WO2020140602A1 - 多孔硅材料及其制备方法、电池负极材料以及电化学电池 - Google Patents

多孔硅材料及其制备方法、电池负极材料以及电化学电池 Download PDF

Info

Publication number
WO2020140602A1
WO2020140602A1 PCT/CN2019/115546 CN2019115546W WO2020140602A1 WO 2020140602 A1 WO2020140602 A1 WO 2020140602A1 CN 2019115546 W CN2019115546 W CN 2019115546W WO 2020140602 A1 WO2020140602 A1 WO 2020140602A1
Authority
WO
WIPO (PCT)
Prior art keywords
silicon material
metal salt
porous silicon
metal
preparing
Prior art date
Application number
PCT/CN2019/115546
Other languages
English (en)
French (fr)
Inventor
马文会
张钊
李绍元
席风硕
万小涵
魏奎先
陈正杰
谢克强
伍继君
雷云
杨斌
戴永年
Original Assignee
昆明理工大学
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 昆明理工大学 filed Critical 昆明理工大学
Publication of WO2020140602A1 publication Critical patent/WO2020140602A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B82NANOTECHNOLOGY
    • B82YSPECIFIC USES OR APPLICATIONS OF NANOSTRUCTURES; MEASUREMENT OR ANALYSIS OF NANOSTRUCTURES; MANUFACTURE OR TREATMENT OF NANOSTRUCTURES
    • B82Y40/00Manufacture or treatment of nanostructures
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • H01M10/052Li-accumulators
    • H01M10/0525Rocking-chair batteries, i.e. batteries with lithium insertion or intercalation in both electrodes; Lithium-ion batteries
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/38Selection of substances as active materials, active masses, active liquids of elements or alloys
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Definitions

  • the present application relates to the field of new energy materials and electrochemical technology, in particular to a porous silicon material and its preparation method, battery anode material and electrochemical battery.
  • Battery technology is an irreplaceable method in energy storage technology, which has the advantages of high conversion efficiency, low pollution and easy use.
  • electrochemical batteries especially lithium ion batteries
  • the advantages of small self-discharge rate and environmental protection have attracted much attention.
  • the theoretical capacity of graphite for commercial lithium-ion battery anode materials is only 372 mAhg -1 , which is difficult to meet the current demand for high energy density batteries in the new energy industry.
  • the silicon material is considered to be the most promising high-capacity lithium battery due to its high specific capacity (theoretical specific capacity 4200mAhg -1 ), relatively low discharge platform (about 0.2V), and abundant content in nature.
  • the application of silicon materials to lithium battery anodes also faces many challenges, such as large volume effects and poor conductivity, which will seriously affect their electrochemical performance. Nanometerization, porousization and compounding treatment of silicon-based anodes are currently the most effective method to improve their capacity performance and cycle stability.
  • a preparation method of porous silicon material including:
  • the purified diamond wire-cut silicon waste is subjected to first metal nanoparticle-assisted etching pretreatment in a first metal salt solution to form a chemically broken and refined silicon material, and the first metal salt solution includes hydrogen Hydrofluoric acid and a first metal salt, the first metal salt forming first metal nanoparticles in the first metal nanoparticle assisted etching pretreatment;
  • the chemically crushed and refined silicon material is subjected to second metal nanoparticle-assisted etching treatment in a second metal salt solution to form the chemically crushed and refined silicon material into a porous silicon material, and the second metal salt solution Including hydrofluoric acid and a second metal salt, the second metal salt forms second metal nanoparticles in the second metal nanoparticle assisted etching pretreatment.
  • the particle size of the first metal nanoparticle is larger than the particle size of the second metal nanoparticle.
  • the particle size of the first metal nanoparticles is 100 nm-1000 nm.
  • the particle size of the second metal nanoparticles is 5 nm-100 nm.
  • the first metal salt is a copper salt.
  • the first metal salt is selected from one or more of Cu(NO 3 ) 2 , CuCl 2 and CuSO 4 .
  • the molar ratio of the hydrofluoric acid to the first metal salt in the first metal salt solution is (0.1-10): (0.0005-4).
  • the concentration of the hydrofluoric acid in the first metal salt solution is 0.1 mol/L to 10 mol/L.
  • the concentration of the first metal salt in the first metal salt solution is 0.0005 mol/L to 5 mol/L.
  • the solvent in the first metal salt solution includes an alcohol solvent.
  • the solvent in the first metal salt solution further includes water, and the volume ratio of the alcohol solvent to the water is 1:200-2:1.
  • the liquid-solid ratio of the first metal salt solution to the purified silicon carbide wire cutting waste material is (5 to 500) mL: 1 g.
  • the step of removing the first metal nanoparticles in the chemically crushed and refined silicon material includes: using the chemical reaction with the first metal nanoparticles to make the first metal nanoparticles
  • the reagents that dissolve the particles wash the chemically crushed and refined silicon material.
  • the reagent is selected from one or both of sulfuric acid and nitric acid.
  • the second metal salt is selected from one or more of gold salt, platinum salt, palladium salt, silver salt, iron salt and nickel salt.
  • the second metal salt is selected from KAuCl 4 , HAuCl 4 , K 2 PtCl 6 , H 2 PtCl 6 , PdCl 2 , AgNO 3 , Fe(NO 3 ) 3 , Ni(NO 3 ) 2 And one or more of Ni 2 SO 4 .
  • the molar ratio of the hydrofluoric acid in the second metal salt solution to the second metal salt is (0.1-10): (0.0005-5).
  • the concentration of the hydrofluoric acid in the second metal salt solution is 0.1 mol/L to 10 mol/L.
  • the concentration of the second metal salt in the second metal salt solution is 0.0005 mol/L to 5 mol/L.
  • the solvent in the second metal salt solution includes an alcohol solvent.
  • the solvent in the second metal salt solution further includes water, and the volume ratio of the alcoholic solvent to the water is 1:200-2:1.
  • the liquid-solid ratio of the second metal salt solution to the chemically crushed and refined silicon material is (5 to 500) mL: 1 g.
  • the purification process includes:
  • the silicon wire cutting silicon waste is soaked in an alkaline solution containing an alcoholic solvent.
  • the method further includes the step of forming an oxide layer on the surface of the porous silicon material.
  • a porous silicon material prepared by the method for preparing porous silicon material is prepared.
  • a battery negative electrode material includes the porous silicon material and the carbon material prepared by the method for preparing the porous silicon material, and the carbon material is coated on the surface of the porous silicon material.
  • An electrochemical cell includes a positive electrode, a negative electrode, and an electrolyte.
  • the negative electrode includes the porous silicon material or the battery negative electrode material.
  • the metal nanoparticle-assisted etching method is used to make the diamond wire cut silicon waste to form a porous silicon material.
  • the principle of the metal nanoparticle-assisted etching method is that metal cations obtain electrons to form elemental metal particles. Silicon loses electrons and is oxidized. The elemental metal particles catalyze the oxidation of silicon surface and are etched by hydrofluoric acid to form porous silicon.
  • the first metal salt and hydrofluoric acid are used for the first metal nanoparticle-assisted etching. The first metal salt forms the first metal nanoparticles.
  • the first metal nanoparticles assist the hydrofluoric acid to refine the silicon material and destroy the silicon
  • the complex oxide layer on the surface of the material fully exposes the impurities wrapped in the silicon material to hydrofluoric acid, and breaks down the larger particle silicon material into micron and submicron silicon material.
  • the present application further performs second metal nanoparticle-assisted etching through the second metal salt and hydrofluoric acid, the second metal salt forms second metal nanoparticles, and the second metal nanoparticles assist hydrofluoric acid in etching the refined silicon material Formation of nanometer and porous silicon materials.
  • a metal-free porous silicon material or a composite material of metal and porous silicon can be formed by removing or not removing the second metal nanoparticles in the porous silicon material.
  • the porous silicon material obtained by this method can effectively overcome the dramatic volume effect of silicon material during battery charging and discharging, and can be used to cut silicon waste for the negative electrode of lithium ion batteries The material also significantly improves the cycling performance of silicon materials and the electrical performance of batteries.
  • FIG. 1 is a schematic flow chart of a method for preparing a porous silicon material according to an embodiment of the invention
  • Example 2 is a morphology diagram of the silicon/Cu material of Example 1 under a transmission electron microscope
  • Example 3 is a morphology diagram of the porous silicon/Ag composite material of Example 1 under a field emission electron microscope;
  • Example 4 is a morphology diagram of the porous silicon/Ag composite material of Example 1 under a transmission electron microscope;
  • Example 5 is a morphology diagram of the porous silicon/Ag/C composite material of Example 1 under a transmission electron microscope;
  • FIG. 6 is a comparison graph of lithium storage performance of the porous silicon/Ag/C composite material, porous silicon/Ag composite material, and silicon material of Example 1.
  • FIG. 6 is a comparison graph of lithium storage performance of the porous silicon/Ag/C composite material, porous silicon/Ag composite material, and silicon material of Example 1.
  • the diamond wire cutting silicon waste mentioned in this application is powdery debris generated during the cutting process of silicon elementary blocks or flakes with diamond wires, and the main component is silicon elemental.
  • the embodiments of the present application provide a method for preparing a porous silicon material, including:
  • the chemically crushed and refined silicon material is subjected to second metal nanoparticle auxiliary etching treatment in a second metal salt solution to form the chemically crushed and refined silicon material into a porous silicon material, and the second metal
  • the salt solution includes hydrofluoric acid and a second metal salt, the second metal salt forms second metal nanoparticles in the second metal nanoparticle-assisted etching pre-treatment Of silicon.
  • the metal nanoparticle-assisted etching method is used to make the diamond wire cut silicon waste to form a porous silicon material.
  • the principle of the metal nanoparticle-assisted etching method is that metal cations obtain electrons to form metal elementary particles, silicon loses electrons and is oxidized, and the metal elemental particles catalyze the oxidation of the silicon surface and are etched by hydrofluoric acid to form porous silicon.
  • the first metal salt and hydrofluoric acid are used for the first metal nanoparticle-assisted etching.
  • the first metal salt forms the first metal nanoparticles.
  • the first metal nanoparticles assist the hydrofluoric acid to refine the silicon material and destroy the silicon
  • the complex oxide layer on the surface of the material fully exposes the impurities wrapped in the silicon material to hydrofluoric acid, and breaks down the larger particle silicon material into micron and submicron silicon material.
  • the present application further performs second metal nanoparticle-assisted etching through the second metal salt and hydrofluoric acid, the second metal salt forms second metal nanoparticles, and the second metal nanoparticles assist hydrofluoric acid in etching the refined silicon material Formation of nanometer and porous silicon materials.
  • a metal-free porous silicon material or a composite material of metal and porous silicon can be formed by removing or not removing the second metal nanoparticles in the porous silicon material.
  • the porous silicon material obtained by this method can effectively overcome the dramatic volume effect of silicon material during battery charging and discharging, and can be used to cut silicon waste for the negative electrode of lithium ion batteries The material also significantly improves the cycling performance of silicon materials and the electrical performance of batteries.
  • Step S100 may include removing at least a portion of impurities in the silicon wire scrap from the diamond wire by a purification process.
  • the step S100 may include: immersing the silicon carbide cutting silicon waste in an alkaline solution.
  • Diamond wire cutting silicon scrap may contain at least one of basic impurities or acidic impurities.
  • the acidic impurities in the silicon wire scrap of the diamond wire cutting are removed by the alkaline solution, and the alkali impurities in the silicon wire scrap of the diamond wire cutting can be removed in an acidic solution, such as the first metal salt solution or The second metal salt solution is removed.
  • the alkali in the alkali solution may be one or more selected from lithium hydroxide, sodium hydroxide, potassium hydroxide, calcium hydroxide, and ammonia water.
  • the alkali solution may further include an alcoholic solvent.
  • the alcohol solvent can dissolve the organic impurities in the silicon wire scrap of the diamond wire and easily volatilize and remove it.
  • the alcohol solvent may be one or more selected from methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, propylene alcohol, and vinyl alcohol.
  • the alkali concentration of the alkali solution may be 0.1% to 30%.
  • the liquid-solid ratio of the alkali solution to the silicon carbide wire scrap can be less than or equal to 250 mL: 6 g.
  • the temperature at which the silicon carbide wire cutting silicon waste is treated in an alkali solution may be 0 to 80° C., and the time may be 1 min to 300 min.
  • step S100 further includes: before immersing the diamond wire cutting silicon waste in an alkaline solution, mechanically crushing the diamond wire cutting silicon waste.
  • the silicon scrap aggregated into clusters is preliminarily dispersed by mechanical crushing, so that the surface of the silicon scrap is fully exposed, which is convenient for the removal of impurities in the silicon scrap of diamond wire cutting.
  • a vacuum drying step may be included to vacuum-cut silicon scrap of diamond wire. By vacuum drying, the silicon scrap is not easy to form agglomerates, and mechanical crushing is easier to perform.
  • step S100 further includes: after immersing the diamond wire cutting silicon waste in an alkaline solution, washing the diamond wire cutting silicon waste after the alkali solution treatment to neutrality.
  • the detergent used for washing can be deionized water.
  • step S100 may further include a step of separating solid and liquid after washing.
  • the average particle size range of the silicon carbide waste material after purification treatment may be 0.01 ⁇ m to 500 ⁇ m.
  • step S200 a solution containing a first metal salt is applied on the surface of the silicon scrap, silicon loses electrons, and the first metal cations acquire electrons, forming first metal nanoparticles on the surface of the silicon scrap.
  • the first metal nanoparticles catalyze the corrosion of silicon waste by hydrofluoric acid to refine large-size silicon waste into small-particle silicon material (or silicon powder).
  • the average particle size of the silicon material can be in the range of 0.01 ⁇ m ⁇ 100 ⁇ m.
  • the particle size of the first metal nanoparticles may be larger than the particle size of the second metal nanoparticles formed in step S400.
  • the first metal nanoparticle-assisted etching the first metal nanoparticles with larger particle diameters act as spacers, dividing and refining the silicon waste that is agglomerated or larger particles into silicon powder with smaller particles.
  • the particle size of the first metal nanoparticles may be 100 nm to 1000 nm.
  • the particle size of the second metal nanoparticles formed in step S400 may be 5 nm-100 nm.
  • the first metal salt and the second metal salt may be salts of different metals.
  • the first metal salt may be a copper salt.
  • the inventors found through experiments that in the first metal solution in the presence of hydrofluoric acid, copper nanoparticles formed by electrons obtained from copper ions can further refine silicon waste to form micron and submicron levels when the metal nanoparticles are assisted in etching The silicon powder is beneficial for further metal nanoparticle-assisted etching to make the silicon powder porous.
  • the first metal salt may be selected from one or more of Cu(NO 3 ) 2 , CuCl 2 and CuSO 4 .
  • the molar ratio of the hydrofluoric acid to the first metal salt in the first metal salt solution may be (0.1-10): (0.0005-4), in a further embodiment, the molar ratio may be (1 ⁇ 5): 1. Within the range of this molar ratio, the combination of hydrofluoric acid and the formed first metal nanoparticles makes the silicon waste more refined.
  • the concentration of the first metal salt in the first metal salt solution may be 0.0005 mol/L to 5 mol/L.
  • the concentration of the hydrofluoric acid in the first metal salt solution may be 0.1 mol/L to 10 mol/L.
  • the solvent in the first metal salt solution includes an alcohol solvent.
  • the solvent may further include water, and the volume ratio of the alcoholic solvent to the water may be 1:200-2:1.
  • the alcohol solvent can dissolve and remove organic impurities exposed during the assisted etching process of the metal nanoparticles, and is beneficial to the solid-liquid separation of the first metal salt solution and the silicon powder.
  • the alcohol solvent may be selected from one or more of methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, propylene alcohol, and vinyl alcohol.
  • the liquid-solid ratio of the first metal salt solution and the purified silicon carbide wire scrap can be (5 to 500) mL: 1 g.
  • the temperature for performing the first metal nanoparticle-assisted etching pretreatment may be 0 to 80° C., and the time may be 1 min to 600 min.
  • the silicon powder obtained in step S200 is mixed with first metal nanoparticles formed by reduction, and the first metal nanoparticles are attached to the surface of the silicon powder.
  • step S300 by removing the first metal nanoparticles in the silicon powder after the first metal nanoparticle assisted etching pretreatment, the surface of the silicon powder can be cleaned, and the etching effect of the second metal nanoparticle assisted etching can be improved.
  • the step of removing the first metal nanoparticles in the chemically crushed and refined silicon material may include: dissolving the first metal nanoparticles by using a chemical reaction with the first metal nanoparticles
  • the reagents wash the chemically crushed and refined silicon material.
  • the reagent may be a reagent capable of chemically reacting with the first metal nanoparticles to dissolve the first metal nanoparticles, such as an oxidizing acid, in one embodiment, one selected from sulfuric acid and nitric acid Or both.
  • step S400 a solution containing a second metal salt is applied to the surface of the chemically crushed and refined silicon material, the silicon loses electrons, and the second metal cation obtains electrons to form second metal nanoparticles on the surface of the silicon powder.
  • the second metal nanoparticles catalyze the corrosion of silicon powder by hydrofluoric acid to make the silicon powder nanometerized and porous.
  • the porous silicon material formed by the first metal nanoparticle-assisted etching and the second metal nanoparticle-assisted etching can effectively overcome the dramatic volume effect of the silicon material during the battery charge and discharge process, and can significantly improve the cycle performance and battery performance of the silicon material .
  • the second metal salt may be one or more selected from the group consisting of gold salt, platinum salt, palladium salt, silver salt, iron salt, and nickel salt.
  • the inventor discovered through research that the metal nanoparticles formed by such metal salts in the metal nanoparticle-assisted etching have a small particle size and can be etched on the surface of the refined silicon material to form a pore-like structure.
  • the second metal salt may be selected from KAuCl 4 , HAuCl 4 , K 2 PtCl 6 , H 2 PtCl 6 , PdCl 2 , AgNO 3 , Fe(NO 3 ) 3 , Ni(NO 3 ) 2 And one or more of Ni 2 SO 4 .
  • the molar ratio of the hydrofluoric acid in the second metal salt solution to the second metal salt may be (0.1-10): (0.0005-5), in a further embodiment , The molar ratio can be (5 ⁇ 10): 1, within the range of the molar ratio, the combination of hydrofluoric acid and the formed second metal nanoparticles makes the formation of fine silicon material pore structure easier, porous To a higher degree.
  • the concentration of the hydrofluoric acid in the second metal salt solution may be 0.1 mol/L to 10 mol/L.
  • the concentration of the second metal salt in the second metal salt solution may be 0.0005 mol/L to 5 mol/L.
  • the solvent in the second metal salt solution may include an alcohol solvent.
  • the solvent may further include water, and the volume ratio of the alcoholic solvent to the water may be 1:200-2:1.
  • the alcohol solvent may be selected from one or more of methanol, ethanol, propanol, butanol, ethylene glycol, propylene glycol, propylene alcohol, and vinyl alcohol.
  • the liquid-solid ratio of the second metal salt solution and the chemically crushed and refined silicon material may be (5 to 500) mL: 1 g.
  • the alcohol solvents in the first metal solution and the second metal solution may be the same or different.
  • the temperature for performing the second metal nanoparticle-assisted etching treatment may be 0-80°C, and the time may be 1min-600min.
  • the method for preparing the porous silicon material may further include: removing the second metal nanoparticles in the porous silicon material obtained in step S400.
  • the second metal nanoparticles can be removed or not, and can be determined according to actual requirements.
  • the step of removing the second metal nanoparticles may be performed by washing the porous silicon material obtained in step S400 with a reagent capable of chemically reacting with the second metal nanoparticles to dissolve the second metal nanoparticles.
  • the washing reagent may be selected from one or more of sulfuric acid, nitric acid, ammonia, and a mixed solution of ammonia and H 2 O 2 .
  • the mass concentration of sulfuric acid in the washing reagent may be 1%-40%. In an embodiment, the mass concentration of nitric acid in the washing reagent may be 1%-40%. In an embodiment, the mass concentration of ammonia in the washing reagent may be 1%-40%. In an embodiment, the volume ratio of ammonia water to H 2 O 2 in the mixed solution of ammonia water and H 2 O 2 in the washing reagent may be 1: (1 to 6). Ammonia and H 2 O 2 in the mixed solution of ammonia and H 2 O 2 are commercially available analytically pure products.
  • the method for preparing the porous silicon material may further include S500: forming an oxide layer on the surface of the porous silicon material.
  • the oxide layer may be a silicon oxide layer.
  • the thickness of the oxide layer may be 1 nm to 500 nm. The inventor found through research that porous silicon material with an oxide layer can further reduce the volume change of the battery during charging and discharging and improve the battery performance.
  • the step of forming an oxide layer on the surface of the porous silicon material may include:
  • the porous silicon material after soaking was allowed to stand in an oxidizing environment.
  • the oxidizing solution may be selected from one of hydrogen peroxide solution, peroxyacetic acid solution, sodium dichromate solution, chromic acid solution, nitric acid solution, potassium permanganate solution and ammonium persulfate solution One or more.
  • the concentration of the oxidizing solution may be 0.1 mol/L to 10 mol/L.
  • the immersion time in the oxidizing solution may be 1 min to 60 min.
  • the oxidizing environment may be a gas atmosphere containing one or more of F 2 , Cl 2 , O 2 and O 3 , or containing Ag + , Cu 2+ , Fe 3+ and Br -, I -, HNO 3, H 2 SO 4, H 2 O 2, KMnO 4, HClO, SO 2, one kind of NO 2 SO 3 and one or more of the physical environment.
  • the temperature for standing in the oxidizing atmosphere may be 25°C to 100°C, and the time may be 0.1h to 24h.
  • the embodiments of the present application also provide a porous silicon material prepared by the method for preparing a porous silicon material according to any of the above embodiments.
  • Embodiments of the present application also provide a battery negative electrode material, including the porous silicon material and the carbon material prepared by the method for preparing the porous silicon material, and the carbon material is coated on the surface of the porous silicon material.
  • the embodiments of the present application also provide a method for preparing the battery negative electrode material, including:
  • the coating method may be one or two of ball milling or mechanical stirring coating.
  • the coating method can also be other common methods of carbon coating.
  • the liquid-solid ratio in the slurry may be greater than or equal to 1:5.
  • the carbon material may be selected from one or more of organic carbon material raw materials, carbonized or graphitized organic carbon materials, graphite powder, graphene, carbon nanotubes, and carbon fibers.
  • the organic carbon material may be selected from glucose, fructose, sucrose, xylose, sorbose, citric acid, starch, polyethylene, polypropylene, cellulose, graphite, graphene, aromatic hydrocarbons, aromatic lipids, petroleum pitch and coal pitch One or more of them.
  • the mass ratio of the porous silicon material to the carbon substance may be greater than or equal to 10:1.
  • the shielding gas may be selected from one or two of argon and nitrogen.
  • the flow rate of the shielding gas may be 30 mL/min to 500 mL/min.
  • the heat treatment may be a uniform temperature increase to 700°C to 1200°C.
  • the rate of uniform heating can be 5°C/min ⁇ 15°C/min.
  • An embodiment of the present application further provides an electrochemical cell, including a positive electrode, a negative electrode, and an electrolyte.
  • the negative electrode may include the porous silicon material of the foregoing embodiment or the battery negative electrode material of the foregoing embodiment.
  • the electrochemical battery may be a lithium ion battery or the like.
  • This application uses two etchings to further refine the silicon wire scrap by diamond wire cutting and introduce a nanoporous structure on the surface of the silicon waste to destroy the complex oxide layer on the surface of the silicon waste and fully expose the impurities wrapped in the silicon waste to the acidic solution.
  • the nanometer and porous silicon waste in sub-micron level can effectively overcome the violent volume effect of silicon material during battery charging and discharging, and can significantly improve the cycle performance of porous silicon material.
  • the silicon wire scrap of diamond wire cutting is dried under vacuum at a temperature of 60°C, naturally cooled and crushed and ground; at a temperature of 25°C, the silicon scrap is soaked in an ethanol solution of NaOH for 120 min and washed with deionized water To neutrality, the solid-liquid separation yields a silicon carbide waste material that has been purified and processed by diamond wire cutting; wherein the liquid-solid ratio of the ethanol solution of NaOH to the silicon waste material is mL:g to 250:8.
  • the purified diamond wire cutting silicon waste in the first metal salt solution at a temperature of 25°C for the first metal nanoparticle-assisted etching and crushing pretreatment for 120min, and solid-liquid separation to obtain chemically broken and refined submicron silicon Material; chemically crushed and refined silicon material is dried to obtain silicon-copper composite powder (silicon/Cu material); the silicon-copper composite powder is placed in a nitric acid solution and stirred and washed for 90 minutes to remove metal copper nanoparticles, solid-liquid separation and drying to obtain submicron Grade high purity silicon powder.
  • the first metal salt solution includes HF, Cu(NO 3 ) 2 and alcohols, the HF concentration in the first metal salt solution is 4.6mol/L, and the concentration of Cu(NO 3 ) 2 is 0.01mol/L; the first metal The liquid-to-solid ratio of the salt solution and the purified silicon wire cutting silicon waste mL:g is 10:1; the alcohol is ethylene glycol.
  • the submicron high-purity silicon powder is placed in a second metal salt solution at a temperature of 80° C. for metal nanoparticle-assisted etching treatment for 120 minutes, and solid-liquid separation and drying are performed to obtain a porous silicon/Ag composite material.
  • the second metal salt solution includes HF, AgNO 3 and alcohols.
  • the concentration of HF in the second metal salt solution is 4.6mol/L and the concentration of AgNO 3 is 0.01mol/L; the liquid-solid ratio of the second metal salt solution and the submicron high-purity silicon powder mL: g is 4:1; alcohols For ethylene glycol.
  • porous silicon/Ag composite material was immersed in a hydrogen peroxide solution for 10 minutes. After solid-liquid separation, it was placed in an airtight furnace in an oxygen atmosphere and heated to 80°C for 30 minutes to obtain porous silicon/Ag coated with an oxide layer.
  • Composite material the concentration of hydrogen peroxide solution is 0.1mol/L.
  • porous silicon/Ag composite material coated with the oxide layer is added to the organic carbon material (30% sucrose solution) and coated for 6 hours to form a slurry, and the slurry is placed at a temperature of 600°C and a constant temperature in a protective gas (argon) atmosphere After heat treatment for 10h, the anode material (porous silicon/Ag/C composite material) of the new Nano-Ag@SiOx@PSi/C composite material was obtained.
  • the battery After the negative electrode material is mixed with the conductive agent and the sodium alginate binder at a mass ratio of 70:15:15, the battery is assembled in the glove box with the lithium sheet as the counter electrode, and the battery is charged and discharged at 0.2mA/cm 2.
  • the reversible capacity of the material Reaching 2100mAh/g, as shown in Figure 7, the first coulombic efficiency of the battery can reach 80%.
  • FIG. 2 (silicon/Cu material diagram) shows the first type of metal particles after copper etching, the refined silicon material particle size is between 800nm and 1200nm, and Figure 3 (porous silicon/Ag composite material picture) shows the second After the metal particles are etched, the pore structure is left in the silicon powder.
  • Figure 4 (Porous silicon/Ag composite material diagram) is a partial characterization of the second metal particles after etching. The black silver particles are distributed on the silicon powder
  • Figure 5 (Porous silicon/Ag/C composite material diagram) is a carbon-coated structure.
  • FIG. 6 is a test after preparing a lithium ion battery using the porous silicon/Ag/C composite material, porous silicon/Ag composite material, and silicon material of Example 1. Compared with the effect, the porous silicon/Ag/C composite material has the most stable performance.
  • Diamond wire cutting silicon waste is dried under vacuum at a temperature of 80°C, naturally cooled and crushed; at a temperature of 25°C, the silicon waste is immersed in KOH's ethanol solution for 120 minutes and washed with deionized water To neutrality, solid-liquid separation yields purified silicon wire scrap from diamond cutting; the liquid-solid ratio of ethanol solution of KOH to silicon scrap is mL:g is 250:10.
  • the purified diamond wire cutting silicon waste in the first metal salt solution at a temperature of 25°C for the first metal nanoparticle-assisted etching and crushing pretreatment for 150min, and solid-liquid separation to obtain chemically broken and refined submicron silicon Material; chemically crushed and refined silicon material is dried to obtain silicon-copper composite powder; the silicon-copper composite powder is placed in nitric acid solution and stirred and washed for 12 minutes to remove metal copper nanoparticles, solid-liquid separation and drying to obtain sub-micron high-purity silicon powder.
  • the first metal salt solution includes HF, Cu(NO 3 ) 2 and alcohols
  • the HF concentration in the first metal salt solution is 4.6mol/L
  • the concentration of Cu(NO 3 ) 2 is 0.01mol/L
  • the first metal The liquid-to-solid ratio of the salt solution to the purified silicon wire scrap from diamond cutting is 9:1; the alcohol is ethylene glycol.
  • the submicron high-purity silicon powder is placed in a second metal salt solution at a temperature of 80° C. for metal nanoparticle-assisted etching treatment for 120 minutes, and solid-liquid separation and drying are performed to obtain a porous silicon/Ni composite material.
  • the second metal salt solution includes HF, NiSO 4 and alcohols.
  • the concentration of HF in the second metal salt solution is 4.6mol/L, and the concentration of NiSO 4 is 0.01mol/L;
  • the liquid-solid ratio of the second metal salt solution to the submicron high-purity silicon powder mL: g is 4:1; alcohols For ethylene glycol.
  • porous silicon/Ni composite material was immersed in a hydrogen peroxide solution for 10 minutes. After solid-liquid separation, it was placed in an airtight furnace in an oxygen atmosphere and heated to 80°C for 30 minutes to obtain a porous silicon/Ni coated with an oxide layer.
  • Composite material; the concentration of hydrogen peroxide solution is 0.1mol/L.
  • the porous silicon/Ni composite material coated with the oxide layer is added to the organic carbon material (50% glucose solution) and coated for 9 hours to form a slurry, and the slurry is placed at a temperature of 700°C and a constant temperature in a protective gas (argon) atmosphere After heat treatment for 10h, a new Nano-Ni@SiOx@PSi/C composite anode material was obtained.
  • the battery After the negative electrode material is mixed with the conductive agent and the sodium alginate binder at a mass ratio of 70:15:15, the battery is assembled in the glove box with the lithium sheet as the counter electrode, and the battery is charged and discharged at 0.2mA/cm 2.
  • the reversible capacity of the material Reaching 3380mAh/g, the battery's first coulombic efficiency can reach 89%.
  • Diamond wire cutting silicon waste is dried at a temperature of 70°C under vacuum, naturally cooled and crushed; at a temperature of 25°C, the silicon waste is immersed in NaOH methanol solution for 120 minutes and washed with deionized water To neutrality, solid-liquid separation yields purified silicon wire cutting silicon waste; where the liquid-solid ratio of NaOH methanol solution to silicon waste is mL:g is 250:15.
  • the purified diamond wire cutting silicon waste in the first metal salt solution at a temperature of 25°C for the first metal nanoparticle-assisted etching and crushing pretreatment for 120min, and solid-liquid separation to obtain chemically broken and refined submicron silicon Materials; chemically crushed and refined silicon materials are dried to obtain silicon-copper composite powder; the silicon-copper composite powder is placed in a nitric acid solution and stirred and washed for 90 minutes to remove metal copper nanoparticles, solid-liquid separation and drying to obtain sub-micron high-purity silicon powder.
  • the first metal salt solution includes HF, Cu(NO 3 ) 2 and alcohols, the HF concentration in the first metal salt solution is 4.6mol/L, and the concentration of Cu(NO 3 ) 2 is 0.01mol/L; the first metal The liquid-to-solid ratio of the salt solution and the purified silicon wire cutting silicon waste mL:g is 10:1; the alcohol is ethylene glycol.
  • the submicron high-purity silicon powder is placed in a second metal salt solution at a temperature of 80° C. for metal nanoparticle-assisted etching treatment for 120 minutes, and solid-liquid separation and drying are performed to obtain a porous silicon/Fe composite material.
  • the second metal salt solution includes HF, Fe(NO 3 ) 3 and alcohols.
  • the concentration of HF in the second metal salt solution is 4.6 mol/L, and the concentration of Fe(NO 3 ) 3 is 0.01 mol/L;
  • the liquid-solid ratio of the second metal salt solution to the submicron high-purity silicon powder mL: g is 4: 1; Alcohols are ethylene glycol.
  • porous silicon/Fe composite material was immersed in hydrogen peroxide solution for 10 minutes. After solid-liquid separation, it was placed in an airtight furnace in an oxygen atmosphere and heated to 100°C for 30 minutes to obtain porous silicon/Fe coated with an oxide layer.
  • Composite material the concentration of hydrogen peroxide solution is 0.1mol/L.
  • the porous silicon/Fe composite material coated with the oxide layer is added to the organic carbon material (30% citric acid solution) and coated for 6 hours to form a slurry, and the slurry is placed in a protective gas (argon) atmosphere at a temperature of 800°C
  • argon argon
  • the negative electrode material of the new Nano-Fe@SiOx@PSi/C composite material was obtained by constant temperature heat treatment for 10h.
  • the battery After the negative electrode material is mixed with the conductive agent and the sodium alginate binder at a mass ratio of 70:15:15, the battery is assembled in the glove box with the lithium sheet as the counter electrode, and the battery is charged and discharged at 0.2mA/cm 2.
  • the reversible capacity of the material Reaching 2687mAh/g, the electrode's first coulombic efficiency can reach 85%.
  • Diamond wire-cut silicon waste was dried under vacuum at a temperature of 40°C, naturally cooled and crushed; at a temperature of 25°C, the silicon waste was immersed in NaOH in a propanol solution for 120 minutes, using deionized water After washing to neutrality, the solid-liquid separation obtains the silicon carbide waste material after the purification treatment; the liquid-solid ratio of the NaOH propanol solution to the silicon waste material is mL:g is 250:20.
  • the purified silicon carbide wire scraps are placed in the first metal salt solution at a temperature of 60°C for the first metal nanoparticle-assisted etching and crushing pretreatment for 120 minutes, and the solid-liquid separation obtains chemically crushed submicron silicon Materials; chemically crushed and refined silicon materials are dried to obtain silicon-copper composite powder; the silicon-copper composite powder is placed in a nitric acid solution and stirred and washed for 90 minutes to remove metal copper nanoparticles, solid-liquid separation and drying to obtain sub-micron high-purity silicon powder.
  • the first metal salt solution includes HF, Cu(NO 3 ) 2 and alcohols, the HF concentration in the first metal salt solution is 4.6mol/L, and the concentration of Cu(NO 3 ) 2 is 0.01mol/L; the first metal The liquid-to-solid ratio of the salt solution and the purified silicon wire cutting silicon waste mL:g is 10:1; the alcohol is ethylene glycol.
  • the submicron high-purity silicon powder is placed in a second metal salt solution at a temperature of 60° C. for metal nanoparticle-assisted etching treatment for 120 minutes, and solid-liquid separation and drying are performed to obtain a porous silicon/Ag composite material.
  • the second metal salt solution includes HF, AgNO 3 and alcohols.
  • the concentration of HF in the second metal salt solution is 4.6mol/L and the concentration of AgNO 3 is 0.01mol/L; the liquid-solid ratio of the second metal salt solution and the submicron high-purity silicon powder mL: g is 4:1; alcohols For ethanol.
  • porous silicon/Ag composite material was immersed in potassium permanganate solution for 10 minutes. After solid-liquid separation, it was placed in an airtight furnace in an oxygen atmosphere and heated to 80° C. for 30 minutes to obtain porous silicon coated with an oxide layer. Ag composite material; the concentration of potassium permanganate solution is 0.4mol/L.
  • porous silicon/Ag composite material coated with the oxide layer is added to the graphite solution slurry and coated for 6h to form a slurry, and the slurry is placed in a protective gas (nitrogen) atmosphere at a temperature of 900°C and subjected to constant temperature heat treatment for 10h to obtain a new Nano-Ag
  • a protective gas nitrogen
  • the battery After the negative electrode material is mixed with the conductive agent and the sodium alginate binder at a mass ratio of 70:15:15, the battery is assembled in the glove box with the lithium sheet as the counter electrode, and the battery is charged and discharged at 0.5mA/cm 2.
  • the reversible capacity of the material Reaching 2877mAh/g, the first Coulomb efficiency of the battery can reach 83%.
  • the silicon wire scrap of diamond wire cutting is dried under vacuum at a temperature of 60°C, naturally cooled and crushed and ground; at a temperature of 25°C, the silicon scrap is soaked in an ethanol solution of NaOH for 120 min and washed with deionized water To neutrality, the solid-liquid separation yields a silicon carbide waste material that has been purified and processed by diamond wire cutting; wherein the liquid-solid ratio of the ethanol solution of NaOH to the silicon waste material is mL:g to 250:30.
  • the purified diamond wire cutting silicon waste in the first metal salt solution at a temperature of 25°C for the first metal nanoparticle-assisted etching and crushing pretreatment for 120min, and solid-liquid separation to obtain chemically broken and refined submicron silicon Materials; chemically crushed and refined silicon materials are dried to obtain silicon-copper composite powder; the silicon-copper composite powder is placed in a nitric acid solution and stirred and washed for 90 minutes to remove metal copper nanoparticles, solid-liquid separation and drying to obtain sub-micron high-purity silicon powder.
  • the first metal salt solution includes HF, Cu(NO 3 ) 2 and alcohols, the HF concentration in the first metal salt solution is 4.6mol/L, and the concentration of Cu(NO 3 ) 2 is 0.01mol/L; the first metal The liquid-to-solid ratio of the salt solution and the purified silicon wire cutting silicon waste mL:g is 10:1; the alcohol is ethylene glycol.
  • the submicron high-purity silicon powder is placed in a second metal salt solution at a temperature of 80° C. for metal nanoparticle-assisted etching treatment for 120 minutes, and solid-liquid separation and drying are performed to obtain a porous silicon/Ag composite material.
  • the second metal salt solution includes HF, AgNO 3 and alcohols.
  • the concentration of HF in the second metal salt solution is 4.6mol/L and the concentration of AgNO 3 is 0.01mol/L; the liquid-solid ratio of the second metal salt solution and the submicron high-purity silicon powder mL: g is 4:1; alcohols For ethylene glycol.
  • porous silicon/Ag composite material was immersed in potassium dichromate solution for 10 minutes. After solid-liquid separation, it was placed in an airtight furnace in an oxygen atmosphere and heated to 80° C. for 30 minutes to obtain porous silicon coated with oxide layer. Ag composite material; the concentration of potassium dichromate solution is 0.1mol/L.
  • the porous silicon/Ag composite material coated with the oxide layer is added to the asphalt slurry and coated for 6h to form a slurry.
  • the slurry is placed in a temperature of 1000°C and a protective gas (argon) atmosphere under constant temperature heat treatment for 10h to obtain a new Nano- Anode material of Ag@SiOx@PSi/C composite material.
  • the battery After the negative electrode material is mixed with the conductive agent and the sodium alginate binder at a mass ratio of 70:15:15, the battery is assembled in the glove box with the lithium sheet as the counter electrode, and the battery is charged and discharged at 0.2mA/cm 2.
  • the reversible capacity of the material Reaching 2684mAh/g, the battery's first coulombic efficiency can reach 84%.
  • Example 6 is basically the same as Example 1, except that the HF concentration in the first metal salt solution is 20 mol/L and the concentration of Cu(NO 3 ) 2 is 1 mol/L.
  • Example 7 is basically the same as Example 1, except that the HF concentration in the second metal salt solution is 1 mol/L and the AgNO 3 concentration is 10 mol/L.
  • Example 8 is basically the same as Example 1, except that the difference is that neither the first metal salt solution nor the second metal salt solution contains alcohols.
  • Comparative Example 1 is basically the same as Example 1, except that the metal nanoparticle-assisted etching is performed only once, step (2) is not included, and step (3) is directly performed after step (1).
  • the obtained negative electrode material was assembled into a battery and charged and discharged at 0.2 mA/cm 2. The reversible capacity of the material reached 1500 mAh/g, and the electrode's first coulombic efficiency was 79%.
  • Comparative Example 2 is basically the same as Example 1, except that the oxide layer is not formed on the porous silicon, that is, step (4) is included, and step (5) is directly performed after step (3).
  • the assembled battery of the negative electrode material was charged and discharged at 0.2 mA/cm 2 , the reversible capacity of the material reached 1368 mAh/g, and the first Coulomb efficiency of the electrode was 81%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Manufacturing & Machinery (AREA)
  • Nanotechnology (AREA)
  • Materials Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Crystallography & Structural Chemistry (AREA)
  • Silicon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

一种多孔硅材料的制备方法,包括:提供经纯化处理的金刚线切割硅废料(S100);将所述经纯化处理的金刚线切割硅废料在第一金属盐溶液中进行第一金属纳米颗粒辅助刻蚀预处理,形成化学破碎细化的硅料,所述第一金属盐溶液体系中包括氢氟酸和第一金属盐(S200);去除所述化学破碎细化的硅料中的第一金属(S300);以及将所述化学破碎细化的硅料在第二金属盐溶液中进行第二金属纳米颗粒辅助刻蚀处理,使所述化学破碎细化的硅料形成多孔硅材料,所述刻蚀金属溶液体系中包括氢氟酸和第二金属盐(S400)。同时还公开了一种多孔硅材料、一种电池负极材料、一种电池负极材料的制备方法和一种电化学电池。

Description

多孔硅材料及其制备方法、电池负极材料以及电化学电池
相关申请
本申请要求2019年1月2日申请的,申请号为201910000324.8,名称为“一种金刚线切割硅废料制备锂离子电池负极材料的方法”的中国专利申请的优先权,在此将其全文引入作为参考。
技术领域
本申请涉及新能源材料和电化学技术领域,特别是涉及一种多孔硅材料及其制备方法、电池负极材料以及电化学电池。
背景技术
电池技术是储能技术中一个不可替代的方式,具有转化效率高、污染小、使用方便等优势。在众多可循环的二次电池中,电化学电池,尤其是锂离子电池由于具有工作电压范围大、循环寿命次数高、充电速度快、放电功率高、没有记忆效应、质量和体积能量密度高、自放电速率小和绿色环保等优点而备受关注。目前,商业化的锂离子电池负极材料石墨的理论容量只有372mAhg -1,难以满足当前新能源行业对高能量密度电池的需求。而硅材料由于具备较高的比容量(理论比容量4200mAhg -1),放电平台比较低(约0.2V),大自然中的含量很丰富等优点,被认为是最有发展前景的高容量锂电负极材料之一。然而,硅材料应用于锂电负极也面临诸多挑战,如体积效应大和导电性差等将都严重影响其电化学性能。通过对硅基负极纳米化、多孔化和复合化处理,是当前改善其其容量性能和提高其循环稳定性最为有效的方法。然而,常用的纳米硅及其复合材料制备方法(如采用化学气相沉积技术、磁控溅射技术、等离子体加工以及镁热还原技术等)往往需要昂贵的设备,且加工工艺相对复杂,产量低且成本高等问题都大大地阻碍了当前Si基负极材料的商业化规模化应用。因此,开发一条新型高效、低能环保的纳米多孔硅复合材料制备技术,是当前Si纳米负极材料大规模应用亟待解决的重要问题。
在太阳能行业的硅片切割加工中,为了提高生产效率并降低成本,现已大都采用金刚线多线切割工艺取代传统碳化硅游离切割工艺。但在切割过程中,30~40%左右的高纯硅料以“锯屑”的形式进入到切割浆料中,造成大量的硅料损失。光伏工业蓬勃发展和金刚线切割技术大规模普及势必带来体量庞大的金刚线切割硅废料,将这部分切割废料进行回收利 用,不仅能实现资源的二次利用,而且还能带来一定的经济效益。
发明内容
基于此,有必要提供一种以金刚线切割硅废料为原料制备多孔硅材料的制备方法以及多孔硅材料、电池负极材料以及电化学电池。
一种多孔硅材料的制备方法,包括:
提供经纯化处理的金刚线切割硅废料;
将所述经纯化处理的金刚线切割硅废料在第一金属盐溶液中进行第一金属纳米颗粒辅助刻蚀预处理,形成化学破碎细化的硅料,所述第一金属盐溶液中包括氢氟酸和第一金属盐,所述第一金属盐在所述第一金属纳米颗粒辅助刻蚀预处理中形成第一金属纳米颗粒;
去除所述化学破碎细化的硅料中的第一金属纳米颗粒;以及
将所述化学破碎细化的硅料在第二金属盐溶液中进行第二金属纳米颗粒辅助刻蚀处理,使所述化学破碎细化的硅料形成多孔硅材料,所述第二金属盐溶液中包括氢氟酸和第二金属盐,所述第二金属盐在所述第二金属纳米颗粒辅助刻蚀预处理中形成第二金属纳米颗粒。
在其中一个实施例中,所述第一金属纳米颗粒的粒径大于所述第二金属纳米颗粒的粒径。
在其中一个实施例中,所述第一金属纳米颗粒的粒径为100nm~1000nm。
在其中一个实施例中,所述第二金属纳米颗粒的粒径为5nm~100nm。
在其中一个实施例中,所述第一金属盐为铜盐。
在其中一个实施例中,所述第一金属盐选自Cu(NO 3) 2、CuCl 2和CuSO 4中的一种或多种。
在其中一个实施例中,所述第一金属盐溶液中的所述氢氟酸与所述第一金属盐的摩尔比为(0.1~10):(0.0005~4)。
在其中一个实施例中,所述第一金属盐溶液中的所述氢氟酸的浓度为0.1mol/L~10mol/L。
在其中一个实施例中,所述第一金属盐溶液中的所述第一金属盐的浓度为0.0005mol/L~5mol/L。
在其中一个实施例中,所述第一金属盐溶液中的溶剂包括醇类溶剂。
在其中一个实施例中,所述第一金属盐溶液中的所述溶剂还包括水,所述醇类溶剂和所述水的体积比为1:200~2:1。
在其中一个实施例中,所述第一金属盐溶液与所述经纯化处理的金刚线切割硅废料的液固比为(5~500)mL:1g。
在其中一个实施例中,去除所述化学破碎细化的硅料中的所述第一金属纳米颗粒的步骤包括:采用能够与所述第一金属纳米颗粒发生化学反应使所述第一金属纳米颗粒溶解的试剂洗涤所述化学破碎细化的硅料。
在其中一个实施例中,所述试剂选自硫酸和硝酸中的一种或两种。
在其中一个实施例中,所述第二金属盐选自金盐、铂盐、钯盐、银盐、铁盐和镍盐中的一种或多种。
在其中一个实施例中,所述第二金属盐选自KAuCl 4、HAuCl 4、K 2PtCl 6、H 2PtCl 6、PdCl 2、AgNO 3、Fe(NO 3) 3、Ni(NO 3) 2和Ni 2SO 4中的一种或多种。
在其中一个实施例中,所述第二金属盐溶液中的所述氢氟酸与所述第二金属盐的摩尔比为(0.1~10):(0.0005~5)。
在其中一个实施例中,所述第二金属盐溶液中的所述氢氟酸的浓度为0.1mol/L~10mol/L。
在其中一个实施例中,所述第二金属盐溶液中的所述第二金属盐的浓度为0.0005mol/L~5mol/L。
在其中一个实施例中,所述第二金属盐溶液中的溶剂包括醇类溶剂。
在其中一个实施例中,所述第二金属盐溶液中的所述溶剂还包括水,所述醇类溶剂和所述水的体积比为1:200~2:1。
在其中一个实施例中,所述第二金属盐溶液与所述化学破碎细化的硅料的液固比为(5~500)mL:1g。
在其中一个实施例中,所述纯化处理包括:
将所述金刚线切割硅废料在含有醇类溶剂的碱溶液中浸泡。
在其中一个实施例中,还包括:在所述多孔硅材料表面形成氧化层的步骤。
一种所述的多孔硅材料的制备方法制备得到的多孔硅材料。
一种电池负极材料,包括所述的多孔硅材料的制备方法制备得到的多孔硅材料和碳材料,所述碳材料包覆在所述多孔硅材料表面。
一种电化学电池,包括正极、负极及电解质,所述负极包括所述的多孔硅材料或者所述的电池负极材料。
本申请通过采用金属纳米颗粒辅助刻蚀法使金刚线切割硅废料形成多孔硅材料。金属纳米颗粒辅助刻蚀法的原理是金属阳离子得电子形成金属单质颗粒,硅失电子而被氧化, 金属单质颗粒催化氧化硅表面后被氢氟酸刻蚀,从而形成多孔硅。本申请首先采用第一金属盐和氢氟酸进行第一金属纳米颗粒辅助刻蚀,第一金属盐形成第一金属纳米颗粒,第一金属纳米颗粒辅助氢氟酸将硅料细化并破坏硅料表层的复杂氧化层并使硅料中包裹的杂质充分暴露给氢氟酸,将较大颗粒的硅料破碎细化为微米、亚微米级的硅料。本申请进一步通过第二金属盐和氢氟酸进行第二金属纳米颗粒辅助刻蚀,第二金属盐形成第二金属纳米颗粒,第二金属纳米颗粒辅助氢氟酸将细化的硅料刻蚀形成纳米化和多孔化的多孔硅材料。进一步,可以根据实际需要,通过去除或不去除该多孔硅材料中的第二金属纳米颗粒而形成无金属的多孔硅材料或者金属与多孔硅的复合材料。通过两次金属纳米颗粒辅助刻蚀形成更细化的多孔结构,该方法得到的多孔硅材料能够有效克服电池充放电过程中硅材料剧烈的体积效应,可以使切割硅废料用于锂离子电池负极材料并显著提高硅材料的循环性能和电池的电学性能。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面将对实施例或现有技术描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本申请的实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据公开的附图获得其他的附图。
图1为本发明一实施例的多孔硅材料的制备方法流程示意图;
图2为实施例1的硅/Cu材料在透射电镜下的形貌图;
图3为实施例1的多孔硅/Ag复合材料在场发射电镜下的形貌图;
图4为实施例1的多孔硅/Ag复合材料在透射电镜下的形貌图;
图5为实施例1的多孔硅/Ag/C复合材料在透射电镜下的形貌图;
图6为实施例1的多孔硅/Ag/C复合材料、多孔硅/Ag复合材料以及硅材料的储锂性能对比图。
具体实施方式
下面将结合本申请实施例中的附图,对本申请实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本申请一部分实施例,而不是全部的实施例。基于本申请中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本申请保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本申请的技术领域的技术 人员通常理解的含义相同。本文中在本申请的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本申请。本文所使用的术语“及/或”包括一个或多个相关的所列项目的任意的和所有的组合。
本申请提到的金刚线切割硅废料为利用金刚线对硅单质块体或片体切割过程中产生的粉末状碎屑,主要的成分为硅单质。
本申请实施例提供一种多孔硅材料的制备方法,包括:
S100,提供经纯化处理的金刚线切割硅废料;
S200,将所述经纯化处理的金刚线切割硅废料在第一金属盐溶液中进行第一金属纳米颗粒辅助刻蚀预处理,形成化学破碎细化的硅料,所述第一金属盐溶液中包括氢氟酸和第一金属盐,所述第一金属盐在所述第一金属纳米颗粒辅助刻蚀预处理中形成第一金属纳米颗粒化学破碎细化的硅料;
S300,去除所述化学破碎细化的硅料中的第一金属纳米颗粒化学破碎细化的硅料;以及
S400,将所述化学破碎细化的硅料在第二金属盐溶液中进行第二金属纳米颗粒辅助刻蚀处理,使所述化学破碎细化的硅料形成多孔硅材料,所述第二金属盐溶液中包括氢氟酸和第二金属盐,所述第二金属盐在所述第二金属纳米颗粒辅助刻蚀预处理中形成第二金属纳米颗粒化学破碎细化的硅料化学破碎细化的硅料。
本申请通过采用金属纳米颗粒辅助刻蚀法使金刚线切割硅废料形成多孔硅材料。金属纳米颗粒辅助刻蚀法的原理是金属阳离子得电子形成金属单质颗粒,硅失电子而被氧化,金属单质颗粒催化氧化硅表面后被氢氟酸刻蚀,从而形成多孔硅。本申请首先采用第一金属盐和氢氟酸进行第一金属纳米颗粒辅助刻蚀,第一金属盐形成第一金属纳米颗粒,第一金属纳米颗粒辅助氢氟酸将硅料细化并破坏硅料表层的复杂氧化层并使硅料中包裹的杂质充分暴露给氢氟酸,将较大颗粒的硅料破碎细化为微米、亚微米级的硅料。本申请进一步通过第二金属盐和氢氟酸进行第二金属纳米颗粒辅助刻蚀,第二金属盐形成第二金属纳米颗粒,第二金属纳米颗粒辅助氢氟酸将细化的硅料刻蚀形成纳米化和多孔化的多孔硅材料。进一步,可以根据实际需要,通过去除或不去除该多孔硅材料中的第二金属纳米颗粒而形成无金属的多孔硅材料或者金属与多孔硅的复合材料。通过两次金属纳米颗粒辅助刻蚀形成更细化的多孔结构,该方法得到的多孔硅材料能够有效克服电池充放电过程中硅材料剧烈的体积效应,可以使切割硅废料用于锂离子电池负极材料并显著提高硅材料的循环性能和电池的电学性能。
步骤S100可包括通过纯化处理去除金刚线切割硅废料中的至少部分杂质。
在一实施例中,所述步骤S100可以包括:将金刚线切割硅废料在碱溶液中浸泡。金刚线切割硅废料中可能含有碱性杂质或酸性杂质中的至少一种。通过碱溶液将金刚线切割硅废料中的酸性杂质去除,在后续的金属纳米颗粒辅助刻蚀的步骤中可将金刚线切割硅废料中的碱性杂质在酸性溶液,例如第一金属盐溶液或第二金属盐溶液中去除。
在一实施例中,所述碱溶液中的碱可以选自氢氧化锂、氢氧化钠、氢氧化钾、氢氧化钙、氨水中的一种或多种。在一实施例中,所述碱溶液中还可以包括醇类溶剂。醇类溶剂能够将金刚线切割硅废料中的有机物杂质溶解并且容易挥发而去除。醇类溶剂可以选自甲醇、乙醇、丙醇、丁醇、乙二醇、丙二醇、丙烯醇及乙烯醇中的一种或多种。在一实施例中,所述碱溶液的碱的质量浓度可以为0.1%~30%。在一实施例中,所述碱溶液与所述金刚线切割硅废料的液固比可以小于或等于250mL:6g。在一实施例中,所述金刚线切割硅废料在碱溶液中处理的温度可以为0~80℃,时间可以为1min~300min。
在一实施例中,步骤S100还包括:将金刚线切割硅废料在碱溶液中浸泡之前,将金刚线切割硅废料进行机械破碎。通过机械破碎将聚集成团的硅废料进行初步分散,使得硅废料的表面充分暴露,便于金刚线切割硅废料中的杂质的去除。在一实施例中,在机械破碎的步骤之前,可以包括对金刚线切割硅废料进行真空干燥的步骤,通过真空干燥使得硅废料不易成团,机械破碎更容易进行。
在一实施例中,步骤S100还包括:将金刚线切割硅废料在碱溶液中浸泡之后,将所述碱溶液处理后的所述金刚线切割硅废料洗涤至中性。通过将金刚线切割硅废料洗涤至中性,能够避免前序步骤的碱溶液处理对后续步骤的金属纳米颗粒辅助刻蚀的不利影响。洗涤使用的洗涤剂可以为去离子水。
在一实施例中,步骤S100还可包括洗涤后的固液分离的步骤。
经纯化处理的金刚线切割硅废料的平均粒径范围可以为0.01μm~500μm。
在步骤S200中,含有第一金属盐的溶液施加在硅废料表面,硅失电子,第一金属阳离子得电子,在硅废料表面形成第一金属纳米颗粒。第一金属纳米颗粒催化氢氟酸将硅废料腐蚀从而将大颗粒的硅废料细化为小颗粒的硅料(或称硅粉),在一实施例中,硅料的平均粒径范围可以为0.01μm~100μm。
在一实施例中,第一金属纳米颗粒的粒径可以大于步骤S400中形成的第二金属纳米颗粒的粒径。在第一金属纳米颗粒辅助刻蚀中,较大粒径的第一金属纳米颗粒起到间隔作用,将团聚或较大颗粒的硅废料分割和细化为较小颗粒的硅粉。一方面有利于将金刚线切割硅废料中的杂质充分暴露而去除,另一方面能够细化硅废料,有利于第二金属纳米颗粒辅助刻蚀将硅废料更细致的多孔化的进行。在一实施例中,所述第一金属纳米颗粒的粒径 可以为100nm~1000nm。在一实施例中,步骤S400中形成的所述第二金属纳米颗粒的粒径可以为5nm~100nm。为形成不同粒径的金属纳米颗粒,第一金属盐和第二金属盐可以为不同种金属的盐类。
在一实施例中,所述第一金属盐可为铜盐。发明人经实验研究发现,在氢氟酸存在的第一金属溶液中,铜离子得电子形成的铜纳米颗粒在金属纳米颗粒辅助刻蚀时能够将硅废料进一步细化,形成微米、亚微米级的硅粉,有利于进一步的金属纳米颗粒辅助刻蚀将硅粉多孔化。在一实施例中,所述第一金属盐可以选自Cu(NO 3) 2、CuCl 2和CuSO 4中的一种或多种。
所述第一金属盐溶液中的所述氢氟酸与所述第一金属盐的摩尔比可以为(0.1~10):(0.0005~4),在进一步的实施例中,该摩尔比可以为(1~5):1,在该摩尔比范围内,氢氟酸和形成的第一金属纳米颗粒的配合使得硅废料的细化程度更高。在一实施例中,所述第一金属盐溶液中的所述第一金属盐的浓度可以为0.0005mol/L~5mol/L。在一实施例中,所述第一金属盐溶液中的所述氢氟酸的浓度可以为0.1mol/L~10mol/L。在一实施例中,所述第一金属盐溶液中的溶剂包括醇类溶剂。在一实施例中,溶剂还可包括水,所述醇类溶剂和所述水的体积比可以为1:200~2:1。醇类溶剂能够将金属纳米颗粒辅助刻蚀过程中暴露出的有机物杂质溶解而去除,并且有利于实现第一金属盐溶液与硅粉的固液分离。在一实施例中,醇类溶剂可以选自甲醇、乙醇、丙醇、丁醇、乙二醇、丙二醇、丙烯醇及乙烯醇中的一种或多种。在一实施例中,所述第一金属盐溶液与所述经纯化处理的金刚线切割硅废料的液固比可以为(5~500)mL:1g。
在一实施例中,进行所述第一金属纳米颗粒辅助刻蚀预处理的温度可以为0~80℃,时间可以为1min~600min。
在步骤S200中得到的硅粉中混合有还原形成的第一金属纳米颗粒,第一金属纳米颗粒附着在硅粉表面。在步骤S300中,通过去除第一金属纳米颗粒辅助刻蚀预处理后的硅粉中的第一金属纳米颗粒能够使得硅粉的表面清洁,提高第二金属纳米颗粒辅助刻蚀的刻蚀效果。
在一实施例中,去除所述化学破碎细化的硅料中的第一金属纳米颗粒的步骤可以包括:采用能够与所述第一金属纳米颗粒发生化学反应使所述第一金属纳米颗粒溶解的试剂洗涤所述化学破碎细化的硅料化学破碎细化的硅料。在一实施例中,所述试剂可以为能够与第一金属纳米颗粒发生化学反应使第一金属纳米颗粒溶解的试剂,例如氧化性酸,在一实施例中选自硫酸和硝酸中的一种或两种。
在步骤S400中,含有第二金属盐的溶液施加在化学破碎细化的硅料的表面,硅失电 子,第二金属阳离子得电子,在硅粉表面形成第二金属纳米颗粒。第二金属纳米颗粒催化氢氟酸将硅粉腐蚀从而使硅粉纳米化、多孔化。经第一金属纳米颗粒辅助刻蚀和第二金属纳米颗粒辅助刻蚀后形成的多孔硅材料能够有效克服电池充放电过程中硅材料剧烈的体积效应,可以显著提高硅材料的循环性能和电池性能。
在一实施例中,所述第二金属盐可以选自金盐、铂盐、钯盐、银盐、铁盐和镍盐中的一种或多种。发明人经研究发现,该类金属盐在金属纳米颗粒辅助刻蚀中形成的金属纳米颗粒的粒径较小,能够在细化的硅料表面进行刻蚀,形成孔状结构。在一实施例中,所述第二金属盐可以选自KAuCl 4、HAuCl 4、K 2PtCl 6、H 2PtCl 6、PdCl 2、AgNO 3、Fe(NO 3) 3、Ni(NO 3) 2和Ni 2SO 4中的一种或多种。
在一实施例中,所述第二金属盐溶液中的所述氢氟酸与所述第二金属盐的摩尔比可以为(0.1~10):(0.0005~5),在进一步的实施例中,该摩尔比可以为(5~10):1,在该摩尔比范围内,氢氟酸和形成的第二金属纳米颗粒的配合使得细化的硅料孔状结构的形成更容易,多孔化程度更高。在一实施例中,所述第二金属盐溶液中的所述氢氟酸的浓度可以为0.1mol/L~10mol/L。在一实施例中,所述第二金属盐溶液中的所述第二金属盐的浓度可以为0.0005mol/L~5mol/L。在一实施例中,所述第二金属盐溶液中的溶剂可以包括醇类溶剂。在一实施例中,溶剂还可包括水,所述醇类溶剂和所述水的体积比可以为1:200~2:1。在一实施例中,醇类溶剂可以选自甲醇、乙醇、丙醇、丁醇、乙二醇、丙二醇、丙烯醇及乙烯醇中的一种或多种。在一实施例中,所述第二金属盐溶液与所述化学破碎细化的硅料的液固比可以为(5~500)mL:1g。第一金属溶液和第二金属溶液中的醇类溶剂可以相同或不同。
在一实施例中,进行所述第二金属纳米颗粒辅助刻蚀处理的温度可以为0~80℃,时间可以为1min~600min。
可选地,多孔硅材料的制备方法还可以包括:去除步骤S400得到的多孔硅材料中的第二金属纳米颗粒。当然,第二金属纳米颗粒可以去除或不去除,可以根据实际要求确定。在一实施例中,去除第二金属纳米颗粒的步骤可以为采用能够与所述第二金属纳米颗粒发生化学反应使所述第二金属纳米颗粒溶解的试剂洗涤步骤S400得到的多孔硅材料进行。在一实施例中,洗涤用试剂可选自硫酸、硝酸、氨水和氨水与H 2O 2的混合溶液中的一种或多种。在一实施例中,洗涤用试剂中的硫酸的质量浓度可以为1%~40%。在一实施例中,洗涤用试剂中的硝酸的质量浓度可以为1%~40%。在一实施例中,洗涤用试剂中的氨水的质量浓度可以为1%~40%。在一实施例中,洗涤用试剂中的氨水与H 2O 2的混合溶液中氨水与H 2O 2体积比可以为1:(1~6)。氨水与H 2O 2的混合溶液中的氨水和H 2O 2均为市售分析 纯产品。
在一实施例中,多孔硅材料的制备方法还可以包括S500:在所述多孔硅材料表面形成氧化层。该氧化层可为氧化硅层。该氧化层的厚度可为1nm~500nm。发明人经研究发现,具有氧化层的多孔硅材料能够进一步降低电池在充放电过程的体积变化,提高电池性能。
在一实施例中,在所述多孔硅材料表面形成氧化层的步骤可以包括:
将所述多孔硅材料在氧化性溶液中浸泡;以及
将浸泡后的所述多孔硅材料在氧化性环境中静置。
在一实施例中,所述氧化性溶液可以选自过氧化氢溶液、过氧乙酸溶液、重铬酸钠溶液、铬酸溶液、硝酸溶液、高锰酸钾溶液及过硫酸铵溶液中的一种或多种。在一实施例中,所述氧化性溶液的浓度可以为0.1mol/L~10mol/L。
在一实施例中,在所述氧化性溶液中浸泡的时间可以为1min~60min。
在一实施例中,所述氧化性环境可以为含F 2、Cl 2、O 2和O 3中的一种或多种的气体氛围,或含Ag +、Cu 2+、Fe 3+、Br -、I -、HNO 3、H 2SO 4、H 2O 2、KMnO 4、HClO、SO 2、SO 3和NO 2中的一种或多种的物质环境。在一实施例中,在所述氧化性气氛中静置的温度可以为25℃~100℃,时间可以为0.1h~24h。
本申请实施例还提供一种上述任一实施例的多孔硅材料的制备方法制备得到的多孔硅材料。
本申请实施例还提供一种电池负极材料,包括所述的多孔硅材料的制备方法制备得到的多孔硅材料和碳材料,所述碳材料包覆在所述多孔硅材料表面。
本申请实施例还提供一种所述的电池负极材料的制备方法,包括:
S600,提供所述多孔硅材料;
S700,将所述多孔硅材料与碳物质混合包覆形成浆料;以及
S800,在保护气体氛围中,将所述浆料在700℃~1200℃热处理。
在步骤S700中,在一实施例中,所述包覆方式可以为球磨或机械搅拌包覆中的一种或两种。当然,包覆方式还可以为其他碳包覆的常用方法。在一实施例中,浆料中的液固比可以大于或等于1:5。
在一实施例中,所述碳物质可以选自有机碳物质原料、碳化或石墨化的有机碳物质、石墨粉、石墨烯、碳纳米管和碳纤维中的一种或多种。有机碳物质可以选自葡萄糖、果糖、蔗糖、木糖、山梨糖、柠檬酸、淀粉、聚乙烯、聚丙烯、纤维素、石墨、石墨烯、芳香烃、芳香族脂类、石油沥青和煤沥青中的一种或多种。
在一实施例中,所述多孔硅材料与所述碳物质的质量比可以大于或等于10:1。
在步骤S800中,在一实施例中,保护气体可以选自氩气和氮气中的一种或两种。保护气体的流量可以为30mL/min~500mL/min。在一实施例中,热处理可以为匀速升温至700℃~1200℃。匀速升温的速率可以为5℃/min~15℃/min。
本申请实施例还提供一种电化学电池,包括正极、负极及电解质,所述负极可以包括上述实施例的多孔硅材料或者上述实施例的电池负极材料。电化学电池可以为锂离子电池等。
本申请采用两次刻蚀使金刚线切割硅废料进一步细化并在硅废料表层引入纳米多孔结构以破坏硅废料表层的复杂氧化层并使硅废料中包裹的杂质充分暴露给酸性溶液,将微米、亚微米级硅废料纳米化、多孔化,能够有效克服电池充放电过程中硅材料剧烈的体积效应,可以显著提高多孔硅材料的循环性能。在多孔硅材料表面引入致密氧化层结构结合碳包覆以制备具有硅纳米结构的氧化多孔硅-碳复合材料或氧化多孔硅-金属-碳复合材料,可以提高电池硅负极材料的首次库伦效率和电导率,得到电化学性能优异的电池硅负极材料。
实施例1
将金刚线切割硅废料置于温度为60℃、真空条件下干燥,自然冷却并破碎研磨;在温度为25℃条件下,将硅废料置于NaOH的乙醇溶液中浸泡120min,采用去离子水洗涤至中性,固液分离得到经纯化处理的金刚线切割硅废料;其中NaOH的乙醇溶液与硅废料的液固比为mL:g为250:8。
将经纯化处理的金刚线切割硅废料置于温度为25℃的第一金属盐溶液中进行第一金属纳米颗粒辅助刻蚀破碎预处理120min,固液分离得到化学破碎细化的亚微米级硅料;化学破碎细化的硅料烘干得到硅铜复合粉末(硅/Cu材料);将硅铜复合粉末置于硝酸溶液中搅拌洗涤90min去除金属铜纳米颗粒,固液分离烘干得到亚微米级高纯硅粉。其中第一金属盐溶液中包括HF、Cu(NO 3) 2、醇类,第一金属盐溶液中HF浓度为4.6mol/L,Cu(NO 3) 2浓度为0.01mol/L;第一金属盐溶液与经纯化处理的金刚线切割硅废料的液固比mL:g为10:1;醇类为乙二醇。
将亚微米级高纯硅粉置于温度80℃的第二金属盐溶液中进行金属纳米颗粒辅助刻蚀处理120min,固液分离烘干得到多孔硅/Ag复合材料。其中第二金属盐溶液中包括HF、AgNO 3、醇类。第二金属盐溶液中HF浓度为4.6mol/L、AgNO 3浓度为0.01mol/L;第二金属盐溶液与亚微米级高纯硅粉的液固比mL:g为4:1;醇类为乙二醇。
将多孔硅/Ag复合材料置于过氧化氢溶液中浸泡10min,固液分离后,置于氧气气氛的密闭性炉中加热升温至80℃,保温30min,得到氧化层包覆的多孔硅/Ag复合材料;其 中过氧化氢溶液浓度为0.1mol/L。
将氧化层包覆的多孔硅/Ag复合材料加入到有机碳物质(30%蔗糖溶液)中包覆6h形成浆料,将浆料置于温度为600℃、保护气体(氩气)氛围中恒温热处理10h得到新型Nano-Ag@SiOx@PSi/C复合材料的负极材料(多孔硅/Ag/C复合材料)。
负极材料与导电剂和海藻酸钠粘结剂按70:15:15的质量比混合后在手套箱中以锂片为对电极组装电池,在0.2mA/cm 2下充放电,材料的可逆容量达到2100mAh/g,如图7所示,电池的首次库伦效率可达到80%。
图2(硅/Cu材料图)中展示了第一种金属粒子铜刻蚀后细化的硅料粒径在800nm~1200nm之间,图3(多孔硅/Ag复合材料图)展示了第二种金属粒子刻蚀后在硅粉留下孔洞结构,图4(多孔硅/Ag复合材料图)则是对第二种金属粒子刻蚀后局部表征,黑色银颗粒分布在硅粉上,图5(多孔硅/Ag/C复合材料图)为碳包覆的结构,图6是用实施例1的多孔硅/Ag/C复合材料、多孔硅/Ag复合材料以及硅材料制备锂离子电池后测试的效果比较,其中多孔硅/Ag/C复合材料性能最为稳定。
实施例2
将金刚线切割硅废料置于温度为80℃、真空条件下干燥,自然冷却并破碎研磨;在温度为25℃条件下,将硅废料置于KOH的乙醇溶液中浸泡120min,采用去离子水洗涤至中性,固液分离得到经纯化处理的金刚线切割硅废料;其中KOH的乙醇溶液与硅废料的液固比为mL:g为250:10。
将经纯化处理的金刚线切割硅废料置于温度为25℃的第一金属盐溶液中进行第一金属纳米颗粒辅助刻蚀破碎预处理150min,固液分离得到化学破碎细化的亚微米级硅料;化学破碎细化的硅料烘干得到硅铜复合粉末;将硅铜复合粉末置于硝酸溶液中搅拌洗涤12min去除金属铜纳米颗粒,固液分离烘干得到亚微米级高纯硅粉。其中第一金属盐溶液中包括HF、Cu(NO 3) 2、醇类,第一金属盐溶液中HF浓度为4.6mol/L,Cu(NO 3) 2浓度为0.01mol/L;第一金属盐溶液与经纯化处理的金刚线切割硅废料的液固比mL:g为9:1;醇类为乙二醇。
将亚微米级高纯硅粉置于温度80℃的第二金属盐溶液中进行金属纳米颗粒辅助刻蚀处理120min,固液分离烘干得到多孔硅/Ni复合材料。其中第二金属盐溶液中包括HF、NiSO 4、醇类。第二金属盐溶液中HF浓度为4.6mol/L、NiSO 4浓度为0.01mol/L;第二金属盐溶液与亚微米级高纯硅粉的液固比mL:g为4:1;醇类为乙二醇。
将多孔硅/Ni复合材料置于过氧化氢溶液中浸泡10min,固液分离后,置于氧气气氛的密闭性炉中加热升温至80℃,保温30min,得到氧化层包覆的多孔硅/Ni复合材料;其中 过氧化氢溶液浓度为0.1mol/L。
将氧化层包覆的多孔硅/Ni复合材料加入到有机碳物质(50%葡萄糖溶液)中包覆9h形成浆料,将浆料置于温度为700℃、保护气体(氩气)氛围中恒温热处理10h得到新型Nano-Ni@SiOx@PSi/C复合材料的负极材料。
负极材料与导电剂和海藻酸钠粘结剂按70:15:15的质量比混合后在手套箱中以锂片为对电极组装电池,在0.2mA/cm 2下充放电,材料的可逆容量达到3380mAh/g,电池的首次库伦效率可达到89%。
实施例3
将金刚线切割硅废料置于温度为70℃、真空条件下干燥,自然冷却并破碎研磨;在温度为25℃条件下,将硅废料置于NaOH的甲醇溶液中浸泡120min,采用去离子水洗涤至中性,固液分离得到经纯化处理的金刚线切割硅废料;其中NaOH的甲醇溶液与硅废料的液固比为mL:g为250:15。
将经纯化处理的金刚线切割硅废料置于温度为25℃的第一金属盐溶液中进行第一金属纳米颗粒辅助刻蚀破碎预处理120min,固液分离得到化学破碎细化的亚微米级硅料;化学破碎细化的硅料烘干得到硅铜复合粉末;将硅铜复合粉末置于硝酸溶液中搅拌洗涤90min去除金属铜纳米颗粒,固液分离烘干得到亚微米级高纯硅粉。其中第一金属盐溶液中包括HF、Cu(NO 3) 2、醇类,第一金属盐溶液中HF浓度为4.6mol/L,Cu(NO 3) 2浓度为0.01mol/L;第一金属盐溶液与经纯化处理的金刚线切割硅废料的液固比mL:g为10:1;醇类为乙二醇。
将亚微米级高纯硅粉置于温度80℃的第二金属盐溶液中进行金属纳米颗粒辅助刻蚀处理120min,固液分离烘干得到多孔硅/Fe复合材料。其中第二金属盐溶液中包括HF、Fe(NO 3) 3、醇类。第二金属盐溶液中HF浓度为4.6mol/L、Fe(NO 3) 3浓度为0.01mol/L;第二金属盐溶液与亚微米级高纯硅粉的液固比mL:g为4:1;醇类为乙二醇。
将多孔硅/Fe复合材料置于过氧化氢溶液中浸泡10min,固液分离后,置于氧气气氛的密闭性炉中加热升温至100℃,保温30min,得到氧化层包覆的多孔硅/Fe复合材料;其中过氧化氢溶液浓度为0.1mol/L。
将氧化层包覆的多孔硅/Fe复合材料加入到有机碳物质(30%柠檬酸溶液)中包覆6h形成浆料,将浆料置于温度为800℃、保护气体(氩气)氛围中恒温热处理10h得到新型Nano-Fe@SiOx@PSi/C复合材料的负极材料。
负极材料与导电剂和海藻酸钠粘结剂按70:15:15的质量比混合后在手套箱中以锂片为对电极组装电池,在0.2mA/cm 2下充放电,材料的可逆容量达到2687mAh/g,电极的 首次库伦效率可达到85%。
实施例4
将金刚线切割硅废料置于温度为40℃、真空条件下干燥,自然冷却并破碎研磨;在温度为25℃条件下,将硅废料置于NaOH的丙醇溶液中浸泡120min,采用去离子水洗涤至中性,固液分离得到经纯化处理的金刚线切割硅废料;其中NaOH的丙醇溶液与硅废料的液固比为mL:g为250:20。
将经纯化处理的金刚线切割硅废料置于温度为60℃的第一金属盐溶液中进行第一金属纳米颗粒辅助刻蚀破碎预处理120min,固液分离得到化学破碎细化的亚微米级硅料;化学破碎细化的硅料烘干得到硅铜复合粉末;将硅铜复合粉末置于硝酸溶液中搅拌洗涤90min去除金属铜纳米颗粒,固液分离烘干得到亚微米级高纯硅粉。其中第一金属盐溶液中包括HF、Cu(NO 3) 2、醇类,第一金属盐溶液中HF浓度为4.6mol/L,Cu(NO 3) 2浓度为0.01mol/L;第一金属盐溶液与经纯化处理的金刚线切割硅废料的液固比mL:g为10:1;醇类为乙二醇。
将亚微米级高纯硅粉置于温度60℃的第二金属盐溶液中进行金属纳米颗粒辅助刻蚀处理120min,固液分离烘干得到多孔硅/Ag复合材料。其中第二金属盐溶液中包括HF、AgNO 3、醇类。第二金属盐溶液中HF浓度为4.6mol/L、AgNO 3浓度为0.01mol/L;第二金属盐溶液与亚微米级高纯硅粉的液固比mL:g为4:1;醇类为乙醇。
将多孔硅/Ag复合材料置于高锰酸钾溶液中浸泡10min,固液分离后,置于氧气气氛的密闭性炉中加热升温至80℃,保温30min,得到氧化层包覆的多孔硅/Ag复合材料;其中高锰酸钾溶液浓度为0.4mol/L。
将氧化层包覆的多孔硅/Ag复合材料加入到石墨溶浆中包覆6h形成浆料,将浆料置于温度为900℃、保护气体(氮气)氛围中恒温热处理10h得到新型Nano-Ag@SiOx@PSi/C复合材料的负极材料。
负极材料与导电剂和海藻酸钠粘结剂按70:15:15的质量比混合后在手套箱中以锂片为对电极组装电池,在0.5mA/cm 2下充放电,材料的可逆容量达到2877mAh/g,电池的首次库伦效率可达到83%。
实施例5
将金刚线切割硅废料置于温度为60℃、真空条件下干燥,自然冷却并破碎研磨;在温度为25℃条件下,将硅废料置于NaOH的乙醇溶液中浸泡120min,采用去离子水洗涤至中性,固液分离得到经纯化处理的金刚线切割硅废料;其中NaOH的乙醇溶液与硅废料的液固比为mL:g为250:30。
将经纯化处理的金刚线切割硅废料置于温度为25℃的第一金属盐溶液中进行第一金属纳米颗粒辅助刻蚀破碎预处理120min,固液分离得到化学破碎细化的亚微米级硅料;化学破碎细化的硅料烘干得到硅铜复合粉末;将硅铜复合粉末置于硝酸溶液中搅拌洗涤90min去除金属铜纳米颗粒,固液分离烘干得到亚微米级高纯硅粉。其中第一金属盐溶液中包括HF、Cu(NO 3) 2、醇类,第一金属盐溶液中HF浓度为4.6mol/L,Cu(NO 3) 2浓度为0.01mol/L;第一金属盐溶液与经纯化处理的金刚线切割硅废料的液固比mL:g为10:1;醇类为乙二醇。
将亚微米级高纯硅粉置于温度80℃的第二金属盐溶液中进行金属纳米颗粒辅助刻蚀处理120min,固液分离烘干得到多孔硅/Ag复合材料。其中第二金属盐溶液中包括HF、AgNO 3、醇类。第二金属盐溶液中HF浓度为4.6mol/L、AgNO 3浓度为0.01mol/L;第二金属盐溶液与亚微米级高纯硅粉的液固比mL:g为4:1;醇类为乙二醇。
将多孔硅/Ag复合材料置于重铬酸钾溶液中浸泡10min,固液分离后,置于氧气气氛的密闭性炉中加热升温至80℃,保温30min,得到氧化层包覆的多孔硅/Ag复合材料;其中重铬酸钾溶液浓度为0.1mol/L。
将氧化层包覆的多孔硅/Ag复合材料加入到沥青浆料中包覆6h形成浆料,将浆料置于温度为1000℃、保护气体(氩气)氛围中恒温热处理10h得到新型Nano-Ag@SiOx@PSi/C复合材料的负极材料。
负极材料与导电剂和海藻酸钠粘结剂按70:15:15的质量比混合后在手套箱中以锂片为对电极组装电池,在0.2mA/cm 2下充放电,材料的可逆容量达到2684mAh/g,电池的首次库伦效率可达到84%。
实施例6
实施例6与实施例1基本相同,区别仅在于,第一金属盐溶液中HF浓度为20mol/L,Cu(NO 3) 2浓度为1mol/L。
实施例7
实施例7与实施例1基本相同,区别仅在于,第二金属盐溶液中HF浓度为1mol/L、AgNO 3浓度为10mol/L。
实施例8
实施例8与实施例1基本相同,区别仅在于,区别仅在于第一金属盐溶液和第二金属盐溶液均不含有醇类。
对比例1
对比例1与实施例1基本相同,区别仅在于仅进行一次金属纳米颗粒辅助刻蚀,不包 括步骤(2),在步骤(1)之后直接进行步骤(3)。得到的负极材料组装电池,在0.2mA/cm 2下充放电,材料的可逆容量达到1500mAh/g,电极的首次库伦效率为79%。
对比例2
对比例2与实施例1基本相同,区别仅在于在多孔硅上不形成氧化层,也就是包括步骤(4),在步骤(3)之后直接进行步骤(5)。得到的负极材料组装电池,在0.2mA/cm 2下充放电,材料的可逆容量达到1368mAh/g,电极的首次库伦效率为81%。
以上所述实施例的各技术特征可以进行任意的组合,为使描述简洁,未对上述实施例中的各个技术特征所有可能的组合都进行描述,然而,只要这些技术特征的组合不存在矛盾,都应当认为是本说明书记载的范围。
以上所述实施例仅表达了本申请的几种实施方式,其描述较为具体和详细,但并不能因此而理解为对申请专利范围的限制。应当指出的是,对于本领域的普通技术人员来说,在不脱离本申请构思的前提下,还可以做出若干变形和改进,这些都属于本申请的保护范围。因此,本申请专利的保护范围应以所附权利要求为准。

Claims (27)

  1. 一种多孔硅材料的制备方法,包括:
    提供经纯化处理的金刚线切割硅废料;
    将所述经纯化处理的金刚线切割硅废料在第一金属盐溶液中进行第一金属纳米颗粒辅助刻蚀预处理,形成化学破碎细化的硅料,所述第一金属盐溶液中包括氢氟酸和第一金属盐,所述第一金属盐在所述第一金属纳米颗粒辅助刻蚀预处理中形成第一金属纳米颗粒;
    去除所述化学破碎细化的硅料中的第一金属纳米颗粒;以及
    将所述化学破碎细化的硅料在第二金属盐溶液中进行第二金属纳米颗粒辅助刻蚀处理,使所述化学破碎细化的硅料形成多孔硅材料,所述第二金属盐溶液中包括氢氟酸和第二金属盐,所述第二金属盐在所述第二金属纳米颗粒辅助刻蚀预处理中形成第二金属纳米颗粒。
  2. 根据权利要求1所述的多孔硅材料的制备方法,其特征在于,所述第一金属纳米颗粒的粒径大于所述第二金属纳米颗粒的粒径。
  3. 根据权利要求1或2所述的多孔硅材料的制备方法,其特征在于,所述第一金属纳米颗粒的粒径为100nm~1000nm。
  4. 根据权利要求1-3任一项所述的多孔硅材料的制备方法,其特征在于,所述第二金属纳米颗粒的粒径为5nm~100nm。
  5. 根据权利要求1-4任一项所述的多孔硅材料的制备方法,其特征在于,所述第一金属盐为铜盐。
  6. 根据权利要求5所述的多孔硅材料的制备方法,其特征在于,所述第一金属盐选自Cu(NO 3) 2、CuCl 2和CuSO 4中的一种或多种。
  7. 根据权利要求1-6任一项所述的多孔硅材料的制备方法,其特征在于,所述第一金属盐溶液中的所述氢氟酸与所述第一金属盐的摩尔比为(0.1~10):(0.0005~4)。
  8. 根据权利要求1-7任一项所述的多孔硅材料的制备方法,其特征在于,所述第一金属盐溶液中的所述氢氟酸的浓度为0.1mol/L~10mol/L。
  9. 根据权利要求1-8任一项所述的多孔硅材料的制备方法,其特征在于,所述第一金属盐溶液中的所述第一金属盐的浓度为0.0005mol/L~5mol/L。
  10. 根据权利要求1-9任一项所述的多孔硅材料的制备方法,其特征在于,所述第一金属盐溶液中的溶剂包括醇类溶剂。
  11. 根据权利要求10所述的多孔硅材料的制备方法,其特征在于,所述第一金属盐溶 液中的所述溶剂还包括水,所述醇类溶剂和所述水的体积比为1:200~2:1。
  12. 根据权利要求1-11任一项所述的多孔硅材料的制备方法,其特征在于,所述第一金属盐溶液与所述经纯化处理的金刚线切割硅废料的液固比为(5~500)mL:1g。
  13. 根据权利要求1-12任一项所述的多孔硅材料的制备方法,其特征在于,去除所述化学破碎细化的硅料中的所述第一金属纳米颗粒的步骤包括:采用能够与所述第一金属纳米颗粒发生化学反应使所述第一金属纳米颗粒溶解的试剂洗涤所述化学破碎细化的硅料。
  14. 根据权利要求13所述的多孔硅材料的制备方法,其特征在于,所述试剂选自硫酸和硝酸中的一种或两种。
  15. 根据权利要求1-14任一项所述的多孔硅材料的制备方法,其特征在于,所述第二金属盐选自金盐、铂盐、钯盐、银盐、铁盐和镍盐中的一种或多种。
  16. 根据权利要求1-15所述的多孔硅材料的制备方法,其特征在于,所述第二金属盐选自KAuCl 4、HAuCl 4、K 2PtCl 6、H 2PtCl 6、PdCl 2、AgNO 3、Fe(NO 3) 3、Ni(NO 3) 2和Ni 2SO 4中的一种或多种。
  17. 根据权利要求1-16任一项所述的多孔硅材料的制备方法,其特征在于,所述第二金属盐溶液中的所述氢氟酸与所述第二金属盐的摩尔比为(0.1~10):(0.0005~5)。
  18. 根据权利要求1-17任一项所述的多孔硅材料的制备方法,其特征在于,所述第二金属盐溶液中的所述氢氟酸的浓度为0.1mol/L~10mol/L。
  19. 根据权利要求1-18任一项所述的多孔硅材料的制备方法,其特征在于,所述第二金属盐溶液中的所述第二金属盐的浓度为0.0005mol/L~5mol/L。
  20. 根据权利要求1-19任一项所述的多孔硅材料的制备方法,其特征在于,所述第二金属盐溶液中的溶剂包括醇类溶剂。
  21. 根据权利要求20所述的多孔硅材料的制备方法,其特征在于,所述第二金属盐溶液中的所述溶剂还包括水,所述醇类溶剂和所述水的体积比为1:200~2:1。
  22. 根据权利要求1-21任一项所述的多孔硅材料的制备方法,其特征在于,所述第二金属盐溶液与所述化学破碎细化的硅料的液固比为(5~500)mL:1g。
  23. 根据权利要求1-22任一项所述的多孔硅材料的制备方法,其特征在于,所述纯化处理包括:
    将所述金刚线切割硅废料在含有醇类溶剂的碱溶液中浸泡。
  24. 根据权利要求1-23任一项所述的多孔硅材料的制备方法,其特征在于,还包括:在所述多孔硅材料表面形成氧化层的步骤。
  25. 一种根据权利要求1-24任一项所述的多孔硅材料的制备方法制备得到的多孔硅材 料。
  26. 一种电池负极材料,其特征在于,包括如权利要求1-24任一项所述的多孔硅材料的制备方法制备得到的多孔硅材料和碳材料,所述碳材料包覆在所述多孔硅材料表面。
  27. 一种电化学电池,其特征在于,包括正极、负极及电解质,所述负极包括如权利要求25所述的多孔硅材料或者如权利要求26所述的电池负极材料。
PCT/CN2019/115546 2019-01-02 2019-11-05 多孔硅材料及其制备方法、电池负极材料以及电化学电池 WO2020140602A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201910000324.8A CN109904407A (zh) 2019-01-02 2019-01-02 一种金刚线切割硅废料制备锂离子电池负极材料的方法
CN201910000324.8 2019-01-02

Publications (1)

Publication Number Publication Date
WO2020140602A1 true WO2020140602A1 (zh) 2020-07-09

Family

ID=66943552

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/115546 WO2020140602A1 (zh) 2019-01-02 2019-11-05 多孔硅材料及其制备方法、电池负极材料以及电化学电池

Country Status (2)

Country Link
CN (1) CN109904407A (zh)
WO (1) WO2020140602A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20210855A1 (en) * 2021-07-02 2023-01-03 Vianode AS Composite anode material from silicon kerf and method for production thereof

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109904407A (zh) * 2019-01-02 2019-06-18 昆明理工大学 一种金刚线切割硅废料制备锂离子电池负极材料的方法
CN110289408B (zh) * 2019-06-26 2021-01-26 东北大学 基于切割硅废料的纳米硅和硅/碳复合材料及制法和应用
CN110350181B (zh) * 2019-07-16 2021-08-24 昆明理工大学 一种锂离子电池纳米多孔硅负极材料的制备方法
CN112645333B (zh) * 2019-10-11 2022-06-10 洛阳阿特斯光伏科技有限公司 一种纳米硅粉制备方法、制得的纳米硅粉及用途
CN110707304A (zh) * 2019-10-17 2020-01-17 高点(深圳)科技有限公司 一种硅碳复合材料及其制备方法、应用
CN110981495B (zh) * 2019-12-31 2022-04-29 江西中材新材料有限公司 一种多孔吸音材料及其制备方法
CN111153394B (zh) * 2020-01-16 2023-01-20 昆明理工大学 一种锂离子电池碳硅负极材料的制备方法
CN111799460B (zh) * 2020-07-20 2022-09-09 昆明理工大学 一种基于切割硅废料制备硼掺杂纳米金属/多孔硅碳复合负极的方法
CN111785944B (zh) * 2020-07-20 2023-04-28 昆明理工大学 等离子活化切割硅废料制备多孔硅/碳/纳米金属复合负极材料的方法
CN111799461A (zh) * 2020-07-20 2020-10-20 昆明理工大学 一种基于硅废料合金法制备高能量密度锂离子电池负极材料的方法
CN112186142A (zh) * 2020-08-11 2021-01-05 昆明理工大学 一种锂离子电池SnO2/生物多孔碳负极材料的制备方法
CN113130878B (zh) * 2021-04-02 2022-11-11 中北大学 一种硼掺杂硅基负极材料的制备方法及其应用
CN112952068B (zh) * 2021-04-03 2022-06-21 昆明理工大学 一种内嵌金属纳米颗粒的多孔硅复合粉体
CN113851619B (zh) * 2021-08-20 2024-05-07 武汉科技大学 利用冶金废硅粉制备锂离子电池用硅碳复合负极材料的方法
CN113732013A (zh) * 2021-08-27 2021-12-03 昆明理工大学 一种废弃光伏组件的微波催化处理方法及其得到的硅碳复合材料
CN113991099A (zh) * 2021-10-27 2022-01-28 昆明理工大学 一种硅切割废料制备纳米硅基负极材料的方法
CN114164456B (zh) * 2021-12-08 2023-08-08 昆明理工大学 一种利用工业废硅粉制备复合硅纳米结构催化剂的方法及应用
CN114988413B (zh) * 2022-05-05 2024-03-15 昆明理工大学 一种高纯多孔硅制备的方法
CN114975959B (zh) * 2022-06-22 2024-03-01 厦门大学 一种利用光伏产业线切割废料硅制备硅/碳复合负极材料的方法
CN115472813A (zh) * 2022-09-23 2022-12-13 昆明理工大学 一种锂离子电池多孔硅/金属/碳纳米材料复合负极材料的制备方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025196A (zh) * 2016-05-17 2016-10-12 河南田园新能源科技有限公司 一种具有高比表面积硅碳负极复合材料的制备方法
CN106025205A (zh) * 2016-05-31 2016-10-12 上海纳晶科技有限公司 一种低成本用于储能的纳米多孔硅碳复合微粒的制备方法
CN108336345A (zh) * 2018-02-07 2018-07-27 中南大学 一种纳微结构硅负极材料的制备方法
CN108899521A (zh) * 2018-07-09 2018-11-27 西北大学 利用废硅粉与碳复合制备锂离子负极材料的方法
CN109904407A (zh) * 2019-01-02 2019-06-18 昆明理工大学 一种金刚线切割硅废料制备锂离子电池负极材料的方法
CN110350181A (zh) * 2019-07-16 2019-10-18 昆明理工大学 一种锂离子电池纳米多孔硅负极材料的制备方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106025196A (zh) * 2016-05-17 2016-10-12 河南田园新能源科技有限公司 一种具有高比表面积硅碳负极复合材料的制备方法
CN106025205A (zh) * 2016-05-31 2016-10-12 上海纳晶科技有限公司 一种低成本用于储能的纳米多孔硅碳复合微粒的制备方法
CN108336345A (zh) * 2018-02-07 2018-07-27 中南大学 一种纳微结构硅负极材料的制备方法
CN108899521A (zh) * 2018-07-09 2018-11-27 西北大学 利用废硅粉与碳复合制备锂离子负极材料的方法
CN109904407A (zh) * 2019-01-02 2019-06-18 昆明理工大学 一种金刚线切割硅废料制备锂离子电池负极材料的方法
CN110350181A (zh) * 2019-07-16 2019-10-18 昆明理工大学 一种锂离子电池纳米多孔硅负极材料的制备方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
NO20210855A1 (en) * 2021-07-02 2023-01-03 Vianode AS Composite anode material from silicon kerf and method for production thereof

Also Published As

Publication number Publication date
CN109904407A (zh) 2019-06-18

Similar Documents

Publication Publication Date Title
WO2020140602A1 (zh) 多孔硅材料及其制备方法、电池负极材料以及电化学电池
CN106848199B (zh) 一种锂离子电池纳米硅/多孔碳复合负极材料及其制备方法和应用
CN110350181B (zh) 一种锂离子电池纳米多孔硅负极材料的制备方法
Xi et al. PSi@ SiOx/Nano-Ag composite derived from silicon cutting waste as high-performance anode material for Li-ion batteries
CN108336345B (zh) 一种纳微结构硅负极材料的制备方法
Wei et al. Review of room-temperature liquid metals for advanced metal anodes in rechargeable batteries
CN104638253B (zh) 一种作为锂离子电池负极的Si@C‑RG核壳结构复合材料的制备方法
CN210074037U (zh) 复合极片及锂离子电池
CN100344016C (zh) 一种室温下制备硅/碳复合锂离子电池负极材料的方法
CN109817895A (zh) 一种高安全、高性能锂电池负极电极的制备方法
CN106887567A (zh) 一种碳包覆硅/石墨烯复合材料及其制备方法
CN113346054A (zh) MXene-碳纳米笼-硫复合材料的制备方法及应用
CN111785944B (zh) 等离子活化切割硅废料制备多孔硅/碳/纳米金属复合负极材料的方法
CN111129476A (zh) 一种采用硅片废料制备复合型锂离子电池负极材料的方法
CN105958023A (zh) 一种氧化铝包覆硅负极材料的制备方法
CN112357956A (zh) 碳/二氧化钛包覆氧化锡纳米颗粒/碳组装介孔球材料及其制备和应用
CN114079045A (zh) 以多孔聚合物微球为模板原位合成的多孔硅/碳复合材料及制备方法和锂离子电池
Zhang et al. Purification of silicon from waste photovoltaic cells and its value-added application in lithium-ion batteries
Shi et al. Green synthesis of high-performance porous carbon coated silicon composite anode for lithium storage based on recycled silicon kerf waste
Cao et al. Sb&Sb 2 O 3@ C-enhanced flexible carbon cloth as an advanced self-supporting anode for sodium-ion batteries
CN102887504A (zh) 一种锂离子电池负极用碳材料的制备方法
CN117203157A (zh) 用在锂离子基二次电池中的纳米结构化硅材料及制造方法
Wang et al. Controllable Interface Engineering for the Preparation of High Rate Silicon Anode
GB2616799A (en) Silicon-doped graphene composite material, preparation method for same, and applications thereof
CN113571681A (zh) 一种空心二氧化钛/镍/碳复合材料及其制备方法和应用

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19908042

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19908042

Country of ref document: EP

Kind code of ref document: A1