WO2019233418A1 - 用于波束训练的方法和通信装置 - Google Patents

用于波束训练的方法和通信装置 Download PDF

Info

Publication number
WO2019233418A1
WO2019233418A1 PCT/CN2019/089996 CN2019089996W WO2019233418A1 WO 2019233418 A1 WO2019233418 A1 WO 2019233418A1 CN 2019089996 W CN2019089996 W CN 2019089996W WO 2019233418 A1 WO2019233418 A1 WO 2019233418A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
terminal device
csi
beam training
frequency bands
Prior art date
Application number
PCT/CN2019/089996
Other languages
English (en)
French (fr)
Inventor
吴晔
施弘哲
黄煌
金黄平
Original Assignee
华为技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 华为技术有限公司 filed Critical 华为技术有限公司
Priority to EP19815472.6A priority Critical patent/EP3813271A4/en
Publication of WO2019233418A1 publication Critical patent/WO2019233418A1/zh
Priority to US17/110,764 priority patent/US11652523B2/en

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0617Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal for beam forming
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/309Measuring or estimating channel quality parameters
    • H04B17/318Received signal strength
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0626Channel coefficients, e.g. channel state information [CSI]
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/30Monitoring; Testing of propagation channels
    • H04B17/382Monitoring; Testing of propagation channels for resource allocation, admission control or handover
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0613Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission
    • H04B7/0615Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal
    • H04B7/0619Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station using simultaneous transmission of weighted versions of same signal using feedback from receiving side
    • H04B7/0621Feedback content
    • H04B7/0628Diversity capabilities
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B7/00Radio transmission systems, i.e. using radiation field
    • H04B7/02Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas
    • H04B7/04Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas
    • H04B7/06Diversity systems; Multi-antenna system, i.e. transmission or reception using multiple antennas using two or more spaced independent antennas at the transmitting station
    • H04B7/0686Hybrid systems, i.e. switching and simultaneous transmission
    • H04B7/0695Hybrid systems, i.e. switching and simultaneous transmission using beam selection
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0044Arrangements for allocating sub-channels of the transmission path allocation of payload
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/0091Signaling for the administration of the divided path
    • H04L5/0094Indication of how sub-channels of the path are allocated
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W72/00Local resource management
    • H04W72/50Allocation or scheduling criteria for wireless resources
    • H04W72/51Allocation or scheduling criteria for wireless resources based on terminal or device properties
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04LTRANSMISSION OF DIGITAL INFORMATION, e.g. TELEGRAPHIC COMMUNICATION
    • H04L5/00Arrangements affording multiple use of the transmission path
    • H04L5/003Arrangements for allocating sub-channels of the transmission path
    • H04L5/0048Allocation of pilot signals, i.e. of signals known to the receiver
    • H04L5/0051Allocation of pilot signals, i.e. of signals known to the receiver of dedicated pilots, i.e. pilots destined for a single user or terminal
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04WWIRELESS COMMUNICATION NETWORKS
    • H04W8/00Network data management
    • H04W8/22Processing or transfer of terminal data, e.g. status or physical capabilities
    • H04W8/24Transfer of terminal data

Definitions

  • the present application relates to the field of communications, and in particular, to a method and a communication device for beam training.
  • 5G fifth-generation mobile communication
  • low-frequency (for example, frequencies lower than 6GHz) communication has been unable to meet increasing communication needs, so high-frequency (for example, frequencies greater than 6GHz) communication (high frequency, HF) is receiving increasing attention from academics and industry.
  • high-frequency (for example, frequencies greater than 6GHz) communication high frequency, HF
  • the transmitting side such as the network equipment side
  • the receiving side such as the terminal device side
  • the network device and the terminal device can make the foregoing transmission beam and the reception beam match each other through beam training.
  • the present application provides a method and a communication device for beam training, which can improve the efficiency of beam training.
  • a method for beam training includes: a terminal device generating capability indication information, where the capability indication information is used to indicate that the terminal device can support beam training on a maximum of N frequency bands simultaneously , N is an integer greater than or equal to 1; the terminal device sends the capability indication information.
  • a method for beam training includes: a network device receiving a capability indication letter sent by a terminal device, where the capability indication information is used to indicate that the terminal device can support a maximum of N frequency bands simultaneously Beam training is performed on the network, and N is an integer greater than or equal to 1.
  • the network device instructs the terminal device to perform beam training according to the capability indication information.
  • the terminal device reports the capability indication information to the network device, so that the network device can simultaneously perform beam training in multiple frequency bands according to the capability of the terminal device, and the embodiment of the present application can improve the efficiency of beam training.
  • the terminal device may be configured according to a default configuration, such as, but not limited to, the ability of the terminal device to receive a beam, and a reference signal receiving power (RSRP) (for example, the RSPR may be a layer 1 reference signal receiving power (layer 1 reference). signal (received power, L1-RSRP)) computing capability, etc., to generate the capability indication information, the embodiments of the present application are not limited thereto.
  • RSRP reference signal receiving power
  • L1-RSRP layer 1 reference signal receiving power
  • the frequency band represents a continuous segment of frequency domain resources.
  • the frequency band may be a bandwidth part (BWP), and BWP may be understood as a continuous band of frequencies.
  • BWP bandwidth part
  • CP cyclic prefix
  • TTI transmission time interval
  • RB resource block
  • different bandwidth parts may correspond to different system parameters.
  • the frequency band may also be a tracking band.
  • the beam tracking bandwidth may include at least one subcarrier; or the beam tracking bandwidth may include at least one resource block (RB) in the frequency domain; or the beam tracking bandwidth is in the frequency domain It may include at least one precoding group (PRG); or the beam tracking bandwidth may include at least one resource block group (RBG) in the frequency domain.
  • RB resource block
  • PRG precoding group
  • RBG resource block group
  • only signals used for beam training can be scheduled on the beam tracking bandwidth; or, the beam tracking bandwidth can only schedule signals and control channels (such as physical downlink control channels) used for beam training. control channel, PDCCH)).
  • the signals used for beam training may be different between different beam tracking bandwidths.
  • the N frequency bands belong to a same carrier CC.
  • the CC includes a frequency domain width occupied by an orthogonal frequency division multiplexed OFDM symbol.
  • the terminal device under one CC and the same OFDM symbol, the terminal device expects different frequency bands (for example, BWP) to perform beam training at the same time through the capability indication information, that is, the terminal device expects every Each BWP can use its own independent spatial domain filter (downlink spatial domain transmission filter), and the signals used for beam training transmitted by different BWPs can use different or the same downlink spatial domain filters.
  • BWP frequency bands
  • Each BWP can use its own independent spatial domain filter (downlink spatial domain transmission filter), and the signals used for beam training transmitted by different BWPs can use different or the same downlink spatial domain filters.
  • a signal for beam training transmitted on a frequency band may be at least one of the following signals: an aperiodic channel state information reference signal, A-CSI-RS), periodic channel state information reference signal (P-CSI-RS), semi-persistent channel state information reference signal (SP-CSI) -RS) and synchronous signal / physical broadcast channel (PBCH) block (SSB).
  • A-CSI-RS aperiodic channel state information reference signal
  • P-CSI-RS periodic channel state information reference signal
  • SP-CSI semi-persistent channel state information reference signal
  • PBCH physical broadcast channel block
  • A-CSI-RS, P-CSI-RS, and SP-CSI-RS may be collectively referred to as a channel state information reference signal (channel-information reference signal (CSI-RS).
  • CSI-RS channel-information reference signal
  • a signal for beam training transmitted on a frequency band may be at least one of CSI-RS and SSB.
  • signals used for beam training in the embodiments of the present application may also be other signals, and the embodiments of the present application are not limited thereto.
  • the capability indication information in the embodiments of the present application will be described in two cases below.
  • the terminal device may report only one capability without distinguishing the type of the specific signal.
  • the signals used for beam training in the frequency band all correspond to the same capability.
  • the "capability" referred to herein refers to a terminal device's ability to support multiple frequency bands for simultaneous beam training.
  • a capability corresponds to a capability value.
  • a capability corresponding to a capability value of N indicates that the terminal device can support beam training on a maximum of N frequency bands at the same time.
  • the terminal device distinguishes the types of signals and needs to report multiple capabilities for multiple signals, where different signals in the multiple signals may correspond to the same or different capability values.
  • the capability values corresponding to the multiple capabilities corresponding to the multiple signals may be the same or different.
  • the capability value corresponding to the first signal may represent the maximum number of frequency bands (here, the frequency band refers to a frequency band in which the first signal is transmitted) supported by the terminal device for simultaneous beam training.
  • case 1 is described, that is, a case where the terminal device does not distinguish the type of a specific signal and reports only one capability.
  • the capability indication information may not distinguish specific signal types.
  • the signals transmitted in each of the multiple frequency bands for which beam training is performed simultaneously are not limited.
  • the signals transmitted in each frequency band can be A-CSI-RS, P- Any one or more of CSI-RS, SP-CSI-RS, and SSB, or signals transmitted in each frequency band may be one or two of CSI-RS and SSB.
  • the embodiments of the present application are not limited thereto.
  • the ability of the terminal device to report is not limited to the type of signal.
  • the terminal device reports the capability indication information, it is not expected that the number of BWPs calculated during the scheduled simultaneous L1-RSRP measurement exceeds the capability value N. That is, the maximum number of BWPs calculated by the L1-RSRP measurement simultaneously performed by the terminal device is N.
  • the method further includes:
  • the terminal device performs beam training in L frequency bands at the same time. For example, the terminal device calculates layer 1 reference signal received power (L1-RSRP) in L frequency bands at the same time, and L is less than or An integer equal to N.
  • L1-RSRP layer 1 reference signal received power
  • the above-mentioned signal for calculation of LI-RSRP may be any one or more of A-CSI-RS, P-CSI-RS, SP-CSI-RS, and SSB; or, the above-mentioned signal for LI-RSRP
  • the calculated signal can be any one or more of CSI-RS and SSB.
  • the instructing, by the network device, the terminal device to perform beam training according to the capability indication information includes:
  • the network device instructs the terminal device to perform L1-RSRP calculation on L frequency bands at the same time according to the capability indication information, where L is an integer less than or equal to N.
  • the capability indication information may include a value of N. That is, the capability indication information includes a capability value N of the terminal device.
  • the terminal device can directly report the capability value N through the capability indication information.
  • the network device can directly determine the capability value of the terminal device according to the acquired capability indication information, and then the network device can determine the number of frequency bands for simultaneous beam training. It should be understood that the number of frequency bands determined by the network device for simultaneous beam training is usually less than or equal to the capability value reported by the terminal device.
  • the embodiment of the present application reports the capability value through the terminal device, so that the network device can directly determine the capability of the terminal device according to the capability value, without additional calculation process, and can reduce the calculation overhead.
  • the capability indication information includes first indication information and second indication information, and the first indication information is used to indicate a maximum number of frequency bands supported by the terminal device and in an active state at the same time.
  • the second indication information is used to indicate a maximum number y of analog beams, panels, or simultaneous spatial domain receive filters supported by the terminal device for receiving, the x and y is used to determine the value of N.
  • x may be a maximum number of frequency bands for data transmission supported by the terminal device while performing CSI measurement of the channel state information at the same time.
  • the terminal device reports x and y through the capability indication information, which indirectly indicates the capability value of the terminal device. That is, the terminal device reports the capability value indirectly through the capability indication information.
  • the network device needs to calculate and determine the capability value of the specific terminal device based on the capability information reported by the terminal device, that is, x and y.
  • N is a smaller value of x and y.
  • the terminal device can also report whether it supports a single spatial domain filter by using the capability indication information.
  • the terminal device can indirectly report the capability of the terminal device through the existing information, without the need to specifically report the capability value of the terminal device, which can reduce signaling overhead and save network resources.
  • the capability indication information is specifically used to indicate that the terminal device can support beam training on a maximum of n i frequency bands at the same time for the i-th signal set in the m signal sets, i represents the label of the signal set, and i traverses to take the value 1, 2, ..., m, m represents the number of signal sets, n i is an integer greater than or equal to 1, m is an integer greater than or equal to 1, and N is a maximum value of n i , the i-th signal set includes at least For a signal, the maximum number of frequency bands of beam training that the terminal device can support for each of the at least one signal is the n i .
  • n i may represent the maximum number of frequency bands at which the terminal device performs beam training simultaneously based on each signal in the i-th signal set. For example, if the i-th signal includes signals 1 and 2, then the terminal device is based on signal 1. The maximum number of frequency bands for simultaneous beam training is n i , and the maximum number of frequency bands for which the terminal device simultaneously performs beam training based on signal 2 is n i .
  • the i-th signal set can be regarded as a whole, and n i can also represent the maximum number of frequency bands at which the terminal device performs beam training simultaneously based on all signals in the i-th signal set.
  • the The i signal includes a signal 1 and a signal 2.
  • the maximum number of frequency bands at which the terminal device performs beam training simultaneously based on the i-th signal set is n i .
  • the terminal equipment carries the sum of all frequency bands of the signals in the ith signal set during beam training, which is not greater than n i .
  • the method further includes:
  • the terminal device calculates L1-RSRP for the first signals transmitted simultaneously in the z frequency bands, where z is an integer not greater than n i , and the first signal is any signal in the i-th signal set.
  • the instructing, by the network device, the terminal device to perform beam training according to the capability indication information includes:
  • the network device instructs the terminal device to perform L1-RSRP calculation on the first signal transmitted simultaneously in the z frequency bands according to the capability indication information, where z is an integer not greater than n i , and the first signal is the i-th Any signal in the signal set.
  • the network device and the terminal device perform beam training in z frequency bands at the same time.
  • a signal used for beam training may not be limited to the certain signal
  • the at least one frequency band may be P frequency bands, that is, the network The device and the terminal device perform beam training in P frequency bands at the same time
  • the P frequency bands include z frequency bands that simultaneously transmit the first signal in the i-th signal set, where z is an integer not greater than n i , and the first The signal is any signal in the i-th signal set.
  • the total number of frequency bands carrying signals in the i-th signal set is not greater than n i , in other words, during beam training, the i-th signal set The total number of frequency bands occupied by all the signals in the system is less than or equal to n i .
  • the number of frequency bands where the signal is transmitted is less than or equal to the capability value corresponding to the signal.
  • the foregoing specific values of P and / or z may be determined by the network device according to factors such as the capability of the network device and / or the measurement requirements of the terminal device, and the embodiments of the present application are not limited thereto.
  • the P frequency bands are less than or equal to N. That is, the value of P is less than or equal to the maximum capability value N corresponding to one signal.
  • P may be greater than N.
  • the maximum value of P is n 1 + n 2 + ... + n m .
  • different signals in the m signal sets include different signals, and the i-th signal set includes a channel state information reference signal CSI-RS and a synchronization signal / At least one signal in the broadcast channel block SSB.
  • the CSI-RS includes an aperiodic channel state information reference signal A-CSI-RS, a periodic channel state information reference signal P-CSI-RS, and a half At least one of the persistent channel state information reference signals SP-CSI-RS.
  • a set of signals used for beam training may be referred to as a preset signal set.
  • the preset signal set includes: A-CSI-RS, P-CSI-RS, SP-CSI-RS and SSB; or, the preset signal set includes: CSI-RS and SSB.
  • the preset signal set in the embodiments of the present application may represent a set of signals used for beam training in an actual beam training process.
  • signals used for beam training in practical applications are not limited to the foregoing types listed in the embodiments of the present application.
  • Signal, in practical applications, the signal (preset signal set) used for beam training may include only some of the above signals, or the signal (preset signal set) used for beam training may also include other signals. This application The embodiment is not limited thereto.
  • the preset signal set may also be referred to as a set of signals used for beam training, a first set, and the like, and the embodiments of the present application are not limited thereto.
  • the capability indication information includes a value of the n i . That is, the capability indication information includes m capability values corresponding to the m signal sets.
  • the i-th signal set may also be referred to as the i-th signal.
  • the capability indication information may include m capability values corresponding to m signals.
  • the capability indication information includes first indication information and second indication information
  • the first indication information is used to indicate that the terminal device supports The maximum number of simultaneous active frequency bands x
  • the second indication information is used to indicate the maximum number of analog beams, panels or airspace reception filters supported by the terminal device for simultaneous reception
  • the x and y are used to determine the value of n 1. Both x and y are integers greater than or equal to 1.
  • n 1 is a smaller value of x and y.
  • the terminal device when the terminal device treats all signals as a set and reports only one capability, the second case is the same as the first case.
  • the terminal device can report the first and second information to indirectly report the capability value supported by the terminal device. This situation is similar to the description above, as long as the It is sufficient to replace N with n 1 , which will not be repeated here.
  • the m signal sets include a part of the signals in the preset signal set, wherein the preset signal set is divided by the number of each signal corresponding to the other band signals in the outer part of the signal is the highest priority signal signal where n i is equal to the corresponding set, wherein a number of signals corresponding to the frequency band of the terminal device based representation The maximum number of frequency bands at which the one signal performs beam training simultaneously.
  • the order of signal priorities from high to low is: SSB, P-CSI-RS, SP-CSI-RS, and A-CSI-RS.
  • the capability value corresponding to the SSB is equal to the capability value corresponding to the P-CSI-RS.
  • the capability values corresponding to SSB and P-CSI-RS are equal to the capability values corresponding to SP-CSI-RS.
  • the capability values corresponding to SSB, P-CSI-RS, SP-CSI-RS and The A-CSI-RS corresponds to the same capability value.
  • the capability indication information does not indicate the capability value corresponding to a certain signal
  • the capability value corresponding to the certain signal may be determined according to the priority of the signal.
  • the embodiments of the present application are not limited to this.
  • the capability value corresponding to the SSB may also be one of the following two values: the capability value corresponding to the CSI-RS; and the periodic CSI-RS corresponding Ability value.
  • the capability value corresponding to the A-CSI-RS may be: the capability value corresponding to the periodic CSI-RS.
  • the capability indication information indicates the capability value of only a part of the signal, which can reduce signaling overhead.
  • the terminal device may first measure a signal sent by a network device through at least one frequency band, calculate and find a better transmission beam corresponding to each frequency band of the network device, and finally The information of the better transmitted beam is fed back to the network equipment.
  • At least one frequency band in the same CC for example, L frequency bands or P frequency bands can be beam-trained at the same time, and the terminal device independently measures and calculates for each frequency band (for example, BWP) in the multiple frequency bands.
  • L1-RSRP that is, in the embodiment of the present application, the terminal device performs L1-RSRP measurement calculation based on each BWP.
  • the terminal device can feed back the L1-RSRP of each BWP for the network device to select the optimal transmission beam of one or more BWP.
  • downlink receive beam i.e.
  • the terminal device can determine the best receiving beam corresponding to a certain transmission beam on each BWP according to the L1-RSRP of each BWP. Further, the terminal device L1-RSRP of each BWP for training the downlink receiving beam can also be fed back. Based on downlink transmit beam training and / or downlink receive beam training, the network device may select at least one BWP and the best transmit beam and best receive beam on each selected BWP to perform subsequent channel state information CSI measurement and / or data transmission.
  • the network device may select a better frequency band or frequencies (for example, BWP) to use the training to obtain the beam to communicate with the terminal device.
  • BWP frequency band or frequencies
  • the specific network side can configure the terminal device with one of the above through wireless resource control (RRC) signaling or downlink control information (DCI) or media access control element (MAC). Or multiple BWPs, the embodiments of the present application are not limited thereto.
  • RRC wireless resource control
  • DCI downlink control information
  • MAC media access control element
  • a network device can send a reference signal to a terminal device for channel measurement through the beam of the one or more BWPs, and then receive The channel state information (channel state information) (CSI) fed back by the terminal device and / or the CSI obtained through channel dissimilarity, and then the network device sends downlink data through the one or more BWPs according to the CSI.
  • CSI channel state information
  • the communication method provided in this application is not limited to downlink transmission, and may also be applicable to uplink transmission.
  • the application does not specifically limit the signals for beam training.
  • the reference signal may be, for example, channel state information reference signal (CSI-RS) and SSB;
  • the signal used for beam training may be sounding reference signal (sounding reference signal (SRS) and other signals.
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • the above-listed signals used for beam training are merely exemplary descriptions, and should not be construed as limiting the present application.
  • This application does not exclude the possibility of using other signals to implement beam training.
  • this application does not exclude the possibility of defining other signals used for uplink or downlink beam training in existing protocols (eg, LTE protocol, NR protocol) or future protocols.
  • a method for beam training includes: a terminal device receiving first instruction information, where the first instruction information is used to indicate the number of frequency bands M at which the terminal device can perform beam training simultaneously. M is an integer greater than or equal to 1; the terminal device performs beam training according to the first instruction information.
  • a method for beam training includes: a network device generates first instruction information, where the first instruction information is used to indicate the number of frequency bands M that the terminal device can perform beam training simultaneously. M is an integer greater than or equal to 1; the network device sends the first indication information.
  • the network device and the terminal device can perform beam training in multiple frequency bands at the same time according to the instructions of the network device, and the embodiment of the present application can improve the efficiency of beam training.
  • M represents the maximum number of frequency bands at which the terminal device can perform beam training at the same time
  • the first indication information is used to indicate the maximum number of frequency bands M that the terminal device can perform beam training simultaneously.
  • the number of frequency bands to be trained simultaneously may be less than or equal to M.
  • M represents the number of frequency bands used by the terminal device when performing beam training.
  • the first instruction information is used to indicate the number M of beam trainings performed by the terminal device simultaneously.
  • the terminal device performs beam training on M frequency bands at the same time, that is, the network device sends signals for beam training on M frequency bands at the same time to train the beams of M frequency bands at the same time.
  • the method further includes:
  • the method further includes:
  • the generating, by the network device, the first indication information includes: generating, by the network device, the first indication information according to the capability indication information.
  • the M represents the maximum number of frequency bands at which the terminal device performs beam training simultaneously; or the M represents the number of frequency bands used by the terminal device for beam training Number of frequency bands.
  • the terminal device performing beam training according to the first instruction information includes: the terminal device performs layer 1 on signals transmitted in M ′ frequency bands at the same time.
  • M ' is an integer less than or equal to M.
  • the specific value of M ' may be determined by the network device according to factors such as the capability of the network device and / or the measurement requirements of the terminal device, and the embodiment of the present application is not limited thereto.
  • M represents the maximum number of frequency bands at which the terminal device can simultaneously perform beam training
  • M ' is less than or equal to M.
  • M represents the number of frequency bands used by the terminal device for beam training
  • M ' is equal to M.
  • the network device and the terminal device can perform beam training in multiple frequency bands at the same time according to the instructions of the network device, and the embodiment of the present application can improve the efficiency of beam training.
  • a communication device including each module or unit for performing the method in any one of the first aspect, the third aspect, the first aspect, or the third aspect.
  • the communication device is a terminal device.
  • a communication device which includes each module or unit for performing the method in any one of the possible implementation manners of the second aspect, the fourth aspect, the second aspect, or the fourth aspect.
  • the communication device is a network device.
  • a communication device including a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the network device executes the first aspect, the third aspect, and possible implementations thereof Methods.
  • the communication device is a terminal device.
  • a communication device including a transceiver, a processor, and a memory.
  • the processor is used to control the transceiver to send and receive signals
  • the memory is used to store a computer program
  • the processor is used to call and run the computer program from the memory, so that the terminal device executes the second aspect, the fourth aspect, and possible implementations thereof Methods.
  • the communication device is a network device.
  • a computer-readable medium on which a computer program is stored, and the computer program, when executed by a computer, implements any possible implementation of the first aspect, the third aspect, the first aspect, or the third aspect Way in the way.
  • a computer-readable medium on which a computer program is stored, and when the computer program is executed by a computer, any possible implementation of the second aspect, the fourth aspect, the second aspect, or the fourth aspect is realized. Way in the way.
  • a computer program product is provided, and when the computer program product is executed by a computer, the method in any one of the possible implementation manners of the first aspect, the third aspect, the first aspect, or the third aspect is implemented.
  • a computer program product is provided, and when the computer program product is executed by a computer, the method in any one of the possible implementation manners of the second aspect, the fourth aspect, the second aspect, or the fourth aspect is implemented.
  • a processing device including a processor.
  • the method in any one of the foregoing first to fourth aspects or any possible implementation manner of the first to fourth aspects is executed by the processor.
  • the processor may be Dedicated processor.
  • the processing apparatus may further include a memory, and the memory stores code, and the processor executes the code in the memory to execute any one of the foregoing first to fourth aspects or the first to fourth aspects.
  • the processor may be a general purpose processor.
  • the process of sending the capability indication information may be a process of outputting the capability indication information from the processor
  • the receiving capability indication information may be the process of the processor receiving the input capability indication letter.
  • the processed output data can be output to the transmitter, and the input data received by the processor can come from the receiver.
  • the transmitter and the receiver may be collectively referred to as a transceiver.
  • the processing device in the thirteenth aspect may be a chip, and the processor may be implemented by hardware or software.
  • the processor may be a logic circuit, an integrated circuit, or the like.
  • the processor may be a general-purpose processor, which is implemented by reading software codes stored in a memory, and the memory may be integrated in the processor, may be located outside the processor, and exist independently.
  • a system including the foregoing network device and terminal device.
  • FIG. 1 is a schematic diagram of applicable scenarios in the embodiment of the present application.
  • FIG. 2 is a schematic flowchart of a method for beam training according to the present application.
  • FIG. 3 is a schematic diagram of a carrier according to the present application.
  • FIG. 4 is a schematic flowchart of another method for beam training according to the present application.
  • FIG. 5 is a schematic block diagram of a communication device according to the present application.
  • FIG. 6 is a schematic block diagram of another communication device according to the present application.
  • FIG. 7 is a schematic block diagram of a terminal device according to the present application.
  • FIG. 8 is a schematic block diagram of another communication device of the present application.
  • FIG. 9 is a schematic block diagram of another communication device of the present application.
  • FIG. 10 is a schematic block diagram of a network device according to the present application.
  • the embodiments of the present application can be applied to various communication systems, and therefore, the following description is not limited to a specific communication system.
  • the next generation communication system is a 5th generation (5G) communication system, for example, a new air interface (NR) system.
  • 5G 5th generation
  • NR new air interface
  • the network device may be a network-side device in a future 5G network, for example, a transmission point (TRP or TP) in an NR system, a base station (gNB) in an NR system, or a radio frequency unit in an NR system, such as Yuan Radio frequency units, one or a group of base stations (including multiple antenna panels), antenna panels, etc. in a 5G system.
  • TRP or TP transmission point
  • gNB base station
  • gNB base station
  • gNB base station
  • gNB base station
  • gNB base station
  • a radio frequency unit such as Yuan Radio frequency units
  • Different network devices may be located in the same cell or in different cells, which is not specifically limited herein.
  • the gNB may include a centralized unit (CU) and a distributed unit (DU).
  • the gNB may also include a radio frequency unit (radio unit, RU).
  • CU implements some functions of gNB and DU implements some functions of gNB.
  • CU implements radio resource control (RRC), packet data convergence layer protocol (PDCP) layer functions, and DU implements wireless chain.
  • RRC radio resource control
  • PDCP packet data convergence layer protocol
  • DU implements wireless chain.
  • Functions of radio control (RLC), media access control (MAC) and physical (PHY) layers are examples of radio resource control (RLC), media access control (MAC) and physical (PHY) layers.
  • the network device may be a CU node, or a DU node, or a device including a CU node and a DU node.
  • the CU can be divided into network devices in the access network RAN, and the CU can also be divided into network devices in the core network CN, which is not limited herein.
  • the terminal device may also be referred to as user equipment (UE), access terminal, user unit, user station, mobile station, mobile station, remote station, remote terminal, mobile device, user terminal, terminal , Wireless communication equipment, user agent, or user device.
  • the access terminal can be a cellular phone, a cordless phone, a session initiation protocol (SIP) phone, a wireless local loop (WLL) station, a personal digital processing (PDA), and wireless communication.
  • SIP session initiation protocol
  • WLL wireless local loop
  • PDA personal digital processing
  • Functional handheld devices, computing devices, or other processing devices connected to wireless modems, in-vehicle devices, wearable devices, drone devices, and terminal devices in future 5G networks or future evolved public land mobile networks (public land mobile network) , PLMN), and the like in the embodiments of the present application are not limited thereto.
  • the terminal device may also be a wearable device.
  • Wearable devices can also be referred to as wearable smart devices. They are the general name for applying wearable technology to intelligently design daily wear and develop wearable devices, such as glasses, gloves, watches, clothing and shoes.
  • a wearable device is a device that is worn directly on the body or is integrated into the user's clothing or accessories. Wearable devices are not only a hardware device, but also powerful functions through software support, data interaction, and cloud interaction. Broad-spectrum wearable smart devices include full-featured, large-sized, full or partial functions that do not rely on smart phones, such as smart watches or smart glasses, and only focus on certain types of application functions. Use, such as smart bracelets, smart jewelry, etc. for physical signs monitoring.
  • the embodiments of the present application can be adapted to any of the foregoing communication systems.
  • the embodiments of the present application can be applied to LTE systems and subsequent evolved systems such as 5G, or other wireless communication systems using various wireless access technologies, such as using code division.
  • Multiple-access, frequency-division multiple-access, time-division multiple-access, orthogonal frequency-division multiple-access, single-carrier frequency-division multiple-access and other access technology systems especially suitable for scenarios that require channel information feedback and / or apply secondary precoding technology
  • a wireless network using a massive multiple-input (multiple-input, multiple-output, Massive MIMO) technology a wireless network using a distributed antenna technology, and the like.
  • FIG. 1 is a schematic diagram of a communication system applicable to an embodiment of the present application.
  • the communication system 100 includes a network device 102 and a plurality of terminal devices (such as the terminal device 116 and the terminal device 122).
  • the network device 102 can provide communication services for the terminal device and access the core network. Search for synchronization signals, broadcast signals, etc. sent by network equipment to access the network, so as to communicate with the network. For example, uplink / downlink transmission is performed.
  • the network device 102 may include multiple antenna groups. Each antenna group may include multiple antennas, for example, one antenna group may include antennas 104 and 106, another antenna group may include antennas 106 and 110, and additional groups may include antennas 112 and 114. 2 antennas are shown in FIG. 1 for each antenna group, however, more or fewer antennas may be used for each group.
  • the network device 102 may additionally include a transmitter chain and a receiver chain. Those of ordinary skill in the art can understand that each of them may include multiple components related to signal transmission and reception (such as a processor, a modulator, a multiplexer, a decoder, etc.). Modulator, demultiplexer or antenna, etc.).
  • the network device 102 may communicate with multiple terminal devices (eg, the terminal device 116 and the terminal device 122). However, it is understood that the network device 102 may communicate with any number of terminal devices similar to the terminal devices 116 or 122.
  • the terminal device 116 communicates with the antennas 112 and 114, where the antennas 112 and 114 send information to the terminal device 116 through the forward link 116 and receive information from the terminal device 116 through the reverse link 120.
  • the terminal device 122 communicates with the antennas 104 and 106, where the antennas 104 and 106 send information to the terminal device 122 through the forward link 124 and receive information from the terminal device 122 through the reverse link 126.
  • the forward link 116 may utilize a different frequency band from the reverse link 120, and the forward link 124 may utilize the reverse link. 126 different frequency bands used.
  • FDD frequency division duplex
  • the forward link 116 and the reverse link 120 may use a common frequency band
  • the link 126 may use a common frequency band.
  • Each set of antennas and / or areas designed for communication is referred to as a sector of the network device 102.
  • the antenna group may be designed to communicate with terminal devices in a sector covered by the network device 102.
  • the transmitting antennas of the network device 102 can use beamforming to improve the signal-to-noise ratio of the forward links 116 and 124.
  • the Mobile devices experience less interference.
  • the network device 102, the terminal device 116, or the terminal device 122 may be a wireless communication transmitting apparatus and / or a wireless communication receiving apparatus.
  • the wireless communication transmitting device may encode the data for transmission.
  • the wireless communication transmitting device may obtain (for example, generate, receive from another communication device, or save in a memory, etc.) a certain number of data bits to be transmitted to the wireless communication receiving device through a channel.
  • Such data bits may be contained in a transport block (or transport blocks) of data, which may be segmented to generate a plurality of code blocks.
  • the communication system 100 may be a public land mobile network PLMN network or a device-to-device (D2D) network or a machine-to-machine (M2M) network or other network.
  • PLMN public land mobile network
  • D2D device-to-device
  • M2M machine-to-machine
  • FIG. 1 is only an example for easy understanding. Simplified schematic diagram, the network can also include other network equipment, not shown in Figure 1.
  • the network equipment and the terminal equipment need to make the transmit and receive beams match each other through beam training.
  • the efficiency of beam training is low.
  • the existing standards do not consider information such as the capabilities of the terminal equipment, and uniformly stipulate that at a time the terminal equipment can only train on one frequency band on the carrier. Therefore, in this way, the terminal device needs to operate in a time-sharing manner to complete the training of multiple frequency bands of the carrier, which will cause the training time to be too long and the training efficiency to be low.
  • an embodiment of the present application proposes a method for beam training.
  • This method can select at least one frequency band for beam training according to the capability of a terminal device, and can improve training efficiency.
  • the terminal device may report capability indication information indicating its own capability.
  • the capability indication information may be used to indicate that the terminal device can support beam training on a maximum of N frequency bands at the same time.
  • the network device can select multiple frequency bands for beam training at the same time according to the capabilities of the terminal device.
  • the network device and the terminal device can perform beam training in multiple frequency bands simultaneously.
  • the number of training frequency bands is reduced. Therefore, the embodiment of the present application can improve the efficiency of beam training on the premise of ensuring the accuracy of training.
  • a carrier represents a frequency domain width occupied by an orthogonal frequency division multiplexing (OFDM) symbol.
  • a beamformer may also be referred to as a spatial domain filter
  • a transmitting beam may also be referred to as a spatial domain transmitting filter
  • a receiving beam may also be referred to as a spatial domain receiving filter.
  • the beam may be a wide beam, a narrow beam, or another type of beam.
  • the beam forming technology may be a beam forming technology or other technical means.
  • the beamforming technology may specifically be a digital beamforming technology, an analog beamforming technology, or a hybrid digital / analog beamforming technology.
  • the transmitting end may send the same information or different information through different beams.
  • multiple beams having the same or similar communication characteristics may be regarded as one beam in this application.
  • One beam may include one or more antenna ports for transmitting data channels, control channels, sounding signals, and the like.
  • a transmitting beam may refer to a signal intensity distribution in different directions of a space after a signal is transmitted through an antenna
  • a receiving beam may refer to a signal intensity distribution of a wireless signal received from an antenna in different directions in space.
  • one or more antenna ports forming a beam can also be regarded as an antenna port set.
  • the embodiment of the beam in the protocol may be a spatial filter.
  • Beam training refers to the process by which network equipment and terminal equipment look for matching transmit and receive beam pairs.
  • For a specific definition of the beam training reference may be made to the description in the existing standard, which is not described in detail in the embodiment of the present application.
  • performing beam training on a frequency band may also be referred to as performing beam management or beam tracking on the frequency band.
  • the process of performing beam training on the frequency band may indicate a process in which the sending and receiving parties find the best receiving and transmitting beam pair on the frequency band.
  • the terminal device measures the transmission beam of the network device and feeds back the reference signal receiving power (RSRP), for example, the layer 1 reference signal receiving power in NR, L1-RSRP).
  • RSRP reference signal receiving power
  • the base station uses the transmit beam corresponding to the largest L1-RSRP value as the best transmit beam.
  • the terminal device calculates L1-RSRP by changing its own receiving beam to select the receiving beam corresponding to the maximum value of L1-RSRP as the best receiving beam corresponding to a certain transmitting beam.
  • the optimal transmit beam and the optimal receive beam constitute the optimal transmit / receive beam pair for subsequent CSI measurement and / or data transmission of channel state information.
  • FIG. 2 is a schematic flowchart of a method for beam training according to an embodiment of the present invention. The method shown in FIG. 2 is described from the perspective of interaction between a network device and a terminal device.
  • FIG. 2 shows a method according to an embodiment of the present application in a downlink transmission scenario. Specifically, the method 200 shown in FIG. 2 includes:
  • the terminal device generates capability indication information, where the capability indication information is used to indicate that the terminal device can support beam training on a maximum of N frequency bands at the same time, where N is an integer greater than or equal to 1.
  • the terminal device may generate the capability indication information according to a default configuration, such as but not limited to the ability of the terminal device to receive a beam, the RSRP calculation capability, and the like, and the embodiment of the present application is not limited thereto.
  • the frequency band represents a continuous section of frequency domain resources.
  • the frequency band may be a bandwidth part (BWP).
  • BWP bandwidth part
  • the bandwidth part may correspond to a set of system parameters (numerology), including, for example, but not limited to, subcarrier spacing, cyclic prefix (CP) length, transmission time interval (TTI), number of symbols, Resource block (RB) location, slot length, frame format, etc.
  • CP cyclic prefix
  • TTI transmission time interval
  • RB Resource block
  • different bandwidth parts may correspond to different system parameters.
  • the frequency band may also be a tracking band.
  • the beam tracking bandwidth may include at least one subcarrier; or the beam tracking bandwidth may include at least one resource block (RB) in the frequency domain; or the beam tracking bandwidth is in the frequency domain It may include at least one precoding group (PRG); or the beam tracking bandwidth may include at least one resource block group (RBG) in the frequency domain.
  • RB resource block
  • PRG precoding group
  • RBG resource block group
  • only signals used for beam training can be scheduled on the beam tracking bandwidth; or, the beam tracking bandwidth can only schedule signals and control channels (such as physical downlink control channels) used for beam training. control channel, PDCCH)).
  • the signals used for beam training may be different between different beam tracking bandwidths.
  • the following description only uses the band as the BWP as an example, but the embodiments of the present application are not limited thereto.
  • the band is the beam tracking bandwidth
  • the N frequency bands belong to the same carrier CC.
  • the CC includes a frequency domain width occupied by one orthogonal frequency division multiplexed OFDM symbol.
  • the terminal device under one CC and the same OFDM symbol, the terminal device expects different frequency bands (for example, BWP) to perform beam training at the same time through the capability indication information, that is, the terminal device expects every Each BWP can use its own independent spatial domain filter (downlink spatial domain transmission filter), and the signals used for beam training transmitted by different BWPs can use different or the same downlink spatial domain filters.
  • BWP frequency bands
  • Each BWP can use its own independent spatial domain filter (downlink spatial domain transmission filter), and the signals used for beam training transmitted by different BWPs can use different or the same downlink spatial domain filters.
  • the terminal device may report its own capability through the capability indication information.
  • the terminal device expects that the two BWPs can perform beam training at the same time, that is, the terminal device expects that the signals for beam training transmitted by the two BWPs can use different or the same downlink airspace filters.
  • FIG. 3 only shows an example where one CC includes two BWPs, but the embodiment of the present application is not limited thereto. In practical applications, one CC may include multiple BWPs. For example, one CC includes three BWPs, 4 BWP ...
  • a signal for beam training transmitted on a frequency band may be at least one of the following signals: an aperiodic channel state information reference signal, A-CSI-RS), periodic channel state information reference signal (P-CSI-RS), semi-persistent channel state information reference signal (SP-CSI) -RS) and synchronous signal / physical broadcast channel (PBCH) block (SSB).
  • A-CSI-RS aperiodic channel state information reference signal
  • P-CSI-RS periodic channel state information reference signal
  • SP-CSI semi-persistent channel state information reference signal
  • PBCH physical broadcast channel block
  • A-CSI-RS, P-CSI-RS, and SP-CSI-RS may be collectively referred to as a channel state information reference signal (channel-information reference signal (CSI-RS).
  • CSI-RS channel-information reference signal
  • a signal for beam training transmitted on a frequency band may be at least one of a CSI-RS and an SSB.
  • signals used for beam training in the embodiments of the present application may also be other signals, and the embodiments of the present application are not limited thereto.
  • the capability indication information in the embodiments of the present application will be described in two cases below.
  • the terminal device may report only one capability without distinguishing the type of the specific signal.
  • the signals used for beam training in the frequency band all correspond to the same capability.
  • the "capability" referred to herein refers to a terminal device's ability to support multiple frequency bands for simultaneous beam training.
  • a capability corresponds to a capability value.
  • a capability corresponding to a capability value of N indicates that the terminal device can support beam training on a maximum of N frequency bands at the same time.
  • the terminal device distinguishes the types of signals and needs to report multiple capabilities for multiple signals, where different signals in the multiple signals may correspond to the same or different capability values.
  • the capability values corresponding to the multiple capabilities corresponding to the multiple signals may be the same or different.
  • the capability value corresponding to the first signal may represent the maximum number of frequency bands (here, the frequency band refers to the frequency band in which the first signal is transmitted) supported by the terminal device for simultaneous beam training.
  • case 1 is described, that is, a case where the terminal device does not distinguish the type of a specific signal and reports only one capability.
  • the capability indication information may not distinguish specific signal types.
  • the signals transmitted in each of the multiple frequency bands for which beam training is performed simultaneously are not limited.
  • the signals transmitted in each frequency band can be A-CSI-RS, P- Any one or more of CSI-RS, SP-CSI-RS, and SSB, or signals transmitted in each frequency band may be one or two of CSI-RS and SSB.
  • the embodiments of the present application are not limited thereto.
  • the ability of the terminal device to report is not limited to the type of signal.
  • the terminal device reports the capability indication information, it is not expected that the number of BWPs calculated during the scheduled simultaneous L1-RSRP measurement exceeds the capability value N. That is, the maximum number of BWPs calculated by the L1-RSRP measurement simultaneously performed by the terminal device is N.
  • each of a plurality of frequency bands for which beam training is performed simultaneously corresponds to a beam
  • the beams corresponding to different two frequency bands in the plurality of frequency bands may be different or the same, and the embodiment of the present application is not limited thereto.
  • all the CSI-RS resources (CSI-RS resources) in the same CSI-RS resource configuration (CSI-RS resources) use the same beam (also called downlink airspace filter).
  • the definition of the CSI-RS resource set or the CSI-RS resource configuration reference may be made to the description in the existing standard, which is not repeated in the embodiment of the present application.
  • each BWP may include at least one resource block (RB).
  • BWP1 includes 4 RBs, where signal 1 is carried on 2 RBs and signal 2 is carried on the other two BWP2 includes 4 RBs, and signal 3 is carried on the 4 RBs.
  • the signal 1 and the signal 2 belong to the same CSI-RS resource or the same CSI-RS resource set or the same CSI-RS resource configuration. According to the foregoing description, it can be known that the beams corresponding to the signal 1 and the signal 2 are the same, for example, Both correspond to beam 1.
  • the beam 2 corresponding to the signal 3 may be the same as or different from the beam 1.
  • the signal 1 and the signal 2 may be the same signal, for example, the same type of CSI-RS.
  • the same type of CSI-RS is P-CSI-RS, A-CSI-RS, or SP-CSI-RS.
  • the signal 3 may be any of the signals described above for beam training, such as P-CSI-RS, A-CSI-RS, or SP-CSI-RS.
  • the capability indication information may include a value of N. That is, the capability indication information includes a capability value N of the terminal device.
  • the terminal device can directly report the capability value N through the capability indication information.
  • the network device can directly determine the capability value of the terminal device according to the acquired capability indication information, and then the network device can determine the number of frequency bands for simultaneous beam training. It should be understood that the number of frequency bands determined by the network device for simultaneous beam training is usually less than or equal to the capability value reported by the terminal device.
  • the embodiment of the present application reports the capability value through the terminal device, so that the network device can directly determine the capability of the terminal device according to the capability value, without additional calculation process, and can reduce the calculation overhead.
  • the capability indication information includes first indication information and second indication information, and the first indication information is used to indicate that the terminal device is in an activated state while being supported.
  • the maximum number of frequency bands x, and the second indication information is used to indicate the maximum number of analog beams, panels, or simultaneous spatial domain receive filters supported by the terminal device for receiving.
  • X and y are used to determine the value of N.
  • x may be a maximum number of frequency bands for data transmission supported by the terminal device while performing CSI measurement of the channel state information at the same time.
  • the terminal device reports x and y through the capability indication information, which indirectly indicates the capability value of the terminal device. That is, the terminal device reports the capability value indirectly through the capability indication information.
  • the network device needs to calculate and determine the capability value of the specific terminal device based on the capability information reported by the terminal device, that is, x and y.
  • N is a smaller value of x and y.
  • the terminal device can also report whether it supports a single spatial domain filter by using the capability indication information.
  • the terminal device can indirectly report the capability of the terminal device through the existing information, without the need to specifically report the capability value of the terminal device, which can reduce signaling overhead and save network resources.
  • the ability of the terminal device to report is limited by the type of signal.
  • the terminal device independently reports the capabilities for different signals, or reports a part of the signals as a whole to report a capability.
  • the capability indication information is specifically used to indicate that the terminal device can support beam training on a maximum of n i frequency bands simultaneously for the i-th signal set in the m signal sets, where i represents a label of the signal set, i traversal values 1, 2, ..., m, m represents the number of signal sets, n i is an integer greater than or equal to 1, m is an integer greater than or equal to 1, and N is the maximum value of n i , said The i-th signal set includes at least one signal, and the maximum number of frequency bands of beam training that the terminal device can support for each of the at least one signal is the n i .
  • n i may represent the maximum number of frequency bands at which the terminal device performs beam training simultaneously based on each signal in the i-th signal set. For example, if the i-th signal includes signals 1 and 2, then the terminal device is based on signal 1. The maximum number of frequency bands for simultaneous beam training is n i , and the maximum number of frequency bands for which the terminal device simultaneously performs beam training based on signal 2 is n i .
  • the i-th signal set can be regarded as a whole, and n i can also represent the maximum number of frequency bands at which the terminal device performs beam training simultaneously based on all signals in the i-th signal set.
  • the The i signal includes a signal 1 and a signal 2.
  • the maximum number of frequency bands at which the terminal device performs beam training simultaneously based on the i-th signal set is n i .
  • the terminal equipment carries the sum of all frequency bands of the signals in the ith signal set during beam training, which is not greater than n i .
  • the frequency bands corresponding to all the sets belong to the same CC.
  • the terminal device may divide the multiple signals used for beam training into at least one signal set according to the type of signals used for beam training, and then set a capability value for each signal set, where
  • the signals have the same or similar attributes, for example, they are all CSI-RS.
  • the capability values corresponding to different signal sets may be the same or different, and the embodiments of the present application are not limited thereto.
  • the terminal device may also classify signals with equal or similar capability values into a signal set according to the capability value corresponding to each signal used for beam training, and then set a capability value for each signal set.
  • the capability values corresponding to different signal sets may be different.
  • the terminal device may divide the signal used for beam training into at least one signal set in other manners, and the embodiment of the present application is not limited thereto.
  • different signals in the m signal sets include different signals
  • the i-th signal set includes a channel state information reference signal CSI-RS and a synchronization signal / broadcast channel block SSB. At least one signal.
  • the CSI-RS includes an aperiodic channel state information reference signal A-CSI-RS, a periodic channel state information reference signal P-CSI-RS, and a semi-persistent channel state information reference signal SP. -At least one signal in CSI-RS.
  • the i-th signal set includes at least one of A-CSI-RS, P-CSI-RS, SP-CSI-RS, and SSB.
  • a set of signals used for beam training may be referred to as a preset signal set.
  • the preset signal set includes: A-CSI-RS, P-CSI-RS, SP-CSI-RS and SSB; or, the preset signal set includes: CSI-RS and SSB.
  • the preset signal set in the embodiments of the present application may represent a set of signals used for beam training in an actual beam training process.
  • signals used for beam training in practical applications are not limited to the foregoing types listed in the embodiments of the present application.
  • Signal, in practical applications, the signal (preset signal set) used for beam training may include only some of the above signals, or the signal (preset signal set) used for beam training may also include other signals. This application The embodiment is not limited thereto.
  • the preset signal set may also be referred to as a set of signals used for beam training, a first set, and the like, and the embodiments of the present application are not limited thereto.
  • the signals in the m signal sets may include all the signals in the preset signal set or may only include a part of the signals in the preset signal set, and the embodiment of the present application is not limited thereto.
  • each set includes only one signal, that is, each signal network device reports a capability
  • the capability corresponding to one signal indicates the maximum number of frequency bands for which the terminal device can support simultaneous beam training for the one signal.
  • the capability indication information includes the value of the n i , that is, the capability indication information includes m capability values corresponding to the m signal sets.
  • the i-th signal set may also be referred to as the i-th signal.
  • the capability indication information may include m capability values corresponding to m signals.
  • the first signal set includes SSB
  • the second signal set includes P-CSI-RS
  • the third signal set includes SP-CSI-RS
  • the fourth signal set includes A-CSI-RS.
  • the capability indication information includes values of n 1 to n 4 . Specifically, the capability indication information is used to indicate:
  • the terminal device can support beam training on a maximum of n 1 frequency bands simultaneously;
  • the terminal equipment can support beam training on a maximum of n 2 frequency bands for P-CSI-RS (the second signal set or the second signal);
  • the terminal device can support beam training on a maximum of n 3 frequency bands simultaneously;
  • the terminal device can support beam training on a maximum of n 4 frequency bands at the same time.
  • n 3 The number of BWPs calculated based on SP1-CSI-RS-based L1-RSRP measurements that are not expected to be scheduled at the same time exceeds n 3 ;
  • n 4 The number of BWPs calculated based on A1-CSI-RS-based L1-RSRP measurements that are not expected to be scheduled at the same time exceeds n 4 .
  • the terminal device expects:
  • the number of BWPs calculated by simultaneous SSB-based L1-RSRP measurements is not greater than n 1 ;
  • the number of BWPs calculated at the same time based on the P1-CSI-RS L1-RSRP measurement is not greater than n 2 ;
  • the number of BWPs calculated by SP1-CSI-RS-based L1-RSRP measurements at the same time is not greater than n 3 ;
  • the number of BWPs calculated by simultaneous L1-RSRP measurements based on A-CSI-RS is not greater than n 4 .
  • each signal corresponds to a capability value
  • the capability values corresponding to different signals may be the same or different.
  • the terminal device may report only one of the signals for the part of the signal.
  • the capability value of the signal indicates that the capability values of the remaining signals are equal to the capability value of the one signal. For example, there are 4 types of signals, the first signal to the fourth signal.
  • the terminal device When the capability values corresponding to the first signal and the second signal are equal , The terminal device only reports the capability values corresponding to the first signal, the third signal, and the fourth signal, and indicates that the capability values corresponding to the second signal are equal to the first signal. In this way, in the embodiment of the present application, only one capability value is reported for multiple signals corresponding to the same capability value, which can reduce signaling overhead and improve network performance.
  • the first signal and the second signal can be regarded as a set
  • the third signal is regarded as a set
  • one signal set in the m signal sets for example, the first signal set includes P-CSI-RS, SPCSI-RS, and ACSI-RS. Since the signals in the first signal set are all CSI-RS.
  • the capability indication information may be described as specifically used to indicate that the terminal device can support at most n 1 frequency bands for CSI-RS (the first signal set) at the same time. Perform beam training.
  • the terminal device reports the above capability indication information, during beam training: the number of BWPs calculated for L1-RSRP measurement of the CSI-RS that is scheduled at the same time does not exceed n 1 . In other words, the terminal device expects that the number of BWPs calculated simultaneously for CSI-RS-based L1-RSRP measurements is not greater than n 1 .
  • n 1 here may indicate that the maximum number of frequency bands for which beam training is performed simultaneously for each CSI-RS terminal device is n 1 . Further, n 1 may also indicate that no specific type of CSI-RS is distinguished, and all types of CSI-RS are regarded as a set, and the maximum number of frequency bands at which the terminal device performs beam training at the same time is n 1 . In other words, the terminal equipment carries a CSI-RS (the CSI-RS may be P-CSI-RS, SP CSI-RS, or A CSI-RS) during beam training, and the sum of all frequency bands is not greater than n 1 .
  • the CSI-RS may be P-CSI-RS, SP CSI-RS, or A CSI-RS
  • one signal set among the m signal sets for example, the first signal set includes P-CSI-RS and SP-CSI-RS. Because the signals in the first signal set are all periodic CSI-RS.
  • the capability indication information can be described as specifically used to indicate that the terminal device can support at most n 1 at the same time for the periodic CSI-RS (the first signal set) Beam training on the frequency band.
  • the terminal equipment reports the above capability indication information, during beam training: the number of BWPs calculated during the periodic CSI-RS L1-RSRP measurement that is not expected to be scheduled exceeds n 1 .
  • the terminal device expects that the number of BWPs calculated simultaneously for the L1-RSRP measurement of the periodic CSI-RS is not greater than n 1 .
  • n 1 here may indicate that the maximum number of frequency bands for which each periodic CSI-RS terminal device performs beam training is n 1 . Further, n 1 may also indicate that no specific type of periodic CSI-RS is distinguished, and all types of periodic CSI-RS are regarded as a set, and the maximum number of frequency bands at which the terminal device performs beam training at the same time is n 1 . In other words, the terminal equipment carries a periodic CSI-RS (the periodic CSI-RS may be P-CSI-RS or SP CSI-RS) during beam training, and the sum of all frequency bands is not greater than n 1 .
  • the periodic CSI-RS may be P-CSI-RS or SP CSI-RS
  • the first case can be regarded as a special case of the second case.
  • the second case is the same as the first case.
  • the capability indication information may include only the capability value corresponding to the one set, for example, n 1 .
  • the capability indication information includes first indication information and second indication information, and the first indication information is used to indicate that the terminal device is simultaneously activated and supported.
  • the maximum number x of frequency bands in the state, and the second indication information is used to indicate the maximum number y of analog beams, panels or airspace reception filters supported by the terminal device for receiving at the same time, the x and y Used to determine the value of n 1 , both x and y are integers greater than or equal to 1.
  • the signals in the m signal sets include a part of the signals in the preset signal set.
  • the m signal sets include a part of the signals in the preset signal set, wherein each of the signals in the preset signal set other than the part of the signals is in the preset signal set.
  • the number of frequency bands corresponding to the signals is equal to n i corresponding to the signal set where the highest priority signal is among the partial signals, where the number of frequency bands corresponding to one signal indicates that the terminal device simultaneously performs beam training based on the one signal The maximum number of frequency bands.
  • the order of signal priorities from high to low is: SSB, P-CSI-RS, SP-CSI-RS, and A-CSI-RS.
  • the capability value corresponding to the SSB is equal to the capability value corresponding to the P-CSI-RS.
  • the capability values corresponding to SSB and P-CSI-RS are equal to the capability values corresponding to SP-CSI-RS.
  • the capability values corresponding to SSB, P-CSI-RS, SP-CSI-RS and The A-CSI-RS corresponds to the same capability value.
  • the capability indication information does not indicate the capability value corresponding to a certain signal
  • the capability value corresponding to the certain signal may be determined according to the priority of the signal.
  • the embodiments of the present application are not limited to this.
  • the capability value corresponding to the SSB may also be one of the following two values:
  • the capability value corresponding to the A-CSI-RS may be:
  • the capability indication information indicates the capability value of only a part of the signal, which can reduce signaling overhead.
  • the terminal device sends capability indication information.
  • the network device receives the capability indication information.
  • the network device instructs the terminal device to perform beam training according to the capability indication information.
  • the network device may determine at least one frequency band according to the received capability indication information, and instruct the terminal device to perform beam training on the at least one frequency band.
  • the number of the at least one frequency band determined by the network device is less than or equal to the capability value indicated by the capability indication information reported by the terminal device.
  • the network device generates instruction information (the instruction information may also be referred to as configuration information) according to the capability instruction information, and sends the instruction information to the terminal device to instruct the terminal device to perform beam training.
  • the instruction information may also be referred to as configuration information
  • the indication information may be used to indicate: a type of a signal used for beam training, for example, a signal used for beam training is CSI-RS (for example, the CSI-RS may be P-CSI-RS, SP-CSI- RS or A-CSI-RS) or SSB; further, when the signal used for beam training is CSI-RS, the indication information may also be used to indicate at least one of the following information: The index of the frequency band at which the terminal equipment performs beam training at the same time, the identification of the frequency band at which the terminal equipment performs beam training at the same time, the resource time-frequency position of the signal used for beam training, and the resource time-domain offset of the signal used for beam training ( offset) and the period of the signal used for beam training.
  • CSI-RS for example, the CSI-RS may be P-CSI-RS, SP-CSI- RS or A-CSI-RS
  • SSB SSB
  • the indication information may also be used to indicate at least one of the following information: The index of the frequency band at which
  • the indication information may further instruct the terminal device not to report the measurement result of the beam; or the indication information may further instruct the terminal device to report the measurement result, and the indication information may specifically instruct the terminal device to report at least one of the following information: a signal L1-RSRP, the index of the signal, and the index of the frequency band.
  • the index of the signal may be, for example, a channel state information reference signal resource index (CSI-RS Resource Indicator, CRI), and the embodiment of the present application is not limited thereto.
  • the at least one frequency band is L frequency bands, that is, in 230, the network device instructs the terminal device to perform beam training on L frequency bands at the same time according to the capability indication information, and L is an integer less than or equal to N.
  • the terminal device calculates a layer 1 reference signal received power L1-RSRP for signals transmitted in L frequency bands or L beams.
  • the specific value of L may be determined by the network device according to factors such as the capability of the network device and / or the measurement requirements of the terminal device, and the embodiment of the present application is not limited thereto.
  • the capability of the network device may represent the capability of the number of BWPs that the network device can support for simultaneous beam training.
  • the measurement requirements of the terminal device may indicate a requirement that the network device determines the number of BWPs that the terminal device needs to train at the same time according to factors such as the network status. It should be understood that the definition of the capabilities of the network equipment and the measurement requirements of the terminal equipment are similar here, and will not be explained one by one below.
  • the signals transmitted in each of the L frequency bands are not limited, and the signals transmitted in each frequency band may include at least one signal in the preset signal set. .
  • the at least one frequency band includes z frequency bands, that is, in 230, the network device instructs the terminal device to perform beam training on the z frequency bands simultaneously according to the capability indication information.
  • the terminal device performs L1-RSRP calculation on the first signals transmitted in the z frequency bands at the same time, where z is an integer not greater than n i , and the first signal is any one of the i-th signal set. A signal.
  • the network device and the terminal device perform beam training in z frequency bands at the same time.
  • a signal used for beam training may not be limited to the certain signal
  • the at least one frequency band may be P frequency bands, that is, in the In 230, the network equipment and the terminal equipment perform beam training in P frequency bands at the same time, and the P frequency bands include z frequency bands that simultaneously transmit the first signal in the i-th signal set, where z is an integer not greater than n i ,
  • the first signal is any signal in the i-th signal set.
  • the total number of frequency bands carrying signals in the i-th signal set is not greater than n i , in other words, during beam training, the i-th signal set The total number of frequency bands occupied by all the signals in the system is less than or equal to n i .
  • the number of frequency bands where the signal is transmitted is less than or equal to the capability value corresponding to the signal.
  • the foregoing specific values of P and / or z may be determined by the network device according to factors such as the capability of the network device and / or the measurement requirements of the terminal device, and the embodiments of the present application are not limited thereto.
  • the P frequency bands are less than or equal to N. That is, the value of P is less than or equal to the maximum capability value N corresponding to one signal.
  • P may be greater than N.
  • the maximum value of P is n 1 + n 2 + ... + n m .
  • the terminal device reports the capability indication information to the network device, so that the network device can simultaneously perform beam training in multiple frequency bands according to the capability of the terminal device, and the embodiment of the present application can improve the efficiency of beam training.
  • the beam training in the embodiments of the present application may include beam training for downlink transmission, for example, training for downlink transmission beams of network equipment and / or downlink reception beams for terminal equipment.
  • the beam training in the embodiment of the present application may also include beam training for uplink transmission, for example, training of uplink receive beams of network equipment and / or uplink transmit beams of terminal equipment, and embodiments of the present application are not limited thereto.
  • the terminal device may first measure a signal sent by the network device through at least one frequency band, and calculate and find the corresponding each of the network device in the calculation.
  • the preferred transmission beams in the frequency bands are finally fed back to the network equipment with information on the preferred transmission beams in each frequency band.
  • At least one frequency band in the same CC for example, L frequency bands or P frequency bands can be beam-trained at the same time, and the terminal device independently measures and calculates for each frequency band (for example, BWP) in the multiple frequency bands.
  • L1-RSRP that is, in the embodiment of the present application, the terminal device performs L1-RSRP measurement calculation based on each BWP.
  • the terminal device can feedback the beam training signal index (such as CRI) and / or L1-RSRP of each BWP for the network device to select the best one or more BWPs Transmit beam.
  • downlink receive beam i.e.
  • the terminal device can determine the best receiving beam corresponding to a certain transmission beam on each BWP according to the L1-RSRP of each BWP. Further, the terminal device It is also possible to feed back the beam training signal index (for example, CRI) and / or L1-RSRP of each BWP for training the downlink receiving beam. Based on downlink transmit beam training and / or downlink receive beam training, the network device may select at least one BWP and the best transmit beam and best receive beam on each selected BWP to perform subsequent channel state information CSI measurement and / or data transmission.
  • the beam training signal index for example, CRI
  • the network device may select at least one BWP and the best transmit beam and best receive beam on each selected BWP to perform subsequent channel state information CSI measurement and / or data transmission.
  • the network device may select a better frequency band or frequencies (for example, BWP) to use the training to obtain the beam to communicate with the terminal device.
  • BWP frequency band or frequencies
  • the specific network side can configure the terminal device with one of the above through wireless resource control (RRC) signaling or downlink control information (DCI) or media access control element (MAC). Or multiple BWPs, the embodiments of the present application are not limited thereto.
  • RRC wireless resource control
  • DCI downlink control information
  • MAC media access control element
  • a network device can send a reference signal to a terminal device for channel measurement through the beam of the one or more BWPs, and then receive Channel state information (channel information) (CSI) fed back by the terminal device and / or CSI acquired through channel dissimilarity, and then the network device sends downlink data through the one or more BWPs according to the CSI.
  • CSI Channel state information
  • the communication method provided in this application is not limited to downlink transmission, and may also be applicable to uplink transmission.
  • the application does not specifically limit the signals for beam training.
  • the reference signal may be, for example, channel state information reference signal (CSI-RS) and SSB;
  • the signal used for beam training may be sounding reference signal (sounding reference signal (SRS) and other signals.
  • CSI-RS channel state information reference signal
  • SRS sounding reference signal
  • the above-listed signals used for beam training are merely exemplary descriptions, and should not be construed as limiting the present application.
  • This application does not exclude the possibility of using other signals to implement beam training.
  • this application does not exclude the possibility of defining other signals used for uplink or downlink beam training in existing protocols (e.g., LTE protocol, NR protocol) or future protocols.
  • the network device determines a method for beam training on multiple frequency bands simultaneously according to the capabilities of the terminal device.
  • FIG. 4 shows a case where the network device instructs the terminal device to perform the number of frequency bands for beam training at the same time.
  • the method 400 shown in FIG. 4 includes:
  • the network device generates first indication information.
  • the first indication information is used to indicate the number M of frequency bands at which the terminal device can simultaneously perform beam training, where M is an integer greater than or equal to 1.
  • M represents the maximum number of frequency bands at which the terminal device can perform beam training at the same time
  • the first indication information is used to indicate the maximum number of frequency bands M that the terminal device can perform beam training simultaneously.
  • the number of frequency bands to be trained simultaneously may be less than or equal to M.
  • M represents the number of frequency bands used by the terminal device when performing beam training.
  • the first instruction information is used to indicate the number M of beam trainings performed by the terminal device simultaneously.
  • the terminal device performs beam training on M frequency bands at the same time, that is, the network device sends signals for beam training on M frequency bands at the same time to train the beams of M frequency bands at the same time.
  • the first indication information is generated by the network device according to the capability indication information reported by the terminal device.
  • the method also includes:
  • the terminal device sends capability indication information to a network device, and the capability indication information is used to indicate that the terminal device can support beam training on a maximum of N frequency bands at the same time, where N is an integer greater than or equal to 1.
  • the network device can determine the ability of the terminal device to support the number of frequency bands for simultaneous waveform training according to the capability indication information of the terminal device, and then the network device determines M according to factors such as the network device's capability and / or the measurement requirements of the terminal device, Generate the first instruction information.
  • the first indication information is generated by the network device according to a network state, for example, according to factors such as a capability of the network device and / or a measurement requirement of the terminal device.
  • the network device sends the first instruction information to the terminal device.
  • the terminal device receives the first instruction information.
  • the network device and the terminal device perform beam training according to the first instruction information.
  • the network device and the terminal device perform beam training on M 'frequency bands at the same time.
  • the terminal device simultaneously performs L1-RSRP calculation on signals transmitted in M 'frequency bands, where M' is an integer less than or equal to M.
  • the specific value of M ' may be determined by the network device according to factors such as the capability of the network device and / or the measurement requirements of the terminal device, and the embodiment of the present application is not limited thereto.
  • M represents the number of frequency bands used by the terminal device for beam training
  • the network device and the terminal device perform beam training on M frequency bands at the same time.
  • the network device and the terminal device can perform beam training in multiple frequency bands at the same time according to the instructions of the network device, and the embodiment of the present application can improve the efficiency of beam training.
  • the size of the sequence numbers of the above processes does not mean the order of execution.
  • the execution order of each process should be determined by its function and internal logic, and should not deal with the embodiments of the present application.
  • the implementation process constitutes any limitation.
  • FIG. 5 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device 500 may include:
  • the processing unit 510 and the transceiver unit 520 are identical to each other.
  • the processing unit is configured to generate capability indication information, where the capability indication information is used to indicate that the communication device can support beam training on a maximum of N frequency bands at the same time, where N is an integer greater than or equal to 1;
  • the transceiver unit is configured to send the capability indication information.
  • the processing unit is further configured to perform calculation of L1-RSRP in L frequency bands at the same time, where L is an integer less than or equal to N.
  • the capability indication information is specifically used to indicate that the communication device can support beam training on a maximum of n i frequency bands simultaneously for the i-th signal set in the m signal sets, i represents a label of the signal set, and i traverses Values 1, 2, ..., m, m represents the number of signal sets, n i is an integer greater than or equal to 1, m is an integer greater than or equal to 1, N is the maximum value of n i , the i
  • the signal set includes at least one signal, and the maximum number of frequency bands of beam training that the communication device can support for each of the at least one signal is the n i .
  • the processing unit is further configured to perform L1-RSRP calculation on the first signals transmitted simultaneously in the z frequency bands, where z is an integer not greater than n i , and the first signal is the i-th signal set Any one of the signals.
  • different signals in the m signal sets include different signals
  • the i-th signal set includes at least one of a channel state information reference signal CSI-RS and a synchronization signal / broadcast channel block SSB.
  • the CSI-RS includes an aperiodic channel state information reference signal A-CSI-RS, a periodic channel state information reference signal P-CSI-RS, and a semi-persistent channel state information reference signal SP-CSI-RS At least one of the signals.
  • the capability indication information includes a value of the n i .
  • the capability indication information includes first indication information and second indication information
  • the first indication information is used to indicate a maximum number of frequency bands supported by the terminal device in an active state at the same time
  • the second indication information is used to indicate the maximum number of analog beams, panels, or airspace reception filters supported by the terminal device for receiving at the same time
  • the x and y are used to determine the value of n 1 , X and y are all integers greater than or equal to 1.
  • n 1 is the smaller of x and y.
  • the frequency band is a bandwidth part BWP or a beam tracking bandwidth.
  • the N frequency bands belong to the same carrier CC.
  • the CC includes a frequency domain width occupied by one orthogonal frequency division multiplexed OFDM symbol.
  • the communication device 500 provided in this application corresponds to the process performed by the terminal device in the method embodiment in FIG. 3 described above.
  • functions of each unit / module in the communication device reference may be made to the description above, and details are not described herein again.
  • the terminal device reports the capability indication information to the network device, so that the network device can simultaneously perform beam training in multiple frequency bands according to the capabilities of the terminal device, and the embodiment of the present application can improve the efficiency of beam training.
  • FIG. 6 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the communication device 600 may include:
  • the processing unit 610 and the transceiver unit 620 are identical to each other.
  • the transceiver unit is configured to receive first instruction information, where the first instruction information is used to indicate the number M of frequency bands at which the communication device can simultaneously perform beam training, where M is an integer greater than or equal to 1;
  • the processing unit is configured to perform beam training according to the first instruction information.
  • the M represents the maximum number of frequency bands at which the communication device performs beam training simultaneously; or the M represents the number of frequency bands at which the communication device performs beam training.
  • the processing unit is configured to simultaneously calculate the layer 1 reference signal received power L1-RSRP for signals transmitted in M 'frequency bands, where M' is an integer less than or equal to M.
  • the communication device 600 provided in this application corresponds to the process performed by the terminal device in the method embodiment in FIG. 4.
  • functions of each unit / module in the communication device refer to the description above, and details are not described herein again.
  • the network device and the terminal device can perform beam training in multiple frequency bands at the same time according to the instructions of the network device, and the embodiment of the present application can improve the efficiency of beam training.
  • the communication device described in FIG. 5 and FIG. 6 may be a terminal device, and may also be a chip or an integrated circuit installed in the terminal device.
  • FIG. 7 is a schematic structural diagram of a terminal device according to an embodiment of the present application, which is easy to understand and illustrate.
  • the terminal device uses a mobile phone as an example.
  • FIG. 7 shows only the main components of the terminal device.
  • the terminal device 700 includes a processor, a memory, a control circuit, an antenna, and an input / output device.
  • the processor is mainly used to process the communication protocol and communication data, and control the entire terminal device, execute a software program, and process the data of the software program, for example, to support the terminal device to perform the actions described in the foregoing method embodiments.
  • the memory is mainly used for storing software programs and data.
  • the control circuit is mainly used for conversion of baseband signals and radio frequency signals and processing of radio frequency signals.
  • the control circuit and the antenna can also be called a transceiver, which is mainly used to send and receive radio frequency signals in the form of electromagnetic waves.
  • Input / output devices such as a touch screen, a display screen, and a keyboard, are mainly used to receive data input by the user and output data to the user.
  • the processor can read the software program in the storage unit, interpret and execute the instructions of the software program, and process the data of the software program.
  • the processor performs baseband processing on the data to be sent, and then outputs the baseband signal to the radio frequency circuit. After the radio frequency circuit processes the baseband signal, the radio frequency signal is sent out through the antenna as electromagnetic waves.
  • the RF circuit receives the RF signal through the antenna, converts the RF signal into a baseband signal, and outputs the baseband signal to the processor.
  • the processor converts the baseband signal into data and processes the data.
  • FIG. 7 shows only one memory and a processor. In an actual terminal device, there may be multiple processors and memories.
  • the memory may also be referred to as a storage medium or a storage device, which is not limited in the embodiment of the present application.
  • the processor may include a baseband processor and a central processor.
  • the baseband processor is mainly used to process communication protocols and communication data
  • the central processor is mainly used to control and execute the entire terminal device.
  • the processor in FIG. 7 may integrate the functions of the baseband processor and the central processing unit.
  • the baseband processor and the central processing unit may also be independent processors, which are interconnected through technologies such as a bus.
  • the terminal device may include multiple baseband processors to adapt to different network standards, the terminal device may include multiple central processors to enhance its processing capabilities, and various components of the terminal device may be connected through various buses.
  • the baseband processor may also be expressed as a baseband processing circuit or a baseband processing chip.
  • the central processing unit may also be expressed as a central processing circuit or a central processing chip.
  • the function of processing communication protocols and communication data may be built in the processor or stored in the storage unit in the form of a software program, and the processor executes the software program to implement the baseband processing function.
  • the antenna and the control circuit having the transmitting and receiving function may be regarded as the transmitting and receiving unit 71 of the terminal device 700, for example, for supporting the terminal device to perform the transmitting and receiving function performed by the terminal device as shown in FIG. 5 or 6, such as sending Capability indication information and / or receiving signals for beam training and the like.
  • a processor having a processing function is regarded as a processing unit 72 of the terminal device 700, which corresponds to the processing unit 510 in FIG. 5 or the processing unit 610 in FIG. 6, for example, generating capability indication information and / or performing beam training, such as , Calculate L1-RSRP.
  • the terminal device 700 includes a transceiver unit 71 and a processing unit 72.
  • the transceiving unit may also be called a transceiver, a transceiver, a transceiving device, etc.
  • the transceiving unit corresponds to the transceiving unit 520 in FIG. 5 or the transceiving unit 620 in FIG. 6.
  • the device used to implement the receiving function in the transceiver unit 71 can be regarded as a receiving unit
  • the device used to implement the transmitting function in the transceiver unit 71 can be regarded as a transmitting unit, that is, the transceiver unit 71 includes a receiving unit and a transmitting unit.
  • the receiving unit may also be called a receiver, an input port, a receiving circuit, etc.
  • the sending unit may be called a transmitter, a transmitter, or a transmitting circuit.
  • the processing unit 72 may be configured to execute an instruction stored in the memory, so as to control the transceiver unit 71 to receive a signal and / or send a signal to complete a function of the terminal device in the foregoing method embodiment.
  • the function of the transceiver unit 71 may be considered to be implemented by a transceiver circuit or a dedicated chip for transceiver.
  • terminal device 700 shown in FIG. 7 can implement various processes related to the terminal device in the method embodiments in FIG. 2 or 4. Operations and / or functions of each module in the terminal device 700 are respectively implemented to implement corresponding processes in the foregoing method embodiments. For details, refer to the description in the foregoing method embodiments. To avoid repetition, detailed descriptions are appropriately omitted here.
  • FIG. 8 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the device 800 may include:
  • the processing unit 810 and the transceiver unit 820 are The processing unit 810 and the transceiver unit 820.
  • the transceiver unit is configured to receive capability indication information sent by the terminal device, where the capability indication information is used to indicate that the terminal device can support beam training on a maximum of N frequency bands at the same time, where N is an integer greater than or equal to 1. ;
  • a processing unit configured to instruct the terminal device to perform beam training according to the capability indication information.
  • the processing unit is specifically configured to instruct the terminal device to perform L1-RSRP calculation in L frequency bands at the same time according to the capability indication information, where L is an integer less than or equal to N.
  • the capability indication information is specifically used to indicate that the terminal device can support beam training on a maximum of n i frequency bands at the same time for the i-th signal set in the m signal sets, i represents a label of the signal set, and i traverses Values 1, 2, ..., m, m represents the number of signal sets, n i is an integer greater than or equal to 1, m is an integer greater than or equal to 1, N is the maximum value of n i , the i
  • the signal set includes at least one signal, and the maximum number of frequency bands of beam training that the terminal device can support for each of the at least one signal is the n i .
  • the processing unit is specifically configured to instruct the terminal device to perform L1-RSRP calculation on the first signals transmitted simultaneously in z frequency bands according to the capability indication information, where z is an integer not greater than n i , and The first signal is any signal in the i-th signal set.
  • different signals in the m signal sets include different signals
  • the i-th signal set includes at least one of a CSI-RS and an SSB.
  • the CSI-RS includes an aperiodic channel state information reference signal A-CSI-RS, a periodic channel state information reference signal P-CSI-RS, and a semi-persistent channel state information reference signal SP-CSI-RS At least one of the signals.
  • the capability indication information includes a value of the n i .
  • the capability indication information includes first indication information and second indication information
  • the first indication information is used to indicate a frequency band of an active state supported by the terminal device at the same time.
  • the maximum number x the second indication information is used to indicate the maximum number y of analog beams, panels, or airspace reception filters supported by the terminal device for receiving at the same time, and the x and y are used to determine n1 X, y are integers greater than or equal to 1.
  • n1 is the smaller of x and y.
  • the frequency band is a bandwidth part BWP or a beam tracking bandwidth.
  • the N frequency bands belong to the same carrier CC.
  • the CC includes a frequency domain width occupied by one orthogonal frequency division multiplexed OFDM symbol.
  • the communication apparatus 800 provided in this application corresponds to the process performed by the network device in the method embodiment in FIG. 2.
  • the terminal device reports the capability indication information to the network device, so that the network device can simultaneously perform beam training in multiple frequency bands according to the capabilities of the terminal device, and the embodiment of the present application can improve the efficiency of beam training.
  • FIG. 9 is a schematic structural diagram of a communication device according to an embodiment of the present application.
  • the device 900 may include:
  • the processing unit 910 and the transceiver unit 920 are identical to each other.
  • the processing unit is configured to generate first indication information, where the first indication information is used to indicate the number of frequency bands M that the terminal device can simultaneously perform beam training, where M is an integer greater than or equal to 1;
  • the transceiver unit is configured to send the first instruction information to a terminal device.
  • the processing unit is specifically configured to generate the first instruction information according to the capability instruction information.
  • the M represents the maximum number of frequency bands at which the terminal device performs beam training simultaneously; or the M represents the number of frequency bands at which the terminal device performs beam training.
  • the communication device 900 provided in this application corresponds to the process performed by the network device in the method embodiment in FIG. 4.
  • the network device and the terminal device can perform beam training in multiple frequency bands at the same time according to the instructions of the network device, and the embodiment of the present application can improve the efficiency of beam training.
  • the communication device described in FIG. 8 or FIG. 9 may be a network device, and may also be a chip or an integrated circuit installed in the network device.
  • FIG. 10 is a schematic structural diagram of a network device according to an embodiment of the present application.
  • it may be a schematic structural diagram of a base station.
  • the network device 1000 may be applied to the system shown in FIG. 1 to execute the functions of the network device in the foregoing method embodiment.
  • the network device 1000 may include one or more radio frequency units, such as a remote radio unit (RRU) 101 and one or more baseband units (BBUs) (also known as digital units, DUs). ) 102.
  • the RRU 101 may be referred to as a transceiver unit 101 and corresponds to the transceiver unit 820 in FIG. 8 or the transceiver unit 920 in FIG. 9.
  • the transceiver unit may also be referred to as a transceiver, a transceiver circuit, or a transceiver, etc. It may include at least one antenna 1011 and a radio frequency unit 1012.
  • the RRU101 part is mainly used for transmitting and receiving radio frequency signals and converting radio frequency signals and baseband signals, for example, for sending signals used for beam training to a terminal device.
  • the BBU 102 is mainly used for baseband processing and controlling base stations.
  • the RRU 101 and the BBU 102 may be physically located together or physically separated, that is, a distributed base station.
  • the BBU 102 is a control center of a base station, and may also be referred to as a processing unit 102.
  • the BBU 102 may correspond to the processing unit 810 in FIG. 8 or the processing unit 910 in FIG. 9 and is mainly used to complete baseband processing functions such as channel coding and multiplexing. , Modulation, spread spectrum and more.
  • the BBU Processed Unit
  • the BBU may be used to control the base station to execute the operation procedure of the network device in the foregoing method embodiment, for example, perform beam training.
  • the BBU 102 may be composed of one or more boards, and multiple boards may jointly support a wireless access network (such as an LTE network) of a single access system, or may separately support wireless systems of different access systems. Access network (such as LTE network, 5G network or other networks).
  • the BBU 102 further includes a memory 1021 and a processor 1022.
  • the memory 1021 is used to store necessary instructions and data.
  • the processor 1022 is configured to control the base station to perform necessary actions, for example, used to control the base station to perform the operation procedure of the network device in the foregoing method embodiment, for example, to perform beam training.
  • the memory 1021 and the processor 1022 may serve one or more single boards. That is, the memory and processor can be set separately on each board. It may also be that multiple boards share the same memory and processor. In addition, the necessary circuits can be set on each board.
  • the network device 1000 shown in FIG. 10 can implement various processes related to the network device in the method embodiments in FIG. 2 or FIG. 4.
  • the operations and / or functions of each module in the network device 1000 are respectively implemented to implement the corresponding processes in the foregoing method embodiments.
  • An embodiment of the present application further provides a processing apparatus including a processor and an interface; the processor is configured to execute a communication method in any one of the foregoing method embodiments.
  • the processing device may be a chip.
  • the processing device may be a field-programmable gate array (FPGA), an application-specific integrated circuit (ASIC), or a system-on-chip (SoC). It can be a Central Processor (CPU), a Network Processor (NP), a Digital Signal Processing Circuit (DSP), or a Micro Controller (Micro Controller). Unit (MCU), can also be a programmable controller (Programmable Logic Device, PLD) or other integrated chips.
  • FPGA field-programmable gate array
  • ASIC application-specific integrated circuit
  • SoC system-on-chip
  • CPU Central Processor
  • NP Network Processor
  • DSP Digital Signal Processing Circuit
  • MCU Micro Controller
  • PLD Programmable Logic Device
  • each step of the above method may be completed by an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the steps of the method disclosed in combination with the embodiments of the present application may be directly implemented by a hardware processor, or may be performed by a combination of hardware and software modules in the processor.
  • a software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware. To avoid repetition, it will not be described in detail here.
  • the processor in the embodiment of the present invention may be an integrated circuit chip and has a signal processing capability.
  • each step of the foregoing method embodiment may be completed by using an integrated logic circuit of hardware in a processor or an instruction in a form of software.
  • the above processor may be a general-purpose processor, a digital signal processor (DSP), an application specific integrated circuit (ASIC), an off-the-shelf programmable gate array (FPGA), or other Programming logic devices, discrete gate or transistor logic devices, discrete hardware components.
  • DSP digital signal processor
  • ASIC application specific integrated circuit
  • FPGA off-the-shelf programmable gate array
  • a general-purpose processor may be a microprocessor or the processor may be any conventional processor or the like.
  • a software module may be located in a mature storage medium such as a random access memory, a flash memory, a read-only memory, a programmable read-only memory, or an electrically erasable programmable memory, a register, and the like.
  • the storage medium is located in the memory, and the processor reads the information in the memory and completes the steps of the above method in combination with its hardware.
  • the memory in the embodiment of the present invention may be a volatile memory or a non-volatile memory, or may include both volatile and non-volatile memory.
  • the non-volatile memory may be a read-only memory (ROM), a programmable read-only memory (PROM), an erasable programmable read-only memory (EPROM), or Erase programmable read-only memory (EPROM, EEPROM) or flash memory.
  • the volatile memory may be random access memory (RAM), which is used as an external cache.
  • RAM random access memory
  • DRAM dynamic random access memory
  • SDRAM synchronous dynamic random access memory
  • double SDRAM double SDRAM
  • DDR SDRAM double data rate synchronous dynamic random access memory
  • enhanced SDRAM enhanced SDRAM
  • SLDRAM synchronous connection dynamic random access memory
  • direct RAMbus RAM direct RAMbus RAM
  • An embodiment of the present application further provides a communication system including the foregoing network device and terminal device.
  • An embodiment of the present application further provides a computer-readable medium on which a computer program is stored.
  • the computer program is executed by a computer, the communication method in any one of the foregoing method embodiments is implemented.
  • the embodiment of the present application further provides a computer program product, which is implemented by a computer to implement the communication method in any one of the above method embodiments.
  • the computer program product includes one or more computer instructions.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, a computer, a server, or a data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer or a data storage device such as a server, a data center, or the like that includes one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a high-density digital video disc (DVD)), or a semiconductor medium (for example, a solid state disk (solid state disk), SSD)) and so on.
  • the network device in each of the foregoing device embodiments corresponds exactly to the network device or terminal device in the terminal device and method embodiments, and the corresponding module or unit performs the corresponding steps, for example, the sending module (transmitter) method performs the sending in the method embodiment
  • the receiving module (receiver) executes the steps received in the method embodiment, and other steps except sending and receiving can be executed by the processing module (processor).
  • the processing module processor
  • the sending module and the receiving module may form a transceiver module, and the transmitter and the receiver may form a transceiver to jointly realize the transmitting and receiving function; the processor may be one or more.
  • At least one means one or more, and “multiple” means two or more.
  • “And / or” describes the association relationship of related objects, and indicates that there can be three kinds of relationships, for example, A and / or B can indicate: A exists alone, A and B exist simultaneously, and B alone exists, where A, B can be singular or plural.
  • the character “/” generally indicates that the related objects are an "or” relationship.
  • “At least one or more of the following" or similar expressions refers to any combination of these items, including any combination of single or plural items. For example, at least one (a), a, b, or c can be expressed as: a, b, c, ab, ac, bc, or abc, where a, b, and c can be single or multiple .
  • an embodiment or “an embodiment” mentioned throughout the specification means that a particular feature, structure, or characteristic related to the embodiment is included in at least one embodiment of the present invention.
  • the appearances of "in one embodiment” or “in an embodiment” appearing throughout the specification are not necessarily referring to the same embodiment.
  • the particular features, structures, or characteristics may be combined in any suitable manner in one or more embodiments. It should be understood that, in various embodiments of the present invention, the size of the sequence numbers of the above processes does not mean the order of execution, and the execution order of each process should be determined by its function and internal logic, and should not deal with the embodiments of the present invention.
  • the implementation process constitutes any limitation.
  • a component may be, but is not limited to, a process running on a processor, a processor, an object, an executable, a thread of execution, a program, and / or a computer.
  • an application running on a computing device and a computing device can be components.
  • One or more components can reside within a process and / or thread of execution, and a component can be localized on one computer and / or distributed between 2 or more computers.
  • these components can execute from various computer readable media having various data structures stored thereon.
  • a component may, for example, be based on a signal having one or more data packets (e.g., data from two components that interact with another component between a local system, a distributed system, and / or a network, such as the Internet that interacts with other systems through signals) Communicate via local and / or remote processes.
  • data packets e.g., data from two components that interact with another component between a local system, a distributed system, and / or a network, such as the Internet that interacts with other systems through signals
  • the disclosed systems, devices, and methods may be implemented in other ways.
  • the device embodiments described above are only schematic.
  • the division of the unit is only a logical function division.
  • multiple units or components may be combined or Can be integrated into another system, or some features can be ignored or not implemented.
  • the displayed or discussed mutual coupling or direct coupling or communication connection may be indirect coupling or communication connection through some interfaces, devices or units, which may be electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and the components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed on multiple network units. Some or all of the units may be selected according to actual needs to achieve the objective of the solution of this embodiment.
  • each functional unit in each embodiment of the present application may be integrated into one processing unit, or each of the units may exist separately physically, or two or more units may be integrated into one unit.
  • the computer program product includes one or more computer instructions (programs).
  • programs When the computer program instructions (programs) are loaded and executed on a computer, the processes or functions according to the embodiments of the present application are wholly or partially generated.
  • the computer may be a general-purpose computer, a special-purpose computer, a computer network, or other programmable devices.
  • the computer instructions may be stored in a computer-readable storage medium, or transmitted from one computer-readable storage medium to another computer-readable storage medium, for example, the computer instructions may be from a website site, a computer, a server, or a data center. Transmission via wired (such as coaxial cable, optical fiber, digital subscriber line (DSL)) or wireless (such as infrared, wireless, microwave, etc.) to another website site, computer, server, or data center.
  • the computer-readable storage medium may be any available medium that can be accessed by a computer, or a data storage device such as a server, a data center, or the like that includes one or more available medium integration.
  • the usable medium may be a magnetic medium (for example, a floppy disk, a hard disk, a magnetic tape), an optical medium (for example, a DVD), or a semiconductor medium (for example, a solid state disk (SSD)).

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Quality & Reliability (AREA)
  • Mobile Radio Communication Systems (AREA)

Abstract

本申请提供了一种用于波束训练的方法和通信装置,该方法包括终端设备生成能力指示信息,该能力指示信息用于指示该终端设备能够支持同时最多在N个频段上进行波束训练,N为大于或等于1的整数;该终端设备发送该能力指示信息。这样网络设备可以根据终端设备的能力一次性选择多个频段同时进行波束训练。因此,本申请实施例中在终端设备支持的同时训练的频段个数N大于1的情况下,网络设备和终端设备之间可以同时进行多个频段的波束训练,因此,本申请实施例能够提高波束训练的效率。

Description

用于波束训练的方法和通信装置
本申请要求于2018年6月8日提交中国专利局、申请号为201810585522.0、申请名称为“用于波束训练的方法和通信装置”的中国专利申请的优先权,其全部内容通过引用结合在本申请中。
技术领域
本申请涉及通信领域,特别涉及一种用于波束训练的方法和通信装置。
背景技术
在第五代移动通信(5th-Generation,5G)系统中,低频(例如,低于6GHz频率)通信已经不能满足日益增长的通信需求,因此高频(例如,大于6GHz频率)通信(high fequency,HF)越来越受到学界和业界的重视。
然而由于HF信号在空间中能量衰减快,穿透能力弱,信号路损远大于低频信号,因此,需要利用天线侧的增益来补偿这一部分损失,从而保证HF系统的覆盖。此外,由于在HF场景下,信号的波长更短,天线的体积更小,大规模天线阵的多天线技术(Massive-MIMO)也更适合于应用在HF场景。利用Massive-MIMO技术,发射侧例如网络设备侧可以用数字和/或模拟等方式形成能量更集中的发射波束来保证系统覆盖,接收侧例如终端设备侧同样可以形成能量更集中的接收波束增加接收增益。
由于HF系统中收发双方都倾向于利用窄波束进行通信,因此,窄波束的相互匹配显得尤为重要。网络设备和终端设备可以通过波束训练使得上述发射波束和接收波束互相匹配。
然而,现有技术中,波束训练的效率较低,因此,如何提高波束训练的效率,成为亟待解决的问题。
发明内容
本申请提供一种用于波束训练的方法和通信装置,该方法能够提高波束训练的效率。
第一方面,提供了一种用于波束训练的方法,该方法包括:终端设备生成能力指示信息,所述能力指示信息用于指示所述终端设备能够支持同时最多在N个频段上进行波束训练,N为大于或等于1的整数;所述终端设备发送所述能力指示信息。
第二方面,提供了一种用于波束训练的方法,该方法包括:网络设备接收终端设备发送的能力指示信,所述能力指示信息用于指示所述终端设备能够支持同时最多在N个频段上进行波束训练,N为大于或等于1的整数;所述网络设备根据能力指示信息指示所述终端设备进行波束训练。
因此,本申请实施例中通过终端设备向网络设备上报能力指示信息,进而网络设备可以根据终端设备的能力同时在多个频段进行波束训练,进而本申请实施例能够提高波束训 练的效率。
具体地,终端设备可以根据默认配置,例如但不限于终端设备接收波束的能力、参考信号接收功率(reference signal receiving power,RSRP)(例如,该RSPR可以为层1参考信号接收功率(layer 1 reference signal received power,L1-RSRP))计算能力等,生成该能力指示信息,本申请实施例并不限于此。
结合第一方面或第二方面,在一种实现方式中,频段表示连续的一段频域资源,例如,频段可以为带宽部分(bandwidth part,BWP),BWP可以理解为一段连续的频带,该频带包含至少一个连续的子带,每个带宽部分可以对应一组系统参数(numerology),包括例如但不限于,子载波间隔、循环前缀(cyclic prefix,CP)长度、传输时间间隔(transmission time interval,TTI)、符号(symbol)个数、资源块(resource block,RB)位置、时隙长度和帧格式等。本申请实施例中不同带宽部分可以对应不同的系统参数。有关带宽部分的定义可以参考现有技术,例如但不限于针对NR的各种提案。随着技术的不断发展,上述定义也有可能发生变化。
结合第一方面或第二方面,在一种实现方式中,频段也可以为波束跟踪带宽(tracking band)。
应理解,本申请实施例中,波束跟踪带宽可以包含至少一个子载波;或者,波束跟踪带宽在频域上可以包括至少一个资源块(resource block,RB);或者,波束跟踪带宽在频域上可以包括至少一个预编码组(precoding resource group,PRG);或者,波束跟踪带宽在频域上可以包括至少一个资源块组(resource block group,RBG)。
可选地,本申请实施例中,波束跟踪带宽上仅能调度用于波束训练的信号;或者,波束跟踪带宽仅可以调度用于波束训练的信号和控制信道(例如物理下行控制信道(physical downlink control channel,PDCCH))。可选的,不同波束跟踪带宽之间调用的用于波束训练的信号可以不同。
结合第一方面或第二方面,在一种实现方式中,所述N个频段属于同一载波CC。
结合第一方面或第二方面,在一种实现方式中,所述CC包括一个正交频分复用OFDM符号所占用的频域宽度。
具体而言,在本申请实施例中,在一个CC,同一个OFDM符号下,终端设备通过能力指示信息期望(expect)不同的频段(例如,BWP)可以同时进行波束训练,即终端设备期望每个BWP可以使用各自独立的空域滤波器(downlink spatial domain transmission filter),不同的BWP的传输的用于波束训练的信号可以使用不同或相同的下行空域滤波器。
应理解,本申请实施例中,在波束训练时,频段上传输的用于波束训练的信号可以为以下信号中的至少一种:非周期性信道状态信息参考信号(aperiodic channel state information reference signal,A-CSI-RS)、周期性信道状态信息参考信号(periodic channel state information reference signal,P-CSI-RS)、半持续性信道状态信息参考信号(semi-persistent channel state information reference signal,SP-CSI-RS)和同步信号/广播信道块(synchronous signal/physical broadcast channel(PBCH)block,SSB)。
可选地,本申请实施例中可以将A-CSI-RS、P-CSI-RS和SP-CSI-RS统称为信道状态信息参考信号(channel state information reference signal,CSI-RS)。换句话说,本申请实 施例中,频段上传输的用于波束训练的信号可以为CSI-RS和SSB中的至少一种。
应理解,本申请实施例中用于波束训练的信号还可以为其他信号,本申请实施例并不限于此。
针对是否区分频段上传输的信号种类,下文中将分成两种情况描述本申请实施例的能力指示信息。
情况一,针对不同的信号,本申请实施例中,终端设备可以不区分具体信号的种类,仅上报一种能力。换句话说,频段中传输的用于波束训练的信号均对应同一能力。
应理解,本文中所指的“能力”是指终端设备能够支持多个频段同时进行波束训练的能力。其中,一种能力对应一个能力值,例如,一种能力对应的能力值为N,表示终端设备能够支持同时最多在N个频段上进行波束训练。
情况二,终端设备区分信号的种类,需要针对多个信号上报多种能力,其中,该多个信号中的不同的信号可以对应相同或不同的能力值。换句话说,该多个信号对应的多种能力对应的能力值可以相同也可以不同。应理解,第一信号对应的能力值可以表示终端设备支持的同时进行波束训练的最大频段(这里频段是指传输有第一信号的频段)个数。
以下分别对这两种情况分别进行详细描述。
首先,描述上述情况一,即终端设备不区分具体信号的类型,仅上报一种能力的情况。
该能力指示信息可以不区分具体的信号种类。这种情况下,在实际波束训练中,同时进行波束训练的多个频段中的每个频段中的传输的信号不作限定,例如,每个频段传输的信号可以为A-CSI-RS、P-CSI-RS、SP-CSI-RS和SSB中的任意一种或多种,或者,每个频段传输的信号可以为CSI-RS和SSB中的一种或两种。本申请实施例并不限于此。
换句话说,终端设备上报的能力不受限于信号的种类。终端设备上报能力指示信息后,不期望被调度的同时进行的L1-RSRP测量计算的BWP个数超过此能力值N。即终端设备期望的最大的同时进行的L1-RSRP测量计算的BWP个数为N。
结合第一方面或第二方面,在一种实现方式中,所述方法还包括:
所述终端设备同时在L个频段进行波束训练,例如,所述终端设备同时在L个频段进行层1参考信号接收功率(layer 1 reference signal received power,L1-RSRP)的计算,L为小于或者等于N的整数。
例如,上述用于LI-RSRP的计算的信号可以为A-CSI-RS、P-CSI-RS、SP-CSI-RS和SSB中的任意一种或多种;或者,上述用于LI-RSRP的计算的信号可以为CSI-RS和SSB中的任意一种或多种。
结合第一方面或第二方面,在一种实现方式中,所述网络设备根据所述能力指示信息指示所述终端设备进行波束训练,包括:
网络设备根据所述能力指示信息指示所述终端设备同时在L个频段进行L1-RSRP的计算,L为小于或者等于N的整数。
可选地,该能力指示信息可以包括N的取值。即该能力指示信息包括终端设备的能力值N。
也就是说,终端设备可以通过能力指示信息直接上报该能力值N。
具体而言,网络设备可以根据获取的能力指示信息直接确定终端设备的能力值,进而网络设备可以决定同时进行波束训练的频段的个数。应理解,网络设备确定的同时进行波 束训练的频段个数通常小于或等于终端设备上报的能力值。
因此,本申请实施例通过终端设备上报能力值,使得网络设备能够根据该能力值直接确定终端设备的能力,无需额外的计算过程,能够降低计算开销。
可替代地,作为另一实施例,所述能力指示信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述终端设备支持的同时处于激活状态的频段的最大个数x,所述第二指示信息用于指示所述终端设备所支持的用于接收的模拟波束、面板或同时空域接收滤波器(simultaneous spatial domain receive filters)的最大个数y,所述x和y用于确定N的取值。
其中,x可以为终端设备支持的同时进行信道状态信息CSI测量和/或所述终端设备支持的用于数据传输的频段的最大个数。
也就是说,终端设备通过能力指示信息上报x和y,间接指示终端设备的能力值。即终端设备通过能力指示信息间接上报该能力值。
这种情况下,网络设备需要根据终端设备上报的能力信息,即x和y,计算确定出具体的终端设备的能力值。
可选地,作为一个实施例,N为x和y中的较小值。换句话说,x>y,N=y;或者x<=y,N=x。
进一步的,终端设备还可以通过能力指示信息上报是否支持一个空域接收滤波器(single spatial domain receive filter),该一个空域接收滤波器也可以称为全向滤波器。如果终端设备上报支持一个空域滤波器,即终端设备具备全向接收波束能力,则在确定N的取值时可以忽略y值,即N=x;或者,在这种情况下,终端设备也可以不用上报y值,即终端设备通过能力指示信息上报x的取值和支持一个空域滤波器,这种情况下,N=x。
可替代地,如果终端设备上报不支持一个空域接收滤波器或者没有上报是否支持一个空域滤波器,则可以认为终端设备不具备全向接收波束能力,则在确定N的取值时不忽略y值,还是按N=min(x,y)计算N的取值。
可替代地,如果终端设备没有上报是否支持一个接收空域滤波器,也可以认为终端设备具备全向接收波束能力,则在确定N的取值时可以忽略y值,N=x。或者,在这种情况下,终端设备也可以不用上报y值,即终端设备通过能力指示信息上报x的取值x的取值,这种情况下,N=x。
因此,本申请实施例中,终端设备可以通过已有的信息间接上报终端设备的能力,无需专门上报终端设备的能力值,能够降低信令开销,节省网络资源。
下面描述上述情况二,终端设备需要区分信号的种类上报多种能力的情况。
结合第一方面或第二方面,在一种实现方式中,
所述能力指示信息具体用于指示所述终端设备针对m个信号集合中第i信号集合能够支持同时最多在n i个频段上进行波束训练,i表示信号集合的标号,i遍历取值1、2、…、m,m表示信号集合的个数,n i为大于或等于1的整数,m为大于或等于1的整数,N为n i的最大取值,所述第i信号集合包括至少一个信号,所述终端设备针对所述至少一个信号中的每一信号能够支持的波束训练的频段最大数为所述n i
具体而言,n i可以表示终端设备基于第i信号集合中的每一个信号同时进行波束训练的频段的最大个数,例如,第i信号中包括信号1和信号2,那么终端设备基于信号1同 时进行波束训练的频段的最大个数为n i,且,终端设备基于信号2同时进行波束训练的频段的最大个数为n i
进一步地,本申请实施例中,可以把第i信号集合看成一个整体,n i也可以表示终端设备基于第i信号集合中的所有信号同时进行波束训练的频段的最大个数,例如,第i信号中包括信号1和信号2,那么终端设备基于该第i信号集合同时进行波束训练的频段的最大个数为n i。换句话说终端设备在波束训练时承载有第i信号集合中的信号的所有频段之和不大于n i
结合第一方面或第二方面,在一种实现方式中,所述方法还包括:
所述终端设备对同时在z个频段传输的第一信号进行L1-RSRP的计算,z为不大于n i的整数,所述第一信号为所述第i信号集合中的任意一个信号。
结合第一方面或第二方面,在一种实现方式中,所述网络设备根据所述能力指示信息指示所述终端设备进行波束训练,包括:
网络设备根据所述能力指示信息指示所述终端设备对同时在z个频段传输的第一信号进行L1-RSRP的计算,z为不大于n i的整数,所述第一信号为所述第i信号集合中的任意一个信号。
也就是说,针对第i信号集合中的某一个信号而言,网络设备和终端设备同时在z个频段进行波束训练。由于在实际波束训练中,用于波束训练的信号可以不限于该某一个信号,那么针对用于波束训练的所有信号而言,所述至少一个频段可以为P个频段,也即是说,网络设备与终端设备同时在P个频段进行波束训练,所述P个频段中包括同时传输所述第i信号集合中第一信号的z个频段,z为不大于n i的整数,所述第一信号为所述第i信号集合中的任意一个信号。
进一步地,作为示例而非限定,该P个频段中,承载有该第i信号集合中的信号的频段个数总和也不大于n i,换句话说,在波束训练时,该第i信号集合中所有的信号一起占用的频段总个数小于或等于n i。在波束训练时,针对每一个信号,传输有该信号的频段个数小于或等于该信号对应的能力值。
具体地,上述P和/或z的具体取值可以是网络设备根据网络设备的能力和/或终端设备的测量需求等因素确定的,本申请实施例并不限于此。
可选地,该P个频段小于或等于N。也就是说,P的取值小于或等于一个信号对应的最大能力值N。
可选地,本申请实施例中P也可以大于N,例如,P的最大取值为n 1+n 2+…+n m
结合第一方面或第二方面,在一种实现方式中,所述m个信号集合中不同的信号集合包括的信号各不相同,第i信号集合包括信道状态信息参考信号CSI-RS和同步信号/广播信道块SSB中的至少一种信号。
结合第一方面或第二方面,在一种实现方式中,所述CSI-RS包括非周期性信道状态信息参考信号A-CSI-RS、周期性信道状态信息参考信号P-CSI-RS和半持续性信道状态信息参考信号SP-CSI-RS中的至少一种信号。
需要说明的是,在本申请实施例中可以将用于波束训练的信号的集合称为预设信号集合,例如,所述预设信号集合包括:A-CSI-RS、P-CSI-RS、SP-CSI-RS和SSB;或者,所述预设信号集合包括:CSI-RS和SSB。
应理解,本申请实施例中预设信号集合可以表示在实际波束训练过程中用于波束训练的信号的集合,当然实际应用中用于波束训练的信号不限于本申请实施例列举的上述几种信号,在实际应用中,用于波束训练的信号(预设信号集合)可以仅包括上述信号中的部分信号,或者用于波束训练的信号(预设信号集合)还可以包括其他信号,本申请实施例并不限于此。
应理解,预设信号集合也可以称为用于波束训练的信号的集合、第一集合等,本申请实施例并不限于此。
结合第一方面或第二方面,在一种实现方式中,所述能力指示信息包括所述n i的取值。也就是说,该能力指示信息包括m个信号集合对应的m个能力值。
例如,每个信号集合包括一个信号时,此时,第i信号集合也可以称为第i信号。也就是说针对每个信号网络设备均上报一种能力时,该能力指示信息可以包括m个信号对应的m个能力值。
结合第一方面或第二方面,在一种实现方式中,m=1,所述能力指示信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述终端设备支持的同时处于激活状态的频段的最大个数x,所述第二指示信息用于指示所述终端设备所支持的同时用于接收的模拟波束、面板或空域接收滤波器的最大个数y,所述x和y用于确定n 1的取值,x和y均为大于或等于1的整数。
结合第一方面或第二方面,在一种实现方式中,n 1为x和y中的较小值。
也就是说,m=1时,,当终端设备将所有的信号看成一个集合仅上报一种能力,情况二即与上述情况一相同。这种情况,与上文中的情况一中的描述类似,终端设备可以上报第一信息和第二信息来间接上报终端设备支持的能力值,这种情况与上文描述类似,只要将上文中的N替换成n 1即可,此处不再赘述。
结合第一方面或第二方面,在一种实现方式中,所述m个信号集合共包括所述预设信号集合中的部分信号,其中,所述预设信号集合中除所述部分信号之外的其他信号中的每个信号对应的频段个数与所述部分信号中的优先级最高的信号所在信号集合对应的n i相等,其中,一个信号对应的频段个数表示所述终端设备基于所述一个信号同时进行波束训练的频段的最大个数。
例如,信号的优先级由高到低的顺序为:SSB、P-CSI-RS、SP-CSI-RS、A-CSI-RS。
假设m个信号集合中的信号不包括SSB,包括P-CSI-RS,那么SSB对应的能力值与P-CSI-RS对应的能力值相等。
假设m个信号集合中的信号不包括SSB、P-CSI-RS,包括SP-CSI-RS,那么SSB、P-CSI-RS对应的能力值与SP-CSI-RS对应的能力值相等。
假设m个信号集合中的信号不包括SSB、P-CSI-RS、SP-CSI-RS,包括A-CSI-RS,那么SSB、P-CSI-RS、SP-CSI-RS对应的能力值与A-CSI-RS对应的能力值相等。
在m个信号集合中的信号不包括其他信号的情况与不包括SSB的情况类似,此处不再一一列举。
上文描述了能力指示信息未指示某一信号对应的能力值时,可以按照信号的优先级的高低确定该某一信号对应的能力值的情况。但本申请实施例并不限于此。例如,当能力指示信息未指示SSB对应的能力值时,该SSB对应的能力值还可以为以下2个取值中的一 个值:CSI-RS对应的能力值;以及,周期性CSI-RS对应的能力值。
可选地,当能力指示信息未指示A-CSI-RS对应的能力值时,该A-CSI-RS对应的能力值可以为:周期性CSI-RS对应的能力值。
本申请实施例中,通过能力指示信息仅指示部分信号的能力值,能够降低信令开销。
在实际波束训练中,可以包括但不限于以下过程:终端设备可以是先测量网络设备通过至少一个频段发送的信号,在计算寻找网络设备的对应各个频段的较佳发射波束,最后将各个频段的较佳发射波束的信息反馈给网络设备。
在本申请实施例中,同一个CC中的至少一个频段,例如,L个频段或P个频段可以同时进行波束训练,终端设备针对该多个频段中的每个频段(例如BWP)独立测量计算L1-RSRP,也就是说,本申请实施例中,终端设备是基于每个BWP进行L1-RSRP测量计算的。在进行下行发射波束训练(即downlink spatial domain transmission filter)时,终端设备可以反馈每个BWP的L1-RSRP供网络设备选择一个或多个BWP的最佳发射波束。在进行下行接收波束(即downlink spatial domain receive filter)训练时,终端设备可以根据每个BWP的L1-RSRP确定每个BWP上与某个发射波束所对应的最佳接收波束,进一步的,终端设备还可以反馈训练下行接收波束的每个BWP的L1-RSRP。基于下行发射波束训练与/或下行接收波束训练,网络设备可选择至少一个BWP与这每个选择的BWP上的最佳发射波束与最佳接收波束同时进行后续的信道状态信息CSI测量和/或数据传输。
具体地,网络设备和终端设备在该至少一个频段的训练过程可以参考现有的一个频段训练过程,本文不再详述。
应理解,本申请实施例中,在波束训练后,网络设备可以选择较佳的一个或多个频段(例如,BWP)使用训练得到波束与终端设备通信。具体的网络侧可以通过无限资源控制(radio resource control,RRC)信令或下行控制信息(downlink control information,DCI)或介质访问控制控制元素(media access control element,MAC CE)给终端设备配置上述一个或多个BWP,本申请实施例并不限于此。
作为示例而非限定,下面描述在确定出下行通信的一个或多个BWP后,具体的通信过程:网络设备可以通过该一个或多个BWP的波束向终端设备发送参考信号进行信道测量,然后接收终端设备反馈的信道状态信息(channel state information,CSI)与/或通过信道互异性获取的CSI,之后网络设备根据CSI通过该一个或多个BWP发送下行数据。
应理解,本申请提供的通信方法不限于下行传输,也可以适用于上行传输。本申请对于波束训练的信号未特别限定。例如,对于下行数据传输,该参考信号例如可以为信道状态信息参考信号(channel state information reference signal,CSI-RS)和SSB;对于上行数据传输,用于波束训练的信号可以为探测参考信号(sounding reference signal,SRS)等其他信号。应理解,以上列举的用于波束训练的信号仅为示例性说明,而不应对本申请构成任何限定,本申请也并不排除采用其他的信号以实现波束训练的可能。例如,本申请并不排除在现有的协议(例如,LTE协议、NR协议)或未来的协议中定义其他用作上行或下行波束训练的信号的可能。
第三方面,提供了一种用于波束训练的方法,该方法包括:终端设备接收第一指示信息,所述第一指示信息用于指示所述终端设备能够同时进行波束训练的频段个数M,M为大于或等于1的整数;所述终端设备根据所述第一指示信息进行波束训练。
第四方面,提供了一种用于波束训练的方法,该方法包括:网络设备生成第一指示信息,所述第一指示信息用于指示所述终端设备能够同时进行波束训练的频段个数M,M为大于或等于1的整数;所述网络设备发送所述第一指示信息。
因此,本申请实施例,通过网络设备的指示,网络设备可以和终端设备之间可以同时在多个频段进行波束训练,进而本申请实施例能够提高波束训练的效率。
可选地,所述M表示所述终端设备能够同时进行波束训练的最大频段个数;
换句话说,第一指示信息用于指示所述终端设备能够同时进行波束训练的最大频段个数M。
在实际波束训练时,同时训练的频段个数可以小于或等于M。
可替代地,所述M表示所述终端设备进行波束训练时采用的频段个数。
换句话说,第一指示信息用于指示所述终端设备同时进行波束训练的个数M。
在实际波束训练时,终端设备在同时在M个频段上进行波束训练,即网络设备同时在M个频段上发送用于波束训练的信号,以同时对M个频段的波束进行训练。
结合第三方面或第四方面,在一种实现方式中,所述方法还包括:
所述终端设备向网络设备发送能力指示信息,所述能力指示信息用于指示所述终端设备能够支持同时最多在N个频段上进行波束训练,N为大于或等于1的整数,其中,所述第一指示信息是所述网络设备根据所述能力指示信息生成的,M<=N。
结合第三方面或第四方面,在一种实现方式中,所述方法还包括:
所述网络设备接收所述终端设备发送的能力指示信息,所述能力指示信息用于指示所述终端设备能够支持同时最多在N个频段上进行波束训练,N为大于或等于1的整数,M<=N;
其中,所述网络设备生成第一指示信息,包括:所述网络设备根据所述能力指示信息生成所述第一指示信息。
结合第三方面或第四方面,在一种实现方式中,所述M表示所述终端设备同时进行波束训练的最大频段个数;或者,所述M表示所述终端设备进行波束训练时采用的频段个数。
结合第三方面或第四方面,在一种实现方式中,所述终端设备根据所述第一指示信息进行波束训练,包括:所述终端设备同时对在M’个频段传输的信号进行层1参考信号接收功率L1-RSRP的计算,M’为小于或等于M的整数。
具体的,M’的具体取值可以是网络设备根据网络设备的能力和/或终端设备的测量需求等因素确定的,本申请实施例并不限于此。
当M表示所述终端设备能够同时进行波束训练的最大频段个数时,M’小于或等于M。
当M表示所述终端设备进行波束训练时采用的频段个数时,M’等于M。
因此,本申请实施例,通过网络设备的指示,网络设备可以和终端设备之间可以同时在多个频段进行波束训练,进而本申请实施例能够提高波束训练的效率。
第五方面,提供了一种通信装置,包括用于执行第一方面、第三方面、第一方面或第三方面中任一种可能实现方式中的方法的各个模块或单元。
在一种实现方式中,该通信装置为终端设备。
第六方面,提供了一种通信装置,包括用于执行第二方面、第四方面、第二方面或第四方面中任一种可能实现方式中方法的各个模块或单元。
在一种实现方式中,该通信装置为网络设备。
第七方面,提供了一种通信装置,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该网络设备执行第一方面、第三方面及其可能实现方式中的方法。
在一种实现方式中,该通信装置为终端设备。
第八方面,提供了一种通信装置,包括收发器、处理器和存储器。该处理器用于控制收发器收发信号,该存储器用于存储计算机程序,该处理器用于从存储器中调用并运行该计算机程序,使得该终端设备执行第二方面、第四方面及其可能实现方式中的方法。
在一种实现方式中,该通信装置为网络设备。
第九方面,提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现第一方面、第三方面、第一方面或第三方面中任一种可能的实现方式中的方法。
第十方面,提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现第二方面、第四方面、第二方面或第四方面中任一种可能的实现方式中的方法。
第十一方面,提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现第一方面、第三方面、第一方面或第三方面中任一种可能的实现方式中的方法。
第十二方面,提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现第二方面、第四方面、第二方面或第四方面中任一种可能的实现方式中的方法。
第十三方面,提供了一种处理装置,包括处理器。
在一种实现方式中,上述第一方面至第四方面或第一至第四方面的任一可能的实现方式中的方法的由该处理器执行,在这种情况下,该处理器可以为专用处理器。
在另一种实现方式中,该处理装置还可以包括存储器,该存储器中存储有代码,处理器执行存储器中的代码执行上述第一方面至第四方面或第一至第四方面的任一可能的实现方式中的方法,在这种情况下,该处理器可以为通用处理器。
应理解,在第十三方面中相关的数据交互过程例如发送能力指示信息可以为从处理器输出能力指示信息的过程,接收能力指示信息可以为处理器接收输入能力指示信的过程。具体地,处理输出的数据可以输出给发射器,处理器接收的输入数据可以来自接收器。其中,发射器和接收器可以统称为收发器。
上述十三方面中的处理装置可以是一个芯片,该处理器可以通过硬件来实现也可以通过软件来实现,当通过硬件实现时,该处理器可以是逻辑电路、集成电路等;当通过软件来实现时,该处理器可以是一个通用处理器,通过读取存储器中存储的软件代码来实现,该存储器可以集成在处理器中,可以位于该处理器之外,独立存在。
第十四方面,提供了一种系统,包括前述的网络设备和终端设备。
附图说明
图1是本申请实施例可应用的场景示意图。
图2是本申请一种用于波束训练的方法流程示意图。
图3是本申请一种载波示意图。
图4是本申请另一种用于波束训练的方法流程示意图。
图5是本申请一种通信装置的示意框图。
图6是本申请另一种通信装置的示意框图。
图7是本申请一种终端设备的示意框图。
图8是本申请另一种通信装置的示意框图。
图9是本申请另一种通信装置的示意框图。
图10是本申请一种网络设备的示意框图。
具体实施方式
下面将结合附图,对本申请中的技术方案进行描述。
本申请实施例可应用于各种通信系统,因此,下面的描述不限制于特定通信系统。下一代通信系统,即第五代(5th generation,5G)通信系统,例如,新空口(new radio,NR)系统。
本申请实施例中,网络设备可以是未来5G网络中的网络侧设备,例如,NR系统中传输点(TRP或TP)、NR系统中的基站(gNB)、NR系统中的射频单元,如远端射频单元、5G系统中的基站的一个或一组(包括多个天线面板)天线面板等。不同的网络设备可以位于同一个小区,也可以位于不同的小区,具体的在此不做限定。
在一些部署中,gNB可以包括集中式单元(centralized unit,CU)和分布式单元(distributed unit,DU)。gNB还可以包括射频单元(radio unit,RU)。CU实现gNB的部分功能,DU实现gNB的部分功能,比如,CU实现无线资源控制(radio resource control,RRC),分组数据汇聚层协议(packet data convergence protocol,PDCP)层的功能,DU实现无线链路控制(radio link control,RLC)、媒体接入控制(media access control,MAC)和物理(physical,PHY)层的功能。由于RRC层的信息最终会变成PHY层的信息,或者,由PHY层的信息转变而来,因而,在这种架构下,高层信令,如RRC层信令或PHCP层信令,也可以认为是由DU发送的,或者,由DU+RU发送的。可以理解的是,网络设备可以为CU节点、或DU节点、或包括CU节点和DU节点的设备。此外,CU可以划分为接入网RAN中的网络设备,也可以将CU划分为核心网CN中的网络设备,在此不做限制。
本申请实施例中,终端设备也可以称为用户设备(user equipment,UE)、接入终端、用户单元、用户站、移动站、移动台、远方站、远程终端、移动设备、用户终端、终端、无线通信设备、用户代理或用户装置。接入终端可以是蜂窝电话、无绳电话、会话启动协议(session initiation protocol,SIP)电话、无线本地环路(wireless local loop,WLL)站、个人数字处理(personal digital assistant,PDA)、具有无线通信功能的手持设备、计算设备或连接到无线调制解调器的其它处理设备、车载设备、可穿戴设备、无人机设备以及未来5G网络中的终端设备或者未来演进的公用陆地移动通信网络(public land mobile network,PLMN)中的终端设备等,本申请实施例对此并不限定。
作为示例而非限定,在本发明实施例中,该终端设备还可以是可穿戴设备。可穿戴设 备也可以称为穿戴式智能设备,是应用穿戴式技术对日常穿戴进行智能化设计、开发出可以穿戴的设备的总称,如眼镜、手套、手表、服饰及鞋等。可穿戴设备即直接穿在身上,或是整合到用户的衣服或配件的一种便携式设备。可穿戴设备不仅仅是一种硬件设备,更是通过软件支持以及数据交互、云端交互来实现强大的功能。广义穿戴式智能设备包括功能全、尺寸大、可不依赖智能手机实现完整或者部分的功能,例如:智能手表或智能眼镜等,以及只专注于某一类应用功能,需要和其它设备如智能手机配合使用,如各类进行体征监测的智能手环、智能首饰等。
本申请实施例可以适应于上述任意通信系统,例如,本申请实施例可以适用于LTE系统以及后续的演进系统如5G等,或其他采用各种无线接入技术的无线通信系统,如采用码分多址,频分多址,时分多址,正交频分多址,单载波频分多址等接入技术的系统,尤其适用于需要信道信息反馈和/或应用二级预编码技术的场景,例如应用大规模阵列天线(massive multiple-input multiple-output,Massive MIMO)技术的无线网络、应用分布式天线技术的无线网络等。
图1是本申请实施例可应用的通信系统的场景示意图。如图1所示,该通信系统100包括网络设备102,和多个终端设备(例如终端设备116和终端设备122),网络设备102可以为终端设备提供通信服务并接入核心网,终端设备通过搜索网络设备发送的同步信号、广播信号等接入网络,从而进行与网络的通信。例如,进行上/下行传输。
具体地,网络设备102可包括多个天线组。每个天线组可以包括多个天线,例如,一个天线组可包括天线104和106,另一个天线组可包括天线106和110,附加组可包括天线112和114。图1中对于每个天线组示出了2个天线,然而可对于每个组使用更多或更少的天线。网络设备102可附加地包括发射机链和接收机链,本领域普通技术人员可以理解,它们均可包括与信号发送和接收相关的多个部件(例如处理器、调制器、复用器、解调器、解复用器或天线等)。
网络设备102可以与多个终端设备(例如终端设备116和终端设备122)通信。然而,可以理解,网络设备102可以与类似于终端设备116或122的任意数目的终端设备通信。
如图1所示,终端设备116与天线112和114通信,其中天线112和114通过前向链路116向终端设备116发送信息,并通过反向链路120从终端设备116接收信息。此外,终端设备122与天线104和106通信,其中天线104和106通过前向链路124向终端设备122发送信息,并通过反向链路126从终端设备122接收信息。
例如,在频分双工(frequency division duplex,FDD)系统中,例如,前向链路116可利用与反向链路120所使用的不同频带,前向链路124可利用与反向链路126所使用的不同频带。
再例如,在时分双工(time division duplex,TDD)系统和全双工(full duplex)系统中,前向链路116和反向链路120可使用共同频带,前向链路124和反向链路126可使用共同频带。
被设计用于通信的每组天线和/或区域称为网络设备102的扇区。例如,可将天线组设计为与网络设备102覆盖区域的扇区中的终端设备通信。在网络设备102通过前向链路116和124分别与终端设备116和122进行通信的过程中,网络设备102的发射天线可利用波束成形来改善前向链路116和124的信噪比。此外,与网络设备通过单个天线向它所 有的终端设备发送信号的方式相比,在网络设备102利用波束成形向相关覆盖区域中随机分散的终端设备116和122发送信号时,相邻小区中的移动设备会受到较少的干扰。
在给定时间,网络设备102、终端设备116或终端设备122可以是无线通信发送装置和/或无线通信接收装置。当发送数据时,无线通信发送装置可对数据进行编码以用于传输。具体地,无线通信发送装置可获取(例如生成、从其它通信装置接收、或在存储器中保存等)要通过信道发送至无线通信接收装置的一定数目的数据比特。这种数据比特可包含在数据的传输块(或多个传输块)中,传输块可被分段以产生多个码块。
此外,该通信系统100可以是公共陆地移动网络PLMN网络或者设备对设备(device to device,D2D)网络或者机器对机器(machine to machine,M2M)网络或者其他网络,图1仅为便于理解而示例的简化示意图,网络中还可以包括其他网络设备,图1中未予以画出。
如前文所述,网络设备和终端设备需要通过波束训练使得收发波束互相匹配。然而,现有技术中,波束训练的效率较低。
具体而言,现有标准中没有考虑终端设备的能力等信息,统一规定某一时间终端设备仅能对该载波上的一个频段进行训练。因此,按照这种方式,终端设备需要分时操作才能完成该载波的多个频段的训练,这样会导致训练时间过长,导致训练效率较低。
鉴于上述问题,本申请实施例提出了一种用于波束训练的方法,该方法能够根据终端设备的能力选择至少一个频段进行波束训练,能够提高训练效率。具体而言,本申请实施例中终端设备可以上报指示自身能力的能力指示信息,换句话说,该能力指示信息可以用于指示所述终端设备能够支持同时最多在N个频段上进行波束训练,这样网络设备可以根据终端设备的能力一次性选择多个频段同时进行波束训练。
因此,本申请实施例中在终端设备支持的同时训练的频段个数N大于1的情况下,网络设备和终端设备之间可以同时进行多个频段的波束训练,又由于本申请实施例并没有减少训练的频段的个数,因此,本申请实施例能够保证训练的准确性的前提下,提高波束训练的效率。
以下,为了便于理解和说明,作为示例而非限定,以将本申请的用于波束训练的方法在通信系统中的执行过程和动作进行说明。
首先,为了使得本申请实施例的方法更容易理解,下面对本申请实施例中涉及的一些概念说明如下。
应理解,本申请实施例中,载波(component carrier,CC)表示一个正交频分复用(orthogonal frequency division multiplexing,OFDM)符号所占用的频域宽度。
本申请实施例中,波束(beamformer)也可以称为空域滤波器,发射波束也可以称为空域发射滤波器,接收波束也可以称为空域接收滤波器。
具体而言,本申请实施例中波束可以是宽波束,或者窄波束,或者其他类型波束。本申请中,形成波束的技术可以是波束成形技术或者其他技术手段。例如,波束成形技术具体可以为数字波束成形技术、模拟波束成形技术或者混合数字/模拟波束成形技术。发送端可以通过不同的波束发送相同的信息或者不同的信息。可选的,本申请中可以将具有相同或者类似的通信特征的多个波束视为是一个波束。一个波束内可以包括一个或多个天线端口,用于传输数据信道、控制信道和探测信号等。本申请中,发射波束可以是指信号经 天线发射出去后在空间不同方向上形成的信号强度的分布,接收波束可以是指从天线上接收到的无线信号在空间不同方向上的信号强度分布。可以理解的是,形成一个波束的一个或多个天线端口也可以看作是一个天线端口集。波束在协议中的体现可以是空域滤波器(spatial filter)。
波束训练,表示网络设备和终端设备寻找互相匹配的收发波束对的过程。具体地波束训练的定义可以参照现有标准中的描述,本申请实施例不再详述。
本申请实施例中对频段进行波束训练也可以称为对频段进行波束管理或波束跟踪等,对频段进行波束训练的过程可以表示收发双方寻找该频段上的最佳收发波束对的过程。例如,在一种实现方式中,终端设备测量网络设备的发射波束,并反馈参考信号接收功率(reference signal receiving power,RSRP),例如,NR中的层1参考信号接收功率(layer1reference signal received power,L1-RSRP),基站将反馈最大的L1-RSRP值所对应的发射波束作为最佳发射波束。类似的,终端设备通过改变自己的接收波束计算L1-RSRP来选择L1-RSRP最大值所对应的接收波束作为某个发射波束所对应的最佳接收波束。上述最佳发送波束和最佳接收波束即构成上述最佳收发波束对,用于之后的信道状态信息CSI测量和/或数据传输。
以下结合图2描述本申请实施例的波束训练的方法。图2是根据本发明一个实施例的用于波束训练的方法示意性流程图。如图2所示的方法从网络设备与终端设备交互的角度进行了描述。图2示出了下行传输的场景下本申请实施例的方法,具体地,如图2所示的方法200包括:
210,终端设备生成能力指示信息,所述能力指示信息用于指示所述终端设备能够支持同时最多在N个频段上进行波束训练,N为大于或等于1的整数。
具体地,终端设备可以根据默认配置,例如但不限于终端设备接收波束的能力、RSRP计算能力等,生成该能力指示信息,本申请实施例并不限于此。
本申请实施例中,频段表示连续的一段频域资源,例如,频段可以为带宽部分(bandwidth part,BWP),BWP可以理解为一段连续的频带,该频带包含至少一个连续的子带,每个带宽部分可以对应一组系统参数(numerology),包括例如但不限于,子载波间隔、循环前缀(cyclic prefix,CP)长度、传输时间间隔(transmission time interval,TTI)、符号(symbol)个数、资源块(resource block,RB)位置、时隙长度和帧格式等。本申请实施例中不同带宽部分可以对应不同的系统参数。有关带宽部分的定义可以参考现有技术,例如但不限于针对NR的各种提案。随着技术的不断发展,上述定义也有可能发生变化。
在另一些实施方式中,频段也可以为波束跟踪带宽(tracking band)。
应理解,本申请实施例中,波束跟踪带宽可以包含至少一个子载波;或者,波束跟踪带宽在频域上可以包括至少一个资源块(resource block,RB);或者,波束跟踪带宽在频域上可以包括至少一个预编码组(precoding resource group,PRG);或者,波束跟踪带宽在频域上可以包括至少一个资源块组(resource block group,RBG)。
可选地,本申请实施例中,波束跟踪带宽上仅能调度用于波束训练的信号;或者,波束跟踪带宽仅可以调度用于波束训练的信号和控制信道(例如物理下行控制信道(physical downlink control channel,PDCCH))。可选的,不同波束跟踪带宽之间调用的用于波束 训练的信号可以不同。
为了描述的简便,下文中仅以频段为BWP为例进行描述,但本申请实施例并不限于此,频段为波束跟踪带宽的情况可以参考频段为BWP的描述。
可选地,所述N个频段属于同一载波CC。
可选地,所述CC包括一个正交频分复用OFDM符号所占用的频域宽度。
具体而言,在本申请实施例中,在一个CC,同一个OFDM符号下,终端设备通过能力指示信息期望(expect)不同的频段(例如,BWP)可以同时进行波束训练,即终端设备期望每个BWP可以使用各自独立的空域滤波器(downlink spatial domain transmission filter),不同的BWP的传输的用于波束训练的信号可以使用不同或相同的下行空域滤波器。
例如,如图3所示,在同一个CC下包括BWP1与BWP2。终端设备可以通过能力指示信息上报自身的能力,例如,该能力指示信息用于指示所述终端设备能够支持同时最多在2个频段(即N=2)上进行波束训练。即能力指示信指示该终端设备支持同时在该两个BWP上进行波束训练。换句话说,终端设备期望该两个BWP可以同时进行波束训练,即终端设备期望该两个BWP的传输的用于波束训练的信号可以使用不同或相同的下行空域滤波器。
应理解,图3中仅示出了一个CC包括2个BWP的例子,但本申请实施例并不限于此,在实际应用中一个CC可以包括多个BWP,例如,一个CC包括3个BWP、4个BWP…。
应理解,本申请实施例中,在波束训练时,频段上传输的用于波束训练的信号可以为以下信号中的至少一种:非周期性信道状态信息参考信号(aperiodic channel state information reference signal,A-CSI-RS)、周期性信道状态信息参考信号(periodic channel state information reference signal,P-CSI-RS)、半持续性信道状态信息参考信号(semi-persistent channel state information reference signal,SP-CSI-RS)和同步信号/广播信道块(synchronous signal/physical broadcast channel(PBCH)block,SSB)。
可选地,本申请实施例中可以将A-CSI-RS、P-CSI-RS和SP-CSI-RS统称为信道状态信息参考信号(channel state information reference signal,CSI-RS)。换句话说,本申请实施例中,频段上传输的用于波束训练的信号可以为CSI-RS和SSB中的至少一种。
应理解,本申请实施例中用于波束训练的信号还可以为其他信号,本申请实施例并不限于此。
针对是否区分频段上传输的信号种类,下文中将分成两种情况描述本申请实施例的能力指示信息。
情况一,针对不同的信号,本申请实施例中,终端设备可以不区分具体信号的种类,仅上报一种能力。换句话说,频段中传输的用于波束训练的信号均对应同一能力。
应理解,本文中所指的“能力”是指终端设备能够支持多个频段同时进行波束训练的能力。其中,一种能力对应一个能力值,例如,一种能力对应的能力值为N,表示终端设备能够支持同时最多在N个频段上进行波束训练。
情况二,终端设备区分信号的种类,需要针对多个信号上报多种能力,其中,该多个信号中的不同的信号可以对应相同或不同的能力值。换句话说,该多个信号对应的多种能力对应的能力值可以相同也可以不同。应理解,第一信号对应的能力值可以表示终端设备 支持的同时进行波束训练的最大频段(这里频段是指传输有第一信号的频段)个数。
以下分别对这两种情况分别进行详细描述。
首先,描述上述情况一,即终端设备不区分具体信号的类型,仅上报一种能力的情况。
具体而言,在210中,该能力指示信息可以不区分具体的信号种类。这种情况下,在实际波束训练中,同时进行波束训练的多个频段中的每个频段中的传输的信号不作限定,例如,每个频段传输的信号可以为A-CSI-RS、P-CSI-RS、SP-CSI-RS和SSB中的任意一种或多种,或者,每个频段传输的信号可以为CSI-RS和SSB中的一种或两种。本申请实施例并不限于此。
换句话说,终端设备上报的能力不受限于信号的种类。终端设备上报能力指示信息后,不期望被调度的同时进行的L1-RSRP测量计算的BWP个数超过此能力值N。即终端设备期望的最大的同时进行的L1-RSRP测量计算的BWP个数为N。
应理解,同时进行波束训练的多个频段中的每个频段均对应一个波束,该多个频段中不同的两个频段对应的波束可以不同,也可以相同,本申请实施例并不限于此。
具体而言,在本申请实施例中,一个OFDM符号的每一个频段(例如BWP)上,一个CSI-RS资源集(CSI-RS resource set)中的所有CSI-RS资源(CSI-RS resource)或者同一个CSI-RS资源配置(CSI-RS resource setting)中的所有CSI-RS资源(CSI-RS resource)使用相同的波束(或者称为下行空域滤波器)。
具体的,CSI-RS资源集或CSI-RS资源配置的定义可以参考现有标准中的描述,本申请实施例不再赘述。
例如,如图3所示,在波束训练时,BWP1上可以传输信号1和信号2,BWP2可以传输信号3。应理解,本申请实施例中,每一个BWP可以包括至少一个资源块(resource block,RB),例如,BWP1包括4个RB,其中,信号1承载在2个RB上,信号2承载在另外两个RB上,BWP2包括4个RB,信号3承载在该4个RB上。其中,该信号1和该信号2属于同一个CSI-RS资源或同一个CSI-RS资源集或同一个CSI-RS资源配置,根据上文描述可知,信号1和信号2对应的波束相同,例如均对应波束1。信号3对应的波束2可以与波束1相同也可以不同。该信号1和信号2可以为相同的信号,例如,为相同类型的CSI-RS,例如这个相同类型的CSI-RS为P-CSI-RS、A-CSI-RS或SP-CSI-RS,该信号3可以为上文描述的用于波束训练的任意一种信号,例如P-CSI-RS、A-CSI-RS或SP-CSI-RS。
可选地,在情况一中,该能力指示信息可以包括N的取值。即该能力指示信息包括终端设备的能力值N。
也就是说,终端设备可以通过能力指示信息直接上报该能力值N。
在这种情况下,网络设备可以根据获取的能力指示信息直接确定终端设备的能力值,进而网络设备可以决定同时进行波束训练的频段的个数。应理解,网络设备确定的同时进行波束训练的频段个数通常小于或等于终端设备上报的能力值。
因此,本申请实施例通过终端设备上报能力值,使得网络设备能够根据该能力值直接确定终端设备的能力,无需额外的计算过程,能够降低计算开销。
可替代地,作为另一实施例,在情况一中,所述能力指示信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述终端设备支持的同时处于激活状态的频段的 最大个数x,所述第二指示信息用于指示所述终端设备所支持的用于接收的模拟波束、面板或同时空域接收滤波器(simultaneous spatial domain receive filters)的最大个数y,所述x和y用于确定N的取值。
其中,x可以为终端设备支持的同时进行信道状态信息CSI测量和/或所述终端设备支持的用于数据传输的频段的最大个数。
也就是说,终端设备通过能力指示信息上报x和y,间接指示终端设备的能力值。即终端设备通过能力指示信息间接上报该能力值。
这种情况下,网络设备需要根据终端设备上报的能力信息,即x和y,计算确定出具体的终端设备的能力值。
可选地,作为一个实施例,N为x和y中的较小值。
换句话说,x>y,N=y;或者x<=y,N=x。
进一步的,终端设备还可以通过能力指示信息上报是否支持一个空域接收滤波器(single spatial domain receive filter),该一个空域接收滤波器也可以称为全向滤波器。如果终端设备上报支持一个空域滤波器,即终端设备具备全向接收波束能力,则在确定N的取值时可以忽略y值,即N=x;或者,在这种情况下,终端设备也可以不用上报y值,即终端设备通过能力指示信息上报x的取值和支持一个空域滤波器,这种情况下,N=x。
可替代地,如果终端设备上报不支持一个空域接收滤波器或者没有上报是否支持一个空域滤波器,则可以认为终端设备不具备全向接收波束能力,则在确定N的取值时不忽略y值,还是按N=min(x,y)计算N的取值。
可替代地,如果终端设备没有上报是否支持一个接收空域滤波器,也可以认为终端设备具备全向接收波束能力,则在确定N的取值时可以忽略y值,N=x。或者,在这种情况下,终端设备也可以不用上报y值,即终端设备通过能力指示信息上报x的取值x的取值,这种情况下,N=x。
因此,本申请实施例中,终端设备可以通过已有的信息间接上报终端设备的能力,无需专门上报终端设备的能力值,能够降低信令开销,节省网络资源。
下面描述上述情况二,终端设备需要区分信号的种类上报多种能力的情况。
也就是说,在情况二中,终端设备上报的能力受限于信号的种类。例如,终端设备针对不同的信号分别独立上报能力,或者将一部分信号作为一个集合看成一个整体上报一种能力。
具体地,作为一个实施例,所述能力指示信息具体用于指示终端设备针对m个信号集合中第i信号集合能够支持同时最多在n i个频段上进行波束训练,i表示信号集合的标号,i遍历取值1、2、…、m,m表示信号集合的个数,n i为大于或等于1的整数,m为大于或等于1的整数,N为n i的最大取值,所述第i信号集合包括至少一个信号,所述终端设备针对所述至少一个信号中的每一信号能够支持的波束训练的频段最大数为所述n i
具体而言,n i可以表示终端设备基于第i信号集合中的每一个信号同时进行波束训练的频段的最大个数,例如,第i信号中包括信号1和信号2,那么终端设备基于信号1同时进行波束训练的频段的最大个数为n i,且,终端设备基于信号2同时进行波束训练的频段的最大个数为n i
进一步地,本申请实施例中,可以把第i信号集合看成一个整体,n i也可以表示终端设备基于第i信号集合中的所有信号同时进行波束训练的频段的最大个数,例如,第i信号中包括信号1和信号2,那么终端设备基于该第i信号集合同时进行波束训练的频段的最大个数为n i。换句话说终端设备在波束训练时承载有第i信号集合中的信号的所有频段之和不大于n i
可选地,本申请实施例中,所有集合对应的频段均属于同一个CC。
可选的,终端设备可以根据用于波束训练的信号的种类,将用于波束训练的多种信号分成至少一个信号集合,然后针对每一个信号集合设置一个能力值,其中,一个信号集合中的信号具有相同或相近的某一属性,例如,均为CSI-RS等。这种情况下下,不同的信号集合对应的能力值可以相同也可以不同,本申请实施例并不限于此。
可选地,终端设备也可以根据用于波束训练的各个信号对应的能力值,将能力值相等或相近的信号归类为一个信号集合,然后为每个信号集合设置一个能力值。这种情况下,不同的信号集合对应的能力值可以不同。
应理解,本申请实施例中,终端设备也可以其他的方式将用于波束训练的信号划分为至少一个信号集合,本申请实施例并不限于此。
可选地,作为一个实施例,所述m个信号集合中不同的信号集合包括的信号各不相同,第i信号集合包括信道状态信息参考信号CSI-RS和同步信号/广播信道块SSB中的至少一种信号。
进一步地,作为一个实施例,所述CSI-RS包括非周期性信道状态信息参考信号A-CSI-RS、周期性信道状态信息参考信号P-CSI-RS和半持续性信道状态信息参考信号SP-CSI-RS中的至少一种信号。
也就是说,第i信号集合包括A-CSI-RS、P-CSI-RS、SP-CSI-RS和SSB中的至少一种信号。
需要说明的是,在本申请实施例中可以将用于波束训练的信号的集合称为预设信号集合,例如,所述预设信号集合包括:A-CSI-RS、P-CSI-RS、SP-CSI-RS和SSB;或者,所述预设信号集合包括:CSI-RS和SSB。
应理解,本申请实施例中预设信号集合可以表示在实际波束训练过程中用于波束训练的信号的集合,当然实际应用中用于波束训练的信号不限于本申请实施例列举的上述几种信号,在实际应用中,用于波束训练的信号(预设信号集合)可以仅包括上述信号中的部分信号,或者用于波束训练的信号(预设信号集合)还可以包括其他信号,本申请实施例并不限于此。
应理解,预设信号集合也可以称为用于波束训练的信号的集合、第一集合等,本申请实施例并不限于此。
应理解,该m个信号集合中的信号可以包括该预设信号集合中的全部信号也可以只包括该预设信号集合中的部分信号,本申请实施例并不限于此。
下文描述在m个信号集合中的信号包括该预设信号集合中的全部信号的情况。
例如,作为一个实施例,每个集合仅包括一个信号,也就针对每个信号网络设备均上报一种能力,
其中,一个信号对应的能力,表示针对该一个信号终端设备能够支持同时进行波束训 练的频段的最大个数。
可选地,在情况二中,所述能力指示信息包括所述n i的取值,也就是说,该能力指示信息包括m个信号集合对应的m个能力值。
例如,每个信号集合包括一个信号时,此时,第i信号集合也可以称为第i信号。也就是说针对每个信号网络设备均上报一种能力时,该能力指示信息可以包括m个信号对应的m个能力值。
例如,预设信号集合包括:A-CSI-RS、P-CSI-RS、SP-CSI-RS和SSB;m=4,每一个信号集合包括SSB、P-CSI-RS、SP-CSI-RS,和A-CSI-RS中的一个信号。例如,第1信号集合包括SSB,第2信号集合包括P-CSI-RS,第3信号集合包括SP-CSI-RS,第4信号集合包括A-CSI-RS。
那么所述能力指示信息包括n 1至n 4的取值。具体地,该能力指示信息用于指示:
终端设备针对SSB(第1信号集合或第1信号)能够支持同时最多在n 1个频段上进行波束训练;
终端设备针对P-CSI-RS(第2信号集合或第2信号)能够支持同时最多在n 2个频段上进行波束训练;
终端设备针对SP-CSI-RS(第3信号集合或第3信号)能够支持同时最多在n 3个频段上进行波束训练;
终端设备针对A-CSI-RS(第4信号集合或第4信号)能够支持同时最多在n 4个频段上进行波束训练。
也就是说,终端设备上报上述能力指示信息后,在波束训练时:
不期望被调度的同时进行的基于SSB的L1-RSRP测量计算的BWP个数超过n 1
不期望被调度的同时进行的基于P-CSI-RS的L1-RSRP测量计算的BWP个数超过n 2
不期望被调度的同时进行的基于SP-CSI-RS的L1-RSRP测量计算的BWP个数超过n 3
不期望被调度的同时进行的基于A-CSI-RS的L1-RSRP测量计算的BWP个数超过n 4
换句话说,在波束训练时,终端设备期望(expect):
同时进行基于SSB的L1-RSRP测量计算的BWP个数不大于n 1
同时进行基于P-CSI-RS的L1-RSRP测量计算的BWP个数不大于n 2
同时进行基于SP-CSI-RS的L1-RSRP测量计算的BWP个数不大于n 3
同时进行基于A-CSI-RS的L1-RSRP测量计算的BWP个数不大于n 4
需要说明的是,当每一个信号均对应一个能力值时,不同的信号对应的能力值可以相同也可以不同。上文描述了针对每一个信号终端设备均上报一个能力值的情况,可替代地,在一种实现方式中,当一部分信号对应的能力值相等时,终端设备可以针对该一部分信号仅上报其中一个信号的能力值,并指示其余信号的能力值与该一个信号的能力值相等,例如,共有4种信号,第1信号至第4信号,当第1信号与第2信号对应的能力值相等时,终端设备仅上报第1信号、第3信号和第4信号对应的能力值,并指示第2信号与该第1信号对应的能力值相等。通过这种方式,本申请实施例中针对对应能力值相等的多个信号仅上报一个能力值,能够降低信令的开销,提升网络性能。
进一步的,在本申请实施例中,针对上面这种情况,第1信号和第2信号可以看成一 个集合,第3信号看成一个集合,第4信号可以看出一个集合。也就是说,这种情况下,m=3,针对第1信号至第4信号终端设备设备仅需通过能力指示信息指示3个能力值,即第1信号与第2信号(第1信号集合)、第3信号(第2信号集合)和第4信号(第3信号集合)对应的能力值。
下面描述,信号集合中的几种特殊信号集合。
例如,作为另一实施例,m个信号集合中一个信号集合,例如,第1信号集合包括P-CSI-RS、SP CSI-RS和A CSI-RS,由于该第1信号集合中的信号均为CSI-RS。
因此,这种情况下,针对第1信号集合而言,所述能力指示信息可以描述为具体用于指示:终端设备针对CSI-RS(第1信号集合)能够支持同时最多在n 1个频段上进行波束训练。
也就是说,终端设备上报上述能力指示信息后,在波束训练时:不期望被调度的同时进行的CSI-RS的L1-RSRP测量计算的BWP个数超过n 1。换句话说,终端设备期望(expect):同时进行基于CSI-RS的L1-RSRP测量计算的BWP个数不大于n 1
应理解,这里n 1可以表示针对每一种CSI-RS终端设备同时进行波束训练的频段的最大个数为n 1。进一步的,n 1还可以表示不区分具体的CSI-RS的类型,将所有类型的CSI-RS看成一个集合,终端设备同时进行波束训练的频段的最大个数为n 1。换句话说终端设备在波束训练时承载有CSI-RS(该CSI-RS可以是P-CSI-RS、SP CSI-RS或A CSI-RS)的所有频段之和不大于n 1
再例如,作为另一实施例,m个信号集合中一个信号集合,例如,第1信号集合包括P-CSI-RS和SP CSI-RS。由于该第1信号集合中的信号均为周期性CSI-RS。
因此,这种情况下,针对第1信号集合而言,所述能力指示信息可以描述为具体用于指示:终端设备针对周期性CSI-RS(第1信号集合)能够支持同时最多在n 1个频段上进行波束训练。
也就是说,终端设备上报上述能力指示信息后,在波束训练时:不期望被调度的同时进行的周期性CSI-RS的L1-RSRP测量计算的BWP个数超过n 1。换句话说,终端设备期望(expect):同时进行周期性CSI-RS的L1-RSRP测量计算的BWP个数不大于n 1
应理解,这里n 1可以表示针对每一种周期性CSI-RS终端设备同时进行波束训练的频段的最大个数为n 1。进一步的,n 1还可以表示不区分具体的周期性CSI-RS的类型,将所有类型的周期性CSI-RS看成一个集合,终端设备同时进行波束训练的频段的最大个数为n 1。换句话说终端设备在波束训练时承载有周期性CSI-RS(该周期性CSI-RS可以是P-CSI-RS或SP CSI-RS)的所有频段之和不大于n 1
需要说明的是,情况一可以看成是情况二的特例,例如,当终端设备将所有的信号看成一个集合仅上报一种能力,情况二即与上述情况一相同。
在这种情况下,m=1,该能力指示信息可以仅包括该一个集合对应的能力值,例如,n 1。可替代地,与上文中情况一类似,这种情况下,所述能力指示信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述终端设备支持的同时处于激活状态的频段的最大个数x,所述第二指示信息用于指示所述终端设备所支持的同时用于接收的模拟波束、面板或空域接收滤波器的最大个数y,所述x和y用于确定n 1的取值,x和y均为大于或等于1的整数。这种情况,可以参考上文中的情况一中的描述,只要将上文中的N 替换成n 1即可,此处不再赘述。
下面描述在m个信号集合中的信号包括该预设信号集合中的部分信号的情况。
具体地,作为一个实施例,所述m个信号集合共包括所述预设信号集合中的部分信号,其中,所述预设信号集合中除所述部分信号之外的其他信号中的每个信号对应的频段个数与所述部分信号中的优先级最高的信号所在信号集合对应的n i相等,其中,一个信号对应的频段个数表示所述终端设备基于所述一个信号同时进行波束训练的频段的最大个数。
例如,信号的优先级由高到低的顺序为:SSB、P-CSI-RS、SP-CSI-RS、A-CSI-RS。
假设m个信号集合中的信号不包括SSB,包括P-CSI-RS,那么SSB对应的能力值与P-CSI-RS对应的能力值相等。
假设m个信号集合中的信号不包括SSB、P-CSI-RS,包括SP-CSI-RS,那么SSB、P-CSI-RS对应的能力值与SP-CSI-RS对应的能力值相等。
假设m个信号集合中的信号不包括SSB、P-CSI-RS、SP-CSI-RS,包括A-CSI-RS,那么SSB、P-CSI-RS、SP-CSI-RS对应的能力值与A-CSI-RS对应的能力值相等。
在m个信号集合中的信号不包括其他信号的情况与不包括SSB的情况类似,此处不再一一列举。
上文描述了能力指示信息未指示某一信号对应的能力值时,可以按照信号的优先级的高低确定该某一信号对应的能力值的情况。但本申请实施例并不限于此。例如,当能力指示信息未指示SSB对应的能力值时,该SSB对应的能力值还可以为以下2个取值中的一个值:
CSI-RS对应的能力值;以及,
周期性CSI-RS对应的能力值。
可选地,当能力指示信息未指示A-CSI-RS对应的能力值时,该A-CSI-RS对应的能力值可以为:
周期性CSI-RS对应的能力值。
本申请实施例中,通过能力指示信息仅指示部分信号的能力值,能够降低信令开销。
220,终端设备发送能力指示信息。
相对应地,网络设备接收所述能力指示信息。
230,网络设备根据所述能力指示信息指示所述终端设备进行波束训练。
具体而言,网络设备可以根据接收到的能力指示信息确定至少一个频段,并指示该终端设备在该至少一个频段上进行波束训练。其中,网络设备确定的该至少一个频段的个数小于或等于终端设备上报的能力指示信息所指示的能力值。
例如,网络设备根据所述能力指示信息生成指示信息(该指示信息也可以称为配置信息),并向终端设备发送该指示信息,以指示所述终端设备进行波束训练。
具体地,该指示信息可以用于指示:用于波束训练的信号的类型,例如用于波束训练的信号为CSI-RS(例如,该CSI-RS可以为P-CSI-RS、SP-CSI-RS或A-CSI-RS)或SSB;进一步当用于波束训练的信号为CSI-RS时,该指示信息还可以用于指示以下信息中的至少一种:终端设备同时进行波束训练的频段个数、终端设备同时进行波束训练的频段的索引、终端设备同时进行波束训练的频段的标识、用于波束训练的信号的资源时频位置、用 于波束训练的信号的资源时域偏移量(offset)和用于波束训练的信号的周期等。可选地,该指示信息还可以指示终端设备不上报波束的测量结果;或者该指示信息还可以指示终端设备上报测量结果,具体该指示信息可以指示终端设备上报以下信息中的至少一种:信号的L1-RSRP、信号的索引(index)和频段的索引(index)等信息。该信号的索引例如可以为信道状态信息参考信号资源索引(CSI-RS Resource Indicator,CRI),本申请实施例并不限于此。
针对上文情况一,
所述至少一个频段为L个频段,也即是说,在230中,网络设备根据所述能力指示信息指示终端设备同时在L个频段上进行波束训练,L为小于或等于N的整数。
具体而言,终端设备对L个频段或者L个波束传输的信号进行层1参考信号接收功率L1-RSRP的计算。
具体的,L的具体取值可以是网络设备根据网络设备的能力和/或终端设备的测量需求等因素确定的,本申请实施例并不限于此。应理解,本文中,网络设备的能力可以表示网络设备能够支持的同时进行波束训练的BWP的个数的能力。终端设备的测量需求可以表示网络设备根据网络状态等因素确定的终端设备需要同时训练BWP个数的需求。应理解,下文中的网络设备的能力以及终端设备的测量需求的定义于此类似,下文不再一一解释。
应理解,在波束训练时,在本申请实施例中,该L个频段中每个频段传输的信号不做限定,每个频段中传输的信号可以包括上述预设信号集合中的至少一种信号。
针对上文情况二,
所述至少一个频段包括z个频段,也即是说,在230中,网络设备根据所述能力指示信息指示终端设备同时在z个频段进行波束训练。
具体而言,所述终端设备对同时在z个频段传输的第一信号进行L1-RSRP的计算,z为不大于n i的整数,所述第一信号为所述第i信号集合中的任意一个信号。
也就是说,针对第i信号集合中的某一个信号而言,网络设备和终端设备同时在z个频段进行波束训练。由于在实际波束训练中,用于波束训练的信号可以不限于该某一个信号,那么针对用于波束训练的所有信号而言,所述至少一个频段可以为P个频段,也即是说,在230中,网络设备与终端设备同时在P个频段进行波束训练,所述P个频段中包括同时传输所述第i信号集合中第一信号的z个频段,z为不大于n i的整数,所述第一信号为所述第i信号集合中的任意一个信号。
进一步地,作为示例而非限定,该P个频段中,承载有该第i信号集合中的信号的频段个数总和也不大于n i,换句话说,在波束训练时,该第i信号集合中所有的信号一起占用的频段总个数小于或等于n i。在波束训练时,针对每一个信号,传输有该信号的频段个数小于或等于该信号对应的能力值。
具体地,上述P和/或z的具体取值可以是网络设备根据网络设备的能力和/或终端设备的测量需求等因素确定的,本申请实施例并不限于此。
可选地,该P个频段小于或等于N。也就是说,P的取值小于或等于一个信号对应的最大能力值N。
可选地,本申请实施例中P也可以大于N,例如,P的最大取值为n 1+n 2+…+n m
因此,本申请实施例中通过终端设备向网络设备上报能力指示信息,进而网络设备可 以根据终端设备的能力同时在多个频段进行波束训练,进而本申请实施例能够提高波束训练的效率。
应理解,本申请实施例中的波束训练可以包括下行传输的波束训练,例如,包括网络设备的下行发射波束和/或终端设备的下行接收波束的训练。可选地,本申请实施例的波束训练也可以包括上行传输的波束训练,例如,包括网络设备的上行接收波束和/或终端设备的上行发射波束的训练,本申请实施例并不限于此。
例如,针对网络设备的发射波束训练而言,在实际波束训练中,可以包括但不限于以下过程:终端设备可以是先测量网络设备通过至少一个频段发送的信号,在计算寻找网络设备的对应各个频段的较佳发射波束,最后将各个频段的较佳发射波束的信息反馈给网络设备。
在本申请实施例中,同一个CC中的至少一个频段,例如,L个频段或P个频段可以同时进行波束训练,终端设备针对该多个频段中的每个频段(例如BWP)独立测量计算L1-RSRP,也就是说,本申请实施例中,终端设备是基于每个BWP进行L1-RSRP测量计算的。在进行下行发射波束训练(即downlink spatial domain transmission filter)时,终端设备可以反馈每个BWP的波束训练信号索引(例如CRI)和/或L1-RSRP供网络设备选择一个或多个BWP的最佳发射波束。在进行下行接收波束(即downlink spatial domain receive filter)训练时,终端设备可以根据每个BWP的L1-RSRP确定每个BWP上与某个发射波束所对应的最佳接收波束,进一步的,终端设备还可以反馈训练下行接收波束的每个BWP的波束训练信号索引(例如CRI)和/或L1-RSRP。基于下行发射波束训练与/或下行接收波束训练,网络设备可选择至少一个BWP与这每个选择的BWP上的最佳发射波束与最佳接收波束同时进行后续的信道状态信息CSI测量和/或数据传输。
具体地,网络设备和终端设备在该至少一个频段的训练过程可以参考现有的一个频段训练过程,本文不再详述。
应理解,本申请实施例中,在波束训练后,网络设备可以选择较佳的一个或多个频段(例如,BWP)使用训练得到波束与终端设备通信。具体的网络侧可以通过无限资源控制(radio resource control,RRC)信令或下行控制信息(downlink control information,DCI)或介质访问控制控制元素(media access control element,MAC CE)给终端设备配置上述一个或多个BWP,本申请实施例并不限于此。
作为示例而非限定,下面描述在确定出下行通信的一个或多个BWP后,具体的通信过程:网络设备可以通过该一个或多个BWP的波束向终端设备发送参考信号进行信道测量,然后接收终端设备反馈的信道状态信息(channel state information,CSI)和/或通过信道互异性获取的CSI,之后网络设备根据CSI通过该一个或多个BWP发送下行数据。
应理解,本申请提供的通信方法不限于下行传输,也可以适用于上行传输。本申请对于波束训练的信号未特别限定。例如,对于下行数据传输,该参考信号例如可以为信道状态信息参考信号(channel state information reference signal,CSI-RS)和SSB;对于上行数据传输,用于波束训练的信号可以为探测参考信号(sounding reference signal,SRS)等其他信号。应理解,以上列举的用于波束训练的信号仅为示例性说明,而不应对本申请构成任何限定,本申请也并不排除采用其他的信号以实现波束训练的可能。例如,本申请并不排除在现有的协议(例如,LTE协议、NR协议)或未来的协议中定义其他用作上行或下 行波束训练的信号的可能。
上文结合图2描述了终端设备上报自身能力的情况,网络设备根据终端设备的能力确定同时对多个频段进行波束训练的方法。
可替代地,以下结合图4描述本申请实施例的另一种波束训练的方法。如图4所示的方法从网络设备与终端设备交互的角度进行了描述。图4示出了由网络设备指示终端设备同时进行波束训练的频段个数的情况。具体地,如图4所示的方法400包括:
410,网络设备生成第一指示信息。
具体的,所述第一指示信息用于指示所述终端设备能够同时进行波束训练的频段个数M,M为大于或等于1的整数。
应理解,本申请实施例中对于“频段”的定义可以参见上文中图2中的描述,此处不再赘述。
可选地,所述M表示所述终端设备能够同时进行波束训练的最大频段个数;
换句话说,第一指示信息用于指示所述终端设备能够同时进行波束训练的最大频段个数M。
在实际波束训练时,同时训练的频段个数可以小于或等于M。
可替代地,所述M表示所述终端设备进行波束训练时采用的频段个数。
换句话说,第一指示信息用于指示所述终端设备同时进行波束训练的个数M。
在实际波束训练时,终端设备在同时在M个频段上进行波束训练,即网络设备同时在M个频段上发送用于波束训练的信号,以同时对M个频段的波束进行训练。
可选的,在一种实现方式中,该第一指示信息是网络设备根据终端设备上报的能力指示信息生成的。
这种情况下,该方法还包括:
所述终端设备向网络设备发送能力指示信息,所述能力指示信息用于指示所述终端设备能够支持同时最多在N个频段上进行波束训练,N为大于或等于1的整数。
关于能力指示信息的描述可以参见上文图2中的描述,此处不再赘述。
具体而言,网络设备根据终端设备的能力指示信息可以确定终端设备支持同时进行波形训练的频段个数的能力,进而网络设备根据网络设备的能力和/或终端设备的测量需求等因素确定M,生成该第一指示信息。
可替代地,在另一种实现方式中,该第一指示信息是网络设备根据网络状态,例如根据网络设备的能力和/或终端设备的测量需求等因素生成的。
420,网络设备向终端设备发送第一指示信息。
相对应的,终端设备接收该第一指示信息。
430,网络设备和终端设备根据该第一指示信息进行波束训练。
具体而言,当M表示所述终端设备能够同时进行波束训练的最大频段个数时,在430中,网络设备和终端设备同时对M’个频段进行波束训练。具体而言,所述终端设备同时对在M’个频段传输的信号进行L1-RSRP的计算,其中,M’为小于等于M的整数。
具体的,M’的具体取值可以是网络设备根据网络设备的能力和/或终端设备的测量需求等因素确定的,本申请实施例并不限于此。
当M表示所述终端设备进行波束训练时采用的频段个数时,在430中,网络设备和 终端设备同时对M个频段进行波束训练。
因此,本申请实施例,通过网络设备的指示,网络设备可以和终端设备之间可以同时在多个频段进行波束训练,进而本申请实施例能够提高波束训练的效率。
具体的,网络设备和终端设备波束训练过程可以参考现有的一个频段训练过程,本文不再详述。
在波束训练后的具体通信过程可以参见上文中的描述,此处不再赘述。
本领域的技术人员可以清楚理解,本申请中“第一”、“第二”等各种数字编号仅仅是为了描述方便进行地区分,并不作为对本申请实施例的限定。
应理解,上文中图1至图4的例子,仅仅是为了帮助本领域技术人员理解本发明实施例,而非要将本发明实施例限于所例示的具体数值或具体场景。本领域技术人员根据所给出的图1至图4的例子,显然可以进行各种等价的修改或变化,这样的修改或变化也落入本发明实施例的范围内。
应理解,在本申请的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本申请实施例的实施过程构成任何限定。
上文中,结合图2和图4详细描述了本发明实施例的方法,下面结合图5至图10描述本发明实施例的通信装置。
图5为本申请实施例提供的一种通信装置的结构示意图,该通信装置500可包括:
处理单元510和收发单元520。
具体地,处理单元,用于生成能力指示信息,所述能力指示信息用于指示所述通信装置能够支持同时最多在N个频段上进行波束训练,N为大于或等于1的整数;
收发单元,用于发送所述能力指示信息。
可选地,所述处理单元还用于同时在L个频段进行L1-RSRP的计算,L为小于或者等于N的整数。
可选地,所述能力指示信息具体用于指示所述通信装置针对m个信号集合中第i信号集合能够支持同时最多在n i个频段上进行波束训练,i表示信号集合的标号,i遍历取值1、2、…、m,m表示信号集合的个数,n i为大于或等于1的整数,m为大于或等于1的整数,N为n i的最大取值,所述第i信号集合包括至少一个信号,所述通信装置针对所述至少一个信号中的每一信号能够支持的波束训练的频段最大数为所述n i
可选地,所述处理单元还用于对同时在z个频段传输的第一信号进行L1-RSRP的计算,z为不大于n i的整数,所述第一信号为所述第i信号集合中的任意一个信号。
可选地,所述m个信号集合中不同的信号集合包括的信号各不相同,第i信号集合包括信道状态信息参考信号CSI-RS和同步信号/广播信道块SSB中的至少一种信号。
可选地,所述CSI-RS包括非周期性信道状态信息参考信号A-CSI-RS、周期性信道状态信息参考信号P-CSI-RS和半持续性信道状态信息参考信号SP-CSI-RS中的至少一种信号。
可选地,所述能力指示信息包括所述n i的取值。
可选地,m=1,所述能力指示信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述终端设备支持的同时处于激活状态的频段的最大个数x,所述第二指示 信息用于指示所述终端设备所支持的同时用于接收的模拟波束、面板或空域接收滤波器的最大个数y,所述x和y用于确定n 1的取值,x和y均为大于或等于1的整数。
可选地,n 1为x和y中的较小值。
可选地,所述频段为带宽部分BWP或者波束跟踪带宽。
可选地,所述N个频段属于同一载波CC。
可选地,所述CC包括一个正交频分复用OFDM符号所占用的频域宽度。
本申请提供的通信装置500对应上述图3方法实施例中终端设备执行的过程,该通信装置中的各个单元/模块的功能可以参见上文中的描述,此处不再赘述。
因此,本申请实施例中通过终端设备向网络设备上报能力指示信息,进而网络设备可以根据终端设备的能力同时在多个频段进行波束训练,进而本申请实施例能够提高波束训练的效率。
图6为本申请实施例提供的一种通信装置的结构示意图,该通信装置600可包括:
处理单元610和收发单元620。
具体的,收发单元用于接收第一指示信息,所述第一指示信息用于指示所述通信装置能够同时进行波束训练的频段个数M,M为大于或等于1的整数;
处理单元用于根据所述第一指示信息进行波束训练。
可选地,收发单元还用于向网络设备发送能力指示信息,所述能力指示信息用于指示所述通信装置能够支持同时最多在N个频段上进行波束训练,N为大于或等于1的整数,其中,所述第一指示信息是所述网络设备根据所述能力指示信息生成的,M<=N。
可选地,所述M表示所述通信装置同时进行波束训练的最大频段个数;或者,所述M表示所述通信装置进行波束训练时采用的频段个数。
可选地,处理单元用于同时对在M’个频段传输的信号进行层1参考信号接收功率L1-RSRP的计算,M’为小于或等于M的整数。
本申请提供的通信装置600对应上述图4方法实施例中终端设备执行的过程,该通信装置中的各个单元/模块的功能可以参见上文中的描述,此处不再赘述。
因此,本申请实施例,通过网络设备的指示,网络设备可以和终端设备之间可以同时在多个频段进行波束训练,进而本申请实施例能够提高波束训练的效率。
应理解,图5和图6所述的通信装置可以是终端设备,也可以是安装于终端设备中的芯片或集成电路。
以通信装置为终端设备为例,图7为本申请实施例提供的一种终端设备的结构示意图,便于理解和图示方便,图7中,终端设备以手机作为例子。图7仅示出了终端设备的主要部件。如图7所示终端设备700包括处理器、存储器、控制电路、天线以及输入输出装置。处理器主要用于对通信协议以及通信数据进行处理,以及对整个终端设备进行控制,执行软件程序,处理软件程序的数据,例如用于支持终端设备执行上述方法实施例中所描述的动作。存储器主要用于存储软件程序和数据。控制电路主要用于基带信号与射频信号的转换以及对射频信号的处理。控制电路和天线一起也可以叫做收发器,主要用于收发电磁波形式的射频信号。输入输出装置,例如触摸屏、显示屏,键盘等主要用于接收用户输入的数据以及对用户输出数据。
当终端设备开机后,处理器可以读取存储单元中的软件程序,解释并执行软件程序的 指令,处理软件程序的数据。当需要通过无线发送数据时,处理器对待发送的数据进行基带处理后,输出基带信号至射频电路,射频电路将基带信号进行射频处理后将射频信号通过天线以电磁波的形式向外发送。当有数据发送到终端设备时,射频电路通过天线接收到射频信号,将射频信号转换为基带信号,并将基带信号输出至处理器,处理器将基带信号转换为数据并对该数据进行处理。
本领域技术人员可以理解,为了便于说明,图7仅示出了一个存储器和处理器。在实际的终端设备中,可以存在多个处理器和存储器。存储器也可以称为存储介质或者存储设备等,本申请实施例对此不做限制。
作为一种可选的实现方式,处理器可以包括基带处理器和中央处理器,基带处理器主要用于对通信协议以及通信数据进行处理,中央处理器主要用于对整个终端设备进行控制,执行软件程序,处理软件程序的数据。图7中的处理器可以集成基带处理器和中央处理器的功能,本领域技术人员可以理解,基带处理器和中央处理器也可以是各自独立的处理器,通过总线等技术互联。本领域技术人员可以理解,终端设备可以包括多个基带处理器以适应不同的网络制式,终端设备可以包括多个中央处理器以增强其处理能力,终端设备的各个部件可以通过各种总线连接。所述基带处理器也可以表述为基带处理电路或者基带处理芯片。所述中央处理器也可以表述为中央处理电路或者中央处理芯片。对通信协议以及通信数据进行处理的功能可以内置在处理器中,也可以以软件程序的形式存储在存储单元中,由处理器执行软件程序以实现基带处理功能。
在发明实施例中,可以将具有收发功能的天线和控制电路视为终端设备700的收发单元71,例如,用于支持终端设备执行如图5或6中终端设备执行的收发功能,例如,发送能力指示信息和/或接收用于波束训练的信号等。将具有处理功能的处理器视为终端设备700的处理单元72,其与图5中的处理单元510或图6中的处理单元610对应,例如,生成能力指示信息和/或进行波束训练,例如,进行L1-RSRP的计算。如图7所示,终端设备700包括收发单元71和处理单元72。收发单元也可以称为收发器、收发机、收发装置等,该收发单元与图5中的收发单元520或与图6中的收发单元620对应。可选的,可以将收发单元71中用于实现接收功能的器件视为接收单元,将收发单元71中用于实现发送功能的器件视为发送单元,即收发单元71包括接收单元和发送单元,接收单元也可以称为接收机、输入口、接收电路等,发送单元可以称为发射机、发射器或者发射电路等。
处理单元72可用于执行该存储器存储的指令,以控制收发单元71接收信号和/或发送信号,完成上述方法实施例中终端设备的功能。作为一种实现方式,收发单元71的功能可以考虑通过收发电路或者收发的专用芯片实现。
应理解,图7所示的终端设备700能够实现图2或4方法实施例中涉及终端设备的各个过程。终端设备700中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
图8为本申请实施例提供的一种通信装置的结构示意图,该装置800可包括:
处理单元810和收发单元820。
具体的,收发单元,用于接收终端设备发送的能力指示信息,所述能力指示信息用于指示所述终端设备能够支持同时最多在N个频段上进行波束训练,N为大于或等于1的整数;
处理单元,用于根据所述能力指示信息指示所述终端设备进行波束训练。
可选地,所述处理单元具体用于根据所述能力指示信息指示所述终端设备同时在L个频段进行L1-RSRP的计算,L为小于或者等于N的整数。
可选地,所述能力指示信息具体用于指示所述终端设备针对m个信号集合中第i信号集合能够支持同时最多在n i个频段上进行波束训练,i表示信号集合的标号,i遍历取值1、2、…、m,m表示信号集合的个数,n i为大于或等于1的整数,m为大于或等于1的整数,N为n i的最大取值,所述第i信号集合包括至少一个信号,所述终端设备针对所述至少一个信号中的每一信号能够支持的波束训练的频段最大数为所述n i
可选地,所述处理单元具体用于根据所述能力指示信息指示所述终端设备对同时在z个频段传输的第一信号进行L1-RSRP的计算,z为不大于n i的整数,所述第一信号为所述第i信号集合中的任意一个信号。
可选地,所述m个信号集合中不同的信号集合包括的信号各不相同,第i信号集合包括CSI-RS和SSB中的至少一个信号。
可选地,所述CSI-RS包括非周期性信道状态信息参考信号A-CSI-RS、周期性信道状态信息参考信号P-CSI-RS和半持续性信道状态信息参考信号SP-CSI-RS中的至少一种信号。
可选地,所述能力指示信息包括所述n i的取值。
可选地,其特征在于,m=1,所述能力指示信息包括第一指示信息和第二指示信息,所述第一指示信息用于指示所述终端设备支持的同时处于激活状态的频段的最大个数x,所述第二指示信息用于指示所述终端设备所支持的同时用于接收的模拟波束、面板或空域接收滤波器的最大个数y,所述x和y用于确定n1的取值,x和y均为大于或等于1的整数。
可选地,n1为x和y中的较小值。
可选地,所述频段为带宽部分BWP或者波束跟踪带宽。
可选地,所述N个频段属于同一载波CC。
可选地,所述CC包括一个正交频分复用OFDM符号所占用的频域宽度。
本申请提供的通信装置800对应上述图2方法实施例中网络设备执行的过程,该通信装置中的各个单元/模块的功能可以参见上文中的描述,此处不再赘述。
因此,本申请实施例中通过终端设备向网络设备上报能力指示信息,进而网络设备可以根据终端设备的能力同时在多个频段进行波束训练,进而本申请实施例能够提高波束训练的效率。
图9为本申请实施例提供的一种通信装置的结构示意图,该装置900可包括:
处理单元910和收发单元920。
具体的,处理单元用于生成第一指示信息,所述第一指示信息用于指示所述终端设备能够同时进行波束训练的频段个数M,M为大于或等于1的整数;
收发单元用于向终端设备发送所述第一指示信息。
可选地,所述收发单元还用于接收所述终端设备发送的能力指示信息,所述能力指示信息用于指示所述终端设备能够支持同时最多在N个频段上进行波束训练,N为大于或等于1的整数,M<=N
其中,所述处理单元具体用于根据所述能力指示信息生成所述第一指示信息。
可选地,所述M表示所述终端设备同时进行波束训练的最大频段个数;或者,所述M表示所述终端设备进行波束训练时采用的频段个数。
本申请提供的通信装置900对应上述图4方法实施例中网络设备执行的过程,该通信装置中的各个单元/模块的功能可以参见上文中的描述,此处不再赘述。
因此,本申请实施例,通过网络设备的指示,网络设备可以和终端设备之间可以同时在多个频段进行波束训练,进而本申请实施例能够提高波束训练的效率。
应理解,图8或图9所述的通信装置可以是网络设备,也可以是安装于网络设备中的芯片或集成电路。
以通信装置为网络设备为例,图10为本申请实施例提供的一种网络设备的结构示意图,例如可以为基站的结构示意图。如图10所示,该网络设备1000可应用于如图1所示的系统中,执行上述方法实施例中网络设备的功能。
网络设备1000可以包括一个或多个射频单元,如远端射频单元(remote radio unit,RRU)101和一个或多个基带单元(baseband unit,BBU)(也可称为数字单元,digital unit,DU)102。所述RRU101可以称为收发单元101,与图8中的收发单元820或图9中的收发单元920对应,可选地,该收发单元还可以称为收发机、收发电路、或者收发器等等,其可以包括至少一个天线1011和射频单元1012。所述RRU101部分主要用于射频信号的收发以及射频信号与基带信号的转换,例如用于向终端设备发送用于波束训练的信号等。所述BBU102部分主要用于进行基带处理,对基站进行控制等。所述RRU101与BBU102可以是物理上设置在一起,也可以物理上分离设置的,即分布式基站。
所述BBU102为基站的控制中心,也可以称为处理单元102,可以与图8中的处理单元810或图9中的处理单元910对应,主要用于完成基带处理功能,如信道编码,复用,调制,扩频等等。例如所述BBU(处理单元)可以用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,进行波束训练等。
在一个示例中,所述BBU102可以由一个或多个单板构成,多个单板可以共同支持单一接入制式的无线接入网(如LTE网),也可以分别支持不同接入制式的无线接入网(如LTE网,5G网或其他网)。所述BBU102还包括存储器1021和处理器1022。所述存储器1021用以存储必要的指令和数据。所述处理器1022用于控制基站进行必要的动作,例如用于控制基站执行上述方法实施例中关于网络设备的操作流程,例如,进行波束训练等。所述存储器1021和处理器1022可以服务于一个或多个单板。也就是说,可以每个单板上单独设置存储器和处理器。也可以是多个单板共用相同的存储器和处理器。此外每个单板上还可以设置有必要的电路。
应理解,图10所示的网络设备1000能够实现图2或图4方法实施例中涉及网络设备的各个过程。网络设备1000中的各个模块的操作和/或功能,分别为了实现上述方法实施例中的相应流程。具体可参见上述方法实施例中的描述,为避免重复,此处适当省略详述描述。
本申请实施例还提供了一种处理装置,包括处理器和接口;所述处理器,用于执行上述任一方法实施例中的通信的方法。
应理解,上述处理装置可以是一个芯片。例如,该处理装置可以是现场可编程门阵列 (Field-Programmable Gate Array,FPGA),可以是专用集成芯片(Application Specific Integrated Circuit,ASIC),还可以是系统芯片(System on Chip,SoC),还可以是中央处理器(Central Processor Unit,CPU),还可以是网络处理器(Network Processor,NP),还可以是数字信号处理电路(Digital Signal Processor,DSP),还可以是微控制器(Micro Controller Unit,MCU),还可以是可编程控制器(Programmable Logic Device,PLD)或其他集成芯片。
在实现过程中,上述方法的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。结合本申请实施例所公开的方法的步骤可以直接体现为硬件处理器执行完成,或者用处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。为避免重复,这里不再详细描述。
应注意,本发明实施例中的处理器可以是一种集成电路芯片,具有信号的处理能力。在实现过程中,上述方法实施例的各步骤可以通过处理器中的硬件的集成逻辑电路或者软件形式的指令完成。上述的处理器可以是通用处理器、数字信号处理器(digital signal processor,DSP)、专用集成电路(application specific integrated crcuit,ASIC)、现成可编程门阵列(field programmable gate array,FPGA)或者其他可编程逻辑器件、分立门或者晶体管逻辑器件、分立硬件组件。可以实现或者执行本发明实施例中的公开的各方法、步骤及逻辑框图。通用处理器可以是微处理器或者该处理器也可以是任何常规的处理器等。结合本发明实施例所公开的方法的步骤可以直接体现为硬件译码处理器执行完成,或者用译码处理器中的硬件及软件模块组合执行完成。软件模块可以位于随机存储器,闪存、只读存储器,可编程只读存储器或者电可擦写可编程存储器、寄存器等本领域成熟的存储介质中。该存储介质位于存储器,处理器读取存储器中的信息,结合其硬件完成上述方法的步骤。
可以理解,本发明实施例中的存储器可以是易失性存储器或非易失性存储器,或可包括易失性和非易失性存储器两者。其中,非易失性存储器可以是只读存储器(read-only memory,ROM)、可编程只读存储器(programmable ROM,PROM)、可擦除可编程只读存储器(erasable PROM,EPROM)、电可擦除可编程只读存储器(electrically EPROM,EEPROM)或闪存。易失性存储器可以是随机存取存储器(random access memory,RAM),其用作外部高速缓存。通过示例性但不是限制性说明,许多形式的RAM可用,例如静态随机存取存储器(static RAM,SRAM)、动态随机存取存储器(dynamic RAM,DRAM)、同步动态随机存取存储器(synchronous DRAM,SDRAM)、双倍数据速率同步动态随机存取存储器(double data rate SDRAM,DDR SDRAM)、增强型同步动态随机存取存储器(enhanced SDRAM,ESDRAM)、同步连接动态随机存取存储器(synchlink DRAM,SLDRAM)和直接内存总线随机存取存储器(direct rambus RAM,DR RAM)。应注意,本文描述的系统和方法的存储器旨在包括但不限于这些和任意其它适合类型的存储器。
本申请实施例还提供一种通信系统,其包括前述的网络设备和终端设备。
本申请实施例还提供了一种计算机可读介质,其上存储有计算机程序,该计算机程序被计算机执行时实现上述任一方法实施例中的通信的方法。
本申请实施例还提供了一种计算机程序产品,该计算机程序产品被计算机执行时实现上述任一方法实施例中的通信的方法。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令。在计算机上加载和执行所述计算机指令时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(digital subscriber line,DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等数据存储设备。所述可用介质可以是磁性介质(例如,软盘、硬盘、磁带)、光介质(例如,高密度数字视频光盘(digital video disc,DVD))、或者半导体介质(例如,固态硬盘(solid state disk,SSD))等。
应理解,上文中描述了通信系统中下行传输时通信的方法,但本申请并不限于此,可选地,在上行传输时也可以采用上文类似的方案,为避免重复,此处不再赘述。
上述各个装置实施例中网络设备与终端设备和方法实施例中的网络设备或终端设备完全对应,由相应的模块或单元执行相应的步骤,例如发送模块(发射器)方法执行方法实施例中发送的步骤,接收模块(接收器)执行方法实施例中接收的步骤,除发送接收外的其它步骤可以由处理模块(处理器)执行。具体模块的功能可以参考相应的方法实施例。发送模块和接收模块可以组成收发模块,发射器和接收器可以组成收发器,共同实现收发功能;处理器可以为一个或多个。
本申请中,“至少一个”是指一个或者多个,“多个”是指两个或两个以上。“和/或”,描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B的情况,其中A,B可以是单数或者复数。字符“/”一般表示前后关联对象是一种“或”的关系。“以下至少一项(个)”或其类似表达,是指的这些项中的任意组合,包括单项(个)或复数项(个)的任意组合。例如,a,b,或c中的至少一项(个),可以表示:a,b,c,a-b,a-c,b-c,或a-b-c,其中a,b,c可以是单个,也可以是多个。
应理解,说明书通篇中提到的“一个实施例”或“一实施例”意味着与实施例有关的特定特征、结构或特性包括在本发明的至少一个实施例中。因此,在整个说明书各处出现的“在一个实施例中”或“在一实施例中”未必一定指相同的实施例。此外,这些特定的特征、结构或特性可以任意适合的方式结合在一个或多个实施例中。应理解,在本发明的各种实施例中,上述各过程的序号的大小并不意味着执行顺序的先后,各过程的执行顺序应以其功能和内在逻辑确定,而不应对本发明实施例的实施过程构成任何限定。
在本说明书中使用的术语“部件”、“模块”、“系统”等用于表示计算机相关的实体、硬件、固件、硬件和软件的组合、软件、或执行中的软件。例如,部件可以是但不限于,在处理器上运行的进程、处理器、对象、可执行文件、执行线程、程序和/或计算机。 通过图示,在计算设备上运行的应用和计算设备都可以是部件。一个或多个部件可驻留在进程和/或执行线程中,部件可位于一个计算机上和/或分布在2个或更多个计算机之间。此外,这些部件可从在上面存储有各种数据结构的各种计算机可读介质执行。部件可例如根据具有一个或多个数据分组(例如来自与本地系统、分布式系统和/或网络间的另一部件交互的二个部件的数据,例如通过信号与其它系统交互的互联网)的信号通过本地和/或远程进程来通信。
还应理解,本文中涉及的第一、第二、第三、第四以及各种数字编号仅为描述方便进行的区分,并不用来限制本申请实施例的范围。
应理解,本文中术语“和/或”,仅仅是一种描述关联对象的关联关系,表示可以存在三种关系,例如,A和/或B,可以表示:单独存在A,同时存在A和B,单独存在B这三种情况。
本领域普通技术人员可以意识到,结合本文中所公开的实施例描述的各种说明性逻辑块(illustrative logical block)和步骤(step),能够以电子硬件、或者计算机软件和电子硬件的结合来实现。这些功能究竟以硬件还是软件方式来执行,取决于技术方案的特定应用和设计约束条件。专业技术人员可以对每个特定的应用来使用不同方法来实现所描述的功能,但是这种实现不应认为超出本申请的范围。
所属领域的技术人员可以清楚地了解到,为描述的方便和简洁,上述描述的系统、装置和单元的具体工作过程,可以参考前述方法实施例中的对应过程,在此不再赘述。
在本申请所提供的几个实施例中,应该理解到,所揭露的系统、装置和方法,可以通过其它的方式实现。例如,以上所描述的装置实施例仅仅是示意性的,例如,所述单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本申请各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。
在上述实施例中,可以全部或部分地通过软件、硬件、固件或者其任意组合来实现。当使用软件实现时,可以全部或部分地以计算机程序产品的形式实现。所述计算机程序产品包括一个或多个计算机指令(程序)。在计算机上加载和执行所述计算机程序指令(程序)时,全部或部分地产生按照本申请实施例所述的流程或功能。所述计算机可以是通用计算机、专用计算机、计算机网络、或者其他可编程装置。所述计算机指令可以存储在计算机可读存储介质中,或者从一个计算机可读存储介质向另一个计算机可读存储介质传输,例如,所述计算机指令可以从一个网站站点、计算机、服务器或数据中心通过有线(例如同轴电缆、光纤、数字用户线(DSL))或无线(例如红外、无线、微波等)方式向另一个网站站点、计算机、服务器或数据中心进行传输。所述计算机可读存储介质可以是计算机能够存取的任何可用介质或者是包含一个或多个可用介质集成的服务器、数据中心等 数据存储设备。所述可用介质可以是磁性介质,(例如,软盘、硬盘、磁带)、光介质(例如,DVD)、或者半导体介质(例如固态硬盘(solid state disk,SSD))等。
以上所述,仅为本申请的具体实施方式,但本申请的保护范围并不局限于此,任何熟悉本技术领域的技术人员在本申请揭露的技术范围内,可轻易想到变化或替换,都应涵盖在本申请的保护范围之内。因此,本申请的保护范围应以所述权利要求的保护范围为准。

Claims (48)

  1. 一种用于波束训练的方法,其特征在于,包括:
    终端设备生成能力指示信息,所述能力指示信息用于指示所述终端设备能够支持同时最多在N个频段上进行波束训练,N为大于或等于1的整数;
    所述终端设备发送所述能力指示信息。
  2. 根据权利要求1所述的方法,其特征在于,所述方法还包括:
    所述终端设备同时在L个频段进行层1参考信号接收功率L1-RSRP的计算,L为小于或者等于N的整数。
  3. 根据权利要求1所述的方法,其特征在于,
    所述能力指示信息具体用于指示所述终端设备针对m个信号集合中第i信号集合能够支持同时最多在n i个频段上进行波束训练,i表示信号集合的标号,i遍历取值1、2、…、m,m表示信号集合的个数,n i为大于或等于1的整数,m为大于或等于1的整数,N为n i的最大取值,所述第i信号集合包括至少一个信号,所述终端设备针对所述至少一个信号中的每一信号能够支持的波束训练的频段最大数为所述n i
  4. 根据权利要求3所述的方法,其特征在于,所述方法还包括:
    所述终端设备对同时在z个频段传输的第一信号进行L1-RSRP的计算,z为不大于n i的整数,所述第一信号为所述第i信号集合中的任意一个信号。
  5. 根据权利要求3或4所述的方法,其特征在于,所述m个信号集合中不同的信号集合包括的信号各不相同,第i信号集合包括信道状态信息参考信号CSI-RS和同步信号/广播信道块SSB中的至少一种信号。
  6. 根据权利要求5所述的方法,其特征在于,
    所述CSI-RS包括非周期性信道状态信息参考信号A-CSI-RS、周期性信道状态信息参考信号P-CSI-RS和半持续性信道状态信息参考信号SP-CSI-RS中的至少一种信号。
  7. 根据权利要求1至6中任一项所述的方法,其特征在于,
    所述频段为带宽部分BWP或者波束跟踪带宽。
  8. 一种用于波束训练的方法,其特征在于,包括:
    网络设备接收终端设备发送的能力指示信息,所述能力指示信息用于指示所述终端设备能够支持同时最多在N个频段上进行波束训练,N为大于或等于1的整数;
    网络设备根据所述能力指示信息指示所述终端设备进行波束训练。
  9. 根据权利要求8所述的方法,其特征在于,所述网络设备根据所述能力指示信息指示所述终端设备进行波束训练,包括:
    网络设备根据所述能力指示信息指示所述终端设备同时在L个频段进行层1参考信号接收功率L1-RSRP的计算,L为小于或者等于N的整数。
  10. 根据权利要求8所述的方法,其特征在于,
    所述能力指示信息具体用于指示所述终端设备针对m个信号集合中第i信号集合能够支持同时最多在n i个频段上进行波束训练,i表示信号集合的标号,i遍历取值1、2、…、m,m表示信号集合的个数,n i为大于或等于1的整数,m为大于或等于1的整数,N为 n i的最大取值,所述第i信号集合包括至少一个信号,所述终端设备针对所述至少一个信号中的每一信号能够支持的波束训练的频段最大数为所述n i
  11. 根据权利要求10所述的方法,其特征在于,所述网络设备根据所述能力指示信息指示所述终端设备进行波束训练,包括:
    网络设备根据所述能力指示信息指示所述终端设备对同时在z个频段传输的第一信号进行L1-RSRP的计算,z为不大于n i的整数,所述第一信号为所述第i信号集合中的任意一个信号。
  12. 根据权利要求10或11所述的方法,其特征在于,所述m个信号集合中不同的信号集合包括的信号各不相同,第i信号集合包括信道状态信息参考信号CSI-RS和同步信号/广播信道块SSB中的至少一种信号。
  13. 根据权利要求12所述的方法,其特征在于,
    所述CSI-RS包括非周期性信道状态信息参考信号A-CSI-RS、周期性信道状态信息参考信号P-CSI-RS和半持续性信道状态信息参考信号SP-CSI-RS中的至少一种信号。
  14. 根据权利要求8至13中任一项所述的方法,其特征在于,
    所述频段为带宽部分BWP或者波束跟踪带宽。
  15. 一种通信装置,其特征在于,包括:
    处理单元,用于生成能力指示信息,所述能力指示信息用于指示所述通信装置能够支持同时最多在N个频段上进行波束训练,N为大于或等于1的整数;
    收发单元,用于发送所述能力指示信息。
  16. 根据权利要求15所述的通信装置,其特征在于,
    所述处理单元还用于同时在L个频段进行层1参考信号接收功率L1-RSRP的计算,L为小于或者等于N的整数。
  17. 根据权利要求15所述的通信装置,其特征在于,
    所述能力指示信息具体用于指示所述通信装置针对m个信号集合中第i信号集合能够支持同时最多在n i个频段上进行波束训练,i表示信号集合的标号,i遍历取值1、2、…、m,m表示信号集合的个数,n i为大于或等于1的整数,m为大于或等于1的整数,N为n i的最大取值,所述第i信号集合包括至少一个信号,所述通信装置针对所述至少一个信号中的每一信号能够支持的波束训练的频段最大数为所述n i
  18. 根据权利要求17所述的通信装置,其特征在于,
    所述处理单元还用于对同时在z个频段传输的第一信号进行L1-RSRP的计算,z为不大于n i的整数,所述第一信号为所述第i信号集合中的任意一个信号。
  19. 根据权利要求17或18所述的通信装置,其特征在于,所述m个信号集合中不同的信号集合包括的信号各不相同,第i信号集合包括信道状态信息参考信号CSI-RS和同步信号/广播信道块SSB中的至少一种信号。
  20. 根据权利要求19所述的通信装置,其特征在于,
    所述CSI-RS包括非周期性信道状态信息参考信号A-CSI-RS、周期性信道状态信息参考信号P-CSI-RS和半持续性信道状态信息参考信号SP-CSI-RS中的至少一种信号。
  21. 根据权利要求15至20中任一项所述的通信装置,其特征在于,
    所述频段为带宽部分BWP或者波束跟踪带宽。
  22. 一种通信装置,其特征在于,包括:
    收发单元,用于接收终端设备发送的能力指示信息,所述能力指示信息用于指示所述终端设备能够支持同时最多在N个频段上进行波束训练,N为大于或等于1的整数;
    处理单元,用于根据所述能力指示信息指示所述终端设备进行波束训练。
  23. 根据权利要求22所述的通信装置,其特征在于,
    所述处理单元具体用于根据所述能力指示信息指示所述终端设备同时在L个频段进行层1参考信号接收功率L1-RSRP的计算,L为小于或者等于N的整数。
  24. 根据权利要求22所述的通信装置,其特征在于,
    所述能力指示信息具体用于指示所述终端设备针对m个信号集合中第i信号集合能够支持同时最多在n i个频段上进行波束训练,i表示信号集合的标号,i遍历取值1、2、…、m,m表示信号集合的个数,n i为大于或等于1的整数,m为大于或等于1的整数,N为n i的最大取值,所述第i信号集合包括至少一个信号,所述终端设备针对所述至少一个信号中的每一信号能够支持的波束训练的频段最大数为所述n i
  25. 根据权利要求24所述的通信装置,其特征在于,
    所述处理单元具体用于根据所述能力指示信息指示所述终端设备对同时在z个频段传输的第一信号进行L1-RSRP的计算,z为不大于n i的整数,所述第一信号为所述第i信号集合中的任意一个信号。
  26. 根据权利要求24或25所述的通信装置,其特征在于,所述m个信号集合中不同的信号集合包括的信号各不相同,第i信号集合包括信道状态信息参考信号CSI-RS和同步信号/广播信道块SSB中的至少一种信号。
  27. 根据权利要求26所述的通信装置,其特征在于,
    所述CSI-RS包括非周期性信道状态信息参考信号A-CSI-RS、周期性信道状态信息参考信号P-CSI-RS和半持续性信道状态信息参考信号SP-CSI-RS中的至少一种信号。
  28. 根据权利要求22至27中任一项所述的通信装置,其特征在于,
    所述频段为带宽部分BWP或者波束跟踪带宽。
  29. 一种通信装置,其特征在于,包括:
    处理器,用于生成能力指示信息,所述能力指示信息用于指示所述通信装置能够支持同时最多在N个频段上进行波束训练,N为大于或等于1的整数;
    收发器,用于发送所述能力指示信息。
  30. 根据权利要求29所述的通信装置,其特征在于,
    所述处理器还用于同时在L个频段进行层1参考信号接收功率L1-RSRP的计算,L为小于或者等于N的整数。
  31. 根据权利要求29所述的通信装置,其特征在于,
    所述能力指示信息具体用于指示所述通信装置针对m个信号集合中第i信号集合能够支持同时最多在n i个频段上进行波束训练,i表示信号集合的标号,i遍历取值1、2、…、m,m表示信号集合的个数,n i为大于或等于1的整数,m为大于或等于1的整数,N为n i的最大取值,所述第i信号集合包括至少一个信号,所述通信装置针对所述至少一个信号中的每一信号能够支持的波束训练的频段最大数为所述n i
  32. 根据权利要求31所述的通信装置,其特征在于,
    所述处理器还用于对同时在z个频段传输的第一信号进行L1-RSRP的计算,z为不大于n i的整数,所述第一信号为所述第i信号集合中的任意一个信号。
  33. 根据权利要求31或32所述的通信装置,其特征在于,所述m个信号集合中不同的信号集合包括的信号各不相同,第i信号集合包括信道状态信息参考信号CSI-RS和同步信号/广播信道块SSB中的至少一种信号。
  34. 根据权利要求33所述的通信装置,其特征在于,
    所述CSI-RS包括非周期性信道状态信息参考信号A-CSI-RS、周期性信道状态信息参考信号P-CSI-RS和半持续性信道状态信息参考信号SP-CSI-RS中的至少一种信号。
  35. 根据权利要求29至34中任一项所述的通信装置,其特征在于,
    所述频段为带宽部分BWP或者波束跟踪带宽。
  36. 一种通信装置,其特征在于,包括:
    收发器,用于接收终端设备发送的能力指示信息,所述能力指示信息用于指示所述终端设备能够支持同时最多在N个频段上进行波束训练,N为大于或等于1的整数;
    处理器,用于根据所述能力指示信息指示所述终端设备进行波束训练。
  37. 根据权利要求36所述的通信装置,其特征在于,
    所述处理器具体用于根据所述能力指示信息指示所述终端设备同时在L个频段进行层1参考信号接收功率L1-RSRP的计算,L为小于或者等于N的整数。
  38. 根据权利要求36所述的通信装置,其特征在于,
    所述能力指示信息具体用于指示所述终端设备针对m个信号集合中第i信号集合能够支持同时最多在n i个频段上进行波束训练,i表示信号集合的标号,i遍历取值1、2、…、m,m表示信号集合的个数,n i为大于或等于1的整数,m为大于或等于1的整数,N为n i的最大取值,所述第i信号集合包括至少一个信号,所述终端设备针对所述至少一个信号中的每一信号能够支持的波束训练的频段最大数为所述n i
  39. 根据权利要求38所述的通信装置,其特征在于,
    所述处理器具体用于根据所述能力指示信息指示所述终端设备对同时在z个频段传输的第一信号进行L1-RSRP的计算,z为不大于n i的整数,所述第一信号为所述第i信号集合中的任意一个信号。
  40. 根据权利要求38或39所述的通信装置,其特征在于,所述m个信号集合中不同的信号集合包括的信号各不相同,第i信号集合包括信道状态信息参考信号CSI-RS和同步信号/广播信道块SSB中的至少一种信号。
  41. 根据权利要求40所述的通信装置,其特征在于,
    所述CSI-RS包括非周期性信道状态信息参考信号A-CSI-RS、周期性信道状态信息参考信号P-CSI-RS和半持续性信道状态信息参考信号SP-CSI-RS中的至少一种信号。
  42. 根据权利要求36至41中任一项所述的通信装置,其特征在于,
    所述频段为带宽部分BWP或者波束跟踪带宽。
  43. 一种处理装置,其特征在于包括:处理器,所述处理器用于执行存储在存储器中的计算机程序,使得所述装置实现如权利要求1至14任一项所述的方法。
  44. 一种处理装置,其特征在于包括:处理器和存储器,所述存储器上存储有计算机程序,所述处理器用于执行所述计算机程序,使得所述装置实现如权利要求1至14任一 项所述的方法。
  45. 根据权利要求44所述的处理装置,其特征在于,所述存储于与所述处理器独立设置,或
    所述存储器集成在所述处理器中。
  46. 一种计算机可读存储介质,其特征在于,包括计算机程序,当所述计算机程序在计算机上运行时,使得所述计算机执行如权利要求1至14中任一项所述的方法。
  47. 一种计算机程序产品,其特征在于,包括计算机程序指令,当所述计算机程序指令在计算机上运行时,使得所述计算机执行如权利要求1至14中任一项所述的方法。
  48. 一种通信装置,其特征在于,所述装置用于实现如权利要求1至14中任一项所述的方法。
PCT/CN2019/089996 2018-06-08 2019-06-04 用于波束训练的方法和通信装置 WO2019233418A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP19815472.6A EP3813271A4 (en) 2018-06-08 2019-06-04 RADIATION TRAINING METHOD AND COMMUNICATION DEVICE
US17/110,764 US11652523B2 (en) 2018-06-08 2020-12-03 Beam training method and communications apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810585522.0A CN110581725B (zh) 2018-06-08 2018-06-08 用于波束训练的方法和通信装置
CN201810585522.0 2018-06-08

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/110,764 Continuation US11652523B2 (en) 2018-06-08 2020-12-03 Beam training method and communications apparatus

Publications (1)

Publication Number Publication Date
WO2019233418A1 true WO2019233418A1 (zh) 2019-12-12

Family

ID=68770038

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/089996 WO2019233418A1 (zh) 2018-06-08 2019-06-04 用于波束训练的方法和通信装置

Country Status (4)

Country Link
US (1) US11652523B2 (zh)
EP (1) EP3813271A4 (zh)
CN (1) CN110581725B (zh)
WO (1) WO2019233418A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210235299A1 (en) * 2020-01-29 2021-07-29 Qualcomm Incorporated Indication of single or dual receive beams in group-based report
WO2022046291A1 (en) * 2020-08-25 2022-03-03 Qualcomm Incorporated Beam correlation across frequency bands

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111106864B (zh) * 2018-11-16 2023-02-24 维沃移动通信有限公司 上行波束训练方法、终端设备和网络侧设备
WO2021179192A1 (en) * 2020-03-11 2021-09-16 Qualcomm Incorporated Priority handling for precoder calculations
US11916609B2 (en) * 2020-03-16 2024-02-27 Qualcomm Incorporated Techniques for indicating a user equipment capability for Layer 1 signal to interference plus noise ratio measurement
US20220311564A1 (en) * 2020-05-15 2022-09-29 Apple Inc. User equipment capability signaling enhancement
CN114079940B (zh) * 2020-08-14 2024-02-13 维沃移动通信有限公司 候选波束的测量方法、装置及终端
WO2023130884A1 (zh) * 2022-01-10 2023-07-13 华为技术有限公司 侧行链路中波束训练的方法和装置
CN117155433A (zh) * 2022-05-18 2023-12-01 华为技术有限公司 通信方法、装置及系统

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733484A (zh) * 2016-08-12 2018-02-23 电信科学技术研究院 波束赋形的波束训练方法及装置
CN107872844A (zh) * 2016-09-26 2018-04-03 中兴通讯股份有限公司 一种无线传输方法及装置
WO2018064399A1 (en) * 2016-09-28 2018-04-05 Ntt Docomo, Inc. Wireless communication method
CN107888240A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 一种波束扫描和切换的方法及装置
CN109150254A (zh) * 2017-06-16 2019-01-04 维沃移动通信有限公司 波束训练的配置参数的获取方法及装置

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4356756B2 (ja) * 2006-04-27 2009-11-04 ソニー株式会社 無線通信システム、並びに無線通信装置及び無線通信方法
US9137698B2 (en) * 2012-02-24 2015-09-15 Samsung Electronics Co., Ltd. Beam management for wireless communication
KR102075766B1 (ko) * 2016-07-15 2020-02-10 엘지전자 주식회사 무선랜 시스템에서의 데이터 송수신 방법 및 이를 위한 장치
KR102462764B1 (ko) * 2016-09-29 2022-11-03 삼성전자 주식회사 4g와 5g 공존 시스템에서 통신 방법 및 그 장치
WO2018081926A1 (zh) * 2016-11-01 2018-05-11 华为技术有限公司 训练波束的方法、发起设备和响应设备
CN108156662B (zh) * 2016-12-02 2020-09-29 华为技术有限公司 通信方法、基站和终端设备
US10735157B2 (en) * 2017-02-03 2020-08-04 Futurewei Technologies, Inc. UE-assisted SRS resource allocation
WO2019047953A1 (en) * 2017-09-08 2019-03-14 Intel IP Corporation GROUP-BASED BEAM REPORT AND CHANNEL STATE INFORMATION REFERENCE SIGNAL CONFIGURATION IN NEW RADIO SYSTEMS

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107733484A (zh) * 2016-08-12 2018-02-23 电信科学技术研究院 波束赋形的波束训练方法及装置
CN107872844A (zh) * 2016-09-26 2018-04-03 中兴通讯股份有限公司 一种无线传输方法及装置
WO2018064399A1 (en) * 2016-09-28 2018-04-05 Ntt Docomo, Inc. Wireless communication method
CN107888240A (zh) * 2016-09-30 2018-04-06 中兴通讯股份有限公司 一种波束扫描和切换的方法及装置
CN109150254A (zh) * 2017-06-16 2019-01-04 维沃移动通信有限公司 波束训练的配置参数的获取方法及装置

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
VIVO: "Discussion on beam management, beam reporting and beam indication", 3GPP TSG RAN WG1 MEETING #90BIS R1-1717472, vol. RAN WG1, 3 October 2017 (2017-10-03), Prague, CZ, pages 1 - 12, XP051352669 *
ZTE ET AL.: "Discussion on beam management", 3GPP TSG RAN WG1 MEETING #91 R1-1719533, vol. RAN WG1, 18 November 2017 (2017-11-18), Reno, USA, pages 1 - 11, XP051369347 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20210235299A1 (en) * 2020-01-29 2021-07-29 Qualcomm Incorporated Indication of single or dual receive beams in group-based report
WO2022046291A1 (en) * 2020-08-25 2022-03-03 Qualcomm Incorporated Beam correlation across frequency bands
US11729789B2 (en) 2020-08-25 2023-08-15 Qualcomm Incorporated Beam correlation across frequency bands

Also Published As

Publication number Publication date
EP3813271A4 (en) 2021-07-21
US11652523B2 (en) 2023-05-16
CN110581725B (zh) 2023-08-22
US20210091834A1 (en) 2021-03-25
CN110581725A (zh) 2019-12-17
EP3813271A1 (en) 2021-04-28

Similar Documents

Publication Publication Date Title
WO2019233418A1 (zh) 用于波束训练的方法和通信装置
CN110809321B (zh) 接收和发送信号的方法以及通信装置
WO2019096248A1 (zh) 发送和接收信号的方法、装置和系统
CN110475279B (zh) 通信的方法和通信装置
EP3703454B1 (en) Communication method, network device, and terminal device
CN110381588B (zh) 通信的方法和通信装置
US11722968B2 (en) Communication method and communications apparatus
CN112087291B (zh) 更新传输配置指示tci信息的方法与通信装置
CN113872647B (zh) 探测参考信号srs传输方法及通信装置
US11381288B2 (en) Communication method, network device, and terminal device
WO2018202168A1 (zh) 信息传输方法及装置
WO2023109647A1 (zh) 信道状态信息的反馈方法及装置
US20230078895A1 (en) Uplink reference signal sending method, uplink reference signal receiving method, and communication apparatus
WO2019137299A1 (zh) 通信的方法和通信设备
WO2022062838A1 (zh) 资源配置方法及装置
WO2022047634A1 (zh) 参考信号发送方法及通信装置
CN115226210A (zh) 一种通信方法及通信装置
CN112399575A (zh) 通信方法及装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19815472

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019815472

Country of ref document: EP

Effective date: 20201209