WO2020143201A1 - 掩膜板制作方法及掩膜板 - Google Patents

掩膜板制作方法及掩膜板 Download PDF

Info

Publication number
WO2020143201A1
WO2020143201A1 PCT/CN2019/095716 CN2019095716W WO2020143201A1 WO 2020143201 A1 WO2020143201 A1 WO 2020143201A1 CN 2019095716 W CN2019095716 W CN 2019095716W WO 2020143201 A1 WO2020143201 A1 WO 2020143201A1
Authority
WO
WIPO (PCT)
Prior art keywords
layer
manufacturing
bracket
mask plate
mask
Prior art date
Application number
PCT/CN2019/095716
Other languages
English (en)
French (fr)
Inventor
刘周英
Original Assignee
昆山国显光电有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆山国显光电有限公司 filed Critical 昆山国显光电有限公司
Publication of WO2020143201A1 publication Critical patent/WO2020143201A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/16Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering
    • H10K71/166Deposition of organic active material using physical vapour deposition [PVD], e.g. vacuum deposition or sputtering using selective deposition, e.g. using a mask
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03FPHOTOMECHANICAL PRODUCTION OF TEXTURED OR PATTERNED SURFACES, e.g. FOR PRINTING, FOR PROCESSING OF SEMICONDUCTOR DEVICES; MATERIALS THEREFOR; ORIGINALS THEREFOR; APPARATUS SPECIALLY ADAPTED THEREFOR
    • G03F1/00Originals for photomechanical production of textured or patterned surfaces, e.g., masks, photo-masks, reticles; Mask blanks or pellicles therefor; Containers specially adapted therefor; Preparation thereof
    • G03F1/62Pellicles, e.g. pellicle assemblies, e.g. having membrane on support frame; Preparation thereof

Definitions

  • the present application relates to the field of display technology, and in particular to a mask plate manufacturing method and a mask plate.
  • the purpose of the present application is to provide a method for manufacturing a mask plate and a mask plate, the thickness of the mask plate can be adjusted according to requirements, and the mask plate manufactured by the manufacturing method has high opening accuracy and can meet fine metal masks Template requirements.
  • an embodiment of the present application provides a method for manufacturing a mask plate, including: forming a first patterned photoresist layer, wherein the first photoresist layer is coated on the mother board, and patterned to form the first A patterned photoresist layer, the first patterned photoresist layer includes a first support and a first opening area; forming a photoresist pattern, wherein the exposed portion formed on the first support and the mother board through the first opening area A second photoresist layer is coated on the surface of the surface and patterned to form a second patterned photoresist layer stacked on the first patterned photoresist layer, the first patterned photoresist layer and The second patterned photoresist layer constitutes a photoresist pattern.
  • the second patterned photoresist layer includes a second support and a second opening area.
  • the second support is stacked on the first support and forms a support frame.
  • the second The opening area communicates with the first opening area and forms an opening between the support frames; an electroformed layer is formed, in which a metal layer is deposited, and a plurality of ribs formed by the metal layer at the opening constitute the electroformed layer, the thickness of the electroformed layer
  • the thickness less than the support frame is greater than the thickness of the first bracket;
  • a mask plate is formed, in which the mother plate is separated from the electroformed layer, and the electroformed layer after separation is stretched to form a mask plate.
  • the lower surface of the second bracket completely covers the upper surface of the first bracket, and the surface area of the upper surface of the second bracket is greater than the area of the lower surface of the first bracket.
  • the thickness of the first patterned photoresist layer is 5 ⁇ m to 8 ⁇ m, and the thickness of the second patterned photoresist layer is 10 ⁇ m to 20 ⁇ m.
  • the step of forming the electroformed layer includes:
  • the support frame is removed, and at the same time, the metal layer on the support frame is removed, and the metal layer in the opening is retained to form a grid-shaped electroformed layer formed by a plurality of convex ribs crossing vertically and horizontally.
  • the ashing process is used to remove the support frame.
  • the embodiments of the present application also provide a mask plate, which is made by the above mask plate manufacturing method.
  • the method for manufacturing a mask plate and the mask plate provided in the embodiments of the present application firstly sequentially forms a first patterned photoresist layer and a second patterned photoresist layer to form a photoresist pattern, and then The support frame and the opening of the resist pattern are formed in one time to form the electroformed layer, and the mother board and the electroformed layer are separated to form a mask plate.
  • the mask plate has high opening accuracy, and the thickness of the mask plate can be flexibly adjusted according to needs. This kind of mask plate is fully adapted to the needs of high-definition metal mask plates.
  • the mask plate manufactured by the method of the embodiment of the present application can reduce the inclination angle of the opening sidewall of the electroformed layer to reduce the inner shadow area of the electroformed layer, thereby increasing the use of the mask plate The light emitting area of the formed OLED display panel.
  • the mask plate manufactured by the method of the embodiment of the present application can improve the uniformity of the thickness of the organic light-emitting layer of the OLED display panel formed by using the mask plate, thereby improving the display effect of the OLED display panel.
  • FIG. 1 is a flowchart of a method for manufacturing a mask plate provided by an embodiment of the present application
  • FIGS. 2a to 2d are schematic diagrams of a manufacturing process of an embodiment of a method for manufacturing a mask plate of the present application
  • 3a to 3d are schematic diagrams of a manufacturing process of another embodiment of the method for manufacturing a mask plate of the present application.
  • 4a to 4d are schematic diagrams of the manufacturing process of the manufacturing method of the comparative mask plate
  • FIG. 5 is a mask plate manufactured by using the mask plate manufacturing method of the embodiment of the present application.
  • the upper surface and the lower surface mentioned in this application are relative to the mother board, the side close to the mother board is called the lower surface, and the side away from the mother board is called the upper surface.
  • FIG. 1 is a flowchart of a method for manufacturing a mask plate provided by an embodiment of the present application.
  • the specific implementation manner of the present application provides a mask plate manufacturing method, including:
  • Step S110 forming a first patterned photoresist layer, wherein the first photoresist layer is coated on the mother board, and patterned to form a first patterned photoresist layer, and the first patterned photoresist layer Including the first bracket and the first opening area;
  • Step S120 forming a photoresist pattern, wherein a second photoresist layer is coated on the surface of the exposed portion of the first bracket and the mother board formed through the first opening area, and patterned to form the first patterned pattern
  • a second patterned photoresist layer stacked on the photoresist layer, the first patterned photoresist layer and the second patterned photoresist layer constitute a photoresist pattern
  • the second patterned photoresist layer includes a second A bracket and a second opening area, the second bracket is stacked on the first bracket and forms a support frame, and the second opening area communicates with the first opening area and forms an opening between the support frames;
  • Step S130 forming an electroformed layer, wherein a metal layer is deposited on the photoresist pattern, and a plurality of convex ribs formed by the metal layer at the opening constitute an electroformed layer, the thickness of the electroformed layer is less than the thickness of the support frame is greater than the first The thickness of the bracket;
  • Step S140 a mask plate is formed, in which the mother board is separated from the electroformed layer, and the electroformed layer after the separation is stretched to form a mask plate.
  • the method for manufacturing a mask plate first forms a first patterned photoresist layer and a second patterned photoresist layer in sequence to form a photoresist pattern.
  • the photoresist pattern has a support frame and Open the opening, and then form the electroformed layer in the opening in one molding, and finally make the mask plate.
  • the mask plate has high opening precision, which can effectively improve the resolution of the mask plate.
  • the thickness of the mask plate can be flexibly adjusted according to the needs. This kind of mask plate is fully adapted to the needs of high-definition metal mask plates.
  • the electroforming layer is produced by one-time electroforming, the process is simple, no etching is required, the cost is low, and the opening accuracy can be better controlled, and the opening side of the electroforming layer is reduced
  • the inclination angle of the wall reduces the inner shadow area of the electroformed layer at the opening, thereby increasing the light-emitting area of the OLED display panel formed by using such a mask.
  • the mask plate manufactured by the method of the embodiment of the present application can improve the uniformity of the thickness of the organic light-emitting layer of the OLED display panel formed by using the mask plate, thereby improving the display effect of the OLED display panel.
  • step S110 first, a first photoresist layer is coated on the mother board, the first photoresist layer uses a positive photoresist, and then the first photoresist layer
  • the first exposure mask is arranged on the top so that light is irradiated through the first exposure mask.
  • the first exposure mask is a patterned mask having a light-transmitting area and a light-shielding area.
  • the exposed first photoresist layer is developed, and the unexposed areas are left to form a first patterned photoresist layer.
  • the thickness of the adhesive layer is 5 ⁇ m-8 ⁇ m, optionally 6 ⁇ m-7 ⁇ m.
  • the side of the first bracket is a smooth surface.
  • step S120 when forming the second patterned photoresist layer, first, a second photoresist layer is coated on the first support and the mother board, and the second photoresist layer uses a negative photoresist, and then A second exposure mask is arranged on the second photoresist layer so that light is irradiated through the second exposure mask.
  • the second exposure mask is a pattern mask having a light-transmitting area and a light-shielding area.
  • the exposed second photoresist layer is developed, and the exposed area is left, thereby forming a second patterned photoresist layer.
  • the heating and curing form a second bracket with an inverted trapezoid in cross section on the first bracket, and the cross section of the second bracket may be an inverted trapezoid.
  • the cross-section is a cross-section perpendicular to the direction of the motherboard.
  • the inverted trapezoid is a trapezoid with a longer bottom edge on the side away from the motherboard relative to the shorter bottom edge.
  • the angle ⁇ formed by the side of the second bracket and the motherboard is determined according to the thickness of the first bracket.
  • the angle ⁇ formed by the side of the second bracket and the motherboard satisfies: 30° ⁇ 90°, optionally 60° ⁇ ⁇ 75°.
  • the sides of the second bracket are smooth surfaces.
  • the thickness of the second patterned photoresist layer is 10 ⁇ m-20 ⁇ m, and the thickness of the optional second patterned photoresist layer is 12 ⁇ m-18 ⁇ m.
  • both the first bracket and the second bracket may be columnar, the lower surface of the second bracket completely covers the upper surface of the first bracket, and the area of the upper surface of the second bracket is larger than the area of the lower surface of the first bracket; optionally, The area of the upper surface of the first bracket is equal to the area of the lower surface of the second bracket. The area of the upper surface of the second bracket is larger than the area of the lower surface of the second bracket.
  • the columnar second bracket and the columnar first bracket are correspondingly arranged in the longitudinal direction where the contact surface is vertical, and optionally, the centerline of the columnar second bracket and the columnar first bracket completely overlap in the longitudinal direction, that is, perpendicular to the motherboard direction.
  • step S130 includes depositing a metal layer on the support frame and the motherboard at the opening; removing the support frame while removing the metal deposit layer on the support frame, leaving the metal layer at the opening to form a plurality of ribs (Rib) Vertical and horizontal distribution forms a grid-shaped electroformed layer.
  • the support frame is removed by a stripper process to form a plurality of hollow areas in the grid-shaped electroformed layer, that is, the area where the support frame is located is the hollow area of the electroformed layer.
  • the distance D between the upper surfaces of the ribs between two adjacent support frames is reduced by 1 ⁇ m.
  • the thickness of the electroformed layer is 10 ⁇ m to 25 ⁇ m. Alternatively, the thickness of the electroformed layer is 15 ⁇ m to 20 ⁇ m.
  • the material of the metal layer is magnetic nickel or nickel-based alloy material.
  • FIG. 1 is schematic views of the manufacturing process of the mask manufacturing method of Embodiment 1.
  • FIG. 2a to 2d are schematic views of the manufacturing process of the mask manufacturing method of Embodiment 1.
  • the manufacturing method of the mask of the first embodiment includes:
  • step S110 using steps S110 and S120 to form a photoresist pattern on the mother board 10, in step S110, a positive photoresist is coated on the mother board 10, and a patterning process is performed to form a thickness H
  • the first patterned photoresist layer includes a plurality of columnar first supports 20 having a isosceles trapezoidal cross-section, and a first opening area 11, a side 21 of the first support 20 and the mother board 10
  • the formed angle ⁇ is 110°.
  • a negative photoresist is coated on the upper surface of the first patterned photoresist layer and the first opening area 11 and patterned to form the first patterned photoresist
  • a second patterned photoresist layer stacked on the adhesive layer.
  • the second patterned photoresist layer includes a plurality of columnar second supports 30 and an second opening region 12 having an inverted trapezoidal interface.
  • the angle ⁇ formed by the motherboard 10 is 70°.
  • the thickness of the support frame formed by the second bracket 30 and the first bracket 20 is T'.
  • the electroformed layer 40 is formed in the mesh opening of the photoresist pattern by step S130.
  • the thickness of the electroformed layer 40 is T
  • the angle ⁇ formed between the side surface 31 of the second bracket 30 and the motherboard 10 is the cone angle ⁇ ′ of the electroformed layer 40
  • the rib 41 of the electroformed layer 40 has The lower surface 42 of the rib contacting the motherboard 10 and the upper surface 43 of the rib away from the motherboard.
  • the distance D between the upper surface 43 of the rib between two adjacent support frames.
  • the electroformed layer 40 is peeled off from the mother board 10.
  • the stripped electroformed layer 40 is stretched, and the lower surface 42 of the rib of the electroformed layer 40 is disposed upward to form a mask.
  • the critical distance (CD) of the hollow area between two adjacent ribs 41 is the minimum width dimension of the support frame shown in FIG. 2a.
  • the maximum width dimension D rib of the rib 41 is the maximum distance of the opening formed between the support frames shown in FIG. 2a.
  • Example 1 of the present application while ensuring the ratio of the boundary distance CD of the hollowed area to the maximum width dimension D rib of the rib 41, the thickness T′ of the support frame, and the thickness T of the electroformed layer 40, the electricity
  • the taper angle ⁇ 'of the casting layer 40 that is, the angle ⁇ decreases by 20°
  • the distance D of the upper surface 43 of the rib 41 of the electroforming layer 40 between the two adjacent support frames only decreases by 4 ⁇ m, which affects the strength of the mask Smaller.
  • FIG. 3a to 3d are schematic diagrams of the manufacturing process of the mask manufacturing method of Embodiment 2.
  • FIG. 3a to 3d are schematic diagrams of the manufacturing process of the mask manufacturing method of Embodiment 2.
  • the manufacturing method of the mask of the first embodiment includes:
  • step S110 a positive photoresist is coated on the mother board 10, and a patterning process is formed to have a first thickness of The first patterned photoresist layer of H, the first patterned photoresist layer includes a plurality of columnar first brackets 20 having a rectangular cross section, an angle ⁇ formed by the side surface 21 of the first bracket 20 and the motherboard 10 is 90°
  • step S120 a negative photoresist is coated on the upper surface of the first patterned photoresist layer and the first opening area 11 of the mother board 10 to form a columnar second support 30 having an inverted trapezoidal cross section, and forming a second Patterning the photoresist layer, the angle ⁇ formed by the side surface 31 of the second support 20 and the mother board 10 is 80°.
  • the thickness of the support frame formed by the second bracket 30 and the first bracket 20 is T'.
  • the electroformed layer 40 is formed in the mesh opening of the photoresist pattern by step S130.
  • the thickness of the electroformed layer 40 is T
  • the angle ⁇ formed between the side surface 31 of the second bracket 30 and the motherboard 10 is the cone angle ⁇ ′ of the electroformed layer 40
  • the rib 41 of the electroformed layer 40 has The lower surface 42 of the rib contacting the motherboard 10 and the upper surface 43 of the rib remote from the motherboard 10, the distance D between the upper surface 43 of the rib between two adjacent support frames.
  • the electroformed layer 40 is peeled off from the mother board 10.
  • the stripped electroformed layer 40 is stretched, and the lower surface 42 of the rib of the electroformed layer 40 is disposed upward to form a mask.
  • the taper angle ⁇ ′ of the electroformed layer 40 that is, the size of the angle ⁇ , is changed to meet the needs of mask production. Specifically, the larger the thickness H of the first photoresist layer, the smaller the angle ⁇ , that is, the larger the thickness of the first support 20, the smaller the angle ⁇ ; the smaller the thickness H of the first photoresist layer, the larger the angle ⁇ .
  • FIG. 4a to 4d are schematic diagrams of the manufacturing process of the mask manufacturing method of Comparative Example 1.
  • FIG. 4a to 4d are schematic diagrams of the manufacturing process of the mask manufacturing method of Comparative Example 1.
  • the manufacturing method of the mask plate of Comparative Example 1 includes:
  • the thickness of the electroformed mold pillar layer 51 can be controlled to some extent by the above method, the CD/D rib value of the electroformed mold pillar layer 51 is reduced, and a higher pixel density is realized.
  • the opening angle of the electroformed mold pillar layer 51 is large due to limitations of the minimum size of the inverted trapezoid, CD/D rib , thickness of the electroformed mold pillar layer 51, etc. .
  • Example 1 when the thickness of the CD/D rib , the thickness T′ of the support frame, and the thickness T of the electroformed layer 40 are unchanged, when the electroformed layer 40 When the angle ⁇ of the opening is reduced by 20°, the distance D between the upper surface of the electroformed layer between the two adjacent support frames is only reduced by 4 ⁇ m, which does not affect the strength of the mask. In Comparative Example 1, if the angle ⁇ of the opening of the electroformed mold pillar layer 51 is also reduced by 20° under the same conditions, the upper surface of the electroformed mold pillar layer 51 is adjacent to two photoresist molds.
  • the distance D between the pillars 50 needs to be reduced by 12 ⁇ m, which will have a greater influence on the strength of the mask. Therefore, compared with the comparative embodiment, the manufacturing method of the mask provided by the embodiments of the present application can increase the pixel density and ensure the strength of the mask.
  • Example 2 Compared with Example 1, in Example 2, the angle ⁇ of the opening of the electroformed layer 40 decreases slightly, and the mask prepared by the method of Example 2 is used. When the panel is vapor-deposited, the image of its inner shadow is also slightly smaller. Compared with the vapor deposition of the mask plate prepared by the method of Example 1, the display panel has a larger light-emitting area, which is beneficial to increase the aperture ratio.
  • the method for manufacturing a mask plate according to an embodiment of the present application is helpful to reduce the angle ⁇ of the opening of the electroformed layer, increase the light-emitting area and reduce the influence of inner shadow, and is beneficial to reduce the CD/D rib Value to achieve the purpose of increasing pixel density.
  • FIG. 5 is a schematic diagram of a partial array of the mask plate.
  • an embodiment of the present application further provides a mask plate, which includes an electroformed layer 60.
  • the electroformed layer 60 is a grid-shaped electroformed structure with a hollow area 61 formed by a plurality of convex ribs arranged vertically and horizontally.
  • the mask layer is made by using the mask manufacturing method of the embodiment of the present application.
  • a layer of positive photoresist is coated on the mother board, and a first patterned photoresist layer with a thickness of H is formed by patterning, and then the first The upper surface of the patterned photoresist layer and the exposed portion of the mother board are coated with a layer of negative photoresist to make a columnar second support with an inverted trapezoidal cross-section of a second thickness and form a second patterned photoresist layer , And then form an electroformed layer in the opening between the photoresist patterns formed by each group of the first patterned photoresist layer and the second patterned photoresist layer in one molding, and finally make a plurality of array arrangements The masking plate of the electroformed layer of the hollowed-out area.
  • the manufacturing process of the mask plate of the embodiment of the present application it is possible to control by controlling the overall thickness of the support frame formed by the first patterned photoresist layer and the second patterned photoresist layer without changing
  • the thickness ratio of the first patterned photoresist layer and the second patterned photoresist layer enables the mask plate to increase the electroformed layer of the mask plate under the condition of satisfying the CD/D rib and the strength of the mask plate
  • the angle of the opening improves the effect of poor display effect caused by the taper angle being too small.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Electroluminescent Light Sources (AREA)
  • Preparing Plates And Mask In Photomechanical Process (AREA)
  • Physical Vapour Deposition (AREA)

Abstract

一种掩膜板制作方法及掩膜板。掩膜板制作方法包括:形成第一图案化光刻胶层;形成光刻胶图案(20、30);形成电铸层(40);形成掩膜板。掩膜板采用上述制作方法制成。掩膜板制作方法及掩膜板能够减小电铸层(40)的开口的角度,以增大发光面积、提高电铸层(40)厚度的均一性,同时还能够使电铸层(40)的厚度可调。

Description

掩膜板制作方法及掩膜板
相关申请的交叉引用
本申请要求享有于2019年01月09日提交的名称为“掩膜板制作方法及掩膜板”的中国专利申请第201910020721.1号的优先权,该申请的全部内容通过引用并入本文中。
技术领域
本申请涉及显示技术领域,具体涉及一种掩膜板制作方法及掩膜板。
背景技术
随着有机发光二极管(Organic Light-Emitting Diode,OLED)显示面板对高像素密度(Pixels Per Inch,PPI)的追求,在保证蒸镀RGB发光层的精细金属掩模板(Fine Metal Mask,FMM)的强度的前提下,减小掩膜板的厚度,以提高显示面板的像素密度成为了现阶段的研究方向。
发明内容
本申请的目的是提供一种掩膜板制作方法及掩膜板,所述掩膜板的厚度根据需求可调节,所述制造方法制造得到的掩膜板的开口精度高,能够满足精细金属掩模板的要求。
一方面,本申请实施例提供了一种掩膜板制作方法,包括:形成第一图案化光刻胶层,其中,在母板上涂覆第一光刻胶层,并图案化处理形成第一图案化光刻胶层,第一图案化光刻胶层包括第一支架和第一开口区域;形成光刻胶图案,其中,在第一支架和母板通过第一开口区域形成的暴露部分的表面上涂覆第二光刻胶层,并图案化处理以形成在第一图案化光刻胶层上层叠的第二图案化光刻胶层,所述第一图案化光刻胶层和所述第二图案化光刻胶层构成光刻胶图案,第二图案化光刻胶层包括第二支架 和第二开口区域,第二支架层叠于第一支架上并形成支撑架,第二开口区域与第一开口区域连通并形成支撑架之间的开口;形成电铸层,其中,沉积金属层,由开口处的金属层形成的多个凸肋构成电铸层,电铸层的厚度小于支撑架的厚度大于第一支架的厚度;形成掩膜板,其中,将母板与电铸层分离,对分离之后的电铸层进行张网以形成掩膜板。
根据本申请一方面的实施例,第二支架的下表面完全覆盖第一支架的上表面,第二支架的上表面的表面积大于第一支架的下表面的面积。
根据本申请一方面前述任一实施方式,第一图案化光刻胶层的厚度为5μm~8μm,第二图案化光刻胶层的厚度为10μm~20μm。
根据本申请一方面前述任一实施方式,形成电铸层的步骤包括:
在支撑架及开口对应的母板上沉积金属层;
去除支撑架,同时去除支撑架上的金属层,保留开口内的金属层以形成由多个凸肋纵横交叉分布构成网格状电铸层。
根据本申请一方面前述任一实施方式,采用灰化工艺去除支撑架。
另一方面,本申请实施例还提供了一种掩膜板,掩膜板采用上述的掩膜板制作方法制成。
本申请实施例提供的掩膜板制作方法及掩膜板,该方法首先依次制作第一图案化光刻胶层和第二图案化光刻胶层的方式形成了光刻胶图案,然后根据光刻胶图案的支撑架和开口,一次成型制作电铸层,并将母板与电铸层分离以形成掩膜板。掩膜板开口精度高,掩膜板厚度根据需要可灵活调节,该种掩膜板完全适应高精细金属掩膜板的需求。
进一步的,通过本申请实施例的方法制作的掩膜板,能够减小电铸层的开口侧壁的倾斜角度,以减小电铸层的内阴影面积,进而增大利用该种掩膜板形成的OLED显示面板的发光面积。同时,通过本申请实施例的方法制作的掩膜板,能够提高利用该种掩膜板形成的OLED显示面板的有机发光层厚度的均一性,从而提高OLED显示面板的显示效果。
附图说明
下面将参考附图来描述本申请示例性实施例的特征、优点和技术效 果,附图并未按照实际的比例绘制。
图1是本申请实施例提供的一种掩膜板制作方法的流程图;
图2a至图2d是本申请掩膜板制作方法的一种实施例的制造过程示意图;
图3a至图3d是本申请掩膜板制作方法的另一种实施例的制造过程示意图;
图4a至图4d是对比例掩膜板制作方法的制造过程示意图;
图5是采用本申请实施例的掩膜板制作方法制成的掩膜板。
具体实施方式
下面将详细描述本申请的各个方面的特征和示例性实施例。在下面的详细描述中,提出了许多具体细节,以便提供对本申请的全面理解。但是,对于本领域技术人员来说很明显的是,本申请可以在不需要这些具体细节中的一些细节的情况下实施。下面对实施例的描述仅仅是为了通过示出本申请的示例来提供对本申请的更好的理解。在附图和下面的描述中,至少部分的公知结构和技术没有被示出,以便避免对本申请造成不必要的模糊;并且,为了清晰,可能夸大了部分结构的尺寸。此外,下文中所描述的特征、结构或特性可以以任何合适的方式结合在一个或更多实施例中。
为了更好地理解本申请,下面结合图1至图4对本申请实施方式提供的掩膜板制作方法及掩膜板进行详细描述。
本申请中提及的上表面和下表面是相对于母板来说的,靠近母板的一侧称为下表面,远离母板一侧称为上表面。
图1是本申请实施方式提供的一种掩膜板制作方法的流程图。
参阅图1,本申请具体实施方式提供了一种掩膜板制作方法,包括:
步骤S110,形成第一图案化光刻胶层,其中,在母板上涂覆第一光刻胶层,并图案化处理形成第一图案化光刻胶层,第一图案化光刻胶层包括第一支架和第一开口区域;
步骤S120,形成光刻胶图案,其中,在第一支架和母板通过第一开口区域形成的暴露部分的表面上涂覆第二光刻胶层,并图案化处理以形成在第一图案化光刻胶层上层叠的第二图案化光刻胶层,第一图案化光刻胶层和第二图案化光刻胶层构成光刻胶图案,第二图案化光刻胶层包括第二支架和第二开口区域,第二支架层叠于第一支架上并形成支撑架,第二开口区域与第一开口区域连通并形成支撑架之间的开口;
步骤S130,形成电铸层,其中,在光刻胶图案上沉积金属层,由开口处的金属层形成的多个凸肋构成电铸层,电铸层的厚度小于支撑架的厚度大于第一支架的厚度;
步骤S140,形成掩膜板,其中,将母板与电铸层分离,对分离之后的电铸层进行张网以形成掩膜板。
本申请具体实施方式提供的掩膜板制作方法,首先依次制作第一图案化光刻胶层和第二图案化光刻胶层的方式形成了光刻胶图案,光刻胶图案具有支撑架和开口,然后一次成型地在开口内制作电铸层,并最终制成掩膜板。掩膜板开口精度高,能够有效提高掩膜板的分辨率,掩膜板厚度根据需要可灵活调节,该种掩膜板完全适应高精细金属掩膜板的需求。进一步的,在本申请具体实施方式中,采用一次电铸成型的方法制作电铸层,工艺简单,无需刻蚀,成本低,且能更好的控制开口精度,减小电铸层的开口侧壁的倾斜角度,以减小电铸层在开口处的内阴影面积,进而增大利用该种掩膜板形成的OLED显示面板的发光面积。同时,通过本申请实施例的方法制作的掩膜板,能够提高利用该种掩膜板形成的OLED显示面板的有机发光层厚度的均一性,从而提高OLED显示面板的显示效果。
在本申请具体实施方式中,在步骤S110中,首先,在母板上涂覆第一光刻胶层,该第一光刻胶层采用正性光刻胶,然后在第一光刻胶层上布置第一曝光掩膜,使光通过第一曝光掩膜照射。其中,该第一曝光掩膜为具有透光区域和遮光区域的图案化掩膜。其次,经过曝光的第一光刻胶层进行显影处理,非曝光区域被残留,以形成第一图案化光刻胶层。
步骤S110中,第一支架为柱状结构体,且在第一图案化光刻胶层中呈行列分布,第一开口区域为每两个相邻第一支架之间的空隙相互连通形 成的网状通道;第一支架的侧面与所述母板形成的角度α满足:90°≤α<180°;可选择地90°<α<120°,或者,α=90°;第一图案化光刻胶层的厚度为5μm~8μm,可选择地为6μm~7μm。第一支架的侧面为平滑表面。
步骤S120中,在形成第二图案化光刻胶层时,首先,在第一支架和母板上涂覆第二光刻胶层,该第二光刻胶层采用负性光刻胶,然后在第二光刻胶层上布置第二曝光掩膜,使光通过第二曝光掩膜照射。其中,该第二曝光掩膜为具有透光区域和遮光区域的图案掩膜。其次,经过曝光的第二光刻胶层进行显影,而曝光区域被残留,由此形成了第二图案化光刻胶层。
另外,加热固化在第一支架上形成横截面为倒置梯形的第二支架,第二支架的横截面可选择地为倒梯形。本实施例中所说的横截面为垂直于母板方向的截面,倒梯形为较长的底边相对于较短的底边位于远离母板的一侧的梯形。第二支架的侧面与母板形成的角度θ根据第一支架的厚度确定,第二支架的侧面与母板形成的角度θ满足:30°<θ<90°,可选择地为60°<θ<75°。第二支架的侧面为平滑表面。第二图案化光刻胶层的厚度为10μm~20μm,可选择的第二图案化光刻胶层的厚度为12μm~18μm。
步骤S120中,第一支架和第二支架均可以为柱状,第二支架的下表面完全覆盖第一支架上表面,第二支架上表面的面积大于第一支架下表面的面积;可选择的,第一支架上表面的面积等于第二支架下表面的面积,第二支架上表面的面积大于第二支架下表面的面积,故,柱状第二支架与柱状第一支架的接触面完全重叠,与接触面垂直的纵向上柱状第二支架与柱状第一支架对应设置,可选择地,在纵向上也即垂直于母板方向上柱状第二支架与柱状第一支架的中心线完全重叠。
在一些实施例中,步骤S130包括在支撑架及开口处的母板上沉积金属层;去除支撑架,同时去除支撑架上的金属沉积层,保留开口处的金属层以形成由多个凸肋(Rib)纵横交叉分布构成网格状电铸层。
在具体实施例中,通过灰化(Stripper)工艺去除支撑架,以在网格状电铸层内形成多个镂空区域,即支撑架所在的区域为电铸层的镂空区域。
在一些实施例中,步骤S130中,金属层的沉积厚度根据第二支架的侧面与母板形成的角度θ确定;电铸层的凸肋具有接触母板的下表面和与远离母板的上表面,凸肋上表面在相邻两个支撑架之间的距离D的减小量△D与角度θ的减小量△θ满足:△D:△θ=1:5,其中,△D的单位为微米,△θ的单位为度。也即,当第二支架的侧面与母板形成的角度θ减小5°,则凸肋上表面在相邻两个支撑架之间的距离D减小1μm。电铸层的厚度为10μm~25μm,可选择的,电铸层的厚度为15μm~20μm。
步骤S130中,所述金属层的材料为磁性镍或镍基合金材料。
下面通过实施例、对比实施例及制造过程示意图,进一步详细说明本申请具体实施方式。
实施例1
图2a至图2d是实施例1的掩膜板制作方法的制造过程示意图。
参阅图2a至图2d,实施例1的掩膜板制作方法,包括:
如图2a所示,利用步骤S110和步骤S120在母板10上形成光刻胶图案,在步骤S110中在母板10上涂覆正性光刻胶,并图案化处理形成厚度为H的第一图案化光刻胶层,第一图案化光刻胶层包括多个具有正等腰梯形截面的柱状第一支架20,和第一开口区域11,第一支架20的侧面21与母板10形成的角度α为110°,步骤S120中在第一图案化光刻胶层的上表面和第一开口区域11涂覆负性光刻胶,并图案化处理以形成在第一图案化光刻胶层上层叠的第二图案化光刻胶层,第二图案化光刻胶层包括多个具有倒梯形界面的柱状第二支架30和第二开口区域12,第二支架30的侧面31与母板10形成的角度θ为70°。其中,第二支架30和第一支架20构成的支撑架的厚度为T’。
如图2b所示,利用步骤S130在光刻胶图案的网状开口内形成电铸层40。其中,电铸层40的厚度为T,第二支架30的侧面31与母板10之间形成的角度θ即为电铸层40的锥角θ’,电铸层40的凸肋41具有与母板10接触的凸肋下表面42和与远离母板的凸肋上表面43,凸肋上表面43在相邻两个支撑架之间的距离D。
如图2c所示,将电铸层40从母板10上剥离。
如图2d所示,对剥离后的电铸层40进行张网,使电铸层40的凸肋下表面42向上设置,构成掩膜板。相邻两个凸肋41之间的镂空区域的边界距离(critical distance,CD)为图2a所示支撑架的最小宽度尺寸。凸肋41的最大宽度尺寸D rib为图2a所示支撑架之间形成的开口的最大距离。
在本申请实施例1中,在保证镂空区域的边界距离CD与凸肋41的最大宽度尺寸D rib的比例、支撑架的厚度T’及电铸层40的厚度T不变的情况下,电铸层40锥角θ’,即角度θ减小20°电铸层40的凸肋41上表面43在相邻两个支撑架之间的距离D只减小4μm,对掩膜板强度的影响较小。
实施例2
图3a至图3d是实施例2的掩膜板制作方法的制造过程示意图。
参阅图3a至图3d,实施例1的掩膜板制作方法,包括:
如图3a所示,利用步骤S110和步骤S120在母板10上形成光刻胶图案,在步骤S110中在母板10上涂覆正性光刻胶,并图案化处理形成具有第一厚度为H的第一图案化光刻胶层,第一图案化光刻胶层包括多个具有矩形截面的柱状第一支架20,第一支架20的侧面21与母板10形成的角度α为90°,步骤S120中在第一图案化光刻胶层的上表面和母板10的第一开口区域11涂覆负性光刻胶,制作具有倒梯形截面的柱状第二支架30,并形成第二图案化光刻胶层,第二支架20的侧面31与母板10形成的角度θ为80°。其中,第二支架30和第一支架20构成的支撑架的厚度为T’。如图3b所示,利用步骤S130在光刻胶图案的网状开口内形成电铸层40。其中,电铸层40的厚度为T,第二支架30的侧面31与母板10之间形成的角度θ即为电铸层40的锥角θ’,电铸层40的凸肋41具有与母板10接触的凸肋下表面42和远离母板10的凸肋上表面43,凸肋上表面43在相邻两个支撑架之间的距离D。
如图3c所示,将电铸层40从母板10上剥离。
如图3d所示,对剥离后的电铸层40进行张网,使电铸层40的凸肋下表面42向上设置,构成掩膜板。
在本申请实施例2中,在保证镂空区域的边界距离CD与凸肋41的最 大宽度尺寸D rib的比例、支撑架的厚度T’及电铸层40的厚度T不变的情况下,可以通过控制第一图案化光刻胶层厚度H来改变电铸层40锥角θ’,即角度θ的大小,从而满足掩膜板制作的需要。具体的,第一光刻胶层厚度H越大则角度θ越小,也即第一支架20的厚度越大,角度θ越小;第一光刻胶层厚度H越小,角度θ越大。
对比实施例1
图4a至图4d是对比实施例1的掩膜板制作方法的制造过程示意图。
参阅图4a至图4d,对比实施例1的掩膜板制作方法,包括:
a、在母板10上涂覆负性光刻胶,并通过曝光显影生成具有倒梯形截面的光刻胶模柱50;b、在每两个光刻胶模柱50之间的开口处形成电铸模柱层51,其中,电铸层51与母板10的接触面为板铸接触面52;c、对电铸模柱层51进行脱模处理,使电铸模柱层51从母板10上剥离;d、对剥离下来的电铸模柱层51进行张网处理,形成板铸接触面52向上的掩膜板。
虽然,利用上述的方法可以一定程度地控制电铸模柱层51的厚度,减小电铸模柱层51的CD/D rib值,实现较高的像素密度。但是,该方法在制作倒梯形的电铸模柱层51时,由于倒梯形最小尺寸、CD/D rib和电铸模柱层51的厚度等的限制,导致电铸模柱层51的开口的角度较大。
由上述实施例1与对比例1可以看出:在实施例1中,保证CD/D rib、支撑架的厚度T’、电铸层40的厚度T不变的情况下,当电铸层40的开口的角度θ减小20°时,电铸层的上表面在相邻两个支撑架之间的距离D仅减小4μm,并不会影响掩膜板的强度。而在对比实施例1中,如果在相同的条件下,同样使电铸模柱层51的开口的角度θ减小20°时,电铸模柱层51的上表面在相邻两个光刻胶模柱50之间的距离D需要减小12μm,则会对掩膜板的强度有较大的影响。因此,本申请实施例提供的掩膜板制造方法相对于对比实施例,能够在提高像素密度的同时,保证掩膜板的强度。
由上述实施例2与实施例1可以看出:实施例2相较于实施例1,电铸层40的开口的角度θ的减小角度略小,则采用实施例2的方法制备的掩 膜板进行蒸镀时,其内阴影的影像也略小,相较于采用实施例1的方法制备的掩膜板进行蒸镀,使得显示面板具有较大的发光面积,有利于增大开口率。
综上所述,本申请实施例的掩膜板制作方法,有利于减小电铸层的开口的角度θ,增大发光面积和减小内阴影的影响,并且有利于减小CD/D rib值,从而达到提升像素密度的目的。
请参阅图5,为掩膜板的局部阵列示意图。如图5所示,本申请实施例还提供了一种掩膜板,包括电铸层60,电铸层60为由多个凸肋纵横交叉分布构成的具有镂空区域61的网格状电铸层,掩膜板采用本申请实施例的掩膜板制作方法制成。具体地,本申请实施例的掩膜板,通过在母板先涂覆一层正性光刻胶,并图案化处理形成具有厚度为H的第一图案化光刻胶层,再在第一图案化光刻胶层的上表面和母板的暴露部分涂覆一层负性光刻胶,制作具有第二厚度的倒梯形截面的柱状第二支架,并形成第二图案化光刻胶层,然后一次成型地在每组第一图案化光刻胶层和第二图案化光刻胶层形成的光刻胶图案之间的开口内制作电铸层,并最终制成具有多个阵列排列的镂空区域的电铸层的掩膜板。因此,在本申请实施例的掩膜板的制作过程中,能够在不改变第一图案化光刻胶层和第二图案化光刻胶层形成的支撑架的整体厚度的前提下,通过控制第一图案化光刻胶层和第二图案化光刻胶层的厚度比例,使掩膜板在满足CD/D rib以及掩膜板的强度的条件下,增加掩膜板的电铸层的开口的角度,从而改善因锥度角过小造成的显示效果不良的影响。
虽然已经参考优选实施例对本申请进行了描述,但在不脱离本申请的范围的情况下,可以对其进行各种改进并且可以用等效物替换其中的部件。尤其是,只要不存在结构冲突,各个实施例中所提到的各项技术特征均可以任意方式组合起来。本申请并不局限于文中公开的特定实施例,而是包括落入权利要求的范围内的所有技术方案。

Claims (18)

  1. 一种掩膜板制作方法,包括:
    形成第一图案化光刻胶层,其中,在母板上涂覆第一光刻胶层,并图案化处理形成所述第一图案化光刻胶层,所述第一图案化光刻胶层包括第一支架和第一开口区域;
    形成光刻胶图案,其中,在所述第一支架和所述母板通过所述第一开口区域形成的暴露部分的表面上涂覆第二光刻胶层,并图案化处理以形成在所述第一图案化光刻胶层上层叠的第二图案化光刻胶层,所述第一图案化光刻胶层和所述第二图案化光刻胶层构成所述光刻胶图案,所述第二图案化光刻胶层包括第二支架和第二开口区域,所述第二支架层叠于所述第一支架上并形成支撑架,所述第二开口区域与所述第一开口区域连通并形成所述支撑架之间的开口;
    形成电铸层,其中,在所述光刻胶图案上沉积金属层,由所述开口处的所述金属层构成电铸层,所述电铸层的厚度小于所述支撑架的厚度且大于所述第一支架的厚度;
    形成掩膜板,其中,将所述母板与所述电铸层分离,形成所述掩膜板。
  2. 根据权利要求1所述的掩膜板制作方法,其中,所述第二支架的下表面完全覆盖所述第一支架的上表面,所述第二支架的上表面的面积大于所述第一支架的下表面的面积。
  3. 根据权利要求1所述的掩膜板制作方法,其中,在所述形成第一图案化光刻胶层的步骤中,所述第一支架为柱状结构体,且于所述第一图案化光刻胶层中呈行列分布,所述第一开口区域为每两个相邻所述第一支架之间的空隙相互连通形成的网状通道;
    所述第一支架的侧面与所述母板形成的角度α满足:90°≤α<180°。
  4. 根据权利要求3所述的掩膜板制作方法,其中,所述角度α满足:90°<α<120°。
  5. 根据权利要求3所述的掩膜板的制作方法,其中,所述角度α满足:α=90°。
  6. 根据权利要求1所述的掩膜板制作方法,其中,所述第一支架的横截面为矩形或等腰梯形,所述第一支架的侧面为平滑表面;
    所述第二支架的横截面为倒梯形,所述第二支架的侧面为平滑表面。
  7. 根据权利要求1至6项任一项所述的掩膜板制作方法,其中,在所述形成光刻胶图案的步骤中,所述第二支架的侧面与所述母板形成的角度θ满足:30°<θ<90°。
  8. 根据权利要求7所述的掩膜板制作方法,其中,所述角度θ满足:60°<θ<75°。
  9. 根据权利要求7所述的掩膜板制作方法,其中,所述形成光刻胶图案的步骤中,所述角度θ根据所述第一支架的厚度确定。
  10. 根据权利要求7所述的掩膜板制作方法,其中,在所述形成电铸层的步骤中,所述金属层的沉积厚度根据所述第二支架的侧面与所述母板形成的所述角度θ确定。
  11. 根据权利要求10所述的掩膜板制作方法,其中,所述电铸层包括多个凸肋,所述凸肋具有接触所述母板的凸肋下表面和远离母板的凸肋上表面,所述凸肋上表面在相邻两个所述支撑架之间的距离D的减小量△D与所述角度θ的减小量△θ满足:△D:△θ=1:5,其中,△D的单位为微米,△θ的单位为度。
  12. 根据权利要求1所述的掩膜板制作方法,其中,在所述形成光刻胶图案的步骤中,所述第一支架上表面的面积等于所述第二支架下表面的面积,所述第二支架上表面的面积大于所述第二支架下表面的面积。
  13. 根据权利要求12所述的掩膜板制作方法,其中,在垂直于所述母板方向上,所述第二支架与所述第一支架的中心线完全重合。
  14. 根据权利要求1所述的掩膜板制作方法,其中,所述第一图案化光刻胶层的厚度为5μm~8μm,所述第二图案化光刻胶层的厚度为10μm~20μm。
  15. 根据权利要求1所述的掩膜板制作方法,其中,所述第一光刻胶层为正性光刻胶层,所述第二光刻胶层为负性光刻胶层。
  16. 根据权利要求3所述的掩膜板制作方法,其中,所述形成电铸层 的步骤包括:
    在所述支撑架及所述开口对应的所述母板上沉积金属层;
    去除所述支撑架,同时去除所述支撑架上的金属层,保留所述开口内的金属层以形成由多个所述凸肋纵横交叉分布构成网格状电铸层。
  17. 根据权利要求16所述的掩膜板制作方法,其中,采用灰化工艺去除所述支撑架。
  18. 一种掩膜板,其特征在于,所述掩膜板采用如权利要求1-17任一项所述的掩膜板制作方法制成。
PCT/CN2019/095716 2019-01-09 2019-07-12 掩膜板制作方法及掩膜板 WO2020143201A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910020721.1A CN109830511B (zh) 2019-01-09 2019-01-09 掩膜板制作方法及掩膜板
CN201910020721.1 2019-01-09

Publications (1)

Publication Number Publication Date
WO2020143201A1 true WO2020143201A1 (zh) 2020-07-16

Family

ID=66860188

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/095716 WO2020143201A1 (zh) 2019-01-09 2019-07-12 掩膜板制作方法及掩膜板

Country Status (2)

Country Link
CN (1) CN109830511B (zh)
WO (1) WO2020143201A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859510A (zh) * 2021-01-28 2021-05-28 江苏高光半导体材料有限公司 一种掩膜板及其制作方法

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109830511B (zh) * 2019-01-09 2020-10-16 昆山国显光电有限公司 掩膜板制作方法及掩膜板
CN113823434B (zh) * 2020-06-19 2023-09-08 中国科学院福建物质结构研究所 一种防散射栅格及其制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105543905A (zh) * 2015-12-23 2016-05-04 昆山国显光电有限公司 一种掩膜板及其制备方法
US20170069843A1 (en) * 2015-09-09 2017-03-09 Samsung Display Co., Ltd. Deposition mask and method of fabricating the same
CN108179378A (zh) * 2017-12-21 2018-06-19 武汉华星光电半导体显示技术有限公司 金属光掩膜的制作方法以及金属光掩膜
CN108374147A (zh) * 2017-01-31 2018-08-07 三星显示有限公司 掩模组件的制造方法
CN108628091A (zh) * 2017-03-20 2018-10-09 昆山国显光电有限公司 掩膜板及其制作方法
CN109830511A (zh) * 2019-01-09 2019-05-31 昆山国显光电有限公司 掩膜板制作方法及掩膜板

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170069843A1 (en) * 2015-09-09 2017-03-09 Samsung Display Co., Ltd. Deposition mask and method of fabricating the same
CN105543905A (zh) * 2015-12-23 2016-05-04 昆山国显光电有限公司 一种掩膜板及其制备方法
CN108374147A (zh) * 2017-01-31 2018-08-07 三星显示有限公司 掩模组件的制造方法
CN108628091A (zh) * 2017-03-20 2018-10-09 昆山国显光电有限公司 掩膜板及其制作方法
CN108179378A (zh) * 2017-12-21 2018-06-19 武汉华星光电半导体显示技术有限公司 金属光掩膜的制作方法以及金属光掩膜
CN109830511A (zh) * 2019-01-09 2019-05-31 昆山国显光电有限公司 掩膜板制作方法及掩膜板

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112859510A (zh) * 2021-01-28 2021-05-28 江苏高光半导体材料有限公司 一种掩膜板及其制作方法
CN112859510B (zh) * 2021-01-28 2024-05-24 江苏高光半导体材料有限公司 一种掩膜板及其制作方法

Also Published As

Publication number Publication date
CN109830511A (zh) 2019-05-31
CN109830511B (zh) 2020-10-16

Similar Documents

Publication Publication Date Title
WO2020143201A1 (zh) 掩膜板制作方法及掩膜板
CN105845711B (zh) 阵列基板及其制作方法、显示面板、显示装置
US20210404079A1 (en) Manufacture Method of Mask for Evaporation and Mask for Evaporation
US9142806B2 (en) Mask and method for forming the same
WO2019192529A1 (zh) 显示基板及其制备方法、显示装置
TW201710527A (zh) 蒸鍍用磁性掩模板的製作方法
US20160062170A1 (en) Display Substrate and Fabricating Method Thereof, and Display Device
WO2015149467A1 (zh) Oled显示器件及其制作方法、显示装置
US11566323B2 (en) Fine metal mask and method for manufacturing the same, mask assembly and display substrate
CN105655360B (zh) 阵列基板及其制作方法、显示装置
JP2006152396A (ja) メタルマスク、電鋳用マスク原版及びマスター原版の製造方法
CN105543905B (zh) 一种掩膜板及其制备方法
WO2017067307A1 (zh) 一种蒸镀用复合磁性掩模板的制作方法
WO2021143148A1 (zh) 一种多级复眼透镜的制造方法
WO2022134818A1 (zh) 一种掩膜板和掩膜板制作方法
WO2021190123A1 (zh) 掩模版、显示面板及掩模版的制备方法
US20220316042A1 (en) Mask plate, method for fabricating the same, and mask plate assembly
US11239299B2 (en) Array substrate and method for manufacturing the same
JP4475496B2 (ja) 有機el素子用の蒸着マスクとその製造方法
JP2001080227A (ja) ペースト・スクリーニング用のステンシル・マスク
CN1786746A (zh) 用于光导板的压模的生产方法
WO2019201338A1 (zh) 一种彩膜基板及其制备方法、显示面板、显示装置
CN114086220A (zh) 金属遮罩的制作方法及电铸母板
US11765961B2 (en) Mask plate with transition region and fabricating method thereof
JP2022174324A (ja) 蒸着マスク

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19909179

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19909179

Country of ref document: EP

Kind code of ref document: A1