WO2020145047A1 - 磁性材料の製造方法、圧粉磁心の製造方法、コイル部品の製造方法、圧粉磁心、コイル部品および造粒粉 - Google Patents

磁性材料の製造方法、圧粉磁心の製造方法、コイル部品の製造方法、圧粉磁心、コイル部品および造粒粉 Download PDF

Info

Publication number
WO2020145047A1
WO2020145047A1 PCT/JP2019/049323 JP2019049323W WO2020145047A1 WO 2020145047 A1 WO2020145047 A1 WO 2020145047A1 JP 2019049323 W JP2019049323 W JP 2019049323W WO 2020145047 A1 WO2020145047 A1 WO 2020145047A1
Authority
WO
WIPO (PCT)
Prior art keywords
magnetic
powder
metal
resin material
magnetic material
Prior art date
Application number
PCT/JP2019/049323
Other languages
English (en)
French (fr)
Inventor
寛範 長崎
高橋 岳史
伸哉 松谷
小谷 淳一
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to CN201980087872.7A priority Critical patent/CN113272086B/zh
Priority to JP2020565658A priority patent/JPWO2020145047A1/ja
Publication of WO2020145047A1 publication Critical patent/WO2020145047A1/ja

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F1/00Metallic powder; Treatment of metallic powder, e.g. to facilitate working or to improve properties
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F3/00Manufacture of workpieces or articles from metallic powder characterised by the manner of compacting or sintering; Apparatus specially adapted therefor ; Presses and furnaces
    • B22F3/02Compacting only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F1/00Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties
    • H01F1/01Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials
    • H01F1/03Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity
    • H01F1/12Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials
    • H01F1/14Magnets or magnetic bodies characterised by the magnetic materials therefor; Selection of materials for their magnetic properties of inorganic materials characterised by their coercivity of soft-magnetic materials metals or alloys
    • H01F1/147Alloys characterised by their composition
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F27/00Details of transformers or inductances, in general
    • H01F27/24Magnetic cores
    • H01F27/255Magnetic cores made from particles
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01FMAGNETS; INDUCTANCES; TRANSFORMERS; SELECTION OF MATERIALS FOR THEIR MAGNETIC PROPERTIES
    • H01F41/00Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties
    • H01F41/02Apparatus or processes specially adapted for manufacturing or assembling magnets, inductances or transformers; Apparatus or processes specially adapted for manufacturing materials characterised by their magnetic properties for manufacturing cores, coils, or magnets

Definitions

  • the present disclosure relates to a method for manufacturing a magnetic material, a method for manufacturing a dust core, a method for manufacturing a coil component, a dust core, a coil component and a granulated powder.
  • oxide magnetic materials such as ferrite and magnetic metal materials have been used as magnetic materials for magnetic cores of inductors and transformers.
  • a magnetic core using these magnetic materials for example, there is a powder magnetic core obtained by compression molding metal powder.
  • the dust core has a high saturation magnetic flux density and is an advantageous core for miniaturizing components such as an inductor and a transformer.
  • the powder magnetic core can be molded for a mold, it has a high degree of freedom in the shape of the magnetic core, and even if it has a complicated shape, it can be manufactured with high accuracy in a simple process, and therefore its usefulness is noted. (For example, see Patent Document 1).
  • Patent Document 1 discloses a magnetic material containing iron (Fe) and silicon (Si) as main components as a magnetic material forming a dust core, and a dust core using the magnetic material.
  • the insulating coating is formed on the surface of the metal magnetic powder containing Fe and Si as main components.
  • the powder magnetic core is made by adding a resin material having insulating and adhesive properties to the metal magnetic powder in order to obtain insulation and adhesion between the metal magnetic powders, drying it and then press-molding it. To be done.
  • the resin material has a high molecular weight, entanglement of molecules may occur, and it may not be possible to highly fill the metal magnetic powder in the dust core. Therefore, there is a problem that the magnetic characteristics of the dust core cannot be improved.
  • an object of the present invention is to provide a magnetic material manufacturing method and the like for obtaining high magnetic properties.
  • a method for producing a magnetic material according to an aspect of the present disclosure, a mixture producing step of producing a mixture containing an organic solvent, a metal magnetic powder, a resin material, and an organometallic soap, and heating the mixture, the mixture in the mixture.
  • a first heat treatment step of obtaining a magnetic material in which the metal magnetic powder, the resin material, and the organometallic soap are integrated by removing the organic solvent is included.
  • a method of manufacturing a dust core according to an aspect of the present disclosure includes a first molding step of pressing a magnetic material obtained by the above-described method of manufacturing a magnetic material to obtain a molded body, and the first molding.
  • a method of manufacturing a coil component includes a second molding step in which a magnetic material obtained by the method of manufacturing a magnetic material and a coil are integrated by powder molding to obtain a molded body. And a third heat treatment step of heating the molded body obtained in the second molding step.
  • a dust core according to an aspect of the present disclosure includes metal magnetic powder composed of Fe—Si—Al, the filling rate of the metal magnetic powder is 82% or more, and the initial magnetic permeability is 125 or more. is there.
  • a coil component according to one aspect of the present disclosure includes the above dust core and a coil.
  • the granulated powder according to one aspect of the present disclosure is a granulated powder containing a magnetic metal powder, a resin material, and an organometallic soap, and at least a part of the organometallic soap is the inside of the granulated powder.
  • FIG. 1A is a schematic perspective view showing the configuration of the coil component according to the first embodiment.
  • FIG. 1B is an exploded perspective view showing the configuration of the coil component according to the first embodiment.
  • FIG. 2 is a sectional view showing the structure of the magnetic material according to the first embodiment.
  • FIG. 3 is a flowchart showing a manufacturing process of the magnetic material and the coil component according to the first embodiment.
  • FIG. 4 is a flowchart showing the granulated powder manufacturing process according to the first embodiment.
  • FIG. 5: is a figure which shows the granulated powder which concerns on Embodiment 1, and is a granulated powder which was pulverized after granulating and drying.
  • FIG. 6 is a flowchart showing the core manufacturing process according to the first embodiment.
  • FIG. 1A is a schematic perspective view showing the configuration of the coil component according to the first embodiment.
  • FIG. 1B is an exploded perspective view showing the configuration of the coil component according to the first embodiment.
  • FIG. 2
  • FIG. 7 is a figure which shows the granulated powder which concerns on Embodiment 1 and is a granulated powder before press molding typically.
  • FIG. 8 is a flowchart showing the coil assembly process according to the first embodiment.
  • FIG. 9A is a diagram showing the additive contained in the magnetic material of Example 1 of the first embodiment, the filling rate of the metal magnetic powder contained in the magnetic core, and the initial magnetic permeability of the magnetic core.
  • FIG. 9B is a graph showing the additive contained in the magnetic material of Example 1 of Embodiment 1, the density of the metal magnetic powder in the magnetic core, and the initial magnetic permeability of the magnetic core.
  • FIG. 9A is a diagram showing the additive contained in the magnetic material of Example 1 of the first embodiment, the filling rate of the metal magnetic powder contained in the magnetic core, and the initial magnetic permeability of the magnetic core.
  • FIG. 9B is a graph showing the additive contained in the magnetic material of Example 1 of Embodiment 1, the density of the metal magnetic powder in the magnetic core
  • FIG. 10 is a diagram showing the additive contained in the magnetic material of Example 2 of the first embodiment, the filling rate of the metal magnetic powder contained in the magnetic core, and the initial magnetic permeability of the magnetic core.
  • FIG. 11A is a diagram showing an additive contained in the magnetic material of Example 3 of the first embodiment, the filling rate of the metal magnetic powder contained in the magnetic core, and the initial magnetic permeability of the magnetic core.
  • FIG. 11B is a graph showing the additive contained in the magnetic material of Example 3 of the first embodiment, the density of the metal magnetic powder in the magnetic core, and the initial magnetic permeability of the magnetic core.
  • FIG. 12A is a schematic perspective view showing the configuration of the coil component according to the second embodiment.
  • FIG. 12B is a cross-sectional view showing the configuration of the coil component according to the second embodiment.
  • FIG. 13 is a flowchart showing a manufacturing process of the coil component according to the second embodiment.
  • FIG. 14 is a flowchart showing a core manufacturing process and a coil assembling process according to the second embodiment.
  • the coil component 1 is composed of a magnetic core (dust core) formed of a magnetic material and a coil portion arranged inside the magnetic core.
  • FIG. 1A is a schematic perspective view showing the configuration of the coil component 1 according to the present embodiment.
  • FIG. 1B is an exploded perspective view showing the configuration of the coil component 1 according to the present embodiment.
  • FIG. 2 is a cross-sectional view showing the structure of the magnetic material according to this embodiment.
  • the coil component 1 includes two split magnetic cores 12, a conductor 13, and two coil supports 14.
  • the two divided magnetic cores 12 form a magnetic core, and the conductor 13 and the two coil supports 14 form a coil portion.
  • the split magnetic core 12 includes a base 12a and a cylindrical core portion 12b formed on one surface of the base 12a. Further, a wall portion 12c standing upright from the edge of the base 12a is formed on two opposing sides of the four sides forming the base 12a. The core 12b and the wall 12c have the same height from one surface of the base 12a.
  • Each of the two divided magnetic cores 12 is a dust core formed by press-molding a magnetic material into a predetermined shape.
  • the two divided magnetic cores 12 are arranged so that the core portion 12b and the wall portion 12c are in contact with each other.
  • the conductor 13 is arranged so as to surround the periphery of the core portion 12b.
  • the conductor 13 is incorporated in the split magnetic core 12 via the coil support 14.
  • the two coil supports 14 include an annular base portion 14a and a cylindrical portion 14b.
  • the core portion 12b of the split magnetic core 12 is arranged inside the cylindrical portion 14b, and the conductor 13 is arranged on the outer periphery of the cylindrical portion 14b.
  • the magnetic material forming the split magnetic core 12 is, for example, a Fe—Si based metal magnetic material which is an alloy containing Fe and Si as main components.
  • a plurality of metal magnetic powders 17 are pressure-molded, and an insulating material 18 is formed on the surface of each metal magnetic powder 17.
  • the insulating materials 18 covering the surfaces of the respective metal magnetic powders 17 adjacent to each other are bound to each other. That is, the insulating material 18 is disposed between the metal magnetic powders 17 and the metal magnetic powders 17 are insulated from each other.
  • the Fe—Si based metal magnetic powder 17 is a metal soft magnetic powder containing Fe and Si as main components or a metal soft magnetic powder containing Fe, Si and Al as main components.
  • the metal magnetic powder 17 may contain inevitable impurities in addition to Fe, Si, and Al.
  • Si is used to improve the soft magnetic characteristics. By adding Si, the magnetic anisotropy and magnetostriction constant of the metal magnetic powder 17 can be reduced, and the electrical resistance can be increased and the eddy current loss can be reduced.
  • the method for producing the metal magnetic powder 17 according to the present embodiment is not particularly limited, and various atomizing methods and various pulverizing methods can be used.
  • the average particle size of the metal magnetic powder 17 according to the present embodiment is preferably 1 ⁇ m or more and 100 ⁇ m or less. If the average particle size is smaller than 1 ⁇ m, the molding density will be low and the magnetic permeability will be low. If the average particle size is larger than 100 ⁇ m, the eddy current loss at high frequencies will be large. More preferably, the average particle size of the metal magnetic powder 17 is 50 ⁇ m or less.
  • the average particle size of the magnetic metal powder is obtained by a laser diffraction type particle size distribution measuring method. For example, the particle size of the particles to be measured that show the same diffraction and scattered light pattern as a sphere having a diameter of 10 ⁇ m is set to 10 ⁇ m regardless of the shape. Then, the particle diameters are counted from the smallest one, and the particle diameter when the integrated value becomes 50% of the whole is taken as the average particle diameter.
  • the insulating material 18 contains at least one of Ti, Zr, and Al, for example.
  • the insulating material 18 is formed so as to cover the surface of the metal magnetic powder 17, and the adjacent metal magnetic powder 17 is insulated by the insulating material 18.
  • FIG. 3 is a flowchart showing a manufacturing process of the magnetic material and the coil component 1 according to the present embodiment.
  • the manufacturing process of the coil component 1 includes a granulated powder manufacturing process (step S10), a core manufacturing process (step S20), and a coil assembly process (step S30).
  • a granulated powder manufacturing process the magnetic material forming the magnetic core described above is generated.
  • the split magnetic core 12 is formed by molding a magnetic material.
  • the coil assembly process the above-mentioned split magnetic core 12, the conductor 13, and the coil support 14 are assembled to complete the coil component 1.
  • each step S will be described in detail.
  • FIG. 4 is a flowchart showing a granulated powder manufacturing process according to this embodiment.
  • a raw material for producing a magnetic material is prepared (step S11).
  • Metal magnetic powder 17, a first resin material having an insulating property, a second resin material having an adhesive property, an organic metal soap, and an organic solvent are prepared as raw materials of the magnetic material.
  • both the first resin material and the second resin material may be collectively referred to as “resin material”.
  • magnetic powder containing Fe as a main component magnetic powder containing Fe as a main component is used.
  • the metal magnetic powder 17 an alloy of Fe and Si, sendust, permalloy, or the like is used.
  • the content ratio of Fe and Si may be adjusted.
  • the particle size of the metal magnetic powder 17 is, for example, 20 ⁇ m.
  • the first resin material is a material that becomes the insulating material 18 after heat treatment of the divided magnetic core (powder magnetic core) 12 after pressure molding.
  • the first resin material for example, a material such as silicon resin, phenol resin, or epoxy resin is used.
  • the silicon contained in the silicon resin remains between the adjacent magnetic metal powders even after the divided magnetic core 12 is subjected to the heat treatment, and thus is suitable for ensuring the insulation between the magnetic metal powders.
  • the second resin material is a material that serves as a binder.
  • a material such as acrylic resin, silicon resin, butyral resin, or the like is used.
  • acrylic resin is suitable for suppressing springback after pressure molding and ensuring the shape retention of the split magnetic core 12 after pressure molding.
  • the second resin material is a material that is removed by heat-treating the divided magnetic core 12 after pressure molding.
  • Each of the first resin material and the second resin material used in the present embodiment may be a thermosetting resin or a thermoplastic resin. Further, each of the first resin material and the second resin material is a liquid at room temperature when it is a thermosetting resin.
  • Organometallic soap is a material for softening the above resin material.
  • Organometallic soaps include, for example, materials containing metal stearates such as zinc stearate, magnesium stearate or calcium stearate.
  • the chemical formula of zinc stearate is Zn(C 17 H 35 COO) 2
  • the chemical formula of magnesium stearate is Mg(C 17 H 35 COO) 2
  • the chemical formula of calcium stearate is Ca(C 17 H 35 COO) 2 .
  • Zinc stearate, magnesium stearate, and calcium stearate each have a long-chain hydrocarbon and therefore have good compatibility with the resin material. Therefore, by adding an organometallic soap containing a metal stearate in the granulated powder manufacturing process, the resin material contained in the granulated powder is softened and the granulated powder is plasticized (in a soft and easy-to-change state). can do.
  • the weight ratio of the organometallic soap contained in the magnetic material is 0.05% by weight or more and 0.5% by weight or less with respect to the metal magnetic powder 17.
  • the weight ratio of the organometallic soap contained in the magnetic material is 5% by weight or more and 40% by weight or less with respect to the resin material.
  • the organic solvent is a solvent that facilitates kneading and dispersing the metal magnetic powder 17, the resin material, and the organometallic soap. Toluene, xylene, ethanol or the like is used as the organic solvent.
  • the metal magnetic powder 17, the resin material, the organometallic soap and the organic solvent are kneaded and dispersed (step S12).
  • a mixture containing the organic solvent, the magnetic metal powder, the resin material, and the organic metal soap is produced.
  • the kneading and dispersion are performed by placing the weighed metal magnetic powder 17, the resin material, the organic metal soap and the organic solvent in a container, and mixing and dispersing them in a rotary ball mill.
  • the above kneading and dispersion are performed at room temperature.
  • the kneading and dispersing are not limited to the kneading and dispersing using the rotary ball mill, and other kneading and dispersing methods may be used.
  • step S13 After kneading and dispersing the magnetic metal powder 17, the resin material, the organic metal soap, and the organic solvent, granulation and drying are performed (step S13). As a result, a granulated powder containing the organometallic soap is produced.
  • the mixture produced in step S12 is heat-treated at a temperature equal to or lower than the melting point of the organometallic soap.
  • the melting point of zinc stearate contained in the organometallic soap is 116°C to 125°C
  • the melting point of magnesium stearate is 120°C to 140°C
  • the melting point of calcium stearate is 145°C to 160°C.
  • the mixture is heat treated at a temperature of 115°C or less. More preferably, the mixture is heat-treated at a temperature of 90°C or higher and 110°C or lower.
  • the heat treatment step at this time is the first heat treatment step.
  • the organic solvent is removed from the mixture, and granulated powder (magnetic material) in which the metal magnetic powder 17, the resin material and the organometallic soap are integrated is obtained.
  • the granulated powder does not include a glass material (for example, silica glass).
  • step S13 the granulated powder (magnetic material) granulated in step S13 is further crushed (step S14) to reduce the particle size.
  • This step is a powdering step.
  • the pulverized granulated powder is classified according to a predetermined particle size (step S15). By the above, powdered granulated powder having a powder diameter of 100 ⁇ m to 500 ⁇ m is obtained.
  • an insulating material 18 is formed on the surface of the metal magnetic powder 17.
  • the thickness of the insulating material 18 is, for example, about 10 [nm].
  • the thickness of the insulating material 18 is not limited to this, and may be 1 nm to 200 nm.
  • FIG. 5 is a diagram schematically showing the granulated powder 30 according to the present embodiment, which is powdered after granulation and drying.
  • the organometallic soap 31 is present inside the powdered granulated powder 30.
  • the resin material 32 exists between the adjacent metal magnetic powders 17, and the organometallic soap 31 exists in the resin material 32.
  • the resin material contained in the granulated powder 30 is softened and the granulated powder 30 is plasticized. Therefore, when the magnetic material which is the granulated powder 30 is pressure-molded in the core manufacturing process, the fluidity of the magnetic material can be increased, and the metal magnetic powder 17 contained in the divided magnetic core (powder magnetic core) 12 can be formed.
  • the density (filling rate) can be increased.
  • FIG. 6 is a flowchart showing the core manufacturing process according to the present embodiment.
  • a magnetic material is molded to produce a magnetic core.
  • a lubricant is mixed with the powdered granulated powder 30.
  • FIG. 7 is a diagram schematically showing the granulated powder 30 according to the present embodiment, which is not yet pressure-molded.
  • the lubricant 33 is formed on a part of the outer periphery of the granulated powder 30.
  • the lubricant 33 is the same material as the organometallic soap added in step S12.
  • the lubricant 33 is formed by, for example, a spray dry method in which a liquid material is sprayed and dried. As a result, the granulated powder (magnetic material) 30 having the lubricant 33 on the outer periphery is formed.
  • the lubricant is also applied to the surface of the molding die.
  • the lubricant is applied by spraying an organic metal soap dispersed in a solvent into a molding die. Thereby, the lubricity of the granulated powder 30 with respect to the molding die can be improved.
  • the magnetic material made of the granulated powder 30 is pressure-molded into a predetermined shape (step S21).
  • This step is the first molding step. Specifically, the magnetic material is put into a molding die and compressed to form a molded body. At this time, for example, uniaxial molding is performed at a constant pressure of 10 [ton/cm 2 ].
  • the shape of the molded body is, for example, the shape of the split magnetic core 12 shown in FIG. 1B.
  • the shape of the molded body is not limited to this, and may be, for example, a shape in which the core portion 12b of the split magnetic core 12 is formed separately.
  • the molded body is heated at a temperature of 200 to 450 [° C.] in an inert gas atmosphere such as N 2 gas or in the air to degrease (step S22).
  • an inert gas atmosphere such as N 2 gas or in the air to degrease (step S22).
  • the second resin material (binder) contained in the molded body is removed.
  • the degreasing step may be omitted depending on the type and characteristics of the second resin material used.
  • the molded body after degreasing is annealed (heat treatment) (step S23).
  • the annealing step at this time is the second heat treatment step.
  • an atmosphere controlled electric furnace is used for the annealing of the molded body.
  • the atmosphere-controlled electric furnace include a box furnace, a tubular furnace, and a belt furnace. The method is not limited to these methods, and other methods may be used.
  • Annealing of the molded body is performed at an annealing temperature of 800° C. for 1 hour at a predetermined oxygen partial pressure, for example.
  • the annealing temperature and the annealing time are not limited to those described above, and for example, the annealing temperature may be 600 to 1000 [° C.] and the annealing time may be several tens of minutes to several hours.
  • the molded body is relieved of the strain generated by the pressure when it is uniaxially molded. At least a part of the insulating material 18 may be decomposed in the molded body by annealing.
  • the annealed molded body is impregnated with the resin material (step S24).
  • the resin material for example, epoxy resin may be used. By impregnating the resin material, the strength of the molded body can be improved.
  • a split magnetic core (powder magnetic core) including the metal magnetic powder 17 and the insulating material 18 as shown in FIG. 2 is formed.
  • two divided magnetic cores 12 are formed as the magnetic core.
  • the coil component 1 can be obtained by assembling the two split magnetic cores 12 and the coil portion as follows.
  • FIG. 8 is a flowchart showing a coil assembly process according to this embodiment.
  • a coil is formed by winding the conductor 13 a predetermined number of times (step S31).
  • the divided magnetic core 12, the conductor 13 and the coil support 14 are assembled (step S32).
  • the conductor 13 is arranged so as to surround the cores 12b of the two split magnetic cores 12.
  • the cylindrical portions 14b of the two coil supports 14 are arranged between the conductor 13 and the core portions 12b of the two divided magnetic cores 12, respectively.
  • the respective annular bases 14a of the two coil supports 14 are arranged between the conductor 13 and the respective bases 12a of the two divided magnetic cores 12.
  • the end portions of the cylindrical portions 14b of the two coil supports 14 on the side opposite to the side where the annular base portion 14a is formed are arranged so as to abut each other.
  • the two divided magnetic cores 12 are arranged so that the core portion 12b and the wall portion 12c contact each other.
  • the coil component 1 is assembled by incorporating the conductor 13 into the split magnetic core 12 via the coil support 14.
  • the split magnetic core 12 is a magnetic core in which the core portion 12b penetrates the conductor 13 in the winding axis direction of the conductor 13.
  • step S33 the assembled coil component 1 is molded with a resin material. As a result, the coil component 1 is completed.
  • Example 1 describes an example in which no organometallic soap was added, an example in which the organometallic soap was added internally, and an example in which the organometallic soap was externally added.
  • internal addition means adding organometallic soap in step S12 (kneading and dispersion)
  • external addition means granulation powder before pressure molding before step 21. It means that a lubricant is applied to the outer periphery of the.
  • FIG. 9A is a diagram showing the additive contained in the magnetic material of Example 1 of the present embodiment, the filling rate of the metal magnetic powder contained in the magnetic core, and the initial magnetic permeability of the magnetic core.
  • FIG. 9B is a graph showing the additive contained in the magnetic material of Example 1 of the present embodiment, the density of the metal magnetic powder in the magnetic core, and the initial magnetic permeability of the magnetic core.
  • Example 1 the sample A1 in which the metal magnetic powder (Fe—Si—Al) and the resin material (silicon resin and acrylic resin) were not added with the organic metal soap, and the metal magnetic powder and the resin material were lubricated.
  • the filling rate and density of the metal magnetic powder in the magnetic core were obtained.
  • the initial permeability which is an example of the magnetic characteristics of the magnetic core, of each of the samples A1 to A3 was examined.
  • the density is the density of the magnetic core after the second heat treatment step
  • the filling rate is the ratio of the metal magnetic powder per unit volume of the magnetic core after the second heat treatment step.
  • FIG. 9A and FIG. 9B show that the sample A2 to which the lubricant is externally added has higher filling rate, density and initial permeability than the sample A1 to which the additive is not added. Further, it is shown that the sample A3 having the organometallic soap added therein has higher filling rate, density and initial magnetic permeability than the samples A1 and A2.
  • the organometallic soap in the process of kneading and dispersing the metal magnetic powder, the resin material and the organic solvent to produce the magnetic material, that is, to add the organometallic soap internally, and
  • the powder filling rate, density and initial permeability can be increased.
  • the filling rate of the metal magnetic powder can be increased without providing a step of externally adding the organic metal soap.
  • organometallic soap has a long-chain hydrocarbon, so it has good compatibility with resin materials. Therefore, by adding the organometallic soap in the granulated powder manufacturing process, the resin material contained in the granulated powder can be softened and the granulated powder can be plasticized. It is considered that this makes it possible to suppress the entanglement of molecules of the resin material at the time of pressure molding and increase the filling rate of the metal magnetic powder contained in the magnetic core.
  • Example 2 an example in which the type of material contained in the organometallic soap 31 is changed will be described.
  • FIG. 10 is a diagram showing the additive contained in the magnetic material of Example 2 of the present embodiment, the filling rate of the metal magnetic powder contained in the magnetic core, and the initial magnetic permeability of the magnetic core.
  • Example 2 sample B1 in which metal magnetic powder (Fe—Si—Al) and resin materials (silicon resin and acrylic resin) were not added with an organometallic soap as an additive, and metal magnetic powder and resin material were organic.
  • Sample B2 in which zinc stearate was internally added as a metal soap
  • sample B3 in which magnesium stearate was internally added as a metal magnetic powder and a resin material
  • calcium stearate as an organic metal soap was added to the metal magnetic powder and a resin material.
  • Sample B4 internally added was prepared. Then, for each of the samples B1 to B4, the filling rate and the density of the metal magnetic powder in the magnetic core were obtained. Further, the initial magnetic permeability of the magnetic core was examined for each of the samples B1 to B4.
  • the sample B2 in which zinc stearate was internally added, the sample B3 in which magnesium stearate was internally added, and the sample B4 in which calcium stearate was internally added were more than the sample B1 in which the additive was not added. It is shown that the filling rate and the initial permeability are high. It is also shown that the sample B2 having zinc stearate added therein has a higher initial magnetic permeability than the samples B3 and B4.
  • Example 3 an example in which the addition amount of the organometallic soap 31 is changed will be described.
  • FIG. 11A is a diagram showing the additive contained in the magnetic material of Example 3 of the present embodiment, the filling rate of the metal magnetic powder contained in the magnetic core, and the initial magnetic permeability of the magnetic core.
  • FIG. 11B is a graph showing the additive contained in the magnetic material of Example 3 of the present embodiment, the density of the metal magnetic powder in the magnetic core, and the initial magnetic permeability of the magnetic core.
  • Example 3 the sample C1 in which the organometallic soap was not added as an additive to the metallic magnetic powder (Fe—Si—Al) and the resin material (silicon resin and acrylic resin), and the metallic magnetic powder and the resin material had a content of 0.
  • Sample C2 internally added with 05 parts by weight of organometallic soap
  • sample C3 internally added with 0.1 part by weight of organometallic soap
  • sample C4 internally added with 0.2 parts by weight of organometallic soap
  • the initial magnetic permeability of the magnetic core was examined for each of the samples C1 to C6.
  • the weight part shown here is a weight ratio of the organometallic soap in the magnetic material, and is a weight ratio with respect to 100 parts by weight of the metal magnetic powder.
  • 11A and 11B show that samples C2, C3, C4, and C5 have higher packing ratio, density, and initial permeability than samples C1 and C6. That is, it is shown that the filling rate, the density and the initial magnetic permeability are high when the weight ratio of the organometallic soap is in the range of 0.05 parts by weight or more and 0.5 parts by weight or less.
  • the weight ratio of the organometallic soap is 5% by weight or more with respect to the resin material. This corresponds to 40% by weight or less.
  • the filling rate, density and initial magnetic permeability of the metal magnetic powder in the magnetic core can be further increased.
  • the method for producing a magnetic material according to the present embodiment is a mixture producing step of producing a mixture containing an organic solvent, a magnetic metal powder, a resin material, and an organometallic soap, and heating the mixture to form an organic solvent in the mixture. Is removed to obtain a magnetic material in which the metal magnetic powder, the resin material, and the organometallic soap are integrated to obtain a first heat treatment step.
  • the magnetic material produced after the first heat treatment step is plasticized by producing a mixture including the organic solvent, the metal magnetic powder and the resin material, and the organometallic soap. be able to.
  • This makes it possible to increase the filling rate of the metal magnetic powder of the magnetic core generated by the magnetic material and increase the magnetic permeability of the magnetic core. That is, it is possible to provide a magnetic material for obtaining high magnetic properties.
  • the organometallic soap may contain zinc stearate.
  • the weight ratio of the organometallic soap in the magnetic material may be 0.05% by weight or more and 0.5% by weight or less based on the metal magnetic powder.
  • the filling rate of the metal magnetic powder contained in the magnetic core can be increased and the magnetic permeability of the magnetic core can be improved. That is, it is possible to provide a magnetic material for obtaining high magnetic properties.
  • the weight ratio of the organometallic soap in the magnetic material may be 5% by weight or more and 40% by weight or less with respect to the resin material.
  • the filling rate of the metal magnetic powder contained in the magnetic core can be increased and the magnetic permeability of the magnetic core can be improved. That is, it is possible to provide a magnetic material for obtaining high magnetic properties.
  • the resin material may include a thermoplastic material.
  • the resin material can be softened as compared with the case where the resin material is a thermosetting resin.
  • the filling rate of the metal magnetic powder contained in the magnetic core can be increased, and the magnetic permeability of the magnetic core can be improved. That is, it is possible to provide a magnetic material for obtaining high magnetic properties.
  • the mixture may be produced by kneading the organic solvent, the magnetic metal powder, the resin material and the organometallic soap at room temperature.
  • the resin material can be softened as compared with the case where the resin material is kneaded at a high temperature.
  • the filling rate of the metal magnetic powder contained in the magnetic core can be increased, and the magnetic permeability of the magnetic core can be improved. That is, it is possible to provide a magnetic material for obtaining high magnetic properties.
  • the temperature for heating the mixture may be equal to or lower than the melting point of the organometallic soap.
  • the method for manufacturing a dust core according to the present embodiment is obtained by a first molding step of obtaining a molded body by high-pressure pressing the magnetic material obtained by the above-mentioned magnetic material manufacturing method, and a first molding step. And a second heat treatment step of heating the formed body.
  • the dust core according to the present embodiment includes metal magnetic powder composed of Fe-Si-Al, the filling rate of the metal magnetic powder is 82% or more, and the initial magnetic permeability is 125 or more.
  • the filling rate of the metal magnetic powder can be improved and the magnetic permeability of the dust core can be improved.
  • the coil component according to the present embodiment includes the above dust core and a coil.
  • the granulated powder according to the present embodiment is a granulated powder containing a magnetic metal powder, a resin material, and an organometallic soap, and at least a part of the organometallic soap is present inside the granulated powder. ..
  • the presence of the organometallic soap inside the granulated powder makes it possible to soften the resin material and plasticize the granulated powder.
  • the filling rate of the metal magnetic powder by pressure molding can be increased, and the magnetic characteristics of the dust core can be improved.
  • the resin material may be present between the adjacent metal magnetic powders, and the organometallic soap may be present in the resin material present between the adjacent metal magnetic powders.
  • the presence of the organometallic soap in the resin material between the adjacent metal magnetic powders makes it possible to soften the resin material and plasticize the granulated powder.
  • the filling rate of the metal magnetic powder by pressure molding can be increased, and the magnetic characteristics of the dust core can be improved.
  • the coil component 1 according to the first embodiment is a coil component using a so-called dust core as a magnetic core, but the coil component 2 according to the present embodiment is a metal composite in which a coil is incorporated in the magnetic core in the manufacturing process. Type coil parts.
  • FIG. 12A is a schematic perspective view showing the configuration of the coil component 2 according to the present embodiment.
  • FIG. 12B is a sectional view showing the structure of the coil component 2 according to the present embodiment.
  • FIG. 12B shows a cross section taken along line XIIB-XIIB in FIG. 12A.
  • the coil component 2 includes a magnetic core portion 22 made of a metal composite material and a coil portion 23.
  • the magnetic core portion 22 has a cylindrical core portion 22a near the center when seen in a plan view.
  • the magnetic material forming the magnetic core portion 22 is, for example, a Fe—Si based metal magnetic material that is an alloy containing Fe and Si as main components.
  • the magnetic material is the same as the magnetic material shown in the first embodiment, but the resin of the magnetic material of the second embodiment may be composed of only a thermosetting resin.
  • a coil portion 23 is arranged around the cylindrical core portion 22a of the magnetic core portion 22.
  • the coil part 23 has a winding part 23 a formed by winding a conductor a plurality of times and a wiring part 23 b formed outside the magnetic core part 22.
  • the core portion 22a of the magnetic core portion 22 is arranged as a winding axis of the wound conductor of the winding portion 23a.
  • the conductor is made of copper, for example.
  • the conductor is made of a material that is not destroyed by the heat applied when forming the coil component 2.
  • the coil portion 23 is formed integrally with the magnetic core portion 22.
  • the coil portion 23 winding portion 23 a is embedded in the magnetic core, and the wiring portion 23 b is arranged outside the magnetic core portion 22.
  • FIG. 13 is a flowchart showing a manufacturing process of the coil component 2 according to this embodiment.
  • the manufacturing process of the coil component 2 includes a granulated powder manufacturing process (step S10) and a core manufacturing and coil assembling process (step S40).
  • the magnetic material forming the magnetic core described above is generated.
  • the core manufacturing process the magnetic core portion 22 and the coil portion 23 formed of a magnetic material are formed, and the magnetic core portion 22 and the coil portion 23 are assembled to complete the coil component 2.
  • FIG. 14 is a flowchart showing the core manufacturing and coil assembling steps according to the present embodiment.
  • the coil portion 23 is formed (step S41). Like the conductor 13 described in the first embodiment, the coil portion 23 forms a winding portion 23a by winding a conductor made of a metal such as copper for a predetermined number of times.
  • Step S42 is the second molding step.
  • the magnetic material manufactured in the granulated powder manufacturing process is used as the material of the magnetic core portion 22.
  • the magnetic material classified in the granulated powder manufacturing process is put into a molding die.
  • the coil portion 23 and the magnetic material are put in a molding die so that the portion other than the end of the conductor winding portion 23a of the coil portion 23 is covered with the magnetic material.
  • uniaxial molding is performed at a constant pressure of 4 to 5 [ton/cm 2 ] to produce a molded body.
  • the pressure at this time is lower than the pressure of the uniaxial molding in the core manufacturing process of the coil component 1 shown in the first embodiment. As a result, it is possible to prevent the coil portion 23 molded together with the magnetic material from being broken during molding.
  • the shape of the molded body is, for example, the shape of the magnetic core portion 22 shown in FIGS. 12A and 12B.
  • the shape of the molded body is not limited to this, and may be another shape.
  • step S43 This step is the third heat treatment step.
  • An atmosphere-controlled electric furnace for example, is used for thermosetting the molded body.
  • Other methods may be used for thermosetting the molded body.
  • thermosetting of the molded body is performed, for example, at a predetermined oxygen partial pressure at a temperature of 200 [°C] for 1 hour.
  • the temperature at this time is lower than the annealing temperature of the molded body of the coil component 1 shown in the first embodiment. As a result, it is possible to prevent the coil portion 23 from being broken during the thermosetting of the molded body.
  • the wiring portion 23b arranged outside the magnetic core portion 22 may be connected to the end portion of the winding portion 23a of the coil portion 23.
  • the coil component 2 in which the magnetic core portion 22 and the coil portion 23 are integrated is completed.
  • the coil component manufacturing method includes the second molding step in which the magnetic material obtained by the above-described magnetic material manufacturing method and the coil are integrated by powder molding to obtain a molded body. And a third heat treatment step of heating the molded body obtained in the second molding step.
  • the present invention also includes a coil component using the above magnetic material.
  • coil components include high frequency reactors, inductors, and inductance components such as transformers.
  • the present invention also includes a power supply device including the coil component described above.
  • the magnetic metal powder is not limited to the Fe-Si-based and Fe-Si-Al-based magnetic materials, but may be other magnetic materials containing Fe as a main component.
  • a metal chelate complex containing a metal such as Al, Ti, or Zr, an oligomer, an acylate as a coupling agent, a polymer (resin), or the like is used as a main component for the first resin material for forming the insulating material 18. May be.
  • a metal such as Al, Ti, or Zr
  • an oligomer for example, a cyclic aluminum oligomer may be used.
  • the main component of the first resin material may be an aluminum organic compound.
  • the molecular weight of the first resin material may be, for example, 300 or more and 1000 or less. The molecular weight of the first resin material is not limited to this, and may be smaller than 300 or larger than 1000.
  • the main component of the first resin material may be a chelate complex other than the Al chelate complex or a chelate complex containing another metal.
  • a chelate complex other than the Al chelate complex or a chelate complex containing another metal.
  • an oligomer, an acylate, a polymer or the like may be contained as the main component.
  • the resin material may be the above-mentioned acrylic resin, silicon resin, butyral resin, or other resin material.
  • the organic solvent is not limited to the above-mentioned toluene, xylene, ethanol, etc., and other organic solvents may be used.
  • the kneading/dispersing method of the Fe—Si-based metal magnetic material and the mixing method of the metal magnetic powder, the resin material, the organic metal soap, the organic solvent, and the like are the same as those described above. Not limited to this, other mixing methods may be used.
  • the heat treatment method in the first heat treatment step, the second heat treatment step, and the third heat treatment step is not limited to the above-mentioned method, and other methods may be used. Further, the pressure, temperature and time in each step described above are examples, and other pressure, temperature and time may be adopted.
  • the magnetic material according to the present disclosure can be applied to high-frequency inductors, magnetic core materials for transformers, and the like.

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • Chemical & Material Sciences (AREA)
  • Dispersion Chemistry (AREA)
  • Soft Magnetic Materials (AREA)
  • Coils Or Transformers For Communication (AREA)
  • Powder Metallurgy (AREA)

Abstract

磁性材料の製造方法は、有機溶剤と金属磁性粉と樹脂材料と有機金属石鹸とを含む混合物を生成する混合物生成工程と、混合物を加熱し、混合物中の有機溶剤を除去することで、金属磁性粉と樹脂材料と有機金属石鹸とが一体化した磁性材料を得る第1の熱処理工程とを含む。

Description

磁性材料の製造方法、圧粉磁心の製造方法、コイル部品の製造方法、圧粉磁心、コイル部品および造粒粉
 本開示は、磁性材料の製造方法、圧粉磁心の製造方法、コイル部品の製造方法、圧粉磁心、コイル部品および造粒粉に関する。
 従来、インダクタおよび変圧器の磁心向けの磁性材料として、フェライトをはじめとする酸化物磁性体材料および金属磁性材料が用いられている。これらの磁性材料を用いた磁心として、例えば金属粉を圧縮成形した圧粉磁心がある。圧粉磁心は、高い飽和磁束密度を有し、インダクタおよび変圧器等の部品を小型化するのに有利な磁心である。また、圧粉磁心は金型用成形が可能なため、磁心の形状の自由度が高く、また、複雑な形状であっても簡便な工程で高精度に製造できることから、その有用性が注目されている(例えば、特許文献1参照)。
 特許文献1では、圧粉磁心を構成する磁性材料として鉄(Fe)およびケイ素(Si)を主成分とする磁性材料、および、当該磁性材料を用いた圧粉磁心について開示されている。特許文献1では、FeおよびSiを主成分とする金属磁性粉の表面に、絶縁被膜が形成されている。
特開2005-146315号公報
 圧粉磁心は、金属磁性粉間の絶縁性および密着性を得るために、金属磁性粉に絶縁性および粘着性を有する樹脂材料を添加し、乾燥処理を施した後に加圧成形することで作製される。しかし、上記樹脂材料は高分子量であるため、分子同士の絡み合いが生じ、圧粉磁心内の金属磁性粉を高充填化することができない場合がある。そのため、圧粉磁心の磁気特性を高めることができないという問題がある。
 上述した課題に鑑み、本発明は、高い磁気特性を得るための磁性材料の製造方法等を提供することを目的とする。
 本開示の一態様に係る磁性材料の製造方法は、有機溶剤と金属磁性粉と樹脂材料と有機金属石鹸とを含む混合物を生成する混合物生成工程と、前記混合物を加熱し、前記混合物中の前記有機溶剤を除去することで、前記金属磁性粉と前記樹脂材料と前記有機金属石鹸とが一体化した磁性材料を得る第1の熱処理工程とを含む。
 また、本開示の一態様に係る圧粉磁心の製造方法は、上記磁性材料の製造方法で得られた磁性材料を高圧プレスして成形体を得る第1の成形工程と、前記第1の成形工程で得られた前記成形体を加熱する第2の熱処理工程とを含む。
 また、本開示の一態様に係るコイル部品の製造方法は、上記磁性材料の製造方法で得られた磁性材料とコイルとを粉体成形により一体化させ、成形体を得る第2の成形工程と、前記第2の成形工程で得られた前記成形体を加熱する第3の熱処理工程とを含む。
 また、本開示の一態様に係る圧粉磁心は、Fe-Si-Alで構成される金属磁性粉を含み、前記金属磁性粉の充填率は82%以上であり、初透磁率は125以上である。
 また、本開示の一態様に係るコイル部品は、上記圧粉磁心と、コイルとを備える。
 また、本開示の一態様に係る造粒粉は、金属磁性粉と樹脂材料と有機金属石鹸とを含む造粒粉であって、前記有機金属石鹸の少なくとも一部は、前記造粒粉の内部に存在している。
 本開示によれば、高い磁気特性を得るための磁性材料の製造方法等を提供することができる。
図1Aは、実施の形態1に係るコイル部品の構成を示す概略斜視図である。 図1Bは、実施の形態1に係るコイル部品の構成を示す分解斜視図である。 図2は、実施の形態1に係る磁性材料の構成を示す断面図である。 図3は、実施の形態1に係る磁性材料およびコイル部品の製造工程を示すフローチャートである。 図4は、実施の形態1に係る造粒粉製造工程を示すフローチャートである。 図5は、実施の形態1に係る造粒粉であって、造粒および乾燥後に粉末化された造粒粉を模式的に示す図である。 図6は、実施の形態1に係るコア製造工程を示すフローチャートである。 図7は、実施の形態1に係る造粒粉であって、加圧成形前の造粒粉を模式的に示す図である。 図8は、実施の形態1に係るコイル組み立て工程を示すフローチャートである。 図9Aは、実施の形態1の実施例1の磁性材料に含まれる添加材、磁性コアに含まれる金属磁性粉の充填率および磁性コアの初透磁率を示す図である。 図9Bは、実施の形態1の実施例1の磁性材料に含まれる添加材、磁性コアにおける金属磁性粉の密度および磁性コアの初透磁率を示すグラフである。 図10は、実施の形態1の実施例2の磁性材料に含まれる添加材、磁性コアに含まれる金属磁性粉の充填率および磁性コアの初透磁率を示す図である。 図11Aは、実施の形態1の実施例3の磁性材料に含まれる添加材、磁性コアに含まれる金属磁性粉の充填率および磁性コアの初透磁率を示す図である。 図11Bは、実施の形態1の実施例3の磁性材料に含まれる添加材、磁性コアにおける金属磁性粉の密度および磁性コアの初透磁率を示すグラフである。 図12Aは、実施の形態2に係るコイル部品の構成を示す概略斜視図である。 図12Bは、実施の形態2に係るコイル部品の構成を示す断面図である。 図13は、実施の形態2に係るコイル部品の製造工程を示すフローチャートである。 図14は、実施の形態2に係るコア製造工程およびコイル組み立て工程を示すフローチャートである。
 以下、実施の形態について、図面を参照しながら具体的に説明する。
 なお、以下で説明する実施の形態は、いずれも本開示の一具体例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置、接続形態、ステップ及びステップの順序等は一例であり、本開示を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 (実施の形態1)
 [1-1.コイル部品および磁性コアの構成]
 本実施の形態に係るコイル部品1は、磁性材料で形成された磁性コア(ダストコア)と、磁性コアの内部に配置されたコイル部とで構成されている。
 図1Aは、本実施の形態に係るコイル部品1の構成を示す概略斜視図である。図1Bは、本実施の形態に係るコイル部品1の構成を示す分解斜視図である。図2は、本実施の形態に係る磁性材料の構成を示す断面図である。
 図1Aおよび図1Bに示すように、コイル部品1は、2つの分割磁心12と、導体13と、2つのコイル支持体14とを備えている。2つの分割磁心12により磁性コアが形成され、導体13および2つのコイル支持体14によりコイル部が形成されている。
 分割磁心12は、基台12aと、基台12aの一方の面に形成された円筒状の芯部12bとを備えている。また、基台12aを構成する四つの辺のうち対向する二つの辺には、基台12aの縁から立設する壁部12cが形成されている。芯部12bおよび壁部12cは、基台12aの一方の面からの高さが同一である。2つの分割磁心12のそれぞれは、磁性材料が所定の形状に加圧成形された圧粉磁心である。
 2つの分割磁心12は、それぞれの芯部12bおよび壁部12cが当接するように配置されている。このとき、芯部12bの周囲を囲むように、導体13が配置される。導体13は、コイル支持体14を介して分割磁心12に組み込まれている。
 2つのコイル支持体14は、図1Bに示すように、円環状の基部14aと、円筒部14bとを備えている。円筒部14bの内部に分割磁心12の芯部12bが配置され、円筒部14bの外周に導体13が配置されている。
 分割磁心12を構成する磁性材料は、例えばFeおよびSiを主成分とする合金であるFe-Si系の金属磁性材料である。
 詳細には、図2に示すように、分割磁心12では、複数の金属磁性粉17が加圧成形されており、各金属磁性粉17の表面には、絶縁材18が形成されている。近接する各金属磁性粉17の表面を覆う絶縁材18は互いに結着している。つまり、各金属磁性粉17の間には絶縁材18が配置され、各金属磁性粉17は互いに絶縁されている。
 Fe-Si系の金属磁性粉17は、FeおよびSiを主成分とする金属軟磁性粉末、または、Fe、SiおよびAlを主成分とする金属軟磁性粉末である。金属磁性粉17は、Fe、Si、Al以外に不可避な不純物を含んでいてもよい。本実施の形態における金属磁性粉17において、Siは、軟磁気特性の向上のために用いられている。Siの添加により、金属磁性粉17の磁気異方性および磁歪定数を小さくし、また、電気抵抗を高め渦電流損失を低減させることができる。
 本実施の形態に係る金属磁性粉17の作製方法は、特に限定されるものでなく、各種アトマイズ法や各種粉砕法を用いることが可能である。
 本実施の形態に係る金属磁性粉17の平均粒径は、1μm以上100μm以下が好ましい。平均粒径が1μmより小さいと成形密度が低くなり、透磁率が低下する。平均粒径が100μmより大きくなると、高周波での渦電流損失が大きくなってしまう。さらに好ましくは、金属磁性粉17の平均粒径は50μm以下とすることがよい。なお、金属磁性粉の平均粒径とは、レーザ回折式粒度分布測定法により求められるものである。例えば、直径10μmの球と同じ回折および散乱光のパターンを示す被測定粒子の粒径は、その形状に関わらず10μmとする。そして、粒径を小さなものからカウントしていき、積算が全体の50%となったときの粒径を平均粒径とする。
 絶縁材18は、例えばTi、Zr、およびAlの少なくともいずれかを含んでいる。絶縁材18は、金属磁性粉17の表面を覆うように形成され、隣り合う金属磁性粉17は、絶縁材18によって絶縁されている。
 [1-2.コイル部品の製造方法および磁性材料の製造方法]
 以下、本実施の形態に係る磁性材料およびコイル部品の製造方法について説明する。図3は、本実施の形態に係る磁性材料およびコイル部品1の製造工程を示すフローチャートである。
 図3に示すように、本実施の形態に係るコイル部品1の製造工程は、造粒粉製造工程(ステップS10)と、コア製造工程(ステップS20)と、コイル組み立て工程(ステップS30)とを含んでいる。造粒粉製造工程では、上述した磁性コアを構成する磁性材料を生成する。コア製造工程では、磁性材料を成形することにより、分割磁心12を形成する。コイル組み立て工程では、上述した分割磁心12、導体13およびコイル支持体14を組み立ててコイル部品1を完成させる。以下、各工程について詳細に説明する。
 図4は、本実施の形態に係る造粒粉製造工程を示すフローチャートである。図4に示すように、造粒粉製造工程では、はじめに、磁性材料を生成する原材料を準備する(ステップS11)。磁性材料の原材料として、金属磁性粉17と、絶縁性を有する第1の樹脂材料と、粘着性を有する第2の樹脂材料と、有機金属石鹸と、有機溶剤とを準備する。なお、以下において、第1の樹脂材料および第2の樹脂材料の両方を合わせて、「樹脂材料」と呼ぶ場合がある。
 金属磁性粉17には、Feを主成分とする磁性体粉を用いる。例えば、金属磁性粉17には、FeとSiの合金、センダスト、パーマロイ等を用いる。FeとSiの合金を用いる場合には、FeとSiの含有率を調整してもよい。金属磁性粉17の粒径は、例えば20μmである。
 第1の樹脂材料は、加圧成形後の分割磁心(圧粉磁心)12を熱処理した後に絶縁材18となる材料である。第1の樹脂材料には、例えば、シリコン樹脂、フェノール樹脂またはエポキシ樹脂等の材料を用いる。例えばシリコン樹脂に含まれるシリコンは、分割磁心12に熱処理を行った後でも、隣り合う金属磁性粉の間に残って存在するので、金属磁性粉間の絶縁性を確保するのに適している。
 第2の樹脂材料は、結着材(バインダー)となる材料である。第2の樹脂材料には、例えばアクリル樹脂、シリコン樹脂、ブチラール樹脂等の材料を用いる。例えばアクリル樹脂は、加圧成形後のスプリングバックを抑制し、加圧成形後の分割磁心12の保形性を確保するのに適している。なお、第2の樹脂材料は、加圧成形後の分割磁心12に熱処理を行うことで除去される材料である。
 本実施の形態で用いられる第1の樹脂材料および第2樹脂材料のそれぞれは、熱硬化性樹脂でもよく、熱可塑性樹脂でもよい。また、第1の樹脂材料および第2の樹脂材料のそれぞれは、熱硬化性樹脂の場合、常温において液体状である。
 有機金属石鹸は、上記樹脂材料を軟化させるための材料である。有機金属石鹸には、例えば、ステアリン酸亜鉛、ステアリン酸マグネシウムまたはステアリン酸カルシウム等のステアリン酸金属塩を含む材料が含まれる。
 ステアリン酸亜鉛の化学式は、Zn(C1735COO)であり、ステアリン酸マグネシウムの化学式は、Mg(C1735COO)であり、ステアリン酸カルシウムの化学式は、Ca(C1735COO)である。ステアリン酸亜鉛、ステアリン酸マグネシウムおよびステアリン酸カルシウムのそれぞれは、長鎖の炭化水素を有するため、樹脂材料との相溶性が良い。そのため、造粒粉製造工程においてステアリン酸金属塩を含む有機金属石鹸を添加することで、造粒粉に含まれる樹脂材料を軟化させ、造粒粉を可塑化する(柔らかく形を変えやすい状態にする)ことができる。
 本実施の形態では、磁性材料に含まれる有機金属石鹸の重量比率は、金属磁性粉17に対して0.05重量%以上0.5重量%以下である。また、磁性材料に含まれる有機金属石鹸の重量比率は、樹脂材料に対して、5重量%以上40重量%以下である。これらについては、実施例にて詳しく述べる。
 有機溶剤は、金属磁性粉17、樹脂材料、有機金属石鹸を混錬および分散させやすくするための溶剤である。有機溶剤には、例えばトルエン、キシレン、エタノール等を用いる。
 次に、金属磁性粉17、樹脂材料、有機金属石鹸および有機溶剤を混錬および分散させる(ステップS12)。これにより、有機溶剤と、金属磁性粉と、樹脂材料と、有機金属石鹸とを含む混合物を生成する。混錬および分散は、秤量した金属磁性粉17、樹脂材料、有機金属石鹸および有機溶剤を容器に入れ、回転ボールミルで混合し分散させることにより行われる。なお、上記の混練および分散は、常温にて行われる。混錬および分散は、回転ボールミルを用いた混錬および分散に限らず、他の混錬および分散方法であってもよい。
 金属磁性粉17、樹脂材料、有機金属石鹸、および有機溶剤を混錬および分散させた後、造粒および乾燥を行う(ステップS13)。これにより、有機金属石鹸が含まれる造粒粉を生成する。このステップS13による工程では、ステップS12にて生成された上記混合物を、有機金属石鹸の融点以下の温度で熱処理する。
 有機金属石鹸に含まれるステアリン酸亜鉛の融点は、116℃~125℃であり、ステアリン酸マグネシウムの融点は、120℃~140℃であり、ステアリン酸カルシウムの融点は145℃~160℃である。例えば、上記混合物は、115℃以下の温度で熱処理される。より望ましくは、上記混合物は、90℃以上110℃以下の温度で熱処理される。このときの熱処理の工程は、第1の熱処理工程である。
 この熱処理によって、混合物から有機溶剤が除去され、金属磁性粉17と樹脂材料と有機金属石鹸とが一体化した造粒粉(磁性材料)が得られる。なお、造粒粉には、ガラス材料(例えばケイ酸系ガラス)は含まれていない。
 次に、ステップS13にて造粒された造粒粉(磁性材料)をさらに粉砕し(ステップS14)、粒径を小さくする。この工程は、粉末化工程である。その後、粉末化された造粒粉を所定の粒径ごとに分級する(ステップS15)。以上により、粉径が100μm~500μmの粉末化された造粒粉を得る。
 当該粉末化された造粒粉において、金属磁性粉17の表面には絶縁材18が形成されている。絶縁材18の厚さは、例えば、10[nm]程度である。なお、絶縁材18の厚さは、これに限らず、1nm~200nmの厚さでもよい。
 図5は、本実施の形態に係る造粒粉30であって、造粒および乾燥後に粉末化された造粒粉30を模式的に示す図である。図5に示すように、粉末化された造粒粉30の内部には、有機金属石鹸31が存在している。具体的には、隣り合う金属磁性粉17の間に樹脂材料32が存在し、樹脂材料32の中に有機金属石鹸31が存在している。これにより、造粒粉30に含まれる樹脂材料が軟化され、造粒粉30が可塑化される。そのため、コア製造工程にて造粒粉30である磁性材料を加圧成形するときに、磁性材料の流動性を高めることができ、分割磁心(圧粉磁心)12に含まれる金属磁性粉17の密度(充填率)を高くすることができる。
 図6は、本実施の形態に係るコア製造工程を示すフローチャートである。コア製造工程では、磁性材料を成形して磁性コアを作製する。
 まず、粉末化された造粒粉30を成形用金型に入れる前に、粉末化された造粒粉30に潤滑剤を混合する。
 図7は、本実施の形態に係る造粒粉30であって、加圧成形前の造粒粉30を模式的に示す図である。図7に示すように、造粒粉30の外周の一部に、潤滑剤33が形成される。潤滑剤33は、ステップS12にて添加された有機金属石鹸と同じ材料である。潤滑剤33は、例えば、液状の材料を噴霧し乾燥させるスプレードライ法によって形成される。これにより、外周に潤滑剤33を有する造粒粉(磁性材料)30が形成される。
 なお、潤滑剤は、成形用金型の表面にも塗布される。例えば、潤滑剤は、溶媒に分散させた有機金属石鹸を成形用金型内に噴霧することで塗布される。これにより、成形用金型に対する造粒粉30の滑性を向上させることができる。
 次に、造粒粉30からなる磁性材料を所定の形状に加圧成形する(ステップS21)。この工程は、第1の成形工程である。具体的には、磁性材料を成形用金型に入れて圧縮し、成形体を作製する。このとき、例えば一定圧力10[ton/cm]で一軸成形を行う。成形体の形状は、例えば、図1Bに示した分割磁心12の形状である。なお、成形体の形状は、これに限らず、例えば、分割磁心12のうち芯部12bが別体で構成された形状であってもよい。
 その後、例えばNガス等の不活性ガス雰囲気中または大気中において、成形体を200~450[℃]の温度で加熱し、脱脂を行う(ステップS22)。これにより、成形体に含まれる第2の樹脂材料(結着材)が除去される。なお、使用する第2の樹脂材料の種類および特性により、脱脂の工程を省略してもよい。
 さらに、脱脂後の成形体をアニール(熱処理)する(ステップS23)。このときのアニールの工程は、第2の熱処理工程である。成形体のアニールには、例えば雰囲気制御電気炉を用いる。雰囲気制御電気炉としては、例えば、箱型炉、管状炉、ベルト炉等がある。なお、これらの方法に限らず、他の方法を用いてもよい。
 成形体のアニールは、例えば、所定の酸素分圧において、800[℃]のアニール温度で1時間行う。
 なお、アニール温度、およびアニール時間は、上述したものに限らず、例えばアニール温度を600~1000[℃]、アニール時間を数十分~数時間としてもよい。アニールを行うことにより、成形体は、一軸成形されるときの圧力により生じていた歪みが緩和される。なお、アニールにより、成形体において絶縁材18の少なくとも一部が分解されていてもよい。
 次に、アニールが行われた成形体に、樹脂材料を含浸させる(ステップS24)。樹脂材料としては、例えば、エポキシ樹脂を用いてもよい。樹脂材料を含浸させることにより、成形体の強度を向上することができる。
 以上の工程を経ることにより、図2に示すような金属磁性粉17および絶縁材18を含む分割磁心(圧粉磁心)が形成される。なお、ここでは、磁性コアとして分割磁心12が2つ形成されている。2つの分割磁心12とコイル部とを以下のようにして組み立てることにより、コイル部品1を得ることができる。
 図8は、本実施の形態に係るコイル組み立て工程を示すフローチャートである。
 はじめに、導体13を所定回数巻き回したコイルを形成する(ステップS31)。
 次に、分割磁心12、導体13およびコイル支持体14を組み立てる(ステップS32)。図1Bに示したように、2つの分割磁心12の芯部12bの周囲を囲むように、導体13が配置される。このとき、導体13と2つの分割磁心12のそれぞれの芯部12bとの間には、2つのコイル支持体14のそれぞれの円筒部14bが配置される。また、導体13と2つの分割磁心12のそれぞれの基台12aとの間には、2つのコイル支持体14のそれぞれの円環状の基部14aが配置される。このとき、2つのコイル支持体14の円筒部14bの、円環状の基部14aが形成された側と反対側の端部は、互いに当接するように配置される。
 また、2つの分割磁心12は、それぞれの芯部12bおよび壁部12cが当接するように配置される。このように、導体13がコイル支持体14を介して分割磁心12に組み込まれることにより、コイル部品1が組み立てられる。これにより、分割磁心12の芯部12bの周りに導体13が巻き回された構成が完成する。つまり、分割磁心12は、芯部12bが導体13を当該導体13の巻回軸方向に貫通した磁性コアとなる。
 さらに、組み立てられたコイル部品1を樹脂材料によりモールドする(ステップS33)。これにより、コイル部品1が完成する。
 [1-3.磁性コアの金属磁性粉の充填率および磁性コアの磁気特性]
 以下、コイル部品1の磁性コアに含まれる金属磁性粉の充填率および磁性コアの磁気特性について、実施例1、2および3を参照しながら順に説明する。
 実施例1では、有機金属石鹸を添加しなかった例、有機金属石鹸を内部添加した例、および、有機金属石鹸を外部添加した例について説明する。なお、「内部添加」とは、ステップS12(混練および分散)にて有機金属石鹸を添加することを意味し、「外部添加」とは、ステップ21の前である加圧成形前に造粒粉の外周に潤滑剤を付けることを意味する。
 図9Aは、本実施の形態の実施例1の磁性材料に含まれる添加材、磁性コアに含まれる金属磁性粉の充填率および磁性コアの初透磁率を示す図である。図9Bは、本実施の形態の実施例1の磁性材料に含まれる添加材、磁性コアにおける金属磁性粉の密度および磁性コアの初透磁率を示すグラフである。
 実施例1では、金属磁性粉(Fe-Si-Al)および樹脂材料(シリコン樹脂およびアクリル樹脂)に添加材である有機金属石鹸を添加しなかったサンプルA1と、金属磁性粉および樹脂材料に潤滑剤としてステアリン酸亜鉛を外部添加したサンプルA2と、金属磁性粉および樹脂材料に有機金属石鹸としてステアリン酸亜鉛を内部添加したサンプルA3とを作成した。そして、各サンプルA1~A3について、磁性コアにおける金属磁性粉の充填率、密度を求めた。また、各サンプルA1~A3について、磁性コアの磁気特性の一例である初透磁率を調べた。なお、密度とは、第2の熱処理工程後の磁性コアの密度であり、充填率とは、第2の熱処理工程後の磁性コアの単位体積当たりの金属磁性粉の割合である。
 図9Aおよび図9Bには、添加材を添加しなかったサンプルA1よりも、潤滑剤を外部添加したサンプルA2のほうが、充填率、密度および初透磁率が高いことが示されている。また、サンプルA1、A2よりも、有機金属石鹸を内部添加したサンプルA3のほうが充填率、密度および初透磁率が高いことが示されている。
 このように、金属磁性粉、樹脂材料および有機溶剤を混練および分散する過程にて有機金属石鹸を添加して磁性材料を生成するほうが、すなわち有機金属石鹸を内部添加するほうが、磁性コアにおける金属磁性粉の充填率、密度および初透磁率を高くできる。また、有機金属石鹸を内部添加することで、有機金属石鹸を外部添加する工程を特に設けなくても金属磁性粉の充填率を高くすることができる。
 前述したように有機金属石鹸は、長鎖の炭化水素を持つため、樹脂材料との相溶性が良い。そのため、造粒粉製造工程において有機金属石鹸を添加することで、造粒粉に含まれる樹脂材料を軟化させ、造粒粉を可塑化することができる。これにより、加圧成形時における樹脂材料の分子の絡まりを抑制することができ、磁性コアに含まれる金属磁性粉の充填率を高めることができると考えられる。
 次に、実施例2について説明する。実施例2では、有機金属石鹸31に含まれる材料の種類を変えた例について説明する。
 図10は、本実施の形態の実施例2の磁性材料に含まれる添加材、磁性コアに含まれる金属磁性粉の充填率および磁性コアの初透磁率を示す図である。
 実施例2では、金属磁性粉(Fe-Si-Al)および樹脂材料(シリコン樹脂およびアクリル樹脂)に添加材である有機金属石鹸を添加しなかったサンプルB1と、金属磁性粉および樹脂材料に有機金属石鹸としてステアリン酸亜鉛を内部添加したサンプルB2と、金属磁性粉および樹脂材料に有機金属石鹸としてステアリン酸マグネシウムを内部添加したサンプルB3と、金属磁性粉および樹脂材料に有機金属石鹸としてステアリン酸カルシウムを内部添加したサンプルB4とを作成した。そして、各サンプルB1~B4について、磁性コアにおける金属磁性粉の充填率、密度を求めた。また、各サンプルB1~B4について、磁性コアの初透磁率を調べた。
 図10には、添加材を添加しなかったサンプルB1よりも、ステアリン酸亜鉛を内部添加したサンプルB2、ステアリン酸マグネシウムを内部添加したサンプルB3、および、ステアリン酸カルシウムを内部添加したサンプルB4のほうが、充填率および初透磁率が高いことが示されている。また、サンプルB3、B4よりも、ステアリン酸亜鉛を内部添加したサンプルB2のほうが初透磁率が高くなることが示されている。
 このように、金属磁性粉、樹脂材料および有機溶剤を混練および分散する過程にてステアリン酸亜鉛を添加して磁性材料を生成するほうが、すなわちステアリン酸金属塩の各種材料のうちステアリン酸亜鉛を内部添加するほうが、磁性コアにおける金属磁性粉の充填率、密度および初透磁率を高くできる。
 次に、実施例3について説明する。実施例3では、有機金属石鹸31の添加量を変えた例について説明する。
 図11Aは、本実施の形態の実施例3の磁性材料に含まれる添加材、磁性コアに含まれる金属磁性粉の充填率および磁性コアの初透磁率を示す図である。図11Bは、本実施の形態の実施例3の磁性材料に含まれる添加材、磁性コアにおける金属磁性粉の密度および磁性コアの初透磁率を示すグラフである。
 実施例3では、金属磁性粉(Fe-Si-Al)および樹脂材料(シリコン樹脂およびアクリル樹脂)に添加材として有機金属石鹸を添加しなかったサンプルC1と、金属磁性粉および樹脂材料に0.05重量部の有機金属石鹸を内部添加したサンプルC2と、0.1重量部の有機金属石鹸を内部添加したサンプルC3と、0.2重量部の有機金属石鹸を内部添加したサンプルC4と、0.5重量部の有機金属石鹸を内部添加したサンプルC5と、1.0重量部の有機金属石鹸を内部添加したサンプルC6とを作成した。そして、各サンプルC1~C6について、磁性コアにおける金属磁性粉の充填率、密度を求めた。また、各サンプルC1~C6について磁性コアの初透磁率を調べた。なお、ここで示す重量部とは、磁性材料における有機金属石鹸の重量比率であって、金属磁性粉を100重量部としたときに対する重量比率である。
 図11Aおよび図11Bには、サンプルC1、C6よりもサンプルC2、C3、C4、C5にて、充填率、密度および初透磁率が高いことが示されている。すなわち、有機金属石鹸の重量比率が0.05重量部以上0.5重量部以下の範囲にて、充填率、密度および初透磁率が高いことが示されている。なお、有機金属石鹸の重量比率が、金属磁性粉に対して0.05重量部以上0.5重量部以下である場合は、有機金属石鹸の重量比率は、樹脂材料に対して5重量%以上40重量%以下であることに相当する。
 このように、金属磁性粉、樹脂材料および有機溶剤を混練および分散する過程にて0.05重量部以上0.5重量部以下の有機金属石鹸を添加して磁性材料を生成するほうが、すなわち0.05重量部以上0.5重量部以下の有機金属石鹸を内部添加するほうが、磁性コアにおける金属磁性粉の充填率、密度および初透磁率を高くできる。また、より望ましくは、0.05重量部以上0.2重量部以下の有機金属石鹸を内部添加するほうが、磁性コアにおける金属磁性粉の充填率、密度および初透磁率をより高くできる。
 [1-4.効果等]
 以上、本実施の形態にかかる磁性材料の製造方法は、有機溶剤と金属磁性粉と樹脂材料と有機金属石鹸とを含む混合物を生成する混合物生成工程と、混合物を加熱し、混合物中の有機溶剤を除去することで、金属磁性粉と樹脂材料と有機金属石鹸とが一体化した磁性材料を得る第1の熱処理工程とを含む。
 このように、混合物生成工程にて、有機溶剤、金属磁性粉および樹脂材料に加え、有機金属石鹸を含めて混合物を生成することで、第1の熱処理工程後に生成される磁性材料を可塑化することができる。これにより、磁性材料によって生成される磁性コアの金属磁性粉の充填率を高め、磁性コアの透磁率を高めることが可能となる。すなわち、高い磁気特性を得るための磁性材料を提供することができる。
 また、有機金属石鹸は、ステアリン酸亜鉛を含んでいてもよい。
 このように、有機金属石鹸がステアリン酸亜鉛を含むことで、磁性コアに含まれる金属磁性粉の充填率を高め、磁性コアの透磁率を向上することが可能となる。すなわち、高い磁気特性を得るための磁性材料を提供することができる。
 また、磁性材料における有機金属石鹸の重量比率は、金属磁性粉に対して、0.05重量%以上0.5重量%以下であってもよい。
 上記に示すような金属磁性粉に対する有機金属石鹸の重量比率とすることで、磁性コアに含まれる金属磁性粉の充填率を高め、磁性コアの透磁率を向上することができる。すなわち、高い磁気特性を得るための磁性材料を提供することができる。
 また、磁性材料における有機金属石鹸の重量比率は、樹脂材料に対して、5重量%以上40重量%以下であってもよい。
 上記に示すような樹脂材料に対する有機金属石鹸の重量比率とすることで、磁性コアに含まれる金属磁性粉の充填率を高め、磁性コアの透磁率を向上することができる。すなわち、高い磁気特性を得るための磁性材料を提供することができる。
 また、樹脂材料は、熱可塑性材料を含んでいてもよい。
 これによれば、樹脂材料が熱硬化性樹脂である場合に比べて、樹脂材料を軟化させることができる。これにより、磁性コアに含まれる金属磁性粉の充填率を高め、磁性コアの透磁率を向上することができる。すなわち、高い磁気特性を得るための磁性材料を提供することができる。
 また、混合物生成工程において、混合物は、有機溶剤と金属磁性粉と樹脂材料と有機金属石鹸とを常温で混練することで生成されてもよい。
 これによれば、樹脂材料が高温で混練される場合に比べて、樹脂材料を軟化させることができる。これにより、磁性コアに含まれる金属磁性粉の充填率を高め、磁性コアの透磁率を向上することができる。すなわち、高い磁気特性を得るための磁性材料を提供することができる。
 また、第1の熱処理工程において、混合物を加熱する温度は、有機金属石鹸の融点以下であってもよい。
 これによれば、樹脂材料が加熱によって硬化することを抑制し、樹脂材料を軟化させることができる。これにより、磁性コアに含まれる金属磁性粉の充填率を高め、磁性コアの透磁率を向上することができる。すなわち、高い磁気特性を得るための磁性材料を提供することができる。
 本実施の形態に係る圧粉磁心の製造方法は、上記磁性材料の製造方法で得られた磁性材料を高圧プレスして成形体を得る第1の成形工程と、第1の成形工程で得られた成形体を加熱する第2の熱処理工程とを含む。
 このように磁性材料の粉体を圧粉することにより、圧粉磁心を容易に形成することができる。
 本実施の形態に係る圧粉磁心は、Fe-Si-Alで構成される金属磁性粉を含み、金属磁性粉の充填率は82%以上であり、初透磁率は125以上である。
 この構成によれば、Fe-Si-Alからなる金属磁性粉を用いた圧粉磁心において、金属磁性粉の充填率を向上し、圧粉磁心の透磁率を向上することができる。
 本実施の形態に係るコイル部品は、上記圧粉磁心と、コイルとを備える。
 この構成によれば、上述した特徴を有する圧粉磁心を備えるコイル部品を提供することができる。
 本実施の形態に係る造粒粉は、金属磁性粉と樹脂材料と有機金属石鹸とを含む造粒粉であって、有機金属石鹸の少なくとも一部は、造粒粉の内部に存在している。
 このように、有機金属石鹸が造粒粉の内部に存在することで、樹脂材料を軟化させ、造粒粉を可塑化することができる。これにより、加圧成形による金属磁性粉の充填率を高め、圧粉磁心の磁気特性を高めることができる。
 また、樹脂材料の少なくとも一部は、隣り合う金属磁性粉の間に存在し、有機金属石鹸は、隣り合う金属磁性粉の間に存在する樹脂材料の中に存在していてもよい。
 このように、有機金属石鹸が、隣り合う金属磁性粉の間の樹脂材料の中に存在していることで、樹脂材料を軟化させ、造粒粉を可塑化することができる。これにより、加圧成形による金属磁性粉の充填率を高め、圧粉磁心の磁気特性を高めることができる。
 (実施の形態2)
 次に、実施の形態2について説明する。実施の形態1に係るコイル部品1は、磁性コアとしていわゆるダストコアを用いたコイル部品であったが、本実施の形態に係るコイル部品2は、製造工程においてコイルが磁性コアに組み込まれたメタルコンポジット型のコイル部品である。
 [2-1.磁性材料の構成]
 図12Aは、本実施の形態に係るコイル部品2の構成を示す概略斜視図である。図12Bは、本実施の形態に係るコイル部品2の構成を示す断面図である。図12Bは、図12AにおけるXIIB-XIIB線における断面を示している。
 図12Aおよび図12Bに示すように、コイル部品2は、メタルコンポジット材で構成される磁性コア部22と、コイル部23とを備えている。
 磁性コア部22は、平面視したときの中央付近に、円柱状の芯部22aを有している。磁性コア部22を構成する磁性材料は、実施の形態1に係るコイル部品1の分割磁心12と同様、例えばFeおよびSiを主成分とする合金であるFe-Si系の金属磁性材料である。当該磁性材料については、実施の形態1に示した磁性材料と同様であるが、実施の形態2の磁性材料の樹脂は、熱硬化性樹脂のみによって構成されていてもよい。なお、磁性コア部22の円柱状の芯部22aの周囲には、コイル部23が配置されている。
 コイル部23は、導体が複数回巻き回された巻き回し部23aと、磁性コア部22の外側に形成された配線部23bとを有している。巻き回し部23aの巻き回された導体の巻回軸として磁性コア部22の芯部22aが配置されている。導体は、例えば銅で構成されている。導体は、コイル部品2の形成時に加えられた熱により破壊されない材料で構成されている。
 コイル部23は、磁性コア部22と一体に形成されている。コイル部23巻き回し部23aは磁性コア内に埋められており、配線部23bは磁性コア部22の外側に配置されている。
 [2-2.コイル部品の製造方法]
 以下、本実施の形態にかかるコイル部品2の製造方法について説明する。図13は、本実施の形態に係るコイル部品2の製造工程を示すフローチャートである。
 図13に示すように、コイル部品2の製造工程は、造粒粉製造工程(ステップS10)と、コア製造およびコイル組み立て工程(ステップS40)とを含んでいる。造粒粉製造工程では、上述した磁性コアを構成する磁性材料を生成する。コア製造工程では、磁性材料を成形した磁性コア部22とコイル部23とを形成し、磁性コア部22とコイル部23とを組み立てることによりコイル部品2を完成させる。
 なお、コイル部品2の製造工程における造粒粉製造工程は、実施の形態1に示した造粒粉製造工程と同様であるため、説明を省略する。
 以下、コア製造およびコイル組み立て工程について詳細に説明する。図14は、本実施の形態に係るコア製造およびコイル組み立て工程を示すフローチャートである。
 図14に示すように、はじめにコイル部23を形成する(ステップS41)。コイル部23は、実施の形態1に示した導体13と同様、例えば銅等の金属からなる導体を所定回数巻き回すことにより、巻き回し部23aを形成する。
 次に、磁性コア部22とコイル部23とを一体に成形する(ステップS42)。ステップS42は、第2の成形工程である。磁性コア部22の材料としては、造粒粉製造工程において製造された磁性材料を用いる。まず、造粒粉製造工程において分級された磁性材料を成形用金型に入れる。このとき、コイル部23の導体の巻き回し部23aの端部以外が磁性材料に覆われるように、コイル部23と磁性材料とを成形用金型に入れる。
 続けて、例えば一定圧力4~5[ton/cm]で一軸成形を行い、成形体を作製する。このときの圧力は、実施の形態1に示したコイル部品1のコア製造工程における一軸成形の圧力よりも低い圧力である。これにより、磁性材料とともに成形されるコイル部23が成形時に破壊されるのを抑制することができる。
 成形体の形状は、例えば、図12Aおよび図12Bに示した磁性コア部22の形状である。なお、成形体の形状は、これに限らず、他の形状としてもよい。
 さらに、成形体を熱硬化する(ステップS43)。この工程は、第3の熱処理工程である。成形体の熱硬化には、例えば雰囲気制御電気炉を用いる。なお、成形体の熱硬化には、他の方法を用いてもよい。
 成形体の熱硬化は、例えば、所定の酸素分圧において、200[℃]の温度で1時間行う。このときの温度は、実施の形態1に示したコイル部品1の成形体のアニール温度よりも低い。これにより、成形体の熱硬化中にコイル部23が破壊されるのを抑制することができる。
 さらに、成形体の熱硬化の後、コイル部23の巻き回し部23aの端部に、磁性コア部22の外側に配置される配線部23bを接続してもよい。
 以上の工程を経ることにより、磁性コア部22とコイル部23とが一体となったコイル部品2が完成する。
 [2-3.効果等]
 以上、本実施の形態にかかるコイル部品の製造方法は、前述した磁性材料の製造方法で得られた磁性材料とコイルとを粉体成形により一体化させ、成形体を得る第2の成形工程と、第2の成形工程で得られた成形体を加熱する第3の熱処理工程とを含む。
 この構成によれば、圧粉磁心とコイルとを一体化させたコイル部品を容易に形成することができる。
 (その他の実施の形態等)
 以上、本開示の実施の形態に係る磁性材料の製造方法等について説明したが、本開示は、この実施の形態に限定されるものではない。
 例えば、上述した磁性材料を用いたコイル部品についても、本発明に含まれる。コイル部品としては、例えば、高周波用のリアクトル、インダクタ、トランス等のインダクタンス部品等が挙げられる。また、上述したコイル部品を備えた電源装置についても、本発明に含まれる。
 また、金属磁性粉は、Fe-Si系およびFe-Si-Al系の磁性材料に限らず、Feを主成分とする他の磁性材料であってもよい。
 絶縁材18を形成するための第1の樹脂材料には、主成分として、Al、Ti、Zr等の金属を含む金属キレート錯体、オリゴマー、カップリング剤であるアシレート、ポリマー(レジン)等を用いてもよい。オリゴマーは、例えば環状アルミニウムオリゴマーを用いてもよい。第1の樹脂材料の主成分は、アルミニウム有機化合物であってもよい。第1の樹脂材料の分子量は、例えば300以上1000以下であってもよい。なお、第1の樹脂材料の分子量はこれに限らず、300より小さくてもよいし、1000より大きくてもよい。
 また、第1の樹脂材料の主成分は、Alキレート錯体以外のキレート錯体であってもよいし、その他の金属を含むキレート錯体であってもよい。また、キレート錯体以外に、オリゴマー、アシレート、ポリマー等を主成分として含んでもよい。
 また、樹脂材料は、上述したアクリル樹脂であってもよいし、シリコン樹脂、ブチラール樹脂またはその他の樹脂材料であってもよい。また、有機溶剤についても、上述したトルエン、キシレン、エタノール等に限らず、他の有機溶剤を用いてもよい。
 また、Fe-Si系の金属磁性材料の混錬・分散の方法、および、金属磁性粉、樹脂材料、有機金属石鹸および有機溶剤等の混合の方法は、上述した回転ボールミルによる混錬・分散に限らず、他の混合方法を用いてもよい。
 また、第1の熱処理工程、第2の熱処理工程および第3の熱処理工程における熱処理の方法については、上述した方法に限らず、他の方法を用いてもよい。また、上述した各ステップにおける圧力、温度および時間は一例であって、他の圧力、温度および時間を採用してもよい。
 また、本開示は、この実施の形態に限定されるものではない。本開示の趣旨を逸脱しない限り、当業者が思いつく各種変形を本実施の形態に施したものや、異なる実施の形態における構成要素を組み合わせて構築される形態も、一つまたは複数の態様の範囲内に含まれてもよい。
 本開示にかかる磁性材料は、高周波用のインダクタ、トランスの磁心の材料等に適用できる。
 1、2 コイル部品
 12  分割磁心(圧粉磁心)
 12a 基台
 12b 芯部
 12c 壁部
 13  導体(コイル)
 14  コイル支持体
 14a 基部
 14b 円筒部
 17  金属磁性粉
 18  絶縁材
 22  磁性コア部(磁性材料)
 22a 芯部
 23  コイル部(コイル)
 23a 巻き回し部
 23b 配線部
 30  造粒粉(磁性材料)
 31  有機金属石鹸
 32  樹脂材料
 33  潤滑剤

Claims (13)

  1.  有機溶剤と金属磁性粉と樹脂材料と有機金属石鹸とを含む混合物を生成する混合物生成工程と、
     前記混合物を加熱し、前記混合物中の前記有機溶剤を除去することで、前記金属磁性粉と前記樹脂材料と前記有機金属石鹸とが一体化した磁性材料を得る第1の熱処理工程と
     を含む磁性材料の製造方法。
  2.  前記有機金属石鹸は、ステアリン酸亜鉛を含む
     請求項1に記載の磁性材料の製造方法。
  3.  前記磁性材料に含まれる前記有機金属石鹸の重量比率は、前記金属磁性粉に対して、0.05重量%以上0.5重量%以下である
     請求項2に記載の磁性材料の製造方法。
  4.  前記磁性材料に含まれる前記有機金属石鹸の重量比率は、前記樹脂材料に対して、5重量%以上40重量%以下である
     請求項1~3のいずれか1項に記載の磁性材料の製造方法。
  5.  前記樹脂材料は、熱可塑性材料を含む、
     請求項1~4のいずれか1項に記載の磁性材料の製造方法。
  6.  前記混合物生成工程において、前記混合物は、前記有機溶剤と前記金属磁性粉と前記樹脂材料と前記有機金属石鹸とを常温で混練することで生成される
     請求項1~5のいずれか1項に記載の磁性材料の製造方法。
  7.  前記第1の熱処理工程において、前記混合物を加熱する温度は、前記有機金属石鹸の融点以下である
     請求項1~6のいずれか1項に記載の磁性材料の製造方法。
  8.  請求項1~7のいずれか1項に記載の磁性材料の製造方法で得られた磁性材料を高圧プレスして成形体を得る第1の成形工程と、
     前記第1の成形工程で得られた前記成形体を加熱する第2の熱処理工程と
     を含む圧粉磁心の製造方法。
  9.  請求項1~7のいずれか1項に記載の磁性材料の製造方法で得られた磁性材料とコイルとを粉体成形により一体化させ、成形体を得る第2の成形工程と、
     前記第2の成形工程で得られた前記成形体を加熱する第3の熱処理工程と
     を含むコイル部品の製造方法。
  10.  Fe-Si-Alで構成される金属磁性粉を含み、
     前記金属磁性粉の充填率は82%以上であり、
     初透磁率は125以上である、
     圧粉磁心。
  11.  請求項10に記載の圧粉磁心と、
     コイルと
     を備えるコイル部品。
  12.  金属磁性粉と樹脂材料と有機金属石鹸とを含む造粒粉であって、
     前記有機金属石鹸の少なくとも一部は、前記造粒粉の内部に存在している
     造粒粉。
  13.  前記樹脂材料の少なくとも一部は、隣り合う前記金属磁性粉の間に存在し、
     前記有機金属石鹸は、隣り合う前記金属磁性粉の間に存在する前記樹脂材料の中に存在している
     請求項12に記載の造粒粉。
PCT/JP2019/049323 2019-01-08 2019-12-17 磁性材料の製造方法、圧粉磁心の製造方法、コイル部品の製造方法、圧粉磁心、コイル部品および造粒粉 WO2020145047A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
CN201980087872.7A CN113272086B (zh) 2019-01-08 2019-12-17 磁性材料的制造方法、压粉磁芯的制造方法、线圈部件的制造方法、压粉磁芯、线圈部件以及造粒粉
JP2020565658A JPWO2020145047A1 (ja) 2019-01-08 2019-12-17 圧粉磁心の製造方法、圧粉磁心、コイル部品および造粒粉

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019-000964 2019-01-08
JP2019000964 2019-01-08

Publications (1)

Publication Number Publication Date
WO2020145047A1 true WO2020145047A1 (ja) 2020-07-16

Family

ID=71520375

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/049323 WO2020145047A1 (ja) 2019-01-08 2019-12-17 磁性材料の製造方法、圧粉磁心の製造方法、コイル部品の製造方法、圧粉磁心、コイル部品および造粒粉

Country Status (3)

Country Link
JP (1) JPWO2020145047A1 (ja)
CN (1) CN113272086B (ja)
WO (1) WO2020145047A1 (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004507A1 (ja) * 2022-06-28 2024-01-04 パナソニックIpマネジメント株式会社 圧粉磁心及び圧粉磁心の製造方法
WO2024176653A1 (ja) * 2023-02-22 2024-08-29 パナソニックIpマネジメント株式会社 圧粉磁心の製造方法
WO2024176654A1 (ja) * 2023-02-22 2024-08-29 パナソニックIpマネジメント株式会社 圧粉磁心の製造方法
WO2024176656A1 (ja) * 2023-02-22 2024-08-29 パナソニックIpマネジメント株式会社 圧粉磁心の製造方法
WO2024176655A1 (ja) * 2023-02-22 2024-08-29 パナソニックIpマネジメント株式会社 圧粉磁心の製造方法

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142308A (ja) * 2003-11-05 2005-06-02 Daido Steel Co Ltd 圧粉磁心
JP2018041872A (ja) * 2016-09-08 2018-03-15 スミダコーポレーション株式会社 複合磁性材料、その複合磁性材料を熱硬化して得られる複合磁性成形体、その複合磁性成形体を用いて得られる電子部品、およびそれらの製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012118001A1 (ja) * 2011-03-02 2012-09-07 日立金属株式会社 希土類系ボンド磁石の製造方法
JP5875159B2 (ja) * 2012-12-19 2016-03-02 アルプス・グリーンデバイス株式会社 Fe基軟磁性粉末、前記Fe基軟磁性粉末を用いた複合磁性粉末及び前記複合磁性粉末を用いた圧粉磁心
CN106104727B (zh) * 2014-03-13 2019-03-29 日立金属株式会社 压粉磁芯的制造方法以及压粉磁芯
JP6625334B2 (ja) * 2015-03-24 2019-12-25 Ntn株式会社 磁心用粉末の製造方法
JP2017208462A (ja) * 2016-05-19 2017-11-24 アルプス電気株式会社 圧粉コア、当該圧粉コアの製造方法、該圧粉コアを備えるインダクタ、および該インダクタが実装された電子・電気機器

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005142308A (ja) * 2003-11-05 2005-06-02 Daido Steel Co Ltd 圧粉磁心
JP2018041872A (ja) * 2016-09-08 2018-03-15 スミダコーポレーション株式会社 複合磁性材料、その複合磁性材料を熱硬化して得られる複合磁性成形体、その複合磁性成形体を用いて得られる電子部品、およびそれらの製造方法

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2024004507A1 (ja) * 2022-06-28 2024-01-04 パナソニックIpマネジメント株式会社 圧粉磁心及び圧粉磁心の製造方法
WO2024176653A1 (ja) * 2023-02-22 2024-08-29 パナソニックIpマネジメント株式会社 圧粉磁心の製造方法
WO2024176654A1 (ja) * 2023-02-22 2024-08-29 パナソニックIpマネジメント株式会社 圧粉磁心の製造方法
WO2024176656A1 (ja) * 2023-02-22 2024-08-29 パナソニックIpマネジメント株式会社 圧粉磁心の製造方法
WO2024176655A1 (ja) * 2023-02-22 2024-08-29 パナソニックIpマネジメント株式会社 圧粉磁心の製造方法

Also Published As

Publication number Publication date
CN113272086A (zh) 2021-08-17
CN113272086B (zh) 2024-02-20
JPWO2020145047A1 (ja) 2021-11-25

Similar Documents

Publication Publication Date Title
WO2020145047A1 (ja) 磁性材料の製造方法、圧粉磁心の製造方法、コイル部品の製造方法、圧粉磁心、コイル部品および造粒粉
JP5412425B2 (ja) 複合磁性材料およびその製造方法
EP2750151B1 (en) Compressed powder compact
WO2011001958A1 (ja) 軟磁性材料、成形体、圧粉磁心、電磁部品、軟磁性材料の製造方法および圧粉磁心の製造方法
CN106663513B (zh) 磁芯、磁芯的制造方法以及线圈部件
JP6213809B2 (ja) 圧粉磁心、これを用いたコイル部品および圧粉磁心の製造方法
JP2016012715A (ja) 圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電子・電気部品、および該電子・電気部品が実装された電子・電気機器
JP7128439B2 (ja) 圧粉磁芯およびインダクタ素子
JP2010272604A (ja) 軟磁性粉末及びそれを用いた圧粉磁芯、インダクタ並びにその製造方法
KR102104701B1 (ko) 압분 코어, 당해 압분 코어의 제조 방법, 그 압분 코어를 구비하는 인덕터, 및 그 인덕터가 실장된 전자·전기 기기
JP2012077363A (ja) 冶金用粉末の製造方法および圧粉磁心の製造方法
JPWO2016117201A1 (ja) 圧粉コア、該圧粉コアの製造方法、該圧粉コアを備える電気・電子部品、および該電気・電子部品が実装された電気・電子機器
TW201738908A (zh) 壓粉芯、該壓粉芯之製造方法、具該壓粉芯之電感器、及安裝有該電感器之電子・電氣機器
TW201712699A (zh) 壓粉磁芯、該壓粉磁芯之製造方法、具備該壓粉磁芯之電氣.電子零件及安裝有該電氣.電子零件之電氣.電子機器
US10283266B2 (en) Powder core, manufacturing method of powder core, inductor including powder core, and electronic/electric device having inductor mounted therein
JP2017041507A (ja) 圧粉コア、当該圧粉コアを備える電子・電気部品、および当該電子・電気部品が実装された電子・電気機器
JP6229166B2 (ja) インダクタ用複合磁性材料とその製造方法
JP6460505B2 (ja) 圧粉磁心の製造方法
JP7157946B2 (ja) 磁性材料の製造方法、圧粉磁心の製造方法およびコイル部品の製造方法
JP7417830B2 (ja) 複合磁性体の製造方法
JP2020053439A (ja) 複合磁性材料、メタルコンポジットコア、リアクトル、及びメタルコンポジットコアの製造方法
JP2006100292A (ja) 粉末磁性体コアの製造方法及びそれを用いてなる粉末磁性体コア
JP6502173B2 (ja) リアクトル装置および電気・電子機器
TWI591658B (zh) Dust core, electrical and electronic components and electrical and electronic machinery
JP2006310873A (ja) 圧粉磁心及びその製造方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909138

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020565658

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909138

Country of ref document: EP

Kind code of ref document: A1