WO2020144330A1 - Procédé de purification de phycocyanines - Google Patents

Procédé de purification de phycocyanines Download PDF

Info

Publication number
WO2020144330A1
WO2020144330A1 PCT/EP2020/050547 EP2020050547W WO2020144330A1 WO 2020144330 A1 WO2020144330 A1 WO 2020144330A1 EP 2020050547 W EP2020050547 W EP 2020050547W WO 2020144330 A1 WO2020144330 A1 WO 2020144330A1
Authority
WO
WIPO (PCT)
Prior art keywords
phycocyanin
glycogen
enzyme
glucosidase
activity
Prior art date
Application number
PCT/EP2020/050547
Other languages
English (en)
Inventor
Olivier CAGNAC
Axel ATHANE
Julien DEMOL
Original Assignee
Fermentalg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fermentalg filed Critical Fermentalg
Priority to JP2021540082A priority Critical patent/JP2022516786A/ja
Priority to CA3125830A priority patent/CA3125830A1/fr
Priority to AU2020206521A priority patent/AU2020206521A1/en
Priority to KR1020217024324A priority patent/KR20210137993A/ko
Priority to US17/420,798 priority patent/US20220112235A1/en
Priority to EP20700135.5A priority patent/EP3908121A1/fr
Priority to MX2021008301A priority patent/MX2021008301A/es
Priority to CN202080018477.6A priority patent/CN113518558A/zh
Priority to BR112021013610-0A priority patent/BR112021013610A2/pt
Publication of WO2020144330A1 publication Critical patent/WO2020144330A1/fr

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K14/00Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof
    • C07K14/405Peptides having more than 20 amino acids; Gastrins; Somatostatins; Melanotropins; Derivatives thereof from algae
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/14Extraction; Separation; Purification
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J1/00Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites
    • A23J1/009Obtaining protein compositions for foodstuffs; Bulk opening of eggs and separation of yolks from whites from unicellular algae
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/20Proteins from microorganisms or unicellular algae
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23JPROTEIN COMPOSITIONS FOR FOODSTUFFS; WORKING-UP PROTEINS FOR FOODSTUFFS; PHOSPHATIDE COMPOSITIONS FOR FOODSTUFFS
    • A23J3/00Working-up of proteins for foodstuffs
    • A23J3/30Working-up of proteins for foodstuffs by hydrolysis
    • A23J3/32Working-up of proteins for foodstuffs by hydrolysis using chemical agents
    • A23J3/34Working-up of proteins for foodstuffs by hydrolysis using chemical agents using enzymes
    • AHUMAN NECESSITIES
    • A23FOODS OR FOODSTUFFS; TREATMENT THEREOF, NOT COVERED BY OTHER CLASSES
    • A23LFOODS, FOODSTUFFS, OR NON-ALCOHOLIC BEVERAGES, NOT COVERED BY SUBCLASSES A21D OR A23B-A23J; THEIR PREPARATION OR TREATMENT, e.g. COOKING, MODIFICATION OF NUTRITIVE QUALITIES, PHYSICAL TREATMENT; PRESERVATION OF FOODS OR FOODSTUFFS, IN GENERAL
    • A23L5/00Preparation or treatment of foods or foodstuffs, in general; Food or foodstuffs obtained thereby; Materials therefor
    • A23L5/40Colouring or decolouring of foods
    • A23L5/42Addition of dyes or pigments, e.g. in combination with optical brighteners
    • A23L5/46Addition of dyes or pigments, e.g. in combination with optical brighteners using dyes or pigments of microbial or algal origin
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07KPEPTIDES
    • C07K1/00General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length
    • C07K1/12General methods for the preparation of peptides, i.e. processes for the organic chemical preparation of peptides or proteins of any length by hydrolysis, i.e. solvolysis in general
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12NMICROORGANISMS OR ENZYMES; COMPOSITIONS THEREOF; PROPAGATING, PRESERVING, OR MAINTAINING MICROORGANISMS; MUTATION OR GENETIC ENGINEERING; CULTURE MEDIA
    • C12N9/00Enzymes; Proenzymes; Compositions thereof; Processes for preparing, activating, inhibiting, separating or purifying enzymes
    • C12N9/14Hydrolases (3)
    • C12N9/24Hydrolases (3) acting on glycosyl compounds (3.2)
    • C12N9/2402Hydrolases (3) acting on glycosyl compounds (3.2) hydrolysing O- and S- glycosyl compounds (3.2.1)
    • C12N9/2405Glucanases
    • C12N9/2408Glucanases acting on alpha -1,4-glucosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P19/00Preparation of compounds containing saccharide radicals
    • C12P19/04Polysaccharides, i.e. compounds containing more than five saccharide radicals attached to each other by glycosidic bonds
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12PFERMENTATION OR ENZYME-USING PROCESSES TO SYNTHESISE A DESIRED CHEMICAL COMPOUND OR COMPOSITION OR TO SEPARATE OPTICAL ISOMERS FROM A RACEMIC MIXTURE
    • C12P21/00Preparation of peptides or proteins
    • C12P21/02Preparation of peptides or proteins having a known sequence of two or more amino acids, e.g. glutathione
    • CCHEMISTRY; METALLURGY
    • C12BIOCHEMISTRY; BEER; SPIRITS; WINE; VINEGAR; MICROBIOLOGY; ENZYMOLOGY; MUTATION OR GENETIC ENGINEERING
    • C12YENZYMES
    • C12Y302/00Hydrolases acting on glycosyl compounds, i.e. glycosylases (3.2)
    • C12Y302/01Glycosidases, i.e. enzymes hydrolysing O- and S-glycosyl compounds (3.2.1)
    • C12Y302/01015Polygalacturonase (3.2.1.15)

Definitions

  • the present invention relates to a new process for purifying phycocyanins produced by fermentation of microalgae, in particular produced by Galdieria sulphuraria, which comprises an enzymatic degradation of glycogen.
  • Phycocyanin extraction processes generally consist of precipitating organic matter other than phycocyanins present in a crude aqueous extract resulting from a fermentation of microalgae to preserve the phycocyanins in the supernatant which will be filtered before precipitating the phycocyanins.
  • certain organic compounds, in particular complex polysaccharides such as glycogen remain insensitive to this precipitation.
  • a stage can be used by filtration (ultrafiltration) to remove the water in order to concentrate the phycocyanin and remove small molecules (proteins, ions, organic acid, etc.) whose size is below the cutoff threshold of the filter used, to obtain the purest phycocyanin possible.
  • the cutoff threshold of the filter being lower than the size of the glycogen, it is not eliminated and increases the viscosity of the retentate, limiting the implementation of filtration and the maintenance of its optimal parameters.
  • the viscosifying effect of glycogen as a function of its concentration has been demonstrated from purified glycogen from Galdieria sulphuraria (Martinez-Garcia et al., 2017).
  • the purified phycocyanins obtained retain high levels of these sugars which can alter the properties of these and of the purified products, in particular the coloring power, requiring an increased quantity of phycocyanins for the same visual rendering.
  • These residual polysaccharides behave like a filler which increases the costs of manufacturing phycocyanin and can limit the commercial uses of the phycocyanin obtained, for example for the preparation of foods which have a low sugar content.
  • the presence of residual polysaccharides can limit the use of the product for the production of food products with a low sugar content, thus resulting in an additional cost for the elimination of these said sugars.
  • Glycogen is a complex sugar, difficult to eliminate if one seeks to preserve phycocyanin from the usual conditions of degradation of sugar.
  • Glycogen is a branched polyglucoside made up of a (1-4) glucoside chains branched by a (1-6) bonds.
  • this polysaccharide is a polymer that is partially resistant to the enzymes capable of degrading it. Due to the particularly large number of branching by a1 -6 glucosidic linkage, the use of enzymes such as b-amylase (a1 -4 glucosidase) is inappropriate as shown by Martinez-Garcia & al. These authors show a relatively limited activity of a pancreatic ⁇ -amylase (a1 -4 glucosidase) on glycogen. The measure of reducing sugar, representing the level of digestion, remains low and quickly saturates.
  • the process according to the invention consists in carrying out an enzymatic treatment of the phycocyanin solution in order to decrease the glycogen content with an enzyme suitable for degrading the glycogen under temperature and pH conditions which do not substantially degrade the phycocyanins present, that is to say active enzymes at a pH below 6 and a reaction temperature below 40 ° C, such as glucoamylases, pectinases and pullulanases and their mixtures.
  • active enzymes at a pH below 6 and a reaction temperature below 40 ° C, such as glucoamylases, pectinases and pullulanases and their mixtures.
  • the process according to the invention is particularly suitable for the purification of phycobilliproteins resistant to acidic pH produced by Galdieria sulphuraria, the enzymatic reaction being carried out at a pH lower than 6, advantageously approximately 4.
  • the invention also relates to a phycocyanin extract with a glycogen / phycocyanin ratio (by dry weight) of less than 6, advantageously less than 4, preferably less than 3, more preferably less than 2.5, even more preferably less than 1.
  • Figure 5 represents the evolution of the permeate flow as a function of time for the filtration of a phycocyanin extract (C-PC) with or without enzymatic digestion.
  • the invention relates to a method for purifying phycocyanins from a solution comprising the phycocyanin (s) and glycogen, which comprises a step of enzymatic degradation of glycogen by an enzyme suitable for degrading glycogen under temperature and pH conditions. which do not substantially degrade the phycocyanins present and a step for separating the phycocyanins from the glycogen degradation products.
  • the process according to the invention is particularly suitable for the purification of a phycocyanin solution extracted from a culture of phycocyanin-producing microorganism which also produces glycogen, in particular within the framework of an industrial process for the production of phycocyanin which comprises culturing the microorganisms, then recovering the biomass produced to extract phycocyanin, and recovering phycocyanin from this biomass.
  • the process is particularly suitable for phycocyanins produced by microorganisms which produce high glycogen contents, in particular for the extraction and purification of phycocyanins from a biomass which comprises more than 10% glycogen relative to the total dry matter.
  • Phycocyanin-producing microorganisms are well known, in particular algae (or microalgae) of the orders of Cyanidiales.
  • the order of Cyanidiales includes the families of Cyanidiaceae or Galdieriaceae, themselves subdivided into the genera Cyanidioschyzon, Cyanidium or Galdieria, to which belong among others the species Cyanidioschyzon merolae 10D, Cyanidioschyzon merolae DBV201, Cyanidium caldarum, Cyanidium maximum, Cyanidium , Cyanidium partitum, Cyanidium rumpens, Galdieria daedala, Galdieria maxima, Galdieria partita or even Galdieria sulphuraria. Mention will in particular be made of the strain Galdieria sulphuraria (also called Cyanidium caldarium (UTEX 2919).
  • microorganisms which produce phycocyanin with a high glycogen content are more particularly identified among the microorganisms mentioned above, in particular the species of the genera Arthrospira, Spirulina, Synechococcus, Cyanidioschyzon, Cyanidium or Galdieria, more particularly Galdieria sulphuraria.
  • Glycogen is a polysaccharide very widely present in nature in a variety of organisms (bacteria, yeast, animal cells, ). If the structure of a1-4-linked glucose polymer branched by a1-6 linkage is common, the difference comes from the percentage and the distribution of the branches.
  • the term “glycogen” is understood in particular to mean the glucose polymer present in the aforementioned phycocyanin-producing organisms, the characteristic of which is a majority branching size of less than 10 glucose units, as illustrated by the work of Martinez. -Garcia et al ..
  • the recovery of phycocyanin from biomass is also known to those skilled in the art. Mention may in particular be made of application WO 2018/178334. It generally requires a cell, mechanical or enzymatic lysis step in order to release the phycocyanin produced in the cellular compartments of the microorganisms.
  • This cell lysis will generally generate a phycocyanin solution which includes organic matter in suspension (called crude suspension) which can be separated by usual methods of separation, in particular of filtration, in particular of microfiltration, or of centrifugation then filtration, more particularly by microfiltration.
  • a crude phycocyanin solution is then obtained which can be further purified so as to remove low molecular weight organic residues by usual ultrafiltration methods to obtain a refined solution from which phycocyanin will be obtained.
  • the phycocyanin obtained can then be purified, in particular by a diafiltration step to eliminate as much as possible the organic residues of low molecular weight.
  • the enzymatic treatment according to the invention can be implemented both on the crude suspension and on the crude solution.
  • the process according to the invention is particularly suitable for the purification of a solution of phycocyanins resistant to acidic pH, in particular the phycocyanins described in application WO 2017/050918.
  • the process according to the invention is implemented for the purification of phycocyanins resistant to acid pH produced by Galdieria sulphuraria, more particularly in a process for the industrial production of these phycocyanins by culture in a fermenter of Galdieria sulphuraria.
  • the preferred conditions for carrying out the enzymatic reaction are a pH of less than 7 and a reaction temperature of less than 60 ° C, preferably less than 50 ° C, even more preferably less than 30 ° C.
  • the enzymatic lysis of glycogen is carried out at a pH less than or equal to 5, preferably around 4.5.
  • the enzymatic reaction is carried out at room temperature.
  • This ambient temperature corresponds to the definition of an implementation in a temperate zone or in a room of temperature corresponding to a temperate zone, that is to say ranging from 18 to 28 ° C., more generally from 20 ° C. to 25 °. vs.
  • Enzymes active under acidic pH conditions and at room temperature are known to those skilled in the art. However, the conditions for digestion of glycogen in order to preserve phycocyanin and facilitate its production are not known. Surprisingly, it has been found that enzymes known for a1-4 galactosiduronic activity also have a1-4 glucosidase activity (or alpha-glucosidase) under pH and temperature conditions compatible with the purification of phycocyanin.
  • pectinases known to degrade pectin and in particular pectinases extracted from filamentous fungi such as Aspergillus, more particularly pectinases extracted from Aspegillus aculeatus, such as the enzymes sold under the name Pectinex® by the company Novozymes.
  • the inventors have observed that these conditions of enzymatic lysis release polyglucosidic chains and few glucose monomers and are therefore particularly suitable for avoiding contamination by other microorganisms, in particular pathogenic organisms for humans or animals, which is essential when the phycocyanin obtained is used as a food coloring.
  • the enzymatic lysis of glycogen can also be carried out with a glucosidase a1 -6 activity in addition to a glucosidase a1 -4 activity or a polygalacturonase.
  • the enzyme used in the process can then be a mixture of enzymes, a first enzyme having glucosidase a1 -4 activity or a polygalacturonase and a second enzyme having glucosidase a1 -6 activity.
  • Glucosidases a1-6 active under the pH and temperature conditions set out above are also known to those skilled in the art. These are in particular the pullulanases known for hydrolyzing the a1 -6 glucosidic bonds of the pullulan, especially known for suppressing the ramifications of starch.
  • the enzyme has both a glucosidase a1-4 activity and a glucosidase a1 -6 activity.
  • glucoamylases are also enzymes extracted microorganisms, especially yeasts or fungi, such as S. diastaticus or A. niger.
  • Many glycoamylases are known from the state of the art, described in the literature and in particular patent applications like WO 2019/036721. They are generally used in fermentation processes, either for the production of drinking alcohols (beer, spirits) or for the fermentation of biomass for the production of bioethanol. They are also used as baking additives or as food supplements.
  • Glucoamylases are known which are commercially available, in particular under the names "Amylase AG XXL” (Novozymes) or "Panzym® AG XXL” (Eaton).
  • the enzymes used in the process according to the invention are enzymes authorized to be used in the food industry.
  • the optimal content of enzymes used in this glycogen lysis step can be determined by a person skilled in the art depending on the activity of the enzymes used under the temperature and pH conditions set out above.
  • the enzyme concentrations are generally 0.0001% and 5%, preferably 0.0025% and 1%, more preferably 0.005% and 0.5%, even more preferably between 0.01% and 0.25%, the percentages being expressed in volume of enzymatic solution relative to the total volume of crude suspension or crude suspension.
  • Enzymatic solutions have concentrations of enzymes generally ranging from 100 to 20,000 units / ml, the enzymatic activity being that commonly attached to these enzymes, as identified by the manufacturer.
  • a1 -6 glucosidases makes it possible to reduce the amounts of a1 -4 glucosidase or polygalacturonase used.
  • the total concentrations of enzymes are generally 0.0001% and 5%, preferably 0.0025% and 1%, more preferably 0.005% and 0.5%, even more preferably between 0.01% and 0.25%, the percentages being expressed in volume of enzyme solution relative to the total volume of crude suspension or crude suspension.
  • the reaction is carried out advantageously for less than 48 h , preferably less than 24 hours, more preferably from 5 hours to 12 hours.
  • the implementation of the reduction of glycogen by enzymatic digestion can be associated or replaced by the use of microorganisms having the capacity to degrade this polysaccharide.
  • a person skilled in the art will be able to exploit the capacities of these microorganisms to produce and secrete into the raw extract, enzymes capable of digesting glycogen, more particularly the enzymes previously mentioned.
  • a person skilled in the art will be able to select and exploit the capacities of these microorganisms to metabolize glycogen or the products resulting from the degradation of the polysaccharide.
  • a person skilled in the art will be able to exploit the capacities of these microorganisms to limit the growth of undesirable or pathogenic microorganisms, in particular not the synthesis of substances having antimicrobial activity.
  • the preferred conditions for carrying out the degradation of glycogen ex vivo or in vivo are a pH below 7 and a reaction temperature below 50 ° C, preferably below 40 ° C, even more preferably below 37 ° C .
  • the degradation of glycogen ex vivo or in vivo is implemented at a pH less than or equal to 5, preferably around 4.5 or 4.
  • the invention also relates to a phycocyanin extract with a glycogen / phycocyanin ratio (by dry weight) of less than 6, advantageously less than 4, preferably less than 3, more preferably less than 2.5, even more preferably less than 1.
  • this phycocyanin extract is the crude phycocyanin suspension obtained after enzymatic lysis.
  • This treated crude suspension also called “crude enzyme suspension” comprises in particular the phycocyanin released after cell lysis, glucose oligomers, products of the enzymatic lysis of glycogen and the residual glycogen with the insoluble materials resulting from cell lysis in suspension.
  • the phycocyanin extract is the crude phycocyanin solution obtained after separation of the crude suspension and lysis enzymatic glycogen, this lysis having been carried out before or after the separation of the crude suspension, or before and after separation (separation of the crude enzyme suspension and / or implementation of the enzymatic reaction on the crude solution).
  • This crude solution comprises in particular the phycocyanin released after cell lysis, glucose oligomers, products of the enzymatic lysis of glycogen and the residual glycogen.
  • This treated crude solution also called “crude enzyme phycocyanin solution” generally comprises from 0.1 to 10 g / L of phycocyanin, more preferably from 1 to 5 g / L.
  • the dry glycogen / phycocyanin weight ratio is advantageously less than 3, preferably less than 2.5.
  • the crude enzyme solution according to the invention may possibly be concentrated by elimination of part of the water according to the usual methods of the technique used under conditions which substantially respect the integrity of the phycocyanin.
  • the phycocyanin content of a crude enzymatic and concentrated solution will advantageously be from 10 to 50 g / L.
  • the phycocyanin extract is phycocyanin isolated after extraction from the crude enzyme solution according to the methods described above.
  • the dry glycogen / phycocyanin weight ratio is advantageously less than 2, preferably less than 1.
  • the phycocyanin extract is the purified phycocyanin obtained after purification of the isolated extract according to the methods described above, in particular by diafiltration.
  • the dry glycogen / phycocyanin weight ratio is advantageously less than 1, preferably less than 0.1.
  • Both isolated and purified phycocyanin may still contain traces of glucose oligomers, products of the enzymatic lysis of glycogen.
  • the phycocyanin obtained has an E10 coloring power of 90 to 400, preferably at least 120, more preferably at least 150.
  • the coloring power E10 is advantageously from 90 to 110.
  • the coloring power E10 is advantageously from 150 to
  • the coloring power is advantageously from 210 to 400.
  • the invention also relates to a process for producing a phycocyanin of microbial origin which comprises the steps of (a) culture of phycocyanin-producing microorganisms as described above under culture conditions making it possible to produce a fermentation must comprising more than 30 g / L of dry matter and at least 4% of phycocyanin relative to the dry matter,
  • a step of enzymatic lysis of the glycogen with the enzymes is carried out and under the conditions defined above or a degradation by means of microorganism, said enzymatic lysis being carried out on the crude suspension and / or on the crude solution.
  • the phycocyanin obtained is a phycocyanin which comprises less than 50% of glycogen.
  • the phycocyanin content of at least 4% can, if necessary, reach more than 10% depending on the fermentation conditions and the strains cultivated.
  • the separation step (c) is also known and described in the state of the art, in particular by usual filtration methods, such as microfiltration, or centrifugation then filtration, in particular by microfiltration.
  • the invention also relates to the use of the phycocyanins obtained as coloring agents, in particular as food coloring agents. It also relates to foodstuffs, solid or liquid, in particular drinks which comprise a phycocyanin with a low glycogen content according to the invention.
  • the phycocyanin used as colorant can be in the form of crude enzyme solution, isolated phycocyanin or purified phycocyanin, as defined above.
  • the raw phycocyanin extract from of Galdieria sulphuraria is produced according to the method described in application WO 2018/178334.
  • the enzyme and the raw phycocyanin extract are filtered through a 0.22pm filter. Digestion is carried out at room temperature.
  • a reading of the absorbances useful for determining the concentration of phycocyanin are measured, in parallel with a measurement of glucose after denaturation of the enzyme (95 ° C, 5 minutes) with the biochemical analyzer YSI2700.
  • the glycogen digestion rate in a crude solution is monitored at pH4 and pH7 with different enzymes: alpha amylase (Ban 480L from Novozymes), polygalacturonase (Pectinex Ultra SP-L from Novozymes) and glucoamylase (Amylase AG XXL from Novozymes).
  • the crude phycocyanin solution from Galdieria sulphuraria is produced according to the method described in application WO 2018/178334.
  • the enzyme and the raw phycocyanin solution are filtered on a 0.22pm filter. Digestion is carried out at room temperature.
  • a glucose measurement is carried out after denaturation of the enzyme (95 ° C., 5 minutes) with the YSI2700 biochemical analyzer.
  • the percentage of glycogen digestion corresponds to the ratio of the glucose concentration to the glucose concentration after total hydrolysis of the polysaccharide.
  • the various measurements carried out at the end of each filtration and / or filtration step show that the glycogen concentration increases significantly in the retentate until reaching non-negligible concentrations compared to the PC. It is therefore necessary to eliminate all or part of this glycogen to avoid diluting the coloring power of the final product, and an coloring power E10 of between 90 and 400.
  • the color value E10 (10% E618nm) indicates the color density which is measured at 618 nm after having dissolved a powder in an aqueous solution.
  • a crude phycocyanin extract from Galdieria sulphuraria produced according to the method in patent application WO 2018/178334 is clarified on a hollow fiber membrane PES 0.05pm.

Abstract

La présente invention concerne un nouveau procédé de purification de phycocyanines produites par fermentation de microalgues, en particulier produites par Galdieria sulphuraria, qui comprend une dégradation enzymatique du glycogène.

Description

PROCÉDÉ DE PURIFICATION DE PHYCOCYANINES
DOMAINE DE L'INVENTION
La présente invention concerne un nouveau procédé de purification de phycocyanines produites par fermentation de microalgues, en particulier produites par Galdieria sulphuraria, qui comprend une dégradation enzymatique du glycogène.
ETAT DE LA TECHNIQUE
La purification de phycobiliprotéines extraites de Galdieria sulphuraria et de Spiruline par précipitation au sulfate d’ammonium a déjà été décrite dans la littérature (Moon et al., 2015 ; Cruz de Jésus et al., 2006) mais elle est très difficilement applicable à l’échelle industrielle car elle demande beaucoup de sulfate d’ammonium, ce qui pose de gros problèmes de retraitement du sulfate d’ammonium et du surnageant.
Les autres méthodes de purification décrites permettant d’obtenir un taux de pureté telles que des méthodes de chromatographie sont très coûteuses à mettre en œuvre.
Les procédés d’extraction des phycocyanines consistent généralement à faire précipiter les matières organiques autres que les phycocyanines présentes dans un extrait brut aqueux issu d’une fermentation de microalgues pour conserver les phycocyanines dans le surnageant qui sera filtré avant de faire précipiter les phycocyanines. Toutefois, certains composés organiques, notamment des polysaccharides complexes comme le glycogène, restent insensible à cette précipitation.
Dans un procédé industriel de purification de la phycocyanine, on peut employer une étape par filtration (ultrafiltration) pour éliminer l'eau afin de concentrer la phycocyanine et éliminer des petites molécules (protéines, ions, acide organique...) dont la taille est inférieure au seuil de coupure du filtre utilisé, pour obtenir une phycocyanine la plus pure possible. Toutefois, le seuil de coupure du filtre étant inférieur à la taille du glycogène celui- ci n’est pas éliminé et augmente la viscosité du rétentat, limitant la mise en œuvre de filtration et le maintien des paramètres optimaux de celle-ci. L’effet viscosant du glycogène en fonction de sa concentration a été démontré à partir de glycogène purifié de Galdieria sulphuraria (Martinez-Garcia ét al., 2017).
De plus les phycocyanines purifiées obtenues conservent des taux élevés de ces sucres qui peuvent altérer les propriétés de celles-ci et des produits purifiés, notamment le pouvoir colorant, nécessitant une quantité de phycocyanines accrue pour un même rendu visuel. Ces polysaccharides résiduels se comportent comme une charge qui vient renchérir les coûts de fabrication de la phycocyanine et peut limiter les usages commerciaux de la phycocyanine obtenue, par exemple pour la préparation d’aliments qui ont une faible teneur en sucres. La présence de polysaccharides résiduels peut limiter l’usage du produit à l’élaboration de produit alimentaire de faible teneur en sucres entraînant ainsi un surcoût à l’élimination de ces dit sucres. Le glycogène est un sucre complexe, difficile à éliminer si l’on cherche à préserver la phycocyanine des conditions usuelles de dégradation du sucre. Le glycogène est un polyglucoside branché constitué de chaînes glucosidiques a (1-4) ramifiés par des liaisons a (1-6).
On connaît l’utilisation d’enzymes pour la lyse cellulaire dans un procédé d’extraction de phycocyanine à partir d’une culture de microorganismes (CN 106749633, CN102433015 et CN1 1 17973). Cette étape de lyse cellulaire, de rupture de la paroi cellulaire pour la libération des phycocyanines, suivie par l’extraction de la phycocyanine libérée dans le milieu, n’a pas d’action significative sur le glycogène libéré avec la phycocyanine et extrait avec cette dernière.
Il est possible de mettre en œuvre une dégradation enzymatique du glycogène. Toutefois, ce polysaccharide est un polymère partiellement résistant aux enzymes susceptibles de le dégrader. Du fait du nombre particulièrement important de ramification par liaison a1 -6 glucosidique, l’utilisation d’enzymes telle que les b-amylase (a1 -4 glucosidase) est inapproprié comme le montrent Martinez-Garcia & al. Ces auteurs montrent une activité relativement limitée d’une a-amylase (a1 -4 glucosidase) pancréatique sur le glycogène. La mesure de sucre réducteur, représentant le niveau de digestion, reste faible et sature rapidement. L’utilisation d’enzyme à activité a1-6 glucosidase (isoamylase, pullulanase) pour débrancher le glycogène est possible comme le montrent les travaux de Martinez-Garcia et al. ou ceux de Shimonaga et al. . Mais encore une fois, les digestions sont incomplètes en libérant des polymères de glucose après des durées importantes de digestion (24 à 48 heures).
Ces expériences de digestion du glycogène rapportées dans l’état de la technique n’ont pas intégré la problématique de préservation de la phycocyanine alors que les enzymes employées peuvent affecter l’intégrité de la phycocyanine, altérant ainsi ses propriétés colorantes et anti-oxydantes.
On cherche donc à améliorer les procédés de purification des phycocyanines extraites d’une biomasse, tant d’un point de vue qualitatif, que d’un point de vue industriel et économique en diminuant la teneur résiduelle en sucres dans le produit final, en particulier la teneur résiduelle en glycogène tout en préservant les propriétés de la phycocyanine.
EXPOSE DE L'INVENTION
Le procédé selon l’invention consiste à effectuer un traitement enzymatique de la solution de phycocyanine pour diminuer la teneur en glycogène avec une enzyme appropriée pour dégrader le glycogène dans des conditions de température et de pH qui ne dégradent pas de manière substantielle les phycocyanines présentes, c’est-à-dire des enzymes actives à un pH inférieur à 6 et une température de réaction inférieure à 40°C, comme les glucoamylases, les pectinases et les pullulanases et leurs mélanges. Le procédé selon l’invention est particulièrement adapté pour la purification de phycobilliprotéines résistantes aux pH acides produites par Galdieria sulphuraria, la réaction enzymatique étant conduite à un pH inférieur à 6, avantageusement d’environ 4.
L’invention concerne également un extrait de phycocyanines avec un rapport glycogène/phycocyanines (en poids sec) inférieur à 6, avantageusement inférieur à 4, de préférence inférieur à 3, plus préférentiellement inférieur à 2,5, encore plus préférentiellement inférieur à 1.
DESCRIPTION DES FIGURES
La Figure 1 représente les courbes de perte de phycocyanine (%) au cours du temps pour une digestion pH = 4 à différentes concentrations en enzyme.
La Figure 2 représente les courbes de perte de phycocyanine (%) au cours du temps pour une digestion pH = 7 à différentes concentrations en enzyme.
La Figure 3 représente les courbes de libération de glucose suite à la digestion du glycogène au cours du temps pour une digestion pH = 4 à différentes concentrations en enzyme.
La Figure 4 représente les courbes de libération de glucose suite à la digestion du glycogène au cours du temps pour une digestion pH = 7 à différentes concentrations en enzyme.
La Figure 5 représente l’évolution du flux de perméat en fonction du temps pour la filtration d’un extrait de phycocyanine (C-PC) avec ou sans digestion enzymatique.
La Figure 6 représente une courbe de suivi de la digestion du glycogène à pH=4 pour différentes enzymes.
La Figure 7 représente une courbe de suivi de la digestion du glycogène à pH=7 pour différentes enzymes.
DESCRIPTION DETAILLEE DE L'INVENTION
L’invention concerne un procédé de purification de phycocyanines à partir d’une solution comprenant la ou les phycocyanines et du glycogène, lequel comprend une étape de dégradation enzymatique du glycogène par une enzyme appropriée pour dégrader le glycogène dans des conditions de température et de pH qui ne dégradent pas de manière substantielle les phycocyanines présentes et une étape de séparation des phycocyanines des produits de dégradation du glycogène.
Le procédé selon l’invention est particulièrement adapté pour la purification d’une solution de phycocyanine extraite d’une culture de microorganisme producteur de phycocyanines qui produit également du glycogène, en particulier dans le cadre d’un procédé industriel de production de phycocyanine qui comprend la culture des microorganismes, puis la récupération de la biomasse produite pour extraire la phycocyanine, et la récupération de la phycocyanine à partir de cette biomasse. Le procédé est particulièrement adapté pour les phycocyanines produites par des microorganismes qui produisent de fortes teneurs de glycogène, en particulier pour l’extraction et la purification des phycocyanines à partir d’une biomasse qui comprend plus de 10% de glycogène par rapport à la totalité de la matière sèche.
Des microorganismes producteurs de phycocyanine sont bien connus, notamment les algues (ou microalgues) des ordres des Cyanidiales. L'ordre des Cyanidiales, englobe les familles des Cyanidiaceae ou des Galdieriaceae, elles-mêmes subdivisées en les genres Cyanidioschyzon, Cyanidium ou Galdieria, auxquelles appartiennent entre autres les espèces Cyanidioschyzon merolae 10D, Cyanidioschyzon merolae DBV201, Cyanidium caldarum, Cyanidium daedalum, Cyanidium maximum, Cyanidium partitum, Cyanidium rumpens, Galdieria daedala, Galdieria maxima, Galdieria partita ou encore Galdieria sulphuraria. On citera en particulier la souche Galdieria sulphuraria (aussi appelée Cyanidium caldarium (UTEX 2919).
On citera aussi des producteurs connus de phycocyanines comme les cyanobactéries filamenteuses du genre Arthrospira, cultivées industriellement sous le nom commun de spiruline.
Les microorganismes qui produisent de la phycocyanine avec une teneur élevée en glycogènes sont plus particulièrement identifiés parmi les microorganismes cités précédemment, en particulier les espèces des genres Arthrospira, Spirulina, Synechococcus, Cyanidioschyzon, Cyanidium ou Galdieria, plus particulièrement Galdieria sulphuraria.
Le glycogène est un polysaccharide très largement présent dans la nature chez une diversité d’organismes (bactérie, levure, cellule animale, ...). Si la structure de polymère de glucose par liaison a1-4 ramifié par liaison a1-6 est commune, la différence vient du pourcentage et de la distribution des ramifications. On entend en particulier par « glycogène » au sens de la présente invention le polymère de glucose présent chez les organismes producteurs de phycocyanines précédemment cités dont la particularité est une taille de ramification majoritaire inférieure à 10 unités de glucoses comme l’illustrent les travaux de Martinez-Garcia ét al..
Les procédés industriels de culture de microorganismes producteurs de phycocyanine sont bien connus de l’homme du métier. On citera en particulier les demandes WO 2017/093345, WO 2017/050917 et WO 2018/178334.
La récupération de la phycocyanine à partir de la biomasse est également connue de l’homme du métier. On citera notamment la demande WO 2018/178334. Elle requiert généralement une étape de lyse cellulaire, mécanique ou enzymatique de manière à libérer la phycocyanine produite dans les compartiments cellulaires des microorganismes. Cette lyse cellulaire va généralement générer une solution de phycocyanine qui comprend des matières organiques en suspensions (appelée suspension brute) qui peuvent être séparées par des méthodes usuelles de séparation, en particulier de filtration, notamment de microfiltration, ou de centrifugation puis filtration, plus particulièrement par microfiltration. On obtient alors une solution brute de phycocyanine qui peut faire l’objet d’une nouvelle purification de manière à éliminer des résidus organiques de faible poids moléculaire par des méthodes usuelles d’ultrafiltration pour obtenir une solution raffinée à partir de laquelle on obtiendra la phycocyanine par des méthodes usuelles de précipitation et séchage. On citera notamment la filtration tangentielle sur membranes céramiques ou membranes organiques tel que les fibres creuses en polyéthersulfone ou polysulfone, notamment celles proposées par les sociétés Repligen. Les seuils de ces filtres peuvent être choisis pour séparer des molécules de poids moléculaire supérieur ou inférieur aux phycocyanines ciblées.
La phycocyanine obtenue peut être ensuite purifiée, notamment par une étape de diafiltration pour éliminer le plus possible les résidus organiques de faible poids moléculaire.
Le traitement enzymatique selon l’invention peut être mis en œuvre tant sur la suspension brute que sur la solution brute.
Le procédé selon l’invention est particulièrement adapté pour la purification de solution de phycocyanines résistantes à des pH acides, en particulier les phycocyanines décrites dans la demande WO 2017/050918.
En particulier, le procédé selon l’invention est mis en œuvre pour la purification de phycocyanines résistantes aux pH acides produites par Galdieria sulphuraria, plus particulièrement dans un procédé de production industrielle de ces phycocyanines par culture en fermenteur de Galdieria sulphuraria.
Les conditions préférées de mise en œuvre de la réaction enzymatique sont un pH inférieur à 7 et une température de réaction inférieure à 60°C, de préférence inférieure à 50°C, encore plus préférentiellement inférieure à 30°C.
De manière avantageuse, la lyse enzymatique du glycogène est mise en œuvre à un pH inférieure ou égal à 5, de préférence d’environ 4,5.
De manière préférentielle la réaction enzymatique est mise en œuvre à température ambiante. Cette température ambiante correspond à la définition d’une mise en œuvre en zone tempérée ou dans un local de température correspondante à une zone tempérée, c’est à dire allant de 18 à 28 °C, plus généralement de 20°C à 25°C.
Ces conditions de température et de pH sont particulièrement adaptées pour préserver la phycocyanine au cours de la réaction enzymatique.
Des enzymes actives en conditions de pH acide et à température ambiante sont connues de l’homme du métier. Toutefois les conditions de digestion du glycogène dans le but de préserver la phycocyanine et de faciliter sa production ne sont pas connues. De manière surprenante, il a été trouvé que des enzymes connues pour une activité galactosiduronique a1-4 ont aussi une activité glucosidase a1-4 (ou alpha-glucosidase) dans des conditions de pH et de température compatibles avec la purification de la phycocyanine.
C’est le cas en particulier des pectinases connues pour dégrader la pectine et en particulier des pectinases extraites de champignons filamenteux comme Aspergillus, plus particulièrement de pectinases extraites d’Aspegillus aculeatus, comme les enzymes commercialisées sous la dénomination Pectinex® par la société Novozymes.
L’action de ces enzymes diminue la taille des chaînes glucosidiques qui peuvent alors être éliminées par ultrafiltration dans des conditions qui permettent de retenir les phycocyanines tout en laissant passer les fragments de glycogène.
Les inventeurs ont pu constater que ces conditions de lyse enzymatique libèrent des chaînes polyglucosidiques et peu de monomères de glucose et sont donc particulièrement adaptées pour éviter les contaminations par d’autres microorganismes, en particulier des organismes pathogènes pour l’homme ou l’animal, ce qui est indispensable lorsque la phycocyanine obtenue est employée comme colorant alimentaire.
Selon un mode particulier de réalisation, la lyse enzymatique du glycogène pourra également être réalisée avec une activité glucosidase a1 -6 en plus d’une activité glucosidase a1 -4 ou d’une polygalacturonase.
L’enzyme employée dans le procédé peut alors être un mélange d’enzymes, une première enzyme ayant une activité glucosidase a1 -4 ou d’une polygalacturonase et une deuxième enzyme ayant une activité glucosidase a1 -6.
Des glucosidases a1-6 actives dans les conditions de pH et de température exposées ci-dessus sont également connues de l’homme du métier. Il s’agit en particulier des pullulanases connues pour hydrolyser les liaisons glucosidiques a1 -6 de la pullulane, notamment connues pour supprimer les ramifications de l’amidon.
Il s’agit généralement d’enzymes extraites de bactéries, notamment des genres Bacillus. US 6,074,854, US 5,817,498 et WO 2009/075682 décrivent de telles pullulanases extraites de Bacillus deramificans ou de Bacillus acidopullulyticus. On connaît aussi des pullulanases disponibles dans le commerce, notamment sous les dénominations « Promozyme D2 » (Novozymes), « Novozym 26062 » (Novozymes) et « Optimax L 1000 » (DuPont-Genencor). On notera que des mélanges pullulanases/alpha-amylases sont décrits dans l’état de la technique, mais en particulier pour produire du sirop de glucose à partir de l’amidon (US 2017/159090).
Selon un autre mode préféré de réalisation de l’invention, l’enzyme a à la fois une activité glucosidase a1-4 et une activité glucosidase a1 -6.
C’est le cas en particulier des glucoamylases. Il s’agit également d’enzymes extraites de microorganismes, notamment de levures ou de champignons, comme S. diastaticus ou A. niger. De nombreuses glycoamylases sont connues de l’état de la technique, décrites dans la littérature et notamment des demandes de brevet comme WO 2019/036721 . Elles sont généralement employées dans des procédés de fermentation, soit pour la production d’alcools de consommation (bière, spiritueux) soit pour la fermentation de biomasse pour la production de bioéthanol. Elles sont également employées comme additifs de boulangerie ou comme compléments alimentaires. On connaît des glucoamylases disponibles dans le commerce, notamment sous les dénominations « Amylase AG XXL » (Novozymes) ou « Panzym® AG XXL » (Eaton).
De manière avantageuse, les enzymes employées dans le procédé selon l’invention sont des enzymes autorisées pour être employées dans l’industrie alimentaire.
La teneur optimale en enzymes employée dans cette étape de lyse du glycogène pourra être déterminée par l’homme du métier en fonction de l’activité des enzymes employées dans les conditions de température et de pH exposées précédemment.
Les concentrations en enzymes sont généralement de 0,0001 % et 5%, préférentiellement 0,0025% et 1 %, plus préférentiellement 0,005% et 0,5%, encore plus préférentiellement entre 0,01 % et 0,25%, les pourcentages étant exprimés en volume de solution enzymatique par rapport au volume total de suspension brute ou de suspension brute.
Les solutions enzymatiques ont des concentrations en enzymes généralement allant de 100 à 20000 unités/ml, l’activité enzymatique étant celle communément attachée à ces enzymes, telles qu’identifiée par le fabriquant.
L’emploi de glucosidases a1 -6 permet de diminuer les quantités de glucosidase a1 -4 ou polygalacturonase employées. Les concentrations totales en enzymes (glucuronidase a1 -4 + glucosidases a1 -6) sont généralement de 0,0001 % et 5%, préférentiellement 0,0025% et 1 %, plus préférentiellement 0,005% et 0,5%, encore plus préférentiellement entre 0,01 % et 0,25%, les pourcentages étant exprimés en volume de solution enzymatique par rapport au volume total de suspension brute ou de suspension brute.
Avec la glucosidase a1-4 ou polygalacturonase seule ou en mélange avec la glucosidase a1-6, ou avec l’enzyme à activité glucosidase a1 -4 et glucosidases a1-6, la réaction est mise en œuvre de manière avantageuse pendant moins de 48 h, de préférence moins de 24 h, plus préférentiellement de 5 h à 12h.
Pour le procédé selon l’invention et plus particulièrement pour l’étape de d’isolation par filtration tangentielle pour l’isolation de la phycocyanine, il n’est pas nécessaire d’obtenir une digestion totale du glycogène en monomère de glucose. Une digestion partielle du polysaccharide et sa réduction en oligomères de tailles inférieures au seuil de coupure de la filtration est suffisante pour éliminer le glycogène de la suspension ou bien de la solution de phycocyanine.
L’homme du métier saura déterminer le temps approprié pour réduire au mieux les quantités de glycogène en fonction de la teneur initiale en glycogène, la quantité d’enzymes employés et la pureté recherchée pour la phycocyanine produite.
La mise en œuvre de la réduction du glycogène par digestion enzymatique peut être associée ou remplacée par l’usage de micro-organismes ayant la capacité de dégrader ce polysaccharide. L’homme du métier saura exploiter les capacités de ces micro-organismes à produire et sécréter dans l’extrait brut, des enzymes capables de digérer le glycogène, plus particulièrement les enzymes précédemment évoque. L’homme du métier saura sélectionner et exploiter les capacités de ces micro-organismes à métaboliser le glycogène ou les produits issus de la dégradation du polysaccharide. De manière avantageuse, l’homme du métier saura exploiter les capacités de ces micro-organisme à limiter la croissance de micro-organismes indésirables ou pathogène notamment pas la synthèse de substance ayant une activité antimicrobienne.
Les conditions préférées de mise en œuvre de la dégradation du glycogène ex vivo ou in vivo sont un pH inférieur à 7 et une température de réaction inférieure à 50°C, de préférence inférieure à 40°C, encore plus préférentiellement inférieure à 37°C.
De manière avantageuse, la dégradation du glycogène ex vivo ou in vivo est mise en œuvre à un pH inférieure ou égal à 5, de préférence d’environ 4,5 ou 4.
De part leur caractéristique de croissance et de dégradation de polysaccharide les bactéries lactiques apparaissent particulièrement adaptées. Peuvent être cité parmis elles, les bactéries appartenant aux genres Lactobacillus, Pediococcus, Tetragenococcus, Carnobacterium, Vagococcus, Leuconostoc, Weissella, Oenococcus, Atopobium, Streptococcus, Enterococcus, Lactococcus, Aerococcus, Alloiococcus, Melissococcus ou Bifidobacterium.
L’invention concerne également un extrait de phycocyanines avec un rapport glycogène/phycocyanine (en poids sec) inférieur à 6, avantageusement inférieur à 4, de préférence inférieur à 3, plus préférentiellement inférieur à 2,5, encore plus préférentiellement inférieur à 1 .
Selon un premier mode de réalisation, cet extrait de phycocyanine est la suspension brute de phycocyanine obtenue après lyse enzymatique.
Cette suspension brute traitée également appelée « suspension brute enzymée » comprend en particulier la phycocyanine libérée après lyse cellulaire, des oligomères de glucose, produits de la lyse enzymatique du glycogène et le glycogène résiduel avec les insolubles résultants de la lyse cellulaire en suspension.
Selon un deuxième mode de réalisation de l’invention, l’extrait de phycocyanine est la solution brute de phycocyanine obtenue après séparation de la suspension brute et lyse enzymatique du glycogène, cette lyse ayant été mise en œuvre avant ou après la séparation de la suspension brute, ou avant et après séparation (séparation de la suspension brute enzymée et/ou mise en œuvre de la réaction enzymatique sur la solution brute).
Cette solution brute comprend en particulier la phycocyanine libérée après lyse cellulaire, des oligomères de glucose, produits de la lyse enzymatique du glycogène et le glycogène résiduel. Cette solution brute traitée, appelée également « solution brute enzymée de phycocyanine » comprend généralement de 0,1 à 10 g/L de phycocyanine, plus préférentiellement de 1 à 5 g/L.
Le rapport pondéral à sec glycogène/phycocyanine est avantageusement inférieur à 3, de préférence inférieur à 2,5.
La solution brute enzymée selon l’invention pourra éventuellement être concentrée par élimination d’une partie de l’eau selon les méthodes usuelles de la technique mises en œuvre dans des conditions qui respectent substantiellement l’intégrité de la phycocyanine. Dans ce cas, la teneur en phycocyanine d’une solution brute enzymée et concentrée sera avantageusement de 10 à 50 g/L.
Selon un autre mode de réalisation, l’extrait de phycocyanine est la phycocyanine isolée après extraction à partir de la solution brute enzymée selon les méthodes décrites plus haut.
Pour la phycocyanine isolée, le rapport pondéral à sec glycogène/phycocyanine est avantageusement inférieur à 2, de préférence inférieur à 1.
Selon un autre mode de réalisation, l’extrait de phycocyanine est la phycocyanine purifiée obtenu après purification de l’extrait isolé selon les méthodes décrites plus haut, notamment par diafiltration.
Pour la phycocyanine purifiée, le rapport pondéral à sec glycogène/phycocyanine est avantageusement inférieur à 1 , de préférence inférieur à 0,1.
La Phycocyanine isolée comme la phycocyanine purifiée peuvent encore contenir des traces d’oligomères de glucose, produits de la lyse enzymatique du glycogène.
La phycocyanine obtenue a un pouvoir colorant E10 de 90 à 400, préférentiellement d’au moins 120, plus préférentiellement d’au moins 150.
Pour une solution brute enzymée, le pouvoir colorant E10 est avantageusement de 90 à 110.
Pour la phycocyanine isolée, le pouvoir colorant E10 est avantageusement de 150 à
210.
Pour la phycocyanine purifiée, le pouvoir colorant est avantageusement de 210 à 400.
L’invention concerne aussi un procédé de production d’une phycocyanine d’origine microbienne qui comprend les étapes de (a) culture de microorganismes producteurs de phycocyanine tels que décrits plus haut dans des conditions de culture permettant de produire un moût de fermentation comprenant plus de 30 g/L de matière sèche et au moins 4% de phycocyanine par rapport à la matière sèche,
(b) lyse cellulaire pour libérer la phycocyanine produite et le glycogène pour obtenir une suspension brute telle que définie précédemment,
(c) séparation de la suspension brute pour récupérer une solution brute comprenant la phycocyanine et le glycogène, puis optionnellement
(d) isolation de la phycocyanine à partir de la solution brute, puis optionnellement,
(e) purification de la phycocyanine isolée,
caractérisé en ce que l’on effectue une étape de lyse enzymatique du glycogène avec les enzymes et dans les conditions définis précédemment ou une dégradation au moyen de micro-organisme, ladite lyse enzymatique étant mise en œuvre sur la suspension brute et/ou sur la solution brute.
De manière avantageuse, la phycocyanine obtenue est une phycocyanine qui comprend moins de 50 % de glycogène .
Les procédés de culture sont bien connus de l’homme du métier, notamment décrits dans les demandes de brevet WO 2017/050917, WO 2017/093345 et WO 2018/178334.
Ils permettent d’obtenir des moûts de fermentation de plus de 30 g/L de matière sèche, pouvant aller à plus de 100 g/L de matière sèche.
La teneur en phycocyanine d’au moins 4% peut le cas échéant atteindre plus de 10% selon les conditions de fermentation et les souches cultivées.
L’homme du métier saura déterminer les conditions de culture en fonction de son objectif industriel de production de phycocyanine.
L’étape (c) de séparation est également connue et décrite dans l’état de la technique, notamment par des méthodes usuelles de filtration, comme la microfiltration, ou la centrifugation puis filtration, en particulier par microfiltration
L’invention concerne également l’utilisation des phycocyanines obtenues comme colorants, en particulier comme colorants alimentaires. Elle concerne aussi des aliments, solides ou liquides, en particulier des boissons qui comprennent une phycocyanine à faible teneur en glycogène selon l’invention.
La phycocyanine utilisée comme colorant peut l’être sous forme de solution brute enzymée, de phycocyanine isolée ou de phycocyanine purifiée, telle que définie plus haut.
EXEMPLES
Exemple 1 - Suivi de la concentration en C-PC avant et après lyse enzymatique
Le suivi de la concentration en phycocyanine d’un extrait brut est réalisé au pH4 et pH7 avec différentes quantités d’enzyme « pectinex ». L’extrait brut de phycocyanine issu de Galdieria sulphuraria est produit selon le procédé décrit dans la demande WO 2018/178334. Pour ce suivi, l’enzyme et l’extrait brut de phycocyanine sont filtrés sur filtre 0.22pm. La digestion est réalisée à température ambiante. Pour chaque point de cinétique une lecture des absorbances utiles à la détermination de la concentration de la phycocyanine sont mesurées, parallèlement à une mesure de glucose après dénaturation de l’enzyme (95°C, 5 minutes) avec l’analyseur biochimique YSI2700.
Les résultats sont représentés sur les Figures 1 à 4.
Ces résultats montrent que la quantité de glycogène digérée varie entre les différentes conditions de pH et de concentration en enzyme. Un excès d’enzyme peut entraîner une dégradation de la phycocyanine.
On voit toutefois qu’à moins de 24 h de digestion à pH = 4 et 0,05% de « pectinex » on obtient une lyse importante du glycogène tout en limitant de manière substantielle la dégradation de la phycocyanine.
Exemple 2 - Suivi du taux de digestion du glycogène dans une solution brute de phycocyanine
Le suivi du taux de digestion du glycogène dans une solution brute est réalisé au pH4 et pH7 avec différentes enzymes : alpha amylase (Ban 480L de la société Novozymes), polygalacturonase (Pectinex Ultra SP-L de la société Novozymes) et glucoamylase (Amylase AG XXL de la société Novozymes).
La solution brute de phycocyanine issu de Galdieria sulphuraria est produit selon le procédé décrit dans la demande WO 2018/178334. Pour ce suivi, l’enzyme et la solution brute de phycocyanine sont filtrés sur filtre 0.22pm. La digestion est réalisée à température ambiante. Pour chaque point de cinétique est réalisée une mesure de glucose après dénaturation de l’enzyme (95°C, 5 minutes) avec l’analyseur biochimique YSI2700. Le pourcentage de digestion du glycogène correspond au rapport de la concentration de glucose sur la concentration en glucose après hydrolyse totale du polysaccharide.
Les résultats sont représentés sur les Figures 6 (pH=4) et 7 (pH=7).
Exemple 3 - Teneur en glycogène dans le produit purifié avec ou sans lyse enzymatique
Une solution brute de phycocyanine, non traitée ou digérée 12H avec 0.25% (v/v) de glucosidases a1-6, puis 2H avec 0,1 % (v/v) de polygalacturonase a1 -4 est filtrée sur une membrane fibre creuse ayant une porosité de 70kDa avec une étape finale de diafiltration.
Les différentes mesures réalisées en fin de chaque filtration et/ou étape de filtration montrent que la concentration en glycogène augmente de façon significative dans le rétentat jusqu’à atteindre des concentrations non négligeables par rapport à la PC. Il est donc nécessaire d’éliminer tout ou une partie de ce glycogène pour éviter de diluer le pouvoir colorant du produit final, et un pouvoir colorant E10 compris entre à 90 et 400. La valeur de couleur E10 (10% E618nm) indique la densité de couleur qui est mesurée à 618 nm après avoir dissous une poudre dans une solution aqueuse.
Protocole :
Mesurer 0,25 grammes de l'échantillon et le dissoudre dans 100 ml avec une solution tampon d’acide citrique ajusté pH6,0. Puis diluer la solution 10 fois également avec du tampon d’acide citrique et mesurer l’absorbance à 618 nm en utilisant une cuvette de 1 cm d’épaisseur. Valeur de couleur E10 (10% E618nm) = Absorbance (à 618 nm) x 100 / 0,25 grammes.
Figure imgf000013_0001
Exemple 4 - Pression transmembranaire avec ou sans lyse enzymatique
Un extrait brut de phycocyanine issu de Galdieria sulphuraria produit selon le procédé dans la demande de brevet WO 2018/178334 est clarifié sur membrane fibre creuse PES 0.05pm. Les résultats ci-dessous présentent le suivi de paramètre de filtration avec ou sans digestion avec le « pectinex » (0.05%, 5h30, à température ambiante et pH= 4) d’un même volume de 250 mL d’extrait brut.
Les résultats sont représentés sur la Figure 5. Ils montrent l’effet de la digestion du glycogène sur la microfiltration d’un extrait brut. On constate que pour filtrer un même volume, le temps requis pour l’échantillon digéré est environ deux fois plus court que pour l’échantillon non digéré, du fait de l’augmentation du flux transmembranaire.
REFERENCES
Cruz de Jesùs et al., Int J Food Nutr Sci (2016) 3(3): 1-0
Martinez-Garcia ét al., Int J Biol Macromol. (2016) 89:12-8
Martinez-Garcia ét al., Carbohydrate Polymers (2017) 169: 75-82
- Moon ét al., Korean Journal of Chemical Engineering (2014) 31, 490-495
Shimonaga et al., Marine Biotechnology (2007) 9, 192-202.
Shimonaga et al., Plant and Cell Physiology (2008) 49, 103-116.
- CN 106749633, CN102433015 et CN11 17973
- US 6,074,854, US 5,817,498, US 2017/159090
- WO 2009/075682, WO 2017/050917, WO 2017/050918, WO 2017/093345, WO
2018/178334, WO 2019/036721

Claims

REVENDICATIONS
1. Procédé de purification de phycocyanines à partir d’une solution comprenant la ou les phycocyanines et du glycogène, caractérisé en ce qu’il comprend (i) une étape de dégradation enzymatique du glycogène par une enzyme appropriée pour dégrader le glycogène à un pH inférieur à 6 et une température de réaction inférieure à 40°C et (ii) une étape de séparation des phycocyanines des produits de dégradation du glycogène.
2. Procédé selon la revendication 1 , caractérisé en ce que la température est inférieure à 30°C et/ou le pH est inférieur ou égal à 5.
3. Procédé selon l’une des revendications 1 ou 2, caractérisé en ce que l’enzyme a une activité glucosidase a1-4 ou polygalacturonase.
4. Procédé selon la revendication 3, caractérisé en ce que l’enzyme est une pectinase.
5. Procédé selon l’une des revendications 1 à 4, caractérisé en ce que l’enzyme est un mélange d’enzyme qui comprend une enzyme à activité glucosidase a1-6 en plus de l’enzyme a activité glucosidase a1-4 ou polygalacturonase.
6. Procédé selon la revendication 5, caractérisé en ce que l’enzyme a activité glucosidase a1-6 est une pullulanase.
7. Procédé selon la revendication 6, caractérisé en ce que le mélange d’enzyme comprend une pectinase et une pullulanase.
8. Procédé selon l’une des revendications 1 à 3, caractérisé en ce que l’enzyme a une activité glucosidase a1-4 ou polygalacturonase et une activité glucosidase a1-6.
9. Procédé selon la revendication 8, caractérisé en ce que l’enzyme est une glucoamylase.
10. Procédé selon l’une des revendications 1 à 9, caractérisé en ce que la solution comprenant la ou les phycocyanines et du glycogène est une suspension brute obtenue après lyse cellulaire d’une biomasse de microorganisme producteur de phycocyanine.
1 1. Procédé selon l’une des revendications 1 à 10, caractérisé en ce que la solution comprenant la ou les phycocyanines et du glycogène est une solution brute obtenue après filtration d’une suspension brute elle-même obtenue après lyse cellulaire d’une biomasse de microorganisme producteur de phycocyanine.
12. Procédé de production d’une phycocyanine d’origine microbienne qui comprend les étapes de
(a) culture de microorganismes producteurs de phycocyanine tels que décrits plus haut dans des conditions de culture permettant de produire un moût de fermentation comprenant plus de 30 g/L de matière sèche et au moins 4% de phycocyanine par rapport à la matière sèche, (b) lyse cellulaire pour libérer la phycocyanine produite et le glycogène pour obtenir une suspension brute telle que définie précédemment,
(c) séparation de la suspension brute pour récupérer une solution brute comprenant la phycocyanine et le glycogène, puis optionnellement
(d) isolation de la phycocyanine à partir de la solution brute, puis optionnellement,
(e) purification de la phycocyanine isolée,
caractérisé en ce que l’on effectue une étape de lyse enzymatique du glycogène par une enzyme appropriée pour dégrader le glycogène à un pH inférieur à 6 et une température de réaction inférieure à 40°C, ladite lyse enzymatique étant mise en œuvre sur la suspension brute obtenu en en (b) et/ou sur la solution brute obtenue en (c).
13. Procédé selon la revendication 12, caractérisé en ce que la température est inférieure à 30°C et/ou le pH est inférieur ou égal à 5.
14. Procédé selon l’une des revendications 12 ou 13, caractérisé en ce que l’enzyme a une activité glucosidase a1-4 ou polygalacturonase.
15. Procédé selon la revendication 14, caractérisé en ce que l’enzyme est une pectinase.
16. Procédé selon l’une des revendications 12 à 15, caractérisé en ce que l’enzyme est un mélange d’enzyme qui comprend une enzyme à activité glucosidase a1 -6 en plus de l’enzyme a activité glucosidase a1 -4 ou polygalacturonase.
17. Procédé selon la revendication 16, caractérisé en ce que l’enzyme a activité glucosidase a1 -6 est une pullulanase.
18. Procédé selon la revendication 17, caractérisé en ce que le mélange d’enzyme comprend une pectinase et une pullulanase.
19. Procédé selon l’une des revendications 12 à 14, caractérisé en ce que l’enzyme a une activité glucosidase a1 -4 ou polygalacturonase et une activité glucosidase a1 -6.
20. Procédé selon la revendication 19, caractérisé en ce que l’enzyme est une glucoamylase.
21. Procédé selon l’une des revendications 12 à 20, caractérisé en ce que la solution comprenant la ou les phycocyanines et du glycogène est une suspension brute obtenue en (b).
22. Procédé selon l’une des revendications 12 à 20, caractérisé en ce que la lyse enzymatique est mise en œuvre sur la solution brute obtenue en (c).
23. Procédé selon l’une des revendications 12 à 22, caractérisé en ce que la phycocyanine est une phycocyanine d’origine microbienne, produite par un microorganisme choisi parmi les espèces des genres Arthrospira, Spirulina, Synechococcus, Cyanidioschyzon, Cyanidium ou Galdieria, plus particulièrement Galdieria sulphuraria.
24. Phycocyanine isolée obtenue par le procédé selon l’une des revendications 1 à
23.
25. Phycocyanine isolée selon la revendication 24, caractérisé en ce qu’elle comprend des traces d’enzymes à activité alpha 1-4 et/ou 1-6 glucosidase.
26. Phycocyanine isolée selon l’une des revendications 24 ou 25, caractérisé en ce qu'elle contient des oligomères de glucose, produits de la lyse enzymatique du glycogène.
27. Extrait de phycocyanine comprenant une phycocyanine et du glycogène, caractérisé en ce que le rapport pondéral en poids sec glycogène/phycocyanine est inférieur à 6, et caractérisé en ce qu’il comprend des traces d’enzymes à activité alpha 1-4 et/ou 1-6 glucosidase et/ou des oligomères de glucose, produits de la lyse enzymatique du glycogène.
28. Extrait selon la revendication 27, caractérisé en ce que le rapport pondéral en poids sec glycogène/phycocyanine est inférieur à 4.
29. Extrait selon la revendication 27, caractérisé en ce que le rapport pondéral en poids sec glycogène/phycocyanine est inférieur à 3.
30. Extrait selon la revendication 27, caractérisé en ce que le rapport pondéral en poids sec glycogène/phycocyanine est inférieur à 2,5.
31. Extrait selon la revendication 27, caractérisé en ce que le rapport pondéral en poids sec glycogène/phycocyanine est inférieur à 1.
32. Utilisation d’une phycocyanine isolée selon l’une des revendications 24 à 26 ou d’un extrait selon l’une des revendications 27 à 31 comme colorant alimentaire.
33. Aliment, caractérisé en ce qu’il comprend une phycocyanine isolée selon l’une des revendications 24 à 26 ou d’un extrait selon l’une des revendications 27 à 31.
PCT/EP2020/050547 2019-01-11 2020-01-10 Procédé de purification de phycocyanines WO2020144330A1 (fr)

Priority Applications (9)

Application Number Priority Date Filing Date Title
JP2021540082A JP2022516786A (ja) 2019-01-11 2020-01-10 フィコシアニンを精製するための方法
CA3125830A CA3125830A1 (fr) 2019-01-11 2020-01-10 Procede de purification de phycocyanines
AU2020206521A AU2020206521A1 (en) 2019-01-11 2020-01-10 Process for purifying phycocyanins
KR1020217024324A KR20210137993A (ko) 2019-01-11 2020-01-10 피코시아닌의 정제 방법
US17/420,798 US20220112235A1 (en) 2019-01-11 2020-01-10 Process for purifying phycocyanins
EP20700135.5A EP3908121A1 (fr) 2019-01-11 2020-01-10 Procédé de purification de phycocyanines
MX2021008301A MX2021008301A (es) 2019-01-11 2020-01-10 Proceso de purificacion de ficocianinas.
CN202080018477.6A CN113518558A (zh) 2019-01-11 2020-01-10 用于纯化藻蓝蛋白的方法
BR112021013610-0A BR112021013610A2 (pt) 2019-01-11 2020-01-10 Processo para purificar ficocianinas

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR1900277 2019-01-11
FR1900277A FR3091640B1 (fr) 2019-01-11 2019-01-11 Procédé de purification de phycocyanines

Publications (1)

Publication Number Publication Date
WO2020144330A1 true WO2020144330A1 (fr) 2020-07-16

Family

ID=67001947

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2020/050547 WO2020144330A1 (fr) 2019-01-11 2020-01-10 Procédé de purification de phycocyanines

Country Status (11)

Country Link
US (1) US20220112235A1 (fr)
EP (1) EP3908121A1 (fr)
JP (1) JP2022516786A (fr)
KR (1) KR20210137993A (fr)
CN (1) CN113518558A (fr)
AU (1) AU2020206521A1 (fr)
BR (1) BR112021013610A2 (fr)
CA (1) CA3125830A1 (fr)
FR (1) FR3091640B1 (fr)
MX (1) MX2021008301A (fr)
WO (1) WO2020144330A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3130842A1 (fr) 2021-12-22 2023-06-23 CarbonWorks Procede de captation des phytotoxines dans un reacteur biologique

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023085922A1 (fr) * 2021-11-15 2023-05-19 Ful Foods B.V. Procédé de production d'une composition, composition d'extrait hydrosoluble et composition d'extrait non hydrosoluble, chaque composition étant une composition à base de micro-organismes contenant des phycobiliprotéines

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN1117973A (zh) 1994-08-31 1996-03-06 张媛贞 钝顶节旋藻藻蓝蛋白及其应用
US5817498A (en) 1992-12-28 1998-10-06 Genencor International, Inc. Pullulanase producing microrganisms
WO2009075682A1 (fr) 2007-12-12 2009-06-18 Novozymes A/S Procédé de trempe
CN102433015A (zh) 2011-10-14 2012-05-02 陈勇 蓝藻色素的制备方法
WO2017050918A1 (fr) 2015-09-25 2017-03-30 Fermentalg Composition acide comprenant une phycocyanine
CN106749633A (zh) 2017-03-01 2017-05-31 厦门大学 一种利用氯化氨溶液从螺旋藻中提取藻蓝蛋白的方法
US20170159090A1 (en) 2014-02-07 2017-06-08 Novozymes A/S Compositions for Producing Glucose Syrups
WO2017093345A1 (fr) 2015-12-04 2017-06-08 Fermentalg Procédé de culture d'algues rouges unicellulaires (aru) avec du perméat lacté
CN108165600A (zh) * 2018-03-28 2018-06-15 全家百(苏州)生物科技有限公司 从螺旋藻中萃取藻蓝蛋白的方法
WO2018178334A2 (fr) 2017-03-30 2018-10-04 Fermentalg Purification des phycobiliproteines
WO2019036721A2 (fr) 2017-08-18 2019-02-21 Danisco Us Inc Variants d'alpha-amylases

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003342489A (ja) * 2002-05-28 2003-12-03 Dainippon Ink & Chem Inc 藍藻類からのフィコシアニンの抽出方法
JP4048420B2 (ja) * 2002-06-26 2008-02-20 大日本インキ化学工業株式会社 フィコシアニン色素液の精製方法

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5817498A (en) 1992-12-28 1998-10-06 Genencor International, Inc. Pullulanase producing microrganisms
US6074854A (en) 1992-12-28 2000-06-13 Genencor International, Inc. Pullulanase, microorganisms which produce it, processes for the preparation of this pullulanese and the uses thereof
CN1117973A (zh) 1994-08-31 1996-03-06 张媛贞 钝顶节旋藻藻蓝蛋白及其应用
WO2009075682A1 (fr) 2007-12-12 2009-06-18 Novozymes A/S Procédé de trempe
CN102433015A (zh) 2011-10-14 2012-05-02 陈勇 蓝藻色素的制备方法
US20170159090A1 (en) 2014-02-07 2017-06-08 Novozymes A/S Compositions for Producing Glucose Syrups
WO2017050917A1 (fr) 2015-09-25 2017-03-30 Fermentalg Nouveau procede de culture d'algues rouges unicellulaires
WO2017050918A1 (fr) 2015-09-25 2017-03-30 Fermentalg Composition acide comprenant une phycocyanine
WO2017093345A1 (fr) 2015-12-04 2017-06-08 Fermentalg Procédé de culture d'algues rouges unicellulaires (aru) avec du perméat lacté
CN106749633A (zh) 2017-03-01 2017-05-31 厦门大学 一种利用氯化氨溶液从螺旋藻中提取藻蓝蛋白的方法
WO2018178334A2 (fr) 2017-03-30 2018-10-04 Fermentalg Purification des phycobiliproteines
WO2019036721A2 (fr) 2017-08-18 2019-02-21 Danisco Us Inc Variants d'alpha-amylases
CN108165600A (zh) * 2018-03-28 2018-06-15 全家百(苏州)生物科技有限公司 从螺旋藻中萃取藻蓝蛋白的方法

Non-Patent Citations (9)

* Cited by examiner, † Cited by third party
Title
CRUZ DE JESÙS ET AL., INT J FOOD NUTR SCI, vol. 3, no. 3, 2016, pages 1 - 0
G. BARBIER: "Comparative Genomics of Two Closely Related Unicellular Thermo-Acidophilic Red Algae, Galdieria sulphuraria and Cyanidioschyzon merolae, Reveals the Molecular Basis of the Metabolic Flexibility of Galdieria sulphuraria and Significant Differences in Carbohydrate Metabolism of Both Algae", PLANT PHYSIOLOGY, vol. 137, no. 2, 1 February 2005 (2005-02-01), Rockville, Md, USA, pages 460 - 474, XP055345493, ISSN: 0032-0889, DOI: 10.1104/pp.104.051169 *
MARTINEZ-GARCIA ET AL., CARBOHYDRATE POLYMERS, vol. 169, 2017, pages 75 - 82
MARTINEZ-GARCIA ET AL., INT J BIOL MACROMOL., vol. 89, 2016, pages 12 - 8
MOON ET AL., KOREAN JOURNAL OF CHEMICAL ENGINEERING, vol. 31, 2014, pages 490 - 495
R P SHRESTHA ET AL: "Acidothermophilic red microalga Galdieria sulphuraria: From genome to an extracellular glucoamylase active at extreme low pH and high temperature", JOURNAL OF PHYCOLOGY., vol. 43, no. s1, 76, 1 December 2007 (2007-12-01), US, pages 23 - 24, XP055680988, ISSN: 0022-3646 *
SHI-GAN YAN ET AL: "Single-step chromatography for simultaneous purification of C-phycocyanin and allophycocyanin with high purity and recovery from()", JOURNAL OF APPLIED PHYCOLOGY, KLUWER ACADEMIC PUBLISHERS, DO, vol. 23, no. 1, 27 April 2010 (2010-04-27), pages 1 - 6, XP019881942, ISSN: 1573-5176, DOI: 10.1007/S10811-010-9525-7 *
SHIMONAGA ET AL., MARINE BIOTECHNOLOGY, vol. 9, 2007, pages 192 - 202
SHIMONAGA ET AL., PLANT AND CELL PHYSIOLOGY, vol. 49, 2008, pages 103 - 116

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3130842A1 (fr) 2021-12-22 2023-06-23 CarbonWorks Procede de captation des phytotoxines dans un reacteur biologique
WO2023118401A1 (fr) 2021-12-22 2023-06-29 CarbonWorks Procede de captation des phytotoxines dans un reacteur biologique

Also Published As

Publication number Publication date
KR20210137993A (ko) 2021-11-18
BR112021013610A2 (pt) 2021-09-14
EP3908121A1 (fr) 2021-11-17
CA3125830A1 (fr) 2020-07-16
FR3091640A1 (fr) 2020-07-17
US20220112235A1 (en) 2022-04-14
FR3091640B1 (fr) 2021-06-11
JP2022516786A (ja) 2022-03-02
AU2020206521A1 (en) 2021-07-29
CN113518558A (zh) 2021-10-19
MX2021008301A (es) 2021-09-21

Similar Documents

Publication Publication Date Title
WO2020144330A1 (fr) Procédé de purification de phycocyanines
WO2018178334A2 (fr) Purification des phycobiliproteines
CA1172588A (fr) Procede enzymatique de clarification de gommes xanthanes permettant d'ameliorer leur injectivite et leur filtrabilite
FR2978773A1 (fr) Nouveau procede de fabrication de dextran, solution de dextran obtenue et utilisations
FR2966154A1 (fr) Procede perfectionne d'hydrolyse enzymatique de la cellulose
EP2882853B1 (fr) Procédé d'extraction de beta-amylases a partir d'une fraction soluble de plante amidonnière et en présence d'une protéase
JP6942406B2 (ja) フィルタープレス及びセラミック膜接線濾過によるトリコデルマ・リーゼイからの酵素の分離
FR2943686A1 (fr) Procede d'obtention d'une preparation de beta-amylases a partir des fractions solubles de plantes amidonnieres
FR3022257A1 (fr) Procede de fabrication d'une solution aqueuse stable de beta-amylase, solution aqueuse obtenue et ses utilisations
EP3908652A1 (fr) Procédé d'extraction de phycocyanines
CA3128866A1 (fr) Procede optimise d'exploitation industrielle d'algues rouges unicellulaires
WO2013171424A1 (fr) Souche productrice de turanose et utilisations
FR2961512A1 (fr) Chitosane sous forme de poudre
EP0573536B1 (fr) Xylanase, souches de bacillus productrices de xylanase et leurs utilisations
RU2810761C2 (ru) Способ очистки фикоцианинов
WO2014068208A1 (fr) Procédé de production de sophorose à partir de sophorolipides
EP2235192B1 (fr) Complémentation du sécrétome de Trichoderma reesei limitant les contaminations microbiologiques dans le cadre de la production d'éthanol par fermentation
FR2490677A1 (fr) Procede de preparation de jus sucres et de produits derives a partir de substrats vegetaux cellulosiques
FR2820433A1 (fr) Procede d'extraction de beta-amylase de cereale et utilisation d'une cellulase dans un tel procede
WO2020256535A1 (fr) Bioprocédé de préparation d'un milieu de culture à partir du fruit de cactus du genre opuntia pour la production de biomasse de levures, biocarburants, protéines, et produits chimiques renouvelables
UTAMI et al. Production and immobilization pectinase from Bacillus sp. 2P11 using alginate beads
WO2024088564A1 (fr) Fraction hydrosoluble de plantes limpide
CA2883715A1 (fr) Polypeptide a activite beta-glucosidase renforcee a basse temperature
FR2756844A1 (fr) Nouvelle alpha-glucosidase et nouvelle pullulanase thermostables et leurs utilisations industrielles

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20700135

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 3125830

Country of ref document: CA

ENP Entry into the national phase

Ref document number: 2021540082

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

REG Reference to national code

Ref country code: BR

Ref legal event code: B01A

Ref document number: 112021013610

Country of ref document: BR

ENP Entry into the national phase

Ref document number: 2020206521

Country of ref document: AU

Date of ref document: 20200110

Kind code of ref document: A

WWE Wipo information: entry into national phase

Ref document number: 2021122287

Country of ref document: RU

ENP Entry into the national phase

Ref document number: 2020700135

Country of ref document: EP

Effective date: 20210811

ENP Entry into the national phase

Ref document number: 112021013610

Country of ref document: BR

Kind code of ref document: A2

Effective date: 20210709