WO2020147094A1 - 信号产生电路以及相关芯片、流量计及方法 - Google Patents

信号产生电路以及相关芯片、流量计及方法 Download PDF

Info

Publication number
WO2020147094A1
WO2020147094A1 PCT/CN2019/072261 CN2019072261W WO2020147094A1 WO 2020147094 A1 WO2020147094 A1 WO 2020147094A1 CN 2019072261 W CN2019072261 W CN 2019072261W WO 2020147094 A1 WO2020147094 A1 WO 2020147094A1
Authority
WO
WIPO (PCT)
Prior art keywords
signal
pulse wave
transducer
generating circuit
signal generating
Prior art date
Application number
PCT/CN2019/072261
Other languages
English (en)
French (fr)
Inventor
张鎔谕
Original Assignee
深圳市汇顶科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市汇顶科技股份有限公司 filed Critical 深圳市汇顶科技股份有限公司
Priority to JP2020532623A priority Critical patent/JP6941736B2/ja
Priority to EP19886074.4A priority patent/EP3731411A4/en
Priority to PCT/CN2019/072261 priority patent/WO2020147094A1/zh
Priority to CN201980000166.4A priority patent/CN109923782B/zh
Priority to US16/878,331 priority patent/US11316547B2/en
Publication of WO2020147094A1 publication Critical patent/WO2020147094A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B1/00Details of transmission systems, not covered by a single one of groups H04B3/00 - H04B13/00; Details of transmission systems not characterised by the medium used for transmission
    • H04B1/02Transmitters
    • H04B1/04Circuits
    • H04B1/0475Circuits with means for limiting noise, interference or distortion
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01DMEASURING NOT SPECIALLY ADAPTED FOR A SPECIFIC VARIABLE; ARRANGEMENTS FOR MEASURING TWO OR MORE VARIABLES NOT COVERED IN A SINGLE OTHER SUBCLASS; TARIFF METERING APPARATUS; MEASURING OR TESTING NOT OTHERWISE PROVIDED FOR
    • G01D3/00Indicating or recording apparatus with provision for the special purposes referred to in the subgroups
    • G01D3/02Indicating or recording apparatus with provision for the special purposes referred to in the subgroups with provision for altering or correcting the law of variation
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01FMEASURING VOLUME, VOLUME FLOW, MASS FLOW OR LIQUID LEVEL; METERING BY VOLUME
    • G01F1/00Measuring the volume flow or mass flow of fluid or fluent solid material wherein the fluid passes through a meter in a continuous flow
    • HELECTRICITY
    • H03ELECTRONIC CIRCUITRY
    • H03KPULSE TECHNIQUE
    • H03K5/00Manipulating of pulses not covered by one of the other main groups of this subclass
    • H03K5/01Shaping pulses
    • H03K5/08Shaping pulses by limiting; by thresholding; by slicing, i.e. combined limiting and thresholding
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04JMULTIPLEX COMMUNICATION
    • H04J1/00Frequency-division multiplex systems
    • H04J1/02Details
    • H04J1/08Arrangements for combining channels
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04BTRANSMISSION
    • H04B17/00Monitoring; Testing
    • H04B17/10Monitoring; Testing of transmitters
    • H04B17/15Performance testing
    • H04B17/17Detection of non-compliance or faulty performance, e.g. response deviations

Definitions

  • This application relates to a signal generation circuit, and in particular to a signal generation circuit for triggering a transducer, related chips, flow meters, and methods.
  • the transducer After the transducer is triggered by the input signal, it will vibrate and generate a signal wave. For example, when the input signal contains five pulse waves, ideally the output signal of the transducer should also contain only five pulse waves. The device itself has residual energy. Therefore, generally speaking, the output signal will generate a series of additional vibrations after five pulses. If the additional vibration continues for too long, it will have an adverse effect on the signal processing at the receiving end. For example, hardware cost and processing time will increase; in addition, since the next series of signals must be input to the transducer after the additional vibration reception is completed, the longer the waiting time, the more unfavorable restrictions on the application. In view of this, further improvements and innovations are needed to improve the above situation.
  • One of the objectives of the present application is to disclose a signal generating circuit for triggering a transducer, a related chip, a flow meter, and a method to solve the above problems.
  • An embodiment of the present application discloses a signal generating circuit for generating a transmission signal to trigger a first transducer to generate a first transducer output signal.
  • the signal generating circuit includes: a signal generating unit for generating A transmission signal; and a transmitter coupled to the signal generating unit, the transmitter is used to convert the transmission signal into the transmission signal; wherein the transmission signal includes a data signal and a compensation signal, and the data signal is at least
  • the compensation signal includes a first pulse wave, and the compensation signal includes at least a second pulse wave.
  • the first pulse wave and the second pulse wave have opposite phases and have different waveform parameters.
  • An embodiment of the present application discloses a chip including the above-mentioned signal generating circuit.
  • An embodiment of the present application discloses a flow meter including the above-mentioned signal generating circuit; the above-mentioned first transducer; and the above-mentioned second transducer; wherein the signal generating circuit is coupled to the above-mentioned first transducer And the above-mentioned second transducer.
  • An embodiment of the present application discloses a signal generation method for generating a transmission signal to trigger a first transducer to generate a first transducer output signal.
  • the signal generation method includes: generating a transmission signal; and The transmission signal is converted into the transmission signal; wherein the transmission signal includes a data signal and a compensation signal, the data signal includes at least a first pulse wave, the compensation signal includes at least a second pulse wave, and the first pulse wave It is opposite to the second pulse wave in phase and has different other waveform parameters.
  • the signal generating circuit, related chip, flow meter, and method for triggering a transducer disclosed in the present application can enable the transducer to have less additional vibration when it is triggered, and improve the operating frequency, performance and accuracy.
  • Figure 1 is a waveform diagram of the output signal generated in the time domain when the transducer is triggered by an input signal.
  • Fig. 2 is a schematic diagram of an embodiment of a signal generating circuit of the present application.
  • FIG. 3 is a waveform diagram of the first embodiment in the time domain of the transmitted signal generated by the signal generating circuit of the application and the first transducer output signal generated by the first transducer.
  • FIG. 4 is a waveform diagram of the second embodiment of the transmission signal generated by the signal generating circuit of the application and the output signal of the first transducer generated by the first transducer in the time domain.
  • FIG. 5 is a waveform diagram of the third embodiment of the transmission signal generated by the signal generating circuit of the application and the output signal of the first transducer generated by the first transducer in the time domain.
  • Fig. 6 is a schematic diagram of an embodiment of a signal generating unit.
  • Figure 7 is a waveform diagram in the time domain when the signal generating unit is operating.
  • FIG. 8 is a waveform diagram of the fourth embodiment of the transmission signal generated by the signal generating circuit of the application and the output signal of the first transducer generated by the first transducer in the time domain.
  • FIG. 9 is a waveform diagram of the fifth embodiment of the transmission signal generated by the signal generating circuit of the application and the output signal of the first transducer generated by the first transducer in the time domain.
  • FIG. 10 is a waveform diagram of the sixth embodiment of the transmission signal generated by the signal generating circuit of the application and the output signal of the first transducer generated by the first transducer in the time domain.
  • FIG. 11 is a schematic diagram of another embodiment of the signal generating circuit of this application.
  • first and second features are in direct contact with each other; and may also include additional components are formed between the first and second features, so that the first and second features may not be in direct contact.
  • present disclosure may reuse component symbols and/or labels in multiple embodiments. Such repeated use is based on the purpose of brevity and clarity, and does not in itself represent the relationship between the different embodiments and/or configurations discussed.
  • spatially relative terms here such as “below”, “below”, “below”, “above”, “above” and similar, may be used to facilitate the description of the drawing
  • the relationship between one component or feature relative to another component or feature is shown.
  • the original meaning of these spatially-relative vocabulary covers a variety of different orientations of the device in use or operation in addition to the orientation shown in the figure.
  • the device may be placed in other orientations (for example, rotated by 90 degrees or in other orientations), and these spatially-relative description words should be explained accordingly.
  • a transducer is a device that converts one form of energy into another form. These energy forms may include electrical energy, mechanical energy, electromagnetic energy, light energy, chemical energy, sound energy, and thermal energy, etc. This application is not limited to many, and the transducer may include any device capable of converting energy.
  • the output signal TDout will be generated correspondingly.
  • the input signal TXout includes a data signal
  • the data signal in FIG. 1 includes multiple (5) First pulses, but the application is not limited to this, and the number of first pulses in the data signal of the input signal TXout may be greater than or equal to 1.
  • the periods of the plurality of first pulse waves are all T1, and the period T1 includes a high-level time Ton1 and a non-high-level time T off1 .
  • the output signal TDout corresponding to the input signal TXout includes a data output part and an additional vibration part, the additional vibration part is formed by the residual energy of the transducer, and is connected to the data output part in the time domain.
  • the time length of the data output part is the same as the time length of the data signal. It should be noted that in this application, the same means substantially the same, that is, within the acceptable standard error, they are all substantially the same, and the same description in the following description is also applicable.
  • the time length of the additional vibration part depends on the Q value of the transducer. If the time length of the additional vibration part lasts too long, it will have an adverse effect.
  • FIG. 2 is a schematic diagram of an embodiment of the signal generating circuit 100 of the present application.
  • the signal generating circuit 100 is used to generate a transmission signal TXout to trigger the first transducer 102, and the first transducer 102 will generate a first transducer output signal TDout1 after being triggered.
  • the signal generating circuit 100 includes a signal generating unit 106 and a transmitter 104.
  • the signal generating unit 106 is used to generate a transmission signal TXin according to a specific parameter N and a specific clock.
  • the input terminal of the transmitter 104 is coupled to the output terminal of the signal generating unit 106, and the transmitter 104 is used to convert the transmission signal TXin into the transmission signal TXout.
  • the transmission signal TXout in addition to the data signal, also includes a compensation signal.
  • the compensation signal is used to reduce the length of time that the peak value of the additional vibration part in the first transducer output signal TDout1 decreases to a predetermined magnitude.
  • the data signal includes at least one first pulse wave, and the compensation signal includes at least one second pulse wave.
  • FIG. 3 is a waveform diagram of the first embodiment of the first transducer output signal TDout1 generated by the first transducer 102 of the transmission signal TXout generated by the signal generation circuit 100 of the application and the transmission signal TXout in the time domain.
  • the period of the first pulse wave of the data signal is all T1, and the period T1 includes a high level (logic "1") high level time length Ton1 and a low level (logic "0") negation
  • the high level time length T off1 in this embodiment, the low level (logic "0") of the first pulse of the data signal is before the high level (logic "1"), but this application does not Limit this.
  • the compensation signal includes a second pulse wave, the second pulse wave and the first pulse wave have a phase difference of 180 degrees, that is, the second pulse wave and the first pulse wave are opposite in phase and have The same period T1, and other waveform parameters (including duty cycle, slew rate, amplitude and frequency) are also the same.
  • the following compensation signal has a second pulse wave whose phase is opposite to that of the first pulse wave.
  • the first pulse wave The high level (logic "1") of the second pulse wave is before the low level (logic "0"), but this application is not limited to this.
  • the configuration of the second pulse wave and the first pulse wave It is sufficient to have a phase difference of 180 degrees.
  • this application does not limit the waveforms of the data signal and the compensation signal, that is, the first pulse wave and the second pulse wave can be square waves, triangle waves, sine waves, etc. .
  • the amplitude of the extra vibration part (the dotted line part of the extra vibration part) generated after adding the compensation signal can be in Reduce to a predetermined size in a short time length.
  • FIG. 4 is a waveform diagram of the second embodiment in the time domain of the transmission signal TXout generated by the signal generating circuit 100 and the first transducer output signal TDout1 generated by the first transducer 102 through the transmission signal TXout of the present application.
  • the compensation signal includes two second pulse waves, and the two second pulse waves have a phase difference of 180 degrees with the first pulse wave, that is, the two second pulse waves
  • the wave and the first pulse wave have opposite phases and have the same period T1 and waveform parameters (including duty cycle, slew rate, amplitude, and frequency).
  • the second second pulse wave of the compensation signal can cause the generation of The extra vibration part (the dashed part of the extra vibration part) drops rapidly, but because the second pulse wave energy of the compensation signal is too large, it may increase the amplitude of the subsequent extra vibration part instead.
  • FIG. 5 is a waveform diagram of the third embodiment of the transmission signal TXout generated by the signal generating circuit 100 and the first transducer output signal TDout1 generated by the first transducer 102 in the time domain.
  • the difference between FIG. 5 and FIGS. 3 and 4 is that the duty cycle of the second pulse wave of the compensation signal can be adjusted to improve the excessive energy of the second pulse wave of the compensation signal of FIG. 4
  • the two second pulse waves and the first pulse wave in FIG. 5 still have a phase difference of 180 degrees and the same period T1, but the duty cycle of one of the waveform parameters is different, as shown in FIG.
  • the high-level time length of the second second pulse wave of the compensation signal is Ton2 , which is less than the high-level time length Ton1 of the first pulse wave of the data signal. It can be seen from Fig. 5 that, compared with the extra vibration part (the dashed part of the extra vibration part) generated after adding the compensation signal in Fig. 3, the extra vibration part (the dashed line of the extra vibration part) generated after adding the compensation signal in Fig. 5 The amplitude of part) can be reduced to a predetermined size in a short period of time.
  • the number of second pulses of the compensation signal in this application is not limited, and the duty cycle can be adjusted for part or all of the second pulses of the compensation signal, and the adjustment The ratio can be different.
  • FIG. 6 is a schematic diagram of an embodiment of the signal generating unit 106.
  • 6 is the signal generating unit 106 used in the signal generating circuit 100 of FIG. 2 to generate the transmission signal TXout of FIG. 5.
  • the signal generating unit 106 includes a frequency divider 1062 and an arithmetic unit 1064.
  • the frequency divider 1062 is used to divide the frequency of a specific clock CLK according to a specific multiple N (N 0 , N 1 ,..., N k ) and generate a frequency division signal A.
  • the frequency divider 1062 may be A counter, but this application is not limited to this.
  • the signal generating unit 106 then uses the arithmetic unit 1064 to convert the frequency-divided signal A into the transmission signal TXin.
  • the arithmetic unit 1064 includes an exclusive OR circuit 1066 and a trigger circuit 1068.
  • the trigger circuit 1068 may be a D trigger circuit, but the application is not limited thereto.
  • the XOR circuit 1066 includes a first input terminal, a second input terminal and an output terminal.
  • the trigger circuit 1068 includes a clock input terminal, a data input terminal D and an output terminal Q.
  • the output terminal Q of the trigger circuit 1068 is coupled to the XOR circuit 1066
  • the first input terminal of the XOR circuit 1066 is coupled to the frequency division signal A
  • the clock input terminal of the trigger circuit 1068 is coupled to the specific clock CLK
  • the data input terminal D of the trigger circuit 1068 is coupled to the XOR
  • the output terminal of the circuit 1066, the transmission signal TXin is output from the output terminal Q of the trigger circuit 1068.
  • the duty cycle of the second second pulse of the compensation signal is adjusted by the period of the clock CLK, that is, the high level time length of the second second pulse of the compensation signal is adjusted, Make the energy of the compensation signal as close as possible to the residual energy of the transducer, avoid under-compensation or over-compensation, so that the amplitude of the additional vibration part can be reduced to a predetermined magnitude in a short period of time.
  • the output frequency division signal A will change from a low level (logic "0") to a high level (logic "1”) and continue for one clock CLK cycle.
  • the frequency-divided signal A will change from low level to high level when the frequency divider 1062 meets a specific multiple N 0.
  • the transmission signal TXin the output B of the exclusive OR circuit 1066 will also change from The low level turns to high level, and then the trigger circuit 1068 will also turn from low level to high level in the next clock CLK cycle (time t 1 ). Since the frequency-divided signal A at time t 1 has changed from a high level to a low level, the output B of the exclusive OR circuit 1066 will remain at a high level until the frequency divider 1062 meets the next specific multiple N 1 (for example, 3) Will be transformed.
  • N 1 for example, 3
  • the high level time length of the second pulse wave of the compensation signal can be changed by adjusting a specific multiple, and in this embodiment, the specific multiples N 1 to N k-3 are 3; the specific multiple N k- 2 is 6; the specific multiple N k-1 is 3; the specific multiple N k is 2. Therefore, the high level time length of the first pulse wave of the data signal is the first multiple (for example, 3) of the period of the clock CLK, and the high level time length of the second pulse wave of the compensation signal is that of the clock CLK
  • the second multiple of the period (for example, 2), and the first multiple and the second multiple may be different positive integers.
  • FIG. 8 is a waveform diagram of the fourth embodiment of the transmission signal TXout generated by the signal generating circuit 100 and the first transducer output signal TDout1 generated by the first transducer 102 in the time domain.
  • the difference from FIGS. 3 and 4 is that the amplitude of the second pulse wave of the compensation signal can be adjusted to improve the problem of excessive energy of the second pulse wave of the compensation signal in FIG. 4.
  • the two second pulse waves and the first pulse wave in FIG. 8 still have a phase difference of 180 degrees and the same period T1, but the amplitude of one of the waveform parameters is different, such as the compensation described in FIG. 8
  • the amplitude of the second second pulse wave of the signal is smaller than the amplitude of the first pulse wave of the data signal.
  • the extra vibration part (the dotted line of the extra vibration part) generated after adding the compensation signal in FIG. 3
  • the extra vibration part (the dotted line of the extra vibration part) generated after adding the compensation signal in FIG.
  • the amplitude of part) can be reduced to a predetermined size in a short period of time.
  • the number of second pulse waves of the compensation signal in the present application is not limited, and the amplitude can be adjusted for part or all of the second pulse waves of the compensation signal, and the ratio can be adjusted. It can be different.
  • FIG. 9 is a waveform diagram of the fifth embodiment of the transmission signal TXout generated by the signal generating circuit 100 and the first transducer output signal TDout1 generated by the first transducer 102 in the time domain.
  • the slew rate of the second pulse wave of the compensation signal can be adjusted to improve the problem of excessive energy of the second second pulse wave of the compensation signal in FIG. 4.
  • the two second pulse waves and the first pulse wave in FIG. 9 still have a phase difference of 180 degrees and the same period T1, but the slew rate of one of the waveform parameters is different, such as the compensation described in FIG.
  • the slew rate of the second second pulse wave of the signal is less than the slew rate of the first pulse wave of the data signal. It should be noted that the slew rate can be adjusted separately for the rising edge and the falling edge. For example, the slew rate of the rising edge is equal to the slew rate of the falling edge, and the slew rate of the rising edge can also be less than the slew rate of the falling edge, or the rising edge The slew rate can also be greater than the slew rate of the falling edge. It can be seen from Fig. 9 that, compared to the extra vibration part (the dashed part of the extra vibration part) generated after adding the compensation signal in Fig. 3, the extra vibration part (the dashed line of the extra vibration part) generated after adding the compensation signal in Fig. 9 The amplitude of part) can be reduced to a predetermined size in a short period of time.
  • the number of second pulses of the compensation signal in the present application is not limited, and the slew rate can be adjusted for part or all of the multiple second pulses of the compensation signal, and the ratio can be adjusted. It can be different.
  • FIG. 10 is a waveform diagram of the sixth embodiment of the transmission signal TXout generated by the signal generating circuit 100 and the first transducer output signal TDout1 generated by the first transducer 102 in the time domain.
  • the frequency of the second pulse wave of the compensation signal can be adjusted to improve the problem of excessive energy of the second second pulse wave of the compensation signal in FIG. 4.
  • the two second pulse waves in FIG. 10 and the first pulse wave still have a phase difference of 180 degrees, but the frequency of one of the waveform parameters is different.
  • the second pulse wave of the compensation signal in FIG. 10 The frequency of the second pulse wave is smaller than the frequency of the first pulse wave of the data signal (it can be seen from the period T2 being smaller than T1).
  • the extra vibration part (the dashed part of the extra vibration part) generated after adding the compensation signal in Fig. 3
  • the amplitude of part) can be reduced to a predetermined size in a short period of time.
  • the number of second pulse waves of the compensation signal in this application is not limited, and the frequency can be adjusted for part or all of the second pulse waves of the compensation signal, and the adjustment ratio can be Different.
  • the embodiment of FIG. 10 can also be implemented by using the signal generating unit of FIG. 6, that is, the period of the second pulse wave of the compensation signal is changed by adjusting a specific multiple, for example, the specific multiples N 1 to N k-3 are 3. ; The specific multiple N k-2 is 6; the specific multiple N k-1 to N k is 2.
  • the period of the first pulse of the data signal is the third multiple of the period of the clock CLK (for example, 3), and the period of the second pulse of the compensation signal is the fourth multiple of the period of the clock CLK (for example, 2) ,
  • the third multiple and the fourth multiple may be different positive integers.
  • FIG. 11 is a schematic diagram of an embodiment of the signal generating circuit 200 of this application.
  • the signal generating circuit 200 is used to generate a transmission signal TXout to trigger the first transducer 102. After the first transducer 102 is triggered, it will generate a first transducer output signal TDout1, and the first transducer output signal TDout1 is transmitted through the medium To the second transducer 202 (which becomes the second transducer input signal TDin2). The second transducer 202 receives the second transducer input signal TDin2 and generates the second transducer output signal TDout2 to form a closed loop for the signal generating circuit 200 to achieve self-adjustment.
  • the signal generating circuit 200 further includes a receiver 204 and a control unit 206.
  • the receiver 204 receives the second transducer output signal TDout2 and converts it into a received signal RX.
  • the control unit 206 is coupled to the receiver 204 and the signal generating unit 106.
  • the control unit 206 is based on the received signal RX and a specific clock CLK generates a control signal (for example, a specific parameter N) to the signal generating unit 106, so that the signal generating unit 106 generates a transmission signal TXin according to the control signal (for example, a specific parameter N) and a specific clock CLK.
  • the control unit 206 can refer to the additional vibration part of the first transducer output signal TDout1 to determine the control signal (for example, the specific parameter N).
  • the closed-loop self-adjustment can gradually enable the first transducer The compensation of the extra vibration part of the output signal TDout1 of the generator converges.
  • the present application also provides a chip, which includes a signal generating circuit 100 or a signal generating circuit 200.
  • the signal generating circuit 100/200 can be applied to a sensor device.
  • the present application also provides a flow meter, which includes the signal generating circuit 100 and the first transducer 102;
  • a flow meter is provided, which includes a signal generating circuit 200, a first transducer 102, and a second transducer 202.
  • the above-mentioned flow meter can be used to sense the flow rate and/or flow rate of gas and liquid, but the application is not limited thereto.
  • the embodiments of the application regarding the signal generating circuit for triggering the transducer, the related chip, the flow meter, and the method can reduce the extra vibration part of the transducer output, and reduce the hardware cost and processing time.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Signal Processing (AREA)
  • General Physics & Mathematics (AREA)
  • Technology Law (AREA)
  • Nonlinear Science (AREA)
  • Fluid Mechanics (AREA)
  • Measuring Volume Flow (AREA)
  • Arrangements For Transmission Of Measured Signals (AREA)
  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

本申请公开了一种信号产生电路(100),用于产生发射信号以触发第一换能器以产生第一换能器输出信号,所述信号产生电路包括:信号产生单元(106),用以产生传送信号;以及发射器(104),耦接至所述信号产生单元,所述发射器用以将所述传送信号转换为所述发射信号;其中所述发射信号包括数据信号以及补偿信号,所述数据信号至少包括第一脉波,所述补偿信号至少包括第二脉波,所述第一脉波和所述第二脉波的相位相反,且具有不同的其它波形参数。本申請另提供相关芯片、流量计及方法。

Description

信号产生电路以及相关芯片、流量计及方法 技术领域
本申请涉及一种信号产生电路,尤其涉及一种用于触发换能器的信号产生电路以及相关芯片、流量计及方法。
背景技术
换能器经由输入信号触发后,会振动并产生信号波,例如当输入一串信号包含五个脉波时,理想上换能器的输出信号应该也只包含五个脉波,然而因为换能器本身会有残存能量,因此一般来说,输出信号在五个脉波之后还会额外地产生一连串的振动,若额外的振动持续过长,则对于接收端进行信号处理会有不利的影响,例如硬件成本和处理时间都会增加;此外,由于要等待额外的振动接收完毕才会开始对换能器输入下一串信号,因此等待的时间越长,在应用上是越不利限制。有鉴于此,需要进一步改良及创新以改善上述情况。
发明内容
本申请的目的之一在于公开一种用于触发换能器的信号产生电路以及相关芯片、流量计及方法,来解决上述问题。
本申请的一实施例公开了一种信号产生电路,用于产生发射信号以触发第一换能器以产生第一换能器输出信号,所述信号产生电路包括:信号产生单元,用以产生传送信号;以及发射器,耦接至所述信号产生单元,所述发射器用以将所述传送信号转换为所述发射信号;其中所述发射信号包括数据信号以及补偿信号,所述数据信号至少包括第一脉波,所述补偿信号至少包括第二脉波,所述第一脉波和所述 第二脉波的相位相反,且具有不同的波形参数。
本申请的一实施例公开了一种芯片,包括上述的信号产生电路。
本申请的一实施例公开了一种流量计,包括上述的信号产生电路;上述第一换能器;以及上述第二换能器;其中所述信号产生电路耦接至上述第一换能器以及上述第二换能器。
本申请的一实施例公开了一种信号产生方法,用于产生发射信号以触发第一换能器以产生第一换能器输出信号,所述信号产生方法包括:产生传送信号;以及将所述传送信号转换为所述发射信号;其中所述发射信号包括数据信号以及补偿信号,所述数据信号至少包括第一脉波,所述补偿信号至少包括第二脉波,所述第一脉波和所述第二脉波的相位相反,且具有不同其它的波形参数。
本申请所公开的用于触发换能器的信号产生电路以及相关芯片、流量计及方法能使换能器在被触发时具有较少的额外振动,改善操作频率、性能及准确度。
附图说明
图1为换能器被输入信号触发时相对应在时域上产生输出信号的波形图。
图2为本申请信号产生电路的实施例的示意图。
图3为本申请信号产生电路产生的发射信号和发射信号经过第一换能器产生的第一换能器输出信号在时域上的第一实施例的波形图。
图4为本申请信号产生电路产生的发射信号和发射信号经过第一换能器产生的第一换能器输出信号在时域上的第二实施例的波形图。
图5为本申请信号产生电路产生的发射信号和发射信号经过第一换能器产生的第一换能器输出信号在时域上的第三实施例的波形图。
图6是信号产生单元的一实施例的示意图。
图7是信号产生单元操作时在时域上的波形图。
图8为本申请信号产生电路产生的发射信号和发射信号经过第一换能器产生的第一换能器输出信号在时域上的第四实施例的波形图。
图9为本申请信号产生电路产生的发射信号和发射信号经过第一换能器产生的第一换能器输出信号在时域上的第五实施例的波形图。
图10为本申请信号产生电路产生的发射信号和发射信号经过第一换能器产生的第一换能器输出信号在时域上的第六实施例的波形图。
图11为本申请信号产生电路的另一实施例的示意图。
其中,附图标记说明如下:
100、200                        信号产生电路
102、202                        换能器
104                             发射器
106                             信号产生单元
1062                            分频器
1064                            运算单元
1066                            异或电路
1068                            触发电路
204                             接收器
206                             控制单元
具体实施方式
以下揭示内容提供了多种实施方式或例示,其能用以实现本揭示内容的不同特征。下文所述之组件与配置的具体例子系用以简化本揭示内容。当可想见,这些叙述仅为例示,其本意并非用于限制本揭示内容。举例来说,在下文的描述中,将一第一特征形成于一第二特征上或之上,可能包括某些实施例其中所述的第一与第二特征彼此直接 接触;且也可能包括某些实施例其中还有额外的组件形成于上述第一与第二特征之间,而使得第一与第二特征可能没有直接接触。此外,本揭示内容可能会在多个实施例中重复使用组件符号和/或标号。此种重复使用乃是基于简洁与清楚的目的,且其本身不代表所讨论的不同实施例和/或组态之间的关系。
再者,在此处使用空间上相对的词汇,譬如「之下」、「下方」、「低于」、「之上」、「上方」及与其相似者,可能是为了方便说明图中所绘示的一组件或特征相对于另一或多个组件或特征之间的关系。这些空间上相对的词汇其本意除了图中所绘示的方位之外,还涵盖了装置在使用或操作中所处的多种不同方位。可能将所述设备放置于其他方位(如,旋转90度或处于其他方位),而这些空间上相对的描述词汇就应该做相应的解释。
虽然用以界定本申请较广范围的数值范围与参数皆是约略的数值,此处已尽可能精确地呈现具体实施例中的相关数值。然而,任何数值本质上不可避免地含有因个别测试方法所致的标准偏差。在此处,「约」通常系指实际数值在一特定数值或范围的正负10%、5%、1%或0.5%之内。或者是,「约」一词代表实际数值落在平均值的可接受标准误差之内,视本申请所属技术领域中具有通常知识者的考虑而定。当可理解,除了实验例之外,或除非另有明确的说明,此处所用的所有范围、数量、数值与百分比(例如用以描述材料用量、时间长短、温度、操作条件、数量比例及其他相似者)均经过「约」的修饰。因此,除非另有相反的说明,本说明书与附随申请专利范围所揭示的数值参数皆为约略的数值,且可视需求而更动。至少应将这些数值参数理解为所指出的有效位数与套用一般进位法所得到的数值。在此处,将数值范围表示成由一端点至另一端点或介于二端点之间;除非另有说明,此处所述的数值范围皆包括端点。
换能器是将一种形式的能量转化成另一种形式的器件。这些能量形式可能包括电能、机械能、电磁能、光能、化学能、声能和热能等,本申请并不多做限制,换能器可包括任何能够转化能量的器件。
请参考图1,具体来说,当换能器被输入信号TXout触发时,会相对应地产生输出信号TDout,在本申请中,输入信号TXout包括数据信号,图1中的数据信号包括多个(5个)第一脉波,但本申请不以此限,输入信号TXout的数据信号中的第一脉波的数目大于等于1即可。所述多个第一脉波的周期均为T1,且在周期T1中包括高电平时间T on1和非高电平时间T off1
一般来说,对应输入信号TXout的输出信号TDout包括数据输出部分和额外振动部分,所述额外振动部分是由换能器的残余能量所形成,并在时域上接续所述数据输出部分。所述数据输出部分的时间长度和所述数据信号的时间长度相同。应注意的是,在本申请中,相同代表实质相同,即实际上在可接受标准误差之内,皆属实质相同,且以下说明书中对于相同的描述亦适用。所述额外振动部分的时间长度则会依据换能器的Q值而定,若额外振动部分时间长度持续过长,则会有不利的影响。
图2为本申请信号产生电路100的实施例的示意图。信号产生电路100用于产生发射信号TXout以触发第一换能器102,第一换能器102受触发后会产生第一换能器输出信号TDout1。信号产生电路100包括信号产生单元106以及发射器104,信号产生单元106用以依据特定参数N以及特定时钟来产生传送信号TXin。发射器104的输入端耦接至信号产生单元106的输出端,发射器104用以将传送信号TXin转换为发射信号TXout。
在本实施例中,发射信号TXout除了数据信号以外,另包括补偿信号,所述补偿信号用来减少第一换能器输出信号TDout1中的额外振动部分的峰值降低至预定大小的时间长度。所述数据信号包括至少一个第一脉波,所述补偿信号包括至少一个第二脉波。以下将搭配图示来针对多种可能的补偿信号做进一步的说明。
图3为本申请信号产生电路100产生的发射信号TXout和发射信号TXout经过第一换能器102产生的第一换能器输出信号TDout1在时域上的第一实施例的波形图。所述数据信号的第一脉波的周期均为 T1,且在周期T1中包括高电平(逻辑“1”)的高电平时间长度T on1和低电平(逻辑“0”)的非高电平时间长度T off1,在本實施例中,所述数据信号的第一脉波的低电平(逻辑“0”)在高电平(逻辑“1”)之前,但本申请并不以此为限。所述补偿信号包括一个第二脉波,所述第二脉波和所述第一脉波具有180度的相位差,即所述第二脉波和所述第一脉波相位相反,且具有相同的周期T1,且其他的波形参数(包括占空比、摆率、幅值和频率)也都相同。由图3可知,在所述数据信号的最后一个第一脉波之后,紧接着的补偿信号中具有相位和所述第一脉波相反的第二脉波,在本实施例中,所述第二脉波的高电平(逻辑“1”)在低电平(逻辑“0”)之前,但本申请并不以此为限,所述第二脉波的配置和所述第一脉波具有180度的相位差即可。此外,本申请亦不对所述数据信号和所述补偿信号的波形做限制,也就是说,所述第一脉波和所述第二脉波可以是方波、三角波、弦波等任何型态。相较于未加入所述补偿信号时所产生的额外振动部分(额外振动部分的实线部分),加入所述补偿信号后产生的额外振动部分(额外振动部分的虚线部分)的幅值可以在较短的时间长度内降低至预定大小。
由于图3的额外振动部分并未完全被消除,可能的原因是补偿信号能量不足,因此可考虑增加补偿信号。图4为本申请信号产生电路100产生的发射信号TXout和发射信号TXout经过第一换能器102产生的第一换能器输出信号TDout1在时域上的第二实施例的波形图。和图3不同的是,所述补偿信号包括两个第二脉波,所述两个第二脉波均和所述第一脉波具有180度的相位差,即所述两个第二脉波和所述第一脉波相位相反,且具有相同的周期T1和波形参数(包括占空比、摆率、幅值和频率)。由图4可知,相较于未加入所述补偿信号时所产生的额外振动部分(额外振动部分的实线部分),所述补偿信号的第二个第二脉波虽然在一开始可以使产生的额外振动部分(额外振动部分的虚线部分)快速下降,但因为所述补偿信号的第二个第二脉波能量过大,有可能反而使后续的额外振动部分的幅值增加。
为了解决图4的问题,需要更精细的调整补偿信号。图5为本申 请信号产生电路100产生的发射信号TXout和发射信号TXout经过第一换能器102产生的第一换能器输出信号TDout1在时域上的第三实施例的波形图。图5和图3和4均不同的是,可对所述补偿信号的第二脉波的占空比进行调整,以改善图4的所述补偿信号的第二个第二脉波能量过大的问题。换言之,图5的所述两个第二脉波和所述第一脉波仍具有180度的相位差、相同的周期T1,但波形参数之一的占空比不同,例如图5中所述补偿信号的第二个第二脉波的高电平时间长度为T on2,小于所述数据信号的第一脉波的高电平时间长度T on1。由图5可知,相较于图3加入所述补偿信号后产生的额外振动部分(额外振动部分的虚线部分),图5中加入所述补偿信号后产生的额外振动部分(额外振动部分的虚线部分)的幅值可以在较短的时间长度内降低至预定大小。
请注意,本申请的所述补偿信号的第二脉波的数目并没有限制,且可以针对所述补偿信号的多个第二脉波的一部份或全部进行占空比的调整,且调整比例可以不一。
图6是信号产生单元106的一实施例的示意图。图6是信号产生单元106用于图2的信号产生电路100可用来产生图5的发射信号TXout,请注意,信号产生单元106的实现方式并不限于图6的实施例,只要能够达到相同的功能即可。请一并参考图7的波形图,信号产生单元106包括分频器1062和运算单元1064。其中分频器1062是用以依据特定倍数N(N 0、N 1、…、N k)来对特定时钟CLK进行分频,并产生分频信号A,举例来说,分频器1062可以是一个计数器,但本申请不以此限。信号产生单元106再利用运算单元1064来将分频信号A转换为传送信号TXin。
具体来说,运算单元1064包括异或电路1066以及触发电路1068。举例来说,触发电路1068可以是D触发电路,但本申请不以此限。异或电路1066包括第一输入端、第二输入端以及输出端,触发电路1068包括时钟输入端、数据输入端D以及输出端Q,其中触发电路1068的输出端Q耦接至异或电路1066的第一输入端,异或电路1066 的第二输入端耦接至分频信号A,触发电路1068的时钟输入端耦接至特定时钟CLK,触发电路1068的数据输入端D耦接至异或电路1066的输出端,传送信号TXin从触发电路1068的输出端Q输出。
本实施例以时钟CLK的周期为单位来调整所述补偿信号的第二个第二脉波的占空比,即调整所述补偿信号的第二个第二脉波的高电平时间长度,使补偿信号的能量尽可能地接近换能器的残余能量,避免补偿不足或过度补偿,使额外振动部分的幅值可以在较短的时间长度内降低至预定大小。其中分频器1062在除数满足特定倍数N值时,输出的分频信号A会从低电平(逻辑“0”)转为高电平(逻辑“1”)并持续一个时钟CLK的周期。以时间t 0为例,分频信号A在分频器1062满足特定倍数N 0时会从低电平转为高电平,此时传送信号TXin,异或电路1066的输出B因此也会从低电平转为高电平,接着在下个时钟CLK周期(时间t 1)触发电路1068也会从低电平转为高电平。由于时间t 1分频信号A已经从高电平转为低电平,异或电路1066的输出B会维持在高电平,直到分频器1062满足下一个特定倍数N 1(例如3)才会转态。因此,可藉由调整特定倍数来改变所述补偿信号的第二脉波的高电平时间长度,且在此实施例中,特定倍数N 1~N k-3为3;特定倍数N k-2为6;特定倍数N k-1为3;特定倍数N k为2。因此,所述数据信号的第一脉波的高电平时间长度是时钟CLK的周期的第一倍数(例如3),所述补偿信号的第二脉波的高电平时间长度是时钟CLK的周期的第二倍数(例如2),所述第一倍数和第二倍数可以为不相同的正整数。
图8为本申请信号产生电路100产生的发射信号TXout和发射信号TXout经过第一换能器102产生的第一换能器输出信号TDout1在时域上的第四实施例的波形图。和图3和4不同的是,可对所述补偿信号的第二脉波的幅值进行调整,以改善图4的所述补偿信号的第二个第二脉波能量过大的问题。换言之,图8的所述两个第二脉波和所述第一脉波仍具有180度的相位差、相同的周期T1,但波形参数之一的幅值不同,例如图8中所述补偿信号的第二个第二脉波的幅值小于所述数据信号的第一脉波的幅值。由图8可知,相较于图3加入所 述补偿信号后产生的额外振动部分(额外振动部分的虚线部分),图8中加入所述补偿信号后产生的额外振动部分(额外振动部分的虚线部分)的幅值可以在较短的时间长度内降低至预定大小。
请注意,本申请的所述补偿信号的第二脉波的数目并没有限制,且可以针对所述补偿信号的多个第二脉波的一部份或全部进行幅值的调整,且调整比例可以不一。
图9为本申请信号产生电路100产生的发射信号TXout和发射信号TXout经过第一换能器102产生的第一换能器输出信号TDout1在时域上的第五实施例的波形图。和图3和4不同的是,可对所述补偿信号的第二脉波的摆率进行调整,以改善图4的所述补偿信号的第二个第二脉波能量过大的问题。换言之,图9的所述两个第二脉波和所述第一脉波仍具有180度的相位差、相同的周期T1,但波形参数之一的摆率不同,例如图9中所述补偿信号的第二个第二脉波的摆率小于所述数据信号的第一脉波的摆率。应注意的是,针对上升沿和下降沿可分开调整摆率,例如上升沿的摆率除等于下降沿的摆率外,上升沿的摆率亦可以小于下降沿的摆率,或是上升沿的摆率亦可以大于下降沿的摆率。由图9可知,相较于图3加入所述补偿信号后产生的额外振动部分(额外振动部分的虚线部分),图9中加入所述补偿信号后产生的额外振动部分(额外振动部分的虚线部分)的幅值可以在较短的时间长度内降低至预定大小。
请注意,本申请的所述补偿信号的第二脉波的数目并没有限制,且可以针对所述补偿信号的多个第二脉波的一部份或全部进行摆率的调整,且调整比例可以不一。
图10为本申请信号产生电路100产生的发射信号TXout和发射信号TXout经过第一换能器102产生的第一换能器输出信号TDout1在时域上的第六实施例的波形图。和图3和4不同的是,可对所述补偿信号的第二脉波的频率进行调整,以改善图4的所述补偿信号的第二个第二脉波能量过大的问题。换言之,图10的所述两个第二脉波和所述第一脉波仍具有180度的相位差,但波形参数之一的频率不同, 例如图10中所述补偿信号的第二个第二脉波的频率小于所述数据信号的第一脉波的频率(可从周期T2小于T1看出)。由图10可知,相较于图3加入所述补偿信号后产生的额外振动部分(额外振动部分的虚线部分),图10中加入所述补偿信号后产生的额外振动部分(额外振动部分的虚线部分)的幅值可以在较短的时间长度内降低至预定大小。
请注意,本申请的所述补偿信号的第二脉波的数目并没有限制,且可以针对所述补偿信号的多个第二脉波的一部份或全部进行频率的调整,且调整比例可以不一。图10的实施例亦可使用图6的信号产生单元来实现,即藉由调整特定倍数来改变所述补偿信号的第二脉波的周期,例如,特定倍数N 1~N k-3为3;特定倍数N k-2为6;特定倍数N k-1~N k为2。因此所述数据信号的第一脉波的周期是时钟CLK的周期的第三倍数(例如3),所述补偿信号的第二脉波的周期是时钟CLK的周期的第四倍数(例如2),所述第三倍数和第四倍数可以为不相同的正整数。
图11为本申请信号产生电路200的实施例的示意图。信号产生电路200用于产生发射信号TXout以触发第一换能器102,第一换能器102受触发后会产生第一换能器输出信号TDout1,第一换能器输出信号TDout1通过介质传送至第二换能器202(成为第二换能器输入信号TDin2)。第二换能器202接收第二换能器输入信号TDin2并产生第二换能器输出信号TDout2给信号产生电路200形成闭环,达到自我调适。和图2的信号产生电路100不同的是,信号产生电路200另包括接收器204以及控制单元206。
具体来说,接收器204接收第二换能器输出信号TDout2并将其转换为接收信号RX,控制单元206耦接至接收器204以及信号产生单元106,控制单元206依据接收信号RX及特定时钟CLK产生控制信号(例如特定参数N)至信号产生单元106,使信号产生单元106依据控制信号(例如特定参数N)以及特定时钟CLK来产生传送信号TXin。应注意的是,控制单元206可参考第一换能器输出信号TDout1 的额外振动部分来决定控制信号(例如特定参数N),换句话说,通过闭环的自我调适,可逐渐使第一换能器输出信号TDout1的额外振动部分的补偿达到收敛。
本申请还提供了一种芯片,其包括信号产生电路100或信号产生电路200。
在某些实施例中,信号产生电路100/200可应用于传感器装置,举例来说,本申请还提供了一种流量计,其包括信号产生电路100以及第一换能器102;本申请另提供了一种流量计,其包括信号产生电路200、第一换能器102以及第二换能器202。举例来说,上述流量计可用于感测气体、液体的流速及/或流量的感测,但本申请不以此为限。
本申请關於用于触发换能器的信号产生电路以及相关芯片、流量计及方法的实施例可以降低换能器输出的额外振动部分,降低硬件成本和处理时间。
上文的叙述简要地提出了本申请某些实施例之特征,而使得本申请所属技术领域具有通常知识者能够更全面地理解本揭示内容的多种态样。本申请所属技术领域具有通常知识者当可明了,其可轻易地利用本揭示内容作为基础,来设计或更动其他工艺与结构,以实现与此处所述之实施方式相同的目的和/或达到相同的优点。本申请所属技术领域具有通常知识者应当明白,这些均等的实施方式仍属于本揭示内容之精神与范围,且其可进行各种变更、替代与更动,而不会悖离本揭示内容之精神与范围。

Claims (20)

  1. 一种信号产生电路,用于产生发射信号以触发第一换能器以产生第一换能器输出信号,其特征在于,所述信号产生电路包括:
    信号产生单元,用以产生传送信号;以及
    发射器,耦接至所述信号产生单元,所述发射器用以将所述传送信号转换为所述发射信号以及输出所述发射信号;
    其中所述发射信号包括数据信号以及补偿信号,所述数据信号至少包括第一脉波,所述补偿信号至少包括第二脉波,所述第一脉波和所述第二脉波的相位相反,且具有不同的其它波形参数。
  2. 如权利要求1所述的信号产生电路,其特征在于,所述第一换能器输出信号包括数据输出部分和额外振动部分,所述额外振动部分在时域上接续所述数据输出部分,所述第一换能器输出信号的所述数据输出部分的时间长度和所述发射信号的所述数据信号的时间长度相同,且所述补偿信号是用来减少所述额外振动部分的峰值降低至预定大小的时间长度。
  3. 如权利要求1所述的信号产生电路,其特征在于,所述第一脉波的反相信号和所述第二脉波具有不同的占空比。
  4. 如权利要求3所述的信号产生电路,其特征在于,所述信号产生单元依据特定时钟产生所述传送信号,所述特定时钟具有特定周期,所述第一脉波的高电平时间长度是所述特定周期的M倍,所述第二脉波的高电平时间长度是所述特定周期的N倍,其中M、N为不相同的正整数。
  5. 如权利要求1所述的信号产生电路,其特征在于,所述第一脉波的反相信号和所述第二脉波具有不同的摆率。
  6. 如权利要求1所述的信号产生电路,其特征在于,所述第一脉波的反相信号和所述第二脉波具有不同的幅值。
  7. 如权利要求1所述的信号产生电路,其特征在于,所述第一脉波的反相信号和所述第二脉波具有不同的频率。
  8. 如权利要求7所述的信号产生电路,其特征在于,所述信号产生 单元依据特定时钟产生所述传送信号,所述特定时钟具有特定周期,所述第一脉波的周期是所述特定周期的P倍,所述第二脉波的周期是所述特定周期的Q倍,其中P、Q为不相同的正整数。
  9. 如权利要求4所述的信号产生电路,其特征在于,所述信号产生单元包括:
    分频器,用以依据特定倍数来对所述特定时钟进行分频,以产生分频信号;以及
    运算单元,用以依据所述分频信号产生所述传送信号。
  10. 如权利要求9所述的信号产生电路,其特征在于,所述运算单元包括:
    异或电路,包括第一输入端、第二输入端以及输出端;以及
    触发电路,包括时钟输入端、数据输入端以及输出端;
    其中,所述传送信号从所述触发电路的输出端输出,所述触发电路的输出端耦接至所述异或电路的第一输入端,所述异或电路的第二输入端耦接至所述分频信号,所述触发电路的时钟输入端耦接至所述特定时钟,所述触发电路的数据输入端耦接至所述异或电路的输出端。
  11. 如权利要求2所述的信号产生电路,其特征在于,所述信号产生电路另包括:
    控制单元,用来依据所述额外振动部分控制所述信号产生单元产生所述传送信号。
  12. 如权利要求11所述的信号产生电路,进一步用于接收第二换能器的第二换能器输出信号,其中所述第二换能器接收所述第一换能器输出信号以产生所述第二换能器输出信号,其特征在于,所述信号产生电路另包括:
    接收器,用以接收所述第二换能器输出信号并将接收的所述第二换能器输出信号转换为接收信号;以及
    所述控制单元,耦接至所述接收器以及所述信号产生单元,所述控制单元依据所述接收信号产生控制信号至所述信号产生单 元。
  13. 一种芯片,其特征在于,包括:
    如权利要求1-12任意一项所述的信号产生电路。
  14. 一种流量计,其特征在于,包括:
    如权利要求1-12任意一项所述的信号产生电路;以及
    所述第一换能器;
    其中所述信号产生电路耦接至所述第一换能器。
  15. 一种信号产生方法,用于产生发射信号以触发第一换能器以产生第一换能器输出信号,其特征在于,所述信号产生方法包括:
    产生传送信号;以及
    将所述传送信号转换为所述发射信号;
    其中所述发射信号包括数据信号以及补偿信号,所述数据信号至少包括第一脉波,所述补偿信号至少包括第二脉波,所述第一脉波和所述第二脉波的相位相反,且具有不同的波形参数。
  16. 如权利要求15所述的信号产生方法,其特征在于,所述第一换能器输出信号包括数据输出部分和额外振动部分,所述额外振动部分在时域上接续所述数据输出部分,所述第一换能器输出信号的所述数据输出部分的时间长度和所述发射信号的所述数据信号的时间长度相同,且所述补偿信号是用来减少所述额外振动部分的峰值降低至预定大小的时间长度。
  17. 如权利要求15所述的信号产生方法,其特征在于,所述第一脉波的反相信号和所述第二脉波具有不同的占空比。
  18. 如权利要求15所述的信号产生方法,其特征在于,所述第一脉波的反相信号和所述第二脉波具有不同的摆率。
  19. 如权利要求15所述的信号产生方法,其特征在于,所述第一脉波的反相信号和所述第二脉波具有不同的幅值。
  20. 如权利要求15所述的信号产生方法,其特征在于,所述第一脉波的反相信号和所述第二脉波具有不同的频率。
PCT/CN2019/072261 2019-01-18 2019-01-18 信号产生电路以及相关芯片、流量计及方法 WO2020147094A1 (zh)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020532623A JP6941736B2 (ja) 2019-01-18 2019-01-18 信号処理回路と、関連するチップ、流量計および方法
EP19886074.4A EP3731411A4 (en) 2019-01-18 2019-01-18 SIGNAL GENERATION CIRCUIT, ASSOCIATED CHIP, FLOW METER AND PROCEDURE
PCT/CN2019/072261 WO2020147094A1 (zh) 2019-01-18 2019-01-18 信号产生电路以及相关芯片、流量计及方法
CN201980000166.4A CN109923782B (zh) 2019-01-18 2019-01-18 信号产生电路以及相关芯片、流量计及方法
US16/878,331 US11316547B2 (en) 2019-01-18 2020-05-19 Signal generation circuit and related chip, flow meter and method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/072261 WO2020147094A1 (zh) 2019-01-18 2019-01-18 信号产生电路以及相关芯片、流量计及方法

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US16/878,331 Continuation US11316547B2 (en) 2019-01-18 2020-05-19 Signal generation circuit and related chip, flow meter and method

Publications (1)

Publication Number Publication Date
WO2020147094A1 true WO2020147094A1 (zh) 2020-07-23

Family

ID=66979096

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072261 WO2020147094A1 (zh) 2019-01-18 2019-01-18 信号产生电路以及相关芯片、流量计及方法

Country Status (5)

Country Link
US (1) US11316547B2 (zh)
EP (1) EP3731411A4 (zh)
JP (1) JP6941736B2 (zh)
CN (1) CN109923782B (zh)
WO (1) WO2020147094A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101988965A (zh) * 2009-07-30 2011-03-23 建兴电子科技股份有限公司 具有信号衰减时间调整功能的超音波感测装置及应用方法
CN103580682A (zh) * 2012-07-27 2014-02-12 达斯特网络公司 耐相位噪声的采样
EP3109664A1 (en) * 2015-06-22 2016-12-28 Vodafone Automotive S.p.A. Module and process for use with a sensor for determining the presence of an object
CN106908777A (zh) * 2015-12-15 2017-06-30 现代奥特劳恩株式会社 超声波信号优化装置以及方法
CN108061895A (zh) * 2016-11-09 2018-05-22 现代单片机有限公司 利用超声波换能器的传感器及其振铃时间减少方法

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2810052B2 (ja) * 1987-11-18 1998-10-15 株式会社日立製作所 伝送装置
US5365235A (en) * 1993-09-07 1994-11-15 Ford Motor Company Method and apparatus for reducing residual RF power in a transmitter/receiver antenna
US5483501A (en) * 1993-09-14 1996-01-09 The Whitaker Corporation Short distance ultrasonic distance meter
DE19646747C1 (de) * 1996-11-01 1998-08-13 Nanotron Ges Fuer Mikrotechnik Verfahren zur drahtlosen Übertragung einer einem Signal aufgeprägten Nachricht
US7042629B2 (en) * 2004-02-19 2006-05-09 Lucent Technologies Inc. Linear optical sampling method and apparatus
TWI304293B (en) * 2005-12-23 2008-12-11 Ind Tech Res Inst Duty cycle corrector circuit with widely operating range
KR100681879B1 (ko) * 2006-01-16 2007-02-15 주식회사 하이닉스반도체 온-다이 터미네이션 제어 장치
FI20085026A0 (fi) * 2008-01-14 2008-01-14 Nokia Corp Laite, menetelmä ja tietokoneohjelma
FR2963512B1 (fr) * 2010-07-27 2012-08-17 Univ Provence Aix Marseille 1 Procede et dispositif de generation d'impulsions ultra large bande (uwb)
TWI443963B (zh) * 2010-09-17 2014-07-01 Tung Thih Electronic Co Ltd And a control device capable of suppressing the residual vibration of a piezoelectric element
JP5928039B2 (ja) * 2012-03-19 2016-06-01 富士通株式会社 無線通信装置、無線通信装置におけるパルス信号送信方法
JP2013211617A (ja) * 2012-03-30 2013-10-10 Furukawa Electric Co Ltd:The 信号生成装置
BR112015000344A2 (pt) * 2012-07-09 2017-06-27 Ericsson Telefon Ab L M front-end de transceptor
US9203346B2 (en) * 2014-02-24 2015-12-01 Futurewei Technologies, Inc. Load current sensor for envelope tracking modulator
US9467098B2 (en) * 2014-06-25 2016-10-11 Qualcomm Incorporated Slew rate control boost circuits and methods
JP6398616B2 (ja) * 2014-10-31 2018-10-03 セイコーエプソン株式会社 超音波測定装置及び超音波画像装置
US10165358B2 (en) * 2014-12-11 2018-12-25 Semiconductor Components Industries, Llc Transducer controller and method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101988965A (zh) * 2009-07-30 2011-03-23 建兴电子科技股份有限公司 具有信号衰减时间调整功能的超音波感测装置及应用方法
CN103580682A (zh) * 2012-07-27 2014-02-12 达斯特网络公司 耐相位噪声的采样
EP3109664A1 (en) * 2015-06-22 2016-12-28 Vodafone Automotive S.p.A. Module and process for use with a sensor for determining the presence of an object
CN106908777A (zh) * 2015-12-15 2017-06-30 现代奥特劳恩株式会社 超声波信号优化装置以及方法
CN108061895A (zh) * 2016-11-09 2018-05-22 现代单片机有限公司 利用超声波换能器的传感器及其振铃时间减少方法

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3731411A4 *

Also Published As

Publication number Publication date
CN109923782A (zh) 2019-06-21
US20200280327A1 (en) 2020-09-03
CN109923782B (zh) 2023-06-06
EP3731411A4 (en) 2021-01-13
US11316547B2 (en) 2022-04-26
JP2021515180A (ja) 2021-06-17
EP3731411A1 (en) 2020-10-28
JP6941736B2 (ja) 2021-09-29

Similar Documents

Publication Publication Date Title
US7459951B2 (en) Self-calibrating digital pulse-width modulator (DPWM)
TW201102784A (en) All-digital spread spectrum clock generator
TW201206089A (en) Wireless communication unit and method of controlling an envelope of a radio frequency carrier
CN102035472B (zh) 可编程数字倍频器
CN110995207A (zh) 一种高斯脉冲信号发生器及信号发生方法
TWI666871B (zh) 二倍頻裝置及方法
TWI722401B (zh) 供電電源及其控制方法
JP2020530755A (ja) 微細タイミング分解能を用いるワイヤレス電力伝送装置
WO2022247681A1 (zh) 延时调制电路、方法、芯片及服务器
KR102140117B1 (ko) 클럭 위상 조절 회로 및 이를 포함하는 반도체 장치
WO2020147094A1 (zh) 信号产生电路以及相关芯片、流量计及方法
US20200278228A1 (en) Signal processing circuit and related chip, flow meter and method
KR100656462B1 (ko) 반도체 메모리 장치의 데이터 출력 클럭 생성 회로 및 방법
WO2020077557A1 (zh) 一种占空比校准电路、电子设备及方法
TWI419467B (zh) 頻率產生裝置
WO2020186414A1 (zh) 时间数字转换电路及相关方法
JP3487299B2 (ja) 乱数発生装置および確率発生装置
KR100945813B1 (ko) 반도체 집적회로의 저항값 조정 코드 생성 장치 및 방법
US20100117751A1 (en) Digital pulse modulators having free running clock
CN109687874B (zh) 一种晶振的激励信号的生成装置、芯片及晶振激励系统
JP6250503B2 (ja) コンデンサで電子ホーンの駆動信号周波数を調整する方法及び回路
TWI677190B (zh) 時脈產生裝置及時脈產生方法
KR200288247Y1 (ko) 클럭신호 발생회로
TW200841814A (en) Method for reducing EMI of a clock signal
JP3163554U (ja) シリコン製デジタルオシレータ

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020532623

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 2019886074

Country of ref document: EP

Effective date: 20200616

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19886074

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE