WO2018171601A1 - 传输信号的方法和装置 - Google Patents

传输信号的方法和装置 Download PDF

Info

Publication number
WO2018171601A1
WO2018171601A1 PCT/CN2018/079717 CN2018079717W WO2018171601A1 WO 2018171601 A1 WO2018171601 A1 WO 2018171601A1 CN 2018079717 W CN2018079717 W CN 2018079717W WO 2018171601 A1 WO2018171601 A1 WO 2018171601A1
Authority
WO
WIPO (PCT)
Prior art keywords
frequency band
bandwidth capability
terminal
threshold
frequency
Prior art date
Application number
PCT/CN2018/079717
Other languages
English (en)
French (fr)
Inventor
李俊超
阿布多利贾瓦德
唐浩
汪凡
唐臻飞
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP18771936.4A priority Critical patent/EP3567959A4/en
Publication of WO2018171601A1 publication Critical patent/WO2018171601A1/zh
Priority to US16/579,844 priority patent/US11134497B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/21Control channels or signalling for resource management in the uplink direction of a wireless link, i.e. towards the network
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/04Wireless resource allocation
    • H04W72/044Wireless resource allocation based on the type of the allocated resource
    • H04W72/0453Resources in frequency domain, e.g. a carrier in FDMA
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/20Control channels or signalling for resource management
    • H04W72/23Control channels or signalling for resource management in the downlink direction of a wireless link, i.e. towards a terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W28/00Network traffic management; Network resource management
    • H04W28/16Central resource management; Negotiation of resources or communication parameters, e.g. negotiating bandwidth or QoS [Quality of Service]
    • H04W28/18Negotiating wireless communication parameters
    • H04W28/20Negotiating bandwidth
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W88/00Devices specially adapted for wireless communication networks, e.g. terminals, base stations or access point devices
    • H04W88/02Terminal devices
    • H04W88/06Terminal devices adapted for operation in multiple networks or having at least two operational modes, e.g. multi-mode terminals

Definitions

  • the present application relates to the field of communications technologies, and in particular, to a method and apparatus for transmitting signals.
  • the fifth generation communication system adopts New Radio Access Technology (NR), which can support communication in multiple frequency bands (for example, a frequency band smaller than 3 GHz, a frequency band of 3 GHz to 6 GHz, and a frequency band larger than 6 GHz).
  • NR New Radio Access Technology
  • the design of existing bandwidth capabilities has been unable to meet the needs of multi-band communication systems.
  • the embodiments of the present application provide a method and apparatus for transmitting signals, so as to improve flexibility of resource allocation in a multi-band communication system.
  • the present application provides a method of transmitting a signal for a multi-band communication system.
  • the method includes: the terminal reporting, to the radio access network node, bandwidth capability information of the first frequency band of the multiple frequency bands, the base station allocates resources for the terminal according to the bandwidth capability information, and the base station and the terminal send or receive signals on the allocated resources.
  • the working frequency band of the terminal includes the first frequency band, and the bandwidth capability information of the first frequency band is used to indicate the bandwidth capability of the first frequency band of the terminal.
  • the bandwidth capability of the first frequency band is not less than the first threshold, and the first threshold is determined according to the maximum bandwidth capability of the terminal. Or determining according to the first frequency band or the subcarrier spacing of the first frequency band.
  • the present application provides a method of transmitting a signal for a multi-band communication system.
  • the method includes: the radio access network node receives the bandwidth capability information of the first frequency band of the plurality of frequency bands reported by the terminal, the radio access network node allocates the resource according to the bandwidth capability information, and the radio access network node sends the resource on the allocated resource or receive signal.
  • the working frequency band of the terminal includes the first frequency band, and the bandwidth capability information of the first frequency band is used to indicate the bandwidth capability of the first frequency band of the terminal.
  • the bandwidth capability of the first frequency band is not less than the first threshold, and the first threshold is determined according to the maximum bandwidth capability of the terminal. Or determined according to the sub-carrier spacing of the first frequency band or the first frequency band.
  • the present application provides an apparatus for transmitting a signal, comprising: means or means for performing the steps of the above first aspect.
  • the present application provides an apparatus for transmitting a signal, comprising: means or means for performing the steps of the second aspect above.
  • the present application provides an apparatus for transmitting a signal, comprising at least one processing element and at least one storage element, wherein at least one storage element is for storing a program and data, and at least one processing element is for performing the first aspect of the present application or The method provided by the second aspect.
  • the present application provides an apparatus for transmitting a signal, comprising at least one processing element (or chip) for performing the method of the above first or second aspect.
  • the present application provides a program for transmitting a signal, the program, when executed by a processor, for performing the method of the first aspect or the second aspect above.
  • a program product such as a computer readable storage medium, comprising the program of the seventh aspect is provided.
  • the minimum threshold is designed for the bandwidth capability of the terminal, and the minimum threshold is defined as being determined according to the maximum bandwidth capability of the terminal or determined according to the first frequency band or the subcarrier spacing of the first frequency band, so that the wireless connection is performed.
  • the network access node can allocate resources and perform signal transmission according to different bandwidth capabilities reported by the terminal, thereby improving resource allocation flexibility.
  • the first threshold is determined according to the maximum bandwidth capability of the terminal, and the maximum bandwidth capability is a minimum of the radio bandwidth capability and the baseband bandwidth capability of the terminal.
  • the baseband bandwidth capability is the product of the subcarrier spacing of the first frequency band and the maximum number of FFT points used by the terminal.
  • the baseband bandwidth capability is the product of the subcarrier spacing of the first frequency band and the number of sampling points employed by the terminal.
  • the first threshold is less than or equal to a minimum of the above-described product and the radio frequency bandwidth capabilities of the terminal.
  • the first threshold is determined according to the first frequency band, and the frequency domain widths of the synchronization signal blocks corresponding to different frequency bands of the multiple frequency bands are different, and the first thresholds corresponding to different frequency bands of the multiple frequency bands are different.
  • the first threshold corresponding to the first frequency band is greater than or equal to the frequency domain width of the synchronization signal block corresponding to the first frequency band.
  • the first threshold is determined according to the subcarrier spacing of the first frequency band, and the frequency domain width of the synchronization signal block corresponding to different subcarrier spacings of the multiple frequency bands is different, and the first subcarrier spacing of the multiple frequency bands corresponds to the first The threshold is different.
  • the first threshold corresponding to the first frequency band is greater than or equal to the frequency domain width of the synchronization signal block corresponding to the first frequency band.
  • the bandwidth capability information of the first frequency band is used to indicate the downlink bandwidth capability or the uplink bandwidth capability of the first frequency band of the terminal.
  • the first threshold is not greater than a minimum of the maximum bandwidth of the terminal in all frequency bands.
  • the first threshold is not greater than a minimum of a maximum bandwidth of the terminal at all subcarrier intervals of a given frequency band. Different frequency bands with different first thresholds help to increase the flexibility of resource allocation.
  • the bandwidth capability of the terminal is less than the system bandwidth in some of the plurality of frequency bands. Further, the bandwidth capability of the terminal is less than or equal to the maximum bandwidth capability of the terminal.
  • the bandwidth capability information of the first frequency band is used to indicate the downlink bandwidth capability of the first frequency band of the terminal, and the terminal sends or receives a signal on the resource allocated by the radio access network node according to the bandwidth capability information, including: The radio access network node receives the downlink signal according to the resource allocated by the bandwidth capability information, where the method of the first aspect further includes: the terminal reporting, to the radio access network node, the second bandwidth capability information of the first frequency band of the multiple frequency bands, The second bandwidth capability information is used to indicate the uplink bandwidth capability of the first frequency band of the terminal, where the uplink bandwidth capability of the first frequency band is not less than a second threshold, and the second threshold is based on the maximum bandwidth capability of the terminal or according to the first frequency band or the first The subcarrier spacing of the frequency band is determined; the terminal sends an uplink signal on the resource allocated by the radio access network node according to the second bandwidth capability information.
  • the second threshold is less than or equal to the first threshold.
  • the bandwidth capability information of the first frequency band is used to indicate the downlink bandwidth capability of the first frequency band of the terminal, and the radio access network node sends or receives a signal on the allocated resource, including: the radio access network node is allocated.
  • Receiving a downlink signal where the method of the second aspect further includes: the radio access network node receiving the second bandwidth capability information of the first frequency band of the plurality of frequency bands reported by the terminal, where the second bandwidth capability information is used for indicating The uplink bandwidth capability of the first frequency band of the terminal, the uplink bandwidth capability of the first frequency band is not less than a second threshold, and the second threshold is determined according to the maximum bandwidth capability of the terminal or according to the subcarrier spacing of the first frequency band or the first frequency band; The access network node transmits an uplink signal on the resource allocated according to the second bandwidth capability information.
  • the second threshold is less than or equal to the first threshold.
  • the definition of the minimum threshold of the upstream bandwidth capability may not affect the complete reception of the synchronization signal block, the definition of the minimum threshold of the upstream bandwidth capability is independent of the definition of the minimum threshold of the downlink bandwidth capability to help reduce the complexity of the design.
  • FIG. 1 is a schematic system architecture diagram of a communication system in accordance with one embodiment of the present application.
  • FIG. 2 is a schematic flow chart of a method for transmitting a signal according to an embodiment of the present application.
  • FIG. 3 is a schematic flowchart of a process of transmitting a signal according to another embodiment of the present application.
  • FIG. 4 is a schematic flow chart of a process of transmitting a signal according to still another embodiment of the present application.
  • FIG. 5 is a schematic structural diagram of an apparatus for transmitting a signal according to an embodiment of the present application.
  • FIG. 6 is a schematic structural diagram of an apparatus for transmitting a signal according to another embodiment of the present application.
  • FIG. 7 is a schematic structural diagram of a radio access network node according to an embodiment of the present disclosure.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present application.
  • Terminal also known as User Equipment (UE), mobile station (MS), mobile terminal (MT), etc.
  • UE User Equipment
  • MS mobile station
  • MT mobile terminal
  • UE Voice and/or Data connectivity devices
  • handheld devices with wireless connectivity in-vehicle devices, and the like.
  • terminals are: mobile phones, tablets, laptops, PDAs, mobile Internet devices (MIDs), wearable devices, such as smart watches, smart bracelets, meters Stepper, computer with wireless transceiver function, virtual reality (VR) terminal device, augmented reality (AR) terminal device, wireless terminal in industrial control, self-driving (self driving) Wireless terminal in wireless terminal, wireless terminal in remote medical surgery, wireless terminal in smart grid, wireless terminal in transportation safety, wireless terminal in smart city , wireless terminals in smart homes, etc.
  • VR virtual reality
  • AR augmented reality
  • the Radio Access Network is the part of the network that connects the terminal to the wireless network.
  • a RAN node or device is a node or device in a radio access network, and may also be referred to as a base station.
  • RAN nodes are: gNB, Transmission Reception Point (TRP), evolved Node B (eNB), Radio Network Controller (RNC), and Node B (Node).
  • B, NB Base Station Controller (BSC), Base Transceiver Station (BTS), Home Base Station (for example, Home evolved NodeB, or Home Node B, HNB), Baseband Unit (BaseBand Unit, BBU), or Wifi Access Point (AP), etc.
  • the RAN may include a Centralized Unit (CU) node and a Distributed Unit (DU) node.
  • CU Centralized Unit
  • DU Distributed Unit
  • This structure separates the protocol layers of the eNB in Long Term Evolution (LTE).
  • LTE Long Term Evolution
  • the functions of some protocol layers are centrally controlled in the CU.
  • the functions of some or all of the remaining protocol layers are distributed in the DUs.
  • the embodiments of the present application do not limit the specific technologies and specific device modes adopted by the radio access network device.
  • Multiple means two or more, and other quantifiers are similar. "and/or”, describing the association relationship of the associated objects, indicating that there may be three relationships, for example, A and/or B, which may indicate that there are three cases where A exists separately, A and B exist at the same time, and B exists separately.
  • the character "/" generally indicates that the contextual object is an "or" relationship.
  • system bandwidth also known as maximum carrier bandwidth, refers to the maximum channel bandwidth per carrier (maximum channel bandwidth per carrier).
  • LTE long term evolution
  • the system operates in a single frequency band less than 3 GHz.
  • the system bandwidth is 20 MHz
  • the minimum bandwidth capability supported by the terminal is defined as 20 MHz, which is the same as the system bandwidth.
  • the minimum supported bandwidth capability of all terminals is not less than the system bandwidth. Therefore, the RAN node does not need to know the bandwidth capability of the terminal, and decides to work under the system bandwidth of 1.44M to 20M.
  • the bandwidth supported by the terminal in different frequency bands may be different, if the minimum bandwidth capacity is still defined for the terminal for different frequency bands, the flexibility of resource configuration may be reduced or the design complexity may be increased.
  • Sex For example, in an NR system, the system bandwidth may be 400 MHz, and the bandwidth supported by the terminal may be greater than or equal to 100 MHz or less than 100 MHz, that is, the system bandwidth may be greater than the bandwidth supported by the terminal.
  • the embodiment of the present application defines the minimum bandwidth capability of the terminal for different frequency bands or different terminals, and the terminal can report the bandwidth capability that meets the minimum constraint to the RAN node, so that the RAN node can report according to the terminal.
  • Bandwidth capability allocates resources and increases the flexibility of resource allocation.
  • the terminal may report the bandwidth capability to the RAN node, and the bandwidth capability satisfies the threshold constraint, and the threshold may be determined according to the maximum bandwidth capability of the terminal, or may be according to the first frequency band or the first frequency band.
  • the sub-carrier spacing is determined.
  • the terminal can report the broadband capability that meets the foregoing threshold to the RAN node, so that the RAN node can allocate resources according to the bandwidth capability reported by the terminal, thereby improving the flexibility of resource configuration.
  • FIG. 1 is a schematic system architecture diagram of a communication system 100 in accordance with one embodiment of the present application.
  • the mobile communication system includes a RAN node (such as base station 110 in FIG. 1) and at least one terminal (such as terminal 120 and terminal 130 in FIG. 1).
  • the terminal is connected to the RAN node in a wireless manner.
  • the RAN node can be connected to the core network device by wireless or wired (not shown in Figure 1).
  • the core network device and the RAN node may be independent physical devices, or may integrate the functions of the core network device with the logical functions of the RAN node on the same physical device, or may integrate a part of the core network on one physical device.
  • the terminal can be fixed or mobile.
  • the RAN nodes and terminals can be deployed on land, including indoors or outdoors, handheld or on-board; they can also be deployed on the water; they can also be deployed on airborne aircraft, balloons and satellites.
  • the application scenario of the RAN node and the terminal is not limited.
  • the communication system of the embodiment of the present application is a multi-band communication system capable of supporting communication of a plurality of frequency bands (for example, a frequency band smaller than 3 GHz, a frequency band of 3 GHz to 6 GHz, and a frequency band larger than 6 GHz).
  • FIG. 1 is only a schematic diagram, and other communication devices may be included in the communication system, such as a wireless relay device and a wireless backhaul device (not shown).
  • the embodiment of the present application does not limit the number of core network devices, RAN nodes, and terminals included in the mobile communication system.
  • FIG. 2 is a schematic flow chart of a method of transmitting a signal according to an embodiment of the present application. This method is used in a multi-band communication system. The method can be performed by the RAN node or terminal of FIG. The method of Figure 2 includes the following.
  • the terminal reports the bandwidth capability information of the first frequency band of the multiple frequency bands to the RAN node, where the working frequency band of the terminal includes the first frequency band, and the bandwidth capability information of the first frequency band is used to indicate the bandwidth capability of the first frequency band of the terminal.
  • the bandwidth capability of a frequency band is not less than a first threshold, and the first threshold is determined according to a maximum bandwidth capability of the terminal or determined according to a first frequency band or a subcarrier spacing of the first frequency band.
  • the first frequency band may be any one of a plurality of frequency bands.
  • Each of the plurality of frequency bands may include at least one subcarrier spacing.
  • different frequency bands may include the same or different subcarrier spacing.
  • a frequency band smaller than 3 GHz may include two subcarrier spacings of 15 kHz and 30 kHz
  • a frequency band of 3 kHz to 6 GHz may use two subcarrier spacings of 30 kHz and 60 kHz.
  • different sub-carrier spacings may be used for different frequency bands.
  • a frequency band less than 3 GHz may use a sub-carrier spacing of 30 kHz
  • a frequency band of 3 GHz to 6 GHz may use a sub-carrier spacing of 60 kHz.
  • the maximum bandwidth capability of the terminal refers to the maximum bandwidth that the terminal can theoretically provide.
  • the maximum bandwidth capability may be the minimum of the radio frequency bandwidth capability (ie, the maximum radio frequency bandwidth) and the baseband bandwidth capability (the maximum baseband bandwidth).
  • the bandwidth capability of the first frequency band of the terminal is also referred to as the supported bandwidth of the terminal in the first frequency band, which is also referred to as the actual maximum bandwidth, and the actual maximum bandwidth may be designed to be not less than the first threshold.
  • the first threshold may refer to a minimum of bandwidth supported by the terminal.
  • the bandwidth capability information of the first frequency band reported by the terminal is less than or equal to the maximum bandwidth capability of the terminal, that is, the bandwidth capability information of any working frequency band actually reported by the terminal is less than or equal to the maximum bandwidth that can be provided by the terminal.
  • the RAN node may allocate resources according to the bandwidth capability information reported by the terminal.
  • the RAN node may allocate resources based on preset rules and bandwidth capability information reported by the terminal.
  • the terminal is allocated resources according to at least one of system bandwidth and network status (eg, network status such as throughput, load, congestion, etc.) and bandwidth capability information reported by the terminal.
  • system bandwidth and network status eg, network status such as throughput, load, congestion, etc.
  • bandwidth capability information reported by the terminal e.g., bandwidth capability information reported by the terminal.
  • the embodiment of the present application does not limit the manner in which the resource is allocated.
  • the resource may be allocated according to the indication of the high layer signaling and the bandwidth capability reported by the terminal.
  • the RAN node may allocate part of the bandwidth resource to the terminal in the entire system bandwidth, or the RAN node may also divide a subband in the system bandwidth and allocate bandwidth resources to the terminal in the subband.
  • the RAN node and the terminal transmit or receive signals on the allocated resources.
  • the RAN node When the RAN node allocates downlink resources to the terminal, the RAN node sends a signal on the allocated resources, and the terminal receives the signal; when the RAN node allocates the uplink resource to the terminal, the terminal sends a signal on the allocated resource, and the RAN node receives the signal.
  • the bandwidth capacity supported by the terminal in some frequency bands may be smaller than the system bandwidth, while the bandwidth capacity supported in other frequency bands may also be greater than the system bandwidth.
  • the minimum bandwidth capability supported by the terminal is no longer suitable for use with a uniform threshold.
  • the bandwidth capability of a certain frequency band of the terminal can be designed to be not less than a certain minimum value (ie, the first threshold).
  • the first threshold may be determined according to the maximum bandwidth capability of the terminal. Since the maximum bandwidth capability of the terminal is different, the bandwidth capability sent by the terminal to the RAN node may be at the first threshold and the maximum bandwidth capability. Flexibly determined according to actual needs.
  • the first threshold may also be determined according to the first frequency band or the subcarrier spacing of the first frequency band.
  • different first thresholds may be designed for the terminals for different frequency bands, or different first thresholds may be designed for the terminals for different sub-band spacings.
  • different frequency bands may have different subcarrier spacings.
  • the first threshold may be defined as a value corresponding to different subcarrier spacings, for example, the first frequency band has a first subcarrier spacing, and the first The second frequency band has a second subcarrier spacing, such that the first threshold corresponding to the first subcarrier spacing of the first frequency band may be different from the first threshold corresponding to the second subcarrier spacing.
  • the RAN node may receive the bandwidth capability information reported by the terminal, allocate resources to the terminal according to the bandwidth capability of the terminal indicated by the bandwidth capability information of the terminal, and perform the resource with the terminal on the allocated resource. Communication. For example, the RAN node needs to meet the bandwidth requirements of the terminal device when performing resource configuration.
  • the RAN node is made by designing a minimum threshold for the bandwidth capability of the terminal, and defining the minimum threshold as being determined according to the maximum bandwidth capability of the terminal or according to the first frequency band or the subcarrier spacing of the first frequency band. Resources can be allocated and signal transmitted according to different bandwidth capabilities reported by the terminal, which improves the flexibility of resource allocation.
  • the first threshold is determined according to the maximum bandwidth capability of the terminal, and the maximum bandwidth capability may be determined by the radio frequency bandwidth capability (ie, the maximum radio frequency bandwidth) supported by the terminal and the baseband bandwidth capability (the maximum baseband bandwidth), for example, the maximum.
  • the bandwidth capability is the minimum of the terminal's RF bandwidth capability and baseband bandwidth capability.
  • the baseband bandwidth capability is the product of the subcarrier spacing of the first frequency band and the maximum number of FFT points used by the terminal.
  • the above baseband bandwidth capability may also be the product of the subcarrier spacing of the first frequency band and the maximum number of sampling points used by the terminal.
  • the first threshold is less than or equal to a minimum of the product and the radio frequency bandwidth capabilities of the terminal.
  • the system bandwidth is 200MHz
  • the terminal's RF bandwidth capability is also 200MHz
  • the baseband bandwidth capability of the terminal can be 100MHz.
  • the minimum bandwidth capability of the terminal is 100MHz
  • the first threshold can be designed to be less than or equal to 100MHz. For example, 80MHz.
  • the flexibility of resource allocation is improved, and the design complexity is reduced.
  • the reliability of signal transmission is ensured by defining the maximum bandwidth capability as the minimum of the radio frequency bandwidth capability and the baseband bandwidth capability, and defining the first threshold as being less than or equal to the minimum value.
  • the first threshold is determined according to the first frequency band, and the frequency domain widths of the synchronization signal blocks corresponding to different frequency bands of the multiple frequency bands are different, and the first thresholds corresponding to different frequency bands of the multiple frequency bands are different.
  • the synchronization signal block may be a time-frequency resource block, and the synchronization signal may include a main information block in addition to a primary synchronization signal (primary SS) and/or a secondary synchronization signal (secondary SS). (MIB).
  • primary SS primary synchronization signal
  • secondary SS secondary synchronization signal
  • MIB secondary synchronization signal
  • the frequency domain widths of the synchronization signal blocks of different frequency bands may be different.
  • the synchronization signal blocks with sub-carrier spacing of 30 kHz, 120 kHz, and 240 kHz respectively correspond to the frequency band of less than 3 GHz, the frequency band of 3 GHz to 6 GHz, and greater than In the 6 GHz band, the corresponding frequency domain widths are 10 MHz, 40 MHz, and 80 MHz, respectively.
  • the frequency domain width is also referred to as the transmission bandwidth.
  • the first threshold corresponding to the first frequency band is greater than or equal to the frequency domain width of the synchronization signal block corresponding to the first frequency band.
  • different maximum FFT points may be designed for the terminal for different frequency bands or subcarrier intervals, thereby affecting the baseband bandwidth capability of the terminal.
  • the first threshold may also be determined according to the minimum bandwidth capability of the terminal. .
  • the frequency domain width of the synchronization signal block may be 10 MHz. Therefore, the first threshold value may be designed to be greater than or equal to 10 MHz; when the first frequency band is a frequency band of 3 GHz to 6 GHz, the synchronization signal is The frequency domain width may be 40 MHz. Therefore, the first threshold may be designed to be greater than or equal to 40 MHz; when the first frequency band is greater than 6 GHz, in this case, the frequency domain width of the synchronization signal may be 80 MHz, therefore, the first The threshold can be designed to be greater than or equal to 80 MHz.
  • the terminal can completely receive the synchronization signal blocks of different frequency bands, thereby ensuring reliable signal transmission. Sex, reducing design complexity.
  • the first threshold is determined according to the subcarrier spacing of the first frequency band, and the frequency domain width of the synchronization signal block corresponding to different subcarrier spacings of the multiple frequency bands is different, and the different subcarrier spacing corresponding to the multiple frequency bands corresponds to the first A threshold is different.
  • the first threshold corresponding to the first frequency band is greater than or equal to the frequency domain width of the synchronization signal block corresponding to the first frequency band.
  • the first threshold may be designed to be greater than or equal to 10 MHz; the first frequency band is 3 GHz to 6 GHz.
  • the subcarrier spacing is 120 kHz, and the frequency domain width of the synchronization signal may be 40 MHz. Therefore, the first threshold may be designed to be greater than or equal to 40 MHz; when the first frequency band is greater than 6 GHz, the subcarrier spacing is 240 kHz.
  • the frequency domain width of the sync signal may be 80 MHz, and therefore, the first threshold may be designed to be greater than or equal to 80 MHz.
  • the terminal can completely receive the synchronization signal blocks of different frequency bands, thereby ensuring the reliability of signal transmission and reducing the design. the complexity.
  • the values of the foregoing frequency bands, subcarrier spacings, and frequency domain widths are merely examples. In different system scenarios, the foregoing frequency bands, subcarrier spacings, and frequency domain widths may be other values.
  • the bandwidth capability information of the first frequency band is used to indicate the downlink bandwidth capability or the uplink bandwidth capability of the first frequency band of the terminal.
  • the above scheme is applicable to both uplink signal transmission and downlink signal transmission.
  • the bandwidth capability information of the first frequency band is used to indicate the downlink bandwidth capability of the first frequency band of the terminal, and the terminal sends or receives a signal on the resource allocated by the network side device according to the bandwidth capability information, including: the terminal is in the network.
  • the side device receives the downlink signal according to the resource allocated by the bandwidth capability information, where the method further includes: the terminal reporting the second bandwidth capability information of the first frequency band of the multiple frequency bands to the RAN node, where the second bandwidth capability information is used to indicate the terminal
  • the uplink bandwidth capability of the first frequency band, the uplink bandwidth capability of the first frequency band is not less than a second threshold, and the second threshold is determined according to the maximum bandwidth capability of the terminal or according to the first frequency band or the subcarrier spacing of the first frequency band; the terminal is in the network.
  • the side device sends an uplink signal on the resource allocated according to the second bandwidth capability information.
  • the second threshold is less than or equal to the first threshold.
  • the definition of the minimum threshold of the upstream bandwidth capability may not affect the complete reception of the synchronization signal block, the definition of the minimum threshold of the upstream bandwidth capability is independent of the definition of the minimum threshold of the downlink bandwidth capability to help reduce the complexity of the design.
  • first bandwidth capability information and the second bandwidth capability information may be carried in different messages, or may be carried in the same message.
  • a difference between a first threshold corresponding to a different one of the plurality of frequency bands and a second threshold is different. Since the minimum value of the uplink bandwidth capability may be different from the minimum value of the downlink bandwidth capability, the terminal uplink bandwidth capability requirement may be reduced, thereby reducing the terminal uplink radio frequency and baseband design complexity.
  • FIG. 3 is a schematic flowchart of a process of transmitting a signal according to another embodiment of the present application.
  • Figure 3 is an example of the method of Figure 2.
  • This embodiment uses a RAN node as a base station as an example for description.
  • the terminal determines bandwidth capability information of the terminal.
  • the terminal may determine the bandwidth capability supported by the terminal according to a preset minimum value of the supported bandwidth capability (ie, the first threshold in the embodiment of FIG. 2).
  • the bandwidth capability is not less than the first threshold and does not exceed the maximum bandwidth capability of the terminal (ie, the minimum of the RF bandwidth capability and the baseband bandwidth capability).
  • the terminal bandwidth capability information reported by the terminal may be an exact bandwidth value or a number or an index indicating the bandwidth value.
  • the embodiment of the present application is not limited thereto, and the bandwidth capability information may also include the radio frequency bandwidth and the FFT point.
  • the base station can estimate the bandwidth capability of the terminal according to the radio frequency bandwidth and the number of FFT points reported by the terminal.
  • the terminal may determine the bandwidth capability that the terminal can support according to any combination of the service throughput requirements, the processing delay, and the power consumption, so that the bandwidth capability reported by the terminal may be smaller than the maximum bandwidth capability of the terminal, or the terminal.
  • the reported RF bandwidth capability, FFT points are less than the RF bandwidth capability, and the maximum FFT points. For example, when the terminal needs to obtain a large throughput, the reported bandwidth capability can be close to the maximum bandwidth capability of the terminal, or when the terminal requires a lower processing delay or lower power consumption, the bandwidth capability reported by the terminal can be smaller.
  • the terminal bandwidth capability reported by the terminal can satisfy the following conditions: the first threshold ⁇ the terminal bandwidth capability ⁇ min (the terminal radio frequency bandwidth capability, the maximum FFT point number ⁇ the subcarrier spacing).
  • the maximum FFT point number ⁇ subcarrier spacing is the baseband bandwidth capability of the terminal.
  • the maximum bandwidth capability of the terminal under each SCS can be calculated according to the above formula:
  • the subcarrier spacing corresponding to the frequency band less than 3 GHz is 15 kHz and 30 kHz, and the corresponding maximum bandwidth is 61 MHz and 122 MHz; the subcarrier spacing corresponding to the frequency band of 3 to 6 GHz is 30 kHz and 60 kHz, and the corresponding maximum bandwidth is 122 MHz and 200 MHz.
  • the sub-carrier spacing corresponding to the frequency band greater than 6 GHz is 60 kHz, 120 kHz, and 240 kHz, and the corresponding maximum bandwidth is 200 MHz.
  • the definition of the first threshold may be at least two, as exemplified by Table 1 as follows:
  • the first threshold may be defined as a minimum value that is not greater than the maximum bandwidth of the terminal in all possible frequency bands (or SCS). Referring to Table 1, the minimum value is the minimum value of the rightmost column of the above table, that is, the first threshold is not more than 61 MHz.
  • the first threshold may be defined as a minimum value that is not greater than the maximum bandwidth of all possible SCSs of the terminal in a given frequency band. Referring to Table 1, when the terminal operates in the ⁇ 3 GHz band, the first threshold is not greater than 61 MHz; when the terminal operates in the 3 GHz to 6 GHz band, the first threshold is not greater than 122 MHz; when the terminal operates in the >6 GHz band, the first threshold is not More than 200MHz.
  • the synchronization signal is a frequency division multiplexing (FDM) combination of a plurality of sub-sequences.
  • the length of each subsequence is a predefined size, and several subcarriers are reserved between the frequency domain resources of each subsequence as a guard interval.
  • the synchronization signal is detected by receiving a subsequence; for large bandwidth users, the synchronization signal is detected by receiving a plurality of subsequences.
  • different frequency bands have different frequency domain widths. Therefore, in order to completely receive the sync signal block to reduce design complexity, the first threshold may be further defined to be greater than or equal to the frequency domain width of the sync signal block.
  • the first threshold is also possible to limit only the first threshold to be greater than or equal to the frequency domain width of the sync signal block.
  • the terminal reports bandwidth capability information to the base station.
  • the terminal can report the bandwidth capability information through the physical uplink channel.
  • the terminal may be a physical uplink channel such as a physical random access channel (PRACH), a physical uplink control channel (PUCCH), or a physical uplink shared channel (PUSCH).
  • PRACH physical random access channel
  • PUCCH physical uplink control channel
  • PUSCH physical uplink shared channel
  • the terminal can report the bandwidth capability to the base station in the random access process.
  • the terminal can report the bandwidth capability in multiple ways. For example, the following existing signaling messages can be carried:
  • the terminal may report the initial access, for example, by using or preamble reporting, and is applicable to the terminal to initiate a contention-based random access procedure or a non-contention based random access procedure, where the sequence and/or parameters of the preamble are used.
  • the set eg, subcarrier spacing
  • the set may be determined based on the terminal bandwidth capabilities. In this way, the preamble sequence and/or the set of parameters can be utilized to indicate the bandwidth capabilities of the terminal.
  • the terminal reports through the message 3 (Msg.3), which is suitable for the terminal to initiate a non-contention based random access procedure, and the terminal bandwidth capability information is carried in Msg.3.
  • Msg.3 message 3
  • the embodiment of the present application is not limited to the foregoing manner of reporting the bandwidth capability.
  • the terminal may also report the bandwidth capability information by using a dedicated signaling message.
  • the base station allocates resources according to the bandwidth capability information reported by the terminal.
  • the base station can allocate resources to the terminal according to the bandwidth capability of the terminal. For example, the base station allocates resources with a bandwidth of Z ⁇ Y to the terminal in the system bandwidth X.
  • the base station performs resource scheduling according to resources allocated for the terminal.
  • the base station performs resource scheduling by using a semi-static scheduling mode and a dynamic scheduling mode.
  • the resource scheduling process in the embodiment of the present application is similar to the conventional resource scheduling process, and details are not described herein again.
  • the terminal and the base station perform signal transmission according to the allocated resources.
  • the process of transmitting signals by the terminal and the base station according to the allocated resources is similar to the conventional signal transmission process, and details are not described herein again.
  • FIG. 4 is a schematic flow chart of a process of transmitting a signal according to still another embodiment of the present application.
  • This embodiment uses a RAN node as a base station as an example for description.
  • the terminal determines bandwidth capability information of the terminal. 405 is similar to 305 and will not be described here.
  • the terminal reports bandwidth capability information to the base station. 410 is similar to 310 and will not be described here.
  • the base station divides the subband according to the bandwidth capability information reported by the terminal.
  • the base station divides a subband with a bandwidth Y in the system bandwidth X for the terminal.
  • the base station notifies the terminal of the subband division result, and is used to indicate the subband divided for the terminal.
  • the base station allocates resources in a subband allocated to the terminal.
  • the base station can allocate resources with a bandwidth of Z ⁇ Y to the terminal within the subband.
  • the base station performs resource scheduling according to resources allocated for the terminal.
  • the base station performs resource scheduling by using a semi-static scheduling mode and a dynamic scheduling mode.
  • the resource scheduling process in the embodiment of the present application is similar to the conventional resource scheduling process, and details are not described herein again.
  • the terminal and the base station perform signal transmission according to the allocated resources.
  • the process of transmitting signals by the terminal and the base station according to the allocated resources is similar to the conventional signal transmission process, and details are not described herein again.
  • FIG. 5 is a block diagram of an apparatus 500 for transmitting signals in accordance with an embodiment of the present application.
  • Apparatus 500 is used in a multi-band communication system, such as the terminal of FIG.
  • the device 500 includes a reporting unit 510 and a transceiver unit 520.
  • the reporting unit 510 reports the bandwidth capability information of the first frequency band of the plurality of frequency bands to the radio access network node, where the working frequency band of the terminal includes the first frequency band, and the bandwidth capability information of the first frequency band is used to indicate the bandwidth of the first frequency band of the terminal. Capabilities, the bandwidth capability of the first frequency band is not less than a first threshold, and the first threshold is determined according to a maximum bandwidth capability of the terminal or determined according to a first frequency band or a subcarrier spacing of the first frequency band.
  • the transceiver unit 520 transmits or receives a signal on a resource allocated by the radio access network node according to the bandwidth capability information.
  • the RAN node is made by designing a minimum threshold for the bandwidth capability of the terminal, and defining the minimum threshold as being determined according to the maximum bandwidth capability of the terminal or according to the first frequency band or the subcarrier spacing of the first frequency band. Resources can be allocated and signal transmitted according to different bandwidth capabilities reported by the terminal, which improves the flexibility of resource allocation.
  • the first threshold is determined according to the maximum bandwidth capability of the terminal, and the maximum bandwidth capability is a minimum of the radio frequency bandwidth capability and the baseband bandwidth capability of the terminal.
  • the baseband bandwidth capability is a product of a subcarrier spacing of the first frequency band and a maximum FFT point number used by the terminal.
  • the first threshold is less than or equal to a minimum of the product and the radio frequency bandwidth capabilities of the terminal.
  • the first threshold is determined according to the first frequency band, and the frequency domain widths of the synchronization signal blocks corresponding to different frequency bands of the multiple frequency bands are different, and the first thresholds corresponding to different frequency bands of the multiple frequency bands are different.
  • the first threshold corresponding to the first frequency band is greater than or equal to the frequency domain width of the synchronization signal block corresponding to the first frequency band.
  • the first threshold is determined according to the subcarrier spacing of the first frequency band, and the frequency domain width of the synchronization signal block corresponding to different subcarrier spacings of the multiple frequency bands is different, and the different subcarrier spacing corresponding to the multiple frequency bands corresponds to the first A threshold is different.
  • the first threshold corresponding to the first frequency band is greater than or equal to the frequency domain width of the synchronization signal block corresponding to the first frequency band.
  • the bandwidth capability information of the first frequency band is used to indicate the downlink bandwidth capability or the uplink bandwidth capability of the first frequency band of the terminal.
  • the bandwidth capability information of the first frequency band is used to indicate the downlink bandwidth capability of the first frequency band of the terminal, and the transceiver unit 520 receives the downlink signal on the resource allocated by the radio access network node according to the bandwidth capability information.
  • the reporting unit 510 also reports the second bandwidth capability information of the first frequency band of the plurality of frequency bands to the radio access network node, where the second bandwidth capability information is used to indicate the uplink bandwidth capability of the first frequency band of the terminal, where the first frequency band is
  • the uplink bandwidth capability is not less than a second threshold, and the second threshold is determined according to the maximum bandwidth capability of the terminal or the subcarrier spacing according to the first frequency band or the first frequency band; the transceiver unit 520 is further allocated according to the second bandwidth capability information by the radio access network node.
  • the upstream signal is sent on the resource.
  • the second threshold is less than or equal to the first threshold.
  • a difference between a first threshold corresponding to a different one of the plurality of frequency bands and a second threshold is different.
  • FIG. 6 is a schematic structural diagram of an apparatus 600 for transmitting signals according to another embodiment of the present application.
  • Apparatus 600 is used in a multi-band communication system, such as the terminal of FIG.
  • the device 600 includes a transceiving unit 610 and an allocating unit 620.
  • the transceiver unit 610 is configured to receive bandwidth capability information of the first frequency band of the multiple frequency bands reported by the terminal, where the working frequency band of the terminal includes the first frequency band, and the bandwidth capability information of the first frequency band is used to indicate the bandwidth of the first frequency band of the terminal Capabilities, the bandwidth capability of the first frequency band is not less than a first threshold, and the first threshold is determined according to a maximum bandwidth capability of the terminal or determined according to a first frequency band or a subcarrier spacing of the first frequency band.
  • the allocating unit 620 is configured to allocate resources according to the bandwidth capability information.
  • the transceiver unit 610 is further configured to transmit or receive signals on the allocated resources.
  • the RAN node is made by designing a minimum threshold for the bandwidth capability of the terminal, and defining the minimum threshold as being determined according to the maximum bandwidth capability of the terminal or according to the first frequency band or the subcarrier spacing of the first frequency band. Resources can be allocated and signal transmitted according to different bandwidth capabilities reported by the terminal, which improves the flexibility of resource allocation.
  • the first threshold is determined according to the maximum bandwidth capability of the terminal, and the maximum bandwidth capability is a minimum of the radio frequency bandwidth capability and the baseband bandwidth capability of the terminal.
  • the baseband bandwidth capability is a product of a subcarrier spacing of the first frequency band and a maximum FFT point number used by the terminal.
  • the first threshold is less than or equal to a minimum of the product and the radio frequency bandwidth capabilities of the terminal.
  • the first threshold is determined according to the first frequency band, and the frequency domain widths of the synchronization signal blocks corresponding to different frequency bands of the multiple frequency bands are different, and the first thresholds corresponding to different frequency bands of the multiple frequency bands are different.
  • the first threshold corresponding to the first frequency band is greater than or equal to the frequency domain width of the synchronization signal block corresponding to the first frequency band.
  • the first threshold is determined according to the subcarrier spacing of the first frequency band, and the frequency domain width of the synchronization signal block corresponding to different subcarrier spacings of the multiple frequency bands is different, and the different subcarrier spacing corresponding to the multiple frequency bands corresponds to the first A threshold is different.
  • the first threshold corresponding to the first frequency band is greater than or equal to the frequency domain width of the synchronization signal block corresponding to the first frequency band.
  • the bandwidth capability information of the first frequency band is used to indicate the downlink bandwidth capability or the uplink bandwidth capability of the first frequency band of the terminal.
  • the bandwidth capability information of the first frequency band is used to indicate the downlink bandwidth capability of the first frequency band of the terminal, the transceiver unit 610 receives the downlink signal on the allocated resource, and the transceiver unit 610 further receives the multiple frequency bands reported by the terminal.
  • the second bandwidth capability information of the first frequency band where the second bandwidth capability information is used to indicate the uplink bandwidth capability of the first frequency band of the terminal, the uplink bandwidth capability of the first frequency band is not less than a second threshold, and the second threshold is determined according to the terminal
  • the maximum bandwidth capability is determined according to the first frequency band or the subcarrier spacing of the first frequency band; the transceiver unit 610 also transmits an uplink signal on the resource allocated according to the second bandwidth capability information.
  • the second threshold is less than or equal to the first threshold.
  • a difference between a first threshold corresponding to a different one of the plurality of frequency bands and a second threshold is different.
  • each unit of the device for transmitting signals is only a division of logic functions, and may be integrated into one physical entity or physically separated in whole or in part.
  • these units may all be implemented in the form of software by means of processing component calls; or may be implemented entirely in hardware; some units may be implemented in software in the form of processing component calls, and some units may be implemented in hardware.
  • the reporting unit may be a separate processing element, or may be integrated in a device for transmitting a signal, such as a RAN node or a chip of a terminal, or may be stored in a program in a device for transmitting a signal, such as a RAN.
  • the function of the unit is called and executed by a device that transmits a signal, such as a RAN node or a processing element of the terminal.
  • a device that transmits a signal such as a RAN node or a processing element of the terminal.
  • the implementation of other units is similar.
  • all or part of these units can be integrated or implemented independently.
  • the processing elements described herein can be an integrated circuit with signal processing capabilities.
  • each step of the above method or each of the above units may be completed by an integrated logic circuit of hardware in the processor element or an instruction in the form of software.
  • the above transceiver unit is a unit for controlling reception and transmission, and can receive or transmit signals through a device that transmits signals, such as an antenna of a RAN node or a terminal, and a radio frequency device.
  • the above units may be one or more integrated circuits configured to implement the above methods, such as one or more Application Specific Integrated Circuits (ASICs), or one or more microprocessors (digital) Singnal processor (DSP), or one or more Field Programmable Gate Array (FPGA).
  • ASICs Application Specific Integrated Circuits
  • DSP digital Singnal processor
  • FPGA Field Programmable Gate Array
  • the processing element can be a general purpose processor, such as a central processing unit (CPU) or other processor that can invoke the program.
  • CPU central processing unit
  • these units can be integrated and implemented in the form of a system-on-a-chip (SOC).
  • SOC system-on-a-chip
  • FIG. 7 is a schematic structural diagram of a RAN node according to an embodiment of the present disclosure.
  • This embodiment uses a RAN node as a base station as an example for description.
  • the base station includes an antenna 710, a radio frequency device 720, and a baseband device 730.
  • the antenna 710 is connected to the radio frequency device 720.
  • the radio frequency device 720 receives the information transmitted by the terminal through the antenna 710, and transmits the information sent by the terminal to the baseband device 730 for processing.
  • the baseband device 730 processes the information of the terminal and sends it to the radio frequency device 720.
  • the radio frequency device 720 processes the information of the terminal and sends it to the terminal via the antenna 711.
  • the above means for transmitting signals may be located in the baseband device 730.
  • the above various units are implemented in the form of a processing element scheduler, for example, the baseband device 730 includes a processing element 731 and a storage element 732, and the processing element 731 calls the storage element 732 to store The program to perform the method in the above method embodiment.
  • the baseband device 730 may further include an interface 733 for interacting with the radio frequency device 720, such as a common public radio interface (CPRI).
  • CPRI common public radio interface
  • the above units may be one or more processing elements configured to implement the above methods, the processing elements being disposed on a baseband device 730, where the processing elements may be integrated circuits, such as: one or more ASICs, or one or more DSPs, or one or more FPGAs, etc. These integrated circuits can be integrated to form a chip.
  • the above various units may be integrated together in the form of a system-on-a-chip (SOC), for example, the baseband device 730 includes a SOC chip for implementing the above method.
  • the processing component 731 and the storage component 732 may be integrated in the chip, and the functions of the above method or the above units may be implemented by the processing component 731 calling the stored program of the storage component 732; or, at least one integrated circuit may be integrated in the chip.
  • the functions of the above methods or the above units may be implemented; or, in combination with the above implementation manners, the functions of some units are implemented in the form of processing component calling programs, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus for transmitting signals includes at least one processing element and storage element, wherein at least one of the processing elements is used to perform the method provided by the above method embodiments.
  • the processing element may perform some or all of the steps in the above method embodiments in a manner of executing the program stored in the storage element in the first manner; or in the second manner: through the integrated logic circuit of the hardware in the processor element Some or all of the steps in the foregoing method embodiments are performed in combination with the instructions.
  • the methods provided in the foregoing method embodiments may also be implemented in combination with the first mode and the second mode.
  • the processing elements herein are the same as described above, and may be a general purpose processor, such as a Central Processing Unit (CPU), or may be one or more integrated circuits configured to implement the above method, for example: one or more specific An Application Specific Integrated Circuit (ASIC), or one or more digital signal processors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • DSPs digital signal processors
  • FPGAs Field Programmable Gate Arrays
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • FIG. 8 is a schematic structural diagram of a terminal according to an embodiment of the present disclosure.
  • the terminal includes a processing component 810, a storage component 820, and a transceiver component 830.
  • Transceiver element 830 can be coupled to an antenna.
  • the transceiver component 830 receives the information transmitted by the base station through the antenna and transmits the information to the processing component 810 for processing.
  • processing component 810 processes the data of the terminal and transmits it to the base station via transceiver component 830.
  • the storage element 820 is configured to store a program implementing the above method embodiments, and the processing element 810 calls the program to perform the operations of the above method embodiments to implement the various units shown in FIGS. 5 and 6.
  • the above units may be one or more processing elements configured to implement the above methods, the processing elements being disposed on a circuit board of the terminal, where the processing elements may be integrated circuits, such as: one or more ASICs, or one or more DSPs, or one or more FPGAs, etc. These integrated circuits can be integrated to form a chip.
  • the above units may be integrated together in the form of a system-on-a-chip (SOC), for example, the terminal includes the SOC chip for implementing the above method.
  • the processing element 810 and the storage element 820 may be integrated into the chip, and the functions of the above method or the above units may be implemented by the processing element 810 in the form of a stored program of the storage element 820; or, at least one integrated circuit may be integrated in the chip.
  • the functions of the above methods or the above units may be implemented; or, in combination with the above implementation manners, the functions of some units are implemented in the form of processing component calling programs, and the functions of some units are implemented in the form of integrated circuits.
  • the above apparatus for transmitting signals includes at least one processing element and storage element, wherein at least one of the processing elements is used to perform the method provided by the above method embodiments.
  • the processing element may perform some or all of the steps in the above method embodiments in a manner of executing the program stored in the storage element in the first manner; or in a second manner: by combining the integrated logic circuits of the hardware in the processing element.
  • the method of the above method performs some or all of the steps in the foregoing method embodiments; of course, the method provided by the foregoing method embodiments may also be implemented in combination with the first mode and the second mode.
  • the processing elements herein, as described above, may be general purpose processing elements, such as a Central Processing Unit (CPU), or may be one or more integrated circuits configured to implement the above methods, such as: one or more specific An Application Specific Integrated Circuit (ASIC), or one or more digital singular processors (DSPs), or one or more Field Programmable Gate Arrays (FPGAs).
  • CPU Central Processing Unit
  • ASIC Application Specific Integrated Circuit
  • DSP digital singular processors
  • FPGAs Field Programmable Gate Arrays
  • the storage element can be a memory or a collective name for a plurality of storage elements.
  • the disclosed systems, devices, and methods may be implemented in other manners.
  • the device embodiments described above are merely illustrative.
  • the division of the unit is only a logical function division.
  • there may be another division manner for example, multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not executed.
  • the mutual coupling or direct coupling or communication connection shown or discussed may be an indirect coupling or communication connection through some interface, device or unit, and may be in an electrical, mechanical or other form.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution of the embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each unit may exist physically separately, or two or more units may be integrated into one unit.
  • the functions may be stored in a computer readable storage medium if implemented in the form of a software functional unit and sold or used as a standalone product.
  • the technical solution of the present application which is essential or contributes to the prior art, or a part of the technical solution, may be embodied in the form of a software product, which is stored in a storage medium, including
  • the instructions are used to cause a computer device (which may be a personal computer, server, or network device, etc.) to perform all or part of the steps of the methods described in various embodiments of the present application.
  • the foregoing storage medium includes: a U disk, a mobile hard disk, a read-only memory (ROM), a random access memory (RAM), a magnetic disk, or an optical disk, and the like, which can store program codes. .

Abstract

本申请提供了一种传输信号的方法和装置,用于多频段的通信系统。该方法包括:终端向无线接入网节点上报多个频段中的第一频段的带宽能力信息,其中终端的工作频段包括第一频段,第一频段的带宽能力信息用于指示终端的第一频段的带宽能力,第一频段的带宽能力不小于第一阈值,第一阈值根据终端的最大带宽能力确定或者根据第一频段或该第一频段的子载波间隔确定;终端在无线接入网节点根据带宽能力信息分配的资源上发送或接收信号。

Description

传输信号的方法和装置
本申请要求于2017年3月24日提交中国专利局、申请号为201710184682.X、申请名称为“传输信号的方法和装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信技术领域,尤其涉及一种传输信号的方法和装置。
背景技术
目前,人们正在广泛开展对第五代(5th generation,5G)通信系统的研究。第五代通信系统采用新无线接入技术(New Radio access technology,NR),可以支持多个频段(例如,小于3GHz的频段、3GHz至6GHz的频段和大于6GHz的频段)的通信。现有的带宽能力的设计已经无法满足多频段通信系统的需求。
发明内容
有鉴于此,本申请实施例提供了一种传输信号的方法和装置,以期在多频段通信系统中提高资源配置的灵活性。
第一方面,本申请提供一种传输信号的方法,用于多频段的通信系统。该方法包括:终端向无线接入网节点上报多个频段中的第一频段的带宽能力信息,基站根据该带宽能力信息为终端分配资源,基站和终端在分配的资源上发送或接收信号。终端的工作频段包括第一频段,第一频段的带宽能力信息用于指示终端的第一频段的带宽能力,第一频段的带宽能力不小于第一阈值,第一阈值根据终端的最大带宽能力确定或者根据第一频段或该第一频段的子载波间隔确定。
第二方面,本申请提供一种传输信号的方法,用于多频段的通信系统。该方法包括:无线接入网节点接收终端上报的多个频段中的第一频段的带宽能力信息,无线接入网节点根据带宽能力信息分配资源,无线接入网节点在分配的资源上发送或接收信号。终端的工作频段包括第一频段,第一频段的带宽能力信息用于指示终端的第一频段的带宽能力,第一频段的带宽能力不小于第一阈值,第一阈值根据终端的最大带宽能力确定或者根据第一频段或第一频段的子载波间隔确定。
第三方面,本申请提供一种传输信号的装置,包括:包括用于执行以上第一方面各个步骤的单元或手段(means)。
第四方面,本申请提供一种传输信号的装置,包括:包括用于执行以上第二方面各个步骤的单元或手段。
第五方面,本申请提供一种传输信号的装置,包括至少一个处理元件和至少一个存储元件,其中至少一个存储元件用于存储程序和数据,至少一个处理元件用于执行本申请第 一方面或第二方面提供的方法。
第六方面,本申请提供一种传输信号的装置,包括用于执行以上第一方面或第二方面的方法的至少一个处理元件(或芯片)。
第七方面,本申请提供一种传输信号的程序,该程序在被处理器执行时用于执行以上第一方面或第二方面的方法。
第八方面,提供一种程序产品,例如计算机可读存储介质,包括第七方面的程序。
可见,在以上各个方面,通过为终端的带宽能力设计最小阈值,并且将该最小阈值定义为根据终端的最大带宽能力确定或者根据第一频段或该第一频段的子载波间隔确定,使得无线接入网节点可以根据终端上报的不同带宽能力分配资源并进行信号传输,提高了资源配置的灵活性。
在以上各方面中,第一阈值根据终端的最大带宽能力确定,最大带宽能力为终端的射频带宽能力和基带带宽能力中的最小值。基带带宽能力为第一频段的子载波间隔与终端采用的最大FFT点数的乘积。可替代地,基带带宽能力为第一频段的子载波间隔与终端采用的采样点数的乘积。第一阈值小于或等于上述乘积和终端的射频带宽能力中的最小值。通过将第一阈值的确定与终端的最大FFT点数或采样点数以及每个频段的各个子载波间隔相关联,提高了资源配置的灵活性,降低了设计复杂度。另外,通过将最大带宽能力定义为射频带宽能力和基带带宽能力中的最小值,并将第一阈值定义为小于或等于该最小值,保证了信号传输的可靠性。
在以上各方面中,第一阈值根据第一频段确定,多个频段中的不同频段对应的同步信号块的频域宽度不同,多个频段中的不同频段对应的第一阈值不同。第一频段对应的第一阈值大于或等于第一频段对应的同步信号块的频域宽度。通过将不同频段对应的第一阈值设置为不同且大于或等于相应的频域宽度,保证了终端能够完整地接收不同频段的同步信号块,从而保证了信号传输的可靠性,降低了设计复杂度。
在以上各方面中,第一阈值根据第一频段的子载波间隔确定,多个频段的不同子载波间隔对应的同步信号块的频域宽度不同,多个频段的不同子载波间隔对应的第一阈值不同。第一频段对应的第一阈值大于或等于第一频段对应的同步信号块的频域宽度。通过将不同子载波间隔对应的第一阈值设置为不同且大于或等于相应的频域宽度,保证了终端能完整地接收不同频段的同步信号块,从而保证了信号传输的可靠性,降低了设计复杂度。
在以上各方面中,第一频段的带宽能力信息用于指示终端的第一频段的下行带宽能力或上行带宽能力。
在以上各方面中,第一阈值为不大于终端在所有频段下的最大带宽的最小值。这样的方案有助于降低设计复杂度。
在以上各方面中,第一阈值为不大于终端在给定频段的所有子载波间隔下的最大带宽的最小值。不同的频段具有不同的第一阈值有助于提高资源配置的灵活性。
在以上各方面中,在多个频带中的部分频带下,终端的带宽能力小于系统带宽。进一步地,终端的带宽能力小于或等于终端的最大带宽能力。
在第一方面中,第一频段的带宽能力信息用于指示终端的第一频段的下行带宽能力,终端在无线接入网节点根据带宽能力信息分配的资源上发送或接收信号,包括:终端在无线接入网节点根据带宽能力信息分配的资源上接收下行信号,其中,第一方面的方法进一 步包括:终端向无线接入网节点上报多个频段中的第一频段的第二带宽能力信息,其中第二带宽能力信息用于指示终端的第一频段的上行带宽能力,第一频段的上行带宽能力不小于第二阈值,第二阈值根据终端的最大带宽能力或者根据第一频段或该第一频段的子载波间隔确定;终端在无线接入网节点根据第二带宽能力信息分配的资源上发送上行信号。第二阈值小于或等于所述第一阈值。
在第二方面中,第一频段的带宽能力信息用于指示终端的第一频段的下行带宽能力,无线接入网节点在分配的资源上发送或接收信号,包括:无线接入网节点在分配的资源上接收下行信号,其中,第二方面的方法进一步包括:无线接入网节点接收终端上报的多个频段中的第一频段的第二带宽能力信息,其中第二带宽能力信息用于指示终端的第一频段的上行带宽能力,第一频段的上行带宽能力不小于第二阈值,第二阈值根据终端的最大带宽能力或者根据所述第一频段或第一频段的子载波间隔确定;无线接入网节点在根据第二带宽能力信息分配的资源上发送上行信号。第二阈值小于或等于所述第一阈值。
由于上行带宽能力的最小阈值的定义可以不考虑对同步信号块的完整接收的影响,上行带宽能力的最小阈值的定义独立于下行带宽能力的最小阈值的定义有助于降低设计的复杂度。
附图说明
图1是根据本申请的一个实施例的通信系统的示意性系统架构图。
图2是根据本申请的一个实施例的一种传输信号的方法的示意性流程图
图3是根据本申请的另一实施例的传输信号的过程的示意性流程图。
图4是根据本申请的又一实施例的传输信号的过程的示意性流程图。
图5是根据本申请的一个实施例的传输信号的装置的结构示意图。
图6是根据本申请的另一实施例的传输信号的装置的结构示意图。
图7为本申请实施例提供的一种无线接入网节点的结构示意图。
图8为本申请实施例提供的一种终端的结构示意图。
具体实施方式
以下,对本申请中的部分用语进行解释说明,以便于本领域技术人员理解。
1)、终端(Terminal),又称之为用户设备(User Equipment,UE)、移动台(mobile station,MS)、移动终端(mobile terminal,MT)等,是一种向用户提供语音和/或数据连通性的设备,例如,具有无线连接功能的手持式设备、车载设备等。目前,一些终端的举例为:手机(mobile phone)、平板电脑(Pad)、笔记本电脑、掌上电脑、移动互联网设备(Mobile Internet Device,MID)、可穿戴设备,例如智能手表、智能手环、计步器等、带无线收发功能的电脑、虚拟现实(virtual reality,VR)终端设备、增强现实(augmented reality,AR)终端设备、工业控制(industrial control)中的无线终端、无人驾驶(self driving)中的无线终端、远程手术(remote medical surgery)中的无线终端、智能电网(smart grid)中的无线终端、运输安全(transportation safety)中的无线终端、智慧城市(smart city)中的无线终端、智慧家庭(smart home)中的无线终端等等
2)、无线接入网(Radio Access Network,RAN)是网络中将终端接入到无线网络的部分。RAN节点或设备为无线接入网中的节点或设备,又可以称为基站。目前,一些RAN节点的举例为:gNB、传输接收点(Transmission Reception Point,TRP)、演进型节点B(evolved Node B,eNB)、无线网络控制器(Radio Network Controller,RNC)、节点B(Node B,NB)、基站控制器(Base Station Controller,BSC)、基站收发台(Base Transceiver Station,BTS)、家庭基站(例如,Home evolved NodeB,或Home Node B,HNB)、基带单元(BaseBand Unit,BBU),或Wifi接入点(Access Point,AP)等。另外,在一种网络结构中,RAN可以包括集中单元(Centralized Unit,CU)节点和分布单元(Distributed Unit,DU)节点。这种结构将长期演进(Long Term Evolution,LTE)中eNB的协议层拆分开,部分协议层的功能放在CU集中控制,剩下部分或全部协议层的功能分布在各个DU中,由CU集中控制各个DU。本申请的实施例对无线接入网设备所采用的具体技术和具体设备形态不做限定。
3)、“多个”是指两个或两个以上,其它量词与之类似。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。字符“/”一般表示前后关联对象是一种“或”的关系。
4)、系统带宽,也称为最大载波带宽,是指每个载波的最大信道带宽(maximum channel bandwidth per carrier)。
应理解,本申请实施例的技术方案可以应用于各种通信系统,例如:LTE系统、LTE频分双工(frequency division duplex,FDD)系统、LTE时分双工(time division duplex,TDD)、第4.5(4.5th generation,4.5G)代网络、5G网络、NR等。
在长期演进(long term evolution,LTE)系统中,系统工作在小于3GHz的单一频段,在该频段上,系统带宽为20MHz,终端支持的带宽能力的最小值定义为20MHz,与系统带宽相同。这样,在LTE系统中,对于给定频段,所有终端的支持的带宽能力的最小值均不小于系统带宽。因此,RAN节点无需获知终端的带宽能力,自行决定在1.44M到20M的系统带宽下工作。
在多个频段通信系统中,由于终端在不同频段所支持的带宽可以不同,所以如果针对不同的频段仍然为终端定义统一的带宽能力的最小值会造成资源配置的灵活性降低或者增加设计的复杂性。例如,在NR系统中,系统带宽可以为400MHz,而终端支持的带宽可以大于或等于100MHz,也可以小于100MHz,即系统带宽可以大于终端支持的带宽。在这种情况下,本申请实施例针对不同频段或不同终端定义了终端的带宽能力的最小值,且终端可以向RAN节点上报满足该最小值约束的带宽能力,使得RAN节点可以根据终端上报的带宽能力分配资源,提高了资源配置的灵活性。例如,本申请的实施例中,终端可以向RAN节点上报带宽能力,且该带宽能力满足阈值的约束,该阈值可以根据终端的最大带宽能力确定,或者可以根据第一频段或该第一频段的子载波间隔确定,这样,终端可以向RAN节点上报满足上述阈值的宽带能力,使得RAN节点可以根据终端上报的带宽能力分配资源,提高了资源配置的灵活性。
下面将结合附图,对本申请中的技术方案进行描述。
图1是根据本申请的一个实施例的通信系统100的示意性系统架构图。
如图1所示,该移动通信系统包括RAN节点(如图1中的基站110)和至少一个终端(如图1中的终端120和终端130)。终端通过无线的方式与RAN节点相连。RAN节点可以通过无线或有线方式与核心网设备连接(图1未示出)。核心网设备与RAN节点可以是独立的不同的物理设备,也可以是将核心网设备的功能与RAN节点的逻辑功能集成在同一个物理设备上,还可以是一个物理设备上集成了部分核心网设备的功能和部分的RAN节点的功能。终端可以是固定位置的,也可以是可移动的。
RAN节点和终端可以部署在陆地上,包括室内或室外、手持或车载;也可以部署在水面上;还可以部署在空中的飞机、气球和卫星上。本申请的实施例对RAN节点和终端的应用场景不做限定。
本申请的实施例的通信系统为多频段的通信系统,可以支持多个频段(例如,小于3GHz的频段、3GHz至6GHz的频段和大于6GHz的频段)的通信。
应理解,图1只是示意图,该通信系统中还可以包括其它网络设备,如还可以包括无线中继设备和无线回传设备(未示出)。本申请的实施例对该移动通信系统中包括的核心网设备、RAN节点和终端的数量不做限定。
图2是根据本申请的一个实施例的一种传输信号的方法的示意性流程图。该方法用于多频段的通信系统。该方法可以由图1的RAN节点或终端执行。图2的方法包括如下内容。
210,终端向RAN节点上报多个频段中的第一频段的带宽能力信息,其中终端的工作频段包括第一频段,第一频段的带宽能力信息用于指示终端的第一频段的带宽能力,第一频段的带宽能力不小于第一阈值,第一阈值根据终端的最大带宽能力确定或者根据第一频段或第一频段的子载波间隔确定。
这里,第一频段可以是多个频段中的任一频段。多个频段中的每个频段可以包括至少一种子载波间隔。对于数据信号而言,不同的频段可以包括相同或不同的子载波间隔,例如,小于3GHz的频段可以包括15kHz和30kHz两种子载波间隔,而3GHz至6GHz的频段可以使用30kHz和60kHz两种子载波间隔。对同步信号块而言,不同的频段可以使用不同的子载波间隔,例如,小于3GHz的频段可以使用30kHz的子载波间隔,而3GHz至6GHz的频段可以使用60kHz的子载波间隔。
终端的最大带宽能力是指终端理论上能够提供的最大带宽,例如,该最大带宽能力可以是射频带宽能力(即最大射频带宽)和基带带宽能力(最大基带带宽)中的最小值。进一步,终端的第一频段的带宽能力也称为终端在第一频段上的支持的带宽,也称为实际的最大带宽,该实际的最大带宽可以设计为不小于第一阈值。第一阈值可以指终端支持的带宽的最小值。
此外,该终端上报的第一频段的带宽能力信息小于或者等于该终端的最大带宽能力,也就是说,终端实际上报的任一个工作频段的带宽能力信息是小于或等于其能够提供的最大带宽的。
220,RAN节点可以根据终端上报的带宽能力信息分配资源。
具体而言,RAN节点可以基于预设的规则和终端上报的带宽能力信息分配资源。例如,基于可以根据系统带宽和网络状态(例如,吞吐量、负载、拥塞等网络状态)中的至少一个和终端上报的带宽能力信息为终端分配资源。本申请的实施例对分配资源的方式不 作限定,例如,还可以根据高层信令的指示和终端上报的带宽能力分配资源。
RAN节点可以在整个系统带宽中为终端分配部分带宽资源,或者RAN节点也可以在系统带宽中划分一个子带,并在该子带内为终端分配带宽资源。
230,RAN节点和终端在分配的资源上发送或接收信号。
当RAN节点为终端分配下行资源时,RAN节点在分配的资源上发送信号,终端接收信号;当RAN节点为终端分配上行资源时,终端在分配的资源上发送信号,RAN节点接收信号。
在多频带通信系统中,终端在某些频段上所支持的带宽能力有可能会小于系统带宽,而在另一些频段上所支持的带宽能力也可能会大于系统带宽,在这种情况下,在设计终端时,终端所支持的带宽能力的最小值不再适合采用统一的阈值来限定,终端的某个频段的带宽能力可以设计为不小于某个最小值(即第一阈值)。
根据本申请的实施例,第一阈值可以根据终端的最大带宽能力来确定,由于终端的最大带宽能力是不同的,因此,终端向RAN节点发送的带宽能力可以在第一阈值与最大带宽能力之间根据实际需要灵活确定。
可替代地,作为另一实施例,第一阈值还可以根据第一频段或该第一频段的子载波间隔确定。例如,可以针对不同的频段为终端设计不同的第一阈值,或者可以针对不同的频段的子载波间隔为终端设计不同的第一阈值。例如,不同的频带可能具有不同的子载波间隔,对于不同的子载波间隔,第一阈值可以定义为与不同子载波间隔对应的取值,例如,第一频带具有第一子载波间隔,而第二频带具有第二子载波间隔,这样,第一频带的第一子载波间隔对应的第一阈值可以不同于第二子载波间隔对应的第一阈值。
进一步地,RAN节点在与终端进行通信时,RAN节点可以接收终端上报的带宽能力信息,并根据终端的带宽能力信息指示的终端的带宽能力为终端分配资源,并在分配的资源上与终端进行通信。例如,RAN节点在进行资源配置时要满足终端设备的带宽要求。
根据本申请的实施例,通过为终端的带宽能力设计最小阈值,并且将该最小阈值定义为根据终端的最大带宽能力确定或者根据第一频段或该第一频段的子载波间隔确定,使得RAN节点可以根据终端上报的不同带宽能力分配资源并进行信号传输,提高了资源配置的灵活性。
根据本申请的实施例,第一阈值根据终端的最大带宽能力确定,最大带宽能力可以由终端支持的射频带宽能力(即最大射频带宽)和基带带宽能力(最大基带带宽)来确定,例如,最大带宽能力为终端的射频带宽能力和基带带宽能力中的最小值。基带带宽能力为第一频段的子载波间隔与终端采用的最大FFT点数的乘积。可替代地,上述基带带宽能力还可以为第一频段的子载波间隔与终端采用的最大采样点数的乘积。第一阈值小于或等于乘积和终端的射频带宽能力中的最小值。例如,系统带宽为200MHz,终端的射频带宽能力也为200MHz,而终端的基带带宽能力可以为100MHz,在这种情况下,终端的最小带宽能力为100MHz,第一阈值可以设计为小于或等于100MHz,例如,80MHz。
根据本申请的实施例,通过将第一阈值的确定与终端的最大FFT点数或采样点数以及每个频段的各个子载波间隔相关联,提高了资源配置的灵活性,降低了设计复杂度。另外,通过将最大带宽能力定义为射频带宽能力和基带带宽能力中的最小值,并将第一阈值定义为小于或等于该最小值,保证了信号传输的可靠性。
根据本申请的实施例,第一阈值根据第一频段确定,多个频段中的不同频段对应的同步信号块的频域宽度不同,多个频段中的不同频段对应的第一阈值不同。
在NR系统中,同步信号块(SS block)可以为时频资源块,同步信号除了可以包括主同步信号(primary SS)和/或辅同步号(secondary SS)之外,还可以包括主信息块(MIB)。在进行时间同步(time synchronization)时,可以以SS块为最小单位进行传输,当检测到某个SS块后,可以获知时间同步信息。
在多频带场景下,不同的频段的同步信号块的频域宽度可以不同,例如,子载波间隔为30kHz、120kHz、240kHz的同步信号块分别对应于小于3GHz的频段、3GHz至6GHz的频段、大于6GHz的频段,相应的频域宽度分别为10MHz、40MHz、80MHz。频域宽度也称为传输带宽。
根据本申请的实施例,第一频段对应的第一阈值大于或等于第一频段对应的同步信号块的频域宽度。可选地,可以针对不同的频段或子载波间隔为终端设计不同的最大FFT点数,从而影响终端的基带带宽能力,在这种情况下,同样也可以根据终端的最小带宽能力来确定第一阈值。
例如,第一频段为小于3GHz的频段时,同步信号块的频域宽度可以为10MHz,因此,第一阈值可以设计为大于或等于10MHz;第一频段为3GHz至6GHz的频段时,同步信号的频域宽度可以为40MHz,因此,第一阈值可以设计为大于或等于40MHz;第一频段为大于6GHz的频段时,在这种情况下,同步信号的频域宽度可以为80MHz,因此,第一阈值可以设计为大于或等于80MHz。
根据本申请的实施例,通过将不同频段对应的第一阈值设置为不同且大于或等于相应的频域宽度,保证了终端能够完整地接收不同频段的同步信号块,从而保证了信号传输的可靠性,降低了设计复杂度。
根据本申请的实施例,第一阈值根据第一频段的子载波间隔确定,多个频段的不同子载波间隔对应的同步信号块的频域宽度不同,多个频段的不同子载波间隔对应的第一阈值不同。第一频段对应的第一阈值大于或等于第一频段对应的同步信号块的频域宽度。
例如,第一频段为小于3GHz的频段时,子载波间隔为30kHz,同步信号块的频域宽度可以为10MHz,因此,第一阈值可以设计为大于或等于10MHz;第一频段为3GHz至6GHz的频段时,子载波间隔为120kHz、同步信号的频域宽度可以为40MHz,因此,第一阈值可以设计为大于或等于40MHz;第一频段为大于6GHz的频段时,子载波间隔为240kHz。同步信号的频域宽度可以为80MHz,因此,第一阈值可以设计为大于或等于80MHz。
通过将不同子载波间隔对应的第一阈值设置为不同且大于或等于相应的频域宽度,保证了终端能完整地接收不同频段的同步信号块,从而保证了信号传输的可靠性,降低了设计复杂度。
应理解,上述频段、子载波间隔和频域宽度的取值仅仅是举例,在不同的系统场景下,上述频段、子载波间隔和频域宽度可以是其它取值。
根据本申请的实施例,第一频段的带宽能力信息用于指示终端的第一频段的下行带宽能力或上行带宽能力。换句话说,上述方案既适用于上行信号传输,也适用于下行信号传输。
根据本申请的实施例,第一频段的带宽能力信息用于指示终端的第一频段的下行带宽能力,终端在网络侧设备根据带宽能力信息分配的资源上发送或接收信号,包括:终端在网络侧设备根据带宽能力信息分配的资源上接收下行信号,其中,方法进一步包括:终端向RAN节点上报多个频段中的第一频段的第二带宽能力信息,其中第二带宽能力信息用于指示终端的第一频段的上行带宽能力,第一频段的上行带宽能力不小于第二阈值,第二阈值根据终端的最大带宽能力或者根据第一频段或该第一频段的子载波间隔确定;终端在网络侧设备根据第二带宽能力信息分配的资源上发送上行信号。第二阈值小于或等于第一阈值。
由于上行带宽能力的最小阈值的定义可以不考虑对同步信号块的完整接收的影响,上行带宽能力的最小阈值的定义独立于下行带宽能力的最小阈值的定义有助于降低设计的复杂度。
应理解,上述第一带宽能力信息和第二带宽能力信息可以分别携带在不同的消息中上报,也可以携带在同一个消息中上报。
根据本申请的实施例,多个频段中的不同频段对应的第一阈值与第二阈值的差值不同。由于上行带宽能力的最小值可以不同于下行带宽能力的最小值,因此,可以降低终端上行带宽能力需求,从而降低终端上行射频、基带设计复杂度。
图3是根据本申请的另一实施例的传输信号的过程的示意性流程图。图3是图2的方法的例子。本实施例以RAN节点为基站为例进行说明。
305,终端确定终端的带宽能力信息。
例如,终端可以根据预先设置的支持带宽能力的最小值(即图2的实施例中的第一阈值)确定终端支持的带宽能力。该带宽能力不小于第一阈值并且也不超出终端的最大带宽能力(即射频带宽能力和基带带宽能力中的最小值)。
终端上报的终端带宽能力信息,可以是一个确切的带宽值或者用于指示该带宽值的编号或索引,本申请的实施例并不限于此,带宽能力信息也可以包括射频带宽和FFT点数,在这种情况下,基站可以根据终端上报的射频带宽和FFT点数估计终端的带宽能力。
进一步地,终端还可以根据自身业务吞吐量需求、处理时延、功率消耗等状态信息的任意组合确定终端能够支持的带宽能力,这样,终端上报的带宽能力可能小于终端的最大带宽能力,或者终端上报的射频带宽能力、FFT点数小于射频带宽能力、最大FFT点数。例如,当终端需要获得大吞吐量时,上报的带宽能力可以接近终端最大带宽能力,或者当终端需要较低处理时延或者较低功率消耗时,终端上报的带宽能力可以较小。
终端上报的终端带宽能力可以满足如下条件:第一阈值≤终端带宽能力≤min(终端射频带宽能力,最大FFT点数×子载波间隔)。其中,最大FFT点数×子载波间隔为终端的基带带宽能力。
以下表为例,假设终端支持的最大射频带宽为200MHz,最大FFT点数为4096,则根据上述公式可以计算在各SCS下的终端的最大带宽能力为:
表1
Figure PCTCN2018079717-appb-000001
Figure PCTCN2018079717-appb-000002
参见表1,小于3GHz的频段对应的子载波间隔为15kHz和30kHz,对应的最大带宽为61MHz和122MHz;3至6GHz的频段对应的子载波间隔为30kHz和60kHz,对应的最大带宽为122MHz和200MHz;大于6GHz的频段对应的子载波间隔为60kHz、120kHz和240kHz,对应的最大带宽均为200MHz。
第一阈值的定义可以有至少两种,结合表1举例说明如下:
1、第一阈值可以定义为不大于终端在所有可能频段(或SCS)下的最大带宽的最小值。参见表1,该最小值为上表最右列的最小值,即第一阈值不大于61MHz。
2、第一阈值可以定义为不大于终端在给定频段所有可能SCS下的最大带宽的最小值。参见表1,当终端工作在<3GHz频段时,第一阈值不大于61MHz;当终端工作在3GHz至6GHz频段时,第一阈值不大于122MHz;当终端工作在>6GHz频段时,第一阈值不大于200MHz。
基于上述定义,可能会出现终端带宽小于同步信号块的频域宽度的情况。由于终端在接收同步信号时,往往是通过滤波器截取检测的。因此,这种情况下,同步信号为多个子序列的频分多路复用(Frequency Division Multiplexing,FDM)组合。各子序列的长度为一个预定义的大小,且各子序列所在频域资源之间留有若干子载波作为保护间隔。对于小带宽用户,通过接收一个子序列检测同步信号;对于大带宽用户,通过接收多个子序列检测同步信号。另外,不同的频带对应的频域宽度不同。因此,为了完整地接收同步信号块,以降低设计复杂度,可以将第一阈值进一步限定为大于或等于同步信号块的频域宽度。
当然,作为上述两种定义的替代方案,也可以仅仅将第一阈值限定为大于或等于同步信号块的频域宽度。
310,终端向基站上报带宽能力信息。
终端可以通过物理上行信道上报带宽能力信息。例如,终端可以通过物理随机接入信道(Physical Random Access Channel,PRACH)、物理上行链路控制信道(Physical Uplink Control Channel,PUCCH)或物理上行共享信道(Physical Uplink Shared Channel,PUSCH)等物理上行信道向基站上报终端的带宽能力信息。
终端可以在随机接入过程中向基站上报带宽能力终端可以通过多种方式上报带宽能力。例如可以采用如下现有信令消息携带:
1、终端可以在初始接入时上报,例如利用或通过前导(preamble)上报,适用于终端发起基于竞争的随机接入过程或者基于非竞争的随机接入过程,其中前导的序列和/或参数集合(例如子载波间隔)可以根据终端带宽能力确定。这样,可以利用前导序列和/或参数集合来指示终端的带宽能力。
2、终端通过消息3(Msg.3)上报,适用于终端发起基于非竞争的随机接入过程,终端带宽能力信息承载在Msg.3中。
应理解,本申请的实施例并不限于上述上报带宽能力的方式,例如,终端还可以通过 专用的信令消息上报带宽能力信息。
320,基站根据终端上报的带宽能力信息分配资源。
假设系统带宽为X,终端支持的带宽Y<X。基站可以根据终端带宽能力为终端分配资源,例如,基站在系统带宽X中为终端分配带宽为Z≤Y的资源。
330,基站根据为终端分配的资源进行资源调度。
例如,基站采用半静态调度方式和动态调度方式进行资源调度。本申请实施例的资源调度过程与常规资源调度过程类似,在此不再赘述。
340,终端与基站根据分配的资源进行信号传输。
终端与基站根据分配的资源进行信号传输的过程与常规信号传输过程类似,在此不再赘述。
图4是根据本申请的又一实施例的传输信号的过程的示意性流程图。本实施例以RAN节点为基站为例进行说明。
405,终端确定终端的带宽能力信息。405与305类似,在此不再赘述。
410,终端向基站上报带宽能力信息。410与310类似,在此不再赘述。
412,基站根据终端上报的带宽能力信息为终端划分子带。
假设系统带宽为X,终端支持的带宽Y<X。基站为终端在系统带宽X中划分一个带宽为Y的子带。
414,基站向终端通知子带划分结果,用于指示为终端划分的子带。
420,基站在划分给终端的子带进行资源分配。
基站可以在该子带内为终端分配带宽为Z≤Y的资源。
430,基站根据为终端分配的资源进行资源调度。
例如,基站采用半静态调度方式和动态调度方式进行资源调度。本申请实施例的资源调度过程与常规资源调度过程类似,在此不再赘述。
440,终端与基站根据分配的资源进行信号传输。
终端与基站根据分配的资源进行信号传输的过程与常规信号传输过程类似,在此不再赘述。
上面描述了根据本申请实施例的传输信号的方法,下面分别结合图5至图8描述根据本申请实施例的传输信号的装置。
图5是根据本申请的一个实施例的传输信号的装置500的结构示意图。装置500用于多频段的通信系统,装置例如可以为图1的终端。装置500包括上报单元510和收发单元520。
上报单元510向无线接入网节点上报多个频段中的第一频段的带宽能力信息,其中终端的工作频段包括第一频段,第一频段的带宽能力信息用于指示终端的第一频段的带宽能力,第一频段的带宽能力不小于第一阈值,第一阈值根据终端的最大带宽能力确定或者根据第一频段或第一频段的子载波间隔确定。收发单元520在无线接入网节点根据带宽能力信息分配的资源上发送或接收信号。
根据本申请的实施例,通过为终端的带宽能力设计最小阈值,并且将该最小阈值定义为根据终端的最大带宽能力确定或者根据第一频段或该第一频段的子载波间隔确定,使得RAN节点可以根据终端上报的不同带宽能力分配资源并进行信号传输,提高了资源配置 的灵活性。
根据本申请的实施例,第一阈值根据终端的最大带宽能力确定,最大带宽能力为终端的射频带宽能力和基带带宽能力中的最小值。
根据本申请的实施例,基带带宽能力为第一频段的子载波间隔与终端采用的最大FFT点数的乘积。
根据本申请的实施例,第一阈值小于或等于乘积和终端的射频带宽能力中的最小值。
根据本申请的实施例,第一阈值根据第一频段确定,多个频段中的不同频段对应的同步信号块的频域宽度不同,多个频段中的不同频段对应的第一阈值不同。
根据本申请的实施例,第一频段对应的第一阈值大于或等于第一频段对应的同步信号块的频域宽度。
根据本申请的实施例,第一阈值根据第一频段的子载波间隔确定,多个频段的不同子载波间隔对应的同步信号块的频域宽度不同,多个频段的不同子载波间隔对应的第一阈值不同。
根据本申请的实施例,第一频段对应的第一阈值大于或等于第一频段对应的同步信号块的频域宽度。
根据本申请的实施例,第一频段的带宽能力信息用于指示终端的第一频段的下行带宽能力或上行带宽能力。
可选地,作为另一实施例,第一频段的带宽能力信息用于指示终端的第一频段的下行带宽能力,收发单元520在无线接入网节点根据带宽能力信息分配的资源上接收下行信号,上报单元510还向无线接入网节点上报多个频段中的第一频段的第二带宽能力信息,其中第二带宽能力信息用于指示终端的第一频段的上行带宽能力,第一频段的上行带宽能力不小于第二阈值,第二阈值根据终端的最大带宽能力或者根据第一频段或第一频段的子载波间隔确定;收发单元520还在无线接入网节点根据第二带宽能力信息分配的资源上发送上行信号。
根据本申请的实施例,第二阈值小于或等于第一阈值。
根据本申请的实施例,多个频段中的不同频段对应的第一阈值与第二阈值的差值不同。
装置500的各个单元的操作和功能可以参考与图2对应的基站侧的方法实施例,为了避免重复,在此不再赘述。
图6是根据本申请的另一实施例的传输信号的装置600的结构示意图。装置600用于多频段的通信系统,装置例如可以为图1的终端。装置600包括收发单元610和分配单元620。
收发单元610,用于接收终端上报的多个频段中的第一频段的带宽能力信息,其中终端的工作频段包括第一频段,第一频段的带宽能力信息用于指示终端的第一频段的带宽能力,第一频段的带宽能力不小于第一阈值,第一阈值根据终端的最大带宽能力确定或者根据第一频段或第一频段的子载波间隔确定。分配单元620,用于根据带宽能力信息分配资源。收发单元610还用于在分配的资源上发送或接收信号。
根据本申请的实施例,通过为终端的带宽能力设计最小阈值,并且将该最小阈值定义为根据终端的最大带宽能力确定或者根据第一频段或该第一频段的子载波间隔确定,使得 RAN节点可以根据终端上报的不同带宽能力分配资源并进行信号传输,提高了资源配置的灵活性。
根据本申请的实施例,第一阈值根据终端的最大带宽能力确定,最大带宽能力为终端的射频带宽能力和基带带宽能力中的最小值。
根据本申请的实施例,基带带宽能力为第一频段的子载波间隔与终端采用的最大FFT点数的乘积。
根据本申请的实施例,第一阈值小于或等于乘积和终端的射频带宽能力中的最小值。
根据本申请的实施例,第一阈值根据第一频段确定,多个频段中的不同频段对应的同步信号块的频域宽度不同,多个频段中的不同频段对应的第一阈值不同。
根据本申请的实施例,第一频段对应的第一阈值大于或等于第一频段对应的同步信号块的频域宽度。
根据本申请的实施例,第一阈值根据第一频段的子载波间隔确定,多个频段的不同子载波间隔对应的同步信号块的频域宽度不同,多个频段的不同子载波间隔对应的第一阈值不同。
根据本申请的实施例,第一频段对应的第一阈值大于或等于第一频段对应的同步信号块的频域宽度。
根据本申请的实施例,第一频段的带宽能力信息用于指示终端的第一频段的下行带宽能力或上行带宽能力。
根据本申请的实施例,第一频段的带宽能力信息用于指示终端的第一频段的下行带宽能力,收发单元610在分配的资源上接收下行信号,收发单元610还接收终端上报的多个频段中的第一频段的第二带宽能力信息,其中第二带宽能力信息用于指示终端的第一频段的上行带宽能力,第一频段的上行带宽能力不小于第二阈值,第二阈值根据终端的最大带宽能力或者根据第一频段或第一频段的子载波间隔确定;收发单元610还在根据第二带宽能力信息分配的资源上发送上行信号。
根据本申请的实施例,第二阈值小于或等于第一阈值。
根据本申请的实施例,多个频段中的不同频段对应的第一阈值与第二阈值的差值不同。
装置600的各个单元的操作和功能可以参考与图2对应的基站侧的方法实施例,为了避免重复,在此不再赘述。
应理解以上传输信号的装置的各个单元的划分仅仅是一种逻辑功能的划分,实际实现时可以全部或部分集成到一个物理实体上,也可以物理上分开。且这些单元可以全部以软件通过处理元件调用的形式实现;也可以全部以硬件的形式实现;还可以部分单元以软件通过处理元件调用的形式实现,部分单元以硬件的形式实现。例如,上报单元可以为单独设立的处理元件,也可以集成在传输信号的装置,例如RAN节点或终端的某一个芯片中实现,此外,也可以以程序的形式存储于传输信号的装置,例如RAN节点或终端的存储器中,由传输信号的装置,例如RAN节点或终端的某一个处理元件调用并执行该单元的功能。其它单元的实现与之类似。此外这些单元全部或部分可以集成在一起,也可以独立实现。这里所述的处理元件可以是一种集成电路,具有信号的处理能力。在实现过程中,上述方法的各步骤或以上各个单元可以通过处理器元件中的硬件的集成逻辑电路或者软 件形式的指令完成。此外,以上收发单元是一种控制接收和发送的单元,可以通过传输信号的装置,例如RAN节点或终端的天线和射频装置接收或传输信号。
例如,以上这些单元可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理器(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。再如,当以上某个单元通过处理元件调度程序的形式实现时,该处理元件可以是通用处理器,例如中央处理器(Central Processing Unit,CPU)或其它可以调用程序的处理器。再如,这些单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现。
请参见图7,图7为本申请实施例提供的一种RAN节点的结构示意图。本实施例以RAN节点为基站为例进行说明。如图7所示,该基站包括:天线710、射频装置720、基带装置730。天线710与射频装置720连接。在上行方向上,射频装置720通过天线710接收终端发送的信息,将终端发送的信息发送给基带装置730进行处理。在下行方向上,基带装置730对终端的信息进行处理,并发送给射频装置720,射频装置720对终端的信息进行处理后经过天线711发送给终端。
以上传输信号的装置可以位于基带装置730,在一种实现中,以上各个单元通过处理元件调度程序的形式实现,例如基带装置730包括处理元件731和存储元件732,处理元件731调用存储元件732存储的程序,以执行以上方法实施例中的方法。此外,该基带装置730还可以包括接口733,用于与射频装置720交互信息,该接口例如为通用公共无线接口(common public radio interface,CPRI)。
在另一种实现中,以上这些单元可以是被配置成实施以上方法的一个或多个处理元件,这些处理元件设置于基带装置730上,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA等。这些集成电路可以集成在一起,构成芯片。
例如,以上各个单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,基带装置730包括SOC芯片,用于实现以上方法。该芯片内可以集成处理元件731和存储元件732,由处理元件731调用存储元件732的存储的程序的形式实现以上方法或以上各个单元的功能;或者,该芯片内可以集成至少一个集成电路,用于实现以上方法或以上各个单元的功能;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
不管采用何种方式,总之,以上传输信号的装置包括至少一个处理元件和存储元件,其中至少一个处理元件用于执行以上方法实施例所提供的方法。处理元件可以以第一种方式:即执行存储元件存储的程序的方式执行以上方法实施例中的部分或全部步骤;也可以以第二种方式:即通过处理器元件中的硬件的集成逻辑电路结合指令的方式执行以上方法实施例中的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上方法实施例提供的方法。
这里的处理元件同以上描述,可以是通用处理器,例如中央处理器(Central Processing Unit,CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理 器(digital signal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
请参见图8,图8为本申请实施例提供的一种终端的结构示意图。如图1所示,该终端包括:处理元件810、存储元件820、收发元件830。收发元件830可以与天线连接。在下行方向上,收发元件830通过天线接收基站发送的信息,并将信息发送给处理元件810进行处理。在上行方向上,处理元件810对终端的数据进行处理,并通过收发元件830发送给基站。
该存储元件820用于存储实现以上方法实施例的程序,处理元件810调用该程序,执行以上方法实施例的操作,以实现图5和图6所示的各个单元。
在另一种实现中,以上这些单元可以是被配置成实施以上方法的一个或多个处理元件,这些处理元件设置于终端的电路板,这里的处理元件可以为集成电路,例如:一个或多个ASIC,或,一个或多个DSP,或,一个或者多个FPGA等。这些集成电路可以集成在一起,构成芯片。
例如,以上各个单元可以集成在一起,以片上系统(system-on-a-chip,SOC)的形式实现,例如,终端包括该SOC芯片,用于实现以上方法。该芯片内可以集成处理元件810和存储元件820,由处理元件810调用存储元件820的存储的程序的形式实现以上方法或以上各个单元的功能;或者,该芯片内可以集成至少一个集成电路,用于实现以上方法或以上各个单元的功能;或者,可以结合以上实现方式,部分单元的功能通过处理元件调用程序的形式实现,部分单元的功能通过集成电路的形式实现。
不管采用何种方式,总之,以上传输信号的装置包括至少一个处理元件和存储元件,其中至少一个处理元件用于执行以上方法实施例所提供的方法。处理元件可以以第一种方式:即执行存储元件存储的程序的方式执行以上方法实施例中的部分或全部步骤;也可以以第二种方式:即通过处理元件中的硬件的集成逻辑电路结合指令的方式执行以上方法实施例中的部分或全部步骤;当然,也可以结合第一种方式和第二种方式执行以上方法实施例提供的方法。
这里的处理元件同以上描述,可以是通用处理元件,例如中央处理元件(Central Processing Unit,CPU),还可以是被配置成实施以上方法的一个或多个集成电路,例如:一个或多个特定集成电路(Application Specific Integrated Circuit,ASIC),或,一个或多个微处理元件(digital singnal processor,DSP),或,一个或者多个现场可编程门阵列(Field Programmable Gate Array,FPGA)等。
存储元件可以是一个存储器,也可以是多个存储元件的统称。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各示例的单元及算法步骤,能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
所述功能如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本申请的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得一台计算机设备(可以是个人计算机,服务器,或者网络设备等)执行本申请各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(Read-Only Memory,ROM)、随机存取存储器(Random Access Memory,RAM)、磁碟或者光盘等各种可以存储程序代码的介质。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应所述以权利要求的保护范围为准。

Claims (52)

  1. 一种传输信号的方法,用于多频段的通信系统,其特征在于,所述方法包括:
    终端向无线接入网节点上报多个频段中的第一频段的带宽能力信息,其中所述终端的工作频段包括所述第一频段,所述第一频段的带宽能力信息用于指示所述终端的第一频段的带宽能力,所述第一频段的带宽能力不小于第一阈值,所述第一阈值根据所述终端的最大带宽能力确定或者根据所述第一频段或所述第一频段的子载波间隔确定;
    所述终端在所述无线接入网节点根据所述带宽能力信息分配的资源上发送或接收信号。
  2. 根据权利要求1所述的方法,其特征在于,所述第一阈值根据所述终端的最大带宽能力确定,所述最大带宽能力为所述终端的射频带宽能力和基带带宽能力中的最小值。
  3. 根据权利要求2所述的方法,其特征在于,所述基带带宽能力为所述第一频段的子载波间隔与所述终端采用的最大FFT点数的乘积。
  4. 根据权利要求3所述的方法,其特征在于,所述第一阈值小于或等于所述乘积和所述终端的射频带宽能力中的最小值。
  5. 根据权利要求1所述的方法,其特征在于,所述第一阈值根据所述第一频段确定,所述多个频段中的不同频段对应的同步信号块的频域宽度不同,所述多个频段中的不同频段对应的第一阈值不同。
  6. 根据权利要求5所述的方法,所述第一频段对应的所述第一阈值大于或等于所述第一频段对应的同步信号块的频域宽度。
  7. 根据权利要求1所述的方法,其特征在于,所述第一阈值根据所述第一频段的子载波间隔确定,所述多个频段的不同子载波间隔对应的同步信号块的频域宽度不同,所述多个频段的不同子载波间隔对应的第一阈值不同。
  8. 根据权利要求7所述的方法,所述第一频段对应的所述第一阈值大于或等于所述第一频段对应的同步信号块的频域宽度。
  9. 根据权利要求1至8中的任一项所述的方法,其特征在于,所述第一频段的带宽能力信息用于指示所述终端的第一频段的下行带宽能力或上行带宽能力。
  10. 根据权利要求1至4中的任一项所述的方法,其特征在于,所述第一频段的带宽能力信息用于指示所述终端的第一频段的下行带宽能力,所述终端在所述无线接入网节点根据所述带宽能力信息分配的资源上发送或接收信号,包括:
    所述终端在所述无线接入网节点根据所述带宽能力信息分配的资源上接收下行信号,
    其中,所述方法进一步包括:
    所述终端向所述无线接入网节点上报多个频段中的第一频段的第二带宽能力信息,其中所述第二带宽能力信息用于指示所述终端的第一频段的上行带宽能力,所述第一频段的上行带宽能力不小于第二阈值,所述第二阈值根据所述终端的最大带宽能力或者根据所述第一频段或所述第一频段的子载波间隔确定;
    所述终端在所述无线接入网节点根据所述第二带宽能力信息分配的资源上发送上行信号。
  11. 根据权利要求10所述的方法,其特征在于,所述第二阈值小于或等于所述第一阈值。
  12. 根据权利要求10所述的方法,其特征在于,所述多个频段中的不同频段对应的第一阈值与第二阈值的差值不同。
  13. 一种传输信号的方法,用于多频段的通信系统,其特征在于,所述方法包括:
    无线接入网节点接收终端上报的多个频段中的第一频段的带宽能力信息,其中所述终端的工作频段包括所述第一频段,所述第一频段的带宽能力信息用于指示所述终端的第一频段的带宽能力,所述第一频段的带宽能力不小于第一阈值,所述第一阈值根据所述终端的最大带宽能力确定或者根据所述第一频段或所述第一频段的子载波间隔确定;
    所述无线接入网节点根据所述带宽能力信息分配资源;
    所述无线接入网节点在分配的资源上发送或接收信号。
  14. 根据权利要求13所述的方法,其特征在于,所述第一阈值根据所述终端的最大带宽能力确定,所述最大带宽能力为所述终端的射频带宽能力和基带带宽能力中的最小值。
  15. 根据权利要求14所述的方法,其特征在于,所述基带带宽能力为所述第一频段的子载波间隔与所述终端采用的最大FFT点数的乘积。
  16. 根据权利要求15所述的方法,其特征在于,所述第一阈值小于或等于所述乘积和所述终端的射频带宽能力中的最小值。
  17. 根据权利要求13所述的方法,其特征在于,所述第一阈值根据所述第一频段确定,所述多个频段中的不同频段对应的同步信号块的频域宽度不同,所述多个频段中的不同频段对应的第一阈值不同。
  18. 根据权利要求17所述的方法,所述第一频段对应的所述第一阈值大于或等于所述第一频段对应的同步信号块的频域宽度。
  19. 根据权利要求13所述的方法,其特征在于,所述第一阈值根据所述第一频段的子载波间隔确定,所述多个频段的不同子载波间隔对应的同步信号块的频域宽度不同,所述多个频段的不同子载波间隔对应的第一阈值不同。
  20. 根据权利要求19所述的方法,所述第一频段对应的所述第一阈值大于或等于所述第一频段对应的同步信号块的频域宽度。
  21. 根据权利要求13至20中的任一项所述的方法,其特征在于,所述第一频段的带宽能力信息用于指示所述终端的第一频段的下行带宽能力或上行带宽能力。
  22. 根据权利要求13至16中的任一项所述的方法,其特征在于,所述第一频段的带宽能力信息用于指示所述终端的第一频段的下行带宽能力,所述无线接入网节点在分配的资源上发送或接收信号,包括:
    所述无线接入网节点在分配的资源上接收下行信号,
    其中,所述方法进一步包括:
    所述无线接入网节点接收终端上报的多个频段中的第一频段的第二带宽能力信息,其中所述第二带宽能力信息用于指示所述终端的第一频段的上行带宽能力,所述第一频段的上行带宽能力不小于第二阈值力,所述第二阈值根据所述终端的最大带宽能力或者根据所述第一频段或所述第一频段的子载波间隔确定;
    所述无线接入网节点在根据所述第二带宽能力信息分配的资源上发送上行信号。
  23. 根据权利要求22所述的方法,其特征在于,所述第二阈值小于或等于所述第一阈值。
  24. 根据权利要求22所述的方法,其特征在于,所述多个频段中的不同频段对应的第一阈值与第二阈值的差值不同。
  25. 一种用于终端的装置,包括:
    上报单元,用于向无线接入网节点上报多个频段中的第一频段的带宽能力信息,其中所述终端的工作频段包括所述第一频段,所述第一频段的带宽能力信息用于指示所述终端的第一频段的带宽能力,所述第一频段的带宽能力不小于第一阈值,所述第一阈值根据所述终端的最大带宽能力确定或者根据所述第一频段或所述第一频段的子载波间隔确定;
    收发单元,用于在所述无线接入网节点根据所述带宽能力信息分配的资源上发送或接收信号。
  26. 根据权利要求25所述的装置,其特征在于,所述第一阈值根据所述终端的最大带宽能力确定,所述最大带宽能力为所述终端的射频带宽能力和基带带宽能力中的最小值。
  27. 根据权利要求26所述的装置,其特征在于,所述基带带宽能力为所述第一频段的子载波间隔与所述终端采用的最大FFT点数的乘积。
  28. 根据权利要求27所述的装置,其特征在于,所述第一阈值小于或等于所述乘积和所述终端的射频带宽能力中的最小值。
  29. 根据权利要求25所述的装置,其特征在于,所述第一阈值根据所述第一频段确定,所述多个频段中的不同频段对应的同步信号块的频域宽度不同,所述多个频段中的不同频段对应的第一阈值不同。
  30. 根据权利要求29所述的装置,所述第一频段对应的所述第一阈值大于或等于所述第一频段对应的同步信号块的频域宽度。
  31. 根据权利要求25所述的装置,其特征在于,所述第一阈值根据所述第一频段的子载波间隔确定,所述多个频段的不同子载波间隔对应的同步信号块的频域宽度不同,所述多个频段的不同子载波间隔对应的第一阈值不同。
  32. 根据权利要求31所述的装置,所述第一频段对应的所述第一阈值大于或等于所述第一频段对应的同步信号块的频域宽度。
  33. 根据权利要求25至32中的任一项所述的装置,其特征在于,所述第一频段的带宽能力信息用于指示所述终端的第一频段的下行带宽能力或上行带宽能力。
  34. 根据权利要求25至28中的任一项所述的装置,其特征在于,所述第一频段的带宽能力信息用于指示所述终端的第一频段的下行带宽能力,所述收发单元在所述无线接入网节点根据所述带宽能力信息分配的资源上接收下行信号,所述终端上报单元还向所述无线接入网节点上报多个频段中的第一频段的第二带宽能力信息,其中所述第二带宽能力信息用于指示所述终端的第一频段的上行带宽能力,所述第一频段的上行带宽能力不小于第二阈值,所述第二阈值根据所述终端的最大带宽能力或者根据所述第一频段或所述第一频段的子载波间隔确定;所述收发单元还在所述无线接入网节点根据所述第二带宽能力信息分配的资源上发送上行信号。
  35. 根据权利要求34所述的装置,其特征在于,所述第二阈值小于或等于所述第一阈值。
  36. 根据权利要求34所述的装置,其特征在于,所述多个频段中的不同频段对应的第一阈值与第二阈值的差值不同。
  37. 一种用于无线接入网节点的装置,包括:
    收发单元,用于接收终端上报的多个频段中的第一频段的带宽能力信息,其中所述终端的工作频段包括所述第一频段,所述第一频段的带宽能力信息用于指示所述终端的第一频段的带宽能力,所述第一频段的带宽能力不小于第一阈值,所述第一阈值根据所述终端的最大带宽能力确定或者根据所述第一频段或所述第一频段的子载波间隔确定;
    分配单元,用于根据所述带宽能力信息分配资源;
    所述收发单元,用于在分配的资源上发送或接收信号。
  38. 根据权利要求37所述的装置,其特征在于,所述第一阈值根据所述终端的最大带宽能力确定,所述最大带宽能力为所述终端的射频带宽能力和基带带宽能力中的最小值。
  39. 根据权利要求38所述的装置,其特征在于,所述基带带宽能力为所述第一频段的子载波间隔与所述终端采用的最大FFT点数的乘积。
  40. 根据权利要求39所述的装置,其特征在于,所述第一阈值小于或等于所述乘积和所述终端的射频带宽能力中的最小值。
  41. 根据权利要求27所述的装置,其特征在于,所述第一阈值根据所述第一频段确定,所述多个频段中的不同频段对应的同步信号块的频域宽度不同,所述多个频段中的不同频段对应的第一阈值不同。
  42. 根据权利要求41所述的装置,所述第一频段对应的所述第一阈值大于或等于所述第一频段对应的同步信号块的频域宽度。
  43. 根据权利要求37所述的装置,其特征在于,所述第一阈值根据所述第一频段的子载波间隔确定,所述多个频段的不同子载波间隔对应的同步信号块的频域宽度不同,所述多个频段的不同子载波间隔对应的第一阈值不同。
  44. 根据权利要求43所述的装置,所述第一频段对应的所述第一阈值大于或等于所述第一频段对应的同步信号块的频域宽度。
  45. 根据权利要求37至44中的任一项所述的装置,其特征在于,所述第一频段的带宽能力信息用于指示所述终端的第一频段的下行带宽能力或上行带宽能力。
  46. 根据权利要求37至40中的任一项所述的装置,其特征在于,所述第一频段的带宽能力信息用于指示所述终端的第一频段的下行带宽能力,所述收发单元在分配的资源上接收下行信号,所述收发单元还接收终端上报的多个频段中的第一频段的第二带宽能力信息,其中所述第二带宽能力信息用于指示所述终端的第一频段的上行带宽能力,所述第一频段的上行带宽能力不小于第二阈值,所述第二阈值根据所述终端的最大带宽能力或者根据所述第一频段或所述第一频段的子载波间隔确定;所述收发单元还在根据所述第二带宽能力信息分配的资源上发送上行信号。
  47. 根据权利要求46所述的装置,其特征在于,所述第二阈值小于或等于所述第一阈值。
  48. 根据权利要求46所述的装置,其特征在于,所述多个频段中的不同频段对应的第一阈值与第二阈值的差值不同。
  49. 一种用于终端的装置,包括:处理元件和存储元件,其中存储元件用于存储程序和数据,处理元件用于执行如权利要求1至12任一项所述的方法。
  50. 一种终端,包括如权利要求25至36任一项所述的装置,或者,包括如权利要求49所述的装置。
  51. 一种计算机可读存储介质,包括用于执行如权利要求1至12任一项所述的方法的程序。
  52. 一种计算机程序,包括用于执行如权利要求1至12任一项所述的方法的指令。
PCT/CN2018/079717 2017-03-24 2018-03-21 传输信号的方法和装置 WO2018171601A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP18771936.4A EP3567959A4 (en) 2017-03-24 2018-03-21 SIGNAL TRANSMISSION METHOD AND DEVICE
US16/579,844 US11134497B2 (en) 2017-03-24 2019-09-24 Signal transmission method and apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201710184682.X 2017-03-24
CN201710184682.XA CN108633046B (zh) 2017-03-24 2017-03-24 传输信号的方法和装置

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/579,844 Continuation US11134497B2 (en) 2017-03-24 2019-09-24 Signal transmission method and apparatus

Publications (1)

Publication Number Publication Date
WO2018171601A1 true WO2018171601A1 (zh) 2018-09-27

Family

ID=63584163

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/079717 WO2018171601A1 (zh) 2017-03-24 2018-03-21 传输信号的方法和装置

Country Status (4)

Country Link
US (1) US11134497B2 (zh)
EP (1) EP3567959A4 (zh)
CN (1) CN108633046B (zh)
WO (1) WO2018171601A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021062138A1 (en) * 2019-09-27 2021-04-01 Qualcomm Incorporated Physical downlink shared channel resources for reduced capability user equipment
CN114503623A (zh) * 2019-09-30 2022-05-13 株式会社Ntt都科摩 终端以及通信方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018203814A1 (en) * 2017-05-04 2018-11-08 Telefonaktiebolaget Lm Ericsson (Publ) Wireless device, network node, and methods performed thereby for handling a communication of blocks of physical channels or signals
KR102352364B1 (ko) * 2017-06-15 2022-01-18 주식회사 아이티엘 Nr 시스템에서 광대역 동작 방법 및 장치
CN112514481A (zh) * 2018-11-16 2021-03-16 华为技术有限公司 一种识别终端的带宽能力的方法、设备及系统
US11470581B2 (en) * 2019-05-03 2022-10-11 Qualcomm Incorporated Channel-bandwidth-attributed per-band user equipment capability reporting
US20220104109A1 (en) * 2020-09-28 2022-03-31 Qualcomm Incorporated Techniques for adaptatively requesting on-demand system information
CN113518456A (zh) * 2021-04-20 2021-10-19 Tcl通讯(宁波)有限公司 一种频段带宽协商方法、装置、网络服务器及存储介质
US11653268B2 (en) 2021-06-15 2023-05-16 Microsoft Technology Licensing, Llc Dynamically adjusting the bandwidth of downlink transmissions based on a radio access technology used by a radio access network
CN116582885A (zh) * 2022-01-30 2023-08-11 华为技术有限公司 一种通信方法和装置

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064634A (zh) * 2006-04-30 2007-10-31 华为技术有限公司 频段重配置系统和方法
CN101378579A (zh) * 2007-08-30 2009-03-04 中兴通讯股份有限公司 一种正交频分复用接入体系下多带宽终端指配方法
CN105813202A (zh) * 2014-12-30 2016-07-27 中国移动通信集团公司 一种信道带宽配置方法及装置

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20090303941A1 (en) 2005-08-26 2009-12-10 Matsushita Electric Industrial Co., Ltd. Scalable bandwidth system, radio base station apparatus and radio terminal apparatus
JP4893747B2 (ja) * 2006-11-10 2012-03-07 富士通株式会社 無線通信システム
CN101374016B (zh) * 2007-08-20 2012-10-10 中兴通讯股份有限公司 一种移动通信系统中的同步方法和分配频率资源的方法
US20100195586A1 (en) * 2009-02-05 2010-08-05 Infineon Technologies Ag Multiband-operation in wireless communication systems
CN102098784B (zh) * 2009-12-14 2014-06-04 华为技术有限公司 一种资源配置方法和设备
CN102378370B (zh) * 2010-08-13 2014-10-29 电信科学技术研究院 一种载波聚合能力的处理方法和设备
US9338695B2 (en) * 2011-12-01 2016-05-10 Qualcomm Incorporated Signaling of supported carrier bandwidths for carrier aggregation
GB2510138A (en) * 2013-01-24 2014-07-30 Sony Corp Allocating communications resources within different frequency ranges according to the relative capability of a communications device
CN105099638B (zh) * 2014-05-09 2020-08-28 三星电子株式会社 在移动通信系统中收发用户设备性能信息的方法和装置
US9847862B2 (en) * 2015-03-14 2017-12-19 Qualcomm Incorporated Reciprocal channel sounding reference signal multiplexing
US11660063B2 (en) * 2015-11-18 2023-05-30 Bluedop Medical, Ltd. System for determining peripheral artery disease and method of use
EP3537819B1 (en) * 2017-03-31 2021-10-20 CloudMinds (Shanghai) Robotics Co., Ltd. Resource scheduling method and base station
EP3726919B1 (en) * 2018-02-12 2022-06-15 LG Electronics Inc. Method for adjusting size of contention window in wireless communication system, and communication device using method
US10945293B2 (en) * 2019-07-25 2021-03-09 Qualcomm Incorporated Frequency hopping for two-step random access
US11619610B2 (en) * 2019-08-05 2023-04-04 Volt Holdings Limited Computer-implemented processing for non-destructive evaluation of wooden specimen
US11297576B2 (en) * 2019-08-12 2022-04-05 Qualcomm Incorporated Innovative signaling approaches to network for overheating indication in new radio (NR) and multi-radio dual connectivity (MR-DC)
US11678327B2 (en) * 2019-08-15 2023-06-13 Comcast Cable Communications, Llc Sidelink communications

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101064634A (zh) * 2006-04-30 2007-10-31 华为技术有限公司 频段重配置系统和方法
CN101378579A (zh) * 2007-08-30 2009-03-04 中兴通讯股份有限公司 一种正交频分复用接入体系下多带宽终端指配方法
CN105813202A (zh) * 2014-12-30 2016-07-27 中国移动通信集团公司 一种信道带宽配置方法及装置

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021062138A1 (en) * 2019-09-27 2021-04-01 Qualcomm Incorporated Physical downlink shared channel resources for reduced capability user equipment
US11812450B2 (en) 2019-09-27 2023-11-07 Qualcomm Incorporated Physical downlink shared channel resources for reduced capability user equipment
CN114503623A (zh) * 2019-09-30 2022-05-13 株式会社Ntt都科摩 终端以及通信方法
CN114503623B (zh) * 2019-09-30 2023-12-01 株式会社Ntt都科摩 终端以及通信方法

Also Published As

Publication number Publication date
US11134497B2 (en) 2021-09-28
CN108633046A (zh) 2018-10-09
EP3567959A1 (en) 2019-11-13
EP3567959A4 (en) 2020-01-15
US20200022131A1 (en) 2020-01-16
CN108633046B (zh) 2023-08-22

Similar Documents

Publication Publication Date Title
WO2018171601A1 (zh) 传输信号的方法和装置
US11540278B2 (en) Carrier switching method, apparatus, and system for multi-carrier communication
WO2019029366A1 (zh) 一种调整频域资源和发送指示信息的方法、装置及系统
US10856267B2 (en) Information indication method and related device
WO2018127066A1 (zh) 一种上行测量信号的指示方法及装置
KR102288695B1 (ko) 리소스 할당 방법, 단말, 및 네트워크 디바이스
WO2018228548A1 (zh) 上行资源的授权方法、装置及系统
WO2016161977A1 (zh) 载波聚合中的pucch资源配置方法及其设备
WO2019233418A1 (zh) 用于波束训练的方法和通信装置
CN109302739A (zh) 一种同步信号的发送方法、接收方法和装置
WO2020238992A1 (zh) 一种通信方法及装置
US11490387B2 (en) Communication method and communications apparatus
WO2020169063A1 (zh) 一种数据传输方法及通信装置
WO2019096232A1 (zh) 通信方法和通信装置
CN110475292A (zh) 一种通信方法及装置
WO2022110188A1 (zh) 侧行链路载波管理方法、装置和系统
TWI652921B (zh) 用戶設備及虛擬載波的操作方法
CN111771338A (zh) 物理上行链路共享信道(pusch)跳频分配
US20210399866A1 (en) Communication method and apparatus
CN115175345B (zh) 无线通信方法、用户设备以及网络设备
WO2022147735A1 (zh) 确定发送功率的方法及装置
WO2020200115A1 (zh) 通信方法、装置、系统和存储介质
WO2020192719A1 (zh) 更新波束的方法与通信装置
WO2019129164A1 (zh) 一种传输时间处理方法及相关设备
CN114073146A (zh) 一种发送波束失败恢复请求的方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18771936

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2018771936

Country of ref document: EP

Effective date: 20190806

NENP Non-entry into the national phase

Ref country code: DE