间隔为60kHz,1ms子帧内包括的OFDM符号数为56,S的取值为4,第5至第8个符号以及第33至第36个符号都是相比其他符号具有更长循 环前缀的符号,它们的循环前缀长度为160*Ts2,其他更短符号的循环前缀长度为144*Ts2,Ts2=1/122880ms。上行参考单元为NR eMBB 1ms上行子帧i,采用的子载波间隔为15kHz,1ms子帧内包括的OFDM符号数为14,所有符号结构与子载波间隔为15kHz的LTE 1ms子帧内的所有OFDM符号结构相同。对于NR URLLC终端,在发送上行数据时,可以采用1ms子帧内的1个或多个60kHz的OFDM符号组成的调度单元进行数据发送。
实例4:
图10是根据本公开优选实施例的利用LTE多播广播单频网络(Multicast Broadcast Single Frequency Network,简称为MBSFN)子帧支持NR技术示意图一。该实例中,基站在同一载波上同时支持LTE终端、NR终端的业务,并利用LTE的MBSFN子帧支持NR技术。同时支持LTE和NR技术的终端与LTE终端的上行子帧i相对下行子帧i具有相同的定时提前时间偏移,此时不能较好的实现快速反馈。当同时支持LTE和NR技术的基站中,随着同时支持LTE和NR技术的终端增加时,需要考虑对这类终端进行定时提前,从而更好的实现快速反馈,从而提高系统容量。因此,当同时支持LTE和NR技术的终端接入系统后,通过RRC消息对该类终端重新配置定时提前时间偏移,如图11中。此时,同时支持LTE和NR技术的终端的上行子帧i为上行参考单元,下行子帧i为下行参考单元。仅支持LTE技术的终端的上行子帧i为上行基本单元,下行子帧i为下行基本单元。下行参考单元与下行基本单元具有相同的开始发送时间。上行参考单元的发送相对下行参考单元的开始发送时间具有定时提前时间偏移T2,其中T2=0。对于同时支持LTE和NR技术的终端,为了进行快速反馈,该类终端的上行子帧i的发送相对仅支持LTE技术的终端的上行子帧i的开始发送时间具有定时提前时间偏移T1,在未进行完全的符号对齐之前,T1为子载波间隔等于15kHz的LTE 1ms子帧的前9个OFDM符号的时间长度减去16个Ts,其中Ts=1/30720ms,此时,同时支持LTE和NR技术的终端和仅支持LTE技术的终端始终存在符号不对齐问题。进 行符号对齐操作后,T1为2个具有144*Ts长度循环前缀的OFDM符号加上子载波间隔等于15kHz的LTE 1ms子帧的前7个OFDM符号的时间长度,剩下的5个符号仍采用仅支持LTE技术终端上行子帧i中的前5个符号的符号结构,保证了在一个子帧时间内,同时支持LTE和NR技术的终端始终与仅支持LTE技术的终端上行符号对齐。
该实例中,上行基本单元为同时支持LTE和NR技术终端的上行子帧i,采用的子载波间隔为15kHz,1ms子帧内包括的OFDM符号数为14,S的取值为2,在第3个符号以及第10个符号是相比其他符号具有更长循环前缀的符号,它们的循环前缀长度为160*Ts,其他更短符号的循环前缀长度为144*Ts,Ts=1/30720ms。上行参考单元为支持LTE技术的终端的上行子帧i,采用的子载波间隔为15kHz,1ms子帧内包括的OFDM符号数为14。对于同时支持LTE和NR技术的终端,在发送上行数据时,可以采用1ms子帧内的1个或多个15kHz的OFDM符号组成的调度单元进行数据发送。
本优选实施例的主要目的在于解决当上行基本单元与上行参考单元具有不同的固定定时提前偏移量NTA-offset时,上行基本单元与上行参考单元存在的上行符号不对齐问题,给出了一种在单元时间长度内符号对齐的方法。通过该方法可以减少由于上行符号不对齐带来的干扰,同时降低由于符号不对齐带来的实现复杂度。此外,本优选实施例中指出定时提前偏移量量NTA-offset在某些场景下需要能够进行动态配置,并且根据尽量减少上行干扰的原则,给出了建议的配置值。与现有技术相比,本优选实施例提供的技术方案能够解决当上行基本单元与上行参考单元具有不同的固定定时提前偏移量NTA-offset时,上行基本单元与上行参考单元始终存在的上行符号不对齐问题,减少用户间干扰,同时降低实现复杂度。
通过以上的实施方式的描述,本领域的技术人员可以清楚地了解到根据上述实施例的方法可借助软件加必需的通用硬件平台的方式来实现,当然也可以通过硬件,但很多情况下前者是更佳的实施方式。基于这样的理解,本公开的技术方案本质上或者说对现有技术做出贡献的部分可以以软 件产品的形式体现出来,该计算机软件产品存储在一个存储介质(如ROM/RAM、磁碟、光盘)中,包括若干指令用以使得一台终端设备(可以是手机,计算机,服务器,或者网络设备等)执行本公开各个实施例所述的方法。
实施例2
在本实施例中提供了一种数据发送装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。如以下所使用的,术语“模块”可以实现预定功能的软件和/或硬件的组合。尽管以下实施例所描述的装置较佳地以软件来实现,但是硬件,或者软件和硬件的组合的实现也是可能并被构想的。
图12是根据本公开实施例的数据发送装置的结构框图一,如图12所示,该装置包括:
确定模块122,设置为确定上行基本单元内用于发送数据的一个或多个OFDM符号,其中,上行基本单元的开始发送时间相对于下行基本单元的开始发送时间提前预设提前时间,预设提前时间根据动态定时提前量和定时提前偏移量确定;
发送模块124,连接至上述确定模块122,设置为在确定的一个或多个OFDM符号上发送数据。
可选地,上行基本单元内可以包括n1个OFDM符号,n1个OFDM符号的前S个OFDM符号的循环前缀具有第一时间长度,第S+1个OFDM符号的循环前缀具有第二时间长度,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号中至少有一个OFDM符号的循环前缀具有第二时间长度,其中,n1个OFDM符号具有相同的有效数据长度,第一时间长度小于第二时间长度,S<n1,S和n1为正整数。
可选地,上行基本单元内可以包括n1个OFDM符号,n1个OFDM符号的第S个OFDM符号和第S+1个OFDM符号之间存在一个额外的循环前缀或间隙,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号之 间存在一个与额外的循环前缀相同的额外的循环前缀,或者存在一个与间隙相同的间隙,其中,n1个OFDM符号具有相同的循环前缀长度和有效数据长度,相同的循环前缀长度为第一时间长度,在间隙内既不发送也不接收任何信息,S<n1,S和n1为正整数。
图13是根据本公开实施例的数据发送装置的结构框图二,如图13所示,该装置除包括图12所示的所有模块外,还包括:
配置模块132,设置为根据基站发送的无线资源控制RRC消息配置定时提前偏移量,和/或,根据基站的配置信息动态配置动态定时提前量,其中,配置信息携带在媒体接入控制MAC控制单元或位于随机接入响应中的定时提前命令中。
可选地,S个OFDM符号的时间长度可以为上行基本单元相对上行参考单元的第一定时提前时间偏移,或者上行基本单元相对上行参考单元的第一定时提前时间偏移的一部分,上行参考单元的开始发送时间相对下行参考单元的开始发送时间具有第二定时提前时间偏移,下行参考单元与下行基本单元具有相同的开始发送时间,上行参考单元与上行基本单元具有相同的时间长度,下行参考单元与下行基本单元具有相同的时间长度,其中,第一定时提前时间偏移和第二定时提前时间偏移均大于0。
可选地,确定模块122,还可以设置为根据第三定时提前时间偏移和第二定时提前时间偏移确定第一定时提前时间偏移,其中,第三定时提前时间偏移根据定时提前偏移量确定,第三定时提前时间偏移是预设提前时间的一部分,第三定时提前时间偏移大于0,小于或等于预设提前时间。
在本实施例中提供了一种数据接收装置,该装置用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。
图14是根据本公开实施例的数据接收装置的结构框图一,如图14所示,该装置包括:
确定模块142,设置为确定上行基本单元内用于接收终端发送的数据的一个或多个OFDM符号,其中,上行基本单元的开始发送时间相对于 下行基本单元的开始发送时间提前预设提前时间,预设提前时间根据动态定时提前量和定时提前偏移量确定;
接收模块144,连接至上述确定模块142,设置为在确定的一个或多个OFDM符号上接收终端发送的数据。
可选地,上行基本单元内可以包括n1个OFDM符号,n1个OFDM符号的前S个OFDM符号的循环前缀具有第一时间长度,第S+1个OFDM符号的循环前缀具有第二时间长度,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号中至少有一个OFDM符号的循环前缀具有第二时间长度,其中,n1个OFDM符号具有相同的有效数据长度,第一时间长度小于第二时间长度,S<n1,S和n1为正整数。
可选地,上行基本单元内可以包括n1个OFDM符号,n1个OFDM符号的第S个OFDM符号和第S+1个OFDM符号之间存在一个额外的循环前缀或间隙,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号之间存在一个与额外的循环前缀相同的额外的循环前缀,或者存在一个与间隙相同的间隙,其中,n1个OFDM符号具有相同的循环前缀长度和有效数据长度,相同的循环前缀长度为第一时间长度,在间隙内既不发送也不接收任何信息,S<n1,S和n1为正整数。
图15是根据本公开实施例的数据接收装置的结构框图二,如图15所示,该装置除包括图14所示的所有模块外,还包括:
配置模块152,设置为通过无线资源控制RRC消息将定时提前偏移量配置给终端,和/或,通过媒体接入控制MAC控制单元或位于随机接入响应中的定时提前命令将动态定时提前量动态配置给终端。
可选地,S个OFDM符号的时间长度可以为上行基本单元相对上行参考单元的第一定时提前时间偏移,或者上行基本单元相对上行参考单元的第一定时提前时间偏移的一部分,上行参考单元的开始发送时间相对下行参考单元的开始发送时间具有第二定时提前时间偏移,下行参考单元与下行基本单元具有相同的开始发送时间,上行参考单元与上行基本单元具有 相同的时间长度,下行参考单元与下行基本单元具有相同的时间长度,其中,第一定时提前时间偏移和第二定时提前时间偏移均大于0。
可选地,确定模块142,还可以设置为根据第三定时提前时间偏移和第二定时提前时间偏移确定第一定时提前时间偏移,其中,第三定时提前时间偏移根据定时提前偏移量确定,第三定时提前时间偏移是预设提前时间的一部分,第三定时提前时间偏移大于0,小于或等于预设提前时间。
需要说明的是,上述各个模块是可以通过软件或硬件来实现的,对于后者,可以通过以下方式实现,但不限于此:上述模块均位于同一处理器中;或者,上述各个模块以任意组合的形式分别位于不同的处理器中。
实施例3
在本实施例中提供了一种终端、基站及通信网络系统,该终端、基站及通信网络系统可以用于实现上述实施例及优选实施方式,已经进行过说明的不再赘述。
图16是根据本公开实施例的终端的结构框图,如图16所示,该终端包括:处理器162和传输装置164,下面对该终端进行说明。
处理器162,设置为确定上行基本单元内用于发送数据的一个或多个OFDM符号,其中,上行基本单元的开始发送时间相对于下行基本单元的开始发送时间提前预设提前时间,预设提前时间根据动态定时提前量和定时提前偏移量确定;
传输装置164,连接至上述处理器162,设置为在确定的一个或多个OFDM符号上发送数据。
可选地,上行基本单元内可以包括n1个OFDM符号,n1个OFDM符号的前S个OFDM符号的循环前缀具有第一时间长度,第S+1个OFDM符号的循环前缀具有第二时间长度,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号中至少有一个OFDM符号的循环前缀具有第二时间长度,其中,n1个OFDM符号具有相同的有效数据长度,第一时间长度小于第二时间长度,S<n1,S和n1为正整数。
可选地,上行基本单元内可以包括n1个OFDM符号,n1个OFDM符号的第S个OFDM符号和第S+1个OFDM符号之间存在一个额外的循环前缀或间隙,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号之间存在一个与额外的循环前缀相同的额外的循环前缀,或者存在一个与间隙相同的间隙,其中,n1个OFDM符号具有相同的循环前缀长度和有效数据长度,相同的循环前缀长度为第一时间长度,在间隙内既不发送也不接收任何信息,S<n1,S和n1为正整数。
可选地,处理器162,还可以设置为根据基站发送的无线资源控制RRC消息配置定时提前偏移量,和/或,根据基站的配置信息动态配置动态定时提前量,其中,配置信息携带在MAC控制单元或位于随机接入响应中的定时提前命令中。
可选地,S个OFDM符号的时间长度可以为上行基本单元相对上行参考单元的第一定时提前时间偏移,或者上行基本单元相对上行参考单元的第一定时提前时间偏移的一部分,上行参考单元的开始发送时间相对下行参考单元的开始发送时间具有第二定时提前时间偏移,下行参考单元与下行基本单元具有相同的开始发送时间,上行参考单元与上行基本单元具有相同的时间长度,下行参考单元与下行基本单元具有相同的时间长度,其中,第一定时提前时间偏移和第二定时提前时间偏移均大于0。
可选地,处理器162,还可以设置为根据第三定时提前时间偏移和第二定时提前时间偏移确定第一定时提前时间偏移,其中,第三定时提前时间偏移根据定时提前偏移量确定,第三定时提前时间偏移是预设提前时间的一部分,第三定时提前时间偏移大于0,小于或等于预设提前时间。
图17是根据本公开实施例的基站的结构框图,如图17所示,该基站包括:处理器172和传输装置174,下面对该基站进行说明。
处理器172,设置为确定上行基本单元内用于接收终端发送的数据的一个或多个OFDM符号,其中,上行基本单元的开始发送时间相对于下行基本单元的开始发送时间提前预设提前时间,预设提前时间根据动态定 时提前量和定时提前偏移量确定;
传输装置174,连接至上述处理器172,设置为在确定的一个或多个OFDM符号上接收终端发送的数据。
可选地,上行基本单元内可以包括n1个OFDM符号,n1个OFDM符号的前S个OFDM符号的循环前缀具有第一时间长度,第S+1个OFDM符号的循环前缀具有第二时间长度,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号中至少有一个OFDM符号的循环前缀具有第二时间长度,其中,n1个OFDM符号具有相同的有效数据长度,第一时间长度小于第二时间长度,S<n1,S和n1为正整数。
可选地,上行基本单元内可以包括n1个OFDM符号,n1个OFDM符号的第S个OFDM符号和第S+1个OFDM符号之间存在一个额外的循环前缀或间隙,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号之间存在一个与额外的循环前缀相同的额外的循环前缀,或者存在一个与间隙相同的间隙,其中,n1个OFDM符号具有相同的循环前缀长度和有效数据长度,相同的循环前缀长度为第一时间长度,在间隙内既不发送也不接收任何信息,S<n1,S和n1为正整数。
可选地,处理器172,还可以设置为通过无线资源控制RRC消息将定时提前偏移量配置给终端,和/或,通过MAC控制单元或位于随机接入响应中的定时提前命令将动态定时提前量动态配置给终端。
可选地,S个OFDM符号的时间长度可以为上行基本单元相对上行参考单元的第一定时提前时间偏移,或者上行基本单元相对上行参考单元的第一定时提前时间偏移的一部分,上行参考单元的开始发送时间相对下行参考单元的开始发送时间具有第二定时提前时间偏移,下行参考单元与下行基本单元具有相同的开始发送时间,上行参考单元与上行基本单元具有相同的时间长度,下行参考单元与下行基本单元具有相同的时间长度,其中,第一定时提前时间偏移和第二定时提前时间偏移均大于0。
可选地,处理器172,还可以设置为根据第三定时提前时间偏移和第 二定时提前时间偏移确定第一定时提前时间偏移,其中,第三定时提前时间偏移根据定时提前偏移量确定,第三定时提前时间偏移是预设提前时间的一部分,第三定时提前时间偏移大于0,小于或等于预设提前时间。
图18是根据本公开实施例的通信网络系统的结构框图,如图18所示,该通信网络系统包括:终端182和基站184,终端182包括第一处理器1822和第一传输装置1824,基站184包括第二处理器1842和第二传输装置1844,其中,下面对该通信网络系统进行说明。
第一处理器1822,设置为确定上行基本单元内用于发送数据的一个或多个OFDM符号,其中,上行基本单元的开始发送时间相对于下行基本单元的开始发送时间提前预设提前时间,预设提前时间根据动态定时提前量和定时提前偏移量确定;
第一传输装置1824,连接至上述第一处理器1822,设置为在确定的一个或多个OFDM符号上向基站发送数据;
第二处理器1842,设置为确定上行基本单元内用于接收终端发送的数据的一个或多个OFDM符号;
第二传输装置1844,连接至上述第二处理器1842,设置为在确定的一个或多个OFDM符号上接收终端发送的数据。
可选地,上行基本单元内可以包括n1个OFDM符号,n1个OFDM符号的前S个OFDM符号的循环前缀具有第一时间长度,第S+1个OFDM符号的循环前缀具有第二时间长度,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号中至少有一个OFDM符号的循环前缀具有第二时间长度,其中,n1个OFDM符号具有相同的有效数据长度,第一时间长度小于第二时间长度,S<n1,S和n1为正整数。
可选地,上行基本单元内可以包括n1个OFDM符号,n1个OFDM符号的第S个OFDM符号和第S+1个OFDM符号之间存在一个额外的循环前缀或间隙,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号之间存在一个与额外的循环前缀相同的额外的循环前缀,或者存在一个与间 隙相同的间隙,其中,n1个OFDM符号具有相同的循环前缀长度和有效数据长度,相同的循环前缀长度为第一时间长度,在间隙内既不发送也不接收任何信息,S<n1,S和n1为正整数。
可选地,第二处理器1842,还可以设置为通过无线资源控制RRC消息将定时提前偏移量配置给终端,和/或,通过MAC控制单元或位于随机接入响应中的定时提前命令将动态定时提前量动态配置给终端;第一处理器1822,还可以设置为根据基站发送的RRC消息配置定时提前偏移量,和/或,根据基站的配置信息动态配置动态定时提前量,其中,配置信息携带在MAC控制单元或位于随机接入响应中的定时提前命令中。
实施例4
本公开的实施例提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,确定上行基本单元内用于发送数据的一个或多个OFDM符号,其中,上行基本单元的开始发送时间相对于下行基本单元的开始发送时间提前预设提前时间,预设提前时间根据动态定时提前量和定时提前偏移量确定;
S2,在确定的一个或多个OFDM符号上发送数据。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行基本单元内包括n1个OFDM符号,n1个OFDM符号的前S个OFDM符号的循环前缀具有第一时间长度,第S+1个OFDM符号的循环前缀具有第二时间长度,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号中至少有一个OFDM符号的循环前缀具有第二时间长度,其中,n1个OFDM符号具有相同的有效数据长度,第一时间长度小于第二时间长度,S<n1,S和n1为正整数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行基本单元内包括n1个OFDM符号,n1个OFDM符号的第S个OFDM符号和第S+1个OFDM符号之间存在一个额外的循环前缀或间隙,除前 S+1个OFDM符号以外的剩余n1-S-1个OFDM符号之间存在一个与额外的循环前缀相同的额外的循环前缀,或者存在一个与间隙相同的间隙,其中,n1个OFDM符号具有相同的循环前缀长度和有效数据长度,相同的循环前缀长度为第一时间长度,在间隙内既不发送也不接收任何信息,S<n1,S和n1为正整数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:下行基本单元与上行基本单元具有相同的时间长度。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:定时提前偏移量由基站通过无线资源控制RRC消息进行配置。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:动态定时提前量由基站通过媒体接入控制MAC控制单元或位于随机接入响应中的定时提前命令进行动态配置。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:S个OFDM符号的时间长度为上行基本单元相对上行参考单元的第一定时提前时间偏移,或者上行基本单元相对上行参考单元的第一定时提前时间偏移的一部分,上行参考单元的开始发送时间相对下行参考单元的开始发送时间具有第二定时提前时间偏移,下行参考单元与下行基本单元具有相同的开始发送时间,上行参考单元与上行基本单元具有相同的时间长度,下行参考单元与下行基本单元具有相同的时间长度,其中,第一定时提前时间偏移和第二定时提前时间偏移均大于0。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行参考单元内包括n2个符号,在S个OFDM符号的时间长度为上行基本单元相对上行参考单元的第一定时提前时间偏移的一部分的情况下,第一定时提前时间偏移内还包括上行参考单元内的前0.5*n2个符号的时间长度,其中,上行参考单元内的符号为OFDM符号或者SC-FDMA符号,n2=2*w,w为正整数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:第 一定时提前时间偏移根据第三定时提前时间偏移和第二定时提前时间偏移得到,其中,第三定时提前时间偏移根据定时提前偏移量确定,第三定时提前时间偏移是预设提前时间的一部分,第三定时提前时间偏移大于0,小于或等于预设提前时间。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行参考单元内的符号对应的子载波间隔为15kHz,n2的取值为14,上行参考单元的时间长度为1ms,上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts,上行参考单元内的除第八个符号和第一个符号以外的其他符号的循环前缀长度为144*Ts,其中,Ts=1/30720ms。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行基本单元内的OFDM符号对应的子载波间隔为2m*15kHz,n1的取值为14*2m,第一时间长度为144*2-m*Ts,S的取值为2m的正整数倍,m的取值为以下之一:0,1,2,3。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行参考单元内的符号对应的子载波间隔为30kHz,n2的取值为14,上行参考单元的时间长度为0.5ms,上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts1,上行参考单元内的除第八个符号和第一个符号以外的其他符号的循环前缀长度为144*Ts1,其中,Ts1=1/61440ms。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行基本单元内的OFDM符号对应的子载波间隔为2m*30kHz,n1的取值为14*2m,第一时间长度为144*2-m*Ts,S的取值为2m的正整数倍,m的取值为以下之一:0,1,2,3。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行参考单元内的符号对应的子载波间隔为60kHz,n2的取值为14,上行参考单元的时间长度为0.25ms,上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts2,上行参考单元内的除第八个符号和第一个符号以外的其他符号的循环前缀长度为144*Ts2,其中,Ts2=1/122880m。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行基本单元内的符号对应的子载波间隔为2m*60kHz,n1的取值为14*2m,第一时间长度为144*2-m*Ts,S的取值为2m的正整数倍,m的取值为以下之一:0,1,2,3。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行基本单元相对上行参考单元具有第一定时提前时间偏移,上行参考单元的开始发送时间相对下行参考单元的开始发送时间具有第二定时提前时间偏移,下行参考单与下行基本单元具有相同的开始发送时间,上行参考单元与上行基本单元具有相同的时间长度,下行参考单元与下行基本单元具有相同的时间长度,其中,第一定时提前时间偏移和第二定时提前时间偏移均大于0。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行参考单元与LTE中的1ms子帧在普通循环前缀下具有相同的时间长度和符号结构,第一定时提前时间偏移的取值与集合C中或者集合C的子集中的一个元素相同,集合C为{x|x=上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts,0<k<14,k为正整数},其中,Ts=1/30720ms。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行参考单元的时间长度为0.5ms,其时域符号结构与LTE中的1ms子帧在普通循环前缀下各OFDM符号或者SC-FDMA符号成比例缩小到一半相同,第一定时提前时间偏移的取值与集合C中或者集合C的子集中的一个元素相同,集合C为{x|x=上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts1,0<k<14,k为正整数},其中,Ts1=1/61440ms。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上 行参考单元的时间长度为0.25ms,其时域符号结构与LTE中的1ms子帧在普通循环前缀下各OFDM符号或者SC-FDMA符号成比例缩小到四分之一相同,第一定时提前时间偏移的取值与集合C中或者集合C的子集中的一个元素相同,集合C为{x|x=上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts2,0<k<14,k为正整数},其中,Ts2=1/122880ms。
本公开的实施例提供了一种存储介质。可选地,在本实施例中,上述存储介质可以被设置为存储用于执行以下步骤的程序代码:
S1,确定上行基本单元内用于接收终端发送的数据的一个或多个正交频分复用OFDM符号,其中,上行基本单元的开始发送时间相对于下行基本单元的开始发送时间提前预设提前时间,预设提前时间根据动态定时提前量和定时提前偏移量确定;
S2,在确定的一个或多个OFDM符号上接收终端发送的数据。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行基本单元内包括n1个OFDM符号,n1个OFDM符号的前S个OFDM符号的循环前缀具有第一时间长度,第S+1个OFDM符号的循环前缀具有第二时间长度,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号中至少有一个OFDM符号的循环前缀具有第二时间长度,其中,n1个OFDM符号具有相同的有效数据长度,第一时间长度小于第二时间长度,S<n1,S和n1为正整数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行基本单元内包括n1个OFDM符号,n1个OFDM符号的第S个OFDM符号和第S+1个OFDM符号之间存在一个额外的循环前缀或间隙,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号之间存在一个与额外的循环前缀相同的额外的循环前缀,或者存在一个与间隙相同的间隙,其中,n1个OFDM符号具有相同的循环前缀长度和有效数据长度,相同的 循环前缀长度为第一时间长度,在间隙内既不发送也不接收任何信息,S<n1,S和n1为正整数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:下行基本单元与上行基本单元具有相同的时间长度。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:定时提前偏移量由基站通过无线资源控制RRC消息进行配置给终端。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:动态定时提前量由基站通过媒体接入控制MAC控制单元或位于随机接入响应中的定时提前命令进行动态配置给终端。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:S个OFDM符号的时间长度为上行基本单元相对上行参考单元的第一定时提前时间偏移,或者上行基本单元相对上行参考单元的第一定时提前时间偏移的一部分,上行参考单元的开始发送时间相对下行参考单元的开始发送时间具有第二定时提前时间偏移,下行参考单元与下行基本单元具有相同的开始发送时间,上行参考单元与上行基本单元具有相同的时间长度,下行参考单元与下行基本单元具有相同的时间长度,其中,第一定时提前时间偏移和第二定时提前时间偏移均大于0。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行参考单元内包括n2个OFDM符号,在S个OFDM符号的时间长度为上行基本单元相对上行参考单元的第一定时提前时间偏移的一部分的情况下,第一定时提前时间偏移内还包括上行参考单元内的前0.5*n2个符号的时间长度,其中,上行参考单元内的符号为OFDM符号或者SC-FDMA符号,n2=2*w,w为正整数。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:第一定时提前时间偏移根据第三定时提前时间偏移和第二定时提前时间偏移得到,其中,第三定时提前时间偏移根据定时提前偏移量确定,第三定时提前时间偏移是预设提前时间的一部分,第三定时提前时间偏移大于0, 小于或等于预设提前时间。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行参考单元内的符号对应的子载波间隔为15kHz,n2的取值为14,上行参考单元的时间长度为1ms,上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts,上行参考单元内的除第八个符号和第一个符号以外的其他符号的循环前缀长度为144*Ts,其中,Ts=1/30720ms。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行基本单元内的OFDM符号对应的子载波间隔为2m*15kHz,n1的取值为14*2m,第一时间长度为144*2-m*Ts,S的取值为2m的正整数倍,m的取值为以下之一:0,1,2,3。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行参考单元内的符号对应的子载波间隔为30kHz,n2的取值为14,上行参考单元的时间长度为0.5ms,上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts1,上行参考单元内的除第八个符号和第一个符号以外的其他符号的循环前缀长度为144*Ts1,其中,Ts1=1/61440ms。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行基本单元内的OFDM符号对应的子载波间隔为2m*30kHz,n1的取值为14*2m,第一时间长度为144*2-m*Ts,S的取值为2m的正整数倍,m的取值为以下之一:0,1,2,3。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行参考单元内的符号对应的子载波间隔为60kHz,n2的取值为14,上行参考单元的时间长度为0.25ms,上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts2,上行参考单元内的除第八个符号和第一个符号以外的其他符号的循环前缀长度为144*Ts2,其中,Ts2=1/122880m。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行基本单元内的符号对应的子载波间隔为2m*60kHz,n1的取值为14*2m,第一时间长度为144*2-m*Ts,S的取值为2m的正整数倍,m的取值为以 下之一:0,1,2,3。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行基本单元相对上行参考单元具有第一定时提前时间偏移,上行参考单元的开始发送时间相对下行参考单元的开始发送时间具有第二定时提前时间偏移,下行参考单与下行基本单元具有相同的开始发送时间,上行参考单元与上行基本单元具有相同的时间长度,下行参考单元与下行基本单元具有相同的时间长度,其中,第一定时提前时间偏移和第二定时提前时间偏移均大于0。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行参考单元与长期演进系统LTE中的1ms子帧在普通循环前缀下具有相同的时间长度和符号结构,第一定时提前时间偏移的取值与集合C中或者集合C的子集中的一个元素相同,集合C为{x|x=上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts,0<k<14,k为正整数},其中,Ts=1/30720ms。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行参考单元的时间长度为0.5ms,其时域符号结构与长期演进系统LTE中的1ms子帧在普通循环前缀下各OFDM符号或者SC-FDMA符号成比例缩小到一半相同,第一定时提前时间偏移的取值与集合C中或者集合C的子集中的一个元素相同,集合C为{x|x=上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts1,0<k<14,k为正整数},其中,Ts1=1/61440ms。
可选地,存储介质还被设置为存储用于执行以下步骤的程序代码:上行参考单元的时间长度为0.25ms,其时域符号结构与长期演进系统LTE中的1ms子帧在普通循环前缀下各OFDM符号或者SC-FDMA符号成比例缩小到四分之一相同,第一定时提前时间偏移的取值与集合C中或者集 合C的子集中的一个元素相同,集合C为{x|x=上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts2,0<k<14,k为正整数},其中,Ts2=1/122880ms。
可选地,在本实施例中,上述存储介质可以包括但不限于:U盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、移动硬盘、磁碟或者光盘等各种可以存储程序代码的介质。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:确定上行基本单元内用于发送数据的一个或多个正交频分复用OFDM符号,其中,上行基本单元的开始发送时间相对于下行基本单元的开始发送时间提前预设提前时间,预设提前时间根据动态定时提前量和定时提前偏移量确定;在确定的一个或多个OFDM符号上发送数据。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行基本单元内包括n1个OFDM符号,n1个OFDM符号的前S个OFDM符号的循环前缀具有第一时间长度,第S+1个OFDM符号的循环前缀具有第二时间长度,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号中至少有一个OFDM符号的循环前缀具有第二时间长度,其中,n1个OFDM符号具有相同的有效数据长度,第一时间长度小于第二时间长度,S<n1,S和n1为正整数。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行基本单元内包括n1个OFDM符号,n1个OFDM符号的第S个OFDM符号和第S+1个OFDM符号之间存在一个额外的循环前缀或间隙,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号之间存在一个与额外的循环前缀相同的额外的循环前缀,或者存在一个与间隙相同的间隙,其中,n1个OFDM符号具有相同的循环前缀长度和有效数据长度,相同的循环前缀长度为第一时间长度,在间隙内既不发送也不接收任何信 息,S<n1,S和n1为正整数。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:下行基本单元与上行基本单元具有相同的时间长度。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:定时提前偏移量由基站通过无线资源控制RRC消息进行配置。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:动态定时提前量由基站通过媒体接入控制MAC控制单元或位于随机接入响应中的定时提前命令进行动态配置。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:S个OFDM符号的时间长度为上行基本单元相对上行参考单元的第一定时提前时间偏移,或者上行基本单元相对上行参考单元的第一定时提前时间偏移的一部分,上行参考单元的开始发送时间相对下行参考单元的开始发送时间具有第二定时提前时间偏移,下行参考单元与下行基本单元具有相同的开始发送时间,上行参考单元与上行基本单元具有相同的时间长度,下行参考单元与下行基本单元具有相同的时间长度,其中,第一定时提前时间偏移和第二定时提前时间偏移均大于0。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行参考单元内包括n2个符号,在S个OFDM符号的时间长度为上行基本单元相对上行参考单元的第一定时提前时间偏移的一部分的情况下,第一定时提前时间偏移内还包括上行参考单元内的前0.5*n2个符号的时间长度,其中,上行参考单元内的符号为OFDM符号或者SC-FDMA符号,n2=2*w,w为正整数。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:第一定时提前时间偏移根据第三定时提前时间偏移和第二定时提前时间偏移得到,其中,第三定时提前时间偏移根据定时提前偏移量确定,第三定时提前时间偏移是预设提前时间的一部分,第三定时提前时间偏移大于0,小于或等于预设提前时间。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行参考单元内的符号对应的子载波间隔为15kHz,n2的取值为14,上行参考单元的时间长度为1ms,上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts,上行参考单元内的除第八个符号和第一个符号以外的其他符号的循环前缀长度为144*Ts,其中,Ts=1/30720ms。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行基本单元内的OFDM符号对应的子载波间隔为2m*15kHz,n1的取值为14*2m,第一时间长度为144*2-m*Ts,S的取值为2m的正整数倍,m的取值为以下之一:0,1,2,3。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行参考单元内的符号对应的子载波间隔为30kHz,n2的取值为14,上行参考单元的时间长度为0.5ms,上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts1,上行参考单元内的除第八个符号和第一个符号以外的其他符号的循环前缀长度为144*Ts1,其中,Ts1=1/61440ms。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行基本单元内的OFDM符号对应的子载波间隔为2m*30kHz,n1的取值为14*2m,第一时间长度为144*2-m*Ts,S的取值为2m的正整数倍,m的取值为以下之一:0,1,2,3。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行参考单元内的符号对应的子载波间隔为60kHz,n2的取值为14,上行参考单元的时间长度为0.25ms,上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts2,上行参考单元内的除第八个符号和第一个符号以外的其他符号的循环前缀长度为144*Ts2,其中,Ts2=1/122880m。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行基本单元内的符号对应的子载波间隔为2m*60kHz,n1的取值为 14*2m,第一时间长度为144*2-m*Ts,S的取值为2m的正整数倍,m的取值为以下之一:0,1,2,3。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行基本单元相对上行参考单元具有第一定时提前时间偏移,上行参考单元的开始发送时间相对下行参考单元的开始发送时间具有第二定时提前时间偏移,下行参考单与下行基本单元具有相同的开始发送时间,上行参考单元与上行基本单元具有相同的时间长度,下行参考单元与下行基本单元具有相同的时间长度,其中,第一定时提前时间偏移和第二定时提前时间偏移均大于0。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行参考单元与长期演进系统LTE中的1ms子帧在普通循环前缀下具有相同的时间长度和符号结构,第一定时提前时间偏移的取值与集合C中或者集合C的子集中的一个元素相同,集合C为{x|x=上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts,0<k<14,k为正整数},其中,Ts=1/30720ms。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行参考单元的时间长度为0.5ms,其时域符号结构与长期演进系统LTE中的1ms子帧在普通循环前缀下各OFDM符号或者SC-FDMA符号成比例缩小到一半相同,第一定时提前时间偏移的取值与集合C中或者集合C的子集中的一个元素相同,集合C为{x|x=上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts1,0<k<14,k为正整数},其中,Ts1=1/61440ms。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行参考单元的时间长度为0.25ms,其时域符号结构与长期演进系统LTE中的1ms子帧在普通循环前缀下各OFDM符号或者SC-FDMA符号 成比例缩小到四分之一相同,定时提前时间偏移T1的取值与集合C中或者集合C的子集中的一个元素相同,集合C为{x|x=上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts2,0<k<14,k为正整数},其中,Ts2=1/122880ms。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:确定上行基本单元内用于接收终端发送的数据的一个或多个正交频分复用OFDM符号,其中,上行基本单元的开始发送时间相对于下行基本单元的开始发送时间提前预设提前时间,预设提前时间根据动态定时提前量和定时提前偏移量确定;在确定的一个或多个OFDM符号上接收终端发送的数据。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行基本单元内包括n1个OFDM符号,n1个OFDM符号的前S个OFDM符号的循环前缀具有第一时间长度,第S+1个OFDM符号的循环前缀具有第二时间长度,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号中至少有一个OFDM符号的循环前缀具有第二时间长度,其中,n1个OFDM符号具有相同的有效数据长度,第一时间长度小于第二时间长度,S<n1,S和n1为正整数。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行基本单元内包括n1个OFDM符号,n1个OFDM符号的第S个OFDM符号和第S+1个OFDM符号之间存在一个额外的循环前缀或间隙,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号之间存在一个与额外的循环前缀相同的额外的循环前缀,或者存在一个与间隙相同的间隙,其中,n1个OFDM符号具有相同的循环前缀长度和有效数据长度,相同的循环前缀长度为第一时间长度,在间隙内既不发送也不接收任何信息,S<n1,S和n1为正整数。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执 行:下行基本单元与上行基本单元具有相同的时间长度。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:定时提前偏移量由基站通过无线资源控制RRC消息进行配置给终端。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:动态定时提前量由基站通过媒体接入控制MAC控制单元或位于随机接入响应中的定时提前命令进行动态配置给终端。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:S个OFDM符号的时间长度为上行基本单元相对上行参考单元的第一定时提前时间偏移,或者上行基本单元相对上行参考单元的第一定时提前时间偏移的一部分,上行参考单元的开始发送时间相对下行参考单元的开始发送时间具有第二定时提前时间偏移,下行参考单元与下行基本单元具有相同的开始发送时间,上行参考单元与上行基本单元具有相同的时间长度,下行参考单元与下行基本单元具有相同的时间长度,其中,第一定时提前时间偏移和第二定时提前时间偏移均大于0。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行参考单元内包括n2个符号,在S个OFDM符号的时间长度为上行基本单元相对上行参考单元的第一定时提前时间偏移的一部分的情况下,第一定时提前时间偏移内还包括上行参考单元内的前0.5*n2个符号的时间长度,其中,上行参考单元内的符号为OFDM符号或者SC-FDMA符号,n2=2*w,w为正整数。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:第一定时提前时间偏移根据第三定时提前时间偏移和第二定时提前时间偏移得到,其中,第三定时提前时间偏移根据定时提前偏移量确定,第三定时提前时间偏移是预设提前时间的一部分,第三定时提前时间偏移大于0,小于或等于预设提前时间。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行参考单元内的符号对应的子载波间隔为15kHz,n2的取值为14, 上行参考单元的时间长度为1ms,上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts,上行参考单元内的除第八个符号和第一个符号以外的其他符号的循环前缀长度为144*Ts,其中,Ts=1/30720ms。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行基本单元内的OFDM符号对应的子载波间隔为2m*15kHz,n1的取值为14*2m,第一时间长度为144*2-m*Ts,S的取值为2m的正整数倍,m的取值为以下之一:0,1,2,3。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行参考单元内的符号对应的子载波间隔为30kHz,n2的取值为14,上行参考单元的时间长度为0.5ms,上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts1,上行参考单元内的除第八个符号和第一个符号以外的其他符号的循环前缀长度为144*Ts1,其中,Ts1=1/61440ms。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行基本单元内的OFDM符号对应的子载波间隔为2m*30kHz,n1的取值为14*2m,第一时间长度为144*2-m*Ts,S的取值为2m的正整数倍,m的取值为以下之一:0,1,2,3。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行参考单元内的符号对应的子载波间隔为60kHz,n2的取值为14,上行参考单元的时间长度为0.25ms,上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts2,上行参考单元内的除第八个符号和第一个符号以外的其他符号的循环前缀长度为144*Ts2,其中,Ts2=1/122880m。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行基本单元内的符号对应的子载波间隔为2m*60kHz,n1的取值为14*2m,第一时间长度为144*2-m*Ts,S的取值为2m的正整数倍,m的取值为以下之一:0,1,2,3。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行基本单元相对上行参考单元具有第一定时提前时间偏移,上行参考单元的开始发送时间相对下行参考单元的开始发送时间具有第二定时提前时间偏移,下行参考单与下行基本单元具有相同的开始发送时间,上行参考单元与上行基本单元具有相同的时间长度,下行参考单元与下行基本单元具有相同的时间长度,其中,第一定时提前时间偏移和第二定时提前时间偏移均大于0。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行参考单元与长期演进系统LTE中的1ms子帧在普通循环前缀下具有相同的时间长度和符号结构,第一定时提前时间偏移的取值与集合C中或者集合C的子集中的一个元素相同,集合C为{x|x=上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts,0<k<14,k为正整数},其中,Ts=1/30720ms。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行参考单元的时间长度为0.5ms,其时域符号结构与长期演进系统LTE中的1ms子帧在普通循环前缀下各OFDM符号或者SC-FDMA符号成比例缩小到一半相同,第一定时提前时间偏移的取值与集合C中或者集合C的子集中的一个元素相同,集合C为{x|x=上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts1,0<k<14,k为正整数},其中,Ts1=1/61440ms。
可选地,在本实施例中,处理器根据存储介质中已存储的程序代码执行:上行参考单元的时间长度为0.25ms,其时域符号结构与长期演进系统LTE中的1ms子帧在普通循环前缀下各OFDM符号或者SC-FDMA符号成比例缩小到四分之一相同,定时提前时间偏移T1的取值与集合C中或者集合C的子集中的一个元素相同,集合C为{x|x=上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度或上行参考单元中前k个 OFDM符号或者SC-FDMA符号的时间长度-16*Ts2,0<k<14,k为正整数},其中,Ts2=1/122880ms。
本公开的实施例还提供了一种处理器,该处理器用于运行程序,其中,该程序运行时执行上述任一项方法中的步骤。
可选地,本实施例中的可选示例可以参考上述实施例及可选实施方式中所描述的示例,本实施例在此不再赘述。
显然,本领域的技术人员应该明白,上述的本公开的各模块或各步骤可以用通用的计算装置来实现,它们可以集中在单个的计算装置上,或者分布在多个计算装置所组成的网络上,可选地,它们可以用计算装置可执行的程序代码来实现,从而,可以将它们存储在存储装置中由计算装置来执行,并且在某些情况下,可以以不同于此处的顺序执行所示出或描述的步骤,或者将它们分别制作成各个集成电路模块,或者将它们中的多个模块或步骤制作成单个集成电路模块来实现。这样,本公开不限制于任何特定的硬件和软件结合。
以上所述仅为本公开的优选实施例而已,并不用于限制本公开,对于本领域的技术人员来说,本公开可以有各种更改和变化。凡在本公开的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本公开的保护范围之内。
工业实用性
本公开涉及通信领域,具体而言,涉及一种数据发送、接收方法及装置。根据动态定时提前量和定时提前偏移量确定上行基本单元的开始发送时间相对于下行基本单元的开始发送时间的提前量,可以解决相关技术中存在上行基本单元与上行参考单元具有不同的固定定时提前偏移量时,上行基本单元与上行参考单元存在的上行符号不对齐的问题,达到减少用户间干扰、降低实现复杂度的效果。

Claims (52)

  1. 一种数据发送方法,包括:
    确定上行基本单元内用于发送数据的一个或多个正交频分复用OFDM符号,其中,所述上行基本单元的开始发送时间相对于下行基本单元的开始发送时间提前预设提前时间,所述预设提前时间根据动态定时提前量和定时提前偏移量确定;
    在确定的所述一个或多个OFDM符号上发送数据。
  2. 根据权利要求1所述的方法,其中,所述上行基本单元内包括n1个OFDM符号,所述n1个OFDM符号的前S个OFDM符号的循环前缀具有第一时间长度,第S+1个OFDM符号的循环前缀具有第二时间长度,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号中至少有一个OFDM符号的循环前缀具有所述第二时间长度,其中,所述n1个OFDM符号具有相同的有效数据长度,所述第一时间长度小于第二时间长度,S<n1,S和n1为正整数。
  3. 根据权利要求1所述的方法,其中,所述上行基本单元内包括n1个OFDM符号,所述n1个OFDM符号的第S个OFDM符号和第S+1个OFDM符号之间存在一个额外的循环前缀或间隙,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号之间存在一个与所述额外的循环前缀相同的额外的循环前缀,或者存在一个与所述间隙相同的间隙,其中,所述n1个OFDM符号具有相同的循环前缀长度和有效数据长度,所述相同的循环前缀长度为第一时间长度,在所述间隙内既不发送也不接收任何信息,S<n1,S和n1为正整数。
  4. 根据权利要求1所述的方法,其中,所述下行基本单元与所述上行基本单元具有相同的时间长度。
  5. 根据权利要求1所述的方法,其中,所述定时提前偏移量由基站通过无线资源控制RRC消息进行配置。
  6. 根据权利要求1所述的方法,其中,所述动态定时提前量由基站通过媒体接入控制MAC控制单元或位于随机接入响应中的定时提前命令进行动态配置。
  7. 根据权利要求2或3所述的方法,其中,所述S个OFDM符号的时间长度为所述上行基本单元相对上行参考单元的第一定时提前时间偏移,或者所述上行基本单元相对上行参考单元的第一定时提前时间偏移的一部分,所述上行参考单元的开始发送时间相对下行参考单元的开始发送时间具有第二定时提前时间偏移,所述下行参考单元与所述下行基本单元具有相同的开始发送时间,所述上行参考单元与所述上行基本单元具有相同的时间长度,所述下行参考单元与所述下行基本单元具有相同的时间长度,其中,所述第一定时提前时间偏移和所述第二定时提前时间偏移均大于0。
  8. 根据权利要求7所述的方法,其中,所述上行参考单元内包括n2个符号,在所述S个OFDM符号的时间长度为所述上行基本单元相对所述上行参考单元的所述第一定时提前时间偏移的一部分的情况下,所述第一定时提前时间偏移内还包括所述上行参考单元内的前0.5*n2个符号的时间长度,其中,所述上行参考单元内的所述符号为OFDM符号或者单载波频分多址SC-FDMA符号,n2=2*w,w为正整数。
  9. 根据权利要求7所述的方法,其中,所述第一定时提前时间偏移根据第三定时提前时间偏移和所述第二定时提前时间偏移得到,其中,所述第三定时提前时间偏移根据所述定时提前偏移量确定,所述第三定时提前时间偏移是所述预设提前时间的一部分,所述第三定时提前时间偏移大于0,小于或等于所述预设提前时间。
  10. 根据权利要求8所述的方法,其中,所述上行参考单元内的符号对应的子载波间隔为15kHz,所述n2的取值为14,所述上行参考 单元的时间长度为1ms,所述上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts,所述上行参考单元内的除所述第八个符号和所述第一个符号以外的其他符号的循环前缀长度为144*Ts,其中,Ts=1/30720ms。
  11. 根据权利要求2、3或10所述的方法,其中,所述上行基本单元内的OFDM符号对应的子载波间隔为2m*15kHz,所述n1的取值为14*2m,所述第一时间长度为144*2-m*Ts,所述S的取值为2m的正整数倍,所述m的取值为以下之一:0,1,2,3。
  12. 根据权利要求8所述的方法,其中,所述上行参考单元内的符号对应的子载波间隔为30kHz,所述n2的取值为14,所述上行参考单元的时间长度为0.5ms,所述上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts1,所述上行参考单元内的除所述第八个符号和所述第一个符号以外的其他符号的循环前缀长度为144*Ts1,其中,Ts1=1/61440ms。
  13. 根据权利要求2、3或12所述的方法,其中,所述上行基本单元内的OFDM符号对应的子载波间隔为2m*30kHz,所述n1的取值为14*2m,所述第一时间长度为144*2-m*Ts,所述S的取值为2m的正整数倍,所述m的取值为以下之一:0,1,2,3。
  14. 根据权利要求8所述的方法,其中,所述上行参考单元内的符号对应的子载波间隔为60kHz,所述n2的取值为14,所述上行参考单元的时间长度为0.25ms,所述上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts2,所述上行参考单元内的除所述第八个符号和所述第一个符号以外的其他符号的循环前缀长度为144*Ts2,其中,Ts2=1/122880m。
  15. 根据权利要求2、3或14所述的方法,其中,所述上行基本单元内的符号对应的子载波间隔为2m*60kHz,所述n1的取值为 14*2m,所述第一时间长度为144*2-m*Ts,所述S的取值为2m的正整数倍,所述m的取值为以下之一:0,1,2,3。
  16. 根据权利要求1所述的方法,其中,所述上行基本单元相对上行参考单元具有第一定时提前时间偏移,所述上行参考单元的开始发送时间相对下行参考单元的开始发送时间具有第二定时提前时间偏移,所述下行参考单与所述下行基本单元具有相同的开始发送时间,所述上行参考单元与所述上行基本单元具有相同的时间长度,所述下行参考单元与所述下行基本单元具有相同的时间长度,其中,所述第一定时提前时间偏移和所述第二定时提前时间偏移均大于0。
  17. 根据权利要求16所述的方法,其中,所述上行参考单元与长期演进系统LTE中的1ms子帧在普通循环前缀下具有相同的时间长度和符号结构,所述第一定时提前时间偏移的取值与集合C中或者集合C的子集中的一个元素相同,所述集合C为{x|x=上行参考单元中前k个OFDM符号或者单载波频分多址SC-FDMA符号的时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts,0<k<14,k为正整数},其中,Ts=1/30720ms。
  18. 根据权利要求16所述的方法,其中,所述上行参考单元的时间长度为0.5ms,其时域符号结构与长期演进系统LTE中的1ms子帧在普通循环前缀下各OFDM符号或者单载波频分多址SC-FDMA符号成比例缩小到一半相同,所述第一定时提前时间偏移的取值与集合C中或者集合C的子集中的一个元素相同,所述集合C为{x|x=上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts1,0<k<14,k为正整数},其中,Ts1=1/61440ms。
  19. 根据权利要求16所述的方法,其中,所述上行参考单元的时间长度为0.25ms,其时域符号结构与长期演进系统LTE中的1ms 子帧在普通循环前缀下各OFDM符号或者单载波频分多址SC-FDMA符号成比例缩小到四分之一相同,所述第一定时提前时间偏移的取值与集合C中或者集合C的子集中的一个元素相同,所述集合C为{x|x=上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts2,0<k<14,k为正整数},其中,Ts2=1/122880ms。
  20. 一种数据接收方法,包括:
    确定上行基本单元内用于接收终端发送的数据的一个或多个正交频分复用OFDM符号,其中,所述上行基本单元的开始发送时间相对于下行基本单元的开始发送时间提前预设提前时间,所述预设提前时间根据动态定时提前量和定时提前偏移量确定;
    在确定的所述一个或多个OFDM符号上接收所述终端发送的数据。
  21. 根据权利要求20所述的方法,其中,所述上行基本单元内包括n1个OFDM符号,所述n1个OFDM符号的前S个OFDM符号的循环前缀具有第一时间长度,第S+1个OFDM符号的循环前缀具有第二时间长度,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号中至少有一个OFDM符号的循环前缀具有所述第二时间长度,其中,所述n1个OFDM符号具有相同的有效数据长度,所述第一时间长度小于第二时间长度,S<n1,S和n1为正整数。
  22. 根据权利要求20所述的方法,其中,所述上行基本单元内包括n1个OFDM符号,所述n1个OFDM符号的第S个OFDM符号和第S+1个OFDM符号之间存在一个额外的循环前缀或间隙,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号之间存在一个与所述额外的循环前缀相同的额外的循环前缀,或者存在一个与所述间隙相同的间隙,其中,所述n1个OFDM符号具有相同的循环前缀长度 和有效数据长度,所述相同的循环前缀长度为第一时间长度,在所述间隙内既不发送也不接收任何信息,S<n1,S和n1为正整数。
  23. 根据权利要求20所述的方法,其中,所述下行基本单元与所述上行基本单元具有相同的时间长度。
  24. 根据权利要求20所述的方法,其中,所述定时提前偏移量由基站通过无线资源控制RRC消息进行配置给所述终端。
  25. 根据权利要求20所述的方法,其中,所述动态定时提前量由基站通过媒体接入控制MAC控制单元或位于随机接入响应中的定时提前命令进行动态配置给所述终端。
  26. 根据权利要求21或22所述的方法,其中,所述S个OFDM符号的时间长度为所述上行基本单元相对上行参考单元的第一定时提前时间偏移,或者所述上行基本单元相对上行参考单元的第一定时提前时间偏移的一部分,所述上行参考单元的开始发送时间相对下行参考单元的开始发送时间具有第二定时提前时间偏移,所述下行参考单元与所述下行基本单元具有相同的开始发送时间,所述上行参考单元与所述上行基本单元具有相同的时间长度,所述下行参考单元与所述下行基本单元具有相同的时间长度,其中,所述第一定时提前时间偏移和所述第二定时提前时间偏移均大于0。
  27. 根据权利要求26所述的方法,其中,所述上行参考单元包括n2个符号,在所述S个OFDM符号的时间长度为所述上行基本单元相对所述上行参考单元的所述第一定时提前时间偏移的一部分的情况下,所述第一定时提前时间偏移内还包括所述上行参考单元内的前0.5*n2个符号的时间长度,其中,所述上行参考单元内的所述符号为OFDM符号或者单载波频分多址SC-FDMA符号,n2=2*w,w为正整数。
  28. 根据权利要求26所述的方法,其中,所述第一定时提前时间偏移根据第三定时提前时间偏移和所述第二定时提前时间偏移得到,其中,所述第三定时提前时间偏移根据所述定时提前偏移量确定,所述第三定时提前时间偏移是所述预设提前时间的一部分,所述第三定时提前时间偏移大于0,小于或等于所述预设提前时间。
  29. 根据权利要求27所述的方法,其中,所述上行参考单元内的符号对应的子载波间隔为15kHz,所述n2的取值为14,所述上行参考单元的时间长度为1ms,所述上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts,所述上行参考单元内的除所述第八个符号和所述第一个符号以外的其他符号的循环前缀长度为144*Ts,其中,Ts=1/30720ms。
  30. 根据权利要求21、22或29所述的方法,其中,所述上行基本单元内的OFDM符号对应的子载波间隔为2m*15kHz,所述n1的取值为14*2m,所述第一时间长度为144*2-m*Ts,所述S的取值为2m的正整数倍,所述m的取值为以下之一:0,1,2,3。
  31. 根据权利要求27所述的方法,其中,所述上行参考单元内的符号对应的子载波间隔为30kHz,所述n2的取值为14,所述上行参考单元的时间长度为0.5ms,所述上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts1,所述上行参考单元内的除所述第八个符号和所述第一个符号以外的其他符号的循环前缀长度为144*Ts1,其中,Ts1=1/61440ms。
  32. 根据权利要求21、22或31所述的方法,其中,所述上行基本单元内的OFDM符号对应的子载波间隔为2m*30kHz,所述n1的取值为14*2m,所述第一时间长度为144*2-m*Ts,所述S的取值为2m的正整数倍,所述m的取值为以下之一:0,1,2,3。
  33. 根据权利要求27所述的方法,其中,所述上行参考单元内 的符号对应的子载波间隔为60kHz,所述n2的取值为14,所述上行参考单元的时间长度为0.25ms,所述上行参考单元内的第八个符号和第一个符号的循环前缀相同,均为160*Ts2,所述上行参考单元内的除所述第八个符号和所述第一个符号以外的其他符号的循环前缀长度为144*Ts2,其中,Ts2=1/122880m。
  34. 根据权利要求21、22或33所述的方法,其中,所述上行基本单元内的符号对应的子载波间隔为2m*60kHz,所述n1的取值为14*2m,所述第一时间长度为144*2-m*Ts,所述S的取值为2m的正整数倍,所述m的取值为以下之一:0,1,2,3。
  35. 根据权利要求20所述的方法,其中,所述上行基本单元相对上行参考单元具有第一定时提前时间偏移,所述上行参考单元的开始发送时间相对下行参考单元的开始发送时间具有第二定时提前时间偏移,所述下行参考单与所述下行基本单元具有相同的开始发送时间,所述上行参考单元与所述上行基本单元具有相同的时间长度,所述下行参考单元与所述下行基本单元具有相同的时间长度,其中,所述第一定时提前时间偏移和所述第二定时提前时间偏移均大于0。
  36. 根据权利要求35所述的方法,其中,所述上行参考单元与长期演进系统LTE中的1ms子帧在普通循环前缀下具有相同的时间长度和符号结构,所述第一定时提前时间偏移的取值与集合C中或者集合C的子集中的一个元素相同,所述集合C为{x|x=上行参考单元中前k个OFDM符号或者单载波频分多址SC-FDMA符号的时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts,0<k<14,k为正整数},其中,Ts=1/30720ms。
  37. 根据权利要求35所述的方法,其中,所述上行参考单元的时间长度为0.5ms,其时域符号结构与长期演进系统LTE中的1ms子帧在普通循环前缀下各OFDM符号或者单载波频分多址SC-FDMA符 号成比例缩小到一半相同,所述第一定时提前时间偏移的取值与集合C中或者集合C的子集中的一个元素相同,所述集合C为{x|x=上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts1,0<k<14,k为正整数},其中,Ts1=1/61440ms。
  38. 根据权利要求35所述的方法,其中,所述上行参考单元的时间长度为0.25ms,其时域符号结构与长期演进系统LTE中的1ms子帧在普通循环前缀下各OFDM符号或者单载波频分多址SC-FDMA符号成比例缩小到四分之一相同,所述第一定时提前时间偏移的取值与集合C中或者集合C的子集中的一个元素相同,所述集合C为{x|x=上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度或上行参考单元中前k个OFDM符号或者SC-FDMA符号的时间长度-16*Ts2,0<k<14,k为正整数},其中,Ts2=1/122880ms。
  39. 一种数据发送装置,包括:
    确定模块,设置为确定上行基本单元内用于发送数据的一个或多个正交频分复用OFDM符号,其中,所述上行基本单元的开始发送时间相对于下行基本单元的开始发送时间提前预设提前时间,所述预设提前时间根据动态定时提前量和定时提前偏移量确定;
    发送模块,设置为在确定的所述一个或多个OFDM符号上发送数据。
  40. 根据权利要求39所述的装置,其中,所述上行基本单元内包括n1个OFDM符号,所述n1个OFDM符号的前S个OFDM符号的循环前缀具有第一时间长度,第S+1个OFDM符号的循环前缀具有第二时间长度,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号中至少有一个OFDM符号的循环前缀具有所述第二时间长度,其中,所述n1个OFDM符号具有相同的有效数据长度,所述第一时 间长度小于第二时间长度,S<n1,S和n1为正整数。
  41. 根据权利要求39所述的装置,其中,所述上行基本单元内包括n1个OFDM符号,所述n1个OFDM符号的第S个OFDM符号和第S+1个OFDM符号之间存在一个额外的循环前缀或间隙,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号之间存在一个与所述额外的循环前缀相同的额外的循环前缀,或者存在一个与所述间隙相同的间隙,其中,所述n1个OFDM符号具有相同的循环前缀长度和有效数据长度,所述相同的循环前缀长度为第一时间长度,在所述间隙内既不发送也不接收任何信息,S<n1,S和n1为正整数。
  42. 根据权利要求39所述的装置,其中,还包括:
    配置模块,设置为根据基站发送的无线资源控制RRC消息配置所述定时提前偏移量,和/或,根据基站的配置信息动态配置所述动态定时提前量,其中,所述配置信息携带在媒体接入控制MAC控制单元或位于随机接入响应中的定时提前命令中。
  43. 根据权利要求40或41所述的装置,其中,所述S个OFDM符号的时间长度为所述上行基本单元相对上行参考单元的第一定时提前时间偏移,或者所述上行基本单元相对上行参考单元的第一定时提前时间偏移的一部分,所述上行参考单元的开始发送时间相对下行参考单元的开始发送时间具有第二定时提前时间偏移,所述下行参考单元与所述下行基本单元具有相同的开始发送时间,所述上行参考单元与所述上行基本单元具有相同的时间长度,所述下行参考单元与所述下行基本单元具有相同的时间长度,其中,所述第一定时提前时间偏移和所述第二定时提前时间偏移均大于0。
  44. 根据权利要求43所述的装置,其中,所述确定模块,还设置为根据第三定时提前时间偏移和所述第二定时提前时间偏移确定所述第一定时提前时间偏移,其中,所述第三定时提前时间偏移根据 所述定时提前偏移量确定,所述第三定时提前时间偏移是所述预设提前时间的一部分,所述第三定时提前时间偏移大于0,小于或等于所述预设提前时间。
  45. 一种数据接收装置,包括:
    确定模块,设置为确定上行基本单元内用于接收终端发送的数据的一个或多个正交频分复用OFDM符号,其中,所述上行基本单元的开始发送时间相对于下行基本单元的开始发送时间提前预设提前时间,所述预设提前时间根据动态定时提前量和定时提前偏移量确定;
    接收模块,设置为在确定的所述一个或多个OFDM符号上接收所述终端发送的数据。
  46. 根据权利要求45所述的装置,其中,所述上行基本单元内包括n1个OFDM符号,所述n1个OFDM符号的前S个OFDM符号的循环前缀具有第一时间长度,第S+1个OFDM符号的循环前缀具有第二时间长度,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号中至少有一个OFDM符号的循环前缀具有所述第二时间长度,其中,所述n1个OFDM符号具有相同的有效数据长度,所述第一时间长度小于第二时间长度,S<n1,S和n1为正整数。
  47. 根据权利要求45所述的装置,其中,所述上行基本单元内包括n1个OFDM符号,所述n1个OFDM符号的第S个OFDM符号和第S+1个OFDM符号之间存在一个额外的循环前缀或间隙,除前S+1个OFDM符号以外的剩余n1-S-1个OFDM符号之间存在一个与所述额外的循环前缀相同的额外的循环前缀,或者存在一个与所述间隙相同的间隙,其中,所述n1个OFDM符号具有相同的循环前缀长度和有效数据长度,所述相同的循环前缀长度为第一时间长度,在所述间隙内既不发送也不接收任何信息,S<n1,S和n1为正整数。
  48. 根据权利要求45所述的装置,其中,还包括:
    配置模块,设置为通过无线资源控制RRC消息将所述定时提前偏移量配置给所述终端,和/或,通过媒体接入控制MAC控制单元或位于随机接入响应中的定时提前命令将所述动态定时提前量动态配置给所述终端。
  49. 根据权利要求46或47所述的装置,其中,所述S个OFDM符号的时间长度为所述上行基本单元相对上行参考单元的第一定时提前时间偏移,或者所述上行基本单元相对上行参考单元的第一定时提前时间偏移的一部分,所述上行参考单元的开始发送时间相对下行参考单元的开始发送时间具有第二定时提前时间偏移,所述下行参考单元与所述下行基本单元具有相同的开始发送时间,所述上行参考单元与所述上行基本单元具有相同的时间长度,所述下行参考单元与所述下行基本单元具有相同的时间长度,其中,所述第一定时提前时间偏移和所述第二定时提前时间偏移均大于0。
  50. 根据权利要求49所述的装置,其中,所述确定模块,还设置为根据第三定时提前时间偏移和所述第二定时提前时间偏移确定所述第一定时提前时间偏移,其中,所述第三定时提前时间偏移根据所述定时提前偏移量确定,所述第三定时提前时间偏移是所述预设提前时间的一部分,所述第三定时提前时间偏移大于0,小于或等于所述预设提前时间。
  51. 一种存储介质,所述存储介质包括存储的程序,其中,所述程序运行时执行权利要求1至38中任一项所述的方法。
  52. 一种处理器,所述处理器用于运行程序,其中,所述程序运行时执行权利要求1至38中任一项所述的方法。
PCT/CN2017/103963 2016-09-28 2017-09-28 数据发送、接收方法及装置 WO2018059481A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP17854931.7A EP3522469B1 (en) 2016-09-28 2017-09-28 Methods and devices for transmitting and receiving data

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610859514.1A CN107872417B (zh) 2016-09-28 2016-09-28 数据发送、接收方法及装置
CN201610859514.1 2016-09-28

Publications (1)

Publication Number Publication Date
WO2018059481A1 true WO2018059481A1 (zh) 2018-04-05

Family

ID=61761005

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/103963 WO2018059481A1 (zh) 2016-09-28 2017-09-28 数据发送、接收方法及装置

Country Status (3)

Country Link
EP (1) EP3522469B1 (zh)
CN (1) CN107872417B (zh)
WO (1) WO2018059481A1 (zh)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10813069B2 (en) 2018-06-29 2020-10-20 Qualcomm Incorporated Techniques and apparatuses for using different timing advance values for different numerologies
WO2020216019A1 (zh) * 2019-04-26 2020-10-29 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
CN112586056A (zh) * 2018-12-28 2021-03-30 Oppo广东移动通信有限公司 用于自干扰消除的方法、终端设备和网络设备
KR20210102380A (ko) * 2018-12-12 2021-08-19 지티이 코포레이션 타이밍 정보 구성 방법, 장치, 저장매체 및 시스템

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109451586B (zh) * 2018-05-11 2020-07-07 华为技术有限公司 通信方法和通信装置
CN110475358B (zh) * 2018-05-11 2024-06-28 华为技术有限公司 通信方法和通信装置
KR102626661B1 (ko) 2019-01-07 2024-01-17 지티이 코포레이션 무선 네트워크에서의 타이밍 어드밴스 결정
CN112583562B (zh) * 2019-09-30 2022-08-26 华为技术有限公司 数据传输的方法与装置
CN118743279A (zh) * 2022-02-28 2024-10-01 高通股份有限公司 定时提前偏置配置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572577A (zh) * 2008-04-30 2009-11-04 大唐移动通信设备有限公司 一种实现上行发送定时提前的方法和装置
CN102307167A (zh) * 2011-09-22 2012-01-04 京信通信系统(中国)有限公司 调整上行定时提前量的方法、装置及基站系统
CN103648170A (zh) * 2013-12-30 2014-03-19 大唐移动通信设备有限公司 一种应用于双模系统的数据传输方法及装置
CN104115535A (zh) * 2011-12-15 2014-10-22 英特尔公司 最低限要求的lte维护定时提前方法

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AP2007004194A0 (en) * 2005-04-15 2007-10-31 Nokia Corp Method for synchronisation in a multi-carrier system using variable guard intervals
US8730854B2 (en) * 2009-08-20 2014-05-20 Qualcomm Incorporated Timing adjustments in a communication system
CN101931456B (zh) * 2010-08-09 2016-05-25 中兴通讯股份有限公司 一种移动通信系统中测量参考信号的发送方法
EP2695477A1 (en) * 2011-04-01 2014-02-12 InterDigital Patent Holdings, Inc. Method and apparatus for controlling connectivity to a network
US9936470B2 (en) * 2013-02-07 2018-04-03 Commscope Technologies Llc Radio access networks
JP6073189B2 (ja) * 2013-05-31 2017-02-01 株式会社日立国際電気 Ofdm受信装置

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101572577A (zh) * 2008-04-30 2009-11-04 大唐移动通信设备有限公司 一种实现上行发送定时提前的方法和装置
CN102307167A (zh) * 2011-09-22 2012-01-04 京信通信系统(中国)有限公司 调整上行定时提前量的方法、装置及基站系统
CN104115535A (zh) * 2011-12-15 2014-10-22 英特尔公司 最低限要求的lte维护定时提前方法
CN103648170A (zh) * 2013-12-30 2014-03-19 大唐移动通信设备有限公司 一种应用于双模系统的数据传输方法及装置

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3522469A4 *

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US10813069B2 (en) 2018-06-29 2020-10-20 Qualcomm Incorporated Techniques and apparatuses for using different timing advance values for different numerologies
KR20210102380A (ko) * 2018-12-12 2021-08-19 지티이 코포레이션 타이밍 정보 구성 방법, 장치, 저장매체 및 시스템
EP3896903A4 (en) * 2018-12-12 2022-08-24 ZTE Corporation TIME INFORMATION TRANSMISSION METHOD, DEVICE AND SYSTEM, AND STORAGE MEDIUM
KR102672745B1 (ko) * 2018-12-12 2024-06-05 지티이 코포레이션 타이밍 정보 구성 방법, 장치, 저장매체 및 시스템
US12052678B2 (en) 2018-12-12 2024-07-30 Zte Corporation Timing information configuration method, device and system, and storage medium
CN112586056A (zh) * 2018-12-28 2021-03-30 Oppo广东移动通信有限公司 用于自干扰消除的方法、终端设备和网络设备
CN112586056B (zh) * 2018-12-28 2023-11-21 Oppo广东移动通信有限公司 用于自干扰消除的方法、终端设备和网络设备
WO2020216019A1 (zh) * 2019-04-26 2020-10-29 上海朗帛通信技术有限公司 一种用于无线通信的通信节点中的方法和装置
US11962453B2 (en) 2019-04-26 2024-04-16 Shanghai Langbo Communication Technology Company Limited Method and device in communication node used for wireless communication

Also Published As

Publication number Publication date
EP3522469A4 (en) 2020-06-10
CN107872417B (zh) 2022-03-01
EP3522469A1 (en) 2019-08-07
EP3522469B1 (en) 2022-10-12
CN107872417A (zh) 2018-04-03

Similar Documents

Publication Publication Date Title
WO2018059481A1 (zh) 数据发送、接收方法及装置
AU2018222993B2 (en) Scaled symbols for a self-contained time division duplex (tdd) subframe structure
US10305645B2 (en) Frame structure for filter bank multi-carrier (FBMC) waveforms
TWI737783B (zh) 彈性資源使用方法
CA3047827C (en) Frequency and time domain multiplexing for low peak-to-average power ratio (papr) waveform design with multiple streams
EP3155858B1 (en) Techniques for enhancing frame structure and listen before talk procedure (lbt) for transmissions using an unlicensed radio frequency spectrum band
US10602392B2 (en) Wireless communication method and wireless communication apparatus
RU2754583C1 (ru) Выделение временной области для повторений
US10091819B2 (en) Systems and methods for timeslot structure and synchronization in licensed-assisted access
WO2020143745A1 (zh) V2x的通信方法及装置、存储介质和电子装置
WO2018210243A1 (zh) 一种通信方法和装置
WO2020135417A1 (zh) 由用户设备执行的方法以及用户设备
CN109327300A (zh) 执行/支持上行链路载波切换的方法、用户设备和基站
JP2022002392A (ja) 交差ニューメロロジースケジューリングのための方法及びデバイス
WO2018228397A1 (zh) 一种载波分组方法及设备
CN110351848A (zh) 一种时域资源分配方法及装置
WO2018228586A1 (zh) 一种通信方法、网络设备及用户设备
US20220140972A1 (en) Uplink Reference Signal Sending Method, Uplink Reference Signal Receiving Method, And Apparatus
WO2016033956A1 (zh) 循环前缀类型的配置方法及装置
WO2021032021A1 (zh) 一种通信方法及装置
CN109891965A (zh) 上行传输控制方法及其装置、通信系统
JP7174859B2 (ja) ランダムアクセス方法、装置、及びシステム
AU2017334335A1 (en) Virtual symbol splitting techniques in wireless communications
WO2020063479A1 (zh) 由用户设备执行的方法以及用户设备
US9491725B2 (en) User equipment and methods for device-to-device communication over an LTE air interface

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17854931

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2017854931

Country of ref document: EP

Effective date: 20190429