WO2020148918A1 - 金属材料の設計支援方法及び設計支援装置 - Google Patents

金属材料の設計支援方法及び設計支援装置 Download PDF

Info

Publication number
WO2020148918A1
WO2020148918A1 PCT/JP2019/006147 JP2019006147W WO2020148918A1 WO 2020148918 A1 WO2020148918 A1 WO 2020148918A1 JP 2019006147 W JP2019006147 W JP 2019006147W WO 2020148918 A1 WO2020148918 A1 WO 2020148918A1
Authority
WO
WIPO (PCT)
Prior art keywords
input
design support
data
metal
database
Prior art date
Application number
PCT/JP2019/006147
Other languages
English (en)
French (fr)
Inventor
宏征 高木
山口 収
一浩 中辻
Original Assignee
Jfeスチール株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jfeスチール株式会社 filed Critical Jfeスチール株式会社
Priority to MX2021008618A priority Critical patent/MX2021008618A/es
Priority to EP19910610.5A priority patent/EP3913635A4/en
Priority to BR112021013351-8A priority patent/BR112021013351A2/pt
Priority to CN201980089027.3A priority patent/CN113330440A/zh
Priority to US17/423,566 priority patent/US20220083700A1/en
Priority to KR1020217025533A priority patent/KR20210110716A/ko
Publication of WO2020148918A1 publication Critical patent/WO2020148918A1/ja

Links

Images

Classifications

    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C60/00Computational materials science, i.e. ICT specially adapted for investigating the physical or chemical properties of materials or phenomena associated with their design, synthesis, processing, characterisation or utilisation
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/10Geometric CAD
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F30/00Computer-aided design [CAD]
    • G06F30/20Design optimisation, verification or simulation
    • G06F30/27Design optimisation, verification or simulation using machine learning, e.g. artificial intelligence, neural networks, support vector machines [SVM] or training a model
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2111/00Details relating to CAD techniques
    • G06F2111/10Numerical modelling
    • GPHYSICS
    • G06COMPUTING; CALCULATING OR COUNTING
    • G06FELECTRIC DIGITAL DATA PROCESSING
    • G06F2119/00Details relating to the type or aim of the analysis or the optimisation
    • G06F2119/18Manufacturability analysis or optimisation for manufacturability
    • GPHYSICS
    • G16INFORMATION AND COMMUNICATION TECHNOLOGY [ICT] SPECIALLY ADAPTED FOR SPECIFIC APPLICATION FIELDS
    • G16CCOMPUTATIONAL CHEMISTRY; CHEMOINFORMATICS; COMPUTATIONAL MATERIALS SCIENCE
    • G16C20/00Chemoinformatics, i.e. ICT specially adapted for the handling of physicochemical or structural data of chemical particles, elements, compounds or mixtures
    • G16C20/30Prediction of properties of chemical compounds, compositions or mixtures

Definitions

  • the present invention relates to a design support method and a design support apparatus for a metal material having desired characteristics.
  • Patent Document 1 proposes a method of performing material design using a mathematical model and optimization calculation in order to reduce the work load related to the design of non-metallic materials.
  • Patent Document 2 a characteristic of a newly generated substance is simulated by combining a plurality of types of substances, and information of a substance to be combined with information of a simulation result of the characteristic of a newly generated substance is linked, There has been proposed a material development analysis device that extracts specific information according to a search condition input by a user.
  • Patent Document 1 In designing metallic materials, as compared with designing non-metallic materials, many work processes and processing on equipment are performed, and therefore a huge amount of calculation is required for management and control of the work processes and processing on equipment. I need. If the technique of Patent Document 1 is applied to the design of a metallic material, it takes a huge amount of time for optimization calculation, and thus it cannot be said to be a realistic method. Further, in the design of the metal material, the metal structure of the metal material may significantly change according to the manufacturing conditions, and the characteristics of the metal material may significantly change in accordance with the change. However, in Patent Document 1 and Patent Document 2, this point was not taken into consideration.
  • an object of the present invention made in view of the above problems is to provide a design support method and a design support apparatus capable of suppressing an increase in calculation load required for designing a metal material.
  • a design support method for supporting the design of a metal material by a computer, It is created by using at least one mathematical model in which input information including elemental composition of elements in metal and manufacturing conditions and output information including characteristic values of the metal material are associated with each other, and corresponds to the input information. Input the desired characteristic value to the database in which the output data of the mathematical model for the input data for each mesh that divides the input range into multiple sections is stored in association with the input data.
  • a design support device is A design support device for supporting the design of a metal material, It is created by using at least one mathematical model in which input information including elemental composition of elements in metal and manufacturing conditions and output information including characteristic values of the metal material are associated with each other, and corresponds to the input information. Input the desired characteristic value to the database in which the output data of the mathematical model for the input data for each mesh that divides the input range into multiple sections is stored in association with the input data.
  • FIG. 1 is a schematic diagram of a design support device according to the first embodiment.
  • 3 is a schematic diagram of a manufacturing process of a steel material according to Embodiment 1.
  • FIG. FIG. 3 is a conceptual diagram of creating a mathematical model according to the first embodiment.
  • 3 is a conceptual diagram of creating a database according to the first embodiment.
  • FIG. 6 is a conceptual diagram of a search process based on a database according to the first embodiment.
  • FIG. 3 is a flowchart showing the operation of the design support device according to the first embodiment.
  • 9 is a conceptual diagram of creation of a mathematical model according to the second embodiment.
  • FIG. FIG. 11 is a conceptual diagram of a search process based on a database according to the third embodiment.
  • FIG. 1 is a schematic diagram of a design support device 1 according to the first embodiment of the present invention.
  • a design support device 1 according to an embodiment of the present invention includes a data aggregating unit 11, a model creating unit 12, a database creating unit 13, a searching unit 14, and a presenting unit 15. It is a calculator.
  • the data aggregating unit 11 aggregates the actual result data relating to the manufacturing of steel materials necessary for creating a mathematical model described later.
  • the data aggregating unit 11 may include a communication interface for aggregating the record data.
  • the data aggregating unit 11 may receive the record data from a plurality of external devices or the like using a predetermined communication protocol.
  • the actual data collected by the data collecting unit 11 includes the component composition of elements in steel, manufacturing conditions, and characteristic values of steel materials.
  • the data on the composition of elements of the steel in the steel collected by the data aggregating unit 11 includes the addition ratio of the elements to be melted in the steel in the converter or the secondary refining.
  • Such elements include, for example, C, Si, Mn, P, S, Al, N, Cr, V, Sb, Mo, Cu, Ni, Ti, Nb, B, and Ca.
  • the manufacturing condition data collected by the data collecting unit 11 includes various conditions in each step of the manufacturing process of the steel material.
  • FIG. 2 shows a schematic diagram of a manufacturing process of a steel material.
  • raw iron ore is charged into a blast furnace together with limestone and coke to produce molten pig iron.
  • Pig iron tapped in the blast furnace is adjusted for components such as carbon in the converter, and finally adjusted for secondary refining.
  • a continuous casting machine casts refined steel to produce an intermediate material called a slab.
  • a cold-rolled coil that is a product is generated through a plurality of processing steps such as a heating step in a heating furnace, a hot rolling step, a cooling step, a pickling step, a cold rolling step, an annealing step, and a plating step. ..
  • the combination of these processing steps differs depending on the product to be manufactured.
  • the combination of processing steps has, for example, the following patterns.
  • ⁇ Pattern 1 Heating process ⁇ hot rolling process ⁇ cooling process ⁇ Pattern 2: Heating process ⁇ Hot rolling process ⁇ Cooling process ⁇ Pickling process ⁇ Cold rolling process ⁇ Pattern 3: Heating process ⁇ Hot rolling process ⁇ Cooling Process ⁇ Pickling process ⁇ Cold rolling process ⁇ Annealing process ⁇ Pattern 4: Heating process ⁇ Hot rolling process ⁇ Cooling process ⁇ Pickling process ⁇ Cold rolling process ⁇ Annealing process ⁇ Plating process ⁇ Heat treatment process
  • the various conditions in each of the above steps include, for example, the following.
  • ⁇ Heating process Heating temperature, heating time
  • ⁇ Hot rolling process Plate thickness, plate width, cumulative reduction, rolling start temperature, rolling end temperature, Winding temperature, cooling speed-Cooling process: cooling start temperature, cooling speed-Pickling process: pickling chemical concentration, pickling chemical temperature, pickling speed-Cold rolling process: strip thickness, strip width, reduction rate-annealing Process: Heating speed, heating temperature, holding time, cooling speed, cooling method-Plating process: Melting plating temperature, plating adjustment gas spray amount-Heat treatment process: Heating speed, heating temperature
  • the data of the characteristic values of the steel material collected by the data collecting unit 11 include, for example, tensile strength, yield stress, elongation, hardness, impact absorption energy, r value, n value, hole expansion rate, and BH amount.
  • the characteristic value can be obtained, for example, by carrying out a sampling test for evaluating the characteristic of the steel material from a part of the manufactured steel material product.
  • the data aggregating unit 11 manages the aggregated performance data in association with each other. In other words, the data aggregating unit 11 unitarily combines the actual data of the component composition of the elements in the steel, the actual data of the manufacturing conditions, and the actual data of the characteristic values of the steel material for each unit of the manufactured steel material product. , Collect them so that they can be handled.
  • the model creating unit 12 creates a mathematical model in which input information including the elemental composition of elements in steel and manufacturing conditions and output information including characteristic values of steel materials are associated with each other, based on the result data collected by the data collecting unit 11. ..
  • the input information is information on actual values used to create a mathematical model.
  • the output information is information on actual values used to create a mathematical model.
  • FIG. 3 shows a conceptual diagram of creation of the mathematical model according to the first embodiment. As shown in FIG. 3, the model creating unit 12 creates a mathematical model by associating the input information with the output information.
  • the model creating unit 12 creates the mathematical model by an arbitrary algorithm based on the actual result data.
  • input information is represented by three inputs 1 to 3 and output information is represented by one for the sake of simplicity.
  • the inputs 1 to 3 respectively correspond to the component composition of the elements in the steel or the manufacturing conditions in the performance data collected by the data collecting unit 11.
  • the output corresponds to the characteristic value of the steel material in the actual data.
  • the database creation unit 13 creates a database using the mathematical model created by the model creation unit 12.
  • FIG. 4 shows a conceptual diagram of creating a database according to the first embodiment.
  • the database creation unit 13 defines the input data mesh by dividing the range of the input data into a plurality of sections for the input information, and defines the representative value corresponding to each input data mesh as the input data.
  • the representative value may be, for example, a median value in the mesh, or an end value of the upper limit value or the lower limit value, which is representative of the mesh.
  • the range of the input data does not have to be the same as the input information which is the actual data.
  • the database creation unit 13 also inputs the input data for each mesh determined in this way into the mathematical model created by the model creation unit 12 to obtain output data for each mesh.
  • the output data is the output value of the model corresponding to the input data.
  • each input data for each mesh can be used as the input data with the median value of the data section defined as the mesh as a representative value, for example.
  • the database creating unit 13 creates a database by accumulating and storing, for each mesh, the correspondence between the output data and the input data obtained by inputting the input data for each mesh into the mathematical model. That is, the database creation unit 13 creates a database that stores output data for each mesh that divides the range of input data into a plurality of sections.
  • the range of input data that defines the input data mesh is the entire range of input, including the composition and manufacturing conditions of elements in steel that can be assumed as a steel material. That is, the range of input data is limited to a predetermined range based on a predetermined condition such as a metallurgical knowledge or an evaluation function. Table 1 is an example of restrictions on the range of the input data.
  • the search unit 14 searches the database for input data corresponding to a certain index, on condition that an arbitrary index matches the output data.
  • FIG. 5 shows a conceptual diagram of the search process based on the database according to the first embodiment.
  • FIG. 5 shows an example in which one output data item is associated with m or more input data items.
  • the search unit 14 searches the database by using the arbitrarily specified desired characteristic value as an index, and as a search result, obtains the component composition of the element in the steel and the manufacturing conditions in a plurality of steps corresponding to the desired characteristic value.
  • “y2” is searched as an index as a desired characteristic value
  • the "component composition of the element in the steel corresponding to the desired characteristic value and the manufacturing conditions in multiple steps” means the composition of the element in the steel that produces a characteristic value that matches the desired characteristic value designated as an index.
  • the composition of elements in the steel that produces a characteristic value similar to the desired characteristic value designated as an index and the manufacturing conditions in a plurality of steps are included.
  • “the characteristic values are similar” means that the absolute value of the difference between the characteristic values is small, and the similar range can be defined for each characteristic value. That is, if there is data included in a range similar to the value given as the desired characteristic value, the search result is output as a match.
  • FIG. 5 shows an example in which one search result is obtained by using “y2” as an index, but the search result is not limited to this.
  • a plurality of search results may be extracted. By doing so, it is possible to obtain a plurality of patterns of the component composition of the elements in the steel and the manufacturing conditions in the plurality of steps that exhibit the desired characteristics, and it is possible to efficiently design the steel material.
  • the presenting unit 15 presents to the user the search results searched by the searching unit 14, that is, the component composition and manufacturing conditions of the elements in the steel corresponding to the desired characteristic value.
  • the user can efficiently design the steel material by using the component composition of the elements in the steel presented by the presentation unit 15 and the production conditions in the plurality of steps as target values or reference values during the production of the steel material.
  • the data aggregating unit 11 aggregates the performance data necessary for creating the mathematical model (step S10).
  • the actual data collected by the data collecting unit 11 includes the component composition of the elements in the steel, the manufacturing conditions, and the characteristic value of the steel material related to the manufactured steel material.
  • the model creating unit 12 associates the input information including the component composition and manufacturing conditions of the elements in the steel with the output information including the characteristic values of the steel material, based on the actual data collected by the data collecting unit 11, and the mathematical model. Is created (step S20).
  • the database creating unit 13 creates a database for supporting the design of the steel material using the mathematical model created by the model creating unit 12 (step S30). Specifically, the database creation unit 13 creates a database in which the output data corresponding to the input data for each mesh obtained by dividing the range of the input data into a plurality of sections is associated with the input data and accumulated.
  • the search unit 14 searches the component composition and manufacturing conditions of the elements in the steel corresponding to the desired characteristic value based on the database (step S40).
  • the presentation unit 15 presents the component composition and manufacturing conditions of the element in the steel corresponding to the desired characteristic value retrieved by the retrieval unit 14 (step S50).
  • design support apparatus 1 instead of performing optimization calculation, a database that stores output data for each mesh that divides a range of input data into a plurality of sections is used. Then, the composition and production conditions of the element in the metal corresponding to the desired characteristic value are searched based on the database, and the composition and production condition of the element in the metal corresponding to the desired characteristic value are presented. That is, according to the design support apparatus 1 according to the first embodiment, design support can be performed without performing optimization calculation, and thus an increase in calculation load related to the design of steel materials can be suppressed.
  • the performance data collected by the data collecting unit 11 of the design support device 1 according to the second embodiment includes, in addition to the component composition of the elements in the steel, the manufacturing conditions, and the characteristic value of the steel material, an index indicating the state of the metal structure. ..
  • the index indicating the state of the metal structure includes, for example, the grain size and structure fraction of ferrite, the structure fraction of cementite, the structure fraction of pearlite, the structure fraction of bainite, and the structure fraction of martensite. Any method can be adopted as a method of collecting the indexes indicating the state of the metal structure.
  • the data aggregating unit 11 may be obtained by performing a sampling test for evaluating an index indicating the state of the metal structure from a part of the manufactured steel material product.
  • the data aggregating unit 11 associates the index data thus obtained with the manufacturing data of the steel material product and the characteristics of the steel material.
  • the data aggregating unit 11 may be obtained by a measuring device capable of evaluating an index indicating the state of the metal structure during manufacturing.
  • the data aggregating unit 11 associates the index data thus obtained with the manufacturing data of the product and the characteristics of the steel material.
  • the data aggregating unit 11 may obtain the index indicating the state of the metal structure during manufacturing by a simulation capable of evaluating.
  • the data aggregating unit 11 may associate the index data thus obtained with the manufacturing data of the product and the characteristics of the steel material.
  • the model creation unit 12 of the design support device 1 provides input information including the component composition of elements in steel, manufacturing conditions, and an index indicating the state of the metal structure, and output information including characteristic values of steel materials. Create related mathematical models.
  • FIG. 7 shows a conceptual diagram of creation of a mathematical model according to the second embodiment.
  • the input information is represented by three inputs 1 to 3 for the sake of simplicity of description. These inputs 1 to 3 respectively correspond to the component composition of elements in steel, manufacturing conditions, or an index indicating the state of the metal structure.
  • the model creating unit 12 creates a mathematical model by associating the input information with the output information.
  • the creation of the database by the database creating unit 13 is the same as that of the first embodiment, and thus the description thereof is omitted.
  • the search processing by the search unit 14 searches the database by using the arbitrarily specified desired characteristic value as an index, and as a search result, in addition to the component composition and manufacturing conditions of the elements in the steel corresponding to the desired characteristic value, the metal Obtain an index that represents the state of the organization.
  • the information presenting process by the presenting unit 15 is the same as that in the first embodiment, and thus the description thereof is omitted.
  • the design support device 1 since the data of the state of the metallographic structure, which is a direct factor for expressing the characteristics of the steel material, is used, the accuracy of the mathematical model created can be improved. .. Furthermore, based on the information on the state of the metallographic structure, it is possible to obtain an index indicating the state of the metallographic structure in addition to the component composition and manufacturing conditions of the elements in the steel that produce the desired characteristic value as the search result. , The design accuracy of steel materials can be improved. Therefore, according to the design support apparatus 1 according to the second embodiment, it is possible to accurately obtain the component composition and manufacturing conditions of the elements in the metal that can obtain a desired characteristic value of the characteristics of the steel material, and perform a highly accurate design. You can
  • the third embodiment of the present invention will be described below.
  • the same components as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the design support apparatus 1 according to the third embodiment is different from the configuration according to the first embodiment in that the model creating unit 12 creates a mathematical model for each characteristic value.
  • the characteristics of the metal material include, for example, tensile strength, yield stress, elongation, hardness, impact absorption energy, r value, n value, hole expansion ratio, and BH amount, as described in the first embodiment.
  • the model creation unit 12 of the design support device 1 according to the third embodiment creates separate mathematical models for each of these multiple types of characteristics. In other words, the model creation unit 12 of the design support device 1 according to the third embodiment creates a plurality of mathematical models.
  • the database creation unit 13 creates a database using the plurality of mathematical models created by the model creation unit 12. Specifically, the database creation unit 13 defines the input data mesh by dividing the input range into a plurality of sections, with the component composition and manufacturing conditions of the elements in the steel that can be assumed as the steel material being the entire input range. Here, the range of input data input to the database does not have to match the range of input information.
  • the input data is a representative value of each data mesh (similar to the first embodiment).
  • the database creation unit 13 inputs the determined input data for each mesh into each of the plurality of mathematical models created by the model creation unit 12 to obtain output data for each mesh.
  • the database creation unit 13 accumulates and stores, for each mesh, the correspondence between the output data and the input data obtained by inputting the input data for each mesh into a plurality of mathematical models, and creates a database.
  • the database creation unit 13 creates a database that stores output data for each mesh that divides the range of input data into a plurality of sections.
  • the search process by the search unit 14 is the same as that of the first embodiment, but the index at the time of search can be specified by a plurality of types of characteristics.
  • FIG. 8 shows a conceptual diagram of the search process based on the database according to the third embodiment.
  • “y12, y22,...” As a desired characteristic value is searched as an index, and “x12, x22,..., Xm2,...” Is obtained as a search result.
  • the presentation unit 15 presents the search result to the user.
  • the presentation unit 15 presents the component composition of the elements in the steel and the production conditions corresponding to the plurality of desired characteristic values retrieved by the retrieval unit 14.
  • the user can efficiently design the steel material by using the component composition of the elements in the steel and the manufacturing conditions in a plurality of steps presented by the presentation unit 15 as the target value or the reference value at the time of manufacturing the steel material.
  • FIG. 9 shows a conceptual diagram of another search process based on the database according to the third embodiment.
  • the search unit 14 outputs at least one search result having output data in a range similar to the index. For example, when a part of the plurality of characteristic values among the desired characteristic values, which is an index, partially matches, the search unit 14 presents, as candidates, a characteristic that partially matches and does not match. To do. At this time, there is a method of determining the similarity based on the distance of a vector composed of characteristic values that do not match.
  • the search unit 14 outputs, as a search result, data having output data that is most similar to any one of desired characteristic values that are indexes.
  • search result candidates “x12, x22,..., Xm2,...” And “x1n, x2n,. ..
  • the presentation unit 15 may present the two search results to the user.
  • the similar range can be determined by normalizing the values between the respective elements of the vector and then determining that the normalized distance between the vectors is a predetermined distance. It is also possible to make a determination by defining a similar range for each element.
  • the design support apparatus 1 it is possible to easily associate the input/output relations such as the composition of elements in the complex steel and the manufacturing conditions in a plurality of processes that exhibit a plurality of characteristics of the steel material. As a result, it becomes possible to efficiently design steel materials.
  • Embodiment 4 of the present invention will be described.
  • the same components as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the design support device 1 according to the fourth embodiment is different from the configuration according to the first embodiment in the content of the result data aggregated by the data aggregation unit 11 and the configuration of the mathematical model created by the model creation unit 12.
  • the actual data collected by the data collecting unit 11 of the design support apparatus 1 according to the fourth embodiment includes the composition of elements in steel, the manufacturing conditions, and the characteristic value of the steel material, as well as an index indicating the state of the metal structure. .. Further, the model creating unit 12 associates the input information including the component composition and manufacturing conditions of the elements in the steel with the intermediate output information including the index indicating the state of the metal structure, the intermediate output information and the metal. A second mathematical model associated with output information including material properties is created.
  • FIG. 10 shows a conceptual diagram of creation of a mathematical model according to the fourth embodiment. As shown in FIG.
  • the index indicating the state of the metal structure is used as the output information (intermediate output information) of the first mathematical model, and the input information and the output information are output via the intermediate output information.
  • the first mathematical model and the second mathematical model correspond by the first mathematical model and the second mathematical model.
  • the database creation unit 13 creates a database using the plurality of mathematical models created by the model creation unit 12, that is, the first mathematical model and the second mathematical model. Specifically, the database creation unit 13 defines the input data mesh by dividing the input range into a plurality of sections, with the component composition and manufacturing conditions of the elements in the steel that can be assumed as the steel material being the entire input range. Here, the range of input data input to the database does not have to match the range of input information.
  • the input data is a representative value of each data mesh (similar to the first embodiment).
  • the database creation unit 13 inputs the determined input data for each mesh into the first mathematical model to obtain intermediate output data for each mesh.
  • the database creation unit 13 also inputs the intermediate output data to the second mathematical model to obtain output data for each mesh.
  • the database creation unit 13 accumulates and stores, for each mesh, the correspondence between the output data and the input data obtained by inputting the input data for each mesh into a plurality of mathematical models, and creates a database.
  • the database creation unit 13 creates a database that stores output data for each mesh that divides the range of input data into a plurality of sections.
  • the search processing by the search unit 14 for example, using a desired characteristic value as an index, the range of the index indicating the state of the metallographic structure that is the intermediate output is limited to a predetermined range, and the search is performed within the limited range. Using the index indicating the metal structure as an index, the composition and manufacturing conditions of elements in steel are searched.
  • a predetermined range of desired characteristic values is used as an index to search a range of an index indicating the state of the metallographic structure, which is an intermediate output, and represents the state of the searched metallographic structure.
  • the index range as an index, we search for multiple candidates for the composition of elements in steel and manufacturing conditions.
  • the search unit 14 searches the database for the index indicating the state of the metal structure corresponding to the desired characteristic value and the component composition and manufacturing conditions of the elements in the metal corresponding to the index indicating the state of the metal structure. To do.
  • the information presenting process by the presenting unit 15 is the same as that in the first embodiment, and thus the description thereof is omitted.
  • the design support apparatus 1 according to the fourth embodiment can be created because the information on the state of the metal structure, which is a direct factor for revealing the characteristics of the steel material, can be used as the intermediate output.
  • the accuracy of the mathematical model can be improved. Therefore, according to the design support apparatus 1 according to the fourth embodiment, it is possible to accurately obtain the component composition of the elements in the metal and the manufacturing conditions that can obtain the desired characteristic value of the characteristics of the steel material, and perform the highly accurate design. You can
  • the fifth embodiment of the present invention will be described below.
  • the same components as those in the first embodiment are designated by the same reference numerals and the description thereof will be omitted.
  • the design support device 1 according to the fifth embodiment differs from the configuration according to the first embodiment in the input data mesh of the database created by the database creation unit 13.
  • FIG. 11 shows a conceptual diagram of database creation according to the fifth embodiment.
  • the database creation unit 13 defines the input data mesh by dividing the input range into a plurality of sections with the composition range of the elements in the steel and the manufacturing conditions that can be assumed as the steel material as the entire input range.
  • the database creation unit 13 makes the granularity (section width) of each section of the mesh different for each input data.
  • the database creation unit 13 may change the section width in advance for each item based on the metallurgical knowledge, for items that are important to be detailed and for items that are not important to be coarse.
  • the database creation unit 13 may change the section width based on the data density of each item.
  • the database creation unit 13 may finely set the mesh section width in the design of the carbon component composition. Alternatively, the database creation unit 13 may set the section width of each section of the mesh so that the amount of change in output is constant. In other words, the database creation unit 13 may set the section width of the mesh so that the output difference between the adjacent meshes is constant.
  • the design support device 1 since only the data of the minimum necessary number of meshes is stored as a database, the calculation load in model creation, the calculation time, the search load in design, and the search time are reduced. It can be reduced. That is, it is possible to avoid a huge calculation load and search load that may occur if the numerical values of the mesh section widths are set to be relatively fine (for example, every 0.001) in all items.
  • the numerical value of the mesh section width is relatively rough (for example, every 0.01) in all the items, avoiding a decrease in the design accuracy of the steel material that produces the desired characteristic value, which can occur, It is possible to efficiently design a steel material that exhibits desired characteristic values with high accuracy with a minimum load.
  • Table 2 shows an example of the composition of elements in steel that affect the properties.
  • Table 3 shows an example of manufacturing conditions that affect the characteristics.
  • Table 4 shows the types of characteristics and characteristic values.
  • 500 learning data items are used, and a machine learning method called a random forest is used to create mathematical models for predicting tensile strength and elongation as properties.
  • 12 and 13 show scatter diagrams related to the actual value and the predicted value.
  • the horizontal axis of the scatter diagram in FIG. 12 is the actual value of tensile strength, and the vertical axis is the predicted value of tensile strength.
  • the horizontal axis of the scatter diagram of FIG. 13 is the actual value of growth, and the vertical axis is the predicted value of growth.
  • the number of regression trees used in the random forest is 50 in each mathematical model.
  • RMSE Root Mean Square Error
  • the section width of the mesh of the component composition (unit: mass%) of C, P, Al, Sb, Ti, and Nb in the input data is set to every 0.001%
  • the component composition of S, N, B, and Ca is set to every 0.0001%
  • the section width of the mesh of other component composition (unit: mass%) is set to every 0.01%.
  • the desired characteristic values of the characteristics of the steel material used when searching for the design conditions including the learned mathematical models and the section width of the mesh, are complete, the desired characteristic value of the steel material is revealed. It is possible to obtain the component composition of elements in steel and the manufacturing conditions in multiple steps.
  • Table 6 shows the input (component composition of elements in steel and manufacturing conditions in multiple steps) obtained by the search.
  • the steel products manufactured under these design conditions have a tensile strength of 1200 MPa and an elongation of 12.0%, which means that a steel material exhibiting desired characteristic values could be designed.
  • Table 7 shows the search results when the interval width of the mesh of all component compositions in the input data is set to 0.01%.
  • the steel product manufactured under the design conditions in this example has a tensile strength of 1240 MPa and an elongation of 11.5%. That is, it is understood that Example 1 is more preferable from the viewpoint of designing a steel material that exhibits desired characteristic values.
  • Table 9 and Table 10 show the search results when the desired characteristic values of the characteristics of the steel material are set as shown in Table 8 and read as an index.
  • the composition of the elements in the steel and the production conditions for producing the desired characteristic values are not searched, and instead the composition and the production conditions satisfying the characteristics of either tensile strength or elongation are obtained.
  • Two candidates are presented. Steel materials can be designed using these candidates as reference values.
  • the present invention can also be realized as a program describing the processing content for realizing each function of the above-described design support apparatus 1 or a storage medium recording the program. It should be understood that these are also included in the scope of the present invention.
  • the design support device 1 has been shown as an example including the data aggregating unit 11 and the model creating unit 12, but these may be realized by another information processing device.
  • the information processing apparatus aggregates the actual data required to create the mathematical model and creates the mathematical model.
  • the information processing device transmits the created mathematical model to the design support device 1.
  • another information processing apparatus may include a database creation unit 13 in addition to the data aggregation unit 11 and the model creation unit 12. In this case, such an information processing device may create a database and transmit the database to the design support device 1.

Abstract

金属材料の設計にかかる計算負荷の増大を抑制可能な設計支援方法及び設計支援装置を提供する。 計算機により金属材料の設計を支援する設計支援方法であって、金属中元素の成分組成及び製造条件を含む入力情報と金属材料の特性値を含む出力情報とを関係付けた少なくとも1つの数理モデルを用いて作成されたものであり、かつ入力情報に対応する入力の範囲を複数区間で区切ったメッシュ毎の入力データに対する数理モデルの出力データが入力データと関係付けて蓄積されているデータベースに対して、所望の特性値を入力し、金属中元素の成分組成及び製造条件を検索する検索ステップと、検索ステップにより検索された、所望の特性値に対応する金属中元素の成分組成及び製造条件を提示する提示ステップとを含む。

Description

金属材料の設計支援方法及び設計支援装置 関連出願の相互参照
 本出願は、2019年1月17日に日本国に特許出願された特願2019-006145の優先権を主張するものであり、この出願の開示全体をここに参照のために取り込む。
 本発明は、所望の特性を持つ金属材料の設計支援方法及び設計支援装置に関する。
 従来の金属材料の設計において、所望の特性(引張強度、硬さ、靭性、及び塑性加工性等)を備える金属材料を製造するために、経験的又は試行錯誤により金属中元素の成分組成及び製造条件を決定している。しかし金属中元素の成分組成及び製造条件の変数項目の数が増加するにつれて、金属材料の設計に係る人的負荷及び時間的負荷は増大してしまっていた。
 上述の人的負荷及び時間的負荷を低減するため、計算機による最適化計算等を用いて材料の設計を行うことが提案されている。例えば特許文献1には、非金属材料の設計に係る作業負荷を軽減するため、数理モデル及び最適化計算を用いて材料設計を行う手法が提案されている。また特許文献2には、複数の種類の物質を組み合わせることにより新たに生成される物質の特性をシミュレーションし、組み合わせる物質の情報と新たに生成される物質の特性のシミュレーション結果の情報とリンクさせ、ユーザが入力する検索条件によって特定の情報を抽出する材料開発解析装置が提案されている。
特許第4393586号 特許第5605090号
 しかしながら金属材料の設計においては、非金属材料の設計と比較し、多くの作業工程及び装置上の処理を経るため、当該作業工程及び装置上の処理に係る管理及び制御に膨大な量の計算を必要とする。仮に特許文献1の技術を金属材料の設計に適用すると、最適化計算に膨大な時間を要してしまうため、現実的な方法とはいえない。また金属材料の設計では、金属材料の金属組織が製造条件に応じて著しく変化し、当該変化に伴って金属材料の特性も著しく変化する可能性がある。しかし特許文献1及び特許文献2では、この点についても考慮されていなかった。
 従って、上記のような問題点等に鑑みてなされた本発明の目的は、金属材料の設計にかかる計算負荷の増大を抑制可能な設計支援方法及び設計支援装置を提供することにある。
 上記課題を解決するために本発明の一実施形態に係る設計支援方法は、
 計算機により金属材料の設計を支援する設計支援方法であって、
 金属中元素の成分組成及び製造条件を含む入力情報と前記金属材料の特性値を含む出力情報とを関係付けた少なくとも1つの数理モデルを用いて作成されたものであり、かつ前記入力情報に対応する入力の範囲を複数区間で区切ったメッシュ毎の入力データに対する前記数理モデルの出力データが前記入力データと関係付けて蓄積されているデータベースに対して、所望の特性値を入力し、金属中元素の成分組成及び製造条件を検索する検索ステップと、
 前記検索ステップにより検索された、前記所望の特性値に対応する金属中元素の成分組成及び製造条件を提示する提示ステップと
を含む。
 また本発明の一実施形態に係る設計支援装置は、
 金属材料の設計を支援する設計支援装置であって、
 金属中元素の成分組成及び製造条件を含む入力情報と前記金属材料の特性値を含む出力情報とを関係付けた少なくとも1つの数理モデルを用いて作成されたものであり、かつ前記入力情報に対応する入力の範囲を複数区間で区切ったメッシュ毎の入力データに対する前記数理モデルの出力データが前記入力データと関係付けて蓄積されているデータベースに対して、所望の特性値を入力し、金属中元素の成分組成及び製造条件を検索する検索部と、
 前記検索部により検索された、前記所望の特性値に対応する金属中元素の成分組成及び製造条件を提示する提示部と
を有する。
 本発明の一実施形態に係る設計支援方法及び設計支援装置によれば、金属材料の設計にかかる計算負荷の増大を抑制することができる。
実施形態1に係る設計支援装置の概要図である。 実施形態1に係る鉄鋼材料の製造プロセスの概要図である。 実施形態1に係る数理モデルの作成の概念図である。 実施形態1に係るデータベースの作成の概念図である。 実施形態1に係るデータベースに基づく検索処理の概念図である。 実施形態1に係る設計支援装置の動作を示すフローチャートである。 実施形態2に係る数理モデルの作成の概念図である。 実施形態3に係るデータベースに基づく検索処理の概念図である。 実施形態3に係るデータベースに基づく別の検索処理の概念図である。 実施形態4に係る数理モデルの作成の概念図である。 実施形態5に係るデータベースの作成の概念図である。 引張強度に係る実績値と予測値に係る散布図である。 伸びに係る実績値と予測値に係る散布図である。
(実施形態1)
 以下、本発明の実施形態1について説明する。本実施形態において設計する金属材料は、鉄鋼である例について説明する。しかしながら、金属材料は鉄鋼に限られず、任意の金属に適用可能である。
(設計支援装置の構成)
 図1は本発明の実施形態1に係る設計支援装置1の概要図である。図1に示すように、本発明の一実施形態に係る設計支援装置1は、データ集約部11と、モデル作成部12と、データベース作成部13と、検索部14と、提示部15とを備える計算機である。
 データ集約部11は、後述する数理モデルを作成するために必要な、鉄鋼材料の製造に係る実績データを集約する。データ集約部11は、実績データを集約するための通信インタフェースを含んでもよい。データ集約部11は、例えば複数の外部装置等から所定の通信プロトコルで実績データを受信するようにしてもよい。データ集約部11が集約する実績データは、鉄鋼中元素の成分組成、製造条件、及び鉄鋼材料の特性値を含む。
 データ集約部11が集約する鉄鋼中元素の成分組成のデータは、転炉又は二次精錬において鋼中成分として溶け込ませる元素の添加比率を含む。かかる元素は、例えばC、Si、Mn、P、S、Al、N、Cr、V、Sb、Mo、Cu、Ni、Ti、Nb、B、及びCaを含む。
 データ集約部11が集約する製造条件のデータは、鉄鋼材料の製造プロセスの各工程における諸条件を含む。図2に、鉄鋼材料の製造プロセスの概要図を示す。鉄鋼の製造プロセスにおいて、まず原料の鉄鉱石が、石灰石及びコークスとともに高炉に装入され、溶融状態の銑鉄が生成される。高炉で出銑された銑鉄は転炉において炭素等の成分調整がされ、二次精錬により最終的な成分調整がなされる。連続鋳造機では、精錬された鉄鋼を鋳造し、スラブと呼ばれる中間素材を製造する。その後、加熱炉における加熱工程、熱間圧延工程、冷却工程、酸洗工程、冷間圧延工程、焼鈍工程、及び鍍金工程等の複数の処理工程を経て、製品である冷延コイルが生成される。これらの複数の処理工程の組み合わせは、製造する製品に応じて相違する。処理工程の組み合わせは、例えば以下のパターンがある。
  ・パターン1:加熱工程→熱間圧延工程→冷却工程
  ・パターン2:加熱工程→熱間圧延工程→冷却工程→酸洗工程→冷間圧延工程
  ・パターン3:加熱工程→熱間圧延工程→冷却工程→酸洗工程→冷間圧延工程→焼鈍工程
  ・パターン4:加熱工程→熱間圧延工程→冷却工程→酸洗工程→冷間圧延工程→焼鈍工程→鍍金工程→熱処理工程
 上述の各工程における諸条件、すなわち製造条件は、例えば以下を含む。
  ・加熱工程:加熱温度、加熱時間
  ・熱間圧延工程:板厚、板幅、累積圧下率、圧延開始温度、圧延終了温度、
巻取温度、冷却速度
  ・冷却工程:冷却開始温度、冷却速度
  ・酸洗工程:酸洗薬液濃度、酸洗薬液温度、酸洗速度
  ・冷間圧延工程:板厚、板幅、圧下率
  ・焼鈍工程:加熱速度、加熱温度、保持時間、冷却速度、冷却方法
  ・鍍金工程:溶融鍍金温度、鍍金調整ガス吹付量
  ・熱処理工程:加熱速度、加熱温度
 データ集約部11が集約する鉄鋼材料の特性値のデータは、例えば引張強度、降伏応力、伸び、硬さ、衝撃吸収エネルギー、r値、n値、穴広げ率、及びBH量を含む。当該特性値は、例えば製造された鉄鋼材料製品のうちの一部から鉄鋼材料の特性を評価する抜き取り試験を実施することによって得ることができる。
 データ集約部11は、集約した実績データを対応付けて管理する。換言するとデータ集約部11は、製造される鉄鋼材料製品の単位毎に、鉄鋼中元素の成分組成の実績データ、製造条件の実績データ、及び鉄鋼材料の特性値の実績データを一元的に結び付けて、これらを集約して扱えるようにする。
 モデル作成部12はデータ集約部11が集約した実績データに基づき、鉄鋼中元素の成分組成及び製造条件を含む入力情報と鉄鋼材料の特性値を含む出力情報とを関係付けた数理モデルを作成する。なお入力情報とは、数理モデルを作成するために用いられる実績値の情報である。同様に出力情報とは、数理モデルを作成するために用いられる実績値の情報である。図3に、実施形態1に係る数理モデルの作成の概念図を示す。図3に示すように、モデル作成部12は、入力情報と出力情報とを関連付けて、数理モデルを作成する。ここでモデル作成部12は、かかる数理モデルを実績データに基づき任意のアルゴリズムにより生成する。例えば数理モデルを作成するアルゴリズムとして、局所回帰、サポートベクターマシン、ニューラルネットワーク、又はランダムフォレスト等の統計手法及び機械学習手法を適用することができる。図3では、説明の簡便のため入力情報を入力1~入力3の3つで表し、出力情報を1つで表している。入力1~3が、それぞれデータ集約部11が集約した実績データのうち、鉄鋼中元素の成分組成又は製造条件に対応する。また出力が、実績データの中の鉄鋼材料の特性値に対応する。
 データベース作成部13は、モデル作成部12により作成された数理モデルを用いて、データベースを作成する。図4に、実施形態1に係るデータベースの作成の概念図を示す。データベース作成部13は、入力情報について入力データの範囲を複数区間で区切って入力データメッシュを定め、各入力データメッシュに対応する代表値を入力データとして定める。代表値は例えば、メッシュ内の中央値、あるいは上限値、下限値の端部の値など、メッシュを代表するものであれば良い。また、入力データの範囲は実績データである入力情報と同一である必要はない。またデータベース作成部13は、このようにして定めたメッシュ毎の入力データを、モデル作成部12により作成された数理モデルに入力してメッシュ毎の出力データを得る。なお出力データとは、入力データに対応するモデルの出力値である。ここで、メッシュ毎の各入力データはメッシュとして定めたデータ区間の中央値を例えば代表値として、入力データとすることができる。そしてデータベース作成部13は、メッシュ毎の入力データを数理モデルに入力することで得られた出力データと入力データとの対応関係をメッシュ毎に蓄積保存し、データベースを作成する。つまりデータベース作成部13は、入力データの範囲を複数区間で区切ったメッシュ毎の出力データを蓄積したデータベースを作成する。
 入力データメッシュを定める入力データの範囲は、鉄鋼材料として想定し得る鉄鋼中元素の成分組成及び製造条件を入力の全範囲とする。すなわち、治金学的知見又は評価関数等、予め定めた条件に基づき、入力データの範囲を所定の範囲に制限する。表1は、当該入力データの範囲に係る制限の一例である。
Figure JPOXMLDOC01-appb-T000001
 検索部14は、データベースから任意の索引と出力データとの一致を条件として、ある索引に対応する入力データを検索する。図5に、実施形態1に係るデータベースに基づく検索処理の概念図を示す。図5では、出力データ1個に対して、入力データがm個以上対応付けられている例を示している。検索部14は、任意に指定された所望の特性値を索引としてデータベースを検索し、検索結果として該所望の特性値と対応する鉄鋼中元素の成分組成及び複数工程における製造条件を得る。図5では、所望の特性値として、「y2」を索引として検索し、検索結果として、「x12、x22、・・・・xm2、・・・・」を得ている。ここで「所望の特性値と対応する鉄鋼中元素の成分組成及び複数工程における製造条件」とは、索引として指定された所望の特性値と一致する特性値を現出する鉄鋼中元素の成分組成及び複数工程における製造条件に加えて、索引として指定された所望の特性値に類似する特性値を現出する鉄鋼中元素の成分組成及び複数工程における製造条件を含む。ここで特性値が類似するとは、特性値間の値の差の絶対値が小さいものであり、特性値ごとにその類似する範囲を定めることができる。すなわち所望の特性値として与えた値の類似の範囲に含まれるデータが存在する場合は一致するとして検索結果が出力される。
 なお図5では「y2」を索引として検索した検索結果が1つである例を示したがこれに限られない。例えば特性値「y2」に対応する入力データが他にもある場合、検索結果を複数抽出するようにしてもよい。このようにすることで、所望の特性を現出する鉄鋼中元素の成分組成及び複数工程における製造条件を複数パターン得ることができ、鉄鋼材料の設計を効率的に行える可能性が高まる。
 提示部15は、検索部14により検索された検索結果、すなわち所望の特性値に対応する鉄鋼中元素の成分組成及び製造条件をユーザに提示する。ユーザは、提示部15により提示された鉄鋼中元素の成分組成及び複数工程における製造条件を、鉄鋼材料の製造時の目標値または参考値として、鉄鋼材料を効率的に設計することができる。
 次に実施形態1に係る設計支援装置1について、図6に示すフローチャートによりその動作を説明する。
 はじめにデータ集約部11は、数理モデルを作成するために必要な実績データを集約する(ステップS10)。データ集約部11が集約する実績データは、製造された鉄鋼材料に係る、鉄鋼中元素の成分組成、製造条件、及び鉄鋼材料の特性値を含む。
 次にモデル作成部12は、データ集約部11が集約した実績データに基づき、鉄鋼中元素の成分組成及び製造条件を含む入力情報と鉄鋼材料の特性値を含む出力情報とを関係付けた数理モデルを作成する(ステップS20)。
 続いてデータベース作成部13は、モデル作成部12により作成された数理モデルを用いて、鉄鋼材料の設計支援のためのデータベースを作成する(ステップS30)。具体的にはデータベース作成部13は、入力データの範囲を複数区間で区切ったメッシュ毎の入力データに対応する出力データを入力データと関係付けて蓄積したデータベースを作成する。
 続いて検索部14は、所望の特性値に対応する鉄鋼中元素の成分組成及び製造条件をデータベースに基づき検索する(ステップS40)。
 続いて提示部15は、検索部14により検索された、所望の特性値に対応する鉄鋼中元素の成分組成及び製造条件を提示する(ステップS50)。
 このように実施形態1に係る設計支援装置1によれば、最適化計算を行う代わりに、入力データの範囲を複数区間で区切ったメッシュ毎の出力データを蓄積したデータベースを用いている。そして所望の特性値に対応する金属中元素の成分組成及び製造条件をデータベースに基づき検索し、所望の特性値に対応する金属中元素の成分組成及び製造条件を提示している。すなわち実施形態1に係る設計支援装置1によれば、最適化計算を行わずに設計支援できるため、鉄鋼材料の設計に係る計算負荷の増大を抑制することができる。
(実施形態2)
 以下、本発明の実施形態2について説明する。実施形態1と同一の構成については同一の符号を付し、説明は省略する。実施形態2に係る設計支援装置1は、実施形態1に係る構成と比較して、データ集約部11が集約する実績データの内容が相違する。
 実施形態2に係る設計支援装置1のデータ集約部11が集約する実績データは、鉄鋼中元素の成分組成、製造条件、及び鉄鋼材料の特性値に加えて、金属組織の状態を表す指標を含む。金属組織の状態を表す指標は、例えば、フェライトの粒径及び組織分率、セメンタイトの組織分率、パーライトの組織分率、ベイナイトの組織分率、並びにマルテンサイトの組織分率を含む。金属組織の状態を表す指標を集約する方法は任意の方法を採用可能である。例えばデータ集約部11は、製造された鉄鋼材料製品のうちの一部から金属組織の状態を表す指標を評価する抜き取り試験を実施して得てもよい。データ集約部11は、このようにして得られた指標のデータと、当該鉄鋼材料製品の製造データ及び鉄鋼材料の特性とを対応付ける。あるいはデータ集約部11は、製造中に金属組織の状態を表す指標を評価可能な計測機器により得てもよい。データ集約部11は、このようにして得られた指標のデータと、当該製品の製造データ及び鉄鋼材料の特性とを対応付ける。またあるいはデータ集約部11は、製造中に金属組織の状態を表す指標を評価可能なシミュレーションにより得てもよい。データ集約部11は、このようにして得られた指標のデータと、当該製品の製造データ及び鉄鋼材料の特性とを対応付けてもよい。
 実施形態2に係る設計支援装置1のモデル作成部12は、鉄鋼中元素の成分組成、製造条件、及び金属組織の状態を表す指標を含む入力情報と鉄鋼材料の特性値を含む出力情報とを関係付けた数理モデルを作成する。図7に実施形態2に係る数理モデルの作成の概念図を示す。図7では、説明の簡便のため入力情報を入力1~入力3の3つで表している。これらの入力1~3が、それぞれ鉄鋼中元素の成分組成、製造条件、又は金属組織の状態を表す指標に対応する。図7に示すように、モデル作成部12は、入力情報と出力情報とを関連付けて、数理モデルを作成する。データベース作成部13によるデータベースの作成は実施形態1と同様であるため説明は省略する。検索部14による検索処理は、任意に指定された所望の特性値を索引としてデータベースを検索し、検索結果として該所望の特性値と対応する鉄鋼中元素の成分組成、製造条件に加えて、金属組織の状態を表す指標を得る。提示部15による情報の提示処理は実施形態1と同様であるため説明は省略する。
 実施形態2に係る設計支援装置1によれば、鉄鋼材料の特性を現出させる直接的な因子である金属組織の状態のデータを用いるため、作成される数理モデルの精度を向上させることができる。またさらに、検索結果として所望の特性値を現出する鉄鋼中元素の成分組成、製造条件に加えて、金属組織の状態を表す指標が得られることから、金属組織の状態の情報を基にして、鉄鋼材料の設計精度を向上させることができる。したがって実施形態2に係る設計支援装置1によれば、鉄鋼材料の特性の所望の特性値を得ることのできる金属中元素の成分組成及び製造条件を精度良く求め、高精度の設計を実施することができる。
(実施形態3)
 以下、本発明の実施形態3について説明する。実施形態1と同一の構成については同一の符号を付し、説明は省略する。実施形態3に係る設計支援装置1は、実施形態1に係る構成と比較して、モデル作成部12により特性値毎に数理モデルを作成する点が相違する。
 金属材料の特性は、実施形態1において説明したように、例えば引張強度、降伏応力、伸び、硬さ、衝撃吸収エネルギー、r値、n値、穴広げ率、BH量を含む。実施形態3にかかる設計支援装置1のモデル作成部12は、かかる複数種類の特性毎に、それぞれ別個の数理モデルを作成する。換言すると実施形態3に係る設計支援装置1のモデル作成部12は、複数の数理モデルを作成する。
 データベース作成部13は、モデル作成部12により作成された複数の数理モデルを用いてデータベースを作成する。具体的にはデータベース作成部13は、鉄鋼材料として想定し得る鉄鋼中元素の成分組成及び製造条件を入力の全範囲として、入力の範囲内を複数区間で区切って入力データメッシュを定める。ここでデータベースに入力する入力データの範囲は入力情報の範囲と一致する必要はない。また、入力データは各データメッシュの代表値(実施形態1と同様)とする。データベース作成部13は、定めたメッシュ毎の入力データを、モデル作成部12により作成された複数の数理モデルにそれぞれ入力してメッシュ毎の出力データを得る。そしてデータベース作成部13は、メッシュ毎の入力データを複数の数理モデルに入力することで得られた各出力データと入力データとの対応関係をメッシュ毎に蓄積保存し、データベースを作成する。換言するとデータベース作成部13は、入力データの範囲を複数区間で区切ったメッシュ毎の出力データを蓄積したデータベースを作成する。
 検索部14による検索処理は実施形態1と同様であるが、検索の際の索引は、複数種類の特性により指定可能である。図8に、実施の形態3に係るデータベースに基づく検索処理の概念図を示す。図8では、所望の特性値として「y12、y22、・・・」を索引として検索し、検索結果として、「x12、x22、・・・・xm2、・・・・」を得ている。提示部15は、検索結果をユーザに提示する。換言すると提示部15は、検索部14により検索された、複数の所望の特性値に対応する鉄鋼中元素の成分組成及び製造条件を提示する。ユーザは、提示部15により提示された、鉄鋼中元素の成分組成及び複数工程における製造条件を、鉄鋼材料の製造時の目標値または参考値として、鉄鋼材料を効率的に設計することができる。
 図9に、実施形態3に係るデータベースに基づく別の検索処理の概念図を示す。図9では、図8と同様、所望の特性値として「y12、y22、・・・」を索引として検索している。ここでは索引と一致する検索結果がないものとする。この場合、検索部14は索引に類似する範囲の出力データを有する検索結果を少なくとも1つ出力する。例えば検索部14は、索引である所望の特性値のうち、複数の特性値のうち一部に合致するものがある場合は、一部に合致し、合致しない特性に類似するものを候補として提示する。このとき、類似度は、合致しない特性値からなるベクトルの距離で判断する方法などがある。あるいは、例えば検索部14は、索引である所望の特性値のうち、いずれか1つと最も類似する出力データを有するデータを検索結果として出力する。図9では、検索結果の候補として「x12、x22、・・・・、xm2、・・・」及び「x1n、x2n、・・・・、xmn、・・・」の2つを出力している。提示部15は当該2つの検索結果をユーザに提示してもよい。なおここでは検索結果の候補を2つ提示したが、提示する検索結果の数はこれに限られず、3以上であってもよい。ここで、類似の範囲は上記ベクトルの各要素間の値を正規化したうえで、正規化されたベクトルの間距離があらかじめ定めた距離であると定めることもできる。また、各要素についてそれぞれ類似の範囲を定めることで判断することも可能である。
 実施形態3に係る設計支援装置1によれば、鉄鋼材料の複数の特性を現出する複雑な鉄鋼中元素の成分組成及び複数工程における製造条件等の入出力の関係が容易に対応付けられるようになり、鉄鋼材料の設計を効率的に行えるようになる。
(実施形態4)
 以下、本発明の実施形態4について説明する。実施形態1と同一の構成については同一の符号を付し、説明は省略する。実施形態4に係る設計支援装置1は、実施形態1に係る構成と比較して、データ集約部11が集約する実績データの内容、及びモデル作成部12が作成する数理モデルの構成が相違する。
 実施形態4に係る設計支援装置1のデータ集約部11が集約する実績データは、鉄鋼中元素の成分組成、製造条件、及び鉄鋼材料の特性値に加えて、金属組織の状態を表す指標を含む。また、モデル作成部12が、鉄鋼中元素の成分組成及び製造条件を含む入力情報と金属組織の状態を表す指標を含む中間出力情報とを関係付けた第1数理モデルと、中間出力情報と金属材料の特性を含む出力情報とを関係付けた第2数理モデルとを作成する。図10に、実施形態4に係る数理モデルの作成の概念図を示す。図10に示すように実施形態4では、金属組織の状態を表す指標を第1数理モデルの出力情報(中間出力情報)として用いて、入力情報と出力情報とを、中間出力情報を介して第1数理モデル及び第2数理モデルにより対応付ける。
 データベース作成部13は、モデル作成部12により作成された複数の数理モデル、すなわち第1数理モデル及び第2数理モデルを用いてデータベースを作成する。具体的にはデータベース作成部13は、鉄鋼材料として想定し得る鉄鋼中元素の成分組成及び製造条件を入力の全範囲として、入力の範囲内を複数区間で区切って入力データメッシュを定める。ここでデータベースに入力する入力データの範囲は入力情報の範囲と一致する必要はない。また、入力データは各データメッシュの代表値(実施形態1と同様)とする。データベース作成部13は、定めたメッシュ毎の入力データを、第1数理モデルに入力してメッシュ毎の中間出力データを得る。またデータベース作成部13は、当該中間出力データを、第2数理モデルに入力してメッシュ毎の出力データを得る。そしてデータベース作成部13は、メッシュ毎の入力データを複数の数理モデルに入力することで得られた各出力データと入力データとの対応関係をメッシュ毎に蓄積保存し、データベースを作成する。換言するとデータベース作成部13は、入力データの範囲を複数区間で区切ったメッシュ毎の出力データを蓄積したデータベースを作成する。検索部14による検索処理は、例えば、所望の特性値を索引として、中間出力である金属組織の状態を表す指標の範囲を所定の範囲に制限して検索し、制限された範囲内で検索された金属組織を表す指標を索引とし、鉄鋼中元素の成分組成、製造条件を検索する。あるいは、検索部14による検索処理は、例えば、所望の特性値の所定の範囲を索引として、中間出力である金属組織の状態を表す指標の範囲を検索し、検索された金属組織の状態を表す指標の範囲を索引として、鉄鋼中元素の成分組成、製造条件の複数の候補を検索する。換言すると、検索部14は、所望の特性値に対応する金属組織の状態を表す指標と、該金属組織の状態を表す指標に対応する金属中元素の成分組成及び製造条件とをデータベースに基づき検索する。提示部15による情報の提示処理は実施形態1と同様であるため説明は省略する。
 このように、実施形態4に係る設計支援装置1によれば、鉄鋼材料の特性を現出させる直接的な因子である金属組織の状態の情報を中間出力として用いることができるため、作成される数理モデルの精度を向上させることができる。したがって実施形態4に係る設計支援装置1によれば、鉄鋼材料の特性の所望の特性値を得ることのできる金属中元素の成分組成及び製造条件を精度良く求め、高精度の設計を実施することができる。
(実施形態5)
 以下、本発明の実施形態5について説明する。実施形態1と同一の構成については同一の符号を付し、説明は省略する。実施形態5に係る設計支援装置1は、実施形態1に係る構成と比較して、データベース作成部13により作成するデータベースの入力データメッシュが相違する。
 図11に、実施形態5に係るデータベースの作成の概念図を示す。データベース作成部13は、鉄鋼材料として想定し得る鉄鋼中元素の成分組成及び製造条件を入力の全範囲として、入力の範囲内を複数区間で区切って入力データメッシュを定める。ここでデータベース作成部13は、メッシュの各区間の粒度(区間幅)を入力データ毎に異ならせる。例えばデータベース作成部13は、冶金学的知見に基づいて予め項目毎に、重要視する項目は細かく、重要視しない項目は粗く区間幅を変化させてもよい。またデータベース作成部13は、項目毎のデータの密度に基づいて区間幅を変化させてもよい。あるいは、冶金学的知見としては、鉄鋼中の炭素の成分組成が鉄鋼材料の特性の一つである引張強度に対して特に感度が高いことが知られている。そこでデータベース作成部13は、炭素の成分組成の設計においてメッシュの区間幅を細かく設定してもよい。あるいは、データベース作成部13は、メッシュの各区間の区間幅を、出力の変化量が一定になるように定めてもよい。換言するとデータベース作成部13は、隣接するメッシュ間の出力の差が一定になるようにメッシュの区間幅を定めてもよい。
 このように、実施形態5に係る設計支援装置1によれば、必要最低限のメッシュ数のデータのみをデータベースとして蓄積するため、モデル作成における計算負荷、計算時間及び設計における検索負荷、検索時間を低減することができる。すなわち、仮に全ての項目においてメッシュの区間幅の数値を比較的細かく(例えば0.001毎)した場合に生じ得る膨大な計算負荷及び検索負荷の発生を回避できる。また逆に仮にすべての項目においてメッシュの区間幅の数値を比較的荒く(例えば0.01毎)した場合に生じ得る所望の特性値を現出する鉄鋼材料の設計精度の低下をも回避し、最小限の負荷で効率的に高精度に所望の特性値を現出する鉄鋼材料を設計することができる。
(実施例)
 以下、自動車用冷延鋼板についての鉄鋼材料の設計の例を示す。本実施例では鉄鋼材料の特性として引張強度と伸びを選択し、所望の特性値を現出するような設計条件を検索する。
 表2は、特性に影響する鉄鋼中元素の成分組成の例を示している。表3は特性に影響する製造条件の例を示している。表4は特性の種類と特性値を示している。表2乃至4の実績データ項目を集約し、かかるデータを用いて機械学習を行うことで、成分組成及び製造条件を入力とし、特性を出力とする数理モデルを構築する。
Figure JPOXMLDOC01-appb-T000002
Figure JPOXMLDOC01-appb-T000003
Figure JPOXMLDOC01-appb-T000004
 本実施例では学習用データ500件を用い、ランダムフォレストと呼ばれる機械学習手法を用いて、特性として引張強度と伸びを予測する数理モデルをそれぞれ作成する。図12及び図13に実績値と予測値に係る散布図を示す。図12の散布図の横軸は引張強度の実績値であり、縦軸が引張強度の予測値である。図13の散布図の横軸は伸びの実績値であり、縦軸が伸びの予測値である。ランダムフォレストに用いる回帰木の数はそれぞれの数理モデルで50としている。一個抜き交差検証により評価された引張強度を予測するモデルの予測精度はRMSE(Root Mean Square Error)で81.5であった。また、伸びを予測するモデルの予測精度はRMSEで0.729であった。ここでRMSEは下記により計算される予測誤差の指標である。
Figure JPOXMLDOC01-appb-M000005
 次に、作成された数理モデルに、定めたメッシュ毎の入力データを入力して、メッシュ毎の出力データを得る。ここで、入力データにおけるC、P、Al、Sb、Ti、Nbの成分組成(単位:質量%)のメッシュの区間幅を0.001%毎とし、S、N、B、Caの成分組成(単位:質量%)のメッシュの区間幅を0.0001%毎とし、他の成分組成(単位:質量%)のメッシュの区間幅を0.01%毎とする。入力データと出力データの対応関係をメッシュ毎に蓄積保存して作成されたデータベースから、鉄鋼材料の特性の所望の特性値を索引として検索を行う。所望の特性値として例えば表5のように設定し、索引として読み込む。
Figure JPOXMLDOC01-appb-T000006
 以上により、学習済みの複数の数理モデルと、メッシュの区間幅の、設計条件の検索時に用いる鉄鋼材料の特性の所望の特性値が揃ったので、鉄鋼材料に係る所望の特性値を現出する鉄鋼中元素の成分組成及び複数工程における製造条件を得ることができる。
 検索により得られた入力(鉄鋼中元素の成分組成及び複数工程における製造条件)を表6に示す。この設計条件で製造された鉄鋼製品の引張強度は1200MPa、伸びは12.0%であり、所望の特性値を現出する鉄鋼材料を設計できたことになる。
Figure JPOXMLDOC01-appb-T000007
 比較例1として、入力データにおけるすべての成分組成のメッシュの区間幅を0.01%毎とした場合の検索結果を表7に示す。この例における設計条件で製造された鉄鋼製品の引張強度は1240MPa、伸びは11.5%である。すなわち、実施例1の方が所望の特性値を現出する鉄鋼材料を設計する観点で好ましいことがわかる。
Figure JPOXMLDOC01-appb-T000008
 また、別の比較例2として、鉄鋼材料の特性の所望の特性値を表8のように設定し、索引として読み込んだ場合の検索結果を表9及び表10に示す。この例においては、所望の特性値を現出する鉄鋼中元素の成分組成及び複数工程の製造条件は検索されず、代わりに引張強度または伸びのいずれかの特性を満たす該成分組成及び該製造条件の候補が2つ提示される。この候補を参考値として鉄鋼材料を設計できる。
Figure JPOXMLDOC01-appb-T000009
Figure JPOXMLDOC01-appb-T000010
Figure JPOXMLDOC01-appb-T000011
 本発明を諸図面及び実施例に基づき説明してきたが、当業者であれば本開示に基づき種々の変形及び修正を行うことが容易であることに注意されたい。従って、これらの変形及び修正は本発明の範囲に含まれることに留意されたい。例えば、各手段、各ステップ等に含まれる機能等は論理的に矛盾しないように再配置可能であり、複数の手段及びステップ等を1つに組み合わせたり、或いは分割したりすることが可能である。
 例えば、本発明は、上述した設計支援装置1の各機能を実現する処理内容を記述したプログラム又はプログラムを記録した記憶媒体としても実現し得る。本発明の範囲には、これらも包含されると理解されたい。
 例えば本実施の形態に係る設計支援装置1は、データ集約部11及びモデル作成部12を備える例を示したが、これらを他の情報処理装置により実現してもよい。この場合、かかる情報処理装置が、数理モデルを作成するために必要な実績データを集約し、数理モデルを作成する。また、情報処理装置が、作成した数理モデルを設計支援装置1に伝送する。またさらに、他の情報処理装置が、データ集約部11及びモデル作成部12に加えて、データベース作成部13を備えてもよい。この場合、かかる情報処理装置がデータベースを作成し、当該データベースを設計支援装置1に伝送してもよい。
 1 設計支援装置
 11 データ集約部
 12 モデル作成部
 13 データベース作成部
 14 検索部
 15 提示部

Claims (8)

  1.  計算機により金属材料の設計を支援する設計支援方法であって、
     金属中元素の成分組成及び製造条件を含む入力情報と前記金属材料の特性値を含む出力情報とを関係付けた少なくとも1つの数理モデルを用いて作成されたものであり、かつ前記入力情報に対応する入力の範囲を複数区間で区切ったメッシュ毎の入力データに対する前記数理モデルの出力データが前記入力データと関係付けて蓄積されているデータベースに対して、所望の特性値を入力し、金属中元素の成分組成及び製造条件を検索する検索ステップと、
     前記検索ステップにより検索された、前記所望の特性値に対応する金属中元素の成分組成及び製造条件を提示する提示ステップと
    を含む、設計支援方法。
  2.  前記入力情報は、金属組織の状態を表す指標を含む、請求項1に記載の設計支援方法。
  3.  前記データベースは複数の数理モデルを用いて作成されたものであり、
     前記複数の数理モデルは、前記金属材料の特性の種類毎にそれぞれ作成される、請求項1又は2に記載の設計支援方法。
  4.  計算機により金属材料の設計を支援する設計支援方法であって、
     金属中元素の成分組成及び製造条件を含む入力情報と金属組織の状態を表す指標を含む中間出力情報とを関係付けた少なくとも1つの第1数理モデルと、前記中間出力情報と前記金属材料の特性値を含む出力情報とを関係付けた少なくとも1つの第2数理モデルとを用いて作成されたものであり、かつ前記入力情報に対応する入力の範囲を複数区間で区切ったメッシュ毎の入力データに対する前記第1数理モデルの中間出力データ及び前記第2数理モデルの出力データが前記入力データと関係付けて蓄積されているデータベースに対して、所望の特性値を入力し、所望の特性値に対応する金属組織の状態を表す指標と、該金属組織の状態を表す指標に対応する金属中元素の成分組成及び製造条件とを前記データベースに基づき検索する検索ステップと、
     前記所望の特性値に対応する金属中元素の成分組成及び製造条件を提示する提示ステップと
    を含む、設計支援方法。
  5.  前記メッシュの各区間の区間幅を入力情報毎に異ならせる、請求項1乃至4のいずれか一項に記載の設計支援方法。
  6.  前記メッシュの各区間の区間幅を出力の変化量が一定になるように定める、請求項1乃至4のいずれか一項に記載の設計支援方法。
  7.  前記入力情報の範囲を予め定めた条件に基づき所定の範囲に制限する、請求項1乃至6のいずれか一項に記載の設計支援方法。
  8.  金属材料の設計を支援する設計支援装置であって、
     金属中元素の成分組成及び製造条件を含む入力情報と前記金属材料の特性値を含む出力情報とを関係付けた少なくとも1つの数理モデルを用いて作成されたものであり、かつ前記入力情報に対応する入力の範囲を複数区間で区切ったメッシュ毎の入力データに対する前記数理モデルの出力データが前記入力データと関係付けて蓄積されているデータベースに対して、所望の特性値を入力し、金属中元素の成分組成及び製造条件を検索する検索部と、
     前記検索部により検索された、前記所望の特性値に対応する金属中元素の成分組成及び製造条件を提示する提示部と
    を有する、設計支援装置。
PCT/JP2019/006147 2019-01-17 2019-02-19 金属材料の設計支援方法及び設計支援装置 WO2020148918A1 (ja)

Priority Applications (6)

Application Number Priority Date Filing Date Title
MX2021008618A MX2021008618A (es) 2019-01-17 2019-02-19 Metodo auxiliar de dise?o y dispositivo auxiliar de dise?o para material metalico.
EP19910610.5A EP3913635A4 (en) 2019-01-17 2019-02-19 METALLIC MATERIAL DESIGN AIDING METHOD AND DESIGN AIDING DEVICE
BR112021013351-8A BR112021013351A2 (pt) 2019-01-17 2019-02-19 Método de auxílio de desenho de material metálico e dispositivo de auxílio de desenho
CN201980089027.3A CN113330440A (zh) 2019-01-17 2019-02-19 金属材料的设计辅助方法和设计辅助装置
US17/423,566 US20220083700A1 (en) 2019-01-17 2019-02-19 Design aid method and design aid device for metallic material
KR1020217025533A KR20210110716A (ko) 2019-01-17 2019-02-19 금속 재료의 설계 지원 방법 및 설계 지원 장치

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019006145A JP6617842B1 (ja) 2019-01-17 2019-01-17 金属材料の設計支援方法及び設計支援装置
JP2019-006145 2019-01-17

Publications (1)

Publication Number Publication Date
WO2020148918A1 true WO2020148918A1 (ja) 2020-07-23

Family

ID=68836093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/006147 WO2020148918A1 (ja) 2019-01-17 2019-02-19 金属材料の設計支援方法及び設計支援装置

Country Status (8)

Country Link
US (1) US20220083700A1 (ja)
EP (1) EP3913635A4 (ja)
JP (1) JP6617842B1 (ja)
KR (1) KR20210110716A (ja)
CN (1) CN113330440A (ja)
BR (1) BR112021013351A2 (ja)
MX (1) MX2021008618A (ja)
WO (1) WO2020148918A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022117664A1 (en) * 2020-12-04 2022-06-09 Thiry Cedric Robert Computer implemented engineering materials mechanical property based search method

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7200982B2 (ja) * 2020-09-14 2023-01-10 Jfeスチール株式会社 材料特性値予測システム及び金属板の製造方法
JPWO2023002951A1 (ja) 2021-07-21 2023-01-26

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565090B1 (ja) 1969-10-03 1981-02-03
JPH08255190A (ja) * 1995-03-17 1996-10-01 Sekisui Chem Co Ltd 粘着剤及び粘着テープの設計支援システム
JP2003328030A (ja) * 2002-03-08 2003-11-19 Jfe Steel Kk 鋼材の製品品質設計装置及び最適品質設計支援装置
JP2007047872A (ja) * 2005-08-05 2007-02-22 Mitsubishi Heavy Ind Ltd 材料の選定方法及び化学成分判定方法とそれらのシステム
JP4393586B2 (ja) 1996-08-08 2010-01-06 株式会社ブリヂストン 多成分系材料の設計方法、最適化解析装置及び多成分系材料の最適化解析プログラムを記録した記録媒体

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4189908B2 (ja) * 2002-04-26 2008-12-03 株式会社神戸製鋼所 溶接部の材質予測方法
JP4009670B2 (ja) * 2002-08-02 2007-11-21 独立行政法人科学技術振興機構 成分配合設計方法、成分配合設計プログラム及びそのプログラムを記録した記録媒体
DE10339595A1 (de) * 2003-08-26 2005-04-07 Siemens Ag Verfahren zur Vorhersage und Steuerung der Vergießbarkeit von Flüssigstahl
CN100334240C (zh) * 2005-08-05 2007-08-29 武汉大学 镍基高温合金成分的优化设计方法
US20080255811A1 (en) * 2007-04-13 2008-10-16 Zi Qiang Sheng System and Method for Determining Surface Roughness
US8137483B2 (en) * 2008-05-20 2012-03-20 Fedchun Vladimir A Method of making a low cost, high strength, high toughness, martensitic steel
JP2014038595A (ja) * 2012-07-20 2014-02-27 Jfe Steel Corp 鋼材の材質予測装置及び材質制御方法
EP3055802B1 (en) * 2013-10-10 2023-12-06 Oerlikon Metco (US) Inc. Methods of selecting material compositions and designing materials having a target property
DE102014224461A1 (de) * 2014-01-22 2015-07-23 Sms Siemag Ag Verfahren zur optimierten Herstellung von metallischen Stahl- und Eisenlegierungen in Warmwalz- und Grobblechwerken mittels eines Gefügesimulators, -monitors und/oder -modells
GB2536939A (en) * 2015-04-01 2016-10-05 Isis Innovation Method for designing alloys
JP6756997B2 (ja) * 2016-05-26 2020-09-16 ファイフィット株式会社 有限要素法解析方法、有限要素法解析装置、解析サービスシステムおよび有限要素法解析プログラムを記録した記録媒体
WO2020090848A1 (ja) * 2018-10-30 2020-05-07 昭和電工株式会社 材料設計装置、材料設計方法、及び材料設計プログラム

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS565090B1 (ja) 1969-10-03 1981-02-03
JPH08255190A (ja) * 1995-03-17 1996-10-01 Sekisui Chem Co Ltd 粘着剤及び粘着テープの設計支援システム
JP4393586B2 (ja) 1996-08-08 2010-01-06 株式会社ブリヂストン 多成分系材料の設計方法、最適化解析装置及び多成分系材料の最適化解析プログラムを記録した記録媒体
JP2003328030A (ja) * 2002-03-08 2003-11-19 Jfe Steel Kk 鋼材の製品品質設計装置及び最適品質設計支援装置
JP2007047872A (ja) * 2005-08-05 2007-02-22 Mitsubishi Heavy Ind Ltd 材料の選定方法及び化学成分判定方法とそれらのシステム

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2022117664A1 (en) * 2020-12-04 2022-06-09 Thiry Cedric Robert Computer implemented engineering materials mechanical property based search method

Also Published As

Publication number Publication date
EP3913635A1 (en) 2021-11-24
JP2020115258A (ja) 2020-07-30
JP6617842B1 (ja) 2019-12-11
EP3913635A4 (en) 2022-03-02
BR112021013351A2 (pt) 2021-09-14
MX2021008618A (es) 2021-11-04
KR20210110716A (ko) 2021-09-08
CN113330440A (zh) 2021-08-31
US20220083700A1 (en) 2022-03-17

Similar Documents

Publication Publication Date Title
Xie et al. Online prediction of mechanical properties of hot rolled steel plate using machine learning
WO2020148918A1 (ja) 金属材料の設計支援方法及び設計支援装置
KR101011546B1 (ko) 예측식 작성장치 및 예측식 작성방법
JP4855353B2 (ja) 製品の品質改善条件解析装置、解析方法、コンピュータプログラム、及びコンピュータ読み取り可能な記録媒体
JP7028316B2 (ja) 金属材料の設計支援方法、予測モデルの生成方法、金属材料の製造方法、及び設計支援装置
CN114611844B (zh) 一种转炉出钢过程合金加入量的确定方法和系统
CN106345823B (zh) 基于热轧钢卷生产流程的在线实时预测机械性能的方法
CN106802977A (zh) 一种用于烧结矿性能指标预测及综合质量评价方法
WO2021004198A1 (zh) 一种板材性能的预测方法及装置
Mohanty et al. Online mechanical property prediction system for hot rolled IF steel
Dobrzański et al. Application of neural networks for the prediction of continuous cooling transformation diagrams
Feng et al. Endpoint temperature prediction of molten steel in RH using improved case-based reasoning
Geng et al. A data-driven machine learning approach to predict the hardenability curve of boron steels and assist alloy design
Zhao et al. Prediction of mechanical properties of cold rolled strip based on improved extreme random tree
Gupta et al. A machine learning model for multi-class classification of quenched and partitioned steel microstructure type by the k-nearest neighbor algorithm
JP5682131B2 (ja) 鋼材の材質予測装置
CN116469481B (zh) 一种基于XGBoost算法的LF精炼钢水成分预报方法
CN115456264B (zh) 一种中小型转炉的终点碳含量和终点温度预测方法
Dong et al. Just-in-time learning-based soft sensor for mechanical properties of strip steel via multi-block weighted semisupervised models
JP2007122127A (ja) 鉄鋼製品の生産計画装置及び方法
Peet et al. Neural network modelling of hot deformation of austenite
Kudrya et al. On necessity of taking into account statistical nature of the objects using Big Data in metallurgy
Vijay Reddy et al. Influence of carbon equivalent content on phase transformation during inter-critical heating of dual phase steels using discrete micro-scale cellular automata model
US20230145099A1 (en) Product information determining method, manufacturing method, system and product information determining device
Jun et al. Prediction of hot metal temperature based on data mining

Legal Events

Date Code Title Description
REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021013351

Country of ref document: BR

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 20217025533

Country of ref document: KR

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019910610

Country of ref document: EP

Effective date: 20210817

ENP Entry into the national phase

Ref document number: 112021013351

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210706