WO2020140295A1 - 手持云台控制方法和手持云台 - Google Patents

手持云台控制方法和手持云台 Download PDF

Info

Publication number
WO2020140295A1
WO2020140295A1 PCT/CN2019/070502 CN2019070502W WO2020140295A1 WO 2020140295 A1 WO2020140295 A1 WO 2020140295A1 CN 2019070502 W CN2019070502 W CN 2019070502W WO 2020140295 A1 WO2020140295 A1 WO 2020140295A1
Authority
WO
WIPO (PCT)
Prior art keywords
gimbal
shooting mode
angle
degrees
desired shooting
Prior art date
Application number
PCT/CN2019/070502
Other languages
English (en)
French (fr)
Inventor
刘帅
王映知
王文军
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to CN201980005320.7A priority Critical patent/CN111279113B/zh
Priority to CN202111628865.9A priority patent/CN114265438A/zh
Priority to PCT/CN2019/070502 priority patent/WO2020140295A1/zh
Publication of WO2020140295A1 publication Critical patent/WO2020140295A1/zh
Priority to US17/366,475 priority patent/US20220011787A1/en

Links

Images

Classifications

    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D3/00Control of position or direction
    • G05D3/12Control of position or direction using feedback
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03BAPPARATUS OR ARRANGEMENTS FOR TAKING PHOTOGRAPHS OR FOR PROJECTING OR VIEWING THEM; APPARATUS OR ARRANGEMENTS EMPLOYING ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ACCESSORIES THEREFOR
    • G03B17/00Details of cameras or camera bodies; Accessories therefor
    • G03B17/56Accessories
    • G03B17/561Support related camera accessories
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/121Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/121Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints
    • F16M11/123Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints the axis of rotation intersecting in a single point, e.g. by using gimbals
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/04Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or holding steady relative to, a person, e.g. by chains, e.g. rifle butt or pistol grip supports, supports attached to the chest or head

Definitions

  • the invention relates to the field of gimbals, in particular to a hand-held gimbal control method and a hand-held gimbal.
  • the invention provides a handheld pan-tilt control method and a handheld pan-tilt.
  • a handheld gimbal control method includes a handle and a gimbal provided on the handle.
  • the method includes:
  • the desired shooting mode including one of a flashlight mode and a vertical shooting mode
  • the first axis direction and the second axis direction are orthogonal to the vertical direction.
  • a handheld gimbal comprising:
  • the desired shooting mode including one of a flashlight mode and a vertical shooting mode
  • the first axis direction and the second axis direction are orthogonal to the vertical direction.
  • the gimbal when the gimbal enters the motion state, the gimbal can be determined based on the angle between the first axis direction and/or the second axis direction and the vertical direction in the handle coordinate system
  • the desired shooting mode and then control the gimbal to enter the desired shooting mode, which realizes the function of directly entering the flashlight mode or vertical shooting mode when the gimbal enters the sports state, without additional operation by the user, the gimbal automatic control has high precision and high efficiency, and more Can meet the needs of users.
  • FIG. 1 is a perspective view of a handheld gimbal in an embodiment of the present invention
  • FIG. 2 is a perspective view of the handheld gimbal shown in FIG. 1 when placed upright;
  • FIG. 3 is a flowchart of a method of controlling a handheld gimbal in an embodiment of the present invention
  • FIG. 4 is a schematic diagram of the positional relationship between the coordinate system of the handle and the world coordinate system when the handheld gimbal shown in FIG. 1 is placed upright;
  • FIG. 5A is a perspective view of the handheld gimbal shown in FIG. 1 in a flashlight mode
  • FIG. 5B is a perspective view of the handheld gimbal shown in FIG. 1 in the down-vertical shooting mode
  • 5C is a perspective view of the handheld gimbal shown in FIG. 1 in the up-and-down shooting mode
  • 5D is a perspective view of the handheld gimbal shown in FIG. 1 in a flashlight mode
  • 5E is a perspective view of the handheld gimbal shown in FIG. 1 in a reverse shooting mode
  • FIG. 6A is a specific flowchart of the handheld pan/tilt control method shown in FIG. 3;
  • 6B is a positional relationship between the vertical direction and the coordinate system of the outer frame in the handheld pan/tilt control method shown in 6A when the posture of the handle indicates that the desired shooting mode is the lower vertical shooting mode;
  • FIG. 6C is the positional relationship between the vertical direction and the coordinate system of the outer frame in the handheld pan/tilt control method shown in 6A when the posture of the handle indicates that the desired shooting mode is the upper vertical shooting mode;
  • 6D is a positional relationship between the vertical direction and the coordinate system of the outer frame when the posture of the handle indicates that the desired shooting mode is the upper flashlight mode, as shown in a specific embodiment of the method for controlling the handheld gimbal shown in FIG. 6A;
  • 6E is a positional relationship between the vertical direction and the coordinate system of the outer frame when the posture of the handle indicates that the desired shooting mode is the upper flashlight mode, which is shown in another specific embodiment of the handheld pan/tilt control method shown in 6A;
  • FIG. 7 is a structural block diagram of a handheld cloud platform in an embodiment of the present invention.
  • the existing handheld gimbal cannot directly enter the two flashlight and vertical shooting modes when it is turned on, and the manual gimbal can only be controlled by manual adjustment to enter the lower flashlight or vertical shooting.
  • Manual adjustment is complicated and inefficient, such as The user needs to enter the operation interface, select the shooting mode, adjust the handle status and other steps after turning on the camera, which is easy to miss the wonderful shooting moment.
  • the handheld gimbal determines the desired shooting mode of the gimbal based on the angle between the different directions and the vertical direction in the handle coordinate system when the gimbal enters the motion state, so that the gimbal can enter the motion In the state, the function of controlling the gimbal to directly enter the flashlight mode or the vertical shooting mode, without additional operation by the user, the gimbal automatic control has high precision and high efficiency, and can better meet the user's use requirements.
  • the handheld gimbal may include a handle 1 and a gimbal 2 disposed on the handle 1.
  • the gimbal 2 is used to mount the camera 3 to stabilize the camera 3.
  • the gimbal 2 in this embodiment may be a two-axis gimbal or a three-axis gimbal.
  • the gimbal 2 is a three-axis gimbal.
  • the gimbal 2 may include an outer frame 21, a middle frame 22 and an inner frame.
  • the outer frame 21 is configured to rotate around the first preset direction
  • the middle frame 22 is configured to rotate around the second preset direction
  • the inner frame is configured to rotate around the third preset direction
  • the inner frame is used to carry the shooting ⁇ 3 ⁇ Device 3.
  • the middle frame 22 and the inner frame are driven to rotate about the first preset direction, thereby driving the shooting device 3 to rotate about the first preset direction.
  • the inner frame When the middle frame 22 rotates around the second preset direction, the inner frame is driven to rotate in the second preset direction, thereby driving the shooting device 3 to rotate about the second preset direction.
  • the inner frame rotates around the third preset direction, driving the shooting device 3 to rotate around the third preset direction.
  • the gimbal 2 is a two-axis gimbal.
  • the gimbal 2 may include an outer frame 21 and an inner frame.
  • the outer frame 21 is configured to rotate around the first preset direction
  • the inner frame is configured to rotate around the second preset direction or the third preset direction.
  • the outer frame 21 rotates around the first preset direction
  • the inner frame is driven to rotate about the first preset direction, thereby driving the shooting device 3 to rotate about the first preset direction.
  • the inner frame rotates around the second preset direction or the third preset direction, driving the shooting device 3 to rotate around the second preset direction or the third preset direction.
  • the first preset direction, the second preset direction, and the third preset direction are determined according to the configuration of the gimbal 2.
  • the gimbal 2 is a three-axis gimbal
  • the outer frame 21 is configured to rotate about the yaw axis
  • the middle frame 22 is configured to rotate about the roll axis
  • the inner frame is It is configured to rotate around the pitch axis.
  • the outer frame 21 includes a yaw axis arm and is driven by a yaw axis motor
  • the middle frame 22 includes a roll axis arm and is driven by a roll axis motor
  • the inner frame includes a pitch axis arm and the pitch axis motor driven.
  • FIG. 3 is a flowchart of a method for controlling a handheld gimbal in an embodiment of the invention.
  • the method of controlling the handheld gimbal in this embodiment may include the following steps:
  • Step S301 When the gimbal 2 enters the motion state, obtain the posture of the handle 1;
  • a trigger event indicating that the gimbal 2 enters the motion state is detected, it is determined that the gimbal 2 enters the motion state.
  • the triggering event may include one of an event indicating that the handheld gimbal is turned on, an event indicating that the handheld gimbal restarts, and an event indicating that the handheld gimbal exits the sleep state.
  • the triggering event can be generated by operating the keys on the handle 1 or by operating the terminal communicating with the handheld cloud platform.
  • the gimbal 2 directly enters the vertical shooting mode.
  • the handheld gimbal of this embodiment further includes an accelerometer, which is used to detect the attitude of the gimbal qmesa.
  • the attitude of the handle 1 is determined according to the attitude of the gimbal and the joint angle of the gimbal.
  • the outer frame 21 is configured to rotate about the yaw axis
  • the middle frame 22 is configured to rotate about the roll axis.
  • the frame is configured to rotate about the pitch axis.
  • the gimbal joint angle includes yaw joint angle joint_yaw, roll joint angle joint_roll and pitch joint angle joint_pitch, and each joint angle is the joint angle of the corresponding axis motor.
  • q_yaw, q_roll and q_pitch are obtained, and the conjugate or inverse of q_yaw, q_roll and q_pitch are q_yaw_inv, q_roll_inv and q_pitch_inv, respectively.
  • the calculation formula of the handle qhandle of handle 1 is as follows:
  • joint represents joint angle
  • q represents quaternion
  • Step S302 Determine the first angle between the first axis direction and the vertical direction in the coordinate system of the handle 1 and/or the second axis direction and the vertical direction in the coordinate system of the handle 1 according to the posture of the handle 1 Second angle
  • the handheld gimbal When the handheld gimbal is placed upright, the first axis direction and the second axis direction are orthogonal to the vertical direction.
  • the handheld gimbal further includes a screen 4 and buttons (not shown) provided on the front of the handle 1 and so on.
  • the screen 4 faces the user, and the lens of the shooting device 3 faces away from the user.
  • the state diagram of the handheld gimbal is placed upright.
  • the first axis direction and the second axis direction can be defined according to requirements.
  • the first axis direction points to the front of the handle 1 and the second axis direction points to the handle 1 On the left side of Fig. 2, the first axis direction is x1 and the second axis direction is y1.
  • the first axis direction points to the front of the handle 1 and the second axis direction points to the right of the handle 1.
  • the first axis direction and the second axis direction may also be other directions, which may be specifically set according to needs.
  • the vertical direction of this embodiment is the vertical direction of the fixed coordinate system.
  • the vertical direction is the Z-axis direction in the world coordinate system, as shown in FIG. 1, the vertical direction of this embodiment
  • the vertical direction is vertical downward. It can be understood that the vertical direction may also be the vertical direction or other directions in other fixed coordinate systems.
  • the first axis direction points to the front of the handle 1
  • the second axis direction points to the left of the handle 1
  • the vertical direction is the Z axis direction in the world coordinate system as an example.
  • the x1 axis direction and the y1 axis direction are orthogonal to the Z axis direction, respectively.
  • the first axis direction and the second axis direction are defined as other directions or the vertical direction is defined as the vertical direction or other directions of other fixed coordinate systems are deformation modes of the present invention.
  • the angle judgment changes are all within the protection scope of the present invention.
  • Step S303 Determine the desired shooting mode of the gimbal 2 according to the first included angle and/or the second included angle.
  • the desired shooting mode includes one of a flashlight mode and a vertical shooting mode;
  • the first included angle is within the first preset angle range, it is determined that the desired shooting mode of the gimbal 2 is the flashlight mode.
  • the first preset angle range is set so that the upper flashlight mode includes multiple corresponding attitudes of the handle 1, when the handle 1 is in any of the upper flashlight mode corresponding In the posture of the handle 1, if the gimbal 2 enters the motion state, the gimbal 2 will directly enter the flashlight mode, which is convenient for controlling the gimbal 2 to enter the flashlight mode.
  • the first preset angle range is greater than or equal to 135 degrees and less than or equal to 180 degrees, such as the first included angle is 135 degrees, 140 degrees, 145 degrees, 150 degrees, 155 degrees, 160 degrees, 165 degrees, 170 degrees , 175 degrees or 180 degrees, it can be determined that the desired shooting mode of the gimbal 2 is the flashlight mode.
  • FIG. 5A is a perspective view of the pan-tilt head 2 of the handheld pan-tilt head in the upper flashlight mode in an embodiment of the present invention. As shown in FIG. 5A, the first included angle is 180 degrees.
  • the desired shooting of the gimbal 2 is determined to be the flashlight mode.
  • the vertical shooting mode of this embodiment may include a lower vertical shooting mode and/or an upper vertical shooting mode.
  • the third preset angle range is set so that the down-vertical shooting mode includes a plurality of corresponding postures of the handle 1, when the handle 1 is in any down-vertical shooting In the posture of the handle 1 corresponding to the mode, if the gimbal 2 enters the motion state, the gimbal 2 will directly enter the vertical-down shooting mode, which is convenient for controlling the gimbal 2 to enter the vertical-down shooting mode.
  • the second preset angle range is less than or equal to 45 degrees and greater than or equal to 0 degrees, such as the second included angle is 0 degrees, 5 degrees, 10 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees, 35 degrees , 40 degrees or 45 degrees, it can be determined that the desired shooting mode of the gimbal 2 is the lower vertical shooting mode.
  • FIG. 5B is a perspective view of the gimbal 2 of the handheld gimbal when it enters the down-vertical shooting mode according to an embodiment of the present invention. As shown in FIG. 5B, the second included angle is 0 degrees.
  • the The desired shooting mode is determined to be the lower vertical shooting mode.
  • the second included angle is within the third preset angle range, it is determined that the desired shooting mode of the gimbal 2 is the upper vertical shooting mode.
  • the second preset angle range is set so that the up-and-down shooting mode includes a plurality of corresponding postures of the handle 1, when the handle 1 is in any upright
  • the attitude of the handle 1 corresponding to the shooting mode if the gimbal 2 enters the motion state, the gimbal 2 will directly enter the upper vertical shooting mode, which is convenient for controlling the gimbal 2 to enter the upper vertical shooting mode.
  • the third preset angle range is greater than or equal to 135 degrees and less than or equal to 180 degrees, such as the second included angle is 135 degrees, 140 degrees, 145 degrees, 150 degrees, 155 degrees, 160 degrees, 165 degrees, 170 degrees , 175 degrees or 180 degrees, it can be determined that the desired shooting mode of the gimbal 2 is the upper vertical shooting mode.
  • FIG. 5C is a perspective view of the pan-tilt head 2 of the handheld pan-tilt head in the upper vertical shooting mode according to an embodiment of the present invention. As shown in FIG. 5C, the second included angle is 180 degrees, and the lens orientation of the shooting device 3 is as shown in FIG. A2 arrow direction.
  • the desired shooting of the gimbal 2 The mode is determined to be the vertical portrait mode.
  • the first included angle and the second included angle may be detected simultaneously, that is, step S303 is: whether the first included angle is within the first preset angle range and whether the second included angle is within the second preset angle Range or the third preset angle range to determine the desired shooting mode of the gimbal 2.
  • step S303 is: whether the first included angle is within the first preset angle range and whether the second included angle is within the second preset angle Range or the third preset angle range to determine the desired shooting mode of the gimbal 2.
  • this way of detecting the first angle and the second angle at the same time, and then determining the desired shooting mode of the gimbal 2 according to the first angle and the second angle is that the first angle and the second angle are certain When the angle is large, there may be a special case where the desired shooting mode of the gimbal 2 cannot be determined. For example, if the first included angle is 135 degrees and the second included angle is also 135 degrees, that is, when different angle ranges have the same end point value, the desired shooting mode of the gimba
  • the included angles may be sequenced Detection. details as follows:
  • the desired shooting mode of the gimbal 2 is determined according to the second included angle. In still other embodiments, it is detected whether the second included angle is within the second preset angle range or the third preset angle range; if not, the desired shooting mode of the gimbal 2 is determined according to the first included angle.
  • the gimbal 2 when the gimbal 2 enters the sports state, in addition to directly entering the upper flashlight mode or the vertical shooting mode, it can also directly enter the lower flashlight mode, the forward shooting mode, or the reverse shooting mode. That is, the desired shooting mode may include one of an upper flashlight mode, a vertical shooting mode, a lower flashlight mode, a forward shooting mode, and a reverse shooting mode.
  • the flashlight mode is determined according to the first angle between the first axis direction and the vertical direction in the coordinate system of the handle 1. In an embodiment, if the first included angle is within the fourth preset angle range, it is determined that the desired shooting mode of the gimbal 2 is the flashlight mode.
  • the second preset angle range is set so that the lower flashlight mode includes a plurality of corresponding postures of the handle 1, when the handle 1 is in any handle corresponding to the lower flashlight mode In the attitude of 1, if the gimbal 2 enters the motion state, the gimbal 2 will directly enter the flashlight mode, which is convenient for controlling the gimbal 2 to enter the flashlight mode.
  • the fourth preset angle range is less than or equal to 45 degrees and greater than or equal to 0 degrees, such as the first included angle is 0 degrees, 5 degrees, 10 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees, 35 degrees , 40 degrees or 45 degrees, it can be determined that the desired shooting mode of the gimbal 2 is the flashlight mode.
  • FIG. 5D is a perspective view of the pan-tilt head 2 of the handheld pan-tilt head in the lower flashlight mode according to an embodiment of the present invention. As shown in FIG. 5D, the first included angle is 0 degrees.
  • the desired shooting of the gimbal 2 The mode is determined to be the flashlight mode.
  • the forward shooting mode or the reverse shooting mode is determined according to the third angle between the seventh axis direction and the vertical direction in the coordinate system of the handle 1.
  • the seventh axis direction is parallel to the vertical direction.
  • the seventh axis direction can be defined according to requirements. For example, in one embodiment, when the handheld gimbal is placed upright, the seventh axis direction points below the handle 1, as shown in FIG. 2, the seventh axis direction is z1 . It can be understood that, in other embodiments, the seventh axis direction may also be defined as: when the handheld gimbal is placed upright, the seventh axis direction is parallel to the vertical direction, optionally, the seventh axis direction points to the handle 1 Below.
  • the seventh gimbal is directed downwards of the handle 1 as an example when the handheld gimbal is placed upright.
  • the fifth preset angle range is set so that the forward shooting mode includes a plurality of corresponding postures of the handle 1, when the handle 1 is in any forward shooting mode In the posture of the handle 1, if the gimbal 2 enters the motion state, the gimbal 2 will directly enter the positive shooting mode, which is convenient for controlling the gimbal 2 to enter the positive shooting mode.
  • the fifth preset angle range is greater than or equal to 135 degrees and less than or equal to 180 degrees, such as the third included angle is 135 degrees, 140 degrees, 145 degrees, 150 degrees, 155 degrees, 160 degrees, 165 degrees, 170 degrees , 175 degrees or 180 degrees, it can be determined that the desired shooting mode of the gimbal 2 is the forward shooting mode.
  • FIG. 2 is a perspective view of the gimbal 2 of the handheld gimbal when entering the positive shooting mode according to an embodiment of the present invention. As shown in FIG. 2, the third included angle is 180 degrees, and the lens of the shooting device 3 faces the rear of the handle 1 .
  • the desired shooting of the gimbal 2 The mode is determined to be the positive shooting mode.
  • the sixth preset angle range is set so that the reverse shooting mode includes a plurality of corresponding postures of the handle 1, when the handle 1 is in any of the reverse shooting modes In the posture of the handle 1, if the gimbal 2 enters the motion state, the gimbal 2 will directly enter the reverse mode, which is convenient for controlling the gimbal 2 to enter the reverse mode.
  • the sixth preset angle range is less than or equal to 45 degrees and greater than or equal to 0 degrees, such as the third included angle is 0 degrees, 5 degrees, 10 degrees, 15 degrees, 20 degrees, 25 degrees, 30 degrees, 35 degrees , 40 degrees or 45 degrees, it can be determined that the desired shooting mode of the gimbal 2 is the reverse shooting mode.
  • FIG. 5E is a perspective view of the gimbal 2 of the handheld gimbal when it enters the reverse shooting mode according to an embodiment of the present invention. As shown in FIG. 5E, the third included angle is 0 degrees, and the lens of the shooting device 3 faces the rear of the handle 1 .
  • the desired shooting of the gimbal 2 is determined to be the reverse shooting mode.
  • the first included angle, the second included angle, and the third included angle may be simultaneously detected, and determining the desired shooting mode of the gimbal 2 according to the first included angle and/or the second included angle may include: Whether an included angle is in the first preset angle range or the fourth preset angle range, whether the second included angle is in the second preset angle range or the third preset angle range, and whether the third included angle is in the fifth preset angle Range or the sixth preset angle range to determine the desired shooting mode of the gimbal 2.
  • this method of simultaneously detecting the first angle, the second angle, and the third angle, and then determining the desired shooting mode of the gimbal 2 according to the first angle, the second angle, and the third angle is the first
  • the included angle, the second included angle, and the third included angle are certain angle sizes
  • the desired shooting mode of the gimbal 2 may be determined. For example, if the first included angle is 135 degrees and the second included angle is also 135 degrees, that is, when different angle ranges have the same end point value, the desired shooting mode of the gimbal 2 may be the upper flashlight mode or the lower vertical shot mode.
  • the desired shooting mode of the gimbal 2 cannot be determined.
  • the above angles are tested sequentially. The detection sequence of the included angle may be changed, but the target angle range of the corresponding shooting modes is unchanged.
  • the shooting modes of the gimbal may include a forward shooting mode, a reverse shooting mode, an upper flashlight mode, a lower flashlight mode, an upper vertical shooting mode, a lower vertical shooting mode
  • the desired shooting modes may include a forward shooting mode, a reverse shooting mode, an upper shooting mode One of flashlight mode, lower flashlight mode, upper vertical shooting mode, and lower vertical shooting mode, set the first target angle to one of the first included angle, the second included angle, the third included angle, and the second target angle It is one of the first included angle, the second included angle, and the third included angle, and the third target angle is one of the first included angle, the second included angle, and the third included angle.
  • Determining the desired shooting mode of the gimbal 2 according to the first included angle and/or the second included angle may include: detecting whether the first target angle is within the range of the first target angle; if not, detecting whether the second target angle is within the second Within the target angle range; if not, the desired shooting mode of the gimbal 2 is determined according to the third target angle.
  • the first target angle range is greater than or equal to 0 degrees and less than or equal to 45 degrees, or the first target angle range is greater than or equal to 135 degrees and less than or equal to 180 degrees.
  • the second target angle range is greater than or equal to 0 degrees and less than or equal to 45 degrees, or the second target angle range is greater than or equal to 135 degrees and less than or equal to 180 degrees.
  • the third target angle range is 0 degrees to 180 degrees.
  • the desired shooting mode of the gimbal 2 is determined according to the first target angle.
  • the first target angle is a third included angle.
  • the desired shooting mode is the reverse shooting mode.
  • the desired shooting mode is the forward shooting mode.
  • the desired shooting mode of the gimbal 2 is determined according to the second target angle.
  • the second target angle is a second included angle.
  • the desired shooting mode is the lower vertical shooting mode.
  • the shooting mode is the upper vertical shooting mode.
  • the third target angle is the first included angle.
  • the desired shooting mode is the lower flashlight mode.
  • the desired shooting mode is the flashlight mode.
  • Step S304 Control the gimbal 2 to enter the desired shooting mode
  • the first positional relationship between the vertical direction and the first specific plane in the coordinate system of the camera 3 mounted on the gimbal 2 is determined according to the desired shooting mode ; Then control the rotation of the gimbal 2 so that the camera 3 satisfies the first positional relationship.
  • the first specific plane is formed based on the third and fourth axis directions in the coordinate system of the camera 3, and when the camera 3 is placed upright, the third and fourth axis directions are perpendicular to the vertical direction .
  • the lens of the camera 3 faces away from the user, as shown in FIG. 2.
  • the third axis direction and the fourth axis direction can be defined according to requirements.
  • the third axis direction points to the front of the camera 3 (that is, the direction of the lens)
  • the fourth axis direction is directed to the left side of the camera 3.
  • the third axis direction and the fourth axis direction may be other directions, for example, the third axis direction points to the rear of the camera 3, the fourth axis direction points to the left of the camera 3, or the third axis direction points to the camera Behind 3, the fourth axis direction points to the right side of the camera 3, etc., which can be set as needed.
  • the first positional relationship is: the first specific plane in the coordinate system of the shooting device 3 carried by the gimbal 2 is substantially parallel to the vertical direction.
  • the first positional relationship may be other than the content described above, for example, the first specific plane in the coordinate system of the camera 3 mounted on the gimbal 2 may be The vertical direction has a certain angle, which can be set according to specific needs.
  • the user can customize the first position relationship.
  • the first positional relationship is: the first specific plane in the coordinate system of the shooting device 3 mounted on the gimbal 2 is substantially perpendicular to the vertical direction.
  • the first positional relationship may be other than the content described above, for example, the first specific plane in the coordinate system of the camera 3 mounted on the gimbal 2 may be vertical The vertical direction has a certain angle, which can be set according to specific needs.
  • the user can customize the first position relationship.
  • the first positional relationship may be determined by the first included angle described above, that is, the included angle between the first specific plane and x1 may be a fixed angle, so that based on the first included angle, the first specific plane and The angle between the vertical directions, whereby the first positional relationship can be determined based on the angle between the first specific plane and the vertical direction.
  • steps S3041 to S3043 may be included.
  • steps S3041 to S3043 may be included. For details, refer to FIG. 6A.
  • step S3041 determine the target joint angle of the outer frame 21 according to the desired shooting mode
  • the second specific plane is formed based on the fifth axis direction and the sixth axis direction in the coordinate system of the outer frame 21, and when the handheld gimbal is placed upright, the fifth axis direction, the sixth axis direction and the vertical direction Orthogonal.
  • the fifth axis direction and the sixth axis direction can be defined according to requirements.
  • the fifth axis direction points to the front or rear of the outer frame 21
  • the sixth axis direction Point to the left or right of the outer frame 21.
  • the second positional relationship may include that the projection of the vertical direction on the second specific plane is on the axis corresponding to the fifth axis direction, or the projection of the vertical direction on the second specific plane is on the axis corresponding to the sixth axis direction. It is worth mentioning that whether the projection of the vertical direction on the second specific plane is on the axis corresponding to the fifth axis direction or the axis corresponding to the sixth axis direction is how to define the coordinate system of the outer frame 21 Five-axis direction and sixth-axis direction.
  • the vertical shooting mode when the desired shooting mode is the upper vertical shooting mode, the projection of the vertical direction on the second specific plane is the same as the direction of the sixth axis direction; the vertical shooting mode includes the lower vertical shooting mode, When the desired shooting mode is the lower vertical shooting mode, the projection of the vertical direction on the second specific plane is opposite to the direction of the sixth axis direction. In some other embodiments, when the desired shooting mode is the upper vertical shooting mode, the projection of the vertical direction on the second specific plane is opposite to the direction of the sixth axis direction; the vertical shooting mode includes the lower vertical shooting mode, when the desired shooting When the mode is the vertical portrait mode, the projection of the vertical direction on the second specific plane is the same as the direction of the sixth axis.
  • the pointing relationship between the projection of the vertical direction on the second specific plane and the sixth axis direction needs to be further determined according to the definitions of the vertical direction and the sixth axis direction
  • the vertical direction is the Z-axis direction in the world coordinate system, and when the handheld gimbal is placed upright, the fifth axis direction is directed to the front of the outer frame 21 as an example for description.
  • the desired shooting mode is the upper vertical shooting mode
  • the projection of the Z axis direction on the second specific plane is opposite to the direction of the sixth axis direction.
  • the vertical shooting mode includes a lower vertical shooting mode.
  • the desired shooting mode is the lower vertical shooting mode
  • the projection of the Z axis direction on the second specific plane is the same as the direction of the sixth axis direction.
  • the projection of the vertical direction on the second specific plane is the same as or opposite to the direction of the fifth axis direction.
  • the directivity of the projection of the vertical direction on the second specific plane and the direction of the fifth axis direction needs to be further determined according to the definition of the vertical direction and the fifth axis direction, and the vertical direction is the world In the Z-axis direction of the coordinate system, when the handheld gimbal is placed upright, the sixth axis direction is directed to the left side of the outer frame 21 as an example for description.
  • the desired shooting mode is the upper flashlight mode
  • the projection of the Z axis direction on the second specific plane is opposite to the direction of the fifth axis direction.
  • the rotation direction from the fifth axis direction to the sixth axis direction is defined as a positive direction
  • the rotation direction from the sixth axis direction to the fifth axis direction is defined as In the negative direction
  • the joint angle of the outer frame 21 of the gimbal 2 shown in FIG. 2 is defined as 0 degrees
  • the fifth axis x2 of the coordinate system of the outer frame 21 points to the outer frame
  • the front of 21 is directed to the user
  • the sixth axis y2 is directed to the left of the outer frame 21
  • the second specific plane is the plane formed by x2 and y2.
  • the vertical direction is the direction of gravity, that is, the direction opposite to the Z-axis direction of the world coordinate system.
  • the rotation area of the outer frame 21 can be divided into a forward rotation area (that is, based on x2, counterclockwise rotation) and a reverse rotation area (that is, based on x2, clockwise rotation), Among them, x2 can be used as the dividing line of the joint angle of the outer frame 21 at 0 degrees, and rotate counterclockwise, ⁇ is greater than 0, otherwise, it is less than 0.
  • the second positional relationship is: the projection Z1 of the gravity direction on the plane formed by x2 and y2 has the same direction as the sixth axis direction y2.
  • the positional relationship between Z1 and x2, y2 is as shown in the figure, and the angle between Z1 and x2 is ⁇ .
  • the target joint angle ⁇ -(90 degrees- ⁇ )
  • the second positional relationship is: the projection Z1 of the gravity direction on the plane formed by x2 and y2 is opposite to the direction of the sixth axis direction y2.
  • the desired shooting mode is the lower vertical shooting mode
  • the positional relationship between Z1 and x2, y2 is as shown in the figure, and the angle between Z1 and x2 is ⁇ .
  • the target joint angle ⁇ ⁇ +90 degrees, it is necessary to control the angle of the outer frame 21 rotating clockwise ( ⁇ +90 degrees).
  • the second position relationship is: the projection Z1 of the gravity direction on the plane formed by x2 and y2 is opposite to the direction of the fifth axis direction x2.
  • the positional relationship between Z1 and x2, y2 is as shown in the figure, and the angle between Z1 and x2 is ⁇ .
  • the target joint angle ⁇ 180 degrees + ⁇ degrees, it is necessary to control the angle of the outer frame 21 rotating counterclockwise (180 degrees + ⁇ degrees).
  • the second positional relationship is: the projection Z1 of the gravity direction on the plane formed by x2 and y2 is opposite to the direction of the fifth axis direction x2. Referring to FIG. 6E, assuming that the desired shooting mode is the upper flashlight mode, the positional relationship between Z1 and x2, y2 is as shown in the figure, and the angle between Z1 and x2 is ⁇ .
  • the target joint angle ⁇ ⁇ 180 degrees+ ⁇ degrees, it is necessary to control the angle of the outer frame 21 rotating clockwise ( ⁇ 180 degrees+ ⁇ degrees).
  • Step S3042 control the outer frame 21 to rotate to the target joint angle
  • controlling the outer frame 21 to rotate to the target joint angle means controlling the corresponding motor to rotate to the target joint angle.
  • step S3042 controls the outer frame 21 to Set the joint angle to the target joint angle.
  • the gimbal 2 further includes a middle frame 22 connected to the outer frame 21 and an inner frame connected to the middle frame 22, the inner frame is used to carry the camera 3, and the middle frame 22 is configured to wrap around the second preset In the direction of rotation, the inner frame is configured to rotate around the third preset direction.
  • the joint angle of the middle frame 22 is also controlled to the first preset angle
  • the joint angle of the inner frame is controlled to the second preset angle.
  • the first preset angle is the joint angle of the middle frame 22 when the gimbal 2 enters the motion state.
  • the second preset angle is the joint angle of the inner frame when the gimbal 2 enters the motion state.
  • the joint angle of the middle frame 22 and the inner frame is always locked when the gimbal 2 enters the motion state.
  • the gimbal 2 will perform a self-check, rotate the joint angle of the middle frame 22 to a second preset joint angle such as 0 degrees, and/or rotate the joint angle of the inner frame
  • the angle to the third preset joint is 0 degrees.
  • the first preset angle is a second preset joint angle
  • the second preset angle is a third preset joint angle.
  • the first preset angle and the second preset angle are both 0 degrees, during the process of turning the outer frame 21 to the target joint angle In the middle, the joint angle of the middle frame 22 and the inner frame is always locked at 0 degrees.
  • the gimbal 2 further includes an inner frame connected to the outer frame 21, the inner frame is used to mount the photographing device 3, and the inner frame is configured to rotate around the second preset direction or the third preset direction. While controlling the rotation of the outer frame 21 to the target joint angle, the joint angle of the inner frame is also controlled to the third preset angle.
  • the third preset angle is the joint angle of the inner frame when the gimbal 2 enters the motion state. In this embodiment, during the rotation of the outer frame 21 to the target joint angle, the joint angle of the inner frame is always locked to the size of the joint angle of the inner frame when the gimbal 2 enters the motion state.
  • the gimbal 2 when the gimbal 2 enters the motion state, the gimbal 2 will perform a self-check, and will rotate the joint angle of the inner frame to a fourth preset joint angle such as 0 degrees.
  • the third preset angle is the fourth preset joint angle. If the fourth preset joint angle is 0 degrees, the third preset angle is also 0 degrees.
  • the joint angle of the inner frame is always locked at 0 degrees.
  • controlling the outer frame 21 to rotate to the target joint angle to lock the joint angle of the middle frame 22 and the inner frame, or controlling the outer frame 21 to rotate to the target joint angle, locking the joint angle of the inner frame may be called joint angle closed-loop control .
  • Step S3043 The pan/tilt head 2 is controlled to rotate to the desired posture corresponding to the desired shooting mode, so that the shooting device 3 satisfies the first positional relationship.
  • the posture component corresponding to the outer frame 21 in the desired posture is the posture when the outer frame 21 rotates to the target joint angle.
  • the gimbal posture when the outer frame 21 rotates to the target joint angle is detected by the accelerometer, and the posture when the outer frame 21 rotates to the target joint angle can be determined according to the gimbal posture when the outer frame 21 rotates to the target joint angle.
  • the posture when the outer frame 21 rotates to the target joint angle is the pan/tilt 2 in the posture of the pan/tilt when the outer frame 21 rotates to the target joint angle.
  • the attitude component of the axis is the posture when the outer frame 21 rotates to the target joint angle.
  • the current posture of the gimbal 2 may not meet the first positional relationship of the desired shooting mode.
  • another frame may need to be further adjusted. Is controlled so that the attitude of the gimbal 2 can satisfy the first positional relationship.
  • the configuration of the gimbal 2 will change.
  • the gimbal 2 as a three-axis gimbal for example.
  • the outer frame 21 when the handheld gimbal is placed upright, the outer frame 21 is configured to rotate about the yaw axis, the middle frame 22 is configured to rotate about the roll axis, and the inner frame is configured to rotate about the pitch axis.
  • the desired shooting mode when the vertical shooting mode, the outer frame 21 is configured to rotate about the pitch axis, the middle frame 22 is configured to rotate about the roll axis, and the inner frame is configured to yaw The shaft rotates.
  • the desired shooting mode when the desired shooting mode is the upper flashlight mode, the outer frame 21 is configured to rotate about the roll axis, the middle frame 22 is configured to rotate about the yaw direction, and the inner frame is configured to rotate about the pitch axis.
  • Controlling the rotation of the gimbal 2 to the desired attitude corresponding to the desired shooting mode specifically includes: determining the attitude component of the gimbal 2 corresponding to the roll axis according to the desired shooting mode; controlling the gimbal 2 according to the attitude component of the corresponding roll axis, so that the cloud The stage 2 rotates to the desired posture corresponding to the desired shooting mode.
  • the outer frame 21 is configured to rotate about the yaw axis
  • the middle frame 22 is configured to rotate about the roll axis
  • the inner frame is configured to rotate about the pitch axis.
  • posture closed-loop control is performed, that is, the gimbal 2 is controlled according to the posture component of the roll axis corresponding to the vertical shooting mode, that is, only the posture of the middle frame 22 is controlled, and the outer frame
  • the postures of 21 and the inner frame remain the same as the posture of the outer frame 21 and the inner frame at the end of the closed loop of the joint angle, so that the gimbal 2 can satisfy the first positional relationship corresponding to the vertical shooting mode.
  • the posture change of the outer frame 21 and the inner frame caused by the closed-loop attitude is compensated by the closed-loop posture. Specifically, after the posture adjustment of the middle frame 22 is completed, the posture of the outer frame 21 and the inner frame is fine-tuned to make the gimbal 2Meet the first position relationship corresponding to the vertical shooting mode.
  • the camera When the Euler angle corresponding to the roll axis in the attitude of the gimbal 2 is 0 degrees, the camera is configured to be placed horizontally.
  • the desired shooting mode is the upper vertical shooting mode, the Euler angle corresponding to the roll axis in the attitude of the gimbal 2 can be controlled to be minus 90 degrees.
  • the desired shooting mode is the lower vertical shooting mode, the Euler angle corresponding to the roll axis in the attitude of the gimbal 2 can be controlled to be 90 degrees.
  • the gimbal 2 is configured to be able to rotate around the pitch axis.
  • Controlling the attitude of the gimbal 2 to the desired attitude specifically includes: determining the attitude component of the gimbal 2 corresponding to the pitch axis according to the desired shooting mode; controlling the gimbal 2 according to the attitude component of the corresponding pitch axis, so that the gimbal 2 rotates to the desired shooting The desired posture corresponding to the pattern.
  • the gimbal 2 is a three-axis gimbal
  • the outer frame 21 is configured to rotate about the yaw axis
  • the middle frame 22 is configured to rotate about the roll axis
  • the inner frame is configured to rotate about the pitch axis.
  • controlling the attitude component of the pitch axis means controlling the Euler angle of the pitch axis in the attitude of the gimbal 2 to be 180 degrees, that is, controlling the rotation of the inner frame.
  • the closed-loop control of the joint angle of the outer frame 21 is completed, the closed-loop control of the attitude is performed, that is, the gimbal 2 is controlled according to the attitude component of the pitch axis corresponding to the upper flashlight mode, that is, only the inner frame is attitude-controlled, and the outer frame 21 and The posture of the middle frame 22 can be maintained as the posture of the outer frame 21 and the middle frame 22 at the end of the closed loop of the joint angle, so that the gimbal 2 can satisfy the first positional relationship corresponding to the flashlight mode.
  • the posture changes of the outer frame 21 and the middle frame 22 caused by the posture closed loop are compensated by the posture closed loop. Specifically, after the posture adjustment of the inner frame is finished, the postures of the outer frame 21 and the middle frame 22 are fine-tuned, so that the cloud The station 2 satisfies the first positional relationship corresponding to the flashlight mode.
  • controlling the gimbal 2 to rotate to a desired posture corresponding to the desired shooting mode includes: controlling the gimbal 2
  • the joint angle of the frame configured to rotate around the pitch axis is the preset joint angle.
  • the gimbal 2 after controlling the gimbal 2 to enter the desired shooting mode, when the desired shooting mode is the vertical shooting mode, the gimbal 2 is configured to be able to rotate around the pitch axis at a preset joint angle position at an angle of 0 degrees To 45 degrees, for example, after controlling the gimbal 2 to enter the desired shooting mode, you can control the gimbal 2 to rotate around the pitch axis at a preset joint angle position by 0 degrees, 5 degrees, 10 degrees, 15 degrees, 20 degrees, 25 degrees, 30 Degrees, 40 degrees or 45 degrees.
  • the preset joint angle position is the joint angle position of the pitch axis corresponding to the gimbal 2 when the gimbal 2 enters the desired shooting mode, so as to meet the user's shooting needs.
  • the pitch angle joint angle position corresponding to the gimbal 2 is the joint angle position of the outer frame 21, and the rotatable outer frame 21 can be rotated around the pitch axis by 0 degrees to 45 degrees, so that When the gimbal 2 enters the vertical shooting mode, the shooting device 3 can shoot pictures with different viewing angles.
  • the gimbal 2 after controlling the gimbal 2 to enter the desired shooting mode, when the desired shooting mode is the upper flashlight mode, the gimbal 2 is configured to be able to rotate around the roll axis at a preset joint angle position at an angle range of 0 Degrees to 45 degrees, such as after controlling the gimbal 2 to enter the desired shooting mode, you can control the gimbal 2 to rotate around the roll axis at a preset joint angle position by 0 degrees, 5 degrees, 10 degrees, 15 degrees, 20 degrees, and 25 degrees , 30 degrees, 40 degrees or 45 degrees.
  • the preset joint angle position is the joint angle position of the roll axis corresponding to the gimbal 2 when the gimbal 2 enters the desired shooting mode, so as to meet the user's shooting needs.
  • the joint angle position of the roll axis corresponding to the gimbal 2 is the joint angle position of the outer frame 21, and the rotatable outer frame 21 is rotated around the roll axis by 0 degrees to 45 degrees. Therefore, when the gimbal 2 enters the flashlight mode, the shooting device 3 can shoot pictures with different viewing angles.
  • the gimbal 2 after controlling the gimbal 2 to enter the desired shooting mode, if the handheld gimbal is triggered to the non-shooting mode, the gimbal 2 is controlled to be in the unloaded state.
  • the non-shooting mode may include a video playback mode, a parameter setting mode, and so on.
  • the PTZ 2 is controlled to restore the desired shooting mode to meet the user's use requirements.
  • the gimbal 2 After controlling the gimbal 2 to be in the unloaded state, if the handheld gimbal exits the non-shooting mode, but the current posture of the handle 1 does not meet the desired shooting mode, the gimbal 2 needs to re-determine the cloud according to the current posture of the gimbal 2 The desired shooting mode of the platform 2, and then control the PTZ 2 to enter the newly determined desired shooting mode of the PTZ 2.
  • the desired shooting mode further includes one of a forward shooting mode and a reverse shooting mode.
  • the forward shooting mode or the reverse shooting mode is the third according to the seventh axis direction and the vertical direction in the coordinate system of the handle 1 The angle is determined. Among them, when the handheld gimbal is placed upright, the seventh axis direction is parallel to the vertical direction.
  • the forward shooting mode and the reverse shooting mode in step S303.
  • the gimbal 2 after controlling the gimbal 2 to enter the desired shooting mode, can switch between different desired shooting modes. Specifically, after controlling the gimbal 2 to enter the desired shooting mode, if the posture change of the outer frame 21 is detected, the gimbal 2 can be controlled in the vertical shooting mode, the normal shooting mode, and the vertical shooting mode according to the posture change of the external frame 21 Switch between reverse mode, flashlight mode and forward mode, flashlight mode and reverse mode.
  • the handheld gimbal 2 of this embodiment When the handheld gimbal 2 of this embodiment is in normal operation, after controlling the gimbal 2 to enter the flashlight mode or the vertical shooting mode, since the attitude of the gimbal 2 corresponds to the control of the attitude component of the roll axis, it is to increase the stability of the camera 3, Moreover, the joint angle of the corresponding frame of the flashlight mode and the vertical shooting mode when stabilizing is different, as shown in the three-axis gimbal shown in FIG. 1, for the flashlight mode, the corresponding frame of the stabilizing is the outer frame 21, and the vertical shooting mode At this time, the frame corresponding to the stabilization is the inner frame, therefore, the gimbal 2 will not directly switch between the vertical shooting mode and the flashlight mode (including the upper flashlight mode and the lower flashlight mode).
  • the gimbal 2 when the gimbal 2 is in the vertical shooting mode or the flashlight mode, if the posture of the outer frame 21 does not change even if the handle 1 is rotated, and the forward shooting mode or the reverse shooting mode cannot be satisfied, the gimbal 2 can still be held In the current vertical shooting mode or flashlight mode. Specifically, when the posture change of the outer frame 21 is within a preset range, the gimbal 2 may be controlled to maintain the current desired shooting mode, where the preset range may be determined according to the current desired shooting mode of the gimbal 2.
  • the shooting mode in the forward or reverse shooting mode, if the change of the posture of the handle satisfies the vertical shooting or flashlight mode (upper flashlight mode and lower flashlight mode), the shooting mode can be switched accordingly.
  • the cloud when the gimbal 2 enters the motion state, the cloud can be determined based on the angle between the first axis direction and/or the second axis direction and the vertical direction in the coordinate system of the handle 1
  • the desired shooting mode of the platform 2 and then control the gimbal 2 to enter the desired shooting mode, which realizes the function of directly entering the flashlight mode or the vertical shooting mode when the gimbal 2 enters the sports state, without additional operation by the user, and the gimbal 2 has high automatic control accuracy And high efficiency, can better meet the user's needs.
  • an embodiment of the present invention further provides a handheld gimbal.
  • the handheld gimbal may include a handle 1, a gimbal 2 and a controller 5.
  • the gimbal 2 is used to mount the imaging device 3, and the gimbal 2 is installed on the handle 1.
  • the controller 5 is provided in the handle 1, and optionally, the controller 5 is provided in the handle 1.
  • the controller 5 is used to: when the gimbal 2 enters the motion state, acquire the posture of the handle 1; according to the posture of the handle 1, determine the first axis direction in the coordinate system of the handle 1 and the first clip in the vertical direction Angle and/or the second included angle between the second axis direction and the vertical direction in the coordinate system of the handle 1; determining the desired shooting mode of the gimbal 2 according to the first included angle and/or the second included angle, the desired shooting mode includes One of flashlight mode and vertical shooting mode; control the gimbal 2 to enter the desired shooting mode; wherein, when the handheld gimbal is placed upright, the first axis direction and the second axis direction are orthogonal to the vertical direction.
  • controller 5 The implementation process and working principle of the controller 5 can be referred to the description of the handheld pan/tilt control method in the above embodiment, and will not be repeated here.
  • the controller 5 in this embodiment may be a central processing unit (CPU).
  • the controller 5 may further include a hardware chip.
  • the hardware chip may be an application-specific integrated circuit (ASIC), a programmable logic device (PLD) or a combination thereof.
  • the PLD may be a complex programmable logic device (complex programmable logic device (CPLD), field programmable gate array (FPGA), general array logic (GAL) or any combination thereof.
  • an embodiment of the present invention also provides a computer-readable storage medium on which a computer program is stored, and when the program is executed by a processor, the steps of the handheld pan/tilt control method of the foregoing embodiment are implemented.
  • the storage medium may be a magnetic disk, an optical disk, a read-only memory (Read-Only Memory, ROM) or a random storage memory (Random Access Memory, RAM), etc.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Studio Devices (AREA)
  • Accessories Of Cameras (AREA)

Abstract

一种手持云台控制方法和手持云台,手持云台包括手柄和设置于手柄上的云台,所述方法包括:在云台进入运动状态时,获取手柄的姿态;根据手柄的姿态,确定手柄的坐标系中的第一轴方向与竖直方向的第一夹角和/或手柄的坐标系中的第二轴方向与竖直方向的第二夹角;根据第一夹角和/或第二夹角确定云台的期望拍摄模式,期望拍摄模式包括上手电筒模式、竖拍模式中的一种;控制云台进入期望拍摄模式;其中,在手持云台正立放置时,第一轴方向、第二轴方向与竖直方向正交。本发明的手持云台控制方法和手持云台实现了云台进入运动状态时直接进入上手电筒模式或竖拍模式的功能,无需用户额外操作,云台自动控制精度高且效率高,更能符合用户的使用需求。

Description

手持云台控制方法和手持云台 技术领域
本发明涉及云台领域,尤其涉及一种手持云台控制方法和手持云台。
背景技术
在使用手持云台进行拍摄时,有些画面需要手持云台以下手电筒、竖拍方式进行拍摄,但现有手持云台无法直接进入下手电筒和竖拍这两种拍摄模式,只能通过手动调节控制手持云台进入下手电筒或竖拍,但手动调节复杂且效率低,容易错过精彩的拍摄瞬间。
发明内容
本发明提供一种手持云台控制方法和手持云台。
具体地,本发明是通过如下技术方案实现的:
根据本发明第一方面,提供一种手持云台控制方法,所述手持云台包括手柄和设置于所述手柄上的云台,所述方法包括:
在所述云台进入运动状态时,获取所述手柄的姿态;
根据所述手柄的姿态,确定所述手柄的坐标系中的第一轴方向与竖直方向的第一夹角和/或所述手柄的坐标系中的第二轴方向与所述竖直方向的第二夹角;
根据所述第一夹角和/或所述第二夹角确定所述云台的期望拍摄模式,所述期望拍摄模式包括上手电筒模式、竖拍模式中的一种;
控制所述云台进入所述期望拍摄模式;
其中,在所述手持云台正立放置时,所述第一轴方向、所述第二轴方向与竖直方向正交。
根据本发明第二方面,提供一种手持云台,所述手持云台包括:
手柄;
设置于所述手柄上的云台,所述云台用于搭载拍摄装置;和
设于手柄的控制器,所述控制器用于:
在所述云台进入运动状态时,获取所述手柄的姿态;
根据所述手柄的姿态,确定所述手柄的坐标系中的第一轴方向与竖直方向的第一夹角和/或所述手柄的坐标系中的第二轴方向与所述竖直方向的第二夹角;
根据所述第一夹角和/或所述第二夹角确定所述云台的期望拍摄模式,所述期望拍摄模式包括上手电筒模式、竖拍模式中的一种;
控制所述云台进入所述期望拍摄模式;
其中,在所述手持云台正立放置时,所述第一轴方向、所述第二轴方向与竖直方向正交。
由以上本发明实施例提供的技术方案可见,在云台进入运动状态时,基于手柄坐标系中第一轴方向和/或第二轴方向与竖直方向的夹角大小,即可确定云台的期望拍摄模式,再控制云台进入期望拍摄模式,实现了云台进入运动状态时直接进入上手电筒模式或竖拍模式的功能,无需用户额外操作,云台自动控制精度高且效率高,更能符合用户的使用需求。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例描述中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动性的前提下,还可以根据这些附图获得其他的附图。
图1是本发明一实施例中的手持云台的立体图;
图2是图1所示的手持云台正立放置时的立体图;
图3是本发明一实施例中的手持云台控制方法的方法流程图;
图4是图1所示的手持云台正立放置时的手柄的坐标系与世界坐标系的位置关系示意图;
图5A是图1所示的手持云台处于上手电筒模式的立体图;
图5B是图1所示的手持云台处于下竖拍模式的立体图;
图5C是图1所示的手持云台处于上竖拍模式的立体图;
图5D是图1所示的手持云台处于下手电筒模式的立体图;
图5E是图1所示的手持云台处于倒拍模式的立体图;
图6A是图3所示的手持云台控制方法的具体流程图;
图6B是6A所示的手持云台控制方法中当手柄的姿态指示期望拍摄模式为下竖拍模式时,竖直方向与外框架的坐标系的位置关系;
图6C是6A所示的手持云台控制方法中当手柄的姿态指示期望拍摄模式为上竖拍模式时,竖直方向与外框架的坐标系的位置关系;
图6D是6A所示的手持云台控制方法中一具体实施例示出的当手柄的姿态指 示期望拍摄模式为上手电筒模式时,竖直方向与外框架的坐标系的位置关系;
图6E是6A所示的手持云台控制方法中另一具体实施例示出的当手柄的姿态指示期望拍摄模式为上手电筒模式时,竖直方向与外框架的坐标系的位置关系;
图7是本发明一实施例中的手持云台的结构框图。
附图标记:1:手柄;2:云台;21:外框架;22:中框架;3:拍摄装置;4:屏幕;5:控制器。
具体实施方式
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
相关技术中,现有手持云台在开机时无法直接进入下手电筒和竖拍这两种拍摄模式,只能通过手动调节控制手持云台进入下手电筒或竖拍,手动调节复杂且效率低,例如,用户需要开机后,需要进入操作界面、选择拍摄模式、调整手柄状态等步骤,容易错过精彩的拍摄瞬间。对于此,本发明实施例的手持云台,在云台进入运动状态时,基于手柄坐标系中不同方向与竖直方向的夹角来确定云台的期望拍摄模式,即可实现云台进入运动状态时,控制云台直接进入上手电筒模式或竖拍模式的功能,无需用户额外操作,云台自动控制精度高且效率高,更能符合用户的使用需求。
下面结合附图,对本发明的手持云台控制方法和手持云台进行详细说明。在不冲突的情况下,下述的实施例及实施方式中的特征可以相互组合。
结合图1和图2,本发明实施例的手持云台可包括手柄1和设置于手柄1上的云台2,该云台2用于搭载拍摄装置3,以对拍摄装置3进行增稳。本实施例的云台2可为两轴云台或三轴云台。
在一实施例中,云台2为三轴云台,结合图1和图2,该云台2可包括外框架21、中框架22和内框架。其中,外框架21被配置为绕第一预设方向转动,中框架22被配置为绕第二预设方向转动,内框架被配置为绕第三预设方向转动,且内框架用于搭载拍摄装置3。具体的,外框架21绕第一预设方向转动时,带动中框架22和内框架绕第一预设方向转动,从而带动拍摄装置3绕第一预设方向转动。中框架22绕第二预设方向转动时,带动内框架在第二预设方向转动,从而带动拍摄装置3绕第二预设方向转动。内框架绕第三预设方向转动,带动拍摄装置3绕第三预设方向转动。
在一实施例中,云台2为两轴云台,该云台2可包括外框架21和内框架。其中,外框架21被配置为绕第一预设方向转动,内框架被配置为绕第二预设方向或第三预设方向转动。具体的,外框架21绕第一预设方向转动时,带动内框架绕第一预设方 向转动,从而带动拍摄装置3绕第一预设方向转动。内框架绕第二预设方向或第三预设方向转动,带动拍摄装置3绕第二预设方向或第三预设方向转动。
上述实施例中,第一预设方向、第二预设方向和第三预设方向根据云台2的构型确定。例如,如图1和图2所示实施例中,云台2为三轴云台,外框架21被配置为绕偏航轴转动,中框架22被配置为绕横滚轴转动,内框架被配置为绕俯仰轴转动。其中,外框架21包括偏航轴轴臂,且由偏航轴电机驱动,中框架22包括横滚轴轴臂,且由横滚轴电机驱动,内框架包括俯仰轴轴臂,且由俯仰轴电机驱动。
以下实施例将对本实施例的手持云台控制方法进行说明。
图3是本发明一实施例中的手持云台控制方法的方法流程图。参见图3,本实施例的手持云台控制方法可包括如下步骤:
步骤S301:在云台2进入运动状态时,获取手柄1的姿态;
本实施例中,若检测到发生用于指示云台2进入运动状态的触发事件,则确定云台2进入运动状态。该触发事件可包括指示手持云台开机的事件、指示手持云台重启的事件、指示手持云台退出休眠状态的事件中的一种。该触发事件可由通过操作手柄1上的按键方式产生,也可通过操作与手持云台通信的终端来产生。
例如,用户希望手持云台开机时,云台2直接进入竖拍模式。在具体操作时,可先将手柄1控制在竖拍模式对应的姿态,然后按下手柄1上的开机按键,云台2即会自动进入竖拍模式对应的期望姿态。
本实施例的手持云台还包括加速度计,该加速度计用于检测云台姿态qmesa。手柄1的姿态是根据云台姿态和云台关节角确定的,以三轴云台为例,外框架21被配置为绕偏航轴转动,中框架22被配置为绕横滚轴转动,内框架被配置为绕俯仰轴转动。云台关节角包括偏航关节角joint_yaw、横滚关节角joint_roll和俯仰关节角joint_pitch,各关节角即为对应轴电机的关节角。根据轴角转换公式得到q_yaw、q_roll和q_pitch,q_yaw、q_roll和q_pitch的共轭或逆分别为q_yaw_inv、q_roll_inv和q_pitch_inv。手柄1的姿态qhandle的计算公式如下:
qhandle=qmesa*q_pitch_inv*q_roll_inv*q_yaw_inv  (1)
其中,joint表示关节角,q表示四元数。
步骤S302:根据手柄1的姿态,确定手柄1的坐标系中的第一轴方向与竖直方向的第一夹角和/或手柄1的坐标系中的第二轴方向与竖直方向的第二夹角;
其中,在手持云台正立放置时,第一轴方向、第二轴方向与竖直方向正交。本实施例中,结合图1和图2,手持云台还包括设于手柄1正面的屏幕4和按键(未标出)等。手持云台正立放置时,屏幕4朝向用户,拍摄装置3的镜头背对用户,如图2所示,为手持云台正立放置的状态图。
第一轴方向、第二轴方向可根据需求进行定义,例如,在其中一实施例中,在手持云台正立放置时,第一轴方向指向手柄1的前方,第二轴方向指向手柄1的左侧,如图2所示,第一轴方向为x1,第二轴方向为y1。在另一实施例中,在手持云台正立放置时,第一轴方向指向手柄1的前方,第二轴方向指向手柄1的右侧。可以理解,第一轴方向、第二轴方向也可为其他指向,具体可以根据需要设置。
本实施例的竖直方向为固定坐标系的竖直方向,在一实施例中,竖直方向为世界坐标系中的Z轴方向,如图1所示的Z轴方向,本实施例的竖直方向为竖直向下。可以理解,竖直方向也可为其他固定坐标系中的竖直方向或其他指向。
以下实施例将以在手持云台正立放置时,第一轴方向指向手柄1的前方,第二轴方向指向手柄1的左侧,竖直方向为世界坐标系中的Z轴方向为例进行说明。如图4所示,在手持云台正立放置时,x1轴方向、y1轴方向分别与Z轴方向正交。可以理解,将第一轴方向、第二轴方向定义为其他指向或者将竖直方向定义为其他固定坐标系的竖直方向或其他指向均为本发明的变形方式,因坐标系变形作出的夹角判断变化均为本发明的保护范围。
步骤S303:根据第一夹角和/或第二夹角确定云台2的期望拍摄模式,期望拍摄模式包括上手电筒模式、竖拍模式中的一种;
在一实施例中,若第一夹角位于第一预设角度范围内,则确定云台2的期望拍摄模式为上手电筒模式。在判断手柄1是否处于上手电筒模式对应的手柄1的姿态时,通过设置第一预设角度范围,使得上手电筒模式包括多个对应的手柄1的姿态,当手柄1处于任一上手电筒模式对应的手柄1的姿态时,若云台2进入运动状态,云台2均会直接进入上手电筒模式,方便控制云台2进入上手电筒模式。
可选的,第一预设角度范围为大于等于135度且小于等于180度,如第一夹角为135度、140度、145度、150度、155度、160度、165度、170度、175度或180度,可确定云台2的期望拍摄模式为上手电筒模式。图5A为本发明一实施例中的手持云台的云台2进入上手电筒模式时的立体图。如图5A所示,第一夹角为180度。
当然,在其他实施例中,也可在第一夹角设置位于其他数值范围如大于等于160度且小于等于180度或第一夹角为特定角度如180度时,将云台2的期望拍摄模式确定为上手电筒模式。
本实施例的竖拍模式可包括下竖拍模式和/或上竖拍模式。
在一实施例中,若第二夹角位于第二预设角度范围内,则确定云台2的期望拍摄模式为下竖拍模式。在判断手柄1是否处于下竖拍模式对应的手柄1的姿态时,通过设置第三预设角度范围,使得下竖拍模式包括多个对应的手柄1的姿态,当手柄1处于任一下竖拍模式对应的手柄1的姿态时,若云台2进入运动状态,云台2均会直接进入下竖拍模式,方便控制云台2进入下竖拍模式。
可选的,第二预设角度范围为小于等于45度且大于等于0度,如第二夹角为0度、5度、10度、15度、20度、25度、30度、35度、40度或45度,可确定云台2的期望拍摄模式为下竖拍模式。图5B为本发明一实施例中的手持云台的云台2进入下竖拍模式时的立体图,如图5B所示,第二夹角为0度。
当然,在其他实施例中,也可在第二夹角设置位于其他数值范围如大于等于0度且小于等于30度或第二夹角为特定角度(如0度)时,将云台2的期望拍摄模式确定为下竖拍模式。
在一实施例中,若第二夹角位于第三预设角度范围内,则确定云台2的期望拍摄模式为上竖拍模式。在判断手柄1是否处于上竖拍模式对应的手柄1的姿态时,通过设置第二预设角度范围,使得上竖拍模式包括多个对应的手柄1的姿态,当手柄1处于任一上竖拍模式对应的手柄1的姿态时,若云台2进入运动状态,云台2均会直接进入上竖拍模式,方便控制云台2进入上竖拍模式。
可选的,第三预设角度范围为大于等于135度且小于等于180度,如第二夹角为135度、140度、145度、150度、155度、160度、165度、170度、175度或180度,可确定云台2的期望拍摄模式为上竖拍模式。图5C为本发明一实施例中的手持云台的云台2进入上竖拍模式时的立体图,如图5C所示,第二夹角为180度,拍摄装置3的镜头朝向为图5C中的A2箭头方向。
当然,在其他实施例中,也可在第二夹角设置位于其他数值范围如大于等于160度且小于等于180度或第二夹角为特定角度如180度时,将云台2的期望拍摄模式确定为上竖拍模式。
在一些实施例中,可以同时对第一夹角和第二夹角进行检测,即步骤S303为:第一夹角是否位于第一预设角度范围和第二夹角是否位于第二预设角度范围或第三预设角度范围,从而确定云台2的期望拍摄模式。但这种同时检测第一夹角和第二夹角,再根据第一夹角和第二夹角来确定云台2的期望拍摄模式的方式在第一夹角、第二夹角为某些角度大小时,可能存在无法确定云台2的期望拍摄模式的特殊情况。如,第一夹角为135度、第二夹角也为135度,即不同的角度范围存在相同的端点值时,云台2的期望拍摄模式可能为上手电筒模式,也可能为下竖拍模式。
为解决上述实施例存在的在第一夹角、第二夹角为某些角度大小时,无法确定云台2的期望拍摄模式的问题,在另一些实施例中,可以对上述夹角进行顺序检测。具体如下:
检测第一夹角是否位于第一预设角度范围内;若否,则根据第二夹角确定云台2的期望拍摄模式。在又一些实施例中,检测第二夹角是否位于第二预设角度范围或第三预设角度范围内;若否,则根据第一夹角确定云台2的期望拍摄模式。
此外,在一些实施例中,云台2在进入运动状态时,除了可直接进入上手电筒 模式或竖拍模式之外,还可直接进入下手电筒模式、正拍模式或倒拍模式。即期望拍摄模式可以包括上手电筒模式、竖拍模式、下手电筒模式、正拍模式和倒拍模式中的一种。
其中,下手电筒模式依据手柄1的坐标系中的第一轴方向与竖直方向的第一夹角确定。在一实施例中,若第一夹角位于第四预设角度范围内,则确定云台2的期望拍摄模式为下手电筒模式。在判断手柄1是否处于下手电筒模式对应的手柄1姿态时,通过设置第二预设角度范围,使得下手电筒模式包括多个对应的手柄1的姿态,当手柄1处于任一下手电筒模式对应的手柄1的姿态时,若云台2进入运动状态,云台2均会直接进入下手电筒模式,方便控制云台2进入下手电筒模式。
可选的,第四预设角度范围为小于等于45度且大于等于0度,如第一夹角为0度、5度、10度、15度、20度、25度、30度、35度、40度或45度,可确定云台2的期望拍摄模式为下手电筒模式。图5D为本发明一实施例中的手持云台的云台2进入下手电筒模式时的立体图,如图5D所示,第一夹角为0度。
当然,在其他实施例中,也可在第一夹角设置位于其他数值范围如大于等于0度且小于等于30度或第一夹角为特定角度如0度时,将云台2的期望拍摄模式确定为下手电筒模式。
可选的,正拍模式或倒拍模式为依据手柄1的坐标系中的第七轴方向与竖直方向的第三夹角确定。其中,在手持云台正立放置时,第七轴方向与竖直方向平行。
第七轴方向可根据需求进行定义,例如,在其中一实施例中,在手持云台正立放置时,第七轴方向指向手柄1的下方,如图2所示,第七轴方向为z1。可以理解,在其他实施例中,也可将第七轴方向定义为:在手持云台正立放置时,第七轴方向与竖直方向平行,可选的,第七轴方向指向手柄1的下方。
以下实施例以手持云台正立放置时,第七轴方向指向手柄1的下方为例进行说明。
在一实施例中,若第三夹角位于第五预设角度范围内,则确定云台2的期望拍摄模式为正拍模式。在判断手柄1是否处于正拍模式对应的手柄1姿态时,通过设置第五预设角度范围,使得正拍模式包括多个对应的手柄1的姿态,当手柄1处于任一正拍模式对应的手柄1的姿态时,若云台2进入运动状态,云台2均会直接进入正拍模式,方便控制云台2进入正拍模式。
可选的,第五预设角度范围为大于等于135度且小于等于180度,如第三夹角为135度、140度、145度、150度、155度、160度、165度、170度、175度或180度,可确定云台2的期望拍摄模式为正拍模式。图2为本发明一实施例中的手持云台的云台2进入正拍模式时的立体图,如图2所示,第三夹角为180度,拍摄装置3的镜头朝向与手柄1的后方。
当然,在其他实施例中,也可在第三夹角设置位于其他数值范围如大于等于160度且小于等于180度或第三夹角为特定角度如180度时,将云台2的期望拍摄模式确定为正拍模式。
在一实施例中,若第三夹角位于第六预设角度范围内,则确定云台2的期望拍摄模式为倒拍模式。在判断手柄1是否处于倒拍模式对应的手柄1姿态时,通过设置第六预设角度范围,使得倒拍模式包括多个对应的手柄1的姿态,当手柄1处于任一倒拍模式对应的手柄1的姿态时,若云台2进入运动状态,云台2均会直接进入倒拍模式,方便控制云台2进入倒拍模式。
可选的,第六预设角度范围为小于等于45度且大于等于0度,如第三夹角为0度、5度、10度、15度、20度、25度、30度、35度、40度或45度,可确定云台2的期望拍摄模式为倒拍模式。图5E为本发明一实施例中的手持云台的云台2进入倒拍模式时的立体图,如图5E所示,第三夹角为0度,拍摄装置3的镜头朝向与手柄1的后方。
当然,在其他实施例中,也可在第三夹角设置位于其他数值范围如大于等于0度且小于等于30度或第一夹角为特定角度如0度时,将云台2的期望拍摄模式确定为倒拍模式。
在一些实施例中,可以同时对第一夹角、第二夹角和第三夹角进行检测,根据第一夹角和/或第二夹角确定云台2的期望拍摄模式可包括:第一夹角是否位于第一预设角度范围或第四预设角度范围、第二夹角是否位于第二预设角度范围或第三预设角度范围和第三夹角是否位于第五预设角度范围或第六预设角度范围,从而确定云台2的期望拍摄模式。但这种同时检测第一夹角、第二夹角和第三夹角,再根据第一夹角、第二夹角和第三夹角来确定云台2的期望拍摄模式的方式在第一夹角、第二夹角和第三夹角为某些角度大小时,可能存在无法确定云台2的期望拍摄模式的特殊情况。如,第一夹角为135度、第二夹角也为135度,即不同的角度范围存在相同的端点值时,云台2的期望拍摄模式可能为上手电筒模式,也可能为下竖拍模式。
为解决上述实施例存在的在第一夹角、第二夹角、第三夹角为某些角度大小时,无法确定云台2的期望拍摄模式的问题,在另一些实施例中,可以对上述夹角进行顺序检测。上述夹角的检测顺序可发生改变,但对应的各拍摄模式的目标角度范围是不变的。
具体的,云台的拍摄模式可以包括正拍模式、倒拍模式、上手电筒模式、下手电筒模式、上竖拍模式、下竖拍模式,期望拍摄模式可以包括正拍模式、倒拍模式、上手电筒模式、下手电筒模式、上竖拍模式、下竖拍模式中的一种,设定第一目标角度为第一夹角、第二夹角、第三夹角中的一个,第二目标角度为第一夹角、第二夹角、第三夹角中的一个,第三目标角度为第一夹角、第二夹角、第三夹角中的一个。根据 第一夹角和/或第二夹角确定云台2的期望拍摄模式可包括:检测第一目标角度是否位于第一目标角度范围内;若否,则检测第二目标角度是否位于第二目标角度范围内;若否,则根据第三目标角度确定云台2的期望拍摄模式。
可选的,第一目标角度范围为大于等于0度且小于等于45度,或第一目标角度范围为大于等于135度且小于等于180度。第二目标角度范围为大于等于0度且小于等于45度,或第二目标角度范围为大于等于135度且小于等于180度。第三目标角度范围为0度至180度。
进一步的,在检测第一目标角度是否位于第一目标角度范围之后,若第一目标角度位于第一目标角度范围内,则根据第一目标角度确定云台2的期望拍摄模式。可选的,第一目标角度为第三夹角。在第一目标角度范围为大于等于0度且小于等于45度时,期望拍摄模式为倒拍模式。在第一目标角度范围为大于等于135度且小于等于180度时,期望拍摄模式为正拍模式。
进一步的,检测第二目标角度是否位于第二目标角度范围之后,若第二目标角度位于第二目标角度范围内,则根据第二目标角度确定云台2的期望拍摄模式。可选的,第二目标角度为第二夹角。在第二目标角度范围为大于等于0度且小于等于45度时,期望拍摄模式为下竖拍模式。在第二目标角度范围为大于等于135度且小于等于180度时,期望拍摄模式为上竖拍模式。
进一步的,第三目标角度为第一夹角。在第三目标角度范围为小于等于90度时,期望拍摄模式为下手电筒模式。在第三目标角度范围为大于90度时,期望拍摄模式为上手电筒模式。
步骤S304:控制云台2进入期望拍摄模式;
本实施例中,在控制云台2进入期望拍摄模式时,具体是根据期望拍摄模式,确定竖直方向与云台2搭载的拍摄装置3的坐标系中的第一特定平面的第一位置关系;再控制云台2转动,以使得拍摄装置3满足第一位置关系。其中,第一特定平面为基于拍摄装置3的坐标系中的第三轴方向、第四轴方向形成,在拍摄装置3正立放置时,第三轴方向、第四轴方向与竖直方向垂直。本实施例中,拍摄装置3正立放置时,拍摄装置3的镜头背对用户,如图2所示。
第三轴方向、第四轴方向可根据需求进行定义,例如,在其中一实施例中,在拍摄装置3正立放置时,第三轴方向指向拍摄装置3的前方(即镜头的朝向),第四轴方向指向拍摄装置3的左侧。可以理解,第三轴方向、第四轴方向也可为其他指向,如第三轴方向指向拍摄装置3的后方,第四轴方向指向拍摄装置3的左侧,或者第三轴方向指向拍摄装置3的后方,第四轴方向指向拍摄装置3的右侧等等,具体可以根据需要进行设置。
在一些实施例中,当期望拍摄模式为竖拍模式时,第一位置关系为:云台2搭 载的拍摄装置3的坐标系中的第一特定平面与竖直方向大致平行。
可以理解,当期望拍摄模式为竖拍模式时,第一位置关系除了上述说明的内容,也可以为其它,例如,云台2搭载的拍摄装置3的坐标系中的第一特定平面可以与竖直方向呈一定夹角,具体可以根据需要进行设置,可选的,用户可以对第一位置关系进行自定义。
在一些实施例中,当期望拍摄模式为上电筒模式时,第一位置关系为:云台2搭载的拍摄装置3的坐标系中的第一特定平面与竖直方向大致垂直。
可以理解,当期望拍摄模式为上手电筒模式时,第一位置关系除了上述说明的内容,也可以为其它,例如,云台2搭载的拍摄装置3的坐标系中的第一特定平面可以与竖直方向呈一定夹角,具体可以根据需要进行设置,可选的,用户可以对第一位置关系进行自定义。可选的,第一位置关系可以由上述说明的第一夹角确定,即第一特定平面与x1之间的夹角可以为固定角度,从而基于第一夹角,可以确定第一特定平面与竖直方向之间的夹角,由此,根据第一特定平面与竖直方向之间的夹角,可以确定第一位置关系。
在控制云台2转动,以使得拍摄装置3满足第一位置关系时,可包括步骤S3041~步骤S3043,具体可参见图6A。
其中,步骤S3041:根据期望拍摄模式,确定外框架21的目标关节角;
在一些实施例中,在确定外框架21的目标关节角时,首先根据期望拍摄模式,确定竖直方向与外框架21的坐标系中的第二特定平面的第二位置关系;再根据第二位置关系确定外框架21的目标关节角。其中,第二特定平面为基于外框架21的坐标系中的第五轴方向、第六轴方向形成,且在手持云台正立放置时,第五轴方向、第六轴方向与竖直方向正交。
第五轴方向、第六轴方向可根据需求进行定义,例如,在其中一实施例中,在手持云台正立放置时,第五轴方向指向外框架21的前方或后方,第六轴方向指向外框架21的左侧或右侧。
第二位置关系可包括:竖直方向在第二特定平面上的投影位于第五轴方向对应的轴线上,或竖直方向在第二特定平面上的投影位于第六轴方向对应的轴线上。值得一提的是,竖直方向在第二特定平面上的投影是位于第五轴方向对应的轴线上,还是位于第六轴方向对应的轴线上,在于如何定义外框架21的坐标系中第五轴方向和第六轴方向。
可选的,在一些实施例中,当期望拍摄模式为上竖拍模式时,竖直方向在第二特定平面上的投影与第六轴方向的指向相同;竖拍模式包括下竖拍模式,当期望拍摄模式为下竖拍模式时,竖直方向在第二特定平面上的投影与第六轴方向的指向相反。 在另一些实施例中,当期望拍摄模式为上竖拍模式时,竖直方向在第二特定平面上的投影与第六轴方向的指向相反;竖拍模式包括下竖拍模式,当期望拍摄模式为下竖拍模式时,竖直方向在第二特定平面上的投影与第六轴方向的指向相同。期望拍摄模式为上竖拍模式或下竖拍模式时,竖直方向在第二特定平面上的投影与第六轴方向的指向关系具体需要根据竖直方向以及第六轴方向的定义进一步确定,以竖直方向为世界坐标系中的Z轴方向、在手持云台正立放置时,第五轴方向指向外框架21的前方为例进行说明。当期望拍摄模式为上竖拍模式时,Z轴方向在第二特定平面上的投影与第六轴方向的指向相反。竖拍模式包括下竖拍模式,当期望拍摄模式为下竖拍模式时,Z轴方向在第二特定平面上的投影与第六轴方向的指向相同。
当期望拍摄模式为上手电筒模式时,竖直方向在第二特定平面上的投影与第五轴方向的指向相同或相反。期望拍摄模式为上手电筒模式时,竖直方向在第二特定平面上的投影与第五轴方向的指向关系具体需要根据竖直方向以及第五轴方向的定义进一步确定,以竖直方向为世界坐标系中的Z轴方向、在手持云台正立放置时,第六轴方向指向外框架21的左侧为例进行说明。当期望拍摄模式为上手电筒模式时,Z轴方向在第二特定平面上的投影与第五轴方向的指向相反。
以下将详细说明如何根据第二位置关系确定外框架21的目标关节角。
本发明实施例中,将第五轴方向至第六轴方向的转动方向(如,逆时针)定义为正方向,第六轴方向至第五轴方向的转动方向(如,顺时针)定义为负方向,以图2所示手持云台放置位置为例,定义图2所示的云台2的外框架21关节角为0度,外框架21的坐标系的第五轴向x2指向外框架21的前方,即指向用户,第六轴向y2指向外框架21的左侧,第二特定平面即为x2和y2形成的平面。竖直方向为重力方向,即与世界坐标系Z轴方向相反的方向。另外,以图6B的坐标系为例,外框架21的转动区域可以分为正转区域(即以x2为准,逆时针转动)和反转区域(即以x2为准,顺时针转动),其中,x2可以作为外框架21的关节角0度的分界线,逆时针转动,θ大于0,反之,则是小于0。
当期望拍摄模式为下竖拍模式时,第二位置关系为:重力方向在x2和y2形成的平面上的投影Z1与第六轴方向y2的指向相同。参见图6B,假设期望拍摄模式为下竖拍模式时,Z1与x2、y2的位置关系如图所示,且Z1与x2的夹角为θ。此时,为满足第二位置关系,需要控制外框架21转动,使得y2与Z1重合,且y2指向与Z1指向相同。故目标关节角α=-(90度-θ),需要控制外框架21沿着顺时针转动(90度-θ)的角度大小。
当期望拍摄模式为上竖拍模式时,第二位置关系为:重力方向在x2和y2形成的平面上的投影Z1与第六轴方向y2的指向相反。参见图6C,假设期望拍摄模式为下竖拍模式时,Z1与x2、y2的位置关系如图所示,且Z1与x2的夹角为θ。此时,为 满足第二位置关系,需要控制外框架21转动,使得y2与Z1重合,且y2指向与Z1指向相反。故目标关节角α=θ+90度,需要控制外框架21沿着顺时针转动(θ+90度)的角度大小。
在一实施例中,当期望拍摄模式为上手电筒模式时,第二位置关系为:重力方向在x2和y2形成的平面上的投影Z1与第五轴方向x2的指向相反。参见图6D,假设期望拍摄模式为上手电筒模式时,Z1与x2、y2的位置关系如图所示,且Z1与x2的夹角为θ。此时,为满足第二位置关系,需要控制外框架21转动,使得x2与Z1重合,且x2指向与Z1指向相反。故目标关节角α=180度+θ度,需要控制外框架21沿着逆时针转动(180度+θ度)的角度大小。在另一实施例中,当期望拍摄模式为上手电筒模式时,第二位置关系为:重力方向在x2和y2形成的平面上的投影Z1与第五轴方向x2的指向相反。参见图6E,假设期望拍摄模式为上手电筒模式时,Z1与x2、y2的位置关系如图所示,且Z1与x2的夹角为θ。此时,为满足第二位置关系,需要控制外框架21转动,使得x2与Z1重合,且x2指向与Z1指向相反。故目标关节角α=-180度+θ度,需要控制外框架21沿着顺时针转动(-180度+θ度)的角度大小。
步骤S3042:控制外框架21转动至目标关节角;
本实施例中,控制外框架21转动至目标关节角即控制对应的电机转动至目标关节角。
具体的,在云台2进入运动状态时,云台2会进行自检,将外框架21的关节角转动至第一预设关节角度,如0度,步骤S3042控制外框架21由第一预设关节角度转动至目标关节角。
在一些实施例中,云台2还包括与外框架21连接的中框架22以及与中框架22连接的内框架,内框架用于搭载拍摄装置3,中框架22被配置为绕第二预设方向转动,内框架被配置为绕第三预设方向转动。控制外框架21转动至目标关节角的同时,还控制中框架22的关节角为第一预设角度,并控制内框架的关节角为第二预设角度。可选的,第一预设角度为云台2进入运动状态时,中框架22的关节角。第二预设角度为云台2进入运动状态时,内框架的关节角。本实施例中,在转动外框架21至目标关节角的过程中,中框架22和内框架的关节角始终锁定在云台2进入运动状态时中框架22和内框架的关节角大小。可选的,在云台2进入运动状态时,云台2会进行自检,将中框架22的关节角转动至第二预设关节角度如0度,和/或将内框架的关节角转动至第三预设关节角度如0度。本实施例中,第一预设角度为第二预设关节角度,第二预设角度为第三预设关节角度。如第二预设关节角度为0度、第三预设关节角度也为0度,那么第一预设角度和第二预设角度均为0度,在转动外框架21至目标关节角的过程中,中框架22和内框架的关节角始终锁定在0度。
在另一些实施例中,云台2还包括与外框架21连接的内框架,内框架用于搭 载拍摄装置3,内框架被配置为绕第二预设方向或第三预设方向转动。控制外框架21转动至目标关节角的同时,还控制内框架的关节角为第三预设角度。可选的,第三预设角度为云台2进入运动状态时,内框架的关节角。本实施例中,在转动外框架21至目标关节角的过程中,内框架的关节角始终锁定在云台2进入运动状态时内框架的关节角大小。可选的,在云台2进入运动状态时,云台2会进行自检,将将内框架的关节角转动至第四预设关节角度如0度。本实施例中,第三预设角度为第四预设关节角度。如第四预设关节角度为0度,那么第三预设角度也为0度,在转动外框架21至目标关节角的过程中,内框架的关节角始终锁定在0度。
上述实施例中,控制外框架21转动至目标关节角,锁定中框架22和内框架的关节角,或者控制外框架21转动至目标关节角,锁定内框架的关节角可称作关节角闭环控制。
步骤S3043:控制云台2转动至期望拍摄模式对应的期望姿态,以使得拍摄装置3满足第一位置关系。
第一位置关系的说明可参见上述实施例的相关部分,此处不再赘述。期望拍摄模式对应的期望姿态及为拍摄装置3满足第一位置关系时的云台姿态。
其中,期望姿态中对应外框架21的姿态分量为外框架21转动至目标关节角时的姿态。通过加速度计检测外框架21转动至目标关节角时的云台姿态,根据外框架21转动至目标关节角时的云台姿态即可确定外框架21转动至目标关节角时的姿态。例如,当外框架21被配置为能够绕偏航轴转动时,外框架21转动至目标关节角时的姿态即为外框架21转动至目标关节角时的云台姿态中的云台2对应偏航轴的姿态分量。本实施例中,在控制外框架21转动至目标关节角之后,云台2的当前姿态可能不满足期望拍摄模式的第一位置关系,以三轴云台为例,可能需要进一步对另外一个框架的姿态进行控制,使得云台2的姿态能够满足第一位置关系。
本实施例中,云台2相对手柄1旋转后,云台2的构型会产生变化,以云台2为三轴云台为例。如图2所示,手持云台正立放置时,外框架21被配置为绕偏航轴转动,中框架22被配置为绕横滚轴转动,内框架被配置为绕俯仰轴转动。如图5B和5C所示,当期望拍摄模式为竖拍模式时,外框架21被配置为绕俯仰轴转动,中框架22被配置为绕横滚轴向转动,内框架被配置为绕偏航轴转动。如图5A所示,当期望拍摄模式为上手电筒模式时,外框架21被配置为绕横滚轴转动,中框架22被配置为绕偏航方向转动,内框架被配置为绕俯仰轴转动。
为使得云台2满足第一位置关系,当期望拍摄模式为竖拍模式时,云台2被配置为能够绕横滚轴转动。控制云台2转动至期望拍摄模式对应的期望姿态具体包括:根据期望拍摄模式确定云台2对应横滚轴的姿态分量;根据对应横滚轴的姿态分量对云台2进行控制,以使得云台2转动至期望拍摄模式对应的期望姿态。如云台2为三 轴云台,外框架21被配置为绕偏航轴转动,中框架22被配置为绕横滚轴转动,内框架被配置为绕俯仰轴转动。以图2为例,假设在图2所示的云台姿态下,云台2的姿态中对应横滚轴的欧拉角为0度。本实施例中,控制横滚轴的姿态分量即是控制云台2的姿态中对应横滚轴的欧拉角为90度,即控制中框架22的转动。在对外框架21进行关节角闭环控制结束后,再进行姿态闭环控制,即根据竖拍模式对应横滚轴的姿态分量对云台2进行控制,即仅对中框架22姿态进行控制,而外框架21和内框架的姿态保持为关节角闭环结束时外框架21和内框架的姿态不变,从而能够使得云台2满足竖拍模式对应的第一位置关系。而由姿态闭环引起的外框架21和内框架的姿态改变,则以姿态闭环进行补偿,具体是在对中框架22姿态调整结束后,对外框架21和内框架的姿态进行微调,从而使得云台2满足竖拍模式对应的第一位置关系。
其中,云台2的姿态中对应横滚轴的欧拉角为0度时,相机被配置为水平放置。在期望拍摄模式为上竖拍模式时,可以控制云台2的姿态中对应横滚轴的欧拉角为负90度。在期望拍摄模式为下竖拍模式时,可以控制云台2的姿态中对应横滚轴的欧拉角为90度。
当期望拍摄模式为上电筒模式时,云台2被配置为能够绕俯仰轴转动。控制云台2的姿态为期望姿态具体包括:根据期望拍摄模式确定云台2对应俯仰轴的姿态分量;根据对应俯仰轴的姿态分量对云台2进行控制,以使得云台2转动至期望拍摄模式对应的期望姿态。如云台2为三轴云台,外框架21被配置为绕偏航轴转动,中框架22被配置为绕横滚轴转动,内框架被配置为绕俯仰轴转动。以图2为例,假设在图2所示的云台2姿态下,云台2的姿态中对应俯仰轴的欧拉角为180度。本实施例中,控制俯仰轴的姿态分量即是控制云台2的姿态中对应俯仰轴的欧拉角为180度,即控制内框架的转动。在对外框架21进行关节角闭环控制结束后,再进行姿态闭环控制,即根据上电筒模式对应俯仰轴的姿态分量对云台2进行控制,即仅对内框架进行姿态控制,而外框架21和中框架22的姿态可以保持为关节角闭环结束时外框架21和中框架22的姿态不变,从而能够使得云台2满足上电筒模式对应的第一位置关系。而由姿态闭环引起的外框架21和中框架22的姿态改变,则以姿态闭环进行补偿,具体是在对内框架姿态调整结束后,对外框架21和中框架22的姿态进行微调,从而使得云台2满足上手电筒模式对应的第一位置关系。
在一些实施例中,为使得云台2满足第一位置关系,当期望拍摄模式为上手电筒模式时,控制云台2转动至期望拍摄模式对应的期望姿态,包括:控制所述云台2中被配置为绕俯仰轴转动的框架的关节角为预设关节角。以图2中所示的三轴云台为例,假设在控制外框架21转动至目标关节角后,若内框架被配置为绕俯仰轴转动,则可以控制内框架对应的关节角为预设关节角,例如0度(如图2所示中内框架对应的关节角)。
在一些实施例中,在控制云台2进入期望拍摄模式之后,当期望拍摄模式为竖 拍模式时,云台2被配置为在预设关节角位置能够绕俯仰轴转动的角度范围为0度至45度,如在控制云台2进入期望拍摄模式之后,可以控制云台2在预设关节角位置绕俯仰轴转动0度、5度、10度、15度、20度、25度、30度、40度或45度。其中,预设关节角位置为云台2进入期望拍摄模式时云台2对应的俯仰轴的关节角位置,从而满足用户的拍摄需求。例如,在控制云台2进入竖拍模式时,云台2对应的俯仰轴关节角位置即为外框架21的关节角位置,可转动外框架21绕俯仰轴转动0度至45度,以使得云台2进入竖拍模式时,拍摄装置3能够拍摄到不同视角的画面。
在一些实施例中,在控制云台2进入期望拍摄模式之后,当期望拍摄模式为上手电筒模式时,云台2被配置为在预设关节角位置能够绕横滚轴转动的角度范围为0度至45度,如在控制云台2进入期望拍摄模式之后,可以控制云台2在预设关节角位置绕横滚轴转动0度、5度、10度、15度、20度、25度、30度、40度或45度。其中,预设关节角位置为云台2进入期望拍摄模式时云台2对应的横滚轴的关节角位置,从而满足用户的拍摄需求。例如,在控制云台2进入竖拍模式时,云台2对应的横滚轴关节角位置即为外框架21的关节角位置,可转动外框架21绕横滚轴转动0度至45度,以使得云台2进入上手电筒模式时,拍摄装置3能够拍摄到不同视角的画面。
此外,在一些实施例中,控制云台2进入期望拍摄模式之后,若手持云台被触发至非拍摄模式,则控制云台2为卸力状态。该非拍摄模式可包括视频回放模式、参数设置模式等等。进一步的,在控制云台2为卸力状态之后,若手持云台退出非拍摄模式,且手柄1的当前姿态(即云台2退出非拍摄模式时手柄1的姿态)满足所述期望拍摄模式,则控制云台2恢复期望拍摄模式,满足用户的使用需求。而在控制云台2为卸力状态之后,若手持云台退出非拍摄模式,但手柄1的当前姿态不满足所述期望拍摄模式,则云台2需要根据云台2的当前姿态重新确定云台2的期望拍摄模式,再控制云台2进入该重新确定的云台2的期望拍摄模式。
在一些实施例中,期望拍摄模式还包括正拍模式、倒拍模式中的一种,正拍模式或倒拍模式为依据手柄1的坐标系中的第七轴方向与竖直方向的第三夹角确定。其中,在手持云台正立放置时,第七轴方向与竖直方向平行。具体可参见步骤S303中对正拍模式和倒拍模式的描述内容。
在一些实施例中,控制云台2进入期望拍摄模式之后,云台2可在不同的期望拍摄模式之间切换。具体的,控制云台2进入期望拍摄模式之后,若检测到外框架21的姿态变化,则可根据外框架21的姿态变化,控制云台2在竖拍模式与正拍模式、竖拍模式与倒拍模式、上手电筒模式与正拍模式、上手电筒模式与倒拍模式之间切换。
本实施例的手持云台2正常运行时,控制云台2进入手电筒模式或竖拍模式之后,由于云台2的姿态对应横滚轴的姿态分量控制都是为了对拍摄装置3进行增稳,且手电筒模式与竖拍模式在增稳时对应的框架的关节角不同,如以图1所示的三轴云 台为例,手电筒模式时,增稳对应的框架为外框架21,竖拍模式时,增稳对应的框架为内框架,因此,云台2不会在竖拍模式与手电筒模式(包括上手电筒模式和下手电筒模式)之间直接切换。故可在云台2处于竖拍模式或手电筒模式时,若即使旋转手柄1,而外框架21的姿态不发生变化,且无法满足正拍模式或倒拍模式,则可以仍将云台2保持在当前的竖拍模式或者手电筒模式。具体的,当外框架21的姿态变化在预设范围内时,可以控制云台2保持当前的期望拍摄模式,其中,该预设范围可以根据云台2当前的期望拍摄模式确定。
当然,可以理解,在正拍或倒拍模式时,若手柄的姿态变化满足竖拍或手电筒模式(上手电筒模式、下手电筒模式),则可以拍摄模式进行相应的切换。
本发明实施例的手持云台控制方法,在云台2进入运动状态时,基于手柄1坐标系中第一轴方向和/或第二轴方向与竖直方向的夹角大小,即可确定云台2的期望拍摄模式,再控制云台2进入期望拍摄模式,实现了云台2进入运动状态时直接进入上手电筒模式或竖拍模式的功能,无需用户额外操作,云台2自动控制精度高且效率高,更能符合用户的使用需求。
结合图1至图2以及图7,本发明实施例还提供一种手持云台,该手持云台可包括手柄1、云台2和控制器5。其中,云台2用于搭载拍摄装置3,并且,云台2设置于所述手柄1上。控制器5设于手柄1,可选的,控制器5设于手柄1内。
具体的,控制器5用于:在云台2进入运动状态时,获取手柄1的姿态;根据手柄1的姿态,确定手柄1的坐标系中的第一轴方向与竖直方向的第一夹角和/或手柄1的坐标系中的第二轴方向与竖直方向的第二夹角;根据第一夹角和/或第二夹角确定云台2的期望拍摄模式,期望拍摄模式包括上手电筒模式、竖拍模式中的一种;控制云台2进入期望拍摄模式;其中,在手持云台正立放置时,第一轴方向、第二轴方向与竖直方向正交。
控制器5的实现过程和工作原理可参见上述实施例的手持云台控制方法的描述,此处不再赘述。
本实施例的控制器5可以是中央处理器(central processing unit,CPU)。控制器5还可以进一步包括硬件芯片。上述硬件芯片可以是专用集成电路(application-specific integrated circuit,ASIC),可编程逻辑器件(programmable logic device,PLD)或其组合。上述PLD可以是复杂可编程逻辑器件(complex programmable logic device,CPLD),现场可编程逻辑门阵列(field-programmable gate array,FPGA),通用阵列逻辑(generic array logic,GAL)或其任意组合。
此外,本发明实施例还提供一种计算机可读存储介质,其上存储有计算机程序,该程序被处理器执行时实现上述实施例的手持云台控制方法的步骤。
本领域普通技术人员可以理解实现上述实施例方法中的全部或部分流程,是可以通过计算机程序来指令相关的硬件来完成,所述的程序可存储于一计算机可读取存储介质中,该程序在执行时,可包括如上述各方法的实施例的流程。其中,所述的存储介质可为磁碟、光盘、只读存储记忆体(Read-Only Memory,ROM)或随机存储记忆体(Random Access Memory,RAM)等。
以上所揭露的仅为本发明部分实施例而已,当然不能以此来限定本发明之权利范围,因此依本发明权利要求所作的等同变化,仍属本发明所涵盖的范围。

Claims (74)

  1. 一种手持云台控制方法,其特征在于,所述手持云台包括手柄和设置于所述手柄上的云台,所述方法包括:
    在所述云台进入运动状态时,获取所述手柄的姿态;
    根据所述手柄的姿态,确定所述手柄的坐标系中的第一轴方向与竖直方向的第一夹角和/或所述手柄的坐标系中的第二轴方向与所述竖直方向的第二夹角;
    根据所述第一夹角和/或所述第二夹角确定所述云台的期望拍摄模式,所述期望拍摄模式包括上手电筒模式、竖拍模式中的一种;
    控制所述云台进入所述期望拍摄模式;
    其中,在所述手持云台正立放置时,所述第一轴方向、所述第二轴方向与竖直方向正交。
  2. 根据权利要求1所述的方法,其特征在于,还包括:
    若检测到发生用于指示所述云台进入运动状态的触发事件,则确定所述云台进入所述运动状态。
  3. 根据权利要求2所述的方法,其特征在于,所述触发事件包括指示所述手持云台开机的事件、指示所述手持云台重启的事件、指示所述手持云台退出休眠状态的事件中的一种。
  4. 根据权利要求1所述的方法,其特征在于,所述控制所述云台进入所述期望拍摄模式,包括:
    根据所述期望拍摄模式,确定所述竖直方向与所述云台搭载的拍摄装置的坐标系中的第一特定平面的第一位置关系;
    控制所述云台转动,以使得所述拍摄装置满足所述第一位置关系;
    其中,所述第一特定平面为基于所述拍摄装置的坐标系中的第三轴方向、第四轴方向形成,在所述拍摄装置正立放置时,所述第三轴方向、第四轴方向与所述竖直方向垂直。
  5. 根据权利要求4所述的方法,其特征在于,所述云台包括与所述手柄连接的外框架,所述外框架被配置为绕第一预设方向转动;
    所述控制所述云台转动,以使得所述拍摄装置满足所述第一位置关系,包括:
    根据所述期望拍摄模式,确定所述外框架的目标关节角;
    控制所述外框架转动至所述目标关节角;
    控制所述云台转动至所述期望拍摄模式对应的期望姿态,以使得所述拍摄装置满足所述第一位置关系。
  6. 根据权利要求5所述的方法,其特征在于,所述期望姿态中对应所述外框架的姿态分量为所述外框架转动至所述目标关节角时的姿态。
  7. 根据权利要求5所述的方法,其特征在于,所述根据所述期望拍摄模式,确定所述外框架的目标关节角,包括:
    根据所述期望拍摄模式,确定所述竖直方向与所述外框架的坐标系中的第二特定平面的第二位置关系;
    根据所述第二位置关系确定所述外框架的目标关节角;
    其中,所述第二特定平面为基于所述外框架的坐标系中的第五轴方向、第六轴方向形成,且在所述手持云台正立放置时,所述第五轴方向、所述第六轴方向与所述竖直方向正交。
  8. 根据权利要求7所述的方法,其特征在于,所述第二位置关系包括:所述竖直方向在所述第二特定平面上的投影位于所述第五轴方向对应的轴线上,或,所述竖直方向在所述第二特定平面上的投影位于所述第六轴方向对应的轴线上。
  9. 根据权利要求8所述的方法,其特征在于,所述竖拍模式包括上竖拍模式,当所述期望拍摄模式为所述上竖拍模式时,所述竖直方向在所述第二特定平面上的投影与所述第六轴方向的指向相反。
  10. 根据权利要求7所述的方法,其特征在于,所述竖拍模式包括下竖拍模式,当所述期望拍摄模式为所述下竖拍模式时,所述竖直方向在所述第二特定平面上的投影与所述第六轴方向的指向相同。
  11. 根据权利要求8所述的方法,其特征在于,当所述期望拍摄模式为所述上手电筒模式时,所述竖直方向在所述第二特定平面上的投影与所述第五轴方向的指向相同或相反。
  12. 根据权利要求5所述的方法,其特征在于,所述云台还包括与所述外框架连接的中框架以及与所述中框架连接的内框架,所述内框架用于搭载拍摄装置,所述中框架被配置为绕所述第二预设方向转动,所述内框架被配置为绕所述第三预设方向转动;
    所述控制所述外框架转动至所述目标关节角的同时,还包括:
    控制所述中框架的关节角为第一预设角度,并控制所述内框架的关节角为第二预设角度。
  13. 根据权利要求5所述的方法,其特征在于,所述云台还包括与所述外框架连接的内框架,所述内框架用于搭载拍摄装置,所述内框架被配置为绕第二预设方向或第三预设方向转动;
    所述控制所述外框架转动至所述目标关节角的同时,还包括:
    控制所述内框架的关节角为第三预设角度。
  14. 根据权利要求5所述的方法,其特征在于,当所述期望拍摄模式为所述竖拍模式时,所述云台被配置为能够绕横滚轴转动;
    所述控制所述云台转动至所述期望拍摄模式对应的期望姿态,包括:
    根据所述期望拍摄模式确定所述云台对应所述横滚轴的姿态分量;
    根据所述对应所述横滚轴的姿态分量对所述云台进行控制,以使得所述云台转动至所述期望拍摄模式对应的期望姿态。
  15. 根据权利要求5所述的方法,其特征在于,当所述期望拍摄模式为所述上电筒模式时,所述云台被配置为能够绕俯仰轴转动;
    所述控制所述云台的姿态为所述期望姿态,包括:
    根据所述期望拍摄模式确定所述云台对应所述俯仰轴的姿态分量;
    根据所述对应俯仰轴的姿态分量对所述云台进行控制,以使得所述云台转动至所述期望拍摄模式对应的期望姿态。
  16. 根据权利要求4至15中任一项所述的方法,其特征在于,当所述期望拍摄模式为所述竖拍模式时,所述第一位置关系为:所述云台搭载的拍摄装置的坐标系中的第一特定平面与所述竖直方向大致平行。
  17. 根据权利要求4至15中任一项所述的方法,其特征在于,当所述期望拍摄模式为所述上电筒模式时,所述第一位置关系为:所述云台搭载的拍摄装置的坐标系中的第一特定平面与所述竖直方向大致垂直。
  18. 根据权利要求4至13中任一项所述的方法,其特征在于,当所述期望拍摄模式为上手电筒模式时,所述控制所述云台转动至所述期望拍摄模式对应的期望姿态,包括:
    控制所述云台中被配置为绕俯仰轴转动的框架的关节角为预设关节角。
  19. 根据权利要求1所述的方法,其特征在于,所述控制所述云台进入所述期望拍摄模式之后,当所述期望拍摄模式为所述竖拍模式时,所述云台被配置为在预设关节角位置能够绕所述俯仰轴转动的角度范围为0度至45度;
    所述预设关节角位置为所述云台进入所述期望拍摄模式时所述云台对应的所述俯仰轴的关节角位置。
  20. 根据权利要求1所述的方法,其特征在于,所述控制所述云台进入所述期望拍摄模式之后,当所述期望拍摄模式为所述上手电筒模式时,所述云台被配置为在预设关节角位置能够绕所述横滚轴转动的角度范围为0度至45度;
    所述预设关节角位置为所述云台进入所述期望拍摄模式时所述云台对应的所述横滚轴的关节角位置。
  21. 根据权利要求1所述的方法,其特征在于,在所述手持云台正立放置时,所述第一轴方向指向所述手柄的前方,所述第二轴方向指向所述手柄的左侧;
    所述竖直方向为世界坐标系中的Z轴方向。
  22. 根据权利要求21所述的方法,其特征在于,所述根据所述第一夹角和/或所述第二夹角确定所述云台的期望拍摄模式,包括:
    若所述第一夹角位于第一预设角度范围内,则确定所述云台的期望拍摄模式为上手电筒模式。
  23. 根据权利要求22所述的方法,其特征在于,所述第一预设角度范围为大于等于135度且小于等于180度。
  24. 根据权利要求21所述的方法,其特征在于,所述竖拍模式包括下竖拍模式, 所述根据所述第一夹角和/或所述第二夹角确定所述云台的期望拍摄模式,包括:
    若所述第二夹角位于第二预设角度范围内,则确定所述云台的期望拍摄模式为所述下竖拍模式。
  25. 根据权利要求24所述的方法,其特征在于,所述第二预设角度范围为大于等于0度且小于等于45度。
  26. 根据权利要求21所述的方法,其特征在于,所述竖拍模式包括上竖拍模式,所述根据所述第一夹角和/或所述第二夹角确定所述云台的期望拍摄模式,包括:
    若所述第二夹角位于第三预设角度范围内,则确定所述云台的期望拍摄模式为所述上竖拍模式。
  27. 根据权利要求26所述的方法,其特征在于,所述第三预设角度范围为大于等于135度且小于等于180度。
  28. 根据权利要求1所述的方法,其特征在于,所述期望拍摄模式包括所述上手电筒模式、所述竖拍模式、正拍模式、倒拍模式、下手电筒模式中的一种;
    所述根据所述第一夹角和/或所述第二夹角确定所述云台的期望拍摄模式,包括:
    根据所述第一夹角、所述第二夹角以及所述第三夹角确定所述云台的期望拍摄模式;
    其中,所述第三夹角为所述手柄的坐标系中的第七轴方向与所述竖直方向之间的夹角,在所述手持云台正立放置时,所述第七轴方向与所述竖直方向平行。
  29. 根据权利要求28所述的方法,其特征在于,第一目标角度为所述第一夹角、所述第二夹角、所述第三夹角中的一个,第二目标角度为所述第一夹角、所述第二夹角、所述第三夹角中的一个,第三目标角度为所述第一夹角、所述第二夹角、所述第三夹角中的一个;
    所述根据所述第一夹角、所述第二夹角以及所述第三夹角确定所述云台的期望拍摄模式,包括:
    检测所述第一目标角度是否位于第一目标角度范围内;
    若否,则检测所述第二目标角度是否位于第二目标角度范围内;
    若否,则根据所述第三目标角度确定所述云台的期望拍摄模式。
  30. 根据权利要求29所述的方法,其特征在于,所述第一目标角度范围为大于等于0度且小于等于45度,或,大于等于135度且小于等于180度;
    所述第二目标角度范围为大于等于0度且小于等于45度,或,大于等于135度且小于等于180度;
    所述第三目标角度范围为0度至180度。
  31. 根据权利要求30所述的方法,其特征在于,所述检测所述第一目标角度是否位于第一目标角度范围之后,还包括:
    若所述第一目标角度位于所述第一目标角度范围内,则根据所述第一目标角度确定所述云台的期望拍摄模式。
  32. 根据权利要求31所述的方法,其特征在于,所述第一目标角度为所述第三夹角;
    在所述第一目标角度范围为大于等于0度且小于等于45度时,所述期望拍摄模式为倒拍模式;
    在所述第一目标角度范围为大于等于135度且小于等于180度时,所述期望拍摄模式为正拍模式。
  33. 根据权利要求30所述的方法,其特征在于,所述检测所述第二目标角度是否位于第二目标角度范围之后,还包括:
    若所述第二目标角度位于所述第二目标角度范围内,则根据所述第二目标角度确定所述云台的期望拍摄模式。
  34. 根据权利要求33所述的方法,其特征在于,所述第二目标角度为所述第二夹角;
    在所述第二目标角度范围为大于等于0度且小于等于45度时,所述期望拍摄模式为下竖拍模式;
    在所述第二目标角度范围为大于等于135度且小于等于180度时,所述期望拍摄模式为上竖拍模式。
  35. 根据权利要求30所述的方法,其特征在于,所述第三目标角度为所述第一夹角;
    在所述第三目标角度范围为小于等于90度时,所述期望拍摄模式为下手电筒模式;
    在所述第三目标角度范围为大于90度时,所述期望拍摄模式为上手电筒模式。
  36. 根据权利要求1所述的方法,其特征在于,所述控制所述云台进入所述期望拍摄模式之后,还包括:
    若所述手持云台被触发至非拍摄模式,则控制所述云台为卸力状态。
  37. 根据权利要求36所述的方法,其特征在于,在所述控制所述云台为卸力状态之后,还包括:
    若所述手持云台退出所述非拍摄模式,且所述手柄的当前姿态满足所述期望拍摄模式,则控制所述云台恢复所述期望拍摄模式。
  38. 一种手持云台,其特征在于,所述手持云台包括:
    手柄;
    设置于所述手柄上的云台,所述云台用于搭载拍摄装置;和
    设于手柄的控制器,所述控制器用于:
    在所述云台进入运动状态时,获取所述手柄的姿态;
    根据所述手柄的姿态,确定所述手柄的坐标系中的第一轴方向与竖直方向的第一夹角和/或所述手柄的坐标系中的第二轴方向与所述竖直方向的第二夹角;
    根据所述第一夹角和/或所述第二夹角确定所述云台的期望拍摄模式,所述期望拍 摄模式包括上手电筒模式、竖拍模式中的一种;
    控制所述云台进入所述期望拍摄模式;
    其中,在所述手持云台正立放置时,所述第一轴方向、所述第二轴方向与竖直方向正交。
  39. 根据权利要求38所述的手持云台,其特征在于,所述控制器具体用于:
    若检测到发生用于指示所述云台进入运动状态的触发事件,则确定所述云台进入所述运动状态。
  40. 根据权利要求39所述的手持云台,其特征在于,所述触发事件包括指示所述手持云台开机的事件、指示所述手持云台重启的事件、指示所述手持云台退出休眠状态的事件中的一种。
  41. 根据权利要求38所述的手持云台,其特征在于,所述控制器在控制所述云台进入所述期望拍摄模式时,具体用于:
    根据所述期望拍摄模式,确定所述竖直方向与所述云台搭载的拍摄装置的坐标系中的第一特定平面的第一位置关系;
    控制所述云台转动,以使得所述拍摄装置满足所述第一位置关系;
    其中,所述第一特定平面为基于所述拍摄装置的坐标系中的第三轴方向、第四轴方向形成,在所述拍摄装置正立放置时,所述第三轴方向、第四轴方向与所述竖直方向垂直。
  42. 根据权利要求41所述的手持云台,其特征在于,所述云台包括与所述手柄连接的外框架,所述外框架被配置为绕第一预设方向转动;
    所述控制器在控制所述云台转动,以使得所述拍摄装置满足所述第一位置关系时,具体用于:
    根据所述期望拍摄模式,确定所述外框架的目标关节角;
    控制所述外框架转动至所述目标关节角;
    控制所述云台转动至所述期望拍摄模式对应的期望姿态,以使得所述拍摄装置满足所述第一位置关系。
  43. 根据权利要求42所述的手持云台,其特征在于,所述期望姿态中对应所述外框架的姿态分量为所述外框架转动至所述目标关节角时的姿态。
  44. 根据权利要求42所述的手持云台,其特征在于,所述控制器在根据所述期望拍摄模式,确定所述外框架的目标关节角时,具体用于:
    根据所述期望拍摄模式,确定所述竖直方向与所述外框架的坐标系中的第二特定平面的第二位置关系;
    根据所述第二位置关系确定所述外框架的目标关节角;
    其中,所述第二特定平面为基于所述外框架的坐标系中的第五轴方向、第六轴方向形成,且在所述手持云台正立放置时,所述第五轴方向、所述第六轴方向与所述竖直方向正交。
  45. 根据权利要求44所述的手持云台,其特征在于,所述第二位置关系包括:所述竖直方向在所述第二特定平面上的投影位于所述第五轴方向对应的轴线上,或,所述竖直方向在所述第二特定平面上的投影位于所述第六轴方向对应的轴线上。
  46. 根据权利要求45所述的手持云台,其特征在于,所述竖拍模式包括上竖拍模式,当所述期望拍摄模式为所述上竖拍模式时,所述竖直方向在所述第二特定平面上的投影与所述第六轴方向的指向相反。
  47. 根据权利要求44所述的手持云台,其特征在于,所述竖拍模式包括下竖拍模式,当所述期望拍摄模式为所述下竖拍模式时,所述竖直方向在所述第二特定平面上的投影与所述第六轴方向的指向相同。
  48. 根据权利要求45所述的手持云台,其特征在于,当所述期望拍摄模式为所述上手电筒模式时,所述竖直方向在所述第二特定平面上的投影与所述第五轴方向的指向相同或相反。
  49. 根据权利要求42所述的手持云台,其特征在于,所述云台还包括与所述外框架连接的中框架以及与所述中框架连接的内框架,所述内框架用于搭载拍摄装置,所述中框架被配置为绕所述第二预设方向转动,所述内框架被配置为绕所述第三预设方向转动;
    所述控制器在控制所述外框架转动至所述目标关节角的同时,还用于:
    控制所述中框架的关节角为第一预设角度,并控制所述内框架的关节角为第二预设角度。
  50. 根据权利要求42所述的手持云台,其特征在于,所述云台还包括与所述外框架连接的内框架,所述内框架用于搭载拍摄装置,所述内框架被配置为绕第二预设方向或第三预设方向转动;
    所述控制器在控制所述外框架转动至所述目标关节角的同时,还用于:
    控制所述内框架的关节角为第三预设角度。
  51. 根据权利要求42所述的手持云台,其特征在于,当所述期望拍摄模式为所述竖拍模式时,所述云台被配置为能够绕横滚轴转动;
    所述控制器在控制所述云台转动至所述期望拍摄模式对应的期望姿态时,具体用于:
    根据所述期望拍摄模式确定所述云台对应所述横滚轴的姿态分量;
    根据所述对应所述横滚轴的姿态分量对所述云台进行控制,以使得所述云台转动至所述期望拍摄模式对应的期望姿态。
  52. 根据权利要求42所述的手持云台,其特征在于,当所述期望拍摄模式为所述上电筒模式时,所述云台被配置为能够绕俯仰轴转动;
    所述控制器在控制所述云台的姿态为所述期望姿态时,具体用于:
    根据所述期望拍摄模式确定所述云台对应所述俯仰轴的姿态分量;
    根据所述对应俯仰轴的姿态分量对所述云台进行控制,以使得所述云台转动至所 述期望拍摄模式对应的期望姿态。
  53. 根据权利要求41至52中任一项所述的手持云台,其特征在于,当所述期望拍摄模式为所述竖拍模式时,所述第一位置关系为:所述云台搭载的拍摄装置的坐标系中的第一特定平面与所述竖直方向大致平行。
  54. 根据权利要求41至52中任一项所述的手持云台,其特征在于,当所述期望拍摄模式为所述上电筒模式时,所述第一位置关系为:所述云台搭载的拍摄装置的坐标系中的第一特定平面与所述竖直方向大致垂直。
  55. 根据权利要求41至52中任一项所述的手持云台,其特征在于,当所述期望拍摄模式为上手电筒模式时,所述控制器在控制所述云台转动至所述期望拍摄模式对应的期望姿态时,具体用于:
    控制所述云台中被配置为绕俯仰轴转动的框架的关节角为预设关节角。
  56. 根据权利要求38所述的手持云台,其特征在于,所述控制器在控制所述云台进入所述期望拍摄模式之后,当所述期望拍摄模式为所述竖拍模式时,所述云台被配置为在预设关节角位置能够绕所述俯仰轴转动的角度范围为0度至45度;
    所述预设关节角位置为所述云台进入所述期望拍摄模式时所述云台对应的所述俯仰轴的关节角位置。
  57. 根据权利要求38所述的手持云台,其特征在于,所述控制器在控制所述云台进入所述期望拍摄模式之后,当所述期望拍摄模式为所述上手电筒模式时,所述云台被配置为在预设关节角位置能够绕所述横滚轴转动的角度范围为0度至45度;
    所述预设关节角位置为所述云台进入所述期望拍摄模式时所述云台对应的所述横滚轴的关节角位置。
  58. 根据权利要求38所述的手持云台,其特征在于,在所述手持云台正立放置时,所述第一轴方向指向所述手柄的前方,所述第二轴方向指向所述手柄的左侧;
    所述竖直方向为世界坐标系中的Z轴方向。
  59. 根据权利要求58所述的手持云台,其特征在于,所述控制器子啊根据所述第一夹角和/或所述第二夹角确定所述云台的期望拍摄模式时,具体用于:
    若所述第一夹角位于第一预设角度范围内,则确定所述云台的期望拍摄模式为上手电筒模式。
  60. 根据权利要求59所述的手持云台,其特征在于,所述第一预设角度范围为大于等于135度且小于等于180度。
  61. 根据权利要求58所述的手持云台,其特征在于,所述竖拍模式包括下竖拍模式,所述控制器在根据所述第一夹角和/或所述第二夹角确定所述云台的期望拍摄模式时,具体用于:
    若所述第二夹角位于第二预设角度范围内,则确定所述云台的期望拍摄模式为所述下竖拍模式。
  62. 根据权利要求61所述的手持云台,其特征在于,所述第二预设角度范围为大 于等于0度且小于等于45度。
  63. 根据权利要求58所述的手持云台,其特征在于,所述竖拍模式包括上竖拍模式,所述控制器在根据所述第一夹角和/或所述第二夹角确定所述云台的期望拍摄模式时,具体用于:
    若所述第二夹角位于第三预设角度范围内,则确定所述云台的期望拍摄模式为所述上竖拍模式。
  64. 根据权利要求63所述的手持云台,其特征在于,所述第三预设角度范围为大于等于135度且小于等于180度。
  65. 根据权利要求38所述的手持云台,其特征在于,所述期望拍摄模式包括所述上手电筒模式、所述竖拍模式、正拍模式、倒拍模式、下手电筒模式中的一种;
    所述控制器在根据所述第一夹角和/或所述第二夹角确定所述云台的期望拍摄模式时,具体用于:
    根据所述第一夹角、所述第二夹角以及所述第三夹角确定所述云台的期望拍摄模式;
    其中,所述第三夹角为所述手柄的坐标系中的第七轴方向与所述竖直方向之间的夹角,在所述手持云台正立放置时,所述第七轴方向与所述竖直方向平行。
  66. 根据权利要求65所述的手持云台,其特征在于,第一目标角度为所述第一夹角、所述第二夹角、所述第三夹角中的一个,第二目标角度为所述第一夹角、所述第二夹角、所述第三夹角中的一个,第三目标角度为所述第一夹角、所述第二夹角、所述第三夹角中的一个;
    所述控制器在根据所述第一夹角、所述第二夹角以及所述第三夹角确定所述云台的期望拍摄模式时,具体用于:
    检测所述第一目标角度是否位于第一目标角度范围内;
    若否,则检测所述第二目标角度是否位于第二目标角度范围内;
    若否,则根据所述第三目标角度确定所述云台的期望拍摄模式。
  67. 根据权利要求66所述的手持云台,其特征在于,所述第一目标角度范围为大于等于0度且小于等于45度,或,大于等于135度且小于等于180度;
    所述第二目标角度范围为大于等于0度且小于等于45度,或,大于等于135度且小于等于180度;
    所述第三目标角度范围为0度至180度。
  68. 根据权利要求67所述的手持云台,其特征在于,所述控制器在检测所述第一目标角度是否位于第一目标角度范围之后,还用于:
    若所述第一目标角度位于所述第一目标角度范围内,则根据所述第一目标角度确定所述云台的期望拍摄模式。
  69. 根据权利要求68所述的手持云台,其特征在于,所述第一目标角度为所述第三夹角;
    在所述第一目标角度范围为大于等于0度且小于等于45度时,所述期望拍摄模式为倒拍模式;
    在所述第一目标角度范围为大于等于135度且小于等于180度时,所述期望拍摄模式为正拍模式。
  70. 根据权利要求67所述的手持云台,其特征在于,所述控制器在检测所述第二目标角度是否位于第二目标角度范围之后,还用于:
    若所述第二目标角度位于所述第二目标角度范围内,则根据所述第二目标角度确定所述云台的期望拍摄模式。
  71. 根据权利要求70所述的手持云台,其特征在于,所述第二目标角度为所述第二夹角;
    在所述第二目标角度范围为大于等于0度且小于等于45度时,所述期望拍摄模式为下竖拍模式;
    在所述第二目标角度范围为大于等于135度且小于等于180度时,所述期望拍摄模式为上竖拍模式。
  72. 根据权利要求67所述的手持云台,其特征在于,所述第三目标角度为所述第一夹角;
    在所述第三目标角度范围为小于等于90度时,所述期望拍摄模式为下手电筒模式;
    在所述第三目标角度范围为大于90度时,所述期望拍摄模式为上手电筒模式。
  73. 根据权利要求38所述的手持云台,其特征在于,所述控制器在控制所述云台进入所述期望拍摄模式之后,还用于:
    若所述手持云台被触发至非拍摄模式,则控制所述云台为卸力状态。
  74. 根据权利要求73所述的手持云台,其特征在于,所述控制器在所述控制所述云台为卸力状态之后,还用于:
    若所述手持云台退出所述非拍摄模式,且所述手柄的当前姿态满足所述期望拍摄模式,则控制所述云台恢复所述期望拍摄模式。
PCT/CN2019/070502 2019-01-04 2019-01-04 手持云台控制方法和手持云台 WO2020140295A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
CN201980005320.7A CN111279113B (zh) 2019-01-04 2019-01-04 手持云台控制方法和手持云台
CN202111628865.9A CN114265438A (zh) 2019-01-04 2019-01-04 手持云台控制方法和手持云台
PCT/CN2019/070502 WO2020140295A1 (zh) 2019-01-04 2019-01-04 手持云台控制方法和手持云台
US17/366,475 US20220011787A1 (en) 2019-01-04 2021-07-02 Handheld gimbal and handheld gimbal control method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2019/070502 WO2020140295A1 (zh) 2019-01-04 2019-01-04 手持云台控制方法和手持云台

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/366,475 Continuation US20220011787A1 (en) 2019-01-04 2021-07-02 Handheld gimbal and handheld gimbal control method

Publications (1)

Publication Number Publication Date
WO2020140295A1 true WO2020140295A1 (zh) 2020-07-09

Family

ID=70999833

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/070502 WO2020140295A1 (zh) 2019-01-04 2019-01-04 手持云台控制方法和手持云台

Country Status (3)

Country Link
US (1) US20220011787A1 (zh)
CN (2) CN111279113B (zh)
WO (1) WO2020140295A1 (zh)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
USD961652S1 (en) * 2020-03-31 2022-08-23 Shanghai Moshon Technology Co., Ltd. Hand-held cradle head camera
CN113168193A (zh) * 2020-06-08 2021-07-23 深圳市大疆创新科技有限公司 云台控制方法、手持云台及计算机可读存储介质
WO2022006782A1 (zh) * 2020-07-08 2022-01-13 深圳市大疆创新科技有限公司 云台控制方法、云台组件、装置、可移动平台和存储介质
CN113939788A (zh) * 2020-10-20 2022-01-14 深圳市大疆创新科技有限公司 云台的控制方法及云台
WO2022134034A1 (zh) * 2020-12-25 2022-06-30 深圳市大疆创新科技有限公司 云台的控制方法和移动平台
JP7264931B2 (ja) * 2021-03-25 2023-04-25 キヤノンプレシジョン株式会社 ジンバル及びそれを有するシステム
WO2022198607A1 (zh) * 2021-03-26 2022-09-29 深圳市大疆创新科技有限公司 手持云台的控制方法及装置
WO2022241756A1 (zh) * 2021-05-21 2022-11-24 深圳市大疆创新科技有限公司 云台控制方法和机械臂

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203593A1 (ja) * 2013-06-21 2014-12-24 株式会社エルム 遠隔操縦無人飛行体の制御システム
CN204083738U (zh) * 2014-10-13 2015-01-07 刚钰股份有限公司 手持三轴取像云台装置
CN104360690A (zh) * 2014-11-05 2015-02-18 桂林飞宇电子科技有限公司 一种手持三轴云台
CN105090695A (zh) * 2015-09-29 2015-11-25 深圳市大疆创新科技有限公司 手柄云台及其控制方法
CN105468028A (zh) * 2015-12-26 2016-04-06 武汉智能鸟无人机有限公司 一种用摇杆实现运动控制的手持云台
CN205176664U (zh) * 2015-08-25 2016-04-20 深圳市大疆创新科技有限公司 手持云台

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20160381271A1 (en) * 2015-06-25 2016-12-29 DelTron Intelligence Technology Limited Handheld camera stabilizer with integration of smart device
CN105979133A (zh) * 2015-10-22 2016-09-28 乐视移动智能信息技术(北京)有限公司 一种跟踪拍摄的方法、移动终端和系统
CN108513608B (zh) * 2017-06-19 2020-06-26 深圳市大疆创新科技有限公司 可拆卸控制装置、云台装置和手持云台的控制方法
CN113985928A (zh) * 2017-09-12 2022-01-28 深圳市大疆灵眸科技有限公司 云台的控制方法、控制器和云台
KR102387819B1 (ko) * 2017-12-27 2022-04-15 에스지 디제이아이 테크놀러지 코., 엘티디 짐벌 작동 모드 전환 방법, 컨트롤러 및 이미지 안정화 장치
CN108259703B (zh) * 2017-12-31 2021-06-01 深圳市越疆科技有限公司 一种云台的跟拍控制方法、装置及云台
CN108184061B (zh) * 2017-12-31 2020-06-02 深圳市越疆科技有限公司 手持云台的跟拍控制方法、装置、手持云台及存储介质
CN209604859U (zh) * 2018-10-31 2019-11-08 深圳市大疆创新科技有限公司 云台和手持云台
WO2022051956A1 (zh) * 2020-09-10 2022-03-17 深圳市大疆创新科技有限公司 手持云台、手持云台的控制方法和计算机可读存储介质

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014203593A1 (ja) * 2013-06-21 2014-12-24 株式会社エルム 遠隔操縦無人飛行体の制御システム
CN204083738U (zh) * 2014-10-13 2015-01-07 刚钰股份有限公司 手持三轴取像云台装置
CN104360690A (zh) * 2014-11-05 2015-02-18 桂林飞宇电子科技有限公司 一种手持三轴云台
CN205176664U (zh) * 2015-08-25 2016-04-20 深圳市大疆创新科技有限公司 手持云台
CN105090695A (zh) * 2015-09-29 2015-11-25 深圳市大疆创新科技有限公司 手柄云台及其控制方法
CN105468028A (zh) * 2015-12-26 2016-04-06 武汉智能鸟无人机有限公司 一种用摇杆实现运动控制的手持云台

Also Published As

Publication number Publication date
CN114265438A (zh) 2022-04-01
CN111279113B (zh) 2022-01-25
CN111279113A (zh) 2020-06-12
US20220011787A1 (en) 2022-01-13

Similar Documents

Publication Publication Date Title
WO2020140295A1 (zh) 手持云台控制方法和手持云台
US11184548B2 (en) Imaging device, and method and apparatus for controlling the imaging device
WO2020215215A1 (zh) 一种云台控制方法、设备、云台、系统及存储介质
WO2019056381A1 (zh) 云台的控制方法、云台控制器及云台
WO2019227384A1 (zh) 一种云台控制方法及云台
WO2021026790A1 (zh) 手持云台、云台控制方法及计算机可读存储介质
WO2019100249A1 (zh) 云台的控制方法、云台以及无人飞行器
WO2020042152A1 (zh) 手持云台的控制方法、手持云台及图像获取设备
WO2021026752A1 (zh) 云台控制方法、云台及计算机可读存储介质
WO2021026789A1 (zh) 基于手持云台的拍摄方法、手持云台及存储介质
WO2020062281A1 (zh) 云台的控制方法、云台、可移动平台及可读存储介质
WO2023072088A1 (zh) 对焦方法及装置
WO2021134644A1 (zh) 云台的控制方法和云台
WO2020107284A1 (zh) 云台的模式切换方法、装置、可移动平台及存储介质
KR20230047438A (ko) 촬영장치 스테빌라이저
WO2020107295A1 (zh) 拍摄方法和拍摄系统
WO2021026784A1 (zh) 跟随拍摄、云台控制方法、拍摄装置、手持云台和拍摄系统
WO2021051302A1 (zh) 手持云台及其控制方法
WO2021134643A1 (zh) 云台的控制方法和云台
WO2020062163A1 (zh) 云台的控制方法及手持云台、手持设备
WO2020000233A1 (zh) 移动平台及其控制方法
WO2021026760A1 (zh) 云台系统及其控制方法
WO2022021092A1 (zh) 云台控制方法、装置、设备及计算机可读存储介质
WO2021146908A1 (zh) 云台及其控制方法
WO2022041013A1 (zh) 控制方法、手持云台、系统及计算机可读存储介质

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19907188

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19907188

Country of ref document: EP

Kind code of ref document: A1