WO2020148880A1 - 平滑回路、および平滑回路基板 - Google Patents

平滑回路、および平滑回路基板 Download PDF

Info

Publication number
WO2020148880A1
WO2020148880A1 PCT/JP2019/001393 JP2019001393W WO2020148880A1 WO 2020148880 A1 WO2020148880 A1 WO 2020148880A1 JP 2019001393 W JP2019001393 W JP 2019001393W WO 2020148880 A1 WO2020148880 A1 WO 2020148880A1
Authority
WO
WIPO (PCT)
Prior art keywords
smoothing circuit
pair
capacitors
electrode terminals
positive electrode
Prior art date
Application number
PCT/JP2019/001393
Other languages
English (en)
French (fr)
Inventor
吉村 公志
敏行 森本
鉄平 高田
Original Assignee
東芝キヤリア株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東芝キヤリア株式会社 filed Critical 東芝キヤリア株式会社
Priority to JP2020566063A priority Critical patent/JP6997345B2/ja
Priority to PCT/JP2019/001393 priority patent/WO2020148880A1/ja
Publication of WO2020148880A1 publication Critical patent/WO2020148880A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/02Conversion of ac power input into dc power output without possibility of reversal
    • H02M7/04Conversion of ac power input into dc power output without possibility of reversal by static converters
    • H02M7/06Conversion of ac power input into dc power output without possibility of reversal by static converters using discharge tubes without control electrode or semiconductor devices without control electrode
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M7/00Conversion of ac power input into dc power output; Conversion of dc power input into ac power output
    • H02M7/42Conversion of dc power input into ac power output without possibility of reversal
    • H02M7/44Conversion of dc power input into ac power output without possibility of reversal by static converters
    • H02M7/48Conversion of dc power input into ac power output without possibility of reversal by static converters using discharge tubes with control electrode or semiconductor devices with control electrode

Definitions

  • the present invention relates to a smoothing circuit and a smoothing circuit board.
  • a smoothing circuit with multiple capacitors (electrolytic capacitor, Electrolytic Capacitor), and a circuit board with multiple capacitors are known.
  • inverters that supply AC power to loads are known.
  • An example of the inverter is a converter circuit (rectifier circuit) that converts a commercial AC power supply into a DC power supply, a smoothing circuit that smoothes the DC power supply output by the converter circuit, and a DC power supply that has passed through the smoothing circuit and is converted into an AC power supply. And an inverter circuit that supplies AC power to the load.
  • the present invention makes it possible to easily obtain a desired capacitance and to obtain a desired capacitance by separating a smoothing circuit from a circuit board on which a circuit such as a converter circuit is mounted and combining a plurality of the same smoothing circuit boards.
  • An object of the present invention is to provide a smoothing circuit and a smoothing circuit board which can easily cope with a difference in voltage.
  • the smoothing circuit includes a plurality of capacitors connected in parallel, a pair of positive electrode terminals electrically connected to positive electrodes of the plurality of capacitors, and a plurality of the plurality of capacitors.
  • a plurality of circuit boards each having a pair of negative electrode terminals electrically connected to the negative electrodes of the capacitors, and the plurality of capacitors are electrically connected in series or in parallel between at least two of the circuit boards.
  • At least one connection conductor is provided, and the pair of positive electrode terminals and the pair of negative electrode terminals do not overlap with each other in a direction orthogonal to a direction in which the two circuit boards are arranged.
  • the smoothing circuit includes a plurality of capacitors connected in parallel, a pair of positive electrode terminals electrically connected to positive electrodes of the plurality of capacitors, and a negative electrode of the plurality of capacitors.
  • a plurality of circuit boards each having a pair of negative electrode terminals electrically connected to each other, and at least one connection conductor electrically connecting the plurality of capacitors in series or in parallel between the at least two circuit boards.
  • a body which is arranged in two rows of the pair of positive electrode terminals of the plurality of circuit boards, is arranged in two rows of the pair of negative electrode terminals of the plurality of circuit boards, and is arranged in a row of the pair of positive electrode terminals. At least one and the row of the pair of negative electrode terminals do not overlap with each other by being offset from each other.
  • a smoothing circuit board is electrically connected to a plurality of capacitors connected in parallel and positive electrodes of the plurality of capacitors, and the plurality of capacitors are connected to each other. And a pair of negative electrodes electrically connected to the negative electrodes of the plurality of capacitors and sandwiching the plurality of capacitors therebetween, and at least one side of the array of the plurality of capacitors.
  • the positive electrode terminal and the negative electrode terminal, which are arranged in the above, do not overlap with each other in the direction in which the pair of positive electrode terminals are separated from each other.
  • FIG. 1 is a schematic diagram of a power supply circuit that drives a compressor of a heat pump device as an example of a circuit to which a smoothing circuit according to an embodiment of the present invention and a smoothing circuit board are applied.
  • the circuit diagram of the 1st example of the smoothing circuit concerning the embodiment of the present invention.
  • the top view of the 1st example of the smoothing circuit concerning the embodiment of the present invention.
  • the schematic diagram of the 1st example of the smoothing circuit which concerns on embodiment of this invention.
  • the circuit diagram of the 2nd example of the smoothing circuit concerning the embodiment of the present invention.
  • the schematic diagram of the 2nd example of the smoothing circuit which concerns on embodiment of this invention.
  • the circuit diagram of the 3rd example of the smoothing circuit concerning the embodiment of the present invention.
  • the schematic diagram of the 3rd example of the smoothing circuit which concerns on embodiment of this invention.
  • FIGS. 1 to 11 Embodiments of a smoothing circuit and a smoothing circuit board according to the present invention will be described with reference to FIGS. 1 to 11.
  • the same or corresponding components are designated by the same reference numerals.
  • FIG. 1 is a schematic diagram of a power supply circuit that drives a compressor of a heat pump device as an example of a circuit to which a smoothing circuit according to an embodiment of the present invention and a smoothing circuit board are applied.
  • smoothing circuit 1 the smoothing circuit and the smoothing circuit board are simplified and represented by one capacitor (for convenience, referred to as “smoothing circuit 1”).
  • the heat pump device is equipped with a refrigeration cycle 160 for performing heating/cooling or cooling.
  • a refrigeration cycle 160 for performing heating/cooling or cooling.
  • the heat exchanger 152 that absorbs heat
  • the heat exchanger 154 that radiates heat
  • the expansion device 153 provided between the heat exchangers
  • the heat exchangers 152 and 154 and the refrigerant that flows through the expansion device 153.
  • a compressor 150 for compressing.
  • the compressor 151 is driven by a DC brushless motor M (hereinafter referred to as “motor M” or “DC motor M”).
  • the motor M is an example of the load of the power supply circuit to which the smoothing circuit according to the present embodiment and the smoothing circuit board are applied.
  • the motor M rotates the compression mechanism 151 housed together in the closed container of the compressor 150 to compress the refrigerant circulating in the refrigeration cycle.
  • the power supply circuit PSC to which the smoothing circuit 1 according to the present embodiment is applied drives the motor M at a variable speed.
  • the power supply circuit PSC converts the voltage of the AC power supply E into a DC voltage, converts the DC voltage into an AC voltage having a predetermined frequency, and outputs the AC voltage to the motor M.
  • the power supply voltage of the three-phase AC power supply E for high power varies from country to country, but generally the voltage of the AC power supply E is either 200 volt system or 400 volt system.
  • a stator (armature, not shown) having a plurality of phase windings Lu (not shown), Lv (not shown), and Lw (not shown), and a plurality of, for example, 4-pole permanent magnets are embedded.
  • a rotor (rotor, not shown) is provided. The rotor rotates due to the interaction between the magnetic field generated by the current flowing through the phase windings Lu, Lv, and Lw and the magnetic field generated by each permanent magnet of the stator. This rotor is directly connected to the compression mechanism 151 via a shaft and drives the compression mechanism 151.
  • the power supply circuit PSC includes a converter circuit 101, a smoothing circuit 1, and an inverter circuit 102.
  • the converter circuit 101 converts the power supply voltage of the three-phase AC power supply E into a DC voltage.
  • the converter circuit 101 includes a full-wave rectifier circuit 121 having diodes 111 to 116 connected to the AC power supply E, and a reactor 122 connected to the output side of the rectifier circuit 121.
  • the converter circuit 101 rectifies the output voltage of the AC power supply E and converts it into a DC voltage.
  • the rectifier circuit 121 is a three-phase full-wave rectifier circuit that has six diodes 111 to 116 and outputs DC from the positive output terminal and the negative output terminal.
  • the reactor 122 accumulates and releases the flowing current to level the current flow and improve the power factor.
  • the positive output end of the rectifier circuit 121 is connected to one end of the reactor 122.
  • the positive side input end of the smoothing circuit 1 is connected to the other end side of the reactor 122.
  • the smoothing circuit 1 formed of a plurality of capacitors is connected between the other end of the reactor 122 and the negative output end of the rectifier circuit 121, and smoothes the DC voltage output from the rectifier circuit 121.
  • the inverter circuit 102 converts the DC output voltage of the converter circuit 101 into an AC voltage and supplies the AC voltage to the motor M.
  • the inverter circuit 102 converts the output voltage of the converter circuit 101 (specifically, the voltage of the smoothing circuit 1) into a three-phase AC voltage having a predetermined frequency and outputs the three-phase AC voltage.
  • the output frequency of the inverter circuit 102 is instructed by a controller (not shown) located above the motor.
  • the output terminal of the inverter circuit 102 is connected to the phase windings Lu, Lv, Lw of the motor M.
  • the inverter circuit 102 is controlled so that the motor M has the same target rotation speed based on a command from a controller above the motor M, specifically, a target rotation speed command of the motor M.
  • the compressor 150 is driven at a variable speed and the capacity of the refrigeration cycle is changed.
  • the smoothing circuit 1 (hereinafter, simply referred to as “smoothing circuit 1A”) of the first example according to the present embodiment includes a plurality of electrolytic capacitors 7 (Electrolytic Capacitors) connected in parallel. , Hereinafter, also referred to as “capacitor 7"). Further, the smoothing circuit 1A includes a plurality of identical smoothing circuit boards 11 connected in parallel.
  • the electrolytic capacitor 7 is, for example, an aluminum electrolytic capacitor.
  • One smoothing circuit board 11 includes a board 12, a plurality of capacitors 7 electrically connected in parallel, a pair of positive electrode terminals 13 electrically connected to positive electrodes of the plurality of capacitors 7, and a plurality of capacitors 7.
  • the resistor 16 is a discharging resistor for discharging the charging voltage of the capacitor 7 when the power is cut off.
  • the resistor 16 is a discharging resistor for discharging the charging voltage of the capacitor 7 when the power is cut off.
  • the resistor 16 is a discharging resistor for discharging the charging voltage of the capacitor 7 when the power is cut off.
  • the smoothing circuit board 11 on the smoothing circuit board 11, four capacitors 7 having the same capacitance are connected in parallel. Each capacitor 7 has a cylindrical shape. Below the capacitor 7, a positive side terminal 7 a for connecting to the substrate 12 and a negative side terminal 7 b extend. For the sake of illustration, in FIG. 3, only the capacitor 7 located at the left end has two terminals 7a and 7b indicated by broken lines.
  • the substrate 12 is, for example, a glass epoxy substrate having high strength.
  • a positive side wiring layer 17 and a negative side wiring layer 19 are provided on the surface of the substrate 12.
  • the positive side wiring layer 17 and the negative side wiring layer 19 are patterns of a copper plate.
  • the positive-side wiring layer 17 and the negative-side wiring layer 19 are linearly provided with a certain width to allow a large current to flow.
  • a space is provided between the positive wiring layer 17 and the negative wiring layer 19.
  • Each of the positive wiring layer 17 and the negative wiring layer 19 is provided with a land (soldered portion) corresponding to the position of each terminal 7a, 7b of the plurality of capacitors 7 to be mounted. The surface of the portion other than the land is coated with a resist to be insulated.
  • the number of lands provided in each wiring layer 17, 19 is the same as the number of capacitors 7 mounted.
  • the direction that separates the positive wiring layer 17 and the negative wiring layer 19 is defined as the vertical direction of the substrate 12, and the direction orthogonal to this is defined as the horizontal direction of the substrate.
  • the substrate 12 has a horizontally long rectangle defined by a pair of sides extending in the vertical direction and a pair of sides extending in the horizontal direction in a plan view.
  • the positive wiring layer 17 side is the upper side of the substrate 12 and the negative wiring layer 19 side is the lower side of the substrate 12 along the vertical direction.
  • the positive wiring layer 17 extends along one side of the substrate 12 extending in the lateral direction.
  • the negative wiring layer 19 extends along the other side of the substrate 12 extending in the lateral direction.
  • the positive wiring layer 17 and the negative wiring layer 19 may extend between the two sides forming the corner of the substrate 12. Further, the substrate 12 does not have to be rectangular.
  • the plurality of capacitors 7 are arranged on one of the main surfaces of the substrate 12 and are arranged in the lateral direction of the substrate 12.
  • the surface on which the capacitor 7 is arranged is called the mounting surface 21 of the substrate 12. Further, the vertical direction of the board 12 is aligned above and below the line of sight, the right side of the mounting surface 21 is the right side of the board 12, and the left side of the mounting surface 21 is the left side of the board 12.
  • each capacitor 7 On a single substrate 12, for example, four capacitors 7 are mounted.
  • the positive electrode 7a of each capacitor 7 is connected to the land of the positive side wiring layer 17 by soldering.
  • the negative electrode 7b of each capacitor 7 is similarly connected to the land of the negative side wiring layer 19 by soldering. As a result, the capacitor 7 is linearly aligned between the positive wiring layer 17 and the negative wiring layer 19.
  • a pair of positive electrode terminals 13 are provided on both ends of the positive wiring layer 17 on the substrate 12, and a pair of negative electrode terminals 15 are provided on both ends of the negative wiring layer 19.
  • the positive electrode terminal 13 and the negative electrode terminal 15 are, for example, screw terminals. Like the capacitor 7, the terminals 13 and 15 are connected to the wiring layers 17 and 19 by soldering.
  • the pair of positive electrode terminals 13 are provided on the surface on which the capacitor 7 is arranged, that is, the mounting surface 21 of the substrate 12.
  • the pair of positive electrode terminals 13 are separated from each other in the lateral direction of the substrate 12.
  • the plurality of capacitors 7 are arranged between a pair of positive electrode terminals 13 that are separated from each other.
  • the pair of positive electrode terminals 13 sandwich the plurality of capacitors 7 therebetween. That is, the one positive electrode terminal 13, here, the left positive electrode terminal 13L arranged on the left side of the substrate 12 is arranged on the left side of the substrate 12 with respect to the plurality of capacitors 7.
  • the other positive electrode terminal 13, here, the right positive electrode terminal 13R, which is arranged on the right side of the substrate 12, is arranged on the right side of the substrate 12 with respect to the plurality of capacitors 7.
  • the pair of negative electrode terminals 15 are also provided on the mounting surface 21 of the substrate 12.
  • the pair of negative electrode terminals 15 are separated from each other in the lateral direction of the substrate 12.
  • the plurality of capacitors 7 are arranged between the pair of negative electrode terminals 15 that are separated from each other.
  • the pair of negative electrode terminals 15 sandwich the plurality of capacitors 7 therebetween. That is, the one negative electrode terminal 15, here the left negative electrode terminal 15L arranged on the left side of the substrate 12, is arranged on the left side of the substrate 12 with respect to the plurality of capacitors 7.
  • the other negative electrode terminal 15, here the right negative electrode terminal 15R arranged on the right side of the substrate 12 is arranged on the right side of the substrate 12 with respect to the plurality of capacitors 7.
  • the substrate 12 can be used alone, and is also used in various series or parallel connection modes using a plurality of substrates 12. Therefore, as a current flow path from the positive electrode terminal 13 to which the positive side wiring is connected to the negative electrode terminal 15 to which the negative side wiring is connected, a substantially equal path is obtained through any of the plurality of capacitors 7. It is preferable that they are arranged so as to have a length (distance).
  • the arrangement of the plurality of terminals 13 and 15 is set on the assumption that the negative wiring is connected to the negative terminal 15 farthest from the positive terminal 13 to which the positive wiring is connected.
  • the combination of the left positive electrode terminal 13L and the right negative electrode terminal 15R or the combination of the right positive electrode terminal 13R and the left negative electrode terminal 15L is negative. Used for wiring connection between side and positive side.
  • the distance between the left positive electrode terminal 13L and the right negative electrode terminal 15R passing through the leftmost capacitor 7 in FIG. 2 is the distance between the left positive electrode terminal 13L and the right negative electrode terminal 15R passing through the second capacitor 7 from the left in FIG.
  • the distance from the right side positive electrode terminal 13R to the left side negative electrode terminal 15L is also set to be substantially the same distance through any of the plurality of capacitors 7.
  • the left positive electrode terminal 13L and the right side via any one of the capacitors 7 may be used so that either the combination of the left positive electrode terminal 13L and the right negative electrode terminal 15R or the combination of the right positive electrode terminal 13R and the left negative electrode terminal 15L may be used.
  • the distance from the negative electrode terminal 15R is preferably substantially equal to the distance between the right side positive electrode terminal 13R and the left side negative electrode terminal 15L passing through any of the capacitors 7. Therefore, the left negative electrode terminal 15L is closer to the center of the substrate 12 (the horizontal center) or the capacitor 7 than the left positive electrode 13L, and the right negative terminal 15R is the center of the substrate 12 (the horizontal center) than the right positive terminal 13R. , Or close to the capacitor 7. In other words, the distance between the pair of positive electrode terminals 13 is larger than the distance between the pair of negative electrode terminals 15.
  • the positional relationship between the left negative electrode terminal 15L and the left positive electrode terminal 13L and the positional relationship between the right negative electrode terminal 15R and the right positive electrode terminal 13R may be reversed. That is, the left positive electrode terminal is closer to the center of the substrate 12 than the left negative electrode terminal 13L (lateral center) or the capacitor 7, and the right positive terminal 13R is closer to the center of the substrate 12 than the right negative terminal 15R (horizontal direction). Alternatively, it may be close to the capacitor 7. In this case, the distance between the pair of positive electrode terminals 13 is smaller than the distance between the pair of negative electrode terminals 15.
  • the distance between the left negative electrode terminal 15L and the left positive electrode terminal 13L in the lateral direction of the substrate 12 is determined by the distance between the right negative electrode terminal 15R and the right positive electrode in the lateral direction of the substrate 12. It is preferably equal to the distance from the terminal 13R.
  • the pair of positive electrode terminals 13 and the pair of negative electrode terminals 15 are offset from each other in the horizontal direction of the smoothing circuit board 11 and do not overlap in the vertical direction of the smoothing circuit board 11. That is, the left positive electrode terminal 13L arranged on the left side of the substrate 12 does not overlap any of the pair of negative electrode terminals 15 in the vertical direction of the smoothing circuit substrate 11, and the right positive electrode terminal 13R arranged on the right side of the substrate 12 is formed. Does not overlap any of the pair of negative electrode terminals 15 in the vertical direction of the smoothing circuit board 11.
  • the left negative electrode terminal 15 ⁇ /b>L arranged on the left side of the substrate 12 does not overlap any of the pair of positive electrode terminals 13 in the vertical direction of the smoothing circuit substrate 11 and the right negative electrode terminal arranged on the right side of the substrate 12. 15R does not overlap any of the pair of positive electrode terminals 13 in the vertical direction of the smoothing circuit board 11.
  • the pair of positive electrode terminals 13 and the pair of negative electrode terminals 15 do not deviate from each other in the separating direction of the pair of positive electrode terminals 13 or the separating direction of the pair of negative electrode terminals 15.
  • the left positive electrode terminal 13L and the left negative electrode terminal 15L arranged on one side of the arrangement of the plurality of capacitors 7, for example, on the left side, are mutually separated in the separating direction of the pair of positive electrode terminals 13 or the separating direction of the pair of negative electrode terminals 15. They do not overlap and do not overlap.
  • the right side positive electrode terminal 13R and the right side negative electrode terminal 15R arranged on the other side of the array of the plurality of capacitors 7, for example, on the right side, are mutually separated in the direction of separation of the pair of positive electrode terminals 13 or the direction of separation of the pair of negative electrode terminals 15. They do not overlap and do not overlap. Furthermore, it is preferable that the bisector of the line segment connecting the pair of positive electrode terminals 15 of the substrate 12 and the bisector of the line segment connecting the pair of negative electrode terminals 13 are the same line Bi.
  • the resistor 16 is connected in parallel to the plurality of capacitors 7. In other words, the resistor 16 is electrically connected by soldering so that the terminal portions at both ends thereof straddle the positive side wiring layer 17 and the negative side wiring layer 19.
  • the resistor 16 according to the present embodiment is mounted in the center of the four capacitors 7.
  • the smoothing circuit 1A shown in the circuit diagram of FIG. 2 is a circuit in which a plurality of smoothing circuit boards 11 having the same configuration are combined in parallel as shown in FIGS.
  • the smoothing circuit 1A includes, for example, two smoothing circuit boards 11 connected in parallel.
  • the smoothing circuit 1A includes a plurality of smoothing circuit boards 11 aligned in the direction in which the positive wiring layer 17 and the negative wiring layer 19 of the substrate 12 are separated, that is, in the vertical direction of the substrate 12 (FIG. 3). Therefore, the direction in which the plurality of smoothing circuit boards 11 are arranged (the direction in which the plurality of smoothing circuit boards 11 are aligned, the solid line arrow AL in FIG. 3) corresponds to the positive wiring layer 17 and the negative wiring layer 19 of the substrate 12. And the vertical direction of the substrate 12.
  • a pair of adjacent smoothing circuit boards 11 are arranged such that the negative electrode terminal 15 of one smoothing circuit board 11 faces the positive electrode terminal 13 of the other smoothing circuit board 11.
  • the negative electrode terminal 15 of one smoothing circuit board 11 is closer to the positive electrode terminal 13 of the other smoothing circuit board 11 than the negative electrode terminal 15 of the other smoothing circuit board 11.
  • the smoothing circuit board 11 having the positive wiring layer 17 having no opposing partner is referred to as a leading circuit board 11s of the plurality of aligned smoothing circuit boards 11, and the smoothing circuit having the negative wiring layer 19 having no opposing partner.
  • the board 11 is referred to as a tail circuit board 11e of the plurality of smoothing circuit boards 11 arranged.
  • All the smoothing circuit boards 11 are arranged so that the pair of positive electrode terminals 13 are arranged in two rows and the pair of negative electrode terminals 15 are arranged in two rows. That is, all the positive electrode terminals 13 of the smoothing circuit 1A are aligned in two rows, and all the negative electrode terminals 15 of the smoothing circuit 1A are aligned in two rows.
  • the row of the positive electrode terminals 13 and the row of the negative electrode terminals 15 are aligned with the direction in which the plurality of smoothing circuit boards 11 are arranged, and are aligned with the separation direction between the positive wiring layer 17 and the negative wiring layer 19 of the substrate 12. , The vertical direction of the substrate 12.
  • a pair of laterally spaced sides that is, the left side and the right side of the smoothing circuit board 11 are substantially formed. Align in a straight line.
  • the left side row is referred to as the positive electrode terminal left row 22L and the right side row is referred to as the positive electrode terminal right row 22R.
  • the left side row is referred to as a negative electrode terminal left row 23L
  • the right side row is referred to as a negative electrode terminal right row 23R.
  • the positive electrode terminal left column 22L, the positive electrode terminal right column 22R, the negative electrode terminal left column 23L, and the negative electrode terminal right column 23R are offset from each other and do not overlap. Further, these four rows 22L, 22R, 23L, 23R are arranged in parallel.
  • the extending direction of the positive electrode terminal left column 22L, the positive electrode terminal right column 22R, the negative electrode terminal left column 23L, and the negative electrode terminal right column 23R coincides with the direction in which the plurality of smoothing circuit boards 11 are arranged, and the positive wiring of the substrate 12 is arranged.
  • the layer 17 and the negative wiring layer 19 are aligned with each other in the separating direction, and are aligned with the vertical direction of the substrate 12.
  • the distance between the positive electrode terminal left column 22L and the positive electrode terminal right column 22R is larger than the distance between the negative electrode terminal left column 23L and the negative electrode terminal right column 23R.
  • the distance between the positive electrode terminal left column 22L and the negative electrode terminal left column 23L is substantially equal to the distance between the positive electrode terminal right column 22R and the negative electrode terminal right column 23R.
  • the distance between the positive electrode terminal left column 22L and the negative electrode terminal left column 23L is shorter than the distance between the positive electrode terminal left column 22L and the negative electrode terminal right column 23R.
  • the negative electrode left column 23L and the negative electrode right column 23R are arranged between the positive electrode terminal left column 22L and the positive electrode terminal right column 22R.
  • the positive electrode terminal left column 22L and the positive electrode terminal right column 22R may be arranged between the negative electrode terminal left column 23L and the negative electrode terminal right column 23R.
  • the bisector of the line segment connecting the pair of positive electrode terminals 15 of the substrate 12 and the bisector of the line segment connecting the pair of negative electrode terminals 13 may be the same line Bi.
  • the smoothing circuit 1A includes a plurality of capacitors 7 electrically connected in parallel, a pair of positive electrode terminals 13 electrically connected to the positive electrodes 7a of the plurality of capacitors 7, and a negative electrode 7b of the plurality of capacitors 7.
  • a plurality of smoothing circuit boards 11 each having a pair of negative electrode terminals 15 electrically connected to each other, and connection conductivity for electrically connecting a plurality of capacitors 7 in parallel between at least two smoothing circuit boards 11. And a body 25A.
  • connection conductor 25A of the smoothing circuit 1A is adjacent to the positive connection conductor 26P that connects between the positive electrode terminals 13 of the adjacent smoothing circuit boards 11 and the adjacent smoothing conductor.
  • the negative side connection conductor 26N connecting between the negative electrode terminals 15 of the circuit board 11 is included.
  • the connection conductor 25A is a lead wire or a bus bar. 3 and 4 show an example using a bus bar.
  • the connection conductor 25A is screwed to the positive electrode terminal 13 or the negative electrode terminal 15.
  • the positive-side connecting conductor 26P is the positive electrode terminal 13 of the adjacent smoothing circuit board 11, and electrically connects the two positive electrode terminals 13 arranged in the same row. Specifically, the positive side connecting conductors 26P are arranged in the positive electrode terminal left row 22L and are bridged between two adjacent left side positive electrode terminals 13L.
  • the negative-side connecting conductor 26N is the negative electrode terminal 15 of the adjacent smoothing circuit board 11, and electrically connects the two negative electrode terminals 15 arranged in the same row. Specifically, the negative side connection conductor 26N is arranged in the negative electrode terminal left column 23L and is bridged between two adjacent left side negative electrode terminals 15L.
  • the positive side connecting conductor 26P and the negative side connecting conductor 26N are orthogonal to the positive side wiring layer 17 and the negative side wiring layer 19 linearly arranged on each substrate 12.
  • the positive electrode terminal left column 22L, the positive electrode terminal right column 22R, the negative electrode terminal left column 23L, and the negative electrode terminal right column 23R are shifted from each other and do not overlap. Therefore, the positive-side connecting conductor 26P and the negative-side connecting conductor 26N do not intersect, in other words, do not interfere with each other. Further, the positive side connecting conductor 26P and the positive electrode terminal 13 can be easily screwed together, and the negative side connecting conductor 26N and the negative electrode terminal 15 can be easily screwed together.
  • a metal plate such as a thick copper wire or a thick copper plate is used for a lead wire or a bus bar that is the connection conductor 25A that allows a large current to flow. Therefore, it is difficult to bend and use the connecting conductor 25A, and it is not preferable to assemble the two connecting conductors 25A from the viewpoint of workability.
  • the right side positive electrode terminal 13R of the leading circuit board 11s is used as the positive side input terminal 2pi of the smoothing circuit 1A, and the right side positive terminal 13R of the end circuit board 11e is output as the positive side output of the smoothing circuit 1A. Used as terminal 2po.
  • the right negative electrode terminal 15R of the leading circuit board 11s is used as the negative side input terminal 2ni of the smoothing circuit 1A, and the right negative electrode terminal 15R of the end circuit board 11e is used as the negative output terminal 2no of the smoothing circuit 1A.
  • the positive-side connecting conductors 26P and the negative-side connecting conductors 26N bridged over the adjacent smoothing circuit boards 11 are gathered on the left side or the right side of the plurality of capacitors 7 and screw terminals located on the other side.
  • the length of the current path is substantially the same in any of the plurality of capacitors 7, and the life of the capacitors 7 can be made uniform, and the life can be extended.
  • the positive-side connecting conductors 26P and the negative-side connecting conductors 26N spanning the adjacent smoothing circuit boards 11 are on the left side of the plurality of capacitors 7. And are gathered alternately on the right side.
  • the connection conductor 25A that connects the leading circuit board 11s and the second smoothing circuit board 11 has two smoothing circuits on the left side of the plurality of capacitors 7. It is bridged between the substrates 11.
  • the connection conductor 25A connecting the second smoothing circuit board 11 and the tail circuit board 11e is bridged between the two smoothing circuit boards 11 on the right side of the plurality of capacitors 7.
  • the right side positive electrode terminal 13R of the leading circuit board 11s is used as the positive side input terminal 2pi of the smoothing circuit 1A, and the left side positive terminal 13L of the tail circuit board 11e is used as the positive side output terminal 2po of the smoothing circuit 1A.
  • the right side negative electrode terminal 15R of the leading circuit board 11s is used as the negative side input terminal 2ni of the smoothing circuit 1
  • the left side negative electrode terminal 15L of the tail circuit board 11e is used as the negative side output terminal 2no of the smoothing circuit 1A.
  • the smoothing circuit board 11 used for the smoothing circuit 1A may not include the resistor 16.
  • a second example of the smoothing circuit 1 according to this embodiment (hereinafter simply referred to as “smoothing circuit 1B”) will be described with reference to FIGS. 6 to 8.
  • This example includes a plurality of capacitors 7 connected in series as shown in the circuit diagram of FIG. Further, the smoothing circuit 1B includes a plurality of smoothing circuit boards 11 connected in series.
  • the voltage rating of the smoothing circuit can be increased as a whole. Therefore, the above-mentioned first example is suitable when the AC power supply voltage is low, for example, 200 V system power supply, and the second example is suitable when the power supply voltage is high, for example, 400 V system power supply.
  • the smoothing circuit board 11 itself is common with the smoothing circuit 1A of the first example. That is, the smoothing circuit board 11 can be applied to the smoothing circuit 1A of the first example in which the plurality of capacitors 7 are connected in parallel and the smoothing circuit 1B of the second example in which the plurality of capacitors 7 are connected in series. .. For this reason, parts are standardized, and manufacturing, service, and inventory management are facilitated.
  • the smoothing circuit 1B is a circuit in which the same plurality of smoothing circuit boards 11 are connected in series.
  • the smoothing circuit 1B includes, for example, two smoothing circuit boards 11.
  • the arrangement of the smoothing circuit board 11 in the smoothing circuit 1B is the same as the arrangement of the smoothing circuit board 11 in the smoothing circuit 1A, and the description will be omitted to avoid duplication.
  • the smoothing circuit 1B electrically connects the plurality of capacitors 7 electrically connected in parallel, the pair of positive electrode terminals 13 electrically connected to the positive electrodes 7a of the plurality of capacitors 7, and the negative electrodes 7b of the plurality of capacitors 7.
  • a plurality of smoothing circuit boards 11 each having a pair of negative electrode terminals 15 connected to each other, and a connecting conductor 25B electrically connecting the plurality of capacitors 7 in series between at least two smoothing circuit boards 11. And are equipped with.
  • connection conductor 25B of the smoothing circuit 1B connects between the negative electrode terminal 15 and the positive electrode terminal 13 of the adjacent smoothing circuit boards 11.
  • the connection conductor 25B is provided between one side of the plurality of capacitors 7, for example, the left positive electrode terminal 13L arranged in the left positive electrode terminal left column 22L and the left negative electrode terminal 15L arranged in the negative electrode terminal left column 23L. Will be handed over to.
  • the length of the connecting conductor 25B can be shortened.
  • connection conductor 25B that is bridged between the adjacent smoothing circuit boards 11 is arranged on the left side or the right side of the plurality of capacitors 7.
  • the positive side terminal 3p and the negative side terminal 3n of the smoothing circuit 1B terminals on the left and right sides of the terminal to which the connection conductor 25B is connected are used. By connecting in this way, the distances of the current paths flowing through the respective capacitors 7 can be made substantially equal.
  • the right side positive electrode terminal 13R of the leading circuit board 11s is used as the positive side terminal 3p of the smoothing circuit 1B
  • the right side negative electrode terminal 15R of the tail circuit board 11e is used as the negative side terminal 3n of the smoothing circuit 1B. Is used as.
  • the connecting conductors 25B spanning the adjacent smoothing circuit boards 11 are alternately arranged on the left side and the right side of the plurality of capacitors 7.
  • the connection conductor 25B that connects the leading circuit board 11s and the second smoothing circuit board 11 has two smoothing circuits on the left side of the plurality of capacitors 7. It is bridged between the substrates 11.
  • the connecting conductor 25B connecting the second smoothing circuit board 11 and the tail circuit board 11e is bridged between the two smoothing circuit boards 11 on the right side of the plurality of capacitors 7.
  • the right side positive electrode terminal 13R of the leading circuit board 11s is used as the positive side terminal 3p of the smoothing circuit 1B, and in the end circuit board 11e, the left side negative electrode terminal 15L, which is the side opposite to the side to which the connection conductor 25B is connected, is the smoothing circuit 1B. Is used as the negative terminal 3n.
  • both the pair of positive electrode terminals 15 and the pair of negative electrode terminals 13 on the board 11 do not overlap with each other in the separating direction of the pair of positive electrode terminals. You don't have to. That is, with respect to the pair of positive electrode terminals 15 and the pair of negative electrode terminals 13 on the substrate 11, either one of the plurality of capacitors 7, that is, the right side or left side of the positive electrode terminal 15L (or the positive electrode terminal R). ) And the negative electrode terminal 13L (or the negative electrode terminal 13R) should not overlap with each other in the direction in which the pair of positive electrode terminals 15 are separated from each other.
  • the third example of the smoothing circuit 1 according to the present embodiment includes a plurality of capacitors 7 connected in parallel. .. Further, the smoothing circuit 1C includes a plurality of smoothing circuit boards 11 connected in parallel.
  • the smoothing circuit board 11 is common to the smoothing circuits 1A of the first and second examples.
  • the smoothing circuit 1C is a circuit in which a plurality of the same smoothing circuit boards 11 are combined in parallel.
  • the smoothing circuit 1C includes, for example, two smoothing circuit boards 11 connected in parallel.
  • connection conductor 25C of the smoothing circuit 1C electrically connects at least two smoothing circuit boards 11 and also serves as an input end and an output end of the smoothing circuit 1C. That is, the connection conductor 25C electrically connects the plurality of capacitors 7 in parallel between at least two smoothing circuit boards 11 and also serves as an input end and an output end of the smoothing circuit 1C.
  • connection conductor 25C of the smoothing circuit 1C is adjacent to the positive side connection conductor 31P that connects between the positive electrode terminals 13 of the adjacent smoothing circuit boards 11 and also serves as the positive side terminal of the smoothing circuit 1C.
  • the negative side connecting conductor 31N which connects between the negative electrode terminals 15 of the smoothing circuit board 11 and also serves as the negative side terminal of the smoothing circuit 1C is included.
  • a bus bar is used as the connection conductor 25C in order to reduce the number of wiring connection points.
  • the positive connection conductor 31P electrically connects all the positive electrode terminals 13 arranged in the same row. Specifically, the positive side connecting conductor 31P is arranged in the positive electrode terminal right row 22R and is bridged between all the right side positive electrode terminals 13R.
  • the negative connection conductor 31N electrically connects all the negative electrode terminals 15 arranged in the same row. Specifically, the negative side connection conductor 31N is bridged between all the left side negative electrode terminals 15L arranged in the negative electrode terminal left column 23L.
  • the positive side connecting conductor 31P and the negative side connecting conductor 31N are preferably arranged separately on the left side and the right side of the plurality of capacitors 7 in order to facilitate the connection work. The same applies when three or more smoothing circuit boards 11 are connected in parallel.
  • the smoothing circuit 1A includes the plurality of smoothing circuit boards 11 and at least one connecting conductive element that electrically connects the plurality of capacitors 7 in parallel between the at least two smoothing circuit boards 11. And a body 25A.
  • the pair of positive electrode terminals 13 and the pair of negative electrode terminals 15 do not overlap with each other in a direction intersecting the direction in which the plurality of smoothing circuit boards 11 are arranged (alignment direction). In other words, all of the pair of positive electrode terminals 13 of the plurality of smoothing circuit boards 11 are arranged in two rows, all of the pair of negative electrode terminals 15 of the plurality of smoothing circuit boards 11 are arranged in two rows, and the pair of positive electrode terminals 13 are also arranged.
  • the row of 13 and the row of the pair of negative electrode terminals 15 are offset from each other and do not overlap. Therefore, the smoothing circuit 1 can easily achieve a desired capacitance by, for example, separating the smoothing circuit 1 from a circuit board on which other circuits including the converter circuit 101 are mounted and combining a plurality of smoothing circuit boards 11. Obtainable.
  • the smoothing circuit 1A in which the plurality of smoothing circuit boards 11 are combined the row of the positive electrode terminals 13 and the row of the pair of negative electrode terminals 15 do not overlap with each other, so that the connection conductor 25A can be easily attached. Become.
  • the smoothing circuit 1B includes a plurality of smoothing circuit boards 11 and at least one connecting conductor 25B electrically connecting the plurality of capacitors 7 in series between the at least two smoothing circuit boards 11. And are equipped with.
  • the pair of positive electrode terminals 13 and the pair of negative electrode terminals 15 do not overlap with each other in a direction intersecting the direction in which the plurality of smoothing circuit boards 11 are arranged (alignment direction).
  • all of the pair of positive electrode terminals 13 of the plurality of smoothing circuit boards 11 are arranged in two rows
  • all of the pair of negative electrode terminals 15 of the plurality of smoothing circuit boards 11 are arranged in two rows
  • the pair of positive electrode terminals 13 are also arranged.
  • the row of 13 and the row of the pair of negative electrode terminals 15 are offset from each other and do not overlap. For this reason, the smoothing circuit 1 can be easily separated from the size of the power supply voltage by separating the smoothing circuit 1 from the circuit board on which another circuit including the converter circuit 101 is mounted and combining a plurality of smoothing circuit boards 11. Can correspond to.
  • one positive electrode terminal 13 and one negative electrode terminal 15 are arranged such that the current paths have substantially the same distances through any of the plurality of capacitors 7.
  • a pair of the other positive electrode terminal 13 and the other negative electrode terminal 15 which are arranged so as to have substantially the same distance through any of the plurality of capacitors 7. Therefore, in the smoothing circuits 1A and 1B, even when the smoothing circuit boards 11 are connected in parallel to increase the capacity, the smoothing circuit boards 11 are connected in series to increase the allowable maximum voltage. Even when it is attempted, it is possible to prevent a large current from being biased to a specific capacitor 7 and to level the load of each capacitor 7 without impairing the life of the entire circuit.
  • the smoothing circuit 1C is provided with a connection conductor 25C that electrically connects at least two smoothing circuit boards 11 and also serves as an input end and an output end of the smoothing circuit 1. Therefore, the smoothing circuit 1C can pass only the ripple current to the smoothing circuit substrate 11, and the substrate 12 can be easily simplified.
  • the smoothing circuit board 11 can provide a smoothing circuit having the capacitors 7 connected in parallel even if it is a single body, while a plurality of smoothing circuits 1A, 1B, 1C are represented by combining them.
  • Various smoothing circuits can be easily configured, and commonization can be achieved as a basic configuration when configuring a plurality of smoothing circuits.
  • the smoothing circuit 1 is made independent from the circuit board on which another circuit including the converter circuit 101 is mounted, Moreover, by combining a plurality of the same smoothing circuit boards 11, it is possible to easily obtain a desired electrostatic capacity and easily cope with a difference in magnitude of the power supply voltage.

Abstract

複数の同じ平滑回路基板を組み合わせることによって、所望の静電容量を容易に得ることや、電源電圧の大小の差異に容易に対応可能な平滑回路、および平滑回路基板を提供する。平滑回路1Aは、並列に接続される複数のキャパシタ7と、複数のキャパシタ7の正極に電気的に接続される一対の正極端子13と、複数のキャパシタ7の負極に電気的に接続される一対の負極端子15と、をそれぞれが有する複数の平滑回路基板11と、少なくとも2つの平滑回路基板11の間で、複数のキャパシタ7を電気的に直列または並列に接続する少なくとも1つの接続導電体25Aと、を備えている。一対の正極端子13および一対の負極端子15は、2つの平滑回路基板11が並ぶ方向に交差する方向において、相互にずれて重ならない。

Description

平滑回路、および平滑回路基板
 本発明は、平滑回路、および平滑回路基板に関する。
 複数のキャパシタ、(電解コンデンサ、Electrolytic Capacitor)が実装された平滑回路、および複数のキャパシタが実装された回路基板が知られている。
特開2001-54286号公報
 ところで、負荷へ交流電源を供給するインバータが知られている。一例のインバータは、商用交流電源を直流電源に変換するコンバータ回路(整流回路)と、コンバータ回路が出力する直流電源を平滑化する平滑回路と、平滑回路を経た直流電源を交流電源に変換して負荷へ交流電源を供給するインバータ回路と、を備えている。
 そして、平滑用キャパシタの大容量化を図るために、複数の電解キャパシタ(Electrolytic Capacitor)を並列に接続することが一般的に行われている。このような多数のキャパシタを含む平滑回路とコンバータ回路もしくはインバータ回路とを同一の回路基板に実装する場合には、基板上の多数の平滑キャパシタが、回路基板の質量バランスを片寄らせる。このような回路基板の質量のアンバランス(不均衡)は、回路基板を筐体へ組み込む際に、回路基板に反りを生じさせたり、単一の回路基板の大型化を招くという問題がある。
 そこで、本発明は、例えばコンバータ回路等の回路が実装された回路基板から平滑回路を独立させ、かつ複数の同じ平滑回路基板を組み合わせることによって、所望の静電容量を容易に得ることや、電源電圧の大小の差異に容易に対応可能な平滑回路、および平滑回路基板を提供することを目的とする。
 前記の課題を解決するため本発明の実施形態に係る平滑回路は、並列に接続される複数のキャパシタと、前記複数のキャパシタの正極に電気的に接続される一対の正極端子と、前記複数のキャパシタの負極に電気的に接続される一対の負極端子と、をそれぞれが有する複数の回路基板と、少なくとも2つの前記回路基板の間で、前記複数のキャパシタを電気的に直列または並列に接続する少なくとも1つの接続導電体と、を備え、前記一対の正極端子および前記一対の負極端子は、前記2つの前記回路基板が並ぶ方向に直交する方向において、相互にずれて重ならない。
 また、本発明の実施形態に係る平滑回路は、並列に接続される複数のキャパシタと、前記複数のキャパシタの正極に電気的に接続される一対の正極端子と、前記複数のキャパシタの負極に電気的に接続される一対の負極端子と、をそれぞれが有する複数の回路基板と、少なくとも2つの前記回路基板の間で、前記複数のキャパシタを電気的に直列または並列に接続する少なくとも1つの接続導電体と、を備え、前記複数の回路基板の前記一対の正極端子の二列に整列し、前記複数の回路基板の前記一対の負極端子の二列に整列し、前記一対の正極端子の列の少なくとも一方と前記一対の負極端子の列とは、相互にずれて重ならない。
 また、前記の課題を解決するため本発明の実施形態に係る平滑回路基板は、並列に接続される複数のキャパシタと、前記複数のキャパシタの正極に電気的に接続され、前記複数のキャパシタを間に挟む一対の正極端子と、前記複数のキャパシタの負極に電気的に接続され、前記複数のキャパシタを間に挟む一対の負極端子と、を備え、前記複数のキャパシタの並びの少なくとも一方の側方に配置される前記正極端子および前記負極端子は、前記一対の正極端子の離間方向において、相互にずれて重ならない。
本発明の実施形態に係る平滑回路、および平滑回路基板が適用される回路の一例として、ヒートポンプ機器の圧縮機を駆動させる電源回路の概略的な図。 本発明の実施形態に係る平滑回路の第一例の回路図。 本発明の実施形態に係る平滑回路の第一例の平面図。 本発明の実施形態に係る平滑回路の第一例の側面図。 本発明の実施形態に係る平滑回路の第一例の模式図。 本発明の実施形態に係る平滑回路の第二例の回路図。 本発明の実施形態に係る平滑回路の第二例の平面図。 本発明の実施形態に係る平滑回路の第二例の模式図。 本発明の実施形態に係る平滑回路の第三例の回路図。 本発明の実施形態に係る平滑回路の第三例の平面図。 本発明の実施形態に係る平滑回路の第三例の模式図。
 本発明に係る平滑回路、および平滑回路基板の実施形態について図1から図11を参照して説明する。なお、複数の図面中、同じまたは相当する構成には同一の符号が付されている。
 図1は、本発明の実施形態に係る平滑回路、および平滑回路基板が適用される回路の一例として、ヒートポンプ機器の圧縮機を駆動させる電源回路の概略的な図である。
 なお、図1では平滑回路、および平滑回路基板を単純化して1つのキャパシタ(便宜的に「平滑回路1」という)で表現している。
 ヒートポンプ機器は、冷暖房または冷却を行うための冷凍サイクル160を備えている。冷凍サイクルは、吸熱する熱交換器152と、放熱する熱交換器154と、両熱交換器の間に設けられる膨張装置153と、両熱交換器152、154および膨張装置153に流通される冷媒を圧縮する圧縮機150と、を備えている。
 圧縮機151は、DCブラシレスモータM(以下、「モータM」または「DCモータM」という)によって駆動される。ここで、モータMは、本実施形態に係る平滑回路、および平滑回路基板が適用される電源回路の負荷の一例である。モータMは、圧縮機150の密閉容器内にともに収容される圧縮機構151を回転させて冷凍サイクル内を循環する冷媒を圧縮する。
 図1に示すように、本実施形態に係る平滑回路1が適用される電源回路PSCは、モータMを可変速駆動する。電源回路PSCは、交流電源Eの電圧を直流電圧に変換し、その直流電圧を所定周波数の交流電圧に変換し、その交流電圧をモータMへ出力する。
 大電力用の三相交流電源Eの電源電圧は、国ごとに異なるが、一般的に交流電源Eの電圧は、200ボルト系または400ボルト系のいずれかである。
 モータMは、複数の相巻線Lu(図示省略)、Lv(図示省略)、Lw(図示省略)を有するステータ(電機子、図示省略)、および複数、例えば4極の永久磁石が埋設されたロータ(回転子、図示省略)を備えている。ロータは、相巻線Lu、Lv、Lwに電流が流れることにより生じる磁界とステータの各永久磁石が作る磁界との相互作用によって回転する。このロータは、軸を介して圧縮機構151に直結されていて、圧縮機構151を駆動する。
 電源回路PSCは、コンバータ回路101、平滑回路1、およびインバータ回路102を備えている。
 コンバータ回路101は、三相交流電源Eの電源電圧を直流電圧に変換する。コンバータ回路101は、交流電源Eに接続されるダイオード111からダイオード116を有する全波整流回路121と、この整流回路121の出力側に接続されるリアクトル122と、を備えている。コンバータ回路101は、交流電源Eの出力電圧を整流して直流電圧に変換する。
 整流回路121は、6つのダイオード111~116を持ち、正側出力端と負側出力端から直流出力を行う三相全波整流回路である。
 リアクトル122は、流れる電流を蓄積・放出して電流の流れを平準化して、力率を向上させる。リアクトル122の一端側には、整流回路121の正側出力端が接続されている。リアクトル122の他端側には、平滑回路1の正側入力端が接続されている。
 複数のキャパシタで形成される平滑回路1は、リアクトル122の他端側と整流回路121の負側出力端との間に接続され、整流回路121の出力する直流電圧を平滑化する。
 インバータ回路102は、コンバータ回路101の直流出力電圧を交流電圧に変換し、その交流電圧をモータMに供給する。インバータ回路102は、コンバータ回路101の出力電圧(具体的には平滑回路1の電圧)を所定の周波数の三相交流電圧に変換して出力する。インバータ回路102の出力周波数は、モータ上位にある制御器(図示省略)から指示される。
 インバータ回路102の出力端は、モータMの相巻線Lu、Lv、Lwに接続されている。インバータ回路102は、モータMの上位にある制御器の指令、具体的にはモータMの目標回転数指令に基づいて、モータMが同目標回転数になるよう制御される。この結果、圧縮機150は可変速駆動され、冷凍サイクルの能力が可変される。
 次に、平滑回路1について詳しく説明する。なお、各例で説明する平滑回路1A、1B、1Cにおいて、同じ構成には同一の符号を付し、重複する説明は省略する。
 図2から図5に示すように、本実施形態に係る第一例の平滑回路1(以下、単に「平滑回路1A」と呼ぶ。)は、並列に接続される複数の電解コンデンサ7(Electrolytic Capacitor、以下、「キャパシタ7」ともいう。)を含んでいる。また、平滑回路1Aは、並列に接続される複数の同一の平滑回路基板11を備えている。電解コンデンサ7は、例えばアルミ電解コンデンサ(Aluminum Electrolytic Capacitor)である。
 ひとつの平滑回路基板11は、基板12と、電気的に並列に接続される複数のキャパシタ7と、複数のキャパシタ7の正極に電気的に接続される一対の正極端子13と、複数のキャパシタ7の負極に電気的に接続される一対の負極端子15と、基板12の正側と負側とを電気的に接続する抵抗16と、を備えている。
 この抵抗16は、電源遮断時にキャパシタ7の充電電圧を放電するための放電用抵抗である。図中、平滑回路基板11は、4個の同一容量のキャパシタ7が並列に接続されている。各キャパシタ7は、円筒形状を有している。キャパシタ7の下側には、基板12に接続するための正側の端子7aと、負側の端子7bと、が延びている。例示のために図3中、左端に位置するキャパシタ7のみ2つの端子7a、7bを破線で示している。
 基板12は、例えば、強度の高いガラスエポキシ基板である。基板12の表面には、正側配線層17、および負側配線層19が設けられている。正側配線層17、および負側配線層19は、銅板のパターンである。正側配線層17、および負側配線層19は、大電流を流すためにある程度の幅を有して直線状に設けられている。正側配線層17と負側配線層19との間には、間隔が隔てられている。正側配線層17および負側配線層19のそれぞれには、搭載される複数のキャパシタ7の各端子7a、7bの位置に対応してランド(半田付け部)が設けられている。ランド以外の部分の表面には、レジストが施され、絶縁されている。各配線層17、19に設けられるランドの数は、搭載されるキャパシタ7の数と同じである。ここで、正側配線層17と負側配線層19とを隔てる方向(離間方向)を、基板12の縦方向と定め、これに直交する方向を基板の横方向と定める。基板12は、平面視において縦方向へ延びる辺の対と横方向へ延びる辺の対に確定される横長の矩形を有している。縦方向に沿って正側配線層17側を基板12の上側とし、負側配線層19側を基板12の下側とする。
 正側配線層17は、基板12の横方向へ延びる一方の辺に沿っている。負側配線層19は、基板12の横方向へ延びる他方の辺に沿っている。なお、正側配線層17および負側配線層19は、基板12の角をなす2つの辺の間で延びていても良い。また、基板12は、矩形でなくても良い。
 複数のキャパシタ7は、基板12のいずれか一方の主面に配置され、かつ基板12の横方向へ並んでいる。キャパシタ7が配置されている方の面を基板12の実装面21と呼ぶ。また、基板12の上下方向を視線の上下に揃え、かつ実装面21に向かって右側を基板12の右側とし、実装面21に向かって左側を基板12の左側とする。
 単一の基板12には、例えば4つのキャパシタ7が実装されている。それぞれのキャパシタ7の正極7aは、正側配線層17のランドに半田付けによって接続されている。それぞれのキャパシタ7の負極7bは、同様に負側配線層19のランドに半田付けによって接続されている。結果的に、キャパシタ7は、正側配線層17と負側配線層19との間で直線的に整列する。
 基板12上の正側配線層17の両端部には、一対の正極端子13が設けられ、負側配線層19の両端部には、一対の負極端子15が設けられている。正極端子13および負極端子15は、例えばねじ端子である。各端子13、15は、キャパシタ7と同様に各配線層17、19に半田付けによって接続されている。
 一対の正極端子13は、キャパシタ7が配置されている方の面、つまり基板12の実装面21に設けられている。一対の正極端子13は、基板12の横方向へ離間している。基板12の横方向において、複数のキャパシタ7は、離間する一対の正極端子13の間に配置されている。換言すると、一対の正極端子13は、複数のキャパシタ7を、その間に挟んでいる。つまり、一方の正極端子13、ここでは基板12の左側に配置されている左側正極端子13Lは、複数のキャパシタ7よりも基板12の左側に配置されている。他方の正極端子13、ここでは基板12の右側に配置されている右側正極端子13Rは、複数のキャパシタ7よりも基板12の右側に配置されている。
 同様に一対の負極端子15も、基板12の実装面21に設けられている。一対の負極端子15は、基板12の横方向へ離間している。基板12の横方向において、複数のキャパシタ7は、離間する一対の負極端子15の間に配置されている。換言すると、一対の負極端子15は、複数のキャパシタ7を、その間に挟んでいる。つまり、一方の負極端子15、ここでは基板12の左側に配置されている左側負極端子15Lは、複数のキャパシタ7よりも基板12の左側に配置されている。他方の負極端子15、ここでは基板12の右側に配置されている右側負極端子15Rは、複数のキャパシタ7よりも基板12の右側に配置されている。
 使用される複数のキャパシタ7の寿命を均一化するために、基板12上の各キャパシタ7に流れる電流量を同じにすることが望まれる。また、後述するようにこの基板12は、単体で使用できるとともに、複数の基板12を用いて直列や並列の様々な接続形態で使用される。このため、正側の配線が接続される正極端子13から負側の配線が接続される負極端子15に至る間の電流の流通経路として、複数のキャパシタ7のいずれを経ても実質的に同等の長さ(距離)になるように配置されることが好ましい。なお、この際、正側の配線が接続される正極端子13から最も遠い負極端子15に負側の配線が接続されることを前提として、複数の端子13、15の配置が設定される。例えば、1枚のみの単体の基板12が平滑回路として使用される場合には、左側正極端子13Lと右側負極端子15Rとの組み合わせ、または右側正極端子13Rと左側負極端子15Lとの組み合わせが、負側と正側の配線接続に使用される。まず、図2の左端のキャパシタ7を経る左側正極端子13Lと右側負極端子15Rとの距離は、図2の左から2つ目のキャパシタ7を経る左側正極端子13Lと右側負極端子15Rとの距離、図2の左から3つ目のキャパシタ7を経る左側正極端子13Lと右側負極端子15Rとの距離、および図2の右端のキャパシタ7を経る左側正極端子13Lと右側負極端子15Rとの距離と、いずれも実質的に等しくなっている。同様に、右側正極端子13Rから左側負極端子15Lに至る距離も複数のキャパシタ7のいずれを経ても実質的に同等の距離に配置されている。
 左側正極端子13Lと右側負極端子15Rとの組み合わせ、または右側正極端子13Rと左側負極端子15Lとの組み合わせのいずれを使用してもよいように、いずれかのキャパシタ7を経る左側正極端子13Lと右側負極端子15Rとの距離は、いずれかのキャパシタ7を経る右側正極端子13Rと左側負極端子15Lとの距離に実質的に等しいことが好ましい。そのため、左側負極端子15Lは左側正極端子13Lよりも基板12の中央(横方向における中央)あるいはキャパシタ7に近く、右側負極端子15Rは右側正極端子13Rよりも基板12の中央(横方向における中央)、あるいはキャパシタ7に近い。換言すると、一対の正極端子13の距離は、一対の負極端子15の距離より大きい。
 なお、左側負極端子15Lと左側正極端子13Lとの配置の関係と、右側負極端子15Rと右側正極端子13Rとの配置の関係とは、逆転していても良い。つまり、左側正極端子は13L左側負極端子15Lよりも基板12の中央(横方向における中央)あるいはキャパシタ7に近く、右側正極端子13Rは右側負極端子15Rよりも基板12の中央(横方向における中央)、あるいはキャパシタ7に近かくても良い。この場合、一対の正極端子13の距離は、一対の負極端子15の距離より小さくなる。
 さらに後述する複数の基板12を用いる様々な接続形態を考えると、基板12の横方向における左側負極端子15Lと左側正極端子13Lとの距離は、基板12の横方向における右側負極端子15Rと右側正極端子13Rとの距離に等しいことが好ましい。
 そして、一対の正極端子13および一対の負極端子15は、平滑回路基板11の横方向へ相互にずれていて、平滑回路基板11の縦方向へ重ならない。つまり、基板12の左側に配置されている左側正極端子13Lは、平滑回路基板11の縦方向において一対の負極端子15のいずれとも重ならず、基板12の右側に配置されている右側正極端子13Rは、平滑回路基板11の縦方向において一対の負極端子15のいずれとも重ならない。同様に、基板12の左側に配置されている左側負極端子15Lは、平滑回路基板11の縦方向において一対の正極端子13のいずれとも重ならず、基板12の右側に配置されている右側負極端子15Rは、平滑回路基板11の縦方向において一対の正極端子13のいずれとも重ならない。
 換言すると、一対の正極端子13および一対の負極端子15は、一対の正極端子13の離間方向、または一対の負極端子15の離間方向において、相互にずれて重ならない。複数のキャパシタ7の並びの一方の側、例えば左側に配置される左側正極端子13Lおよび左側負極端子15Lは、一対の正極端子13の離間方向、または一対の負極端子15の離間方向において、相互にずれて重ならない。複数のキャパシタ7の並びの他方の側、例えば右側に配置される右側正極端子13Rおよび右側負極端子15Rは、一対の正極端子13の離間方向、または一対の負極端子15の離間方向において、相互にずれて重ならない。さらに、基板12の一対の正極端子15の間を結ぶ線分の二等分線と一対の負極端子13の間を結ぶ線分の二等分線とが、同一線Biであることが好ましい。
 抵抗16は、複数のキャパシタ7に並列に接続されている。つまり、抵抗16は、その両端の端子部が、正側配線層17と負側配線層19とを跨る様に半田付けされて電気的に接続されている。本実施形態に係る抵抗16は、4つのキャパシタ7の中央に実装されている。
 次いで、図2から4を用いて複数の平滑回路基板11が組み合わされた回路、つまり平滑回路1Aについて説明する。
 図2の回路図でなる平滑回路1Aは、図3、4に示すように同じ構成を有する複数の平滑回路基板11を並列に組み合わせた回路である。平滑回路1Aは、例えば並列に接続される2つの平滑回路基板11を備えている。
 平滑回路1Aは、基板12の正側配線層17と負側配線層19との離間方向、つまり基板12の縦方向へ整列する複数の平滑回路基板11を備えている(図3)。したがって、複数の平滑回路基板11の並びの方向(複数の平滑回路基板11の整列方向であり、図3中の実線矢印AL)は、基板12の正側配線層17と負側配線層19との離間方向に一致し、基板12の縦方向に一致する。
 隣り合う一対の平滑回路基板11は、一方の平滑回路基板11の負極端子15を他方の平滑回路基板11の正極端子13に対向させて配置される。換言すると、隣り合う一対の平滑回路基板11において、一方の平滑回路基板11の負極端子15は、他方の平滑回路基板11の負極端子15より他方の平滑回路基板11の正極端子13に近い。なお、対向する相手のない正側配線層17を有する平滑回路基板11を、整列する複数の平滑回路基板11の先頭回路基板11sと呼び、対向する相手のない負側配線層19を有する平滑回路基板11を、整列する複数の平滑回路基板11の末尾回路基板11eと呼ぶ。
 また、全ての平滑回路基板11は、一対の正極端子13が二列に整列し、一対の負極端子15が二列に整列するよう並べられる。つまり、平滑回路1Aの全ての正極端子13は、二列に整列し、平滑回路1Aの全ての負極端子15は、二列に整列する。これら、正極端子13の列および負極端子15の列は、複数の平滑回路基板11の並びの方向に一致し、基板12の正側配線層17と負側配線層19との離間方向に一致し、基板12の縦方向に一致する。このように平滑回路基板11を整列させると、本実施形態に係る矩形の平滑回路基板11では、横方向に離間している一対の辺、つまり平滑回路基板11の左辺と右辺とが実質的に一直線に揃う。
 ここで、一対の正極端子13がなす二列について、左側列を正極端子左列22Lと呼び、右側列を正極端子右列22Rと呼ぶ。一対の負極端子15がなす二列について、左側列を負極端子左列23Lと呼び、右側列を負極端子右列23Rと呼ぶ。これら正極端子左列22L、正極端子右列22R、負極端子左列23L、および負極端子右列23Rは、相互にずれて重ならない。また、これら4つの列22L、22R、23L、23R、は、平行に並んでいる。これら正極端子左列22L、正極端子右列22R、負極端子左列23L、および負極端子右列23Rの延び方向は、複数の平滑回路基板11の並びの方向に一致し、基板12の正側配線層17と負側配線層19との離間方向に一致し、基板12の縦方向に一致する。
 正極端子左列22Lと正極端子右列22Rとの距離は、負極端子左列23Lと負極端子右列23Rとの距離より大きい。正極端子左列22Lと負極端子左列23Lとの距離は、正極端子右列22Rと負極端子右列23Rとの距離に実質的に等しい。正極端子左列22Lと負極端子左列23Lとの距離は、正極端子左列22Lと負極端子右列23Rとの距離より短い。
 負極端子左列23Lおよび負極端子右列23Rは、正極端子左列22Lと正極端子右列22Rとの間に配置されている。逆に正極端子左列22Lと正極端子右列22Rとが、負極端子左列23Lおよび負極端子右列23Rの間に配置されていても良い。要は、基板12の一対の正極端子15の間を結ぶ線分の二等分線と一対の負極端子13の間を結ぶ線分の二等分線とが、同一線Biとなればよい。
 そして、平滑回路1Aは、電気的に並列に接続される複数のキャパシタ7と、複数のキャパシタ7の正極7aに電気的に接続される一対の正極端子13と、複数のキャパシタ7の負極7bに電気的に接続される一対の負極端子15と、をそれぞれが有する複数の平滑回路基板11と、少なくとも2つの平滑回路基板11の間で、複数のキャパシタ7を電気的に並列に接続する接続導電体25Aと、を備えている。
 図3および図4に示すように、本実施形態に係る平滑回路1Aの接続導電体25Aは、隣り合う平滑回路基板11の正極端子13間を接続する正側接続導電体26Pと、隣り合う平滑回路基板11の負極端子15間を接続する負側接続導電体26Nと、を含んでいる。接続導電体25Aは、リード線、またはバスバー(bus bar)である。図3、4ではバスバーを用いた例を示している。接続導電体25Aは、正極端子13、または負極端子15にねじ止めされている。
 正側接続導電体26Pは、隣り合う平滑回路基板11の正極端子13であり、かつ同じ列に並ぶ2つの正極端子13を電気的に接続する。具体的には、正側接続導電体26Pは、正極端子左列22Lに並び、かつ隣り合う2つの左側正極端子13Lの間に架け渡されている。
 負側接続導電体26Nは、隣り合う平滑回路基板11の負極端子15であり、かつ同じ列に並ぶ2つの負極端子15を電気的に接続する。具体的には、負側接続導電体26Nは、負極端子左列23Lに並び、かつ隣り合う2つの左側負極端子15Lの間に架け渡されている。
 このため、正側接続導電体26P、および負側接続導電体26Nは、直線状に各基板12上に配置されている正側配線層17、および負側配線層19に直交する。正極端子左列22L、正極端子右列22R、負極端子左列23L、および負極端子右列23Rは、相互にずれて重ならない。そのため、正側接続導電体26Pと負側接続導電体26Nとは、交差することがなく、換言すると、相互に干渉することがない。また、正側接続導電体26Pと正極端子13とのネジ止めが容易であり、負側接続導電体26Nと負極端子15とののネジ止めが容易である。大電流を流す接続導電体25Aであるリード線やバスバー(bus bar)は、太い銅線や厚みのある銅板などの金属板が使用される。そのため、接続導電体25Aを曲げて使用することは困難であり、2本の接続導電体25Aが交差するような組み立ては作業性の観点からも好ましくない。
 本実施形態に係る平滑回路1Aでは、先頭回路基板11sの右側正極端子13Rを平滑回路1Aの正側入力端子2piとして利用し、末尾回路基板11eの右側正極端子13Rを平滑回路1Aの正側出力端子2poとして利用する。また、先頭回路基板11sの右側負極端子15Rを平滑回路1Aの負側入力端子2niとして利用し、末尾回路基板11eの右側負極端子15Rを平滑回路1Aの負側出力端子2noとして利用する。
 このように、隣り合う平滑回路基板11に架け渡される正側接続導電体26P、および負側接続導電体26Nは、複数のキャパシタ7の左側、または右側に集約され、他方側に位置するネジ端子は、入力端子2pi、2ni、および出力端子2po、2noに利用される。そのため、複数のキャパシタ7のいずれにおいても電流経路の長さは実質的に同じになり、キャパシタ7の寿命の均一化、ひいては長寿命化を図ることができる。
 なお、3つ以上の平滑回路基板11を並列に接続する場合には、隣り合う平滑回路基板11に架け渡される正側接続導電体26Pおよび負側接続導電体26Nは、複数のキャパシタ7の左側および右側に交互に集約される。例えば、3つの平滑回路基板11を並列に接続する場合には、先頭回路基板11sと2番目の平滑回路基板11とを接続する接続導電体25Aは、複数のキャパシタ7の左側で2つの平滑回路基板11の間に架け渡される。2番目の平滑回路基板11と末尾回路基板11eとを接続する接続導電体25Aは、複数のキャパシタ7の右側で2つの平滑回路基板11の間に架け渡される。先頭回路基板11sの右側正極端子13Rが平滑回路1Aの正側入力端子2piとして利用され、末尾回路基板11eの左側正極端子13Lが平滑回路1Aの正側出力端子2poとして利用される。先頭回路基板11sの右側負極端子15Rが平滑回路1の負側入力端子2niとして利用され、末尾回路基板11eの左側負極端子15Lが平滑回路1Aの負側出力端子2noとして利用される。
 また、平滑回路1Aに用いられる平滑回路基板11は、抵抗16を備えていなくても良い。
 本実施形態に係る平滑回路1の第二例(以下、単に「平滑回路1B」と呼ぶ。)を図6から図8に基づき説明する。この例では、図6の回路図に示すように直列に接続される複数のキャパシタ7を含んでいる。また、平滑回路1Bは、直列に接続される複数の平滑回路基板11を備えている。この第二例では、キャパシタ7が直列に接続されるため、全体として平滑回路の電圧定格を高めることができる。このため、前述の第一例は交流電源電圧が低い場合、例えば200V系電源の場合に好適であり、本第二例は、電源電圧が高い場合、例えば400V系電源の場合に好適である。
 平滑回路基板11自体は、第一例の平滑回路1Aと共通である。つまり、平滑回路基板11は、複数のキャパシタ7が並列に接続される第一例の平滑回路1Aにも、複数のキャパシタ7が直列に接続される第二例の平滑回路1Bにも、適用できる。このため、部品が共通化され、製造やサービス、在庫管理が容易となる。
 平滑回路1Bは、同じ複数の平滑回路基板11を直列に接続した回路である。平滑回路1Bは、例えば2つの平滑回路基板11を備えている。平滑回路1Bにおける平滑回路基板11の配列は、平滑回路1Aにおける平滑回路基板11の配列と同じであり、説明が重複するので省略する。
 平滑回路1Bは、電気的に並列に接続される複数のキャパシタ7と、複数のキャパシタ7の正極7aに電気的に接続される一対の正極端子13と、複数のキャパシタ7の負極7bに電気的に接続される一対の負極端子15と、をそれぞれが有する複数の平滑回路基板11と、少なくとも2つの平滑回路基板11の間で、複数のキャパシタ7を電気的に直列に接続する接続導電体25Bと、を備えている。
 図6から図8に示すように、本実施形態に係る平滑回路1Bの接続導電体25Bは、隣り合う平滑回路基板11の負極端子15と正極端子13との間を接続する。具体的には、接続導電体25Bは、複数のキャパシタ7の一方の側方、例えば左側方の正極端子左列22Lに並ぶ左側正極端子13Lと負極端子左列23Lに並ぶ左側負極端子15Lの間に架け渡される。同じ側方の端子を用いることで、接続導電体25Bの長さを短くすることが可能である。
 隣り合う平滑回路基板11に架け渡される接続導電体25Bは、複数のキャパシタ7の左側、または右側に配置される。一方、平滑回路1Bの正側端子3pと負側端子3nとには、接続導電体25Bが接続された端子とは左右反対側の端子が利用される。このように接続することで、各キャパシタ7を経由して流れる電流経路の距離を略等しくすることができる。本実施形態に係る平滑回路1Bでは、先頭回路基板11sの右側正極端子13Rを平滑回路1Bの正側端子3pとして利用し、末尾回路基板11eの右側負極端子15Rを平滑回路1Bの負側端子3nとして利用している。
 なお、3つ以上の平滑回路基板11を直列に接続する場合には、隣り合う平滑回路基板11に架け渡される接続導電体25Bは、複数のキャパシタ7の左側および右側に交互に配置される。例えば、3つの平滑回路基板11を直列に接続する場合には、先頭回路基板11sと2番目の平滑回路基板11とを接続する接続導電体25Bは、複数のキャパシタ7の左側で2つの平滑回路基板11の間に架け渡される。2番目の平滑回路基板11と末尾回路基板11eとを接続する接続導電体25Bは、複数のキャパシタ7の右側で2つの平滑回路基板11の間に架け渡される。先頭回路基板11sの右側正極端子13Rが平滑回路1Bの正側端子3pとして利用され、末尾回路基板11eでは、接続導電体25Bが接続される側の反対側である左側負極端子15Lが平滑回路1Bの負側端子3nとして利用される。
 なお、2つの平滑回路基板11を使用する場合には、基板11上の一対の正極端子15および一対の負極端子13の両方が、前記一対の正極端子の離間方向において、相互にずれて重ならないようにする必要はない。つまり、基板11上の一対の正極端子15および一対の負極端子13について、複数のキャパシタ7のいずれか一方の側方、つまり右側の側方または左側の側方の正極端子15L(または正極端子R)と負極端子13L(または負極端子13R)が、一対の正極端子15の離間方向において、相互にずれて重ならなければよい。
 図9から図11に示すように、本実施形態に係る平滑回路1の第三例(以下、単に「平滑回路1C」と呼ぶ。)は、並列に接続される複数のキャパシタ7を含んでいる。また、平滑回路1Cは、並列に接続される複数の平滑回路基板11を備えている。
 平滑回路基板11は、第一例、第二例の平滑回路1Aと共通する。
 平滑回路1Cは、同じ複数の平滑回路基板11を並列に組み合わせた回路である。平滑回路1Cは、例えば並列に接続される2つの平滑回路基板11を備えている。
 平滑回路1Cの接続導電体25Cは、少なくとも2つの平滑回路基板11を電気的に接続し、かつ平滑回路1Cの入力端および出力端を兼ねている。つまり、接続導電体25Cは、少なくとも2つの平滑回路基板11の間で、複数のキャパシタ7を電気的に並列に接続し、かつ平滑回路1Cの入力端および出力端を兼ねている。
 本実施形態に係る平滑回路1Cの接続導電体25Cは、隣り合う平滑回路基板11の正極端子13間を接続し、かつ平滑回路1Cの正側端子を兼ねる正側接続導電体31Pと、隣り合う平滑回路基板11の負極端子15間を接続し、かつ平滑回路1Cの負側端子を兼ねる負側接続導電体31Nと、を含んでいる。この場合、配線接続箇所を減らすため、接続導電体25Cは、バスバーが用いられる。
 正側接続導電体31Pは、同じ列に並ぶ全ての正極端子13を電気的に接続する。具体的には、正側接続導電体31Pは、正極端子右列22Rに並び全ての右側正極端子13Rの間に架け渡されている。
 負側接続導電体31Nは、同じ列に並ぶ全ての負極端子15を電気的に接続する。具体的には、負側接続導電体31Nは、負極端子左列23Lに並ぶ全ての左側負極端子15Lの間に架け渡されている。
 正側接続導電体31Pおよび負側接続導電体31Nは、接続作業を容易にするため、複数のキャパシタ7の左側と右側とに分けて配置することが好ましい。3つ以上の平滑回路基板11を並列に接続する場合にも、同様である。
 以上のように本実施形態に係る平滑回路1Aは、複数の平滑回路基板11と、少なくとも2つの平滑回路基板11の間で、複数のキャパシタ7を電気的に並列に接続する少なくとも1つの接続導電体25Aと、を備えている。そして、一対の正極端子13および一対の負極端子15は、複数の平滑回路基板11が並ぶ方向(整列方向)に交差する方向において、相互にずれて重ならない。換言すると、複数の平滑回路基板11の一対の正極端子13の全てが二列に整列し、複数の平滑回路基板11の一対の負極端子15の全てが二列に整列し、かつ一対の正極端子13の列と一対の負極端子15の列が、相互にずれて重ならない。そのため、平滑回路1は、例えばコンバータ回路101を含む他の回路が実装された回路基板から平滑回路1を独立させ、かつ複数の平滑回路基板11を組み合わせることによって、所望の静電容量を容易に得ることができる。そして、複数の平滑回路基板11を組み合わせた平滑回路1Aでは、正極端子13の列と一対の負極端子15の列とが、相互にずれて重ならないことから、接続導電体25Aの取り付けが容易となる。
 また、本実施形態に係る平滑回路1Bは、複数の平滑回路基板11と、少なくとも2つの平滑回路基板11の間で、複数のキャパシタ7を電気的に直列に接続する少なくとも1つの接続導電体25Bと、を備えている。そして、一対の正極端子13および一対の負極端子15は、複数の平滑回路基板11が並ぶ方向(整列方向)に交差する方向において、相互にずれて重ならない。換言すると、複数の平滑回路基板11の一対の正極端子13の全てが二列に整列し、複数の平滑回路基板11の一対の負極端子15の全てが二列に整列し、かつ一対の正極端子13の列と一対の負極端子15の列が、相互にずれて重ならない。そのため、平滑回路1は、例えばコンバータ回路101を含む他の回路が実装された回路基板から平滑回路1を独立させ、かつ複数の平滑回路基板11を組み合わせることによって、電源電圧の大小の差異に容易に対応することができる。
 さらに、本実施形態に係る平滑回路1A、1Bは、電流経路が複数のキャパシタ7のいずれを経ても実質的に同等の距離となるように配置される一方の正極端子13と一方の負極端子15との対と、複数のキャパシタ7のいずれを経ても実質的に同等の距離となるように配置される他方の正極端子13と他方の負極端子15との対と、を備えている。そのため、平滑回路1A、1Bは、平滑回路基板11を並列に接続して大容量化を図る場合であっても、平滑回路基板11を直列に接続して許容可能な最大電圧の高電圧化を図る場合であっても、特定のキャパシタ7に偏って大きな電流が流れることを防ぎ、各キャパシタ7の負荷の平準化を図って、回路全体の寿命を損なうことがない。
 また、本実施形態に係る平滑回路1Cは、少なくとも2つの平滑回路基板11を電気的に接続し、かつ平滑回路1の入力端および出力端を兼ねる接続導電体25Cを備えている。そのため、平滑回路1Cは、平滑回路基板11へリプル電流のみを流すことが可能であり、基板12の簡素化を容易に図ることができる。
 さらに、平滑回路基板11は、それ単体であっても並列に接続されるキャパシタ7を有する平滑回路を提供可能である一方で、複数を組み合わせることによって、平滑回路1A、1B、1Cに代表される様々な平滑回路を容易に構成することができ、複数の平滑回路を構成する場合の基本構成として共通化を図ることができる。
 したがって、本実施形態に係る平滑回路1(1A、1B、1C)、および平滑回路基板11によれば、例えばコンバータ回路101を含む他の回路が実装された回路基板から平滑回路1を独立させ、かつ複数の同じ平滑回路基板11を組み合わせることによって、所望の静電容量を容易に得ることや、電源電圧の大小の差異に容易に対応可能である。
 本発明のいくつかの実施形態を説明したが、これらの実施形態は、例として提示したものであり、発明の範囲を限定することは意図していない。これら新規な実施形態は、その他の様々な形態で実施されることが可能であり、発明の要旨を逸脱しない範囲で、種々の省略、置き換え、変更を行うことができる。これら実施形態やその変形は、発明の範囲や要旨に含まれるとともに、特許請求の範囲に記載された発明とその均等の範囲に含まれる。
 1、1A、1B、1C…平滑回路、2pi…正側入力端子、2po…正側出力端子、2ni…負側入力端子、2no…負側出力端子、3p…正側端子、3n…負側端子、7…キャパシタ(電解コンデンサ)、11…平滑回路基板、11s…先頭回路基板、11e…末尾回路基板、12…基板、13…正極端子、13L…左側正極端子、13R…右側正極端子、15…負極端子、15L…左側負極端子、15R…右側負極端子、17…正側配線層、19…負側配線層、21…実装面、22L…正極端子左列、22R…正極端子右列、23L…負極端子左列、23R…負極端子右列、25A、25B、25C…接続導電体、26P…正側接続導電体、26N…負側接続導電体、31P…正側接続導電体、31N…負側接続導電体、E…交流電源モータ。

Claims (9)

  1. 並列に接続される複数のキャパシタと、前記複数のキャパシタの正極に電気的に接続される一対の正極端子と、前記複数のキャパシタの負極に電気的に接続される一対の負極端子と、をそれぞれが有する複数の回路基板と、
     少なくとも2つの前記回路基板の間で、前記複数のキャパシタを電気的に直列または並列に接続する少なくとも1つの接続導電体と、を備え、
     前記一対の正極端子および前記一対の負極端子は、前記2つの前記回路基板が並ぶ方向に直交する方向において、相互にずれて重ならない平滑回路。
  2. 並列に接続される複数のキャパシタと、前記複数のキャパシタの正極に電気的に接続される一対の正極端子と、前記複数のキャパシタの負極に電気的に接続される一対の負極端子と、をそれぞれが有する複数の回路基板と、
     少なくとも2つの前記回路基板の間で、前記複数のキャパシタを電気的に直列または並列に接続する少なくとも1つの接続導電体と、を備え、
     前記複数の回路基板の前記一対の正極端子の二列に整列し、
     前記複数の回路基板の前記一対の負極端子の二列に整列し、
     前記一対の正極端子の列の少なくとも一方と前記一対の負極端子の列とは、相互にずれて重ならない平滑回路。
  3. 前記回路基板の一方の前記正極端子と一方の前記負極端子とは、流れる電流経路が前記複数のキャパシタのいずれを経ても実質的に同等の距離になるように配置され、他方の前記正極端子と他方の前記負極端子とは、流れる電流経路が前記複数のキャパシタのいずれを経ても実質的に同等の距離に配置されている請求項1または2に記載の平滑回路。
  4. 前記回路基板の前記一対の前記正極端子の間を結ぶ線分の二等分線と前記一対の前記負極端子間を結ぶ線分の二等分線とが、同一線である請求項3に記載の平滑回路。
  5. 前記接続導電体は、少なくとも2つの前記回路基板を電気的に接続し、かつ前記平滑回路の入力端および出力端を兼ねている請求項1から4のいずれか1項に記載の平滑回路。
  6. 並列に接続される複数のキャパシタと、
     前記複数のキャパシタの正極に電気的に接続され、前記複数のキャパシタを間に挟む一対の正極端子と、
     前記複数のキャパシタの負極に電気的に接続され、前記複数のキャパシタを間に挟む一対の負極端子と、を備え、
     前記複数のキャパシタの並びの少なくとも一方の側方に配置される前記正極端子および前記負極端子は、前記一対の正極端子の離間方向において、相互にずれて重ならない平滑回路基板。
  7. 前記一対の正極端子および前記一対の負極端子の両方が、前記一対の正極端子の離間方向において、相互にずれて重ならない請求項6に記載の平滑回路基板。
  8. 一方の前記正極端子と一方の前記負極端子とは、流れる電流経路が前記複数のキャパシタのいずれを経ても実質的に同等の距離になるように配置され、他方の前記正極端子と他方の前記負極端子とは、流れる電流経路が前記複数のキャパシタのいずれを経ても実質的に同等の距離に配置されている請求項7に記載の平滑回路基板。
  9. 前記一対の前記正極端子間を結ぶ線分の二等分線と前記一対の前記負極端子間を結ぶ線分の二等分線とが、同一線である請求項7または8のいずれか1項に記載の平滑回路基板。
PCT/JP2019/001393 2019-01-18 2019-01-18 平滑回路、および平滑回路基板 WO2020148880A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020566063A JP6997345B2 (ja) 2019-01-18 2019-01-18 平滑回路、および平滑回路基板
PCT/JP2019/001393 WO2020148880A1 (ja) 2019-01-18 2019-01-18 平滑回路、および平滑回路基板

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2019/001393 WO2020148880A1 (ja) 2019-01-18 2019-01-18 平滑回路、および平滑回路基板

Publications (1)

Publication Number Publication Date
WO2020148880A1 true WO2020148880A1 (ja) 2020-07-23

Family

ID=71614093

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/001393 WO2020148880A1 (ja) 2019-01-18 2019-01-18 平滑回路、および平滑回路基板

Country Status (2)

Country Link
JP (1) JP6997345B2 (ja)
WO (1) WO2020148880A1 (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021005962A (ja) * 2019-06-26 2021-01-14 ファナック株式会社 2つの直流電圧モードを有する電力変換装置及びモータ駆動装置
CN112367760A (zh) * 2020-10-29 2021-02-12 科华恒盛股份有限公司 过流结构、电容模块和变流装置

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351829A (ja) * 2000-06-07 2001-12-21 Murata Mfg Co Ltd インバータ用コンデンサモジュール、インバータ
JP2005243742A (ja) * 2004-02-24 2005-09-08 Fanuc Ltd 複数の入力電圧仕様に対応可能なモータ駆動装置
JP2014033521A (ja) * 2012-08-02 2014-02-20 Toyota Industries Corp インバータ装置
JP2017192204A (ja) * 2016-04-13 2017-10-19 三菱電機株式会社 平滑コンデンサの取付け方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5669677B2 (ja) * 2011-06-14 2015-02-12 住友重機械工業株式会社 電力変換装置および電力変換モジュール
EP3073627A4 (en) * 2013-11-20 2016-12-21 Nissan Motor ENERGY CONVERTING APPARATUS

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001351829A (ja) * 2000-06-07 2001-12-21 Murata Mfg Co Ltd インバータ用コンデンサモジュール、インバータ
JP2005243742A (ja) * 2004-02-24 2005-09-08 Fanuc Ltd 複数の入力電圧仕様に対応可能なモータ駆動装置
JP2014033521A (ja) * 2012-08-02 2014-02-20 Toyota Industries Corp インバータ装置
JP2017192204A (ja) * 2016-04-13 2017-10-19 三菱電機株式会社 平滑コンデンサの取付け方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2021005962A (ja) * 2019-06-26 2021-01-14 ファナック株式会社 2つの直流電圧モードを有する電力変換装置及びモータ駆動装置
JP7280124B2 (ja) 2019-06-26 2023-05-23 ファナック株式会社 2つの直流電圧モードを有する電力変換装置及びモータ駆動装置
CN112367760A (zh) * 2020-10-29 2021-02-12 科华恒盛股份有限公司 过流结构、电容模块和变流装置
CN112367760B (zh) * 2020-10-29 2022-06-10 科华恒盛股份有限公司 过流结构、电容模块和变流装置

Also Published As

Publication number Publication date
JPWO2020148880A1 (ja) 2021-09-27
JP6997345B2 (ja) 2022-01-17

Similar Documents

Publication Publication Date Title
US10170953B2 (en) Planar composite structures and assemblies for axial flux motors and generators
US10720851B2 (en) Printed circuit board power cell with isolation and medium voltage multi-cell power supply
CN110138235B (zh) 逆变器
WO2016047164A1 (ja) 電力変換ユニットおよび電力変換装置
WO2020148880A1 (ja) 平滑回路、および平滑回路基板
JP6707190B2 (ja) 電力変換ユニット
WO2014021112A1 (ja) スイッチング素子ユニット
CN111865100A (zh) 电力转换装置
US20200091805A1 (en) Dynamo-electric machine with reduced cogging torque
US4975824A (en) Power converter circuit board
JP6227150B2 (ja) 半導体装置及び多相用半導体装置
US4979090A (en) Power converter circuit board
JP4968528B2 (ja) 3レベル電力変換装置
CN114513922A (zh) 一种夹层结构的电源模块
JP7193003B2 (ja) 電力変換器
CN110870180A (zh) 用于轴向磁通马达及发电机的改进的平面复合结构及组件
CN110476343A (zh) 电力转换装置
CN114496955A (zh) 电力变换装置
JP2000341961A (ja) 3レベルインバータ装置
JP2017112682A (ja) 3レベル電力変換装置
JP7196770B2 (ja) 半導体装置
JP2014072344A (ja) 平滑コンデンサ
JP7331811B2 (ja) 電力変換装置
JP2004215339A (ja) インバータ装置の電解コンデンサ冷却構造
US20220295638A1 (en) Sandwich structure power supply module

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19910603

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020566063

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19910603

Country of ref document: EP

Kind code of ref document: A1