WO2020149033A1 - 自動分析装置および自動分析システム、ならびに検体の自動分析方法 - Google Patents

自動分析装置および自動分析システム、ならびに検体の自動分析方法 Download PDF

Info

Publication number
WO2020149033A1
WO2020149033A1 PCT/JP2019/047053 JP2019047053W WO2020149033A1 WO 2020149033 A1 WO2020149033 A1 WO 2020149033A1 JP 2019047053 W JP2019047053 W JP 2019047053W WO 2020149033 A1 WO2020149033 A1 WO 2020149033A1
Authority
WO
WIPO (PCT)
Prior art keywords
sample
measurement
automatic
unit
sequence
Prior art date
Application number
PCT/JP2019/047053
Other languages
English (en)
French (fr)
Inventor
元 末成
正志 圷
三島 弘之
武 瀬戸丸
晃啓 安居
Original Assignee
株式会社日立ハイテク
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社日立ハイテク filed Critical 株式会社日立ハイテク
Priority to JP2020566136A priority Critical patent/JP7059403B2/ja
Priority to EP19909640.5A priority patent/EP3913373B1/en
Priority to CN201980077788.7A priority patent/CN113272653B/zh
Priority to US17/284,763 priority patent/US20210389337A1/en
Publication of WO2020149033A1 publication Critical patent/WO2020149033A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/0092Scheduling
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/00584Control arrangements for automatic analysers
    • G01N35/0092Scheduling
    • G01N35/0095Scheduling introducing urgent samples with priority, e.g. Short Turn Around Time Samples [STATS]
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/5302Apparatus specially adapted for immunological test procedures
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N35/02Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor using a plurality of sample containers moved by a conveyor system past one or more treatment or analysis stations
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N35/00Automatic analysis not limited to methods or materials provided for in any single one of groups G01N1/00 - G01N33/00; Handling materials therefor
    • G01N2035/00178Special arrangements of analysers
    • G01N2035/00326Analysers with modular structure

Definitions

  • the present invention relates to an automatic analyzer and an automatic analysis system for analyzing components in a biological sample (hereinafter referred to as a sample) such as blood and urine, and an automatic sample analysis method.
  • a biological sample hereinafter referred to as blood and urine
  • Patent Document 1 discloses a plurality of units arranged on the circumference.
  • the number of reaction detection tubes is N in the device that moves the reaction detection tubes for one analysis cycle, performs sample dispensing, reagent dispensing, and wash the reaction detection tubes while measuring the reaction detection tubes while moving.
  • N ⁇ 1 A ⁇ M (A is an integer of 2 or more), or there is no common factor other than 1 between N and M, where M is the number of reaction detection tubes that move in one analysis cycle.
  • M is described that M ⁇ N/2.
  • Automatic analyzers that analyze samples using reagents employ different measurement methods depending on the item of the component you want to measure.
  • a biochemical automatic analyzer that uses an analysis method (colorimetric analysis) that uses a reagent that reacts with the analyte component in the sample to change the color of the reaction solution, or is directly or indirectly specific to the analyte component.
  • an automatic immune analyzer that uses an analysis method (immunological analysis) in which a labeled substance is added to a substance that binds to a labeled substance, and the labeled substance is counted.
  • an automatic immune analyzer has a measurement sequence consisting of a series of operations such as sample sampling, reagent addition, stirring, incubation, and electric signal measurement in order to analyze the target component in the sample.
  • an automatic analyzer it is general to stagger the start timing of the measurement sequence by a fixed amount of time and discretely start it to analyze multiple inspection items in parallel in parallel.
  • An example of such an automatic analyzer is shown in Patent Document 1.
  • an urgent analysis item that requires a short reaction time (hereinafter sometimes referred to as a STAT item) is an analysis item used for urgent sample measurement and the like, and always requires a short turnaround time. ing.
  • the reaction cells are sequentially distributed to sample dispensing, reagent dispensing, stirring, and spectrophotometer. Therefore, there is only one measurement sequence, and scheduling can be performed by adjusting the dispensing timing as a reference.
  • a measurement sequence (A) with a long reaction time of 18 minutes and a measurement sequence (B) with a short reaction time of 9 minutes In the case of mixed, the measurement units are mainly scheduled. This is because the measurement time is longer than the operation time of other mechanism parts. Therefore, in the case where the measurement sequence (A) is continuously measured, the schedule of the measurement sequence (B) is established 9 minutes later, and 9 minutes are waited at the dispensing position.
  • the load is judged to be lower on the immunoassay device, and even if it is transferred to the immunoassay device side first, the load is waited at the dispensing position of the immunoassay device and the time until it is transferred to the biochemical analysis device side.
  • the turnaround time will be worsened due to the extension of the.
  • the "high priority” is a flag given when it is necessary to perform the first dispensing in order to avoid the situation that the amount of the sample is too small to perform the analysis in a certain sample, It is given to the item prioritized over the dispensing for other analysis items.
  • the present invention has been made in view of the above-mentioned problems, and even when items having different measurement sequences coexist, automatic analysis capable of suppressing the turnaround time of measurement from being extremely deteriorated.
  • An apparatus, an automatic analysis system, and an automatic sample analysis method are provided.
  • the present invention includes a plurality of means for solving the above problems, but one example thereof is an automatic analyzer for analyzing a sample, which is a reaction liquid obtained by mixing and reacting the sample with a reagent.
  • An incubator equipped with a plurality of reaction vessels for holding, a detection unit for measuring the physical properties of the reaction solution, and a planning unit for determining the measurement order of the samples requested to be executed with respect to the detection unit,
  • the detection unit there are items having different measurement times, and when the planning unit continuously measures the items of the sequence having the longest measurement time at least twice or more times a predetermined number of times, It is characterized in that at least one free cycle is provided after the measurement of the number of times or more.
  • FIG. 3 is a diagram showing a partial functional block of a computer for overall management and a flow of processing in the automatic analysis system of the example. It is a figure which shows the outline of the sample rack in the automatic analysis system of an Example. It is explanatory drawing which shows an example of the rack conveyance destination with respect to the analysis request item in the automatic analysis system of an Example. It is explanatory drawing which shows an example of the rack conveyance destination with respect to the analysis request item in the automatic analysis system of an Example.
  • FIG. 6 is a diagram showing a dispensing timing in the case of measuring a sequence item having a long reaction time after continuously measuring a sequence item having a long reaction time in the automatic analysis system of the example.
  • FIG. 6 is a diagram showing a dispensing timing in the case of measuring an item of a sequence having a short reaction time after continuously measuring an item of a sequence having a long reaction time in the automatic analysis system of the example.
  • FIG. 7 is a diagram showing the setting of request items for general samples in the conditions for verifying the turnaround time of STAT (emergency) samples in the automatic analysis system of the example.
  • FIG. 8 is a diagram showing setting of request items for STAT samples in the conditions for verifying turnaround time in STAT samples in the automatic analysis system of the example.
  • FIG. 8 is a comparative diagram showing an example of a turnaround time when a STAT sample is present in the conventional automatic analysis system for comparison with the automatic analysis system of the example.
  • FIG. 6 is a comparative diagram showing an example of a turnaround time in the case where a STAT sample is present when an empty cycle is set once every 5 times in the automatic analysis system of the example.
  • FIG. 7 is a comparative diagram showing an example of a turnaround time in the case where a STAT sample is present when an empty cycle is set once every 10 times in the automatic analysis system of the example. It is a flowchart which shows the process of the planning part of the computer for total management in the automatic analysis system of an Example.
  • 5 is a screen showing an example of a method for setting a schedule of idle cycles in the automatic analysis system of the example. It is a figure explaining the method of automatically calculating the setting of an empty cycle in the automatic analysis system of an example.
  • Embodiments of the automatic analyzer and the automatic analysis system of the present invention and the automatic analysis method of a sample will be described with reference to FIGS. 1 to 17.
  • FIG. 1 is a diagram showing the overall configuration of the automatic analysis system of this embodiment.
  • the automatic analysis system 100 shown in FIG. 1 includes a transport module 310, a biochemical module 110 for analyzing a sample, an immune module 210, and a computer 9 for overall management.
  • the transport module 310 is a device that supplies a sample container containing a sample to the biochemical module 110 and the immune module 210, and includes a sample rack loading unit 3, an emergency sample container loading unit 4, a sample/rack ID reading unit 5, and a transport line 6.
  • the sample rack standby disk 7, the sample rack storage section 8, and the transport module control section 310a are included.
  • the transport module 310 is connected to the biochemical module 110 and the immunological module 210 on both sides via the sample rack standby disk 7.
  • the biochemical module 110 is shown on the right side of FIG. 1 and the immune module 210 is shown on the left side.
  • the biochemical module is shown on the left side
  • the immune module is shown on the right side
  • the analyzers on both sides are shown. May both be biochemical modules or both may be immune modules. Further, three or more units may be connected, and in the present invention, at least two units are desirable.
  • the sample rack 1 installed in the sample rack loading unit 3 is transported to the sample rack standby disk 7 by the transport line 6.
  • a sample presence/absence determination sensor (not shown) is provided in the middle of the transport line 6, and the presence or absence of the sample container 2 on the sample rack 1 is recognized. If it is determined that the sample container 2 exists, the sample/rack ID reading unit 5 reads the sample barcode (not shown) attached on the sample container 2 and recognizes the identification information of the sample container 2.
  • a patient is specified based on this identification information, the contents of the request for the inspection item are collated with a host of higher rank, and the dispensing is scheduled.
  • the sample rack standby disk 7 has a rotor structure that makes a circular motion, and has slots for radially holding a plurality of sample racks 1 on the outer circumference of which a plurality of sample containers 2 are placed concentrically. By rotating this slot with a motor, an arbitrary sample rack 1 is configured to be carried in and out of the biochemical module 110 and the immunity module 210 of the request destination. With such a structure, it is not always necessary to sequentially process the sample racks 1 put in first. That is, if there is a sample rack 1 with a high priority, it can be processed first.
  • the transport line 6 is connected to a certain point on the radial circumference of the sample rack standby disk 7 so that the sample rack 1 can be loaded and unloaded. Assuming that this one point is at a position of 0 degrees on the circumference, a sampling line 14 for drawing into a biochemical module 110 and an immunity module 210 described later at a position of 90 degrees on the circumference from the position where the transport line 6 is connected, 20 is connected, and the sample rack 1 is loaded and unloaded.
  • Which of the left and right analyzers is transported via the sample rack standby disk 7 is determined first by the load of the analyzer which is calculated from the load of the analysis item (test time x number of test items). Be transported.
  • the sample rack 1 that has been dispensed by the biochemistry module 110 and the immunization module 210 can wait for the output of the measurement result in the sample rack standby disk 7 and can be subjected to automatic retesting or the like as necessary.
  • the sample rack is transferred to the sample rack storage section 8 via the transfer line 6.
  • the transport module controller 310a transports an appropriate sample rack 1 from the sample rack standby disk 7 to the sampling lines 14 and 20, and transports the sample rack 1 from the sampling lines 14 and 20 to the sample rack standby disk 7. Is a part for executing the control of the above, and controls the operation of each mechanism based on a command from the computer 9 for overall management described later.
  • the biochemical module 110 includes a sampling line 14, a sample sampling mechanism 15, a reaction cell disk 16, a biochemical measuring unit 17 for measuring the physical properties of a reaction solution, a reagent pipetting mechanism 18, a reagent disk 19, and a biochemical module computer 13. I have it.
  • the sample sampling mechanism 15 can rotate and move up and down, and moves above the sample container 2 placed on the sample rack 1 transported by the sampling line 14. After that, it descends and sucks a predetermined amount of the sample held in the sample container 2.
  • the sample sampling mechanism 15 that has sucked the sample moves above the reaction cell disk 16 and then descends to discharge the sample into one of the reaction cells provided in the reaction cell disk 16. After dispensing the sample into the reaction cell, the reaction cell disk 16 rotates and moves to the reagent dispensing position.
  • the reagent pipetting mechanism 18 can rotate and move up and down, and after moving to the upper side of the reagent cassette in the temperature-controlled reagent disk 19, descends to suck a predetermined amount of the reagent in the reagent cassette.
  • the reagent pipetting mechanism 18 moves above the reaction cell disk 16 and then descends to discharge the reagent to the reaction cell in which the sample was dispensed previously.
  • the reaction cell disk 16 from which the reagent has been discharged rotates and moves to the stirring position, and the stirring mechanism (not shown) stirs the sample and the reagent.
  • the reaction cell disk 16 rotates and moves to the measurement position, and the biochemical measurement unit 17 measures the optical characteristics and the like of the mixed liquid in the reaction cell.
  • the biochemical module computer 13 is a computer that controls the operation required for the analysis processing in the biochemical module 110, and operates each device in the biochemical module 110 based on a command from the overall management computer 9 described later. To control.
  • sample dispensing, reagent dispensing, stirring, and analysis can be performed in sequence, so sample analysis can be performed in one sequence. Therefore, the biochemical module 110 can be scheduled at the sample dispensing timing.
  • the immunization module 210 includes a sampling line 20, a sample sampling mechanism 21, an incubator disk 22, an immunoassay unit 23 for measuring the physical properties of a reaction solution, a reagent pipetting mechanism 24, a reagent disk 25, a sample dispensing tip and a reaction container transport mechanism 26, The reaction solution suction nozzle 27, the transfer mechanism 32, the magnetic separation unit 34, and the immune module computer 33 are provided.
  • the incubator disk 22 can be provided with a plurality of reaction vessels for holding a reaction solution obtained by mixing and reacting a sample and a reagent. Rotation for moving the reaction vessels installed in the circumferential direction to respective predetermined positions. Exercise is possible. Unlike the reaction cell of the biochemical module 110, the reaction container on the incubator disk 22 side is disposable.
  • the sample dispensing tip and reaction container transport mechanism 26 is movable in three directions of X axis, Y axis, and Z axis, and the sample dispensing chip and reaction container holding member 28, reaction container stirring mechanism 29, sample dispensing chip. Further, the reaction container discarding hole 30, the sample dispensing tip mounting position 31, and the incubator disk 22 are moved within a predetermined range to carry the sample dispensing tip and the reaction container.
  • a plurality of unused reaction containers and sample dispensing tips are installed on the sample dispensing tip and reaction container holding member 28.
  • the sample dispensing tip and reaction container transport mechanism 26 moves and descends above the sample dispensing chip and reaction container holding member 28 to hold an unused reaction container and then rises, and further above a predetermined position of the incubator disk 22. And move down to install the reaction vessel.
  • a plurality of reagent containers are installed on the reagent disk 25.
  • a reagent disk cover is provided above the reagent disk 25, and the inside of the reagent disk 25 is kept at a predetermined temperature.
  • a reagent disc cover opening is provided in a part of the reagent disc cover.
  • the reagent pipetting mechanism 24 is rotatable and vertically movable.
  • the reagent pipetting mechanism 24 is rotated and moved above the opening of the reagent disc cover and then lowered, so that the tip of the reagent pipetting mechanism 24 is dipped in a reagent in a predetermined reagent container. , Aspirate a predetermined amount of reagent.
  • the reagent pipetting mechanism 24 moves up and then rotationally moves above a predetermined position of the incubator disk 22 to discharge the reagent into the reaction container.
  • the sample dispensing tip/reaction container transporting mechanism 26 moves above the sample dispensing chip/reaction container holding member 28 and descends to grip an unused sample dispensing chip, and then rises to move the sample dispensing chip. It moves above the mounting position 31 and descends to install the sample dispensing tip.
  • the sample sampling mechanism 21 can be rotated and moved up and down.
  • the sample sampling mechanism 21 is rotated above the sample dispensing tip mounting position 31, then lowered, and is press-fitted to mount the sample dispensing tip on the tip.
  • the sample sampling mechanism 21 mounted with the sample dispensing tip moves above the sample container 2 placed on the sample rack 1 and then descends to be held by the sample container 2 carried by the sampling line 20. Is sucked in a predetermined amount.
  • the sample sampling mechanism 21 that has sucked the sample moves above the incubator disk 22 and then descends to discharge the sample into the reaction container in which the reagent has been discharged previously.
  • the sample sampling mechanism 21 moves above the sample dispensing tip and the reaction container discarding hole 30, and the used sample dispensing tip is discarded.
  • the reaction container from which the sample and the reagent are discharged is moved to a predetermined position by the rotation of the incubator disk 22, and is transported to the reaction container stirring mechanism 29 by the sample dispensing tip and the reaction container holding member 28.
  • the reaction container stirring mechanism 29 stirs and mixes the sample and the reagent in the reaction container by applying rotational motion to the reaction container.
  • the reaction container after stirring is returned to a predetermined position of the incubator disk 22 by the sample dispensing tip and the reaction container holding member 28.
  • the transfer mechanism 32 conveys the reaction container placed on the incubator disk 22 for a predetermined time to the magnetic separation unit 34, and the magnetic separation process of the sample is performed. After the magnetic separation process is completed, the transfer mechanism 32 transfers the reaction container to the incubator disk 22 again.
  • the reaction container which has been left on the incubator disk 22 for a predetermined time, is conveyed to a position immediately below the reaction solution suction nozzle 27 by the transfer mechanism 32, and the reaction solution is immunized by the reaction solution suction nozzle 27. It is guided to the measurement unit 23.
  • a signal from the reaction solution is detected by the immunoassay unit 23, output to the overall management computer 9, and the analysis result is notified to the user and recorded in the storage unit 9a.
  • the reaction container in which the reaction solution has been sucked is returned to the incubator disk 22 by the transfer mechanism 32. After that, the incubator disk 22 is rotated to move to a predetermined position, and is moved from the incubator disk 22 to above the sample dispensing tip and reaction container discarding hole 30 by the sample dispensing tip and reaction container holding member 28 and is discarded.
  • the immunity module computer 33 is a computer that controls the operation necessary for the analysis processing in the immunity module 210, and controls the operation of each device in the immunity module 210 based on a command from the overall management computer 9 described later. ..
  • the reaction itself in the immunization module 210 can proceed simultaneously because a plurality of reaction vessels can be installed in the incubator disk 22. However, in this device, even if there is one measurement unit and there are a plurality of measurement sequences, the measurement time is longer than the operation of other mechanical units, and there is no duplication of use of other mechanical units or operation interference. Scheduled around the measurement unit 23.
  • FIG. 2 is a functional block diagram showing the functions of the overall management computer 9 from scheduling of sample analysis to analysis execution.
  • the overall management computer 9 is a part that plays a role of controlling the information of all units of the automatic analysis system 100, and as shown in FIGS. 1 and 2, the request input unit 101, the rack management unit 102, the planning unit 103, It has a request analysis unit 104, a mechanism control unit 105, a result output unit 106, a storage unit 9a, and an arithmetic processing unit 9b.
  • the computer 9 for overall management is connected to the biochemical module 110, the immunization module 210 and the transport module 310 by a wired or wireless network line, and further, an operation unit 10 for inputting necessary information and an analysis result.
  • the display unit 11 for displaying and the external network 12 are connected.
  • the storage unit 9a is a unit that stores a time chart, operation parameters, various information for specifying a sample, measurement results, and the like necessary for the operation in the automatic analysis system 100, such as a semiconductor memory such as a flash memory or an HDD. It is composed of a storage medium such as a magnetic disk.
  • the arithmetic processing unit 9b calculates the concentration of the specific component in the measurement target from the measurement results of the biochemical measurement unit 17 of the biochemical module 110 and the immunological measurement unit 23 of the immunization module 210.
  • the request input unit 101 requests a measurement request to be measured by the biochemical module 110 or the immunological module 210 for a certain sample, which is requested by a doctor, to LIS (Laboratory Information System), HIS (Hospital Information System: It has a function of receiving from the Hospital Information System, the operation unit 10 and the like.
  • LIS Laboratory Information System
  • HIS Hospital Information System: It has a function of receiving from the Hospital Information System, the operation unit 10 and the like.
  • the rack management unit 102 manages the measurement request for the sample on the sample rack 1 by comparing the rack ID and sample ID read by the sample/rack ID reading unit 5 with the measurement request from the request input unit 101.
  • the planner 103 plans the measurement schedule of the sample requested to be executed by the biochemical measurement unit 17 of the biochemical module 110 or the immunological measurement unit 23 of the immunization module 210.
  • the measurement in the immunoassay unit 23 has items with different measurement times.
  • the planning unit 103 of the present embodiment particularly when the item of the sequence having the longest measurement time is continuously measured at least twice or more the predetermined number of times or more, the planning unit 103 performs the measurement after the predetermined number of times or more. At least one free cycle is provided.
  • the planning unit 103 causes the idle cycle to interrupt the measurement of the sequence item having a short measurement time.
  • the request analysis unit 104 calculates the load on the immune module 210 and the biochemical module 110 based on the analysis time and the number of requested items, and transfers the load to the transfer module control unit 310a so that the rack transfer is performed first to the analysis device with the light load. Plan your schedule.
  • the module 210) is scheduled to preferentially transport the sample.
  • the request analysis unit 104 waits for a long waiting time at the dispensing position in the immune module 210 on the lightly loaded side, and the biochemical module 110 for the same sample. If the dispensing is delayed, the sample is scheduled to be transported to the biochemical module 110 regardless of the load.
  • the mechanism control unit 105 operates each mechanism in the transportation module 310 according to the measurement schedule scheduled by the planning unit 103 and the transportation schedule scheduled by the request analysis unit 104, and also operates the biochemical module computer 13 and the immune module computer. A time chart for analysis operation is output to 33.
  • the result output unit 106 executes various output processes such as displaying the measurement result corresponding to the measurement request on the display unit 11, storing it in the storage unit 9a, and notifying the LIS or HIS via the external network 12.
  • Each mechanism in the overall management computer 9 may be realized by using a general-purpose computer, or may be realized as a function of a program executed on the computer.
  • each mechanism in the overall management computer 9 may be realized by storing the program code in a recording unit such as a memory and causing a processor such as a CPU (Central Processing Unit) to execute each program code. ..
  • a recording unit such as a memory
  • a processor such as a CPU (Central Processing Unit)
  • each mechanism in the overall management computer 9 may be configured by hardware such as a dedicated circuit board.
  • the display unit 11 is a portion where various screens such as an operation screen for ordering measurement items to be measured for a sample to be measured, a screen for confirming the measurement results, and the like are displayed, such as a liquid crystal display. Composed of.
  • the liquid crystal display does not have to be used, and may be replaced with a printer or the like, and may be a display and a printer.
  • a rack handling setting screen 11a including a setting area 11b for setting a predetermined number of times serving as a reference for providing an empty cycle is displayed.
  • the operation unit 10 is a unit for inputting various parameters and settings based on the operation screen displayed on the display unit 11, measurement results, measurement request information, analysis start and stop instructions, and the like, such as a keyboard and a mouse. Composed of.
  • FIG. 3 Details of the sample analysis schedule in the automatic analysis system 100 of the present embodiment will be described using FIG. 3 and subsequent figures. First, a specific example of a request for a normal sample and an urgent sample, an analyzer of a transport destination, and a dispensing order will be described with reference to FIGS. 3 to 5.
  • FIG. 3 is a diagram showing an outline of a sample rack
  • FIGS. 4 and 5 are explanatory diagrams showing an example of rack transport destinations for analysis request items.
  • the sample rack 1 is equipped with a total of five sample containers 2A, 2B, 2C, 2D, and 2E containing samples, and the following analysis request is made.
  • the biochemical analysis items C1, C2, C3 are requested for the sample S1 contained in the sample container 2A.
  • the specimen S2, which is accommodated in the sample container 2B, a biochemical analysis item C1, priority ordinary immunological analysis items E1, and a high priority immune analysis items (high priority) E2 H is requested.
  • the biochemical analysis items C1 and C3 are requested for the sample S4 contained in the sample container 2D. It is assumed that the sample S5 contained in the sample container 2E has been requested to have the biochemical analysis items C2 and C3 and the immunological analysis item E1 with a normal priority.
  • the sample rack 1 is first transported to the biochemical module 110 as shown in FIG.
  • the sample S2 and the sample S3 to which the high priority item of immunity is set are not subjected to sample dispensing, and the biochemistry of the samples S1, S4 and S5 to which the high priority item of immunity is not set
  • the sample is dispensed by the number of items (items C1, C2, C3 of the sample S1, items C1, C3 of the sample S4, items C2, C3 of the sample S5).
  • the sample is conveyed to the immunization module 210, and the specimen S2 (E1, E2 H ), the specimen S3 (E2 H ), and the specimen S5 (E1) are dispensed for the immunization items.
  • the sample is transferred again to the biochemistry module 110, and the biochemical items (S2(C1), S2(C1), The sample for S3(C1) is dispensed.
  • a better immune module 210 has been determined that the load of the analysis item is light, as shown in FIG. 5, item E1 and items in the immune item (sample S2 in the immune module 210 E2 H, S3 (E2 H ), S5(E1)) is dispensed. Then, it is conveyed to the biochemistry module 110, and biochemical items (C1, C2, C3 of sample S1, item C1 of sample S2, item C1 of sample S3, items C1 and C3 of sample S4, item C2 of sample S5). , C3) is dispensed.
  • the sample rack 1 moves back and forth between the biochemical module 110 and the immunity module 210 via the sample rack standby disk 7 depending on the request content of the inspection item.
  • an item having a different measurement time for example, an item of 18 minutes and then an item of 9 minutes, such as the immunoassay unit 23 of the immunity module 210, has a sample of 18 minutes
  • the sample of the item of 18 minutes is first. Therefore, there is a problem that waiting time for waiting for dispensing occurs at the dispensing position in the immune module 210, and the analysis item of biochemistry is delayed.
  • the immunological module 210 is determined to have a smaller load than the biochemical module 110 and the sample is first transported to the immunological module 210, the time until the biological module 110 is transported is extended. That leaves room for improving turnaround time.
  • the control of the present invention provides at least one vacant space after performing the designated continuous number of measurements.
  • the turnaround time becomes slightly longer.
  • the measurement of a short sequence can be interrupted during the measurement of a long sequence, so that the waiting time at the dispensing position is short and the analysis of the STAT sample is shown in FIGS. It can be done more quickly.
  • the measurement time is longer than the operation of the other mechanical unit even if there are a plurality of measurement sequences, and the other mechanical unit does not operate. There is almost no need to consider duplicated use and operation interference. Therefore, a short sequence can be surely interrupted by making a schedule once around the measurement unit.
  • FIGS. 12, 13 and 14 show the results of verification of the turnaround time when 50 general samples as shown in FIG. 10 and one emergency sample as shown in FIG. 11 were divided.
  • FIG. 12 shows the case where the empty cycle is not set as in the conventional automatic analysis system
  • FIG. 13 shows the case where the empty cycle is set once every 5 times
  • FIG. 14 shows the case where the empty cycle is set once every 10 times.
  • An example of the turnaround time in a STAT (urgent) sample is shown.
  • the samples in the sample containers at positions 1 to 5 are biochemical item 3 analysis for 10 minutes, ISE item 1 analysis, and immunity item 1 analysis for 18 minutes.
  • 50 samples (10 racks) are installed with the sample container 2 being filled up to positions 1 to 5 of 1. Therefore, the total number of analyzes is 150 for biochemical and ISE items and 50 for immunity.
  • the ISE item is an item for measuring the concentration of electrolytes (Na, K, Cl ions) in the sample, which is mostly arranged in the biochemical module 110 among the modules shown in FIG. In the present embodiment, illustration is omitted for convenience of explanation.
  • the immunity item of the 51st STAT sample is the item of the 9-minute sequence
  • the items of the 18-minute sequence of the previous normal sample have already been requested consecutively, so there is no vacancy in the measurement unit schedule. For this reason, there is a limit even if you interrupt the general sample, and the schedule of the 9-minute sequence item will be established 9 minutes later, and you will have to wait 9 minutes at the dispensing position, resulting in a turnaround time. It becomes 1326 seconds (about 22 minutes).
  • the 51 STAT sample can be measured by interrupting it using an empty cycle prepared every 5 cycles. Therefore, as a result, the turnaround time becomes 974 seconds (about 16 minutes), and it can be seen that the turnaround time can be improved by about 6 minutes as compared with the case where the idle cycle is not set.
  • FIG. 15 is a diagram showing a processing flow of the planning unit 103 of the computer 9 for overall management. The following steps are executed by the planning unit 103.
  • the planning unit 103 receives an analysis request from the rack management unit 102 (step S201).
  • the planning unit 103 determines whether the received request sequence is the sequence A having a long reaction time or the sequence B having a short reaction time (step S202). If the sequence A has a long reaction time, the process proceeds to step S203.
  • the planning unit 103 determines whether or not the cumulative number of measurements of sequence A is equal to or greater than the set value (step S203). If it is determined that the value is not less than the set value, the process proceeds to step S204. On the other hand, if it is determined that the value is less than the set value, the process proceeds to step S206.
  • the planning unit 103 inserts an empty cycle (step S204), rewrites the measurement number of the cumulative sequence A to 0 (step S205), and starts the measurement.
  • step S206 the number of measurements of cumulative sequence A is incremented by 1 (step S206) and the process proceeds to step S207.
  • step S207 When it is determined in step S202 that the sequence B has a short reaction time, or after the number of measurements of the cumulative sequence A is incremented by 1, sequence allocation is performed (step S207) and the measurement is started.
  • the planning unit 103 determines whether all the received requests have been processed (step S208). When it is determined that all the requests have been processed, the processing ends. On the other hand, when it is determined that the processing of all the requests has not been completed, the processing is returned to step S202, and the processing is repeated until the schedule of all the requests is completed.
  • Fig. 16 shows an example of the rack handling setting screen.
  • the rack handling setting screen 11a including the setting area 11b for setting a predetermined number of times, which is a reference for providing an empty cycle, on the display unit 11.
  • the predetermined number of times is set to at least one of day of the week and date and time.
  • the planning unit 103 displays the setting area 11b as shown in FIG. 16 on the rack handling setting screen 11a of the display unit 11.
  • the setting area 11b it is possible to select the number of empty cycles (once every 0 to 17 times or automatically set) for the STAT sample for each day of the week and date.
  • the value is input through the operation unit 10, for example.
  • day of the week and the date and time may be set more finely for each hour, or conversely, may be set uniformly.
  • the planning unit 103 sets an empty cycle when the measurement of a sequence having a long measurement time is continuously performed by the number of times input in the setting area 11b. Schedule as provided.
  • the empty cycle is not set based on the number of times input in the setting area 11b, but the empty cycle is set based on the previous setting.
  • the display unit 11 can display an area for setting the number of empty positions (0 to 20 or automatic setting) of the sample rack standby disk 7.
  • the empty cycle of the STAT item and the empty position of the sample rack standby disk 7 are used to wait for the start of measurement. It can be shortened.
  • FIG. 17 is a diagram for explaining a method of automatically calculating the setting of the idle cycle.
  • the planning unit 103 automatically sets an empty cycle based on the following calculation contents.
  • the number of requests for 18-minute items and 9-minute items on Monday mornings is larger than at other times and days of the week, and the number of requests in the morning is higher than that of afternoons on each day. Think of many cases.
  • the planning unit 103 obtains the number of items of the sequence A having a long reaction time and the sequence B having a short reaction time for each date and time (per hour) and day of the week from the number of measurement items for the past 9 weeks, and calculates the average value and the standard deviation SD. To calculate.
  • the planning unit 103 deletes the data outside the range of the average value ⁇ 3 ⁇ SD, calculates the average value and the standard deviation from the deleted data, and obtains the range of the average value ⁇ 2 ⁇ SD as the standard range.
  • the average number of items in the sequence A per hour (denoted as A)
  • the average number of items in the sequence B per hour (denoted as B)
  • the average number of measurements per hour (denoted as X) Is required (A+B ⁇ X).
  • the idle cycle is set to 10.
  • the empty cycle is set to 2.
  • the idle cycle can be set from 0 to 17, but if set to 17, the worst case is that the waiting time at the dispensing position will be about 8 minutes. Therefore, it is desirable to use 0 to 10 for automatic setting.
  • the measurement unit is scheduled. It is assumed that there is sufficient space. There is a lot of vacancy in scheduling, and the vacancy for interrupting emergency samples is originally secured at a certain level. Therefore, it is desirable to set the idle cycle to 10.
  • the average value or the maximum/minimum ratio may simply be used.
  • an empty cycle may be manually input to a specific day of the week/time zone, and the automatic setting and It can be switchable. The switching is performed by selecting the manual selection area 11c or the automatic selection area 11d on the rack handling setting screen 11a.
  • the above-described automatic analysis system 100 of the present embodiment includes the biochemical module 110 and the immunity module 210 that analyze at least one or more specimens, and the transport module 310 that supplies the specimens to the biochemical module 110 and the immunity module 210. I have it.
  • the incubator disk 22 in which a plurality of reaction containers holding the reaction liquid obtained by mixing and reacting the sample and the reagent are mounted, the immunoassay unit 23 for measuring the physical properties of the reaction liquid, and the immunoassay unit 23 And a planning unit 103 that determines the order of measurement of the samples requested to be executed.
  • the immunoassay unit 23 there are items with different measurement times. When the above item is continuously measured at least twice or more a predetermined number of times, at least one or more idle cycles are provided after the measurement of the predetermined number of times or more.
  • STAT items that require a short reaction time are analysis items used for emergency sample measurement, and a short turnaround time is always required. Therefore, in large-scale hospitals, there are daily cases where urgent samples are measured during routine measurement. In such a case, the turnaround time of the STAT item can be shortened by executing the measurement schedule control of the present invention, which can contribute to early diagnosis.
  • the planning unit 103 when an item of a sequence with a short measurement time is requested, interrupts measurement of an item of a sequence with a short measurement time in an idle cycle, so that the STAT item is surely interrupted and measurement is performed early. It can be carried out.
  • the setting area 11b can be manually set a predetermined number of times for at least one of day of the week and time of day, so that, for example, in a facility that does not request a short sequence measurement, a day of the week, or a time zone, an empty cycle is set.
  • an empty cycle By not creating, it is possible to prevent the turnaround time of measurement requests for long sequences from dropping.
  • an idle cycle can be actively provided, and the turnaround time can be further improved.
  • the planning unit 103 calculates the ratio of the sequence of the sample having a short measurement time for each date/day to the measurement of the sample from the past measurement status of the immunity module 210, and automatically sets the predetermined number of times to provide an empty cycle. So, for example, on Monday morning, the number of requests is large, and the ratio of urgent samples is also high, so the ratio of empty cycles is increased. It is possible to decide the ratio according to the analysis situation based on the past accumulation such as lowering the. Also, in an inspection center or the like where the ratio of urgent specimens is small, the empty cycle becomes zero, and it is possible to prevent the turnaround time of the normal specimen from decreasing by creating an unnecessary cycle.
  • the planning unit 103 since it is possible to switch between the manual setting of the predetermined number of times by the setting area 11b and the automatic setting of the predetermined number of times by the planning unit 103, it is possible to set the idle cycle according to the operating status of the automatic analysis system 100. It becomes possible and can certainly contribute to the improvement of the turnaround time.
  • the biochemical module 110 and the immunization module 210 are separately connected to the transport module 310, and when different measurement items are analyzed, the above-mentioned measurement sequence is different. Also, the device configuration can greatly receive the merit of suppressing the deterioration of the measurement turnaround time extremely.
  • the sample is preferentially transported to the immune module 210, which has a lighter load that is obtained by multiplying the measurement time by the number of measurement items.
  • the measurement can be performed early and the turnaround time can be improved.
  • the waiting time at the dispensing position in the immune module 210 on the lighter load side is long, and the biochemistry of the same sample is long.
  • the dispensing in the module 110 is delayed, the sample is transported to the biochemical module 110 regardless of the load, so that the deterioration of the turnaround time can be suppressed more reliably.
  • Reagent disk 20 ... Sampling line 21 ... Sample sampling mechanism 22 ... Incubator disk 23 ... Immunoassay unit 24 ... Reagent pipetting mechanism 25 ... Reagent disk 26 ... Reaction container transport mechanism 27 ... Reaction liquid suction nozzle 28 ... Reaction container holding member 29 ... Reaction container stirring mechanism 30 ... Sample dispensing tip and reaction container discarding hole 31 ... Sample dispensing chip mounting position 32 ... Transfer mechanism 33 ... Immune module computer 34 ... Magnetic separation unit 100 ... Automatic analysis system 101...Request input unit 102...Rack management unit 103...Planning unit 104...Request analysis unit 105...Mechanism control unit 106...Result output unit 110...Biochemical module (automatic analyzer) 210... Immune module (automatic analyzer) 310... Transport module (transport device) 310a... Transport module control unit

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Chemical & Material Sciences (AREA)
  • Physics & Mathematics (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Pathology (AREA)
  • Engineering & Computer Science (AREA)
  • Biomedical Technology (AREA)
  • Hematology (AREA)
  • Molecular Biology (AREA)
  • Urology & Nephrology (AREA)
  • Biotechnology (AREA)
  • Cell Biology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Medicinal Chemistry (AREA)
  • Automatic Analysis And Handling Materials Therefor (AREA)

Abstract

検体と試薬とを混合して反応させた反応液を保持する反応容器を複数搭載するインキュベータディスク22と、反応液の物性を測定する免疫測定ユニット23と、免疫測定ユニット23に対して実行が依頼された検体の測定の順番を決定する計画部103と、を備え、免疫測定ユニット23における測定には、測定時間の異なる項目が存在し、計画部103は、測定時間が最も長いシーケンスの項目を少なくとも2回以上の所定回数以上連続して測定する場合は、所定回数以上の測定の後に少なくとも1回以上の空きサイクルを設ける。

Description

自動分析装置および自動分析システム、ならびに検体の自動分析方法
 本発明は、血液、尿等の生体試料(以下、検体と記載)中の成分を分析する自動分析装置および自動分析システム、ならびに検体の自動分析方法に関する。
 反応検出管の測光時間を自由に設定でき、装置構成の自由度を増して最適配置を行うことを可能にする自動分析装置の一例として、特許文献1には、円周上に配置された複数の反応検出管を1分析サイクルに複数本分移動させ、サンプル分注、試薬分注、反応検出管洗浄を行ないつつ、移動中に反応検出管を測光する装置において、反応検出管の数をN、1分析サイクルで移動する反応検出管の数をMとしたとき、N±1=A×M(Aは2以上の整数)、あるいはNとMの間に1以外の共通の因数が無く、かつM<N/2とする、ことが記載されている。
特開平5-164763号公報
 試薬を用いて検体を分析する自動分析装置では、測定したい成分の項目によって異なる測定方法が採用されている。例えば、検体中の分析対象成分と反応して反応液の色が変わるような試薬を用いる分析法(比色分析)を用いる生化学自動分析装置や、分析対象成分と直接あるいは間接的に特異的に結合する物質に標識体を付加した試薬を用いて標識体をカウントする分析法(免疫分析)を用いる免疫自動分析装置などがある。
 例えば免疫自動分析装置においては、検体中の目的成分を分析するため、検体サンプリング,試薬の添加,攪拌,インキュベーション,電気信号の計測などの一連の動作からなる測定シーケンスを有している。
 また、自動分析装置では、測定シーケンスの開始タイミングを一定時間ずつずらして、離散的に開始することによって複数の検査項目を逐次並行して分析するのが一般的である。このような自動分析装置の一例を特許文献1に示す。
 このシーケンスは、通常、自動分析装置の機種毎に一種類である。
 また、従来から試薬の添加タイミングや反応に要する時間(インキュベーション時間)の異なる複数の項目を測定する技術もあるが、これも試薬添加タイミングの数を最大数分、反応時間も最大時間分確保しておき、必要に応じて一部分省略する方式である。このため、基本的には同一パターンの測定シーケンスを繰り返すものであった。
 ここで、自動分析装置において、反応に要する時間が短い緊急分析項目(以下、STAT項目ということがある)は、緊急検体測定などで使用される分析項目であり、常に短いターンアラウンドタイムが求められている。
 特に、生化学分析装置と免疫分析装置とが統合されているシステムにおいては、一つのラックに生化学の分析項目と免疫の分析項目のいずれもが指定された検体が保持されている場合、どちらの装置にラックが搬送されるかは、分析項目の負荷(テスト時間×テスト項目数)から算出された分析装置の負荷が軽い方へと先に搬送されることが一般的である。
 生化学分析装置のスケジュールは、反応セルが順繰りにサンプル分注、試薬分注、攪拌、分光光度計へとまわる。このため、測定シーケンスは1種類であり、分注タイミングを基準として調整することでスケジューリングできる。
 一方、免疫分析装置で測定ユニット(検出器)が一つしかない装置構成において、反応に要する時間が長い18分の測定シーケンス(A)と反応に要する時間が短い9分の測定シーケンス(B)が混在する場合、測定ユニットを中心にスケジューリングされる。これは、他の機構部動作時間よりも測定時間が長いためである。そのため、測定シーケンス(A)が連続して測定されている場合、測定シーケンス(B)のスケジュールが成立するのは9分後で、分注位置で9分間待たされることになる。
 結果として、負荷は免疫分析装置のほうが少ないと判断され、先に免疫分析装置側へ搬送された場合でも、免疫分析装置の分注位置で待たされ、生化学分析装置側に搬送するまでの時間が延びてしまい、ターンアラウンドタイムは悪化する、との課題がある。
 これに対し、先に生化学分析装置に搬送されるような条件であっても、免疫の分析項目に高い優先度(ハイプライオリティ)が設定されている項目がある条件では、先に免疫装置側で分注する必要がある。
 ここで、「ハイプライオリティ」とは、ある検体において、検体量が少なくなって分析が実行できない、との事態を避けるために最初に分注を行う必要がある場合に付与されるフラグであり、他の分析項目のための分注より優先される項目に付与されるものである。
 このため、生化学分析装置で一旦他の検体を分注し、次に免疫分析装置で分注した後、再度生化学分析装置に搬送してハイプライオリティ検体の分注を行うといったフローが採用されることになる。しかしながら、測定シーケンスAが連続して測定された後の測定シーケンスBがある検体は、生化学の項目も含めターンアラウンドタイムが悪化する、との課題がある。
 このように、9分の反応で測定結果が取得可能な測定シーケンスであっても、18分のターンアラウンドタイムとなってしまう場合があり、この解消が課題となっている。
 本発明は上述のような課題に鑑みなされたものであって、測定シーケンスが異なる項目が混在する場合であっても、測定のターンアラウンドタイムが極端に悪化することを抑えることが可能な自動分析装置および自動分析システム、ならびに検体の自動分析方法を提供する。
 本発明は、上記課題を解決する手段を複数含んでいるが、その一例を挙げるならば、検体を分析する自動分析装置であって、前記検体と試薬とを混合して反応させた反応液を保持する反応容器を複数搭載するインキュベータと、前記反応液の物性を測定する検出部と、前記検出部に対して実行が依頼された前記検体の測定の順番を決定する計画部と、を備え、前記検出部における測定には、測定時間の異なる項目が存在し、前記計画部は、前記測定時間が最も長いシーケンスの項目を少なくとも2回以上の所定回数以上連続して測定する場合は、前記所定回数以上の測定の後に少なくとも1回以上の空きサイクルを設けることを特徴とする。
 本発明によれば、測定シーケンスが異なる項目が混在する場合であっても、測定のターンアラウンドタイムが極端に悪化することを抑えることができる。上記した以外の課題、構成および効果は、以下の実施例の説明により明らかにされる。
本発明の一実施例である自動分析システムのモジュール構成を示す説明図である。 実施例の自動分析システムにおける、全体管理用コンピュータの一部機能ブロックと処理の流れを示す図である。 実施例の自動分析システムにおける検体ラックの概要を示す図である。 実施例の自動分析システムにおける、分析依頼項目に対するラック搬送先の一例を示す説明図である。 実施例の自動分析システムにおける、分析依頼項目に対するラック搬送先の一例を示す説明図である。 従来の自動分析システムにおいて、連続して反応時間の長いシーケンスの項目を測定した後での、反応時間の短いシーケンスの項目を測定する場合の分注タイミングを示す図である。 従来の自動分析システムにおいて、連続して反応時間の長いシーケンスの項目を測定した後での、反応時間の短いシーケンスの項目を測定する場合の分注タイミングを示す図である。 実施例の自動分析システムにおいて、連続して反応時間の長いシーケンスの項目を測定した後での、反応時間の長いシーケンスの項目を測定する場合の分注タイミングを示す図である。 実施例の自動分析システムにおいて、連続して反応時間の長いシーケンスの項目を測定した後での、反応時間の短いシーケンスの項目を測定する場合の分注タイミングを示す図である。 実施例の自動分析システムにおいて、STAT(緊急)検体におけるターンアラウンドタイムの検証を行う条件のうち、一般検体の依頼項目の設定を示す図である。 実施例の自動分析システムにおいて、STAT検体におけるターンアラウンドタイムの検証を行う条件のうち、STAT検体の依頼項目の設定を示す図である。 実施例の自動分析システムに対する比較用の従来の自動分析システムにおいてSTAT検体が存在する場合のターンアラウンドタイムの一例を示す比較図である。 実施例の自動分析システムにおいて、空きサイクルを5回に1回設定した場合のSTAT検体が存在する場合のターンアラウンドタイムの一例を示す比較図である。 実施例の自動分析システムにおいて、空きサイクルを10回に1回設定した場合のSTAT検体が存在する場合のターンアラウンドタイムの一例を示す比較図である。 実施例の自動分析システムにおける、全体管理用コンピュータの計画部の処理を示すフローチャートである。 実施例の自動分析システムにおける、空きサイクルのスケジュール設定方法の一例の画面である。 実施例の自動分析システムにおける、空きサイクルの設定を自動で計算する方法に関して説明する図である。
 本発明の自動分析装置および自動分析システム、ならびに検体の自動分析方法の実施例について図1乃至図17を用いて説明する。
 最初に、自動分析システムの全体構成について図1を用いて説明する。図1は、本実施例の自動分析システムの全体構成を示す図である。
 図1に示す自動分析システム100は、搬送モジュール310、検体の分析を行う生化学モジュール110や免疫モジュール210、全体管理用コンピュータ9を備えている。
 搬送モジュール310は生化学モジュール110,免疫モジュール210に検体を収容した検体容器を供給する装置であり、検体ラック投入部3、緊急検体容器投入部4、検体・ラックID読取部5、搬送ライン6、検体ラック待機ディスク7、検体ラック収納部8、搬送モジュール用制御部310aを有している。
 搬送モジュール310は、検体ラック待機ディスク7を介して両サイドに生化学モジュール110,免疫モジュール210が接続されている。
 なお、図1では図1中右側に生化学モジュール110・左側に免疫モジュール210で構成されている場合を示しているが、左側に生化学モジュール・右側に免疫モジュールの構成や、両側の分析装置が共に生化学モジュール、もしくは共に免疫モジュールとなっていても良い。更に3台以上を接続してもよく、本発明では少なくとも2台以上であることが望ましい。
 搬送モジュール310では、検体ラック投入部3に設置された検体ラック1は、搬送ライン6によって検体ラック待機ディスク7に搬送される。搬送ライン6の途中に検体有無判定用センサ(図示省略)が設けられており、検体ラック1上の検体容器2の有無が認識される。ここで検体容器2が存在すると判断されれば、検体・ラックID読取部5によって検体容器2上に貼り付けられた検体バーコード(図示省略)を読み取り、検体容器2の識別情報を認識する。実際の自動分析システム100では、この識別情報によって患者を特定して、上位のホストに検査項目の依頼内容を照合して分注のスケジューリングを行う。
 検体ラック待機ディスク7は円運動を行うローター構造であり、外円周上に検体容器2を複数載置する検体ラック1を同心円上に放射的に複数保持するスロットを有している。このスロットをモータによって回転させることで、任意の検体ラック1を要求先の生化学モジュール110、免疫モジュール210に搬入・搬出するように構成されている。このような構造により、必ずしも先に入れられた検体ラック1を順に処理しなくてもよくなっている。つまり、優先度の高い検体ラック1があれば、それを先に処理することが出来るようになっている。
 この検体ラック待機ディスク7の放射状の円周上のある一点に対し、搬送ライン6が接続されており、検体ラック1の搬入,搬出が行われる。この一点を円周上の0度の位置とすると、搬送ライン6が接続された位置から円周上の90度の位置に後述する生化学モジュール110、免疫モジュール210へ引き込むためのサンプリングライン14,20が接続されており、検体ラック1の搬入,搬出が行われる。
 検体ラック待機ディスク7を介して左右の分析装置のいずれかへと搬送されるかは、分析項目の負荷(テスト時間×テスト項目数)から算出された分析装置の負荷が軽い方へと先に搬送される。
 生化学モジュール110、免疫モジュール210で分注の終えた検体ラック1は、検体ラック待機ディスク7内で測定結果の出力を待機し、必要に応じて自動再検等の処理をすることもできる。また、処理の終えた場合は、搬送ライン6を介して検体ラック収納部8に搬送される。
 搬送モジュール用制御部310aは、検体ラック待機ディスク7からサンプリングライン14,20へ適切な検体ラック1を搬送する動作や、サンプリングライン14,20から検体ラック待機ディスク7へ検体ラック1を戻す搬送動作の制御を実行する部分であり、後述する全体管理用コンピュータ9からの指令に基づき各機構の動作を制御する。
 生化学モジュール110は、サンプリングライン14、検体サンプリング機構15、反応セルディスク16、反応液の物性を測定する生化学測定ユニット17、試薬ピペッティング機構18、試薬ディスク19、生化学モジュール用コンピュータ13を備えている。
 検体サンプリング機構15は回転動作および上下動作が可能であり、サンプリングライン14により搬送された検体ラック1上に載置された検体容器2の上方に移動する。その後下降して、検体容器2に保持された検体を所定量吸引する。
 検体を吸引した検体サンプリング機構15は、反応セルディスク16の上方に移動した後下降して、反応セルディスク16に複数設けられたうちの一つの反応セル内に検体を吐出する。反応セルへと検体を分注した後は、反応セルディスク16は回転して、試薬分注位置へと移動する。
 試薬ピペッティング機構18は回転動作および上下動作が可能であり、温度が調節された試薬ディスク19内の試薬カセット上方に移動した後、下降して試薬カセット内の試薬を所定量吸引する。
 試薬ピペッティング機構18は反応セルディスク16の上方に移動した後、下降して先に検体を分注した反応セルに試薬を吐出する。試薬が吐出された反応セルディスク16は回転して攪拌位置へと移動し、攪拌機構(図示省略)により検体と試薬とが攪拌される。
 攪拌後、反応セルディスク16は回転し、測定位置へと移動し、生化学測定ユニット17により反応セル内の混合液の光学特性等が測定される。
 生化学モジュール用コンピュータ13は、生化学モジュール110での分析処理に必要な動作の制御を行うコンピュータであり、後述する全体管理用コンピュータ9からの指令に基づき生化学モジュール110内の各機器の動作を制御する。
 生化学モジュール110では、順繰りに検体分注、試薬分注、攪拌、分析を行うことができるため、1つのシーケンスで検体分析を実行することができる。従って、生化学モジュール110のスケジュールは、検体の分注タイミングでスケジュールすることができる。
 免疫モジュール210はサンプリングライン20、検体サンプリング機構21、インキュベータディスク22、反応液の物性を測定する免疫測定ユニット23、試薬ピペッティング機構24、試薬ディスク25、検体分注チップおよび反応容器搬送機構26、反応液吸引ノズル27、移送機構32、磁気分離部34、免疫モジュール用コンピュータ33を備えている。
 インキュベータディスク22には検体と試薬とを混合して反応させた反応液を保持する複数の反応容器が設置可能であり、円周方向に設置された反応容器をそれぞれ所定位置まで移動させるための回転運動が可能である。生化学モジュール110の反応セルとは異なり、インキュベータディスク22側の反応容器は使い捨てである。
 検体分注チップおよび反応容器搬送機構26は、X軸,Y軸,Z軸の3方向に移動可能であり、検体分注チップおよび反応容器保持部材28,反応容器攪拌機構29,検体分注チップおよび反応容器廃棄孔30,検体分注チップ装着位置31,インキュベータディスク22の所定箇所の範囲を移動し、検体分注チップや反応容器の搬送を行う。
 検体分注チップおよび反応容器保持部材28には、未使用の反応容器と検体分注チップが複数設置されている。検体分注チップおよび反応容器搬送機構26は、検体分注チップおよび反応容器保持部材28の上方に移動、下降して未使用の反応容器を把持した後上昇し、さらにインキュベータディスク22の所定位置上方に移動し、下降して反応容器を設置する。
 試薬ディスク25には、複数の試薬容器が設置されている。試薬ディスク25の上部には試薬ディスクカバーが設けられており、試薬ディスク25内部は所定の温度に保温される。試薬ディスクカバーの一部には、試薬ディスクカバー開口部が設けられている。
 試薬ピペッティング機構24は回転と上下移動が可能であり、試薬ディスクカバーの開口部の上方に回転移動した後に下降し、試薬ピペッティング機構24の先端を所定の試薬容器内の試薬に浸漬して、所定量の試薬を吸引する。次いで、試薬ピペッティング機構24は上昇した後に、インキュベータディスク22の所定位置の上方に回転移動して、反応容器に試薬を吐出する。
 検体分注チップおよび反応容器搬送機構26は、検体分注チップおよび反応容器保持部材28の上方に移動し、下降して未使用の検体分注チップを把持した後、上昇し、検体分注チップ装着位置31の上方に移動し、下降して検体分注チップを設置する。
 検体サンプリング機構21は回転動作および上下動作が可能であり、検体分注チップ装着位置31の上方に回動移動した後下降して、圧入されることで先端に検体分注チップが装着される。検体分注チップが装着された検体サンプリング機構21は、検体ラック1に載置された検体容器2の上方に移動した後下降して、サンプリングライン20により搬送された検体容器2に保持された検体を所定量吸引する。
 検体を吸引した検体サンプリング機構21は、インキュベータディスク22の上方に移動した後下降して、先に試薬が吐出された反応容器に検体を吐出する。
 検体吐出が終了すると、検体サンプリング機構21が検体分注チップおよび反応容器廃棄孔30の上方に移動し、使用済みの検体分注チップが廃棄される。
 検体と試薬の吐出された反応容器は、インキュベータディスク22の回転によって所定位置に移動し、検体分注チップおよび反応容器保持部材28によって反応容器攪拌機構29へと搬送される。反応容器攪拌機構29は、反応容器に対して回転運動を加えることで反応容器内の検体と試薬を攪拌し、混和する。攪拌の終了した反応容器は、検体分注チップおよび反応容器保持部材28によってインキュベータディスク22の所定位置に戻される。
 撹拌により検体と試薬の反応が開始した後に、更に特定のタイミングで別の試薬を加えて反応を行う場合がある。例えば、抗体を表面に結合させた磁性ビーズを上述の抗原にさらに結合するプロセスがある。そのために、移送機構32によって所定時間だけインキュベータディスク22に置かれた反応容器が磁気分離部34に搬送され、検体の磁気分離処理が行われる。磁気分離処理終了後、移送機構32により、反応容器が再びインキュベータディスク22に搬送される。
 磁気分離の有無にかかわらず、インキュベータディスク22に置かれた状態で所定時間経過した反応容器は、移送機構32により反応液吸引ノズル27の直下に搬送され、反応液吸引ノズル27により反応液が免疫測定ユニット23に導かれる。
 免疫測定ユニット23により反応液からの信号の検出が行われ、全体管理用コンピュータ9に出力され、分析結果はユーザに通知されるとともに、記憶部9aに記録される。
 反応液が吸引された反応容器は、移送機構32によりインキュベータディスク22に戻る。その後、インキュベータディスク22の回転によって所定位置に移動し、検体分注チップおよび反応容器保持部材28によってインキュベータディスク22から検体分注チップおよび反応容器廃棄孔30の上方に移動し、廃棄される。
 免疫モジュール用コンピュータ33は、免疫モジュール210での分析処理に必要な動作の制御を行うコンピュータであり、後述する全体管理用コンピュータ9からの指令に基づき免疫モジュール210内の各機器の動作を制御する。
 免疫モジュール210における反応自体は、インキュベータディスク22内に複数の反応容器を設置できることから、複数同時に進めることが出来る。しかしながら、本装置では測定ユニットが1つであり、測定シーケンスが複数であっても、他の機構部動作より測定時間の方が長く、他の機構部の重複使用や動作干渉もないため、免疫測定ユニット23中心にスケジュールされる。
 図2は、全体管理用コンピュータ9の機能のうち、検体分析のスケジューリングから分析実行までの機能を示す機能ブロック図である。
 全体管理用コンピュータ9は、自動分析システム100全体のユニットの情報を統括する役割を担う部分であり、図1および図2に示すように、依頼入力部101、ラック管理部102、計画部103、依頼解析部104、機構制御部105、結果出力部106、記憶部9a、演算処理部9bを有している。
 全体管理用コンピュータ9は、生化学モジュール110、免疫モジュール210や搬送モジュール310に対して有線或いは無線のネットワーク回線によって接続されているとともに、更に、必要な情報を入力する操作部10、分析結果を表示する表示部11および外部ネットワーク12と接続されている。
 記憶部9aは、自動分析システム100内の動作に必要なタイムチャートや動作パラメータ、検体を特定するための各種情報、測定結果等を記憶する部分であり、フラッシュメモリ等の半導体メモリやHDD等の磁気ディスク等の記憶媒体で構成される。
 演算処理部9bは、生化学モジュール110の生化学測定ユニット17や免疫モジュール210の免疫測定ユニット23での測定結果から測定対象中の特定成分の濃度を算出する。
 依頼入力部101は、医師などから依頼された、ある検体に対する生化学モジュール110や免疫モジュール210で測定すべき測定依頼を、LIS(検査室情報システム:Laboratory Information System),HIS(病院情報システム:Hospital Information System)、操作部10等から受取る機能を有する。
 ラック管理部102は、検体・ラックID読取部5で読み取ったラックIDおよび検体IDと依頼入力部101からの測定依頼とを照合して、検体ラック1上の検体に対する測定依頼を管理する。
 計画部103は、生化学モジュール110の生化学測定ユニット17や免疫モジュール210の免疫測定ユニット23に対して実行が依頼された検体の測定スケジュールを計画する。
 ここで、本実施例では、免疫測定ユニット23における測定には、測定時間の異なる項目が存在している。このような事情に鑑み、本実施例の計画部103では、特に、測定時間が最も長いシーケンスの項目を少なくとも2回以上の所定回数以上連続して測定する場合は、所定回数以上の測定の後に少なくとも1回以上の空きサイクルを設ける。
 その上で、計画部103は、測定時間の短いシーケンスの項目が依頼された際は、空きサイクルに測定時間の短いシーケンスの項目の測定を割り込ませる。
 依頼解析部104は、分析時間と依頼項目数から免疫モジュール210と生化学モジュール110との負荷の計算を行い、負荷の少ない分析装置へ先にラック搬送を行うよう搬送モジュール用制御部310aに対する搬送スケジュールを計画する。
 例えば、本実施例の依頼解析部104では、2台以上の生化学モジュール110,免疫モジュール210のうち、測定時間に測定項目数を乗算することで求められる負荷が軽い側(基本的には免疫モジュール210)に検体を優先的に搬送するようスケジューリングする。
 また、依頼解析部104は、同じ検体に複数の測定項目が依頼されている場合に、負荷の軽い側の免疫モジュール210における分注位置での待機時間が長く、同じ検体の生化学モジュール110での分注が遅れる場合は、負荷に関わらず生化学モジュール110に先に検体を搬送するようにスケジューリングする。
 計画部103や依頼解析部104におけるスケジューリングの詳細は後述する。
 機構制御部105は、計画部103によりスケジュールされた測定スケジュールと依頼解析部104によりスケジュールされた搬送スケジュールに従って搬送モジュール310内の各機構を動作させるとともに、生化学モジュール用コンピュータ13や免疫モジュール用コンピュータ33に対して分析動作用のタイムチャートを出力する。
 結果出力部106は、測定依頼に対応する測定結果を表示部11に表示する、記憶部9aに記憶させる、外部ネットワーク12を介してLISやHISに通知する、等の各種出力処理を実行する。
 全体管理用コンピュータ9内の各機構は、汎用のコンピュータを用いて実現されてもよく、コンピュータ上で実行されるプログラムの機能として実現されてもよい。
 すなわち、全体管理用コンピュータ9内の各機構の処理は、プログラムコードとしてメモリなどの記録部に格納し、CPU(Central Processing Unit)などのプロセッサが各プログラムコードを実行することによって実現されてもよい。
 なお、全体管理用コンピュータ9内の各機構は、専用の回路基板などのハードウェアによって構成されていてもよい。
 図1に戻り、表示部11は、測定する検体に対して測定する測定項目をオーダーする操作画面、測定した結果を確認する画面、等の様々な画面が表示される部分であり、液晶ディスプレイ等で構成される。なお、液晶ディスプレイである必要はなく、プリンタなどに置き換えてもよいし、ディスプレイとプリンタとすることができる。
 本実施例では、特に、空きサイクルを設ける基準となる所定回数を設定する設定領域11bを含んだラックハンドリング設定画面11a等が表示される。
 操作部10は、表示部11に表示された操作画面に基づいて各種パラメータや設定、測定結果、測定の依頼情報、分析開始や停止の指示等を入力するための部分であり、キーボードやマウスなどで構成される。
 次に、本実施例の自動分析システム100での検体の分析スケジュールの詳細について図3以降を用いて説明する。最初に、通常の検体と緊急検体に対する依頼、搬送先の分析装置、および分注の順番の具体例について図3乃至図5を用いて説明する。
 図3は検体ラックの概要を示す図、図4および図5は分析依頼項目に対するラック搬送先の一例を示す説明図である。
 図3に示すように、検体ラック1には、検体を収容した検体容器2A,2B,2C,2D,2Eが合計で5本搭載されており、以下のような分析依頼がなされている場合を考える。
 検体容器2Aに収容された検体S1には、生化学分析項目C1,C2,C3が依頼されている。検体容器2Bに収容された検体S2には、生化学分析項目C1と、優先度普通の免疫分析項目E1、および優先度が高い免疫分析項目(ハイプライオリティ)E2が依頼されている。検体容器2Cに収容された検体S3には、生化学分析項目C1と優先度が高い免疫分析項目E2が依頼されている。検体容器2Dに収容された検体S4には、生化学分析項目C1,C3が依頼されている。検体容器2Eに収容された検体S5には、生化学分析項目C2,C3、および優先度普通の免疫分析項目E1が依頼されている、こととする。
 このように、1本の検体容器に対して、生化学・免疫の両方の項目が存在し得る。この場合、依頼解析部104においてどちらの分析装置に先に搬送されるように計画されるかは、分析項目の負荷(テスト時間×テスト項目数)から算出された分析装置の負荷が軽い方へと先に搬送される。
 例えば、生化学モジュール110のほうが分析項目の負荷が軽いと判断された場合、図4に示すように、まず検体ラック1は生化学モジュール110へ搬送される。ここでは、免疫のハイプライオリティの項目が設定されている検体S2,検体S3については検体分注を行わずに、免疫のハイプライオリティの項目が設定されていない検体S1,S4,S5の生化学の項目(検体S1の項目C1,C2,C3、検体S4の項目C1,C3、検体S5の項目C2,C3)分だけ検体の分注を行う。
 次に免疫モジュール210へと搬送され、検体S2(E1,E2)、検体S3(E2)、検体S5(E1)の免疫の項目分、分注が行われる。その後、生化学モジュール110へ再度搬送され、先ほど免疫のハイプライオリティの項目が設定されているために分注できなかった検体(検体S2,検体S3)での生化学の項目(S2(C1),S3(C1))の分の検体分注される。
 また、免疫モジュール210のほうが分析項目の負荷が軽いと判断された場合、図5に示すように、まず免疫モジュール210にて免疫の項目(検体S2での項目E1および項目E2,S3(E2),S5(E1))分だけ分注が行われる。その後、生化学モジュール110へと搬送され、生化学の項目(検体S1のC1,C2,C3、検体S2の項目C1、検体S3の項目C1、検体S4の項目C1,C3、検体S5の項目C2,C3)が分注される。
 このように検査項目の依頼内容によって、検体ラック1は検体ラック待機ディスク7を介して生化学モジュール110と免疫モジュール210との間を行ったり来たりする。
 ここで、本実施例のように免疫モジュール210の免疫測定ユニット23のように測定時間の異なる項目、例えば18分の項目のあと、9分の項目が存在する場合、先に18分項目の検体が来てしまい、免疫モジュール210での分注位置において分注待ちの待機時間が発生して、生化学の分析項目まで遅れてしまう、との問題がある。
 このように、免疫モジュール210のほうが生化学モジュール110に比べて負荷が少ないと判断されて、先に免疫モジュール210へ検体が搬送されても、生化学モジュール110に搬送するまでの時間が延びてしまい、ターンアラウンドタイムを改善する余地が残ることになる。
 図6乃至図9に、免疫測定ユニット23を中心としたスケジュールにおいて、連続して反応時間の長いシーケンスA(18分項目)を測定した後の分注タイミング、および空きサイクルを設定した場合の分注タイミングを示す。
 図6に示すように、反応時間の短いシーケンスB(9分)の項目が依頼されたときに、測定セルの9分後のスケジュールが空いていれば、すぐに分注を行うことが出来る。
 しかし、図7に示すように測定時間の長いシーケンスB(18分)の項目が連続してスケジュールされている場合は、18分後まで測定セルのスケジュールが埋まっており、最大で9分間分注位置にて待機してしまうことになる。そのため、9分の反応で測定結果が取得可能な測定シーケンスであっても、18分のターンアラウンドタイムとなってしまう場合がある。
 これに対し、反応時間の長いシーケンスA(18分)を連続して分析した場合に、指定された連続回数測定を行ったあとで最低1回の空きを設ける本発明の制御によると、図8に示すように、反応時間の長いシーケンスAについては、空きサイクル経過後に測定が実施されるため、ターンアラウンドタイムが少し長くなる。
 しかしながら、図9に示すように、短いシーケンスの測定を長いシーケンスの間に割り込ませて測定することができるため、分注位置での待機時間も少なく、STAT検体の分析を図6,図7に比べて迅速に行うことが出来る。
 特に、自動分析システム、あるいは自動分析装置に測定ユニットが1つしか配置されていない場合は、測定シーケンスが複数であっても、他の機構部動作より測定時間の方が長く、他の機構部の重複使用や動作干渉も考慮する必要がほとんどない。このため、測定ユニット中心にスケジュールされ、1回の空きを作ることで確実に短いシーケンスを割り込ませることができる。
 一方、本実施例のようにシステム内に測定ユニットが複数(生化学測定ユニット17および免疫測定ユニット23)ある場合は、他の機構部の重複使用や動作干渉を考慮する必要があり、1回の空きだけでは短いシーケンスを割り込ませることが出来ない場合がある。
 図10のような一般検体を50検体分、図11のような緊急検体を1検体分流した場合のターンアラウンドタイムの検証を行った結果を図12、図13、図14に示す。図12は従来の自動分析システムのように空きサイクルを設定していない場合、図13は空きサイクルを5回に1回設定した場合、図14は空きサイクルを10回に1回設定した場合のSTAT(緊急)検体におけるターンアラウンドタイムの一例を示している。
 図10に示すように、一般検体として、ポジション1~5の検体容器の検体は10分の生化学項目3分析、ISE項目1分析、18分の免疫項目1分析とし、5本用の検体ラック1の1~5ポジションまで検体容器2で埋めた状態で、50検体(10ラック)設置する。そのため、トータルの分析回数は生化学項目およびISE項目が150回、免疫項目が50回となる。
 なお、ISE項目とは、図1に示す各モジュールのうち、多くは生化学モジュール110に配置される、検体中の電解質(Na、K、Clイオン)の濃度を測定する項目である。本実施例では説明の都合上図示は省略している。
 図11に示すように、緊急検体では、ポジション1のみに10分の生化学項目14分析、ISE項目1分析、9分の免疫項目2分析の緊急検体が収容された検体容器2を1本だけ載置し、2~5ポジションまでは空とした状態で1ラック設置する。そのため、トータルの分析回数は生化学項目が14回、ISE項目が3回、免疫項目が2回となる。
 図12に示すように、空きサイクルが無い従来技術の場合、通常検体においてNo.1~40までの検体はターンアラウンドタイムがほぼ一定であった。しかしながら、No.41~50までの検体においてSTAT検体の割り込みがあったため、ターンアラウンドタイムは遅くなる。
 特に、短いターンアラウンドタイムが求められているNo.51のSTAT検体は、免疫項目が9分シーケンスの項目にも関らず、先の通常検体の18分シーケンスの項目が連続して既に依頼されているため、測定ユニットのスケジュールに空きが無い。このため、一般検体に割り込みをかけても限界があり、9分シーケンスの項目のスケジュールが成立するのは9分後で、分注位置で9分間待たされることになり、結果としてターンアラウンドタイムは1326秒(約22分)となってしまう。
 これに対し、図13に示すように、免疫項目のうち、18分シーケンスを連続5回行った後、1回空きサイクルを入れた場合、通常検体においてNo.6~の検体は空きサイクルを入れたことにより、5検体毎に、少しずつターンアラウンドタイムは遅くなる。
 しかしながら、短いターンアラウンドタイムが求められているNo.51のSTAT検体は5サイクル毎に用意されている空きサイクルを利用して割り込ませて測定することができる。このため、結果としてターンアラウンドタイムは974秒(約16分)となり、空きサイクルを設定しない場合に比べ、約6分間もターンアラウンドタイムを改善できることが分かる。
 本実施例における図11の条件では、STAT検体の9分シーケンスの項目が2項目設定されていたため、約6分間の改善であるが、1項目しか設定されていない場合は、約9分のターンアラウンドタイムが改善される。
 また、図14に示すように、18分シーケンスを連続10回行った後、1回空きサイクルを入れた場合も、5サイクルに1度空きサイクルを設定する場合と同様で、通常検体のターンアラウンドタイムは遅くなる。しかしながら、緊急性の高いSTAT検体のターンアラウンドタイムは空きサイクルを設定しない場合と比べて1372秒(約22分)から1080秒(18分)にまで短くすることが出来る。
 これら図12、図13、図14に示すように、トータルのパフォーマンスとしては、STAT検体(もしくは9分シーケンスの項目)が来ない場合は、単純に5サイクルに1回の空きなら2割程度、10サイクルに1回の空きならば1割程度落ちることになってしまう。しかし、STAT検体が来る場合で比較すると、空きサイクルに短いシーケンスを入れられることから、トータルのパフォーマンスを殆ど落とすことなく測定を行うことができる。
 図15は、全体管理用コンピュータ9の計画部103の処理フローを示す図である。以下の各ステップは計画部103により実行される。
 まず、計画部103は、ラック管理部102から分析依頼を受取る(ステップS201)。
 その後、計画部103は、受け取った依頼のシーケンスが反応時間の長いシーケンスAか、反応時間の短いシーケンスBかを判断する(ステップS202)。反応時間の長いシーケンスAだった場合は、処理をステップS203に進める。
 次いで、計画部103は、シーケンスAの累積測定数が設定値以上であるか否かを判断する(ステップS203)。設定値以上であると判断されたときは処理をステップS204に進める。これに対して設定値未満であると判断されたときは処理をステップS206に進める。
 その後、計画部103は、空きサイクルを挿入(ステップS204)し、累積シーケンスAの測定数を0に書き換えて(ステップS205)、測定を開始させる。
 これに対し、累積シーケンスAの測定数が設定値を超えていないと判断された場合は、累積シーケンスAの測定数を1加算して(ステップS206)、処理をステップS207に進める。
 ステップS202において反応時間の短いシーケンスBであったと判断された場合、または累積シーケンスAの測定数を1加算した後では、シーケンス割付を行い(ステップS207)、測定を開始させる。
 その後、計画部103は、受け取った依頼を全て処理したか否かを判断する(ステップS208)。全ての依頼が処理済みであると判断されたときは処理を終了する。これに対し全ての依頼の処理が済んでいないと判断されたときは処理をステップS202に戻し、全ての依頼のスケジュールを終えるまで処理を繰り返す。
 図16に、ラックハンドリング設定画面の一例を示す。
 本実施例の自動分析システム100では、空きサイクルを設ける基準となる所定回数を設定する設定領域11bを含んだラックハンドリング設定画面11aを表示部11に表示させることができる。この設定領域11bは、手動選択領域11cを選択した上で、所定回数を曜日毎、日時毎のうち少なくともいずれかで設定する。
 このために、計画部103は、表示部11のラックハンドリング設定画面11aに図16に示すような設定領域11bを表示させる。設定領域11bでは、曜日、日時毎にSTAT検体用に空きサイクルの数(0~17回に1回、もしくは自動設定)が選択できるようになっている。値の入力は例えば操作部10により行う。
 本実施例の場合は、30秒サイクルで分析を行っており、空きサイクル18というのは9分÷30秒=18で最大待ち時間の9分と同義となる。そこで、0~17と設定できるようにしているが、分析のサイクル時間が変わって空きサイクルの設定できる範囲が17以上に増えても、空きサイクルの設定が連続して分注できる回数から割合表示となっても良い。
 また、曜日、日時は、もっと細かく時間毎に設定できるようにしても良いし、逆に、一律で設定できるようにしても良い。
 図16では、操作部10の操作によってOKボタン11eを選択することで、計画部103は設定領域11bに入力された回数だけ連続して測定時間の長いシーケンスの測定が行われる場合に空きサイクルを設けるようにスケジューリングを行う。
 キャンセルボタン11fを選択すると、設定領域11bに入力された回数に基づいた空きサイクルの設定は行わず、従前の設定に基づいて空きサイクルの設定を行う。
 また、本実施例では、検体ラック待機ディスク7の空きポジションの数(0~20もしくは自動設定)を設定する領域を表示部11に表示させることができる。
 これは、緊急検体専用の空きポジションを用意しておかない場合、緊急検体ラックが来ても検体ラック待機ディスク7が一杯で、他の検体に対して割り込んでの依頼が出来ない、との事態が生じる可能性がある。そのため、空きサイクルを設定する場合は、その設定と同時に検体ラック待機ディスク7に空きポジションを少なくとも1つ以上用意しておくことが望ましい。
 上記の設定を行い、空きサイクルや検体ラック待機ディスク7の空きポジションを作っておくことで、STAT項目の測定ではこの空きサイクル、および検体ラック待機ディスク7の空きポジションを利用し、測定開始待ちを短縮することができる。
 図17は、空きサイクルの設定を自動で計算する方法に関して説明する図である。
 図16のラックハンドリング設定画面11aで自動選択領域11dを選択した場合、計画部103は下記のような計算内容に基づいて自動で空きサイクルを設定する。
 例えば、図17に示すように、月曜日の午前中は18分項目も9分項目も他の時間、曜日に比べて依頼数が多く、また各曜日も午後に比べて午前中での依頼数が多い場合を考える。
 計画部103は、過去9週間分の測定項目数から、反応時間の長いシーケンスAと反応時間の短いシーケンスBの項目数を日時(1時間あたり)、曜日毎に求め、平均値、標準偏差SDを算出する。
 その後、計画部103は、平均値±3×SDの範囲外のデータを削除し、削除されたデータから平均値、標準偏差を算出し、平均値±2×SDの範囲を標準範囲として求める。これにより、時間当たりの平均的なシーケンスAの項目数(Aとする)、時間当たりの平均的なシーケンスBの項目数(Bとする)、時間当たりの平均的な測定数(Xとする)が求められる(A+B≒X)。
 分析装置の一時間あたりの処理能力(Yとする)に対して時間当たりの平均的な稼働率が50%以上の場合(X/Y>0.5の場合)を考える。この場合は、装置の処理能力に対して測定ユニットのスケジューリングにおける空きが少ないため、時間当たりの平均的なシーケンスBの項目数が占める割合(B/X)の逆数をとった値(小数点以下切り上げ)を空きサイクルとして決定する。
 また、時間当たりの平均的なシーケンスBの項目数が占める割合(B/X)が10%未満の場合は、シーケンスBを測定する要求がさほど高くなく、空きサイクルを高頻度で設ける必要がないと判断できることから、空きサイクルを10で設定する。
 更に、平均的なシーケンスBの項目数が占める割合(B/X)が50%以上の場合は、空きサイクルを高頻度で設ける必要があるため、空きサイクルを2で設定する。
 ここで、空きサイクルは0~17で設定できるようになっているが、17で設定をした場合、ワーストケースでは分注位置での待機時間が8分程度となってしまう。このため、自動設定の場合は0~10を用いることが望ましい。
 また、時間当たりの平均的なシーケンスBの項目数が占める割合(B/X)を用いる際、平均値±2SDの標準範囲で上限、および下限のどちらかの値に置き換えて上記の計算を行っても良い。
 また、分析装置の一時間あたりの処理能力(Yとする)に対して時間当たりの平均的な稼動率が50%以下の場合(X/Y<0.5の場合)、測定ユニットのスケジューリングにおいて十分な空きがあることが想定される。スケジューリングに空きが多く、緊急検体を割り込ませる空きが元々ある程度の水準で確保されている状態である。このため、空きサイクルを10で設定することが望ましい。
 また、時間当たりの平均的なシーケンスBの項目数が占める割合(B/X)が0の場合、測定時間の短いシーケンスの項目のために空きサイクルを用意しておく必要はまず無い。このため、空きサイクルを0に設定することが望ましい。これは、例えば、緊急性の低い健康診断などの検体を分析する検査センターなどの運用に好適な設定である。
 また、上記のような計算ではなく、単純に平均値や最大・最小割合を用いても良い。
 また、緊急検体の割合のばらつきが大きく、計算が実運用に適さない場合、図16に示すように、特定の曜日・時間帯へ手動で空きサイクルを入力しても良く、自動での設定と切り換え可能とすることができる。切り換えは、ラックハンドリング設定画面11aの手動選択領域11c、あるいは自動選択領域11dを選択することで行う。
 次に、本実施例の効果について説明する。
 上述した本実施例の自動分析システム100は、少なくとも1台以上の検体を分析する生化学モジュール110,免疫モジュール210と、生化学モジュール110,免疫モジュール210に検体を供給する搬送モジュール310と、を備えている。このうち、検体と試薬とを混合して反応させた反応液を保持する反応容器を複数搭載するインキュベータディスク22と、反応液の物性を測定する免疫測定ユニット23と、免疫測定ユニット23に対して実行が依頼された検体の測定の順番を決定する計画部103と、を備え、免疫測定ユニット23における測定には、測定時間の異なる項目が存在し、計画部103は、測定時間が最も長いシーケンスの項目を少なくとも2回以上の所定回数以上連続して測定する場合は、所定回数以上の測定の後に少なくとも1回以上の空きサイクルを設ける。
 このように、反応時間の長いシーケンスを連続して分析する場合に、指定された連続回数測定を行ったあとで最低1回の空きサイクルを設けることで、短いシーケンスの測定を長いシーケンスの間に割り込ませて測定することが可能となる。そのため、STAT項目の測定では空きサイクルを利用することが可能となり、測定開始待ちを短縮することができる。また、最低1回の空きサイクルを設けても、通常検体のターンアラウンドタイムは極端に悪化することがなく、トータルでのターンアラウンドタイムの改善に寄与する。
 特に、反応に要する時間が短いSTAT項目は、緊急検体測定などで使用される分析項目であり、常に短いターンアラウンドタイムが求められている。そのため、大規模病院では、ルーチン測定中に緊急検体の測定をするケースは日常的に存在する。このようなときに、本発明の測定スケジュール制御を実行することでSTAT項目のターンアラウンドタイムを短縮することができ、早期診断への貢献ができる。
 また、計画部103は、測定時間の短いシーケンスの項目が依頼された際は、空きサイクルに測定時間の短いシーケンスの項目の測定を割り込ませるため、確実にSTAT項目を割り込ませて早期に測定を行うことができる。
 更に、空きサイクルを設けるための所定回数を設定する設定領域11bを更に備えたことで、システムの運用箇所に応じた空きサイクルの設定が可能となる。従って、より柔軟な測定計画を作成することが可能となり、ターンアラウンドタイムの悪化をより確実に防ぐことができる。
 また、設定領域11bは、手動で、所定回数を曜日毎、日時毎のうち少なくともいずれかで設定可能であることにより、例えば、短いシーケンスの測定依頼がない施設や曜日や時間帯では、空きサイクルを作らないことで、長いシーケンスの測定依頼のターンアラウンドタイムを落とさないようにすることが出来る。同時に、短いシーケンスの測定依頼が多い場合に空きサイクルを積極的に設けることができ、ターンアラウンドタイムの更なる改善を図ることができる。
 更に、計画部103は、免疫モジュール210の過去の測定の状況から、日時・曜日毎の測定時間の短いシーケンスの検体の測定に対する割合を算出し、空きサイクルを設ける所定回数を自動で設定することで、例えば、月曜午前は依頼数が多く、緊急検体の割合も多いから空きサイクルの比率を高め、月曜午後は緊急検体の割合は多いが、一時間あたりの依頼数が少ないから空きサイクルの比率を低めるなど、過去の累積に基づいて分析状況に応じた比率を決めることができる。また、緊急検体の比率の少ない検査センターなどでは、空きサイクルはゼロとなり、不必要に空きサイクルを作ることで通常検体のターンアラウンドタイムが低下することを防ぐことができる。
 また、設定領域11bによる手動での所定回数の設定と、計画部103による自動での所定回数の設定とを切り換え可能であることにより、自動分析システム100の運用状況に応じた空きサイクルの設定が可能となり、ターンアラウンドタイムの改善に確実に寄与することができる。
 更に、生化学モジュール110,免疫モジュール210が搬送モジュール310に対して別個に接続されており、互いに異なる測定項目を分析する場合に、上述のような測定シーケンスが異なる項目が混在する場合であっても、測定のターンアラウンドタイムが極端に悪化することを抑える、とのメリットを大きく受けることが可能な装置構成となる。
 また、2台以上の生化学モジュール110,免疫モジュール210のうち、測定時間に測定項目数を乗算することで求められる負荷が軽い側の免疫モジュール210に対して検体を優先的に搬送することにより、早期に測定を行うことができ、ターンアラウンドタイムの改善を図ることができる。
 更に、同じ検体に複数の生化学モジュール110,免疫モジュール210における測定項目が依頼されている場合に、負荷の軽い側の免疫モジュール210における分注位置での待機時間が長く、同じ検体の生化学モジュール110での分注が遅れる場合は、負荷に関わらず生化学モジュール110に先に検体を搬送することで、ターンアラウンドタイムの悪化をより確実に抑制することができる。
 <その他> 
 なお、本発明は上記の実施例に限られず、種々の変形、応用が可能なものである。上述した実施例は本発明を分かりやすく説明するために詳細に説明したものであり、必ずしも説明した全ての構成を備えるものに限定されない。
 例えば上述の実施例では所定回数以上の測定の後に少なくとも1回の空きサイクルを設ける場合について説明したが、2回以上の空きサイクルを設けてもよい。このような設定は、例えば、1つの緊急検体に対する依頼項目数が多い、あるいは緊急検体の投入割合が非常に多い箇所で運用される自動分析システムに特に有効であると考えられる。
1…検体ラック
2,2A,2B,2C,2D,2E…検体容器
3…検体ラック投入部
4…緊急検体容器投入部
5…検体・ラックID読取部
6…搬送ライン
7…検体ラック待機ディスク
8…検体ラック収納部
9…全体管理用コンピュータ
9a…記憶部
9b…演算処理部
10…操作部
11…表示部
11a…ラックハンドリング設定画面
11b…設定領域(設定部)
11c…手動選択領域
11d…自動選択領域
11e…OKボタン
11f…キャンセルボタン
12…外部ネットワーク
13…生化学モジュール用コンピュータ
14…サンプリングライン
15…検体サンプリング機構
16…反応セルディスク
17…生化学測定ユニット
18…試薬ピペッティング機構
19…試薬ディスク
20…サンプリングライン
21…検体サンプリング機構
22…インキュベータディスク
23…免疫測定ユニット
24…試薬ピペッティング機構
25…試薬ディスク
26…反応容器搬送機構
27…反応液吸引ノズル
28…反応容器保持部材
29…反応容器攪拌機構
30…検体分注チップおよび反応容器廃棄孔
31…検体分注チップ装着位置
32…移送機構
33…免疫モジュール用コンピュータ
34…磁気分離部
100…自動分析システム
101…依頼入力部
102…ラック管理部
103…計画部
104…依頼解析部
105…機構制御部
106…結果出力部
110…生化学モジュール(自動分析装置)
210…免疫モジュール(自動分析装置)
310…搬送モジュール(搬送装置)
310a…搬送モジュール用制御部

Claims (11)

  1.  検体を分析する自動分析装置であって、
     前記検体と試薬とを混合して反応させた反応液を保持する反応容器を複数搭載するインキュベータと、
     前記反応液の物性を測定する検出部と、
     前記検出部に対して実行が依頼された前記検体の測定の順番を決定する計画部と、を備え、
     前記検出部における測定には、測定時間の異なる項目が存在し、
     前記計画部は、前記測定時間が最も長いシーケンスの項目を少なくとも2回以上の所定回数以上連続して測定する場合は、前記所定回数以上の測定の後に少なくとも1回以上の空きサイクルを設ける
     ことを特徴とする自動分析装置。
  2.  請求項1に記載の自動分析装置において、
     前記計画部は、前記測定時間の短いシーケンスの項目が依頼された際は、前記空きサイクルに前記測定時間の短いシーケンスの項目の測定を割り込ませる
     ことを特徴とする自動分析装置。
  3.  請求項2に記載の自動分析装置において、
     前記空きサイクルを設けるための前記所定回数を設定する設定部を更に備えた
     ことを特徴とする自動分析装置。
  4.  請求項3に記載の自動分析装置において、
     前記設定部は、手動で、前記所定回数を曜日毎、日時毎のうち少なくともいずれかで設定可能である
     ことを特徴とする自動分析装置。
  5.  請求項3に記載の自動分析装置において、
     前記計画部は、前記自動分析装置の過去の測定の状況から、日時・曜日毎の前記測定時間の短いシーケンスの前記検体の測定に対する割合を算出し、前記空きサイクルを設ける前記所定回数を自動で設定する
     ことを特徴とする自動分析装置。
  6.  請求項5に記載の自動分析装置において、
     前記設定部による手動での前記所定回数の設定と、前記計画部による自動での前記所定回数の設定とを切り換え可能である
     ことを特徴とする自動分析装置。
  7.  少なくとも1台以上の請求項1に記載の自動分析装置と、
     前記自動分析装置に前記検体を供給する搬送装置と、を備えた
     ことを特徴とする自動分析システム。
  8.  請求項7に記載の自動分析システムにおいて、
     前記自動分析装置が前記搬送装置に対して2台以上別個に接続されており、互いに異なる測定項目を分析する
     ことを特徴とする自動分析システム。
  9.  請求項8に記載の自動分析システムにおいて、
     2台以上の前記自動分析装置のうち、測定時間に測定項目数を乗算することで求められる負荷が軽い側の自動分析装置に対して前記検体を優先的に搬送する
     ことを特徴とする自動分析システム。
  10.  請求項9に記載の自動分析システムにおいて、
     同じ検体に複数の自動分析装置における測定項目が依頼されている場合に、前記負荷の軽い側の前記自動分析装置における分注位置での待機時間が長く、同じ検体の他の前記自動分析装置での分注が遅れる場合は、前記負荷に関わらず他の前記自動分析装置に先に前記検体を搬送する
     ことを特徴とする自動分析システム。
  11.  自動分析装置による検体の自動分析方法であって、
     前記自動分析装置は、前記検体と試薬とを混合して反応させた反応液を保持する反応容器を複数搭載するインキュベータと、前記反応液の物性を測定する検出部と、前記検出部に対して実行が依頼された前記検体の測定の順番を決定する計画部と、を備え、前記検出部における測定には、測定時間の異なる項目が存在し、
     前記測定の順序を決定する際に、前記測定時間が最も長いシーケンスの項目を少なくとも2回以上の所定回数以上連続して測定する場合は、前記所定回数以上の測定の後に少なくとも1回以上の空きサイクルを設ける
     ことを特徴とする検体の自動分析方法。
PCT/JP2019/047053 2019-01-18 2019-12-02 自動分析装置および自動分析システム、ならびに検体の自動分析方法 WO2020149033A1 (ja)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2020566136A JP7059403B2 (ja) 2019-01-18 2019-12-02 自動分析装置および自動分析システム、ならびに検体の自動分析方法
EP19909640.5A EP3913373B1 (en) 2019-01-18 2019-12-02 Automatic analysis system and automatic analysis method for analytes
CN201980077788.7A CN113272653B (zh) 2019-01-18 2019-12-02 自动分析装置、自动分析系统以及检体的自动分析方法
US17/284,763 US20210389337A1 (en) 2019-01-18 2019-12-02 Automatic analysis device, automatic analysis system, and automatic analysis method for analytes

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-006630 2019-01-18
JP2019006630 2019-01-18

Publications (1)

Publication Number Publication Date
WO2020149033A1 true WO2020149033A1 (ja) 2020-07-23

Family

ID=71613762

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/047053 WO2020149033A1 (ja) 2019-01-18 2019-12-02 自動分析装置および自動分析システム、ならびに検体の自動分析方法

Country Status (5)

Country Link
US (1) US20210389337A1 (ja)
EP (1) EP3913373B1 (ja)
JP (1) JP7059403B2 (ja)
CN (1) CN113272653B (ja)
WO (1) WO2020149033A1 (ja)

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03172762A (ja) * 1989-11-30 1991-07-26 Shimadzu Corp 自動分析装置
JPH05164763A (ja) 1991-12-18 1993-06-29 Jeol Ltd 生化学自動分析装置
JPH10325839A (ja) * 1997-03-26 1998-12-08 Hitachi Ltd 検体分析システム
JP2005164508A (ja) * 2003-12-05 2005-06-23 Hitachi High-Technologies Corp 自動分析装置及び自動分析装置の分析方法
WO2008050396A1 (fr) * 2006-10-24 2008-05-02 Olympus Corporation Analyseur
WO2010073504A1 (ja) * 2008-12-26 2010-07-01 株式会社 日立ハイテクノロジーズ 自動分析装置
JP2010181197A (ja) * 2009-02-03 2010-08-19 Beckman Coulter Inc 自動分析装置およびラック搬送方法
JP2010217114A (ja) * 2009-03-18 2010-09-30 Beckman Coulter Inc 自動分析装置、多ユニット自動分析装置、および予定分析終了時間算出方法
JP2016090536A (ja) * 2014-11-11 2016-05-23 日本電子株式会社 自動分析装置及び動作指定方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3930977B2 (ja) * 1998-07-31 2007-06-13 株式会社日立製作所 検体処理システム
CN101726616B (zh) * 2008-10-31 2014-07-16 深圳迈瑞生物医疗电子股份有限公司 自动分析装置及其工作方法
JP5638823B2 (ja) * 2010-03-31 2014-12-10 シスメックス株式会社 検体処理システム
JP5417351B2 (ja) * 2011-01-26 2014-02-12 株式会社日立ハイテクノロジーズ 検体搬送システムおよびその制御方法
CN103748472B (zh) * 2011-09-05 2016-08-17 株式会社日立高新技术 自动分析装置
EP2834648A4 (en) * 2012-04-04 2015-12-23 Siemens Healthcare Diagnostics METHOD FOR PROCESSING PRIORITY SAMPLES WHICH PRESERVE A PEPS PROCESS WAITING FILE
WO2018163674A1 (ja) * 2017-03-07 2018-09-13 株式会社日立ハイテクノロジーズ 自動分析装置
CN108226549B (zh) * 2018-01-15 2021-07-13 重庆博奥新景医学科技有限公司 一种用于化学发光免疫分析仪的时序控制方法与系统

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03172762A (ja) * 1989-11-30 1991-07-26 Shimadzu Corp 自動分析装置
JPH05164763A (ja) 1991-12-18 1993-06-29 Jeol Ltd 生化学自動分析装置
JPH10325839A (ja) * 1997-03-26 1998-12-08 Hitachi Ltd 検体分析システム
JP2005164508A (ja) * 2003-12-05 2005-06-23 Hitachi High-Technologies Corp 自動分析装置及び自動分析装置の分析方法
WO2008050396A1 (fr) * 2006-10-24 2008-05-02 Olympus Corporation Analyseur
WO2010073504A1 (ja) * 2008-12-26 2010-07-01 株式会社 日立ハイテクノロジーズ 自動分析装置
JP2010181197A (ja) * 2009-02-03 2010-08-19 Beckman Coulter Inc 自動分析装置およびラック搬送方法
JP2010217114A (ja) * 2009-03-18 2010-09-30 Beckman Coulter Inc 自動分析装置、多ユニット自動分析装置、および予定分析終了時間算出方法
JP2016090536A (ja) * 2014-11-11 2016-05-23 日本電子株式会社 自動分析装置及び動作指定方法

Also Published As

Publication number Publication date
EP3913373B1 (en) 2023-08-02
US20210389337A1 (en) 2021-12-16
JPWO2020149033A1 (ja) 2021-10-07
CN113272653A (zh) 2021-08-17
CN113272653B (zh) 2023-09-15
JP7059403B2 (ja) 2022-04-25
EP3913373A1 (en) 2021-11-24
EP3913373A4 (en) 2022-10-19

Similar Documents

Publication Publication Date Title
US9709587B2 (en) Automatic analyzer and reagent processing method in automatic analyzer
US5846491A (en) Device for automatic chemical analysis
US11268971B2 (en) Automated analyzer
JP2004279357A (ja) 自動分析装置
EP2808683B1 (en) Automatic analysis device
JP2008281453A (ja) 自動分析システム
JP5097466B2 (ja) 自動分析装置
JP6340245B2 (ja) 自動分析装置
WO2020183982A1 (ja) 自動分析装置および自動分析方法
WO2022176295A1 (ja) 自動分析装置および自動分析装置の制御方法
WO2020149033A1 (ja) 自動分析装置および自動分析システム、ならびに検体の自動分析方法
CN112166327A (zh) 自动分析装置及试样的搬送方法
JP7053898B2 (ja) 自動分析システムおよび検体の搬送方法
JP7179861B2 (ja) 自動分析装置、及びその方法
JP7329596B2 (ja) 自動分析装置
WO2020039679A1 (ja) 自動分析装置および自動分析システム

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909640

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566136

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019909640

Country of ref document: EP

Effective date: 20210818