WO2020149705A1 - 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지 - Google Patents

리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지 Download PDF

Info

Publication number
WO2020149705A1
WO2020149705A1 PCT/KR2020/000879 KR2020000879W WO2020149705A1 WO 2020149705 A1 WO2020149705 A1 WO 2020149705A1 KR 2020000879 W KR2020000879 W KR 2020000879W WO 2020149705 A1 WO2020149705 A1 WO 2020149705A1
Authority
WO
WIPO (PCT)
Prior art keywords
formula
secondary battery
lithium secondary
electrolyte
group
Prior art date
Application number
PCT/KR2020/000879
Other languages
English (en)
French (fr)
Inventor
오정우
이철행
김현승
김형태
Original Assignee
주식회사 엘지화학
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from KR1020200005939A external-priority patent/KR102455341B1/ko
Application filed by 주식회사 엘지화학 filed Critical 주식회사 엘지화학
Priority to ES20741559T priority Critical patent/ES2941245T3/es
Priority to US17/416,218 priority patent/US20220077498A1/en
Priority to EP20741559.7A priority patent/EP3883037B1/en
Priority to CN202080006991.8A priority patent/CN113711413B/zh
Priority to PL20741559.7T priority patent/PL3883037T3/pl
Priority to JP2021540012A priority patent/JP7226891B2/ja
Publication of WO2020149705A1 publication Critical patent/WO2020149705A1/ko

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0567Liquid materials characterised by the additives
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/42Methods or arrangements for servicing or maintenance of secondary cells or secondary half-cells
    • H01M10/4235Safety or regulating additives or arrangements in electrodes, separators or electrolyte
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/056Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes
    • H01M10/0564Accumulators with non-aqueous electrolyte characterised by the materials used as electrolytes, e.g. mixed inorganic/organic electrolytes the electrolyte being constituted of organic materials only
    • H01M10/0566Liquid materials
    • H01M10/0568Liquid materials characterised by the solutes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M2300/00Electrolytes
    • H01M2300/0017Non-aqueous electrolytes
    • H01M2300/0025Organic electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present invention relates to an electrolyte for a lithium secondary battery and a lithium secondary battery comprising the same, and more particularly, to an electrolyte for a lithium secondary battery with improved battery performance at high voltage or high temperature.
  • a secondary battery-based technique is the most suitable technique for various purposes.
  • a secondary battery it is possible to be miniaturized to be applicable to a personal IT device, etc., and it can be applied to an electric vehicle, a power storage device, etc.
  • lithium ion batteries which are high energy density battery systems, are in the spotlight and are currently applied to various devices.
  • a transition metal oxide material containing lithium is used as a cathode material, and a carbonaceous material such as graphite and an alloy system such as silicon are used as a cathode material. It is implemented as a system in which lithium metal is not directly used inside a battery, such as applying a material as a negative electrode.
  • lithium-ion battery In the case of such a lithium-ion battery, it is largely composed of a positive electrode composed of a transition metal oxide containing lithium, a negative electrode capable of storing lithium, an electrolyte that is a medium for transferring lithium ions, and a separator.
  • a positive electrode composed of a transition metal oxide containing lithium
  • a negative electrode capable of storing lithium
  • an electrolyte that is a medium for transferring lithium ions
  • separator Known as a component having a great influence on stability and safety, many studies have been conducted on this.
  • an electrolyte for a lithium ion battery it is composed of a lithium salt, an organic solvent dissolving it, and a functional additive, and it is important to properly select these components in order to improve the electrochemical properties of the battery.
  • LiPF 6 , LiBF 4 , LiFSI (lithium fluorosulfonyl imide, LiN(SO 2 F) 2 ), LiTFSI (lithium (bis)trifluoromethanesulfonyl imide, LiN(SO 2 CF 3 ) 2 ) or LiBOB ( Lithium bis(oxalate) borate, LiB(C 2 O 4 ) 2 ), etc. are used, and in the case of an organic solvent, a carbonate-based organic solvent, an ester-based organic solvent, or an ether-based organic solvent is used.
  • a graphite-based negative electrode is most often used.
  • the electrochemical of the electrolyte used in the lithium ion battery has an operating potential of 0.3 V (vs. Li/Li+) or less. Lower than the stable window, the currently used electrolyte is reduced and decomposed.
  • SEI solid electrolyte interphase
  • the present invention is to solve the above problems, and suppresses side reactions caused by by-products generated when lithium salt is decomposed at high voltage or high temperature, and includes an electrolyte for lithium secondary battery with improved high temperature characteristics of lithium secondary battery and the same It is an invention related to a lithium secondary battery.
  • the present invention is an additive comprising a compound represented by the formula (1); Oligomer comprising a unit represented by the following formula (2), including an acrylate group at the end; Lithium salt; And an organic solvent; provides an electrolyte for a lithium secondary battery comprising a.
  • R 1 is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a halogen element substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms, 1 to 3 carbon atoms alkyl group is substituted or It is selected from the group consisting of unsubstituted phenyl groups and substituted or unsubstituted amine groups having 1 to 5 carbon atoms.
  • Ra, Rb, Rc and Rd are each independently a fluorine element or an alkyl group having 1 to 3 carbon atoms unsubstituted or substituted with a fluorine element, and p is an integer of 1 to 50.
  • the present invention is a positive electrode; cathode; And it provides a lithium secondary battery comprising the electrolyte for a lithium secondary battery of the present invention.
  • the electrolyte for a lithium secondary battery according to the present invention contains specific oligomers and additives, so it has excellent high temperature performance and can minimize battery performance degradation even when the voltage is increased.
  • the weight average molecular weight may mean a conversion value for standard polystyrene measured by Gel Permeation Chromatography (GPC), and unless otherwise specified, molecular weight means weight average molecular weight Can.
  • GPC Gel Permeation Chromatography
  • a GPC condition is measured using Agilent's 1200 series, and the column used may be a Agilent's PL mixed B column, and THF may be used as a solvent.
  • the electrolyte for a lithium secondary battery according to the present invention includes an additive comprising a compound represented by Formula 1; Oligomer comprising a unit represented by the formula (2), comprising an acrylate group at the terminal; Lithium salt; And an organic solvent.
  • the additive includes a compound represented by the following Chemical Formula 1, and other additives may be further added depending on the type of electrode used or battery use.
  • R 1 is a substituted or unsubstituted alkyl group having 1 to 5 carbon atoms, a halogen element substituted or unsubstituted alkoxy group having 1 to 5 carbon atoms, 1 to 3 carbon atoms alkyl group is substituted or Unsubstituted phenyl group and an alkyl group having 1 to 5 carbon atoms may be selected from the group consisting of substituted or unsubstituted amine groups.
  • transition metal is eluted from the positive electrode, and an unstable SEI (Solid Electrolyte Interphase) film is formed on the negative electrode surface to further decompose the electrolyte during the battery repeating charging and discharging. There is a problem that this cannot be suppressed.
  • SEI Solid Electrolyte Interphase
  • a protective layer (passive layer) further on the positive / negative interface, to prevent the electrolyte decomposition reaction and SEI membrane decomposition compound represented by formula (1) was added to the electrolyte and used.
  • the compound represented by Chemical Formula 1 may form a SEI (Solid Electrolyte Interphase) film on the positive electrode interface to prevent transition metal ions eluting from the positive electrode active material from adhering to the negative electrode, thereby improving deterioration of battery performance.
  • a protective layer (passive layer) on the anode and cathode interfaces, it is possible to suppress the further decomposition reaction of the electrolyte.
  • the compound represented by Formula 1 may be at least one selected from the group consisting of compounds represented by the following Formulas 1A to 1E.
  • n is an integer from 0 to 4.
  • m is an integer of 0 to 4
  • X, X', and X" are each independently one of hydrogen or a halogen element, and at least one is a halogen element.
  • k is an integer of 0 to 4
  • Y, Y', and Y" are each independently one of hydrogen or a halogen element, and at least one is a halogen element.
  • s is an integer from 0 to 2.
  • R 2 and R 3 are each independently hydrogen or an alkyl group having 1 to 5 carbon atoms.
  • the compound represented by Formula 1A may be a compound represented by the following Formulas 1A-1 to 1A-3.
  • the compound represented by Formula 1B may be a compound represented by Formula 1B-1 below.
  • the compound represented by Formula 1C may be at least one selected from the group consisting of compounds represented by the following Formulas 1C-1 to 1C-5.
  • the compound represented by Formula 1D may be a compound represented by Formula 1D-1 below.
  • the compound represented by Formula 1E may be a compound represented by Formula 1E-1 below.
  • the compound represented by the formula (1) is 0.1 parts by weight to 5 parts by weight, preferably 0.1 parts by weight to 3 parts by weight, more preferably 0.1 parts by weight to 1 part by weight based on 100 parts by weight of the electrolyte for the lithium secondary battery Can be included.
  • the compound represented by Chemical Formula 1 is included within the above range, lithium salt by-products such as PF 5 can be effectively removed while controlling the increase in internal resistance.
  • the additives according to the present invention in addition to the components described above, depending on the use of the battery, the composition in the battery, etc., in order to impart the effect of reducing the resistance in the battery, other additives, etc. capable of implementing these properties known in the art are selectively It may contain more.
  • the other additives include, for example, vinylene carbonate (VC), vinyl ethylene carbonate (VEC), propane sultone (PS), succinonitrile (succinonitrile, SN), Adiponitrile (AdN), ethylene sulfate (ESa), Propene Sultone (PRS), FluoroEthylene carbonate (FEC), Lithium difluorophosphate (LiPO 2 F 2 ), Lithium difluoro(oxalate)borate, LiODFB, Lithium bis-(oxalato)borate, LiBOB, 3-trimethoxysila
  • Other additives such as nil-propyl-N-aniline (3-trimethoxysilanyl-propyl-N-aniline), TMSPa), and tris(trimethylsilyl) phosphate ((Tris(trimethylsilyl) Phosphite), TMSPi) can be used.
  • Ra, Rb, Rc and Rd are each independently a fluorine element or an alkyl group having 1 to 3 carbon atoms unsubstituted or substituted with a fluorine element, and p is an integer of 1 to 50.
  • the oligomer containing the unit represented by the formula (2) and containing an acrylate group at the terminal contains an ethylene group substituted with a fluorine element having low reactivity with lithium ions, a side reaction of lithium ions and a lithium salt (salt) It is possible to control the decomposition reaction and the like, and it is possible to suppress side reactions that occur when a high concentration lithium salt is used.
  • the oligomer contains a fluorine element having excellent flame retardancy, when an electrolyte containing the oligomer is used, heat generation and ignition of the lithium secondary battery can be suppressed, thereby improving high-temperature safety.
  • the oligomer includes a unit containing a hydrophobic fluorine element, and at the same time, since it contains a hydrophilic acrylate group at the end, it acts as a surfactant to lower the surface resistance with the electrode interface, and the lithium secondary battery.
  • the wetting effect of can be improved.
  • the oligomer may be an oligomer represented by the following formula 2A.
  • R a ', R b ', R c 'and R d ' are each independently a fluorine element or an alkyl group having 1 to 3 carbon atoms unsubstituted or substituted with a fluorine element,
  • R e is an aliphatic hydrocarbon group or an aromatic hydrocarbon group
  • R f is an alkylene group having 1 to 5 carbon atoms unsubstituted or substituted with a fluorine element
  • R' is hydrogen or an alkyl group having 1 to 3 carbon atoms
  • O is an integer from 1 to 3
  • P is an integer from 1 to 50
  • Q is an integer from 1 to 15.
  • the p may be an integer of preferably 1 to 45, more preferably an integer of 1 to 40.
  • the aliphatic hydrocarbon group includes an alicyclic hydrocarbon group or a linear hydrocarbon group.
  • the alicyclic hydrocarbon group is a substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms; A substituted or unsubstituted cycloalkylene group having 4 to 20 carbon atoms containing an isocyanate group (NCO); A substituted or unsubstituted cycloalkenylene group having 4 to 20 carbon atoms; And it may include at least one selected from the group consisting of a substituted or unsubstituted heterocycloalkylene group having 2 to 20 carbon atoms.
  • the linear hydrocarbon group is a substituted or unsubstituted alkylene group having 1 to 20 carbon atoms; A substituted or unsubstituted alkylene group having 1 to 20 carbon atoms containing an isocyanate group (NCO); A substituted or unsubstituted alkoxyl group having 1 to 20 carbon atoms; A substituted or unsubstituted alkenylene group having 2 to 20 carbon atoms; And substituted or unsubstituted alkynylene groups having 2 to 20 carbon atoms.
  • NCO isocyanate group
  • the aromatic hydrocarbon group is a substituted or unsubstituted arylene group having 6 to 20 carbon atoms; Or it may include a substituted or unsubstituted heteroarylene group having 2 to 20 carbon atoms.
  • the oligomer represented by Chemical Formula 2A may be an oligomer represented by Chemical Formula 2A-1.
  • p' is an integer from 1 to 50
  • q is an integer from 1 to 15.
  • the p' may be preferably an integer from 1 to 45, more preferably an integer from 1 to 40.
  • the oligomer may be an oligomer represented by Chemical Formula 2B.
  • R a ", R b “, R c “and R d “ are each independently a fluorine element or an alkyl group having 1 to 3 carbon atoms unsubstituted or substituted with a fluorine element, and R e 'is aliphatic A hydrocarbon group or an aromatic hydrocarbon group, wherein R f 'is an alkylene group having 1 to 5 carbon atoms unsubstituted or substituted with a fluorine element, r is an integer of 1 to 2, and r'is an integer of 1 to 3, P'is an integer from 1 to 50, and q'is an integer from 1 to 15.
  • the p is preferably an integer from 1 to 45, more preferably an integer from 1 to 40.
  • the oligomer represented by Chemical Formula 2B may be an oligomer represented by Chemical Formula 2B-1.
  • p is an integer from 1 to 50, and q is an integer from 1 to 15. At this time, the p is preferably an integer of 1 to 45, more preferably an integer of 1 to 40.
  • the weight average molecular weight (MW) of the oligomer may be adjusted by the number of repeat units, and may be about 500 to 200,000, specifically 1,000 to 150,000, and more specifically 2,000 to 100,000.
  • the weight average molecular weight of the oligomer is within the above range, the affinity with the organic solvent is high and dispersion can be performed well, and the surface tension can be lowered to a certain level or less to improve the wettability of the electrolyte and suppress the decomposition reaction of the lithium salt. And, it is possible to prevent the lithium ions from causing side reactions.
  • the oligomer may be included in an amount of 0.1 to 5 parts by weight, preferably 0.1 to 3 parts by weight, and more preferably 0.1 to 1 part by weight based on 100 parts by weight of the lithium secondary electrolyte.
  • the oligomer is included within the above range, the mobility and ionic conductivity of lithium ions are maintained at a certain level or more to act as a surfactant while suppressing side reactions to minimize interfacial resistance in the battery.
  • the lithium salt may be included in the lithium secondary battery electrolyte in a molar concentration of 1M to 3M, preferably 1M to 2M, and more preferably 1M to 1.5M.
  • lithium ions are sufficiently supplied to improve lithium ion yield (Li+ transference number) and dissociation of lithium ions, thereby improving the output characteristics of the battery.
  • the lithium salt is LiPF 6 , LiBF 4 , LiSbF 6 , LiAsF 6 , LiClO 4 , LiN(C 2 F 5 SO 2 ) 2 , LiN(CF 3 SO 2 ) 2 , CF 3 SO 3 Li, LiC(CF 3 SO 2 ) 3 , LiC 4 BO 8 , LiTFSI, LiFSI and may include at least one compound selected from the group consisting of LiClO 4 , preferably LiPF 6 and/or LiBF 4 , but may include It is not limited.
  • LiPF 6 and/or LiBF 4 are generally used because of their high ionic conductivity.
  • the organic solvent is decomposed at a high temperature, the decomposition products of the organic solvent and PF 6 ⁇ , which are anions of the lithium salt, react, and Lewis acid by-products such as PF 5 may be generated.
  • Lewis acid by-product it promotes the spontaneous decomposition reaction of the organic solvent, and causes a side reaction that collapses the SEI film formed on the electrode interface.
  • the side reaction is not suppressed, the resistance in the battery rapidly rises, and the capacity characteristics of the battery may decrease.
  • LiPF 6 when LiPF 6 is used as a lithium salt, PF 6 ⁇ , an anion, loses electrons at the negative electrode side and PF 5 may be generated. At this time, the following chemical reaction may be carried out in a chain.
  • lithium secondary to the oligomer containing the compound represented by Formula 1 described above and the unit represented by Formula 2 and containing an acrylate group at the terminal Used in addition to the battery electrolyte.
  • the organic solvent may include a cyclic carbonate-based organic solvent, a linear carbonate-based organic solvent, or a mixed organic solvent thereof.
  • the cyclic carbonate-based organic solvent is a high-viscosity organic solvent, and has a high dielectric constant and is an organic solvent capable of dissociating lithium salts in the electrolyte well.
  • ethylene carbonate (EC), propylene carbonate (PC), 1,2-butylene It may include at least one organic solvent selected from the group consisting of carbonate, 2,3-butylene carbonate, 1,2-pentylene carbonate, 2,3-pentylene carbonate, and vinylene carbonate, and among them, ethylene carbonate It may include.
  • the linear carbonate-based organic solvent is an organic solvent having a low viscosity and a low dielectric constant, and representative examples thereof include dimethyl carbonate (DMC), diethyl carbonate (DEC), dipropyl carbonate, and ethylmethyl carbonate ( EMC), methylpropyl carbonate and at least one organic solvent selected from the group consisting of ethylpropyl carbonate may be used, and specifically, may include ethylmethyl carbonate (EMC).
  • DMC dimethyl carbonate
  • DEC diethyl carbonate
  • EMC ethylmethyl carbonate
  • EMC ethylmethyl carbonate
  • the organic solvent may further include a linear ester-based organic solvent and/or a cyclic ester-based organic solvent in addition to the cyclic carbonate-based organic solvent and/or linear carbonate-based organic solvent in order to prepare an electrolyte having high ionic conductivity.
  • linear ester-based organic solvent examples include at least one organic solvent selected from the group consisting of methyl acetate, ethyl acetate, propyl acetate, methyl propionate, ethyl propionate, propyl propionate and butyl propionate. Can be lifted.
  • the cyclic ester-based organic solvent includes at least one organic solvent selected from the group consisting of ⁇ -butyrolactone, ⁇ -valerolactone, ⁇ -caprolactone, ⁇ -valerolactone, and ⁇ -caprolactone.
  • the organic solvent may be used by adding, without limitation, an organic solvent that is conventionally used in the lithium secondary battery electrolyte.
  • an organic solvent that is conventionally used in the lithium secondary battery electrolyte.
  • at least one organic solvent of an ether-based organic solvent, an amide-based organic solvent, and a nitrile-based organic solvent may be further included.
  • a lithium secondary battery according to an embodiment of the present invention includes an anode, an anode, and an electrolyte for the lithium secondary battery, and further includes a separator.
  • the electrolyte for the lithium secondary battery is the same as the above, detailed description is omitted.
  • the positive electrode may be prepared by coating a positive electrode active material slurry containing a positive electrode active material, a binder, a conductive material, and a solvent on the positive electrode current collector.
  • the positive electrode may be prepared by coating a positive electrode active material slurry containing a positive electrode active material, a binder, a conductive material, and a solvent on the positive electrode current collector.
  • the positive electrode current collector is not particularly limited as long as it has conductivity without causing a chemical change in the battery, for example, stainless steel, aluminum, nickel, titanium, calcined carbon, or carbon on the surface of aluminum or stainless steel. , Surface treatment with nickel, titanium, silver, or the like can be used.
  • the positive electrode active material is a compound capable of reversible intercalation and deintercalation of lithium, and specifically, may include a lithium composite metal oxide containing lithium and one or more metals such as cobalt, manganese, nickel, or aluminum. have. More specifically, the lithium composite metal oxide is lithium-manganese oxide (eg, LiMnO 2 , LiMn 2 O 4, etc.), lithium-cobalt oxide (eg, LiCoO 2, etc.), lithium-nickel oxide (E.g., LiNiO 2, etc.), lithium-nickel-manganese oxide (e.g., LiNi 1-Y1 Mn Y1 O 2 (here, 0 ⁇ Y1 ⁇ 1), LiMn 2-z1 Ni z1 O 4 ( Here, 0 ⁇ Z1 ⁇ 2), etc.), lithium-nickel-cobalt oxide (for example, LiNi 1-Y2 Co Y2 O 2 (here, 0 ⁇ Y2 ⁇ 1), etc.), lithium-manganese-cobal
  • the lithium composite metal oxide is LiCoO 2 , LiMnO 2 , LiNiO 2 , lithium nickel manganese cobalt oxide (for example, Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 in that the capacity and stability of the battery can be improved.
  • the lithium composite metal oxide is Li(Ni 0.6 Mn 0.2 Co 0.2 )O 2 , considering the remarkable effect of improvement according to the control of the type and content ratio of the constituent elements that form the lithium composite metal oxide.
  • the binder is a component that assists in the binding of the active material and the conductive material and the like to the current collector, and examples of such a binder include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, and hydroxy Propyl cellulose, recycled cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene (PE), polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated EPDM, styrene-butadiene rubber, fluorine Rubber, various copolymers, and the like.
  • a binder include polyvinylidene fluoride, polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, and hydroxy Propyl cellulose, recycled cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene (PE), polypropylene, ethylene-propylene-diene polymer (EPDM), s
  • the conductive material is a component for further improving the conductivity of the positive electrode active material, and is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite graphite
  • Carbon-based materials such as carbon black, acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black
  • Conductive fibers such as carbon fibers and metal fibers
  • Metal powders such as carbon fluoride powder, aluminum powder, and nickel powder
  • Conductive whiskey such as zinc oxide and potassium titanate
  • Conductive metal oxides such as titanium oxide
  • Conductive materials such as polyphenylene derivatives may be used.
  • the solvent may include an organic solvent such as NMP (N-methyl-2-pyrrolidone), and may be used in an amount that becomes a desirable viscosity when the positive electrode active material and, optionally, a binder and a conductive material are included.
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode may be prepared by coating a negative electrode active material slurry containing a negative electrode active material, a binder, a conductive material, and a solvent on a negative electrode current collector, for example.
  • the negative electrode current collector generally has a thickness of 3 ⁇ m to 500 ⁇ m.
  • the negative electrode current collector is not particularly limited as long as it has high conductivity without causing chemical changes in the battery.
  • copper, stainless steel, aluminum, nickel, titanium, calcined carbon, copper or stainless steel Surface-treated with carbon, nickel, titanium, silver, etc. on the surface, aluminum-cadmium alloy, or the like can be used.
  • it is also possible to form a fine unevenness on the surface to enhance the bonding force of the negative electrode active material and may be used in various forms such as films, sheets, foils, nets, porous bodies, foams, and nonwoven fabrics.
  • the negative electrode active material examples include natural graphite, artificial graphite, and carbonaceous materials; Lithium-containing titanium composite oxides (LTO), metals (Me) which are Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe; Alloys composed of the metals (Me); Oxides of the metals (Me); And one or two or more negative electrode active materials selected from the group consisting of a composite of the metals (Me) and carbon.
  • LTO Lithium-containing titanium composite oxides
  • metals (Me) which are Si, Sn, Li, Zn, Mg, Cd, Ce, Ni, or Fe
  • Oxides of the metals (Me) Oxides of the metals (Me)
  • one or two or more negative electrode active materials selected from the group consisting of a composite of the metals (Me) and carbon.
  • the binder is a component that assists in bonding between the conductive material, the active material, and the current collector.
  • a binder examples include polyvinylidene fluoride (PVDF), polyvinyl alcohol, carboxymethyl cellulose (CMC), starch, and hydroxy Propylcellulose, recycled cellulose, polyvinylpyrrolidone, tetrafluoroethylene, polyethylene, polypropylene, ethylene-propylene-diene polymer (EPDM), sulfonated-EPDM, styrene-butadiene rubber, fluorine rubber, these And various copolymers thereof.
  • PVDF polyvinylidene fluoride
  • CMC carboxymethyl cellulose
  • EPDM ethylene-propylene-diene polymer
  • sulfonated-EPDM styrene-butadiene rubber
  • fluorine rubber these And various copolymers thereof.
  • the conductive material is a component for further improving the conductivity of the negative electrode active material, and the conductive material is not particularly limited as long as it has conductivity without causing a chemical change in the battery.
  • graphite such as natural graphite or artificial graphite ; Carbon blacks such as acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black; Conductive fibers such as carbon fibers and metal fibers; Metal powders such as carbon fluoride powder, aluminum powder, and nickel powder; Conductive whiskey such as zinc oxide and potassium titanate; Conductive metal oxides such as titanium oxide; Conductive materials such as polyphenylene derivatives may be used.
  • the solvent may include water or an organic solvent such as NMP (N-methyl-2-pyrrolidone), and may be used in an amount that becomes a desirable viscosity when the negative electrode active material and, optionally, a binder and a conductive material are included. .
  • NMP N-methyl-2-pyrrolidone
  • a conventional porous polymer film conventionally used as a separator for example, ethylene homopolymer, propylene homopolymer, ethylene/butene copolymer, ethylene/hexene copolymer and ethylene/methacrylate copolymer, etc.
  • a porous polymer film made of a polymer may be used alone or by laminating them, or a conventional porous nonwoven fabric, such as a high melting point glass fiber, a polyethylene terephthalate fiber, or the like, may be used, but is not limited thereto. no.
  • ethylene carbonate (EC) and ethyl methyl carbonate (EMC) were mixed in a volume ratio of 30:70, and LiPF 6 was added to a concentration of 1M to prepare a non-aqueous organic solvent.
  • LiPF 6 was added to a concentration of 1M to prepare a non-aqueous organic solvent.
  • An electrolyte for a lithium secondary battery was prepared by adding g.
  • the positive electrode active material LiNi 0.8 Co 0.1 Mn 0.1 O 2 ; NCM
  • the conductive material carbon black and the PVDF binder were added to the solvent N-methyl-2-pyrrolidone (NMP) in a weight ratio of 97:1.5:1.5. It was added to prepare a positive electrode active material slurry.
  • the positive electrode active material slurry was coated on a thin film of aluminum (Al), which is a positive electrode current collector having a thickness of about 20 ⁇ m, and then dried, followed by roll press to prepare a positive electrode.
  • a negative electrode active material slurry was prepared by adding to the solvent N-methyl-2-pyrrolidone (NMP) in a weight ratio.
  • NMP N-methyl-2-pyrrolidone
  • the negative electrode active material slurry was coated on a copper (Cu) thin film having a thickness of 10 ⁇ m and then dried, and then roll press was performed to prepare a negative electrode.
  • the pouch type secondary battery After preparing an electrode assembly using the positive electrode, the negative electrode, and a separator composed of three layers of polypropylene/polyethylene/polypropylene (PP/PE/PP), and then storing it in a pouch type secondary battery case, the pouch type secondary battery The lithium secondary battery electrolyte was injected into the case to prepare a lithium secondary battery.
  • PP/PE/PP polypropylene/polyethylene/polypropylene
  • a liquid electrolyte for a lithium secondary battery and a lithium secondary battery were prepared in the same manner as in Example 6.
  • an electrolyte for a lithium secondary battery and a lithium secondary battery were prepared in the same manner as in Example 1, except that the compound represented by Chemical Formula 1E-1 was not added.
  • an electrolyte for a lithium secondary battery and a lithium secondary battery were prepared in the same manner as in Example 1, except that the oligomer represented by Chemical Formula 2A-1 was not added.
  • the lithium secondary battery electrolyte and the lithium secondary battery were prepared in the same manner as in Example 1, except that all of the compound represented by Chemical Formula 1E-1 and the oligomer represented by Chemical Formula 2A-1 were not added. Was prepared.
  • the discharge capacity at this time was set as the initial capacity, and at this time The measured resistance was set as the initial resistance.
  • 4.2 V, 660 mA (0.33 C, 0.05 C cut-off) CC/CV charging and 2.5 V, 660 mA (0.33 C) CC discharge were performed 200 times at high temperature (45°C), respectively, and then discharge capacity and resistance was measured.
  • the capacity retention rate was calculated by comparing the measured 200th discharge capacity and the initial capacity, and at this time, the resistance increase rate was calculated by comparing the measured resistance and the initial resistance, and the results are shown in Table 1.
  • Example 1 98.0 1.5
  • Example 2 89.2 10.2
  • Example 3 98.5 1.2
  • Example 4 95.2 5.4
  • Example 5 96.5 3.5
  • Example 6 92.1 9.5
  • Example 7 90.2 12.7 Comparative Example 1 82.4 25.4 Comparative Example 2 85.3 22.9 Comparative Example 3 74.5 35.7
  • the lithium secondary batteries prepared according to Examples 1 to 7 and Comparative Examples 1 to 3 were charged at a constant current/constant voltage condition up to 4.2V at a rate of 0.33C and subjected to 0.05C cut off charging, and discharged at 0.33C 2.5V.
  • the subsequent discharge capacity was set as the initial capacity, and the resistance at this time was set as the initial resistance.
  • constant current/constant voltage charging up to 4.2 V at 0.33 C rate and 0.05 C cut off charging were performed, and the remaining capacity and resistance after storage at 60° C. for 10 weeks (10 weeks) were measured.
  • the capacity retention rate was calculated by comparing the measured discharge capacity and the initial capacity, and at this time, the resistance increase rate was calculated by comparing the measured resistance and the initial resistance, and is shown in Table 2.
  • the lithium secondary battery manufactured according to the embodiment has a high residual capacity retention rate and a low resistance increase rate when stored at a high temperature compared to the lithium secondary battery manufactured according to the comparative example.
  • the lithium secondary batteries prepared according to Examples 1 to 7 and Comparative Examples 1 to 3 were stored at a high temperature for 10 weeks (10 weeks) in SOC 100% state (4.15 V) at a temperature of 60°C. Subsequently, after 10 weeks, the volume increase rate was measured based on the volume of the battery initially measured (1 week). The results are shown in Table 3 below.
  • Example 1 Volume increase rate (%) after 10 weeks of storage at 60°C
  • Example 2 25.4
  • Example 3 5.1
  • Example 4 12.4
  • Example 5 10.5
  • Example 6 18.4
  • Example 7 28.5 Comparative Example 1 39.5 Comparative Example 2 38.4 Comparative Example 3 50.6
  • the lithium secondary battery manufactured according to the comparative example has a low volume increase rate even when stored at high temperature, so that the battery has better safety even when stored at a high temperature for a long time. You can confirm that.
  • the lithium secondary battery electrolytes prepared in Examples 1, 2, 3 and 6 and the lithium secondary battery electrolytes prepared in Comparative Examples 1 to 3 were stored at 60° C. for 2 weeks, respectively, and then NMR analyzer (1H Bruker 700 MHz NMR, solvent tetra Methylsilane (TMS)) was used to evaluate the anion stability by confirming the integration value of the PO 2 F 2 peak in the electrolyte.
  • NMR analyzer 1H Bruker 700 MHz NMR, solvent tetra Methylsilane (TMS)
  • TMS solvent tetra Methylsilane

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Inorganic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Secondary Cells (AREA)

Abstract

본 발명은 화학식 1로 표시되는 화합물을 포함하는 첨가제; 화학식 2로 표시되는 단위를 포함하고, 말단에 아크릴레이트기를 포함하는 올리고머; 리튬염; 및 유기용매;를 포함하는 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지를 제공한다.

Description

리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
관련 출원(들)과의 상호 인용
본 출원은 2019년 01월 17일자 한국 특허 출원 제2019-0006405호 및 2020년 01년 16일자 한국 특허 출원 제2020-0005939호에 기초한 우선권의 이익을 주장하며, 해당 한국 특허 출원의 문헌에 개시된 모든 내용은 본 명세서의 일부로서 포함된다.
기술분야
본 발명은 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지에 관한 것으로, 보다 상세하게는, 고전압 또는 고온에서의 전지 성능이 개선된 리튬 이차 전지용 전해질에 관한 것이다.
정보사회의 발달로 인한 개인 IT 디바이스와 전산망이 발달되고 이에 수반하여 전반적인 사회의 전기에너지에 대한 의존도가 높아지면서, 전기 에너지를 효율적으로 저장하고 활용하기 위한 기술 개발이 요구되고 있다.
이를 위해 개발된 기술 중 여러 용도에 가장 적합한 기술이 이차 전지 기반 기술이다. 이차 전지의 경우 개인 IT 디바이스 등에 적용될 수 있을 정도로 소형화가 가능하며, 전기자동차, 전력 저장 장치 등에 적용될 수도 있기 때문에 이에 대한 관심이 대두되고 있다. 이런 이차 전지 중에서도, 에너지 밀도가 높은 전지 시스템인 리튬 이온 전지가 각광을 받고 있으며, 현재 여러 디바이스에 적용되고 있다.
리튬 이온 전지 시스템의 경우 리튬 금속을 직접 시스템에 적용하였던 초창기와는 달리, 리튬을 함유하고 있는 전이금속 산화물 소재를 양극재로 사용하고, 음극재로 흑연 등의 탄소계 소재와 실리콘 등의 합금계 소재 등을 음극으로 적용하는 등, 리튬 금속이 직접적으로 전지 내부에 사용되지 않는 시스템으로 구현되고 있다.
이러한 리튬 이온 전지의 경우, 크게 리튬을 함유하고 있는 전이금속 산화물로 구성된 양극과, 리튬을 저장할 수 있는 음극, 리튬 이온을 전달하는 매개체가 되는 전해액, 세퍼레이터로 구성되어 있으며, 이중 전해액의 경우 전지의 안정성(stability)과 안전성(safety) 등에 큰 영향을 주는 구성 성분으로 알려지면서, 이에 대해 많은 연구가 진행되고 있다.
리튬 이온 전지용 전해액의 경우, 리튬염과 이를 용해시키는 유기용매, 그리고 기능성 첨가제 등으로 구성되는데, 전지의 전기화학적 특성을 개선하기 위해서는 이 구성 요소들의 적합한 선정이 중요하다. 현재 사용되는 대표적인 리튬염으로는 LiPF6, LiBF4, LiFSI (lithium fluorosulfonyl imide, LiN(SO2F)2), LiTFSI (lithium (bis)trifluoromethanesulfonyl imide, LiN(SO2CF3)2) 또는 LiBOB (lithium bis(oxalate) borate, LiB(C2O4)2) 등이 이용되고 있으며, 유기용매의 경우에는 카보네이트계 유기용매, 에스터계 유기용매 또는 이터계 유기용매 등이 이용되고 있다.
이러한 리튬 이온 전지의 경우, 고온에서의 충방전 혹은 저장 시의 저항 증가와 용량 감퇴가 성능의 열화에 있어서 큰 문제점으로 제시되고 있으며, 이러한 문제의 원인 중 하나로 제시되고 있는 것이 전해액의 고온에서의 열화로 발생하는 부반응, 그 중에서도 염의 고온에서의 분해로 인한 열화이다. 이러한 염의 부산물이 활성화 후 양극 및 음극의 표면에 형성된 피막을 분해시킬 경우, 피막의 부동태(passivation) 능력을 떨어뜨리는 문제가 존재하며, 이로 인하여 전해액의 추가적인 분해와 이에 수반된 자가 방전을 유발시키는 문제가 있다.
리튬 이온 전지의 전극 소재 중 특히 음극의 경우 흑연계 음극을 사용하는 경우가 대부분인데, 흑연의 경우 이의 작동 전위가 0.3 V (vs. Li/Li+) 이하로 리튬 이온 전지에 사용되는 전해액의 전기화학적 안정창보다 낮아, 현재 사용되는 전해액이 환원되어 분해된다. 이렇게 환원 분해된 산물은 리튬 이온은 투과시키지만, 전해액의 추가적인 분해는 억제하는 Solid electrolyte interphase (SEI) 막을 형성하게 된다.
그러나 상기 SEI 막이 추가적인 전해액 분해를 억제시킬 수 있을 정도로 충분한 부동태 능력을 가지지 못하는 경우, 저장 중에 전해액이 추가적으로 분해되어 충전된 흑연이 자가 방전되면서, 결론적으로 전체 전지의 전위가 저하하는 현상이 나타나게 된다. 이에, SEI의 고온에서의 부동태 능력의 유지를 위해서는 열/수분 등에 인하여 발생하는 대표적인 리튬 염인 LiPF6 등의 분해산물인 HF, PF5 등을 제거하여 SEI 막의 손상을 억제시키거나 양/음극 전극 상에 형성된 SEI 막 상에 추가적으로 안정적인 피막을 더 형성시킬 수 있는 첨가제의 제안과 도입이 시급한 상황이다.
선행기술문헌
일본 공개특허공보 제2003-217655호
본 발명은 상기와 같은 문제점을 해결하기 위한 것으로, 고전압 또는 고온에서 리튬염이 분해되는 경우 발생되는 부산물에 의하여 유발되는 부반응을 억제시켜 리튬 이차 전지의 고온 특성이 개선된 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지에 관한 발명이다.
일 구현예에 따르면, 본 발명은 하기 화학식 1로 표시되는 화합물을 포함하는 첨가제; 하기 화학식 2로 표시되는 단위를 포함하고, 말단에 아크릴레이트기를 포함하는 올리고머; 리튬염; 및 유기용매;를 포함하는 리튬 이차 전지용 전해질을 제공한다.
[화학식 1]
Figure PCTKR2020000879-appb-I000001
상기 화학식 1에서, 상기 R1은 할로겐 원소가 치환 또는 비치환된 탄소수 1 내지 5인 알킬기, 할로겐 원소가 치환 또는 비치환된 탄소수 1 내지 5인 알콕시기, 1 내지 3의 탄소수의 알킬기가 치환 또는 비치환된 페닐기 및 1 내지 5의 탄소수의 알킬기가 치환 또는 비치환된 아민기로 이루어진 군에서 선택되는 것이다.
[화학식 2]
Figure PCTKR2020000879-appb-I000002
상기 화학식 2에서, 상기 Ra, Rb, Rc 및 Rd는 각각 독립적으로 불소 원소 또는 불소 원소로 치환 또는 비치환된 탄소수 1 내지 3의 알킬기이고, 상기 p는 1 내지 50인 정수이다.
다른 구현예에 따르면, 본 발명은 양극; 음극; 및 본 발명의 리튬 이차 전지용 전해질을 포함하는 리튬 이차 전지를 제공한다.
본 발명에 따른 리튬 이차 전지용 전해질은 특정 올리고머 및 첨가제를 포함하고 있어, 고온 성능이 우수하고, 전압이 높아지는 경우에도 전지 성능이 퇴화되는 것을 최소화할 수 있다.
이하, 본 발명에 대해 보다 자세히 설명한다.
본 명세서 및 청구범위에 사용된 용어나 단어는 통상적이거나 사전적인 의미로 한정해서 해석되어서는 아니되며, 발명자는 그 자신의 발명을 가장 최선의 방법으로 설명하기 위해 용어의 개념을 적절하게 정의할 수 있다는 원칙에 입각하여 본 발명의 기술적 사상에 부합하는 의미와 개념으로 해석되어야만 한다.
본 명세서에서 사용되는 용어는 단지 예시적인 실시예들을 설명하기 위해 사용된 것으로, 본 발명을 한정하려는 의도는 아니다. 단수의 표현은 문맥상 명백하게 다르게 뜻하지 않는 한, 복수의 표현을 포함한다.
본 명세서에서, "포함하다", "구비하다" 또는 "가지다" 등의 용어는 실시된 특징, 숫자, 단계, 구성 요소 또는 이들을 조합한 것이 존재함을 지정하려는 것이지, 하나 또는 그 이상의 다른 특징들이나 숫자, 단계, 구성 요소, 또는 이들을 조합한 것들의 존재 또는 부가 가능성을 미리 배제하지 않는 것으로 이해되어야 한다.
본 명세서에서, 중량평균분자량은 겔투과크로마토그래피(Gel Permeation Chromatography: GPC)로 측정한 표준 폴리스티렌에 대한 환산 수치를 의미할 수 있고, 특별하게 달리 규정하지 않는 한, 분자량은 중량평균분자량을 의미할 수 있다. 예컨대, 본 발명에서는 GPC 조건으로 Agilent社 1200시리즈를 이용하여 측정하며, 이때 사용된 컬럼은 Agilent社 PL mixed B 컬럼을 이용할 수 있고, 용매는 THF를 사용할 수 있다.
리튬 이차전지용 전해질
본 발명에 따른 리튬 이차 전지용 전해질은 화학식 1로 표시되는 화합물을 포함하는 첨가제; 화학식 2로 표시되는 단위를 포함하고, 말단에 아크릴레이트기를 포함하는 올리고머; 리튬염; 및 유기용매;를 포함한다.
이하, 본 발명의 리튬 이차 전지용 전해질의 각 성분들에 대해서 보다 자세히 설명한다.
(1) 첨가제
먼저, 상기 첨가제에 대하여 설명한다. 상기 첨가제는 하기 화학식 1로 표시되는 화합물을 포함하며, 사용되는 전극의 종류나 전지 용도 등에 따라 기타 첨가제가 더 첨가될 수 있다.
[화학식 1]
Figure PCTKR2020000879-appb-I000003
상기 화학식 1에서, 상기 R1은 할로겐 원소가 치환 또는 비치환된 탄소수 1 내지 5인 알킬기, 할로겐 원소가 치환 또는 비치환된 탄소수 1 내지 5인 알콕시기, 1 내지 3의 탄소수의 알킬기가 치환 또는 비치환된 페닐기 및 1 내지 5의 탄소수의 알킬기가 치환 또는 비치환된 아민기로 이루어진 군에서 선택될 수 있다.
리튬 이차 전지의 구동 전압이 높아지거나 전지가 고온에 노출되면 양극으로부터 전이금속이 용출되며, 음극 표면 상에는 불안정한 SEI(Solid Electrolyte Interphase)막이 형성되어, 전지가 충방전을 반복하는 도중 전해질의 추가적인 분해반응이 억제되지 못한다는 문제점이 존재한다.
본 발명의 경우, 상기와 같은 문제점을 해소하기 위하여, 양/음극의 계면 상에 보호층(passive layer)을 더 형성하여, 전해질 분해반응 및 SEI 막이 분해되는 것을 방지하기 위하여 화학식 1로 표시되는 화합물을 전해질에 첨가하여 사용하였다. 상기 화학식 1로 표시되는 화합물은 양극 계면 상에 SEI(Solid Electrolyte Interphase)막을 형성하여, 양극활물질로부터 용출되는 전이금속 이온이 음극에 점착되는 것을 방지하여 전지의 성능이 퇴화되는 것을 개선시킬 수 있다. 또한, 양극 및 음극 계면 상에 보호층(passive layer)을 형성하여, 전해질의 추가 분해반응을 억제할 수 있다.
구체적인 예를 들어, 상기 화학식 1로 표시되는 화합물은, 하기 화학식 1A 내지 1E로 표시되는 화합물들로 이루어지는 군에서 선택되는 적어도 하나 이상일 수 있다.
[화학식 1A]
Figure PCTKR2020000879-appb-I000004
상기 화학식 1A에서, 상기 n은 0 내지 4인 정수이다.
[화학식 1B]
Figure PCTKR2020000879-appb-I000005
상기 화학식 1B에서, 상기 m은 0 내지 4인 정수이고, 상기 X, X' 및 X"는 각각 독립적으로 수소 또는 할로겐 원소 중 하나이며, 적어도 하나 이상은 할로겐 원소이다.
[화학식 1C]
Figure PCTKR2020000879-appb-I000006
상기 화학식 1C에서, 상기 k는 0 내지 4인 정수이고, 상기 Y, Y' 및 Y"는 각각 독립적으로 수소 또는 할로겐 원소 중 하나이며, 적어도 하나 이상은 할로겐 원소이다.
[화학식 1D]
Figure PCTKR2020000879-appb-I000007
상기 화학식 1D에서, 상기 s는 0 내지 2인 정수이다.
[화학식 1E]
Figure PCTKR2020000879-appb-I000008
상기 화학식 1E에서, 상기 R2 및 R3는 각각 독립적으로, 수소 또는 탄소수 1 내지 5의 알킬기이다.
보다 구체적으로, 상기 화학식 1A로 표시되는 화합물은 하기 화학식 1A-1 내지 1A-3으로 표시되는 화합물일 수 있다.
[화학식 1A-1]
Figure PCTKR2020000879-appb-I000009
[화학식 1A-2]
Figure PCTKR2020000879-appb-I000010
[화학식 1A-3]
Figure PCTKR2020000879-appb-I000011
또한, 상기 화학식 1B로 표시되는 화합물은 하기 화학식 1B-1로 표시되는 화합물일 수 있다.
[화학식 1B-1]
Figure PCTKR2020000879-appb-I000012
또한, 상기 화학식 1C로 표시되는 화합물은 하기 화학식 1C-1 내지 1C-5로 표시되는 화합물들로 이루어지는 군에서 선택되는 적어도 하나 이상일 수 있다.
[화학식 1C-1]
Figure PCTKR2020000879-appb-I000013
[화학식 1C-2]
Figure PCTKR2020000879-appb-I000014
[화학식 1C-3]
Figure PCTKR2020000879-appb-I000015
[화학식 1C-4]
Figure PCTKR2020000879-appb-I000016
[화학식 1C-5]
Figure PCTKR2020000879-appb-I000017
또한, 상기 화학식 1D로 표시되는 화합물은 하기 화학식 1D-1로 표시되는 화합물일 수 있다.
[화학식 1D-1]
Figure PCTKR2020000879-appb-I000018
또한, 상기 화학식 1E로 표시되는 화합물은 하기 화학식 1E-1로 표시되는 화합물일 수 있다.
[화학식 1E-1]
Figure PCTKR2020000879-appb-I000019
한편, 상기 화학식 1로 표시되는 화합물은 상기 리튬 이차 전지용 전해질 100 중량부에 대하여 0.1 중량부 내지 5 중량부, 바람직하게는 0.1 중량부 내지 3 중량부, 보다 바람직하게는 0.1 중량부 내지 1 중량부로 포함될 수 있다. 상기 화학식 1로 표시되는 화합물이 상기 범위 내로 포함되는 경우, 내부 저항이 증가하는 것을 조절하면서도, PF5 와 같은 리튬염 부산물을 효과적으로 제거할 수 있다.
한편, 본 발명에 따른 첨가제는 전지의 용도, 전지 내 구성 등에 따라서, 상기 기재된 성분들 이외에, 전지 내 저항 감소 효과를 부여하기 위하여, 당 업계에 알려진 이러한 물성을 구현할 수 있는 기타 첨가제 등을 선택적으로 더 함유할 수 있다. 상기 기타 첨가제로는, 예를 들면, 비닐렌카보네이트(Vinylene Carbonate, VC), 비닐 에틸렌 카보네이트(vinyl ethylene carbonate, VEC), 프로판 설톤(Propane sultone, PS), 숙시노나이트릴(succinonitrile, SN), 아디포나이트릴(Adiponitrile, AdN), 에틸렌 설페이트(ethylene sulfate, ESa), 프로펜 설톤(Propene Sultone, PRS), 플루오로에틸렌카보네이트(FluoroEthylene carbonate, FEC), 리튬다이플루오로포스페이트 (LiPO2F2), 리튬다이플루오로(옥살레이트)보레이트 (Lithium difluoro(oxalate)borate), LiODFB), 리튬비스-(옥살라토)보레이트(Lithium bis-(oxalato)borate, LiBOB), 3-트리메톡시실라닐-프로필-N-아닐린 (3-trimethoxysilanyl-propyl-N-aniline), TMSPa), 트리스(트리메틸실릴)포스페이트 ((Tris(trimethylsilyl) Phosphite), TMSPi) 등의 기타 첨가제를 사용할 수 있다.
(2) 올리고머
다음으로, 하기 화학식 2로 표시되는 단위를 포함하고, 말단에 아크릴레이트를 포함하는 올리고머에 대해 설명한다.
[화학식 2]
Figure PCTKR2020000879-appb-I000020
상기 화학식 2에서, 상기 Ra, Rb, Rc 및 Rd는 각각 독립적으로 불소 원소 또는 불소 원소로 치환 또는 비치환된 탄소수 1 내지 3의 알킬기이고, 상기 p는 1 내지 50인 정수이다.
상기 화학식 2로 표시되는 단위를 포함하고, 말단에 아크릴레이트기를 포함하는 올리고머는, 리튬 이온과의 반응성이 낮은 불소 원소가 치환된 에틸렌기를 포함하고 있기 때문에, 리튬 이온의 부반응 및 리튬염(salt)의 분해 반응 등을 제어할 수 있어, 고농도의 리튬염을 사용하는 경우 발생되는 부반응을 억제할 수 있다. 또한, 상기 올리고머는 난연성이 우수한 불소 원소를 포함하고 있으므로, 상기 올리고머를 포함하는 전해질을 사용하는 경우, 리튬 이차 전지의 발열 및 발화 현상이 억제되어 고온 안전성이 향상될 수 있다.
한편, 상기 올리고머는 소수성을 띄는 불소 원소를 포함하는 단위를 포함함과 동시에 말단에는 친수성을 띄는 아크릴레이트기를 포함하고 있으므로, 계면 활성제로서의 역할을 수행하여 전극 계면과의 표면 저항을 낮추고, 리튬 이차 전지의 젖음성 효과(wetting)가 향상될 수 있다.
구체적으로, 상기 올리고머는 하기 화학식 2A로 표시되는 올리고머일 수 있다.
[화학식 2A]
Figure PCTKR2020000879-appb-I000021
상기 화학식 2A에서,
상기 Ra', Rb', Rc' 및 Rd'는 각각 독립적으로 불소 원소 또는 불소 원소로 치환 또는 비치환된 탄소수 1 내지 3의 알킬기이고,
상기 Re는 지방족 탄화수소기 또는 방향족 탄화수소기고,
상기 Rf는 불소 원소로 치환 또는 비치환된 탄소수 1 내지 5의 알킬렌기이고,
상기 R'는 수소 또는 탄소수 1 내지 3의 알킬기이며,
상기 o는 1 내지 3인 정수이고,
상기 p는 1 내지 50인 정수이고,
상기 q는 1 내지 15인 정수이다.
이때, 상기 p는 바람직하게는 1 내지 45인 정수, 보다 바람직하게는 1 내지 40인 정수일 수 있다.
상기 화학식 2A로 표시되는 올리고머에서, 상기 지방족 탄화수소기는 지환족 탄화수소기 또는 선형 탄화수소기를 포함한다.
상기 지환족 탄화소수기는 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기; 이소시아네이트기(NCO)를 함유하는 치환 또는 비치환된 탄소수 4 내지 20의 시클로알킬렌기; 치환 또는 비치환된 탄소수 4 내지 20의 시클로알케닐렌기; 및 치환 또는 비치환된 탄소수 2 내지 20의 헤테로시클로알킬렌기로 이루어진 군으로부터 선택된 적어도 하나 이상을 포함할 수 있다.
상기 선형 탄화수소기는 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 이소시아네이트기(NCO)를 함유하는 치환 또는 비치환된 탄소수 1 내지 20의 알킬렌기; 치환 또는 비치환된 탄소수 1 내지 20의 알콕실렌기; 치환 또는 비치환된 탄소수 2 내지 20의 알케닐렌기; 및 치환 또는 비치환된 탄소수 2 내지 20의 알키닐렌기로 이루어진 군으로부터 선택된 적어도 하나 이상을 들 수 있다.
또한, 상기 화학식 2A로 표시되는 올리고머에서, 상기 방향족 탄화수소기는 치환 또는 비치환된 탄소수 6 내지 20의 아릴렌기; 또는 치환 또는 비치환된 탄소수 2 내지 20의 헤테로아릴렌기를 포함할 수 있다.
구체적인 예를 들어, 상기 화학식 2A로 표시되는 올리고머는 하기 화학식 2A-1로 표시되는 올리고머일 수 있다.
[화학식 2A-1]
Figure PCTKR2020000879-appb-I000022
상기 화학식 2A-1에서, 상기 p'는 1 내지 50인 정수이고, 상기 q는 1 내지 15인 정수이다. 상기 p'는 바람직하게는 1 내지 45인 정수, 보다 바람직하게는 1 내지 40인 정수일 수 있다.
또는, 상기 올리고머는 하기 화학식 2B로 표시되는 올리고머일 수 있다.
[화학식 2B]
Figure PCTKR2020000879-appb-I000023
상기 화학식 2B에서, 상기 Ra", Rb", Rc" 및 Rd"는 각각 독립적으로 불소 원소 또는 불소 원소로 치환 또는 비치환된 탄소수 1 내지 3의 알킬기이고, 상기 Re'는 지방족 탄화수소기 또는 방향족 탄화수소기고, 상기 Rf'는 불소 원소로 치환 또는 비치환된 탄소수 1 내지 5의 알킬렌기이고, 상기 r은 1 내지 2인 정수이고, 상기 r'는 1 내지 3인 정수이고, 상기 p'는 1 내지 50인 정수이고, 상기 q'는 1 내지 15인 정수이다. 상기 p는 바람직하게는 1 내지 45인 정수, 보다 바람직하게는 1 내지 40인 정수일 수 있다.
구체적인 예를 들어, 상기 화학식 2B로 표시되는 올리고머는 하기 화학식 2B-1로 표시되는 올리고머일 수 있다.
[화학식 2B-1]
Figure PCTKR2020000879-appb-I000024
상기 화학식 2B-1에서, 상기 p는 1 내지 50인 정수이고, 상기 q는 1 내지 15인 정수이다. 이때, 상기 p는 바람직하게는 1 내지 45인 정수이고, 보다 바람직하게는 1 내지 40인 정수이다.
한편, 상기 올리고머의 중량평균분자량(MW)은 반복 단위의 개수에 의해 조절될 수 있으며, 약 500 내지 200,000, 구체적으로 1,000 내지 150,000, 더욱 구체적으로 2,000 내지 100,000 일 수 있다. 상기 올리고머의 중량평균분자량이 상기 범위 내인 경우, 유기용매와의 친화성이 높아 분산이 잘 이루어질 수 있고, 표면 장력을 일정 수준 이하로 낮추어 전해질의 젖음성을 개선할 수 있으며, 리튬염의 분해 반응을 억제하고, 리튬 이온이 부반응을 일으키는 것을 방지할 수 있다.
이때, 상기 올리고머는 상기 리튬 이차 전해질 100 중량부에 대하여 0.1 중량부 내지 5 중량부, 바람직하게는 0.1 중량부 내지 3 중량부, 보다 바람직하게는 0.1 중량부 내지 1 중량부로 포함될 수 있다. 상기 올리고머가 상기 범위 내로 포함되는 경우, 리튬 이온의 이동성 및 이온전도도를 일정수준 이상 유지하여 부반응이 억제되면서도 계면활성제로 작용하여 전지 내 계면 저항을 최소화할 수 있다.
(3) 리튬염
상기 리튬염은, 리튬 이차 전지용 전해질에 1M 내지 3M, 바람직하게는 1M 내지 2M, 보다 바람직하게는 1M 내지 1.5M의 몰 농도로 포함될 수 있다. 상기 리튬염이 상기 몰 농도 범위 내로 포함되는 경우, 리튬 이온이 충분히 공급되어, 리튬 이온 수율(Li+ transference number) 및 리튬 이온의 해리도가 향상되어 전지의 출력 특성이 향상될 수 있다.
통상적으로, 리튬염은 LiPF6, LiBF4, LiSbF6, LiAsF6, LiClO4, LiN(C2F5SO2)2, LiN(CF3SO2)2, CF3SO3Li, LiC(CF3SO2)3, LiC4BO8, LiTFSI, LiFSI 및 LiClO4로 이루어진 군에서 선택되는 적어도 하나 이상의 화합물을 포함할 수 있으며, 바람직하게는 LiPF6 및/또는 LiBF4을 포함할 수 있으나, 이에 한정되는 것은 아니다.
리튬염 중 특히, LiPF6 및/또는 LiBF4가 일반적으로 이온전도도가 높아서 많이 사용되고 있다. 그러나, 고온에서 유기 용매가 분해되는 경우, 상기 유기 용매의 분해 산물과 상기 리튬염의 음이온인 PF6 - 등이 반응하며 PF5와 같은 루이스 산(Lewis acid) 부산물을 발생시킬 수 있다. 루이스 산 부산물의 경우, 유기용매의 자발적인 분해반응을 촉진시키고, 전극 계면 상에 형성되어 있는 SEI 막을 붕괴하는 부반응을 일으킨다. 상기 부반응이 억제되지 않는 경우, 전지 내 저항이 급격히 상승하고, 전지의 용량 특성 등이 저하될 수 있다.
보다 구체적으로, 리튬염으로서 LiPF6를 사용하는 경우, 음이온인 PF6 -가 음극 쪽에서 전자를 잃게 되며 PF5 가 생성될 수 있다. 이때, 하기와 같은 화학반응이 연쇄적으로 진행될 수 있다.
Figure PCTKR2020000879-appb-I000025
상기 연쇄적인 반응이 진행되는 경우, 발생되는 HF를 비롯한 다른 부산물에 의하여 유기 용매의 분해나 SEI 막과의 부반응이 발생되어 전지의 성능이 지속적으로 저하될 수 있다. 따라서, 본 발명의 경우, 상기와 같은 문제점을 해소하기 위하여 상기에서 설명한 화학식 1로 표시되는 화합물을 포함하는 첨가제 및 화학식 2로 표시되는 단위를 포함하고, 말단에 아크릴레이트기를 포함하는 올리고머를 리튬 이차 전지용 전해질에 추가하여 사용한다.
(4) 유기용매
본 명세서에 따른 리튬 이차전지용 비수전해액에 있어서, 상기 유기용매는 환형 카보네이트계 유기용매, 선형 카보네이트계 유기용매 또는 이들의 혼합 유기용매를 포함할 수 있다.
상기 환형 카보네이트계 유기용매는 고점도의 유기용매로서 유전율이 높아 전해질 내의 리튬염을 잘 해리시킬 수 있는 유기용매로서, 그 구체적인 예로 에틸렌 카보네이트(EC), 프로필렌 카보네이트(PC), 1,2-부틸렌 카보네이트, 2,3-부틸렌 카보네이트, 1,2-펜틸렌 카보네이트, 2,3-펜틸렌 카보네이트 및 비닐렌 카보네이트로 이루어진 군으로부터 선택되는 적어도 하나 이상의 유기용매를 포함할 수 있으며, 이 중에서도 에틸렌 카보네이트를 포함할 수 있다.
또한, 상기 선형 카보네이트계 유기용매는 저점도 및 저유전율을 가지는 유기용매로서, 그 대표적인 예로 디메틸 카보네이트(dimethyl carbonate, DMC), 디에틸 카보네이트(diethyl carbonate, DEC), 디프로필 카보네이트, 에틸메틸 카보네이트(EMC), 메틸프로필 카보네이트 및 에틸프로필 카보네이트로 이루어진 군으로부터 선택되는 적어도 하나 이상의 유기용매를 사용할 수 있으며, 구체적으로 에틸메틸 카보네이트(EMC)를 포함할 수 있다.
또한, 상기 유기용매는 높은 이온 전도율을 갖는 전해액을 제조하기 위하여, 상기 환형 카보네이트계 유기용매 및/또는 선형 카보네이트계 유기용매에 선형 에스테르계 유기용매 및/또는 환형 에스테르계 유기용매를 추가로 포함할 수도 있다
이러한 선형 에스테르계 유기용매는 그 구체적인 예로 메틸 아세테이트, 에틸 아세테이트, 프로필 아세테이트, 메틸 프로피오네이트, 에틸 프로피오네이트, 프로필 프로피오네이트 및 부틸 프로피오네이트로 이루어진 군으로부터 선택되는 적어도 하나 이상의 유기용매를 들 수 있다.
또한, 상기 환형 에스테르계 유기용매로는 γ-부티로락톤, γ-발레로락톤, γ-카프로락톤, σ-발레로락톤 및 ε-카프로락톤으로 이루어진 군으로부터 선택되는 적어도 하나 이상의 유기용매를 들 수 있다.
한편, 상기 유기용매는 필요에 따라 리튬 이차전지용 전해액에 통상적으로 사용되는 유기용매를 제한 없이 추가하여 사용할 수 있다. 예를 들면, 에테르계 유기용매, 아미드계 유기용매 및 니트릴계 유기용매 중 적어도 하나 이상의 유기용매를 추가로 포함할 수도 있다.
리튬 이차 전지
다음으로, 본 발명에 따른 리튬 이차 전지를 설명한다. 본 발명의 일 구현예에 따른 리튬 이차 전지는, 양극, 음극 및 상기 리튬 이차 전지용 전해질을 포함하며, 선택적으로 세퍼레이터를 더 포함한다. 한편, 상기 리튬 이차 전지용 전해질에 대해서는 상술한 내용과 동일하므로, 구체적인 설명을 생략한다.
(1) 양극
상기 양극은 양극 집전체 상에 양극 활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 활물질 슬러리를 코팅하여 제조할 수 있다.
상기 양극은 양극 집전체 상에 양극 활물질, 바인더, 도전재 및 용매 등을 포함하는 양극 활물질 슬러리를 코팅하여 제조할 수 있다.
상기 양극 집전체는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 또는 알루미늄이나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것 등이 사용될 수 있다.
상기 양극 활물질은 리튬의 가역적인 인터칼레이션 및 디인터칼레이션이 가능한 화합물로서, 구체적으로는 코발트, 망간, 니켈 또는 알루미늄과 같은 1종 이상의 금속과 리튬을 포함하는 리튬 복합금속 산화물을 포함할 수 있다. 보다 구체적으로, 상기 리튬 복합금속 산화물은 리튬-망간계 산화물(예를 들면, LiMnO2, LiMn2O4 등), 리튬-코발트계 산화물(예를 들면, LiCoO2 등), 리튬-니켈계 산화물(예를 들면, LiNiO2 등), 리튬-니켈-망간계 산화물(예를 들면, LiNi1-Y1MnY1O2(여기에서, 0<Y1<1), LiMn2-z1Niz1O4(여기에서, 0<Z1<2) 등), 리튬-니켈-코발트계 산화물(예를 들면, LiNi1-Y2CoY2O2(여기에서, 0<Y2<1) 등), 리튬-망간-코발트계 산화물(예를 들면, LiCo1-Y3MnY3O2(여기에서, 0<Y3<1), LiMn2-z2Coz2O4(여기에서, 0<Z2<2) 등), 리튬-니켈-망간-코발트계 산화물(예를 들면, Li(Nip1Coq1Mnr1)O2(여기에서, 0<p1<1, 0<q1<1, 0<r1<1, p1+q1+r1=1) 또는 Li(Nip2Coq2Mnr2)O4(여기에서, 0<p2<2, 0<q2<2, 0<r2<2, p2+q2+r2=2) 등), 또는 리튬-니켈-코발트-전이금속(M) 산화물(예를 들면, Li(Nip3Coq3Mnr3MS1)O2(여기에서, M은 Al, Fe, V, Cr, Ti, Ta, Mg 및 Mo로 이루어지는 군으로부터 선택되고, p3, q3, r3 및 s1은 각각 독립적인 원소들의 원자분율로서, 0<p3<1, 0<q3<1, 0<r3<1, 0<s1<1, p3+q3+r3+s1=1이다) 등) 등을 들 수 있으며, 이들 중 어느 하나 또는 둘 이상의 화합물이 포함될 수 있다.
이중에서도 전지의 용량 특성 및 안정성을 높일 수 있다는 점에서 상기 리튬 복합금속 산화물은 LiCoO2, LiMnO2, LiNiO2, 리튬 니켈망간코발트 산화물(예를 들면, Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, 또는 Li(Ni0.8Mn0.1Co0.1)O2 등), 또는 리튬 니켈코발트알루미늄 산화물(예를 들면, LiNi0.8Co0.15Al0.05O2 등) 등일 수 있으며, 리튬 복합금속 산화물을 형성하는 구성원소의 종류 및 함량비 제어에 따른 개선 효과의 현저함을 고려할 때 상기 리튬 복합금속 산화물은 Li(Ni0.6Mn0.2Co0.2)O2, Li(Ni0.5Mn0.3Co0.2)O2, Li(Ni0.7Mn0.15Co0.15)O2 또는 Li(Ni0.8Mn0.1Co0.1)O2 등일 수 있으며, 이들 중 어느 하나 또는 둘 이상의 혼합물이 사용될 수 있다.
상기 바인더는 활물질과 도전재 등의 결합과 집전체에 대한 결합에 조력하는 성분으로서, 이러한 바인더의 예로는, 폴리불화비닐리덴, 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌(PE), 폴리프로필렌, 에틸렌-프로필렌-디엔 테르 폴리머(EPDM), 술폰화 EPDM, 스티렌-부타디엔 고무, 불소 고무, 다양한 공중합체 등을 들 수 있다.
상기 도전재는 양극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 그라파이트; 카본블랙, 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼니스 블랙, 램프 블랙, 서멀 블랙 등의 탄소계 물질; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화 티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 용매는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 양극 활물질, 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다.
(2) 음극
상기 음극은 예를 들어, 음극 집전체 상에 음극 활물질, 바인더, 도전재 및 용매 등을 포함하는 음극 활물질 슬러리를 코팅하여 제조할 수 있다.
상기 음극 집전체는 일반적으로 3㎛ 내지 500㎛의 두께를 가진다. 이러한 음극 집전체는, 당해 전지에 화학적 변화를 유발하지 않으면서 높은 도전성을 가지는 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 구리, 스테인리스 스틸, 알루미늄, 니켈, 티탄, 소성 탄소, 구리나 스테인리스 스틸의 표면에 카본, 니켈, 티탄, 은 등으로 표면 처리한 것, 알루미늄-카드뮴 합금 등이 사용될 수 있다. 또한, 양극 집전체와 마찬가지로, 표면에 미세한 요철을 형성하여 음극 활물질의 결합력을 강화시킬 수도 있으며, 필름, 시트, 호일, 네트, 다공질체, 발포체, 부직포체 등 다양한 형태로 사용될 수 있다.
상기 음극 활물질로는 천연흑연, 인조흑연, 탄소질재료; 리튬 함유 티타늄 복합 산화물(LTO), Si, Sn, Li, Zn, Mg, Cd, Ce, Ni 또는 Fe인 금속류(Me); 상기 금속류(Me)로 구성된 합금류; 상기 금속류(Me)의 산화물; 및 상기 금속류(Me)와 탄소와의 복합체로 이루어진 군으로부터 선택된 1종 또는 2종 이상의 음극 활물질을 들 수 있다.
상기 바인더는 도전재, 활물질 및 집전체 간의 결합에 조력하는 성분으로서, 이러한 바인더의 예로는, 폴리비닐리덴플루오라이드(PVDF), 폴리비닐알코올, 카르복시메틸셀룰로우즈(CMC), 전분, 히드록시프로필셀룰로우즈, 재생 셀룰로우즈, 폴리비닐피롤리돈, 테트라플루오로에틸렌, 폴리에틸렌, 폴리프로필렌, 에틸렌-프로필렌-디엔 폴리머(EPDM), 술폰화-EPDM, 스티렌-부타디엔 고무, 불소 고무, 이들의 다양한 공중합체 등을 들 수 있다.
상기 도전재는 음극 활물질의 도전성을 더욱 향상시키기 위한 성분으로서, 이러한 도전재는 당해 전지에 화학적 변화를 유발하지 않으면서 도전성을 가진 것이라면 특별히 제한되는 것은 아니며, 예를 들어, 천연 흑연이나 인조 흑연 등의 흑연; 아세틸렌 블랙, 케첸 블랙, 채널 블랙, 퍼네이스 블랙, 램프 블랙, 서멀 블랙 등의 카본블랙; 탄소 섬유나 금속 섬유 등의 도전성 섬유; 불화 카본, 알루미늄, 니켈 분말 등의 금속 분말; 산화아연, 티탄산 칼륨 등의 도전성 위스키; 산화티탄 등의 도전성 금속 산화물; 폴리페닐렌 유도체 등의 도전성 소재 등이 사용될 수 있다.
상기 용매는 물 또는 NMP(N-methyl-2-pyrrolidone) 등의 유기용매를 포함할 수 있으며, 상기 음극 활물질, 및 선택적으로 바인더 및 도전재 등을 포함할 때 바람직한 점도가 되는 양으로 사용될 수 있다.
(3) 세퍼레이터
상기 세퍼레이터로는 종래에 세퍼레이터로 사용된 통상적인 다공성 고분자 필름, 예를 들어 에틸렌 단독중합체, 프로필렌 단독중합체, 에틸렌/부텐 공중합체, 에틸렌/헥센 공중합체 및 에틸렌/메타크릴레이트 공중합체 등과 같은 폴리올레핀계 고분자로 제조한 다공성 고분자 필름을 단독으로 또는 이들을 적층하여 사용할 수 있으며, 또는 통상적인 다공성 부직포, 예를 들어 고융점의 유리 섬유, 폴리에틸렌테레프탈레이트 섬유 등으로 된 부직포를 사용할 수 있으나, 이에 한정되는 것은 아니다.
이하, 구체적인 실시예를 통해 본 발명을 보다 구체적으로 설명한다. 다만, 하기 실시예는 본 발명의 이해를 돕기 위한 예시일 뿐, 본 발명의 범위를 한정하는 것은 아니다. 본 기재의 범주 및 기술사상 범위 내에서 다양한 변경 및 수정이 가능함은 당업자에게 있어서 명백한 것이며, 이러한 변형 및 수정이 첨부된 특허청구범위에 속하는 것은 당연한 것이다.
[실시예]
1. 실시예 1
(1) 리튬 이차 전지용 전해질 제조
유기 용매로서 에틸렌 카보네이트 (EC)와 에틸 메틸 카보네이트(EMC)를 30:70 부피비로 혼합하고, LiPF6가 1M 농도가 되도록 첨가하여 비수성 유기용매를 제조하였다. 상기 비수성 유기용매 99.3 g에 화학식 1E-1로 표시되는 화합물 0.5g과 화학식 2A-1로 표시되는 올리고머(중량평균분자량(Mw)=7,400g/mol, p'= 5, q= 10) 0.2g을 첨가하여 리튬 이차 전지용 전해질을 제조하였다.
(2) 리튬 이차 전지 제조
양극 활물질(LiNi0.8Co0.1Mn0.1O2; NCM)과 도전재인 카본 블랙(carbon black), 바인더인 PVDF를 97:1.5:1.5 중량비로 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 양극 활물질 슬러리를 제조하였다. 상기 양극 활물질 슬러리를 두께가 20㎛ 정도의 양극 집전체인 알루미늄(Al) 박막에 도포 후 건조시킨 뒤, 롤 프레스(roll press)를 실시하여 양극을 제조하였다.
음극 활물질 (탄소 분말:SiO=90:5 중량비)과 바인더인 스티렌부타디엔고무(SBR), 증점제인 카르복시메틸셀룰로우즈(CMC) 및 도전재인 카본 블랙(carbon black)을 95:3:1:1 중량비로 용매인 N-메틸-2-피롤리돈(NMP)에 첨가하여 음극 활물질 슬러리를 제조하였다. 상기 음극 활물질 슬러리를 두께가 10㎛의 음극 집전체인 구리(Cu) 박막에 도포 후 건조시킨 뒤, 롤 프레스(roll press)를 실시하여 음극을 제조하였다.
상기 양극, 음극 및 폴리프로필렌/폴리에틸렌/폴리프로필렌 (PP/PE/PP) 3층으로 이루어진 세퍼레이터를 이용하여 전극조립체를 제조한 후, 이를 파우치형 이차 전지 케이스에 수납한 다음, 상기 파우치형 이차 전지 케이스 내부에 상기 리튬 이차 전지용 전해질을 주입하여 리튬 이차 전지를 제조하였다.
2. 실시예 2
비수성 유기용매 94.8 g에 화학식 1E-1로 표시되는 화합물 5.0g과 화학식 2A-1로 표시되는 올리고머(중량평균분자량(Mw)=7,400g/mol, p'=5, q=10) 0.2g을 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지용 액체 전해질 및 리튬 이차 전지를 제조하였다.
3. 실시예 3
화학식 1E-1로 표시되는 화합물 0.5g 대신 화학식 1B-1로 표시되는 화합물 0.5 g 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지용 액체 전해질 및 리튬 이차 전지를 제조하였다.
4. 실시예 4
화학식 1E-1로 표시되는 화합물 5.0g 대신 화학식 1B-1로 표시되는 화합물 5.0 g 첨가한 것을 제외하고는 실시예 2와 동일한 방법으로 리튬 이차 전지용 액체 전해질 및 리튬 이차 전지를 제조하였다.
5. 실시예 5
올리고머인 화학식 2A-1로 표시되는 올리고머 0.2g 대신, 화학식 2B-1로 표시되는 올리고머(중량평균분자량(Mw)=7,570g/mol, p'=5, q=10) 0.2g 첨가한 것을 제외하고는 실시예 3과 동일한 방법으로 리튬 이차 전지용 액체 전해질 및 리튬 이차 전지를 제조하였다.
6. 실시예 6
비수성 유기용매 94.5 g에 화학식 1B-1로 표시되는 화합물 0.5g을 첨가하고, 화학식 2A-1로 표시되는 올리고머(중량평균분자량(Mw)=7,400g/mol, p'=5, q=10) 5.0 g을 첨가한 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지용 액체 전해질 및 리튬 이차 전지를 제조하였다.
7. 실시예 7
올리고머인 화학식 2A-1로 표시되는 올리고머 대신 화학식 2B-1로 표시되는 올리고머(중량평균분자량(Mw)=7,570g/mol, p'=5, q=10) 5g을 첨가한 것을 제외하고는 실시예 6와 동일한 방법으로 리튬 이차 전지용 액체 전해질 및 리튬 이차 전지를 제조하였다.
[비교예]
1. 비교예 1
리튬 이차 전지용 전해질을 제조할 때, 화학식 1E-1로 표시되는 화합물을 첨가하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지용 전해질 및 리튬 이차 전지를 제조하였다.
2. 비교예 2
리튬 이차 전지용 전해질을 제조할 때, 화학식 2A-1로 표시되는 올리고머를 첨가하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지용 전해질 및 리튬 이차 전지를 제조하였다.
3. 비교예 3
리튬 이차 전지용 전해질을 제조할 때, 화학식 1E-1로 표시되는 화합물 및 화학식 2A-1로 표시되는 올리고머를 모두 첨가하지 않은 것을 제외하고는 실시예 1과 동일한 방법으로 리튬 이차 전지용 전해질 및 리튬 이차 전지를 제조하였다.
[실험예]
1. 실험예 1: 고온(45℃) 용량 유지율 및 저항 증가율 측정
실시예 1 내지 7 및 비교예 1 내지 3에 따라 제조된 리튬 이차 전지에 대하여 200 mA 전류(0.1 C rate)로 포메이션(formation)을 진행한 뒤, 이때의 방전 용량을 초기 용량으로 설정하고, 이때 측정된 저항을 초기 저항으로 설정하였다. 이후, 4.2 V, 660 mA (0.33 C, 0.05 C cut-off) CC/CV 충전과 2.5 V, 660 mA (0.33 C) CC 방전을 고온(45℃)에서 각각 200회 진행한 후 방전 용량과 저항을 측정하였다. 이때 측정된 200번째 방전 용량과 초기 용량을 비교하여 용량 유지율을 계산하였고, 이때 측정된 저항과 초기 저항을 비교하여 저항 증가율을 계산하고 그 결과를 표 1에 나타내었다.
용량 유지율(%) 저항 증가율(%)
실시예 1 98.0 1.5
실시예 2 89.2 10.2
실시예 3 98.5 1.2
실시예 4 95.2 5.4
실시예 5 96.5 3.5
실시예 6 92.1 9.5
실시예 7 90.2 12.7
비교예 1 82.4 25.4
비교예 2 85.3 22.9
비교예 3 74.5 35.7
상기 표 1을 참조하면, 실시예에 따라 제조된 리튬 이차 전지의 용량 유지율이 비교예에 따라 제조된 이차전지에 비하여 모두 높은 반면, 저항 증가율은 모두 낮은 것을 확인할 수 있다.
2. 실험예 2: 고온(60℃) 저장 특성 측정
실시예 1 내지 7 및 비교예 1 내지 3에 따라 제조된 리튬 이차 전지에 대하여 0.33C rate로 4.2V까지 정전류/정전압 조건으로 충전 및 0.05C cut off 충전을 실시하고, 0.33C 2.5V로 방전한 뒤의 방전 용량을 초기 용량으로 설정하고, 이 때의 저항을 초기 저항으로 설정하였다. 이어서 0.33C rate로 4.2V까지 정전류/정전압 조건 충전 및 0.05C cut off 충전을 실시하고, 60℃에서 10주(10 weeks)간 보관한 뒤의 잔존 용량 및 저항을 측정하였다. 이때, 측정된 방전 용량과 초기 용량을 비교하여 용량 유지율을 계산하였고, 이때, 측정된 저항과 초기 저항을 비교하여 저항 증가율을 계산하여 표 2에 나타내었다.
용량 유지율 (%) 저항 증가율 (%)
실시예 1 95.4 5.4
실시예 2 80.3 21.2
실시예 3 97.5 3.5
실시예 4 91.2 10.5
실시예 5 92.5 8.1
실시예 6 84.7 5.4
실시예 7 81.5 25.8
비교예 1 72.9 36.5
비교예 2 75.2 32.4
비교예 3 67.5 49.2
상기 표 2를 참조하면, 실시예에 따라 제조된 리튬 이차 전지가 비교예에 따라 제조된 리튬 이차전지에 비하여 고온 저장 시 잔존 용량 유지율은 높으면서도, 저항 증가율은 낮은 것을 확인할 수 있다.
3. 실험예 3: 고온 안전성 실험
실시예 1 내지 7 및 비교예 1 내지 3에 따라 제조된 리튬 이차 전지에 대하여, 60℃ 온도 조건에서 SOC 100% 상태(4.15 V)로 10주(10weeks) 동안 고온 저장하였다. 이후, 10주 후, 초기(1주)에 측정된 전지의 부피를 기준으로 부피 증가율을 측정하였다. 그 결과를 하기 표 3에 나타내었다.
60℃ 저장 10주 후 부피 증가율(%)
실시예 1 7.5
실시예 2 25.4
실시예 3 5.1
실시예 4 12.4
실시예 5 10.5
실시예 6 18.4
실시예 7 28.5
비교예 1 39.5
비교예 2 38.4
비교예 3 50.6
상기 표 3을 참조하면, 실시예에 따라 제조된 리튬 이차 전지가 비교예에 따라 제조된 리튬 이차전지에 비하여 고온 저장 시에도 부피 증가율이 낮아 고온에서 장기간 저장하는 경우에도, 전지의 안전성이 더 우수한 것을 확인할 수 있다.
4. 실험예 4: 음이온 안정화 평가
실시예 1, 2, 3 및 6에서 제조된 리튬 이차전지용 전해질과 비교예 1 내지 3에서 제조된 리튬 이차 전지용 전해질을 각각 60℃에서 2주간 보관한 후, NMR 분석기(1H Bruker 700MHz NMR, 용매 테트라메틸실란(TMS))를 이용하여 전해질 내의 PO2F2 피크의 적분값(integration value)을 확인하여 음이온 안정화도를 평가하였다. 그 결과를 하기 표 4에 나타내었다. 이때, PO2F2 피크의 적분값(integration value)은 그 수치가 높을수록 PF6 - 음이온이 더 분해되어 불안정하다는 것을 의미한다.
PO2F2 피크의 적분값 (integration value)
실시예 1 0.95
실시예 2 0.71
실시예 3 1.02
실시예 6 0.75
비교예 1 2.54
비교예 2 1.01
비교예 3 3.12
상기 실시예 1, 2, 3, 6에 따라 제조된 리튬 이차 전지용 전해질의 경우 비교예 1 내지 3에서 제조된 리튬 이차 전지용 전해질에 비하여 음이온 안정화도가 더 높은 것을 확인할 수 있다.

Claims (13)

  1. 하기 화학식 1로 표시되는 화합물을 포함하는 첨가제;
    하기 화학식 2로 표시되는 단위를 포함하고, 말단에 아크릴레이트기를 포함하는 올리고머;
    리튬염; 및 유기용매;를 포함하는 리튬 이차 전지용 전해질:
    [화학식 1]
    Figure PCTKR2020000879-appb-I000026
    상기 화학식 1에서,
    상기 R1은 할로겐 원소가 치환 또는 비치환된 탄소수 1 내지 5인 알킬기, 할로겐 원소가 치환 또는 비치환된 탄소수 1 내지 5인 알콕시기, 1 내지 3의 탄소수의 알킬기가 치환 또는 비치환된 페닐기 및 1 내지 5의 탄소수의 알킬기가 치환 또는 비치환된 아민기로 이루어진 군에서 선택되는 것임.
    [화학식 2]
    Figure PCTKR2020000879-appb-I000027
    상기 화학식 2에서,
    상기 Ra, Rb, Rc 및 Rd는 각각 독립적으로 불소 원소 또는 불소 원소로 치환 또는 비치환된 탄소수 1 내지 3의 알킬기이고, 상기 p는 1 내지 50인 정수임.
  2. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 하기 화학식 1A 내지 1E로 표시되는 화합물들로 이루어지는 군에서 선택되는 적어도 하나 이상인 것인 리튬 이차 전지용 전해질:
    [화학식 1A]
    Figure PCTKR2020000879-appb-I000028
    상기 화학식 1A에서, 상기 n은 0 내지 4인 정수이다.
    [화학식 1B]
    Figure PCTKR2020000879-appb-I000029
    상기 화학식 1B에서, 상기 m은 0 내지 4인 정수이고, 상기 X, X' 및 X"는 각각 독립적으로 수소 또는 할로겐 원소 중 하나이며, 적어도 하나 이상은 할로겐 원소이다.
    [화학식 1C]
    Figure PCTKR2020000879-appb-I000030
    상기 화학식 1C에서, 상기 k는 0 내지 4인 정수이고, 상기 Y, Y' 및 Y"는 각각 독립적으로 수소 또는 할로겐 원소 중 하나이며, 적어도 하나 이상은 할로겐 원소이다.
    [화학식 1D]
    Figure PCTKR2020000879-appb-I000031
    상기 화학식 1D에서, 상기 s는 0 내지 2인 정수이다.
    [화학식 1E]
    Figure PCTKR2020000879-appb-I000032
    상기 화학식 1E에서, 상기 R2 및 R3는 각각 독립적으로, 수소 또는 탄소수 1 내지 5의 알킬기이다.
  3. 제2항에 있어서,
    상기 화학식 1A로 표시되는 화합물은 하기 화학식 1A-1 내지 하기 1A-3으로 표시되는 화합물들로 이루어지는 군에서 선택되는 적어도 하나 이상인 것인 리튬 이차 전지용 전해질.
    [화학식 1A-1]
    Figure PCTKR2020000879-appb-I000033
    [화학식 1A-2]
    Figure PCTKR2020000879-appb-I000034
    [화학식 1A-3]
    Figure PCTKR2020000879-appb-I000035
  4. 제2항에 있어서,
    상기 화학식 1B로 표시되는 화합물은 하기 화학식 1B-1로 표시되는 화합물인 것인 리튬 이차 전지용 전해질.
    [화학식 1B-1]
    Figure PCTKR2020000879-appb-I000036
  5. 제2항에 있어서,
    상기 화학식 1C로 표시되는 화합물은 하기 화학식 1C-1 내지 1C-5로 표시되는 화합물들로 이루어지는 군에서 선택되는 적어도 하나 이상인 것인 리튬 이차 전지용 전해질.
    [화학식 1C-1]
    Figure PCTKR2020000879-appb-I000037
    [화학식 1C-2]
    Figure PCTKR2020000879-appb-I000038
    [화학식 1C-3]
    Figure PCTKR2020000879-appb-I000039
    [화학식 1C-4]
    Figure PCTKR2020000879-appb-I000040
    [화학식 1C-5]
    Figure PCTKR2020000879-appb-I000041
  6. 제2항에 있어서,
    상기 화학식 1D로 표시되는 화합물은 하기 화학식 1D-1로 표시되는 화합물인 것인 리튬 이차 전지용 전해질.
    [화학식 1D-1]
    Figure PCTKR2020000879-appb-I000042
  7. 제2항에 있어서,
    상기 화학식 1E로 표시되는 화합물은 하기 화학식 1E-1로 표시되는 화합물인 것인 리튬 이차 전지용 전해질.
    [화학식 1E-1]
    Figure PCTKR2020000879-appb-I000043
  8. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 상기 리튬 이차 전지용 전해질 100 중량부에 대하여 0.1 중량부 내지 5 중량부로 포함되는 것인 리튬 이차 전지용 전해질.
  9. 제1항에 있어서,
    상기 화학식 1로 표시되는 화합물은 상기 리튬 이차 전지용 전해질 100 중량부에 대하여 0.1 중량부 내지 3 중량부로 포함되는 것인 리튬 이차 전지용 전해질.
  10. 제1항에 있어서,
    상기 올리고머는, 하기 화학식 2A 또는 2B로 표시되는 올리고머인 것인 리튬 이차 전지용 전해질:
    [화학식 2A]
    Figure PCTKR2020000879-appb-I000044
    상기 화학식 2A에서,
    상기 Ra', Rb', Rc' 및 Rd'는 각각 독립적으로 불소 원소 또는 불소 원소로 치환 또는 비치환된 탄소수 1 내지 3의 알킬기이고,
    상기 Re는 지방족 탄화수소기 또는 방향족 탄화수소기고,
    상기 Rf는 불소 원소로 치환 또는 비치환된 탄소수 1 내지 5의 알킬렌기이고,
    상기 R'는 수소 또는 탄소수 1 내지 3의 알킬기이며,
    상기 o는 1 내지 3인 정수이고,
    상기 p'는 1 내지 50인 정수이고,
    상기 q는 1 내지 15인 정수이다.
    [화학식 2B]
    Figure PCTKR2020000879-appb-I000045
    상기 화학식 2B에서,
    상기 Ra", Rb", Rc" 및 Rd"는 각각 독립적으로 불소 원소 또는 불소 원소로 치환 또는 비치환된 탄소수 1 내지 3의 알킬기이고,
    상기 Re'는 지방족 탄화수소기 또는 방향족 탄화수소기고,
    상기 Rf'는 불소 원소로 치환 또는 비치환된 탄소수 1 내지 5의 알킬렌기이고,
    상기 r은 1 내지 2인 정수이고,
    상기 r'는 1 내지 3인 정수이고,
    상기 p''는 1 내지 50인 정수이고,
    상기 q'는 1 내지 15인 정수이다.
  11. 제1항에 있어서,
    상기 올리고머는 상기 리튬 이차 전지용 전해질 100 중량부에 대하여 0.1 중량부 내지 5 중량부로 포함되는 것인 리튬 이차 전지용 전해질.
  12. 제1항에 있어서,
    상기 리튬염은 LiPF6 및 LiBF4로 이루어진 군에서 선택되는 하나 이상을 포함하는 것인 리튬 이차 전지용 전해질.
  13. 양극; 음극; 세퍼레이터; 및 청구항 1에 따른 리튬 이차 전지용 전해질을 포함하는 리튬 이차 전지.
PCT/KR2020/000879 2019-01-17 2020-01-17 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지 WO2020149705A1 (ko)

Priority Applications (6)

Application Number Priority Date Filing Date Title
ES20741559T ES2941245T3 (es) 2019-01-17 2020-01-17 Electrolito para batería secundaria de litio y batería secundaria de litio que comprende el mismo
US17/416,218 US20220077498A1 (en) 2019-01-17 2020-01-17 Electrolyte for Lithium Secondary Battery and Lithium Secondary Battery Including the Same
EP20741559.7A EP3883037B1 (en) 2019-01-17 2020-01-17 Electrolyte for lithium secondary battery and lithium secondary battery including the same
CN202080006991.8A CN113711413B (zh) 2019-01-17 2020-01-17 锂二次电池用电解质以及包含其的锂二次电池
PL20741559.7T PL3883037T3 (pl) 2019-01-17 2020-01-17 Elektrolit dla akumulatora litowego i zawierający go akumulator litowy
JP2021540012A JP7226891B2 (ja) 2019-01-17 2020-01-17 リチウム二次電池用電解質及びこれを含むリチウム二次電池

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
KR10-2019-0006405 2019-01-17
KR20190006405 2019-01-17
KR10-2020-0005939 2020-01-16
KR1020200005939A KR102455341B1 (ko) 2019-01-17 2020-01-16 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지

Publications (1)

Publication Number Publication Date
WO2020149705A1 true WO2020149705A1 (ko) 2020-07-23

Family

ID=71613792

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2020/000879 WO2020149705A1 (ko) 2019-01-17 2020-01-17 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지

Country Status (7)

Country Link
US (1) US20220077498A1 (ko)
EP (1) EP3883037B1 (ko)
JP (1) JP7226891B2 (ko)
ES (1) ES2941245T3 (ko)
HU (1) HUE061769T2 (ko)
PL (1) PL3883037T3 (ko)
WO (1) WO2020149705A1 (ko)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217655A (ja) 2002-01-28 2003-07-31 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いたリチウム二次電池
CN103000942A (zh) * 2011-09-15 2013-03-27 上海纳米技术及应用国家工程研究中心有限公司 促进石墨负极生成固体电解质界面膜的添加剂及应用
JP2014127354A (ja) * 2012-12-26 2014-07-07 Fujifilm Corp 非水二次電池用電解液および非水二次電池、電解液用添加剤
KR20180026358A (ko) * 2016-09-02 2018-03-12 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
KR20180065958A (ko) * 2016-12-08 2018-06-18 주식회사 엘지화학 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4124487B2 (ja) 1996-12-30 2008-07-23 イドロ―ケベック 五員環アニオン塩又はテトラアザペンタレン誘導体と、イオン伝導性物質としてのそれらの使用
JP2002280063A (ja) 2001-03-15 2002-09-27 Sony Corp 電解質および電池
JP2005327566A (ja) 2004-05-13 2005-11-24 Daiso Co Ltd 架橋高分子電解質を用いた電池
JP5394610B2 (ja) 2007-02-20 2014-01-22 パナソニック株式会社 非水電解質二次電池
JP2014235986A (ja) 2013-06-05 2014-12-15 富士フイルム株式会社 非水二次電池用電解液および非水二次電池
US9954251B2 (en) * 2015-02-17 2018-04-24 Wildcat Discovery Technologies, Inc Electrolyte formulations for electrochemical cells containing a silicon electrode
WO2018106078A1 (ko) 2016-12-08 2018-06-14 주식회사 엘지화학 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지
WO2018131952A1 (ko) * 2017-01-12 2018-07-19 주식회사 엘지화학 비수 전해액 및 이를 포함하는 리튬 이차전지
US10777849B2 (en) * 2017-01-12 2020-09-15 Lg Chem, Ltd. Non-aqueous electrolyte solution and lithium secondary battery including the same
CN106935906A (zh) * 2017-04-28 2017-07-07 张家港市国泰华荣化工新材料有限公司 一种功能型聚合物电解质及其在锂离子电池中的应用
KR102515099B1 (ko) * 2019-10-07 2023-03-27 삼성에스디아이 주식회사 리튬 이차 전지용 전해액 및 이를 포함하는 리튬 이차 전지

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003217655A (ja) 2002-01-28 2003-07-31 Mitsubishi Chemicals Corp 非水系電解液及びそれを用いたリチウム二次電池
CN103000942A (zh) * 2011-09-15 2013-03-27 上海纳米技术及应用国家工程研究中心有限公司 促进石墨负极生成固体电解质界面膜的添加剂及应用
JP2014127354A (ja) * 2012-12-26 2014-07-07 Fujifilm Corp 非水二次電池用電解液および非水二次電池、電解液用添加剤
KR20180026358A (ko) * 2016-09-02 2018-03-12 주식회사 엘지화학 젤 폴리머 전해질 및 이를 포함하는 리튬 이차전지
KR20180065958A (ko) * 2016-12-08 2018-06-18 주식회사 엘지화학 리튬 이차전지용 전해질 및 이를 포함하는 리튬 이차전지

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
ZHANG, Q. ET AL.: "Recent advances in solid polymer electrolytes for lithium batteries", NANO RESEARCH, vol. 10, no. 12, 2017, pages 4139 - 4174, XP036437481, DOI: 10.1007/s12274-017-1763-4 *

Also Published As

Publication number Publication date
US20220077498A1 (en) 2022-03-10
EP3883037B1 (en) 2023-03-01
EP3883037A1 (en) 2021-09-22
ES2941245T3 (es) 2023-05-19
JP2022516773A (ja) 2022-03-02
PL3883037T3 (pl) 2023-05-08
JP7226891B2 (ja) 2023-02-21
EP3883037A4 (en) 2022-03-30
HUE061769T2 (hu) 2023-08-28

Similar Documents

Publication Publication Date Title
WO2020130575A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2020149678A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2018093152A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021033987A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2021167428A1 (ko) 리튬 이차 전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2021040388A1 (ko) 비수 전해질 및 이를 포함하는 리튬 이차전지
WO2019164164A1 (ko) 리튬 이차전지 전해액 및 이를 포함하는 리튬 이차전지
WO2020036336A1 (ko) 리튬 이차 전지용 전해질
WO2023085843A1 (ko) 비수 전해질용 첨가제를 포함하는 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2022092831A1 (ko) 리튬 이차전지용 전해액 및 이를 포함하는 리튬 이차전지
WO2020222469A1 (ko) 리튬 이차 전지용 비수 전해질 및 이를 포함하는 리튬 이차 전지
WO2018131952A1 (ko) 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2020149677A1 (ko) 비수전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수전해액 및 리튬 이차전지
WO2020153791A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2021040392A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2023063648A1 (ko) 리튬 이차전지용 비수 전해액 및 이를 포함하는 리튬 이차전지
WO2022211320A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수성 전해액 및 리튬 이차전지
WO2021241976A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2021194220A1 (ko) 이차전지용 전해액 첨가제, 이를 포함하는 리튬 이차전지용 비수 전해액 및 리튬 이차전지
WO2020096411A1 (ko) 리튬 이차전지용 비수성 전해액 및 이를 포함하는 리튬 이차전지
WO2020190076A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2019103496A1 (ko) 리튬 이차전지용 비수전해액 및 이를 포함하는 리튬 이차전지
WO2020085726A1 (ko) 리튬 이차 전지용 전극의 제조방법 및 이를 이용하여 제조한 리튬 이차 전지용 전극
WO2020149705A1 (ko) 리튬 이차 전지용 전해질 및 이를 포함하는 리튬 이차 전지
WO2019009595A1 (ko) 전해질 첨가제 및 이를 포함하는 리튬 이차전지용 비수전해액

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20741559

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020741559

Country of ref document: EP

Effective date: 20210615

ENP Entry into the national phase

Ref document number: 2021540012

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE