WO2022006782A1 - 云台控制方法、云台组件、装置、可移动平台和存储介质 - Google Patents

云台控制方法、云台组件、装置、可移动平台和存储介质 Download PDF

Info

Publication number
WO2022006782A1
WO2022006782A1 PCT/CN2020/100891 CN2020100891W WO2022006782A1 WO 2022006782 A1 WO2022006782 A1 WO 2022006782A1 CN 2020100891 W CN2020100891 W CN 2020100891W WO 2022006782 A1 WO2022006782 A1 WO 2022006782A1
Authority
WO
WIPO (PCT)
Prior art keywords
state
angle
attitude
pan
base
Prior art date
Application number
PCT/CN2020/100891
Other languages
English (en)
French (fr)
Inventor
刘帅
谢振生
庞少阳
Original Assignee
深圳市大疆创新科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市大疆创新科技有限公司 filed Critical 深圳市大疆创新科技有限公司
Priority to PCT/CN2020/100891 priority Critical patent/WO2022006782A1/zh
Priority to CN202080005539.XA priority patent/CN114158271A/zh
Publication of WO2022006782A1 publication Critical patent/WO2022006782A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/18Heads with mechanism for moving the apparatus relatively to the stand
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M11/00Stands or trestles as supports for apparatus or articles placed thereon ; Stands for scientific apparatus such as gravitational force meters
    • F16M11/02Heads
    • F16M11/04Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand
    • F16M11/06Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting
    • F16M11/12Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction
    • F16M11/121Means for attachment of apparatus; Means allowing adjustment of the apparatus relatively to the stand allowing pivoting in more than one direction constituted of several dependent joints
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16MFRAMES, CASINGS OR BEDS OF ENGINES, MACHINES OR APPARATUS, NOT SPECIFIC TO ENGINES, MACHINES OR APPARATUS PROVIDED FOR ELSEWHERE; STANDS; SUPPORTS
    • F16M13/00Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles
    • F16M13/02Other supports for positioning apparatus or articles; Means for steadying hand-held apparatus or articles for supporting on, or attaching to, an object, e.g. tree, gate, window-frame, cycle
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N23/00Cameras or camera modules comprising electronic image sensors; Control thereof
    • H04N23/60Control of cameras or camera modules
    • H04N23/695Control of camera direction for changing a field of view, e.g. pan, tilt or based on tracking of objects

Definitions

  • Embodiments of the present invention relate to the field of control, and in particular, to a pan-tilt control method, a pan-tilt assembly, a device, a movable platform, and a storage medium.
  • the gimbal is a supporting device for installing and fixing the shooting device.
  • the placement state of the gimbal can be adjusted based on different usage requirements, for example, the gimbal can be in an upright state or an inverted state, and so on.
  • the imaging of the image sensor in the photographing device may be different, for example: when the gimbal is in the upright state, the image obtained by the image sensor in the photographing device may be a positive image; In the inverted state, the image obtained by the image sensor in the photographing device may be an inverted image.
  • the image obtained by the image sensor is an inverted image
  • Embodiments of the present invention provide a pan-tilt control method, pan-tilt assembly, device, removable platform and storage medium, which are used to solve the problems of increasing data processing operations and corresponding data delays in the prior art, and also The quality and efficiency of data processing are reduced, and the problem that the user's needs cannot be met.
  • a first aspect of the present invention provides a pan-tilt control method, the pan-tilt is used for supporting an image acquisition device, the pan-tilt comprises: a base, and a pan-tilt drive for driving the image acquisition device around the pan-tilt A roll motor that rotates a roll axis; the method includes:
  • the placement state of the base includes the upright state and the inverted state.
  • a second aspect of the present invention provides a pan/tilt control device, the pan/tilt is used to support an image acquisition device, the pan/tilt includes: a base, and a pan/tilt for driving the image acquisition device to go around the pan/tilt.
  • a roll motor that rotates a roll axis; the control device includes:
  • a processor for running a computer program stored in the memory to achieve:
  • the placement state of the base includes the upright state and the inverted state.
  • a third aspect of the present invention is to provide a pan-tilt assembly, comprising:
  • a pan/tilt head used to support an image capture device, the pan/tilt head includes: a base, and a roll motor for driving the image capture device to rotate around a roll axis of the pan/tilt head;
  • the pan-tilt control device is used to control the pan-tilt.
  • a fourth aspect of the present invention is to provide a computer-readable storage medium, the storage medium is a computer-readable storage medium, and program instructions are stored in the computer-readable storage medium, and the program instructions are used to implement the above-mentioned first The PTZ control method described in the aspect.
  • a fifth aspect of the present invention is to provide a pan-tilt control method, wherein the pan-tilt is arranged on the body of the unmanned aerial vehicle and used to support an image acquisition device, and the pan-tilt includes: for driving the image acquisition device a roll motor that rotates around a roll axis of the head; the method includes:
  • the relative placement state between the pan/tilt and the body includes the upper placement state and the lower placement state.
  • the sixth aspect of the present invention is to provide a pan-tilt control device, the pan-tilt is arranged on the body of the UAV and is used to support the image acquisition device, and the pan-tilt comprises: for driving the image acquisition device A roll motor that rotates around the roll axis of the head; the control device includes:
  • the processor is configured to run the computer program stored in the memory to implement the pan-tilt control method described in the fifth aspect.
  • a seventh aspect of the present invention is to provide a movable platform, comprising:
  • a pan/tilt head which is arranged on the body, is used to support an image acquisition device, and the pan/tilt head includes: a roll motor for driving the image acquisition device to rotate around a roll axis of the pan/tilt head;
  • the pan-tilt control device is used to control the pan-tilt.
  • An eighth aspect of the present invention is to provide a computer-readable storage medium, the storage medium is a computer-readable storage medium, and program instructions are stored in the computer-readable storage medium, and the program instructions are used to implement the fifth The PTZ control method described in the aspect.
  • the pan-tilt control method, pan-tilt assembly, device, movable platform and storage medium provided by the embodiments of the present invention detect the current placement state of the base, and then control the rotation of the roll motor according to the current placement state, or obtain The relative placement state between the gimbal and the body, and then the rotation of the roll motor is controlled according to the current relative placement state, which effectively realizes that no matter what the placement state of the gimbal is, through the control and adjustment of the roll motor, it can be
  • the image acquisition device installed on the PTZ can obtain an upright image, and the image does not need to be rotated at this time, thereby reducing the data delay caused by the data processing operation, ensuring the quality and efficiency of the data processing, and making the The method can meet the needs of users, and further improve the practicability of the method.
  • FIG. 1a is a schematic diagram of an upright image provided by an embodiment of the present invention.
  • FIG. 1b is a schematic diagram of an inverted image provided by an embodiment of the present invention.
  • FIG. 2a is a schematic diagram of a pan/tilt head in an upright state according to an embodiment of the present invention
  • FIG. 2b is a schematic diagram 1 of an inverted state of a pan/tilt according to an embodiment of the present invention
  • Fig. 2c is a schematic diagram 2 of an inverted state of a pan/tilt according to an embodiment of the present invention.
  • FIG. 3 is a schematic flowchart of a pan-tilt control method according to an embodiment of the present invention.
  • FIG. 4 is a schematic flow chart 1 of detecting the current placement state of the base according to an embodiment of the present invention.
  • FIG. 5 is a schematic flowchart of determining the current placement state of the pedestal based on the Z-axis direction in the pedestal coordinate system and the Z-axis direction in the geodetic coordinate system according to an embodiment of the present invention
  • FIG. 6 is a second schematic flow chart of detecting the current placement state of the base according to an embodiment of the present invention.
  • FIG. 7 is a schematic flowchart of determining the current placement state of the base based on the attitude information provided by an embodiment of the present invention.
  • FIG. 8 is a schematic flowchart of another pan-tilt control method provided by an embodiment of the present invention.
  • FIG. 9 is a schematic flowchart of controlling the rotation of the pan/tilt according to the target posture, so that the image acquisition device maintains the target posture, according to an embodiment of the present invention
  • FIG. 10 is a schematic flowchart of controlling the pan/tilt based on the measured joint angle and the target posture, so that the image acquisition device maintains the target posture, according to an embodiment of the present invention
  • FIG. 11 is a schematic diagram 1 of determining an attitude angle adjustment speed corresponding to the measured joint angle according to the measured joint angle and the target attitude according to an embodiment of the present invention
  • FIG. 12 is a schematic diagram 2 of determining an attitude angle adjustment speed corresponding to the measured joint angle according to the measured joint angle and the target attitude according to an embodiment of the present invention
  • FIG. 13 is a schematic diagram 3 of determining an attitude angle adjustment speed corresponding to the measured joint angle according to the measured joint angle and the target attitude according to an embodiment of the present invention
  • 14a is a schematic diagram 1 of a speed adjustment curve provided by an application embodiment of the present invention.
  • 14b is a second schematic diagram of a speed adjustment curve provided by an application embodiment of the present invention.
  • FIG. 15 is a schematic structural diagram of a pan-tilt control device according to an embodiment of the present invention.
  • FIG. 16 is a schematic flowchart of another pan-tilt control method provided by an embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of a pan/tilt assembly according to an embodiment of the present invention.
  • FIG. 18 is a schematic structural diagram of another pan-tilt control device provided by an embodiment of the present invention.
  • FIG. 19 is a schematic structural diagram of a movable platform according to an embodiment of the present invention.
  • FIG. 20 is a schematic structural diagram of an unmanned aerial vehicle according to an embodiment of the present invention.
  • an image acquisition device may be provided on the pan/tilt.
  • a mobile phone is used as an example of the image acquisition device for description.
  • the placement state of the gimbal can be adjusted based on different usage requirements, for example, the gimbal can be in an upright state or an inverted state, and so on.
  • the imaging of the image sensor in the mobile phone can be different.
  • the imaging in the image sensor may include an upright image (upright image) and an inverted image (inverted image), and the upright image and the inverted image are used to identify the difference between the image and the upper and lower edges of the display device.
  • the distance between the preset upper end of the image and the upper edge of the display device is d1
  • the distance between the preset lower end and the lower edge of the display device is d2 as an upright image
  • the image The preset distance between the upper end and the lower edge of the display device is d1
  • the preset distance between the lower end and the upper edge of the display device is d2.
  • the image obtained by the image sensor in the mobile phone is an inverted image.
  • the upper edge of the display screen of the mobile phone and the lower end of the target object in the imaging correspond to the lower edge of the display screen of the mobile phone.
  • the relative state between the image and the display device is different from the relative state between the image and the display device in FIG. 2a.
  • the image rotation operation will undoubtedly increase the data delay of the image processing system, and the data delay is proportional to the resolution of the image.
  • the data delay is proportional to the resolution of the image.
  • the number of rotation operations is n*n times, and the data delay corresponding to the above image rotation operation is undoubtedly large, especially for application scenarios such as PTZ, display device or wireless image transmission that require high delay
  • the specific type of the gimbal is not limited to the above-mentioned three-axis gimbal.
  • the above-mentioned gimbal may also refer to a four-axis gimbal including a tumbling axis.
  • This embodiment takes a three-axis pan/tilt as an example for description.
  • the gimbal can also be a gimbal in use, that is, the gimbal control method can control the gimbal in the power-on state or in use state, so that the gimbal in any state can be controlled.
  • the PTZ control method may include:
  • Step S301 Detect the current placement state of the base.
  • Step S302 Control the rotation of the roll motor according to the current placement state, so that the image acquisition device acquires upright images when the current placement state is the upright state or the inverted state.
  • Step S301 Detect the current placement state of the base.
  • the placement state of the gimbal is different from the placement state of the base. Since there is a preset correspondence between the placement state of the gimbal and the current placement state of the base, the placement state of the gimbal can be determined by detecting the current placement state of the base.
  • the image capture devices installed on the pan/tilt may have different placement states.
  • the image capture device provided on the pan/tilt can be in a different placement state. Upright state; when the gimbal is in an upside-down state, the image capture device can be in an upside-down state.
  • the placement state of the gimbal is the same as the placement state of the image capture device installed on the gimbal.
  • the image acquisition device set on the PTZ when the PTZ is in the upright state, the image acquisition device set on the PTZ can be in the inverted state; when the PTZ is in the inverted state, the image acquisition device set on the PTZ can be in the upright state, at this time , the placement state of the gimbal is different from the placement state of the image acquisition device set on the gimbal.
  • a method for detecting the current placement state of the base can include:
  • Step S3011 Obtain the Z-axis direction in the base coordinate system corresponding to the base.
  • Step S3012 Determine the current placement state of the base based on the Z-axis direction in the base coordinate system and the Z-axis direction in the geodetic coordinate system.
  • a base coordinate system corresponding to the base is pre-established, the X-axis direction in the base coordinate system is parallel to the lens orientation of the image acquisition device, and the Z-axis direction can be a direction parallel to the axial direction of the base , the Y-axis direction is perpendicular to the Z-axis direction and the X-axis direction, and the relationship between the X-axis direction (index finger direction), the Y-axis direction (middle finger direction) and the Z-axis direction (thumb direction) satisfies the right-hand rule.
  • the Z-axis direction in the base coordinate system can be obtained, and then the Z-axis direction in the base coordinate system can be analyzed and identified based on the geodetic coordinate system, wherein the geodetic coordinate
  • the X-axis direction in the system is the north direction
  • the Y-axis direction is the east direction
  • the Z-axis direction is the downward direction of gravity (the direction of the ground).
  • the Z-axis direction in the geodetic coordinate system can be extracted, and then the Z-axis direction in the geodetic coordinate system is analyzed and compared with the Z-axis direction in the base coordinate system to determine the current placement state of the base.
  • determining the current placement state of the base may include:
  • Step S30121 Obtain the angle information between the Z-axis direction in the base coordinate system and the Z-axis direction in the geodetic coordinate system.
  • Step S30122 when the included angle information matches the first angle range, determine that the current placement state of the base is the upright state; or, when the included angle information matches the second angle range, determine the current placement state of the base in an inverted state.
  • a first angle range and a second angle range are preconfigured, and the above-mentioned first angle range is used to identify when the current placement state of the base is the upright state,
  • the second angle range is used to identify the Z-axis direction in the base coordinate system when the current placement state of the base is the inverted state
  • the first angle range is different from the second angle range, for example, the first angle range may be (90°, 180°), and the second angle range may be [0°, 90°).
  • the angle information between the Z-axis direction in the base coordinate system and the Z-axis direction in the geodetic coordinate system can be acquired. Then, the included angle information can be analyzed and compared with the first angle range and the second angle range. When the included angle information matches the first angle range, that is, the included angle information is located within the first angle range or is within the first included angle range. The corresponding upper limit value, it can be determined that the current placement state of the base is the upright state. When the included angle information matches the second angle range, that is, the included angle information is within the second angle range or the lower limit value corresponding to the second included angle range, it can be determined that the current placement state of the base is an inverted state.
  • this embodiment provides another method for detecting the current placement state of the base, which specifically includes:
  • Step S3013 Obtain the posture information of the base.
  • Step S3014 Determine the current placement state of the base based on the attitude information.
  • the attitude information of the base can be obtained.
  • the base can be directly obtained through the IMU. seat posture information.
  • the measurement attitude of the gimbal can be obtained through the IMU, and then the attitude information of the base can be determined based on the measurement attitude.
  • those skilled in the art can also acquire the attitude information of the base in other ways, as long as the accuracy and reliability of the acquisition of the attitude information of the base can be ensured, which will not be repeated here.
  • the attitude information of the base After the attitude information of the base is acquired, the attitude information can be analyzed and processed to determine the current placement state of the base. Specifically, referring to FIG. 7, based on the attitude information, determining the current placement state of the base may include:
  • Step S30141 Acquire a first attitude range for identifying the base as an upright state and a second attitude range for identifying the base as an upside-down state.
  • Step S30142 when the posture information matches the first posture range, determine that the current placement state of the base is the upright state; or, when the posture information matches the second posture range, determine the placement state of the base.
  • the seat is currently placed in an upside-down state.
  • the attitude information of the base may include the angle information between the Z-axis direction in the base coordinate system where the base is located and the Z-axis direction in the geodetic coordinate system. At this time, the current placement state of the base is determined based on the attitude information.
  • the description content corresponding to the above-mentioned embodiment in FIG. 4 For the specific implementation manner, reference may be made to the description content corresponding to the above-mentioned embodiment in FIG. 4 .
  • Step S302 Control the rotation of the roll motor according to the current placement state, so that the image acquisition device acquires upright images when the current placement state is the upright state or the inverted state.
  • the rotation of the roll motor can be controlled based on the current placement state, so that the image acquisition device acquires upright images when the current placement state is the upright state or the inverted state.
  • the image acquired by the image acquisition device is an upright image; at this time, it can be acquired by the image acquisition device without controlling the roll motor to rotate. to the upright image.
  • controlling the rotation of the roll motor according to the current placement state, so that the image acquisition device acquires an upright image when the current placement state is an upright state or an upside-down state may include: When the current placement state is the inverted state, the image acquisition device is controlled to rotate by a preset angle around the roll axis through the roll motor, so as to obtain an upright image through the image acquisition device.
  • the roll motor can be used to control the image acquisition device to rotate around the roll axis by a preset angle, and the preset angle is related to the joint angle where the gimbal stays after the self-check operation, for example : When the joint angle that the gimbal stays at after the self-check operation is 0°, the preset angle can be determined to be 180°.
  • controlling the rotation of the roll motor according to the current placement state, so that the image acquisition device obtains upright images when the current placement state is the upright state or the inverted state may include: when the current placement state is the upright state , and control the image acquisition device to rotate by a preset angle around the roll axis through the roll motor, so as to obtain an upright image through the image acquisition device.
  • the image acquisition device is provided with a mark for indicating the placement state
  • the mark may be a static mark
  • the static mark may be an electronic display or a non-electronic display, such as a sticker or a logo, through the static mark Upside down or upside down, it can prompt the user whether the image capture device is upright or upside down, and the static logo can be set on the PTZ or the image capture device.
  • Step S801 Determine the target posture of the image capture device according to the current placement state.
  • the current posture of the image acquisition device can be obtained first.
  • the current posture of the image acquisition device may be different from the target posture, that is, the current posture does not match the target posture, then the image acquisition device can be controlled to be adjusted from the current posture to the target posture; when the current posture of the image acquisition device matches the target posture, then The image capture device can be controlled to maintain the target posture, so that the image capture device is always in an upright state, so as to obtain an upright image through the upright image capture device.
  • the roll motor used to drive the image acquisition device to rotate around the roll axis of the gimbal can be adjusted and controlled through a preset control strategy. And combined with the tilt motor to control the optical axis orientation of the image acquisition device, such as horizontal setting, to obtain the desired image, then when controlling the gimbal, there is no need to control the roll motor and the pitch motor, so that the roll and pitch directions can be controlled.
  • the pedestal can be understood that, in practical applications, the change of the pitch component in the attitude of the gimbal can also follow the change of the pitch component in the attitude of the base.
  • controlling the rotation of the gimbal according to the target posture, so that the image acquisition device maintains the target posture may include:
  • Step S8022 Control the gimbal based on the measured joint angle and the target posture, so that the image acquisition device maintains the target posture.
  • controlling the pan/tilt based on the measured joint angle and the target posture so that the image acquisition device maintains the target posture may include:
  • the target posture and the measured joint angle can be analyzed and processed to achieve accurate and effective control of the PTZ.
  • the target joint angle corresponding to the target posture can be obtained first, and then the joint angle deviation between the measured joint angle and the target joint angle can be compared and measured, and the attitude angle adjustment speed corresponding to the measured joint angle can be determined based on the joint angle deviation.
  • the attitude angle adjustment speed may be a constant speed value or a speed value that changes with time or changes in joint angles.
  • the gimbal can be controlled based on the attitude angle adjustment speed, thereby effectively realizing that the image acquisition device can be kept in the target attitude.
  • the target posture of the image acquisition device is determined according to the current placement state, and then the pan/tilt is controlled based on the target posture, which effectively realizes the closed-loop attitude control of the pan/tilt, and enables the image acquisition device to maintain the target posture. This ensures the stable and reliable operation of the PTZ.
  • Step S901 when the measured joint angle is greater than the first angle, determine that the attitude angle adjustment speed corresponding to the measured joint angle is the first speed, and the direction of the first speed is the first direction.
  • the attitude angle adjustment speed corresponding to the measured joint angle is the first speed, wherein the direction of the first speed is the first direction, so that the measured joint angle is adjusted to be smaller than the first angle through the first speed in the first direction, so as to facilitate the control of the gimbal based on the obtained first speed, And make the image acquisition device maintain the target attitude.
  • the joint adjustment angle is proportional to the first target difference, wherein the first target difference is the difference between the target posture and the corresponding component in the measurement posture of the gimbal. difference.
  • the first angle is 180°
  • the second angle is -180°
  • the roll joint angle when the image acquisition device maintains the target posture is 0° as an example.
  • the measured joint angle is obtained as ⁇
  • the measured joint angle ⁇ is greater than 180°, it can be determined that the attitude angle adjustment speed corresponding to the measured joint angle is the first speed V1 , and the direction of the first speed V1 is the first direction.
  • the measured joint angle is obtained as ⁇ , as shown in FIG. 12, if the measured joint angle ⁇ is greater than -180°, it can be determined that the attitude angle adjustment speed corresponding to the measured joint angle is the second speed V2, the second The direction of the velocity V2 is the second direction.
  • the attitude angle adjustment speed is K*(DC), where DC is The difference between the target attitude and the corresponding components in the gimbal measurement attitude (yaw component, roll component, pitch component), D is the corresponding component in the target attitude, C is the corresponding component in the gimbal measurement attitude, and K is the preset parameter, and K>0.
  • the difference determines the direction of the attitude angle adjustment speed. Referring to Figure 13, if the difference is less than 0, the direction of the attitude angle adjustment speed is the first direction. If the difference is greater than 0, the direction of the attitude angle adjustment speed for the second direction.
  • the roll motor included in the gimbal for driving the image acquisition device to rotate around the roll axis of the gimbal because in the upright state or the inverted state, the roll motor included in the attitude of the gimbal is the same as the roll motor.
  • the corresponding roll component may have been adjusted, and even if the adjustment is not made, the angle that needs to be adjusted is relatively small, so at this time, it is not necessary to adjust the attitude angle adjustment speed by region.
  • the roll component included in the gimbal attitude can be determined.
  • the joint angular velocity speed_roll corresponding to the roll component K*(DC), where DC is the difference between the target attitude and the roll component in the gimbal measurement attitude, D is the target attitude (for example, it can be 0°), and C is the roll component in the gimbal measurement attitude , K is a preset parameter, and K>0.
  • the direction of the attitude angle adjustment speed corresponding to the measured joint angle of the motor connected to the base is opposite in the upright state and the inverted state.
  • the motor connected to the base can be a yaw motor.
  • the motor connected to the base is a yaw motor, for the gimbal, the base, pitch motor, roll motor, pitch motor, and image acquisition device on the gimbal are connected in sequence.
  • the measured joint angle of the motor connected to the base is greater than the first angle (such as 180°, etc.) or smaller than the second angle (such as -180°, etc.), when the gimbal is in the upright state, the motor on the base
  • the measured joint angle of the PTZ is 200°.
  • the measured joint angle of the motor on the base is also 200°, that is, the measured joint angle of the motor connected to the base is the same in the upright state as in the inverted state.
  • the measured joint angle ⁇ of the motor on the base is 235°, and the attitude angle adjustment speed corresponding to the above-mentioned measured joint angle ⁇ can be determined as first direction. Then, when the gimbal is in an upside-down state, the measured joint angle ⁇ of the motor on the base is also 235°, and it is determined that the attitude angle adjustment speed corresponding to the above measured joint angle ⁇ can be the second direction.
  • the measured joint angle ⁇ of the motor on the base is -235°
  • the attitude angle adjustment speed corresponding to the above-mentioned measured joint angle ⁇ can be determined as: second direction.
  • the measured joint angle ⁇ of the motor on the base is also -235°
  • the attitude angle adjustment speed corresponding to the above measured joint angle ⁇ can be determined as the first direction.
  • the forward and reverse directions of the posture of the gimbal are the same as the forward and reverse directions of the joint angle of the gimbal; when the base is in an upside-down state, the cloud The forward and reverse directions of the posture of the stage are opposite to the forward and reverse directions of the joint angles of the gimbal.
  • the Euler angle is used as an example to represent the attitude, wherein the forward and reverse direction of the Euler angle corresponding to the attitude of the gimbal is based on the image acquisition device.
  • the coordinate system is represented. If the positive rotation direction of the Euler angle corresponding to the attitude of the gimbal is clockwise, then the positive rotation direction of the joint angle corresponding to the attitude is also clockwise; The reversal direction of the pull angle is the counterclockwise direction, then the reversal direction of the joint angle corresponding to the posture is also the counterclockwise direction.
  • the forward/reverse direction of the joint angle of the motor of the gimbal connected to the base is adjusted by 180° with respect to when the base is in an upright state, but due to the action of the roll motor, the image In the coordinate system of the acquisition device, the orientation of the Z axis (related to the yaw angle in the posture of the image acquisition device) remains the same, then the forward and reverse directions corresponding to the joint angle of the gimbal are relative to the upright state.
  • the forward and reverse directions are reversed, so that the forward and reverse directions of the posture of the gimbal are opposite to the forward and reverse directions of the joint angles of the gimbal.
  • this application embodiment provides a pan-tilt control method, which can realize that the camera sensor (for example, a mobile phone) located on the pan-tilt is enabled during the booting process of the pan-tilt in an upright state or an upside-down state. Guarantee the upright state, and directly obtain the upright image, reducing the delay of image transmission.
  • the camera sensor for example, a mobile phone
  • Step 1 Obtain the measured pose of the base.
  • the gimbal Under normal circumstances, after the gimbal is powered on, it is necessary to perform the self-check operation of the gimbal first, that is, to determine the maximum limit and the minimum limit corresponding to the rotation operation of the gimbal. After the self-check operation, the gimbal can stay at the position where the joint angle is preset 0°, and then the joint angle can be closed-loop controlled on the gimbal.
  • the measurement attitude q_camera of the gimbal can be obtained through the accelerometer, and the joint angles roll, pitch and yaw corresponding to the measurement attitude q_camera are determined, and then based on the joint angles roll, pitch and yaw That is, the attitude q_handle of the base (handle) can be obtained.
  • Step 21 Based on the measurement attitude of the base, obtain the Z-axis direction in the base coordinate system corresponding to the base;
  • Step 23 When the included angle information is greater than 90°, the current placement state of the base is determined to be an upright state; or, when the included angle information is less than 90°, the current placement state of the base is determined to be an upside-down state.
  • Step 3 When the gimbal is in the upright state, obtain the target joint angles (roll, pitch, yaw), where the roll angle is the roll angle, the pitch angle is the pitch angle, and the yaw angle is the yaw angle.
  • the target The joint angle can be (0°,0°,0°).
  • Step 6 Obtain the target joint angle (roll, pitch, yaw) when the gimbal is in an inverted state, specifically, the target joint angle can be (180°, 0°, 0°).
  • the gimbal After the gimbal is controlled by the above control strategy, no matter whether the gimbal is in the upright state or the inverted state, the gimbal can be guaranteed to be in the preset target state. In other words, the target joint angle can be (0,0, consistent with the base).
  • Step 12 Determine the yaw joint angle corresponding to the measured attitude angle C.
  • Step 134 Update the measured attitude angle.
  • Step 22 Determine the pitch joint angle corresponding to the measured attitude angle C.
  • Step 23 Control the gimbal based on the target joint angle corresponding to the pitch axis and the pitch joint angle.
  • the rotation range of the joint angle can be (-270°, 270°).
  • the pitch joint angle is greater than 180°, since different joint angles at this time can correspond to the same Euler angle, a reverse speed can be provided. , so that the pitch joint angle is less than 180°, and the pitch joint angle cannot reach the target joint angle due to the rotation limit.
  • Step 234 Update the measured attitude angle.
  • control process includes:
  • Step 31 Measure the measurement attitude angle C and the target attitude angle D of the gimbal. Since the roll axis needs to be horizontal, the target attitude angle can be 0.
  • Step 32 Determine the roll joint angle corresponding to the measured attitude angle C.
  • Step 33 Control the gimbal based on the target joint angle corresponding to the roll axis and the roll joint angle.
  • Step 341 Update the measured attitude angle.
  • Step 41 When determining the attitude angle adjustment speed, the attitude angle adjustment speed in different directions can be determined based on the different placement states of the base, as follows:
  • the measured joint angle of the motor connected to the base is greater than the first angle or smaller than the second angle, and the magnitude of the measured joint angle of the motor connected to the base is the same in the upright state and the inverted state, the measured joint of the motor connected to the base
  • the direction of the attitude angle adjustment speed corresponding to the angle is opposite in the upright state and the inverted state.
  • the forward and reverse directions of the gimbal's posture are the same as the forward and reverse directions of the joint angle of the motor connected to the base; when the base is in the upside-down state, the forward and reverse directions of the gimbal's posture The direction is opposite to the forward and reverse direction of the joint angle of the motor connected to the base.
  • the joint angle adjustment speed can also be used to control the gimbal to be in the target attitude, but it is different from the attitude angle adjustment speed.
  • the direction of the joint angle adjustment speed does not need to be reversed.
  • the pan-tilt control method provided by this application embodiment effectively realizes that no matter what state the pan-tilt is in, the image acquisition device can obtain an upright image by controlling the roll motor, and there is no need to perform any image processing at this time. Rotation processing, thereby reducing the data delay existing in the data processing operation, specifically reducing the image transmission delay, ensuring the quality and efficiency of data processing, and making the method meet the needs of users, expanding the method.
  • the application scenarios used further improve the practicability of the method.
  • FIG. 15 is a schematic structural diagram of a pan/tilt control apparatus provided by an embodiment of the present invention; with reference to FIG. 15 , the present embodiment provides a pan/tilt control apparatus, wherein the pan/tilt is used to support an image acquisition device, and the pan/tilt is used to support an image acquisition device.
  • the platform includes: a base, and a roll motor for driving the image acquisition device to rotate around the roll axis of the PTZ; and the PTZ control device can execute the PTZ control method corresponding to FIG. 3 above.
  • Controls may include:
  • the processor 11 is used for running the computer program stored in the memory 12 to realize:
  • the current placement state of the base includes an upright state and an upside-down state.
  • the structure of the pan-tilt control apparatus may further include a communication interface 13 for the pan-tilt control apparatus to communicate with other devices or a communication network.
  • the processor 11 is configured to: when the current placement state is the inverted state, use the roll motor to control the image acquisition device to rotate by a preset angle around the roll axis , to obtain an upright image with an image capture device.
  • the processor 11 when detecting the current placement state of the pedestal, is configured to: obtain the Z-axis direction in the pedestal coordinate system corresponding to the pedestal; The axis direction and the Z-axis direction in the geodetic coordinate system determine the current placement state of the base.
  • the processor 11 when the current placement state of the pedestal is determined based on the Z-axis direction in the pedestal coordinate system and the Z-axis direction in the geodetic coordinate system, the processor 11 is configured to: obtain the pedestal coordinate system The included angle information between the middle Z-axis direction and the Z-axis direction in the geodetic coordinate system; when the included angle information matches the first angle range, it is determined that the current placement state of the base is the upright state; or, in the included angle information When matching with the second angle range, it is determined that the current placement state of the base is an inverted state.
  • the processor 11 when detecting the current placement state of the base, is configured to: acquire attitude information of the base; and determine the current placement state of the base based on the attitude information.
  • the processor 11 when determining the current placement state of the base based on the attitude information, is configured to: obtain a first attitude range for identifying the base as an upright state and a first attitude range for identifying the base is the second posture range of the inverted state; when the posture information matches the first posture range, it is determined that the current placement state of the base is the upright state; or, when the posture information matches the second posture range, it is determined that The current placement state of the base is upside-down.
  • the gimbal is a gimbal in a powered-on state.
  • the pan/tilt also includes a roll motor for driving the image acquisition device to rotate around the pitch axis of the pan/tilt
  • the processor 11 is further configured to: determine the target attitude of the image acquisition device according to the current placement state ; Control the PTZ based on the target posture, so that the image acquisition device maintains the target posture; wherein, the target posture is used to represent that the image acquisition device is in an upright state.
  • the PTZ further includes a yaw motor for driving the image acquisition device to rotate around the yaw axis of the PTZ, and the target attitude is also used to characterize the yaw component and the base in the attitude of the image acquisition device.
  • the yaw component in the attitude of the seat is the same.
  • the processor 11 is configured to: acquire the measured joint angle corresponding to the pan/tilt; based on the measured joint angle and the target attitude to control the PTZ, so that the image acquisition device maintains the target attitude.
  • the processor 11 is configured to: determine and measure according to the measured joint angle and the target posture The attitude angle adjustment speed corresponding to the joint angle; the gimbal is controlled based on the attitude angle adjustment speed, so that the image acquisition device maintains the target attitude.
  • the measurement of the joint angle includes the yaw joint measurement angle or the pitch joint measurement angle.
  • the processor 11 Used to: when the measured joint angle is greater than the first angle, determine that the attitude angle adjustment speed corresponding to the measured joint angle is the first speed, and the direction of the first speed is the first direction; when the measured joint angle is smaller than the second angle , then it is determined that the attitude angle adjustment speed corresponding to the measured joint angle is the second speed, the direction of the second speed is the second direction, and the first direction is opposite to the second direction; when the measured joint angle is greater than the second angle and less than the first When the angle is determined, the attitude angle adjustment speed is proportional to the first target difference, and the first target difference is the difference between the target attitude and the corresponding component in the measurement attitude of the gimbal.
  • the first speed and the second speed are equal in magnitude.
  • the measured joint angle of the motor connected to the base is greater than the first angle or smaller than the second angle, and the magnitude of the measured joint angle of the motor connected to the base is different between the upright state and the inverted state.
  • the direction of the attitude angle adjustment speed corresponding to the measured joint angle of the motor connected to the base is opposite to the historical movement direction of the measured joint angle.
  • the forward and reverse directions of the posture of the gimbal are the same as the forward and reverse directions of the joint angle of the gimbal.
  • the motor connected to the base is a yaw motor.
  • the base, the pitch motor, the roll motor, the pitch motor, and the image acquisition device are connected in sequence.
  • the attitude angle adjustment speed corresponding to the roll component in the attitude of the gimbal is proportional to the second target difference, and the second target difference is the horizontal difference between the target attitude and the measurement attitude of the gimbal.
  • the difference in roll amount is proportional to the second target difference
  • the image acquisition device is provided with a mark for indicating the placement state.
  • the apparatus shown in FIG. 15 can execute the method of the embodiment shown in FIG. 1-FIG. 14a and FIG. 14b.
  • the apparatus shown in FIG. 15 can execute the method of the embodiment shown in FIG. 1-FIG. 14a and FIG. 14b.
  • FIG. 16 is a schematic flowchart of another pan-tilt control method provided by an embodiment of the present invention. With reference to FIG. 16 , this embodiment provides another pan-tilt control method, wherein the pan-tilt is set on the movable platform On the body, it is used to support the image acquisition device. It should be noted that the pan/tilt at this time may include: a roll motor for driving the image acquisition device to rotate around the pan/tilt axis of the pan/tilt.
  • the pan/tilt and movable The relative placement state between the bodies of the platform can include the upper state and the lower state, and then the gimbal can be controlled based on different relative placement states, so as to realize no matter what the relative placement state between the gimbal and the body is. , through the control of the roll motor, it is possible to directly acquire the upright image through the image acquisition device arranged on the PTZ.
  • the movable platform may include, but is not limited to, unmanned aerial vehicles, unmanned ships, unmanned vehicles, mobile robots, and the like.
  • the top and bottom of the drone can be respectively provided with interfaces for connecting the gimbal.
  • the gimbal When the gimbal is located on the top of the drone, it can be called an upper
  • the gimbal when the gimbal is located at the bottom of the drone's body, can be called a lower gimbal.
  • the installation position of the gimbal on the drone's body can be changed as required.
  • the execution body of the method may be a pan-tilt control device, and it can be understood that the pan-tilt control device may be implemented as software, or a combination of software and hardware.
  • the method in this embodiment may further include:
  • Step S1501 Acquire the current relative placement state between the gimbal and the body.
  • the relative placement state between the gimbal and the body includes an upper placement state and a lower placement state.
  • the gimbal can have different positions and attitudes relative to the body.
  • the relative placement state is the upper state
  • the gimbal can be set at the upper end (such as the top) of the body
  • the relative placement state is the lower state
  • the gimbal can be set at the lower end (such as the bottom) of the body.
  • the image acquisition device set on the gimbal can have different placement states, for example: when the relative placement state is the upper state, the image set on the gimbal The acquisition device can be in an upright state; when the relative placement state is a down state, the image acquisition device can be in an inverted state. Or, when the relative placement state is the upper state, the image capture device disposed on the pan/tilt head may be in an upside-down state; when the relative placement state is the down state, the image capture device may be in an upright state.
  • acquiring the current relative placement state between the gimbal and the body may include: acquiring the Z-axis direction in the gimbal coordinate system corresponding to the gimbal, and the Z-axis direction in the body coordinate system corresponding to the body ; Determine the current relative placement state based on the Z-axis direction in the gimbal coordinate system and the Z-axis direction in the body coordinate system.
  • a gimbal coordinate system corresponding to the gimbal is pre-established, the X-axis direction in the gimbal coordinate system is parallel to the lens orientation of the image acquisition device, the Z-axis direction can be a direction parallel to the axis of the body, Y The axis direction is perpendicular to the Z-axis direction and the X-axis direction, and the relationship between the X-axis direction (index finger direction), the Y-axis direction (middle finger direction), and the Z-axis direction (thumb direction) satisfies the right-hand rule.
  • the body coordinate system is established in advance.
  • the X axis in the body coordinate system can be the nose direction of the UAV, the Y axis is the right direction of the UAV, and the Z axis direction, the X axis direction and the Y axis direction meet the right-hand direction. rules.
  • each coordinate axis defined for the gimbal coordinate system and the body coordinate system are not limited to the above examples, and those skilled in the art can adjust each coordinate in the gimbal coordinate system according to specific application requirements and design requirements.
  • the direction of the coordinate axis is defined and will not be repeated here.
  • the Z-axis direction in the gimbal coordinate system corresponding to the gimbal and the Z-axis direction in the body coordinate system corresponding to the body can be obtained; and then based on the gimbal coordinate system
  • the Z-axis direction in the body coordinate system and the Z-axis direction in the body coordinate system are used to determine the current relative placement state.
  • determining the current relative placement state may include: obtaining the distance between the Z-axis direction in the gimbal coordinate system and the Z-axis direction in the body coordinate system the included angle information; when the included angle information matches the first angle range, it is determined that the current relative placement state is the upper placement state; or, when the included angle information matches the second angle range, the current relative placement state is determined to be the lower placement state set status.
  • the specific implementation manner and implementation effect of the above method steps in this embodiment are similar to the specific implementation manner and implementation effect of step S30121-step S30122 in the above-mentioned embodiment.
  • the adaptable part in this embodiment the body of the movable platform may be equivalent to the base of the pan/tilt.
  • acquiring the current relative placement state between the gimbal and the body may include: acquiring the gimbal attitude information of the gimbal and the body attitude information of the body; determining the current relative placement based on the gimbal attitude information and the body attitude information state.
  • the gimbal may be provided with a first IMU, through which the gimbal attitude information of the gimbal may be obtained, and the body may be provided with a second IMU, through which the body attitude information of the body may be obtained.
  • the gimbal attitude information and the body attitude information can be analyzed and processed to determine the current relative placement state between the gimbal and the body.
  • determining the current relative placement state may include: acquiring a first attitude range used to identify the upper state and a second attitude range used to identify the lower state; When the information and the body posture information match the first posture range, the current relative placement state is determined to be the upper state; or, when the gimbal posture information and the body posture information match the second posture range, the current relative placement state is determined.
  • the state is the down state.
  • a first attitude range and a second attitude range are pre-configured, and the above-mentioned first attitude range is used to identify the position between the gimbal and the body.
  • the current relative placement state is the upper state
  • the second angle range is used to indicate that when the current relative placement state between the gimbal and the body is the lower state, the cloud
  • the attitude range satisfied by the platform attitude information and the airframe attitude information It can be understood that the first attitude range is different from the second attitude range.
  • the gimbal attitude information and the body attitude information can be analyzed and compared with the first attitude range and the second attitude range, and the difference between the gimbal attitude information and the body attitude information and the body attitude information can be analyzed and compared.
  • the first attitude range matches, it can be determined that the current relative placement state between the gimbal and the body is the upper placement state.
  • the gimbal attitude information and the body attitude information match the second attitude range, it can be determined that the current relative placement state between the gimbal and the body is the down state.
  • acquiring the current relative placement state between the gimbal and the body may include: determining the current relative placement state based on the Z-axis direction of the first IMU and the Z-axis direction of the second IMU.
  • determining the current relative placement state based on the Z-axis direction of the first IMU and the Z-axis direction of the second IMU refer to the foregoing description of determining the current relative placement state based on the Z-axis direction in the gimbal coordinate system and the Z-axis direction in the body coordinate system, which will not be repeated here.
  • acquiring the current relative placement state between the pan-tilt and the body may include: acquiring state identification information input by the user regarding the relative placement state between the pan-tilt and the body; determining the pan-tilt and the body based on the state identification information The current relative placement status between the units.
  • the user can input the status identification information for the relative placement state between the gimbal and the body, so that the gimbal control device can stably obtain the information between the gimbal and the body.
  • the state identification information "1" for identifying the relative placement state between the pan-tilt and the body is pre-configured, and the state identification information "1" for identifying the relative placement state between the pan-tilt and the body is the top-up state.
  • the status identification information "0" is pre-configured, and the state identification information "1" for identifying the relative placement state between the pan-tilt and the body is the top-up state.
  • the state identification information that the user can input for the relative placement state between the pan-tilt and the body is "1"
  • it can be determined that the current relative placement state between the pan-tilt and the body is the up-set state.
  • the state identification information that the user can input for the relative placement state between the gimbal and the body is "0”
  • it can be determined that the current relative placement state between the gimbal and the body is the down state.
  • Step S1502 Control the rotation of the roll motor according to the current relative placement state, so that the image acquisition device can acquire upright images when the current relative placement state is the up-positioned state or the down-positioned state.
  • the rotation of the roll motor can be controlled based on the current relative placement state, so that the image acquisition device acquires an upright image when the current relative placement state is the upper placement state or the lower placement state.
  • controlling the rotation of the roll motor according to the current relative placement state, so that the image acquisition device obtains upright images when the current relative placement state is the upper state or the lower state may include: when the current relative placement state is: In the down state, the roll motor is used to control the image acquisition device to rotate by a preset angle around the roll axis, so as to obtain an upright image through the image acquisition device.
  • the pan/tilt further includes a roll motor for driving the image acquisition device to rotate around the pitch axis of the pan/tilt.
  • the method in this embodiment may further include: determining the image acquisition according to the current relative placement state The target posture of the device; the PTZ is controlled based on the target posture, so that the image acquisition device maintains the target posture; wherein, the target posture is used to indicate that the image acquisition device is in an upright state.
  • the PTZ further includes a yaw motor for driving the image acquisition device to rotate around the yaw axis of the PTZ, and the target attitude is also used to characterize the yaw component in the attitude of the image acquisition device and the body The yaw component in the attitude is consistent.
  • controlling the rotation of the pan/tilt according to the target posture so that the image acquisition device maintains the target posture may include: acquiring a measured joint angle corresponding to the pan/tilt; Control is performed so that the image capture device maintains the target attitude.
  • controlling the gimbal based on the measured joint angle and the target posture so that the image acquisition device maintains the target posture may include: determining a posture corresponding to the measured joint angle according to the measured joint angle and the target posture Angle adjustment speed; control the gimbal based on the attitude angle adjustment speed, so that the image acquisition device maintains the target attitude.
  • measuring the joint angle includes measuring the yaw joint angle or the pitch joint measuring angle, and determining the attitude angle adjustment speed corresponding to the measured joint angle according to the measured joint angle and the target attitude may include: When the angle is greater than the first angle, the attitude angle adjustment speed corresponding to the measured joint angle is determined to be the first speed, and the direction of the first speed is the first direction; when the measured joint angle is smaller than the second angle, it is determined and measured The attitude angle adjustment speed corresponding to the angle is the second speed, the direction of the second speed is the second direction, and the first direction is opposite to the second direction; when the measured joint angle is greater than the second angle and less than the first angle, the attitude is determined The angular adjustment speed is proportional to the first target difference, and the first target difference is the difference between the target attitude and the corresponding component in the measurement attitude of the gimbal.
  • the first speed and the second speed are equal in magnitude.
  • the adjustment speed is the attitude angle adjustment speed, wherein: the measured joint angle of the motor connected to the body is greater than the first angle or smaller than the second angle, and the measured joint angle of the motor connected to the body is between When the upper state is the same as the lower state, the direction of the attitude angle adjustment speed corresponding to the measured joint angle of the motor connected to the body is opposite in the upper state and the lower state.
  • the forward and reverse directions of the posture of the gimbal are the same as the forward and reverse directions of the joint angle of the motor connecting the body; when the body is in the lower state, the cloud
  • the forward/reverse direction of the posture of the stage is opposite to the forward/reverse direction of the joint angle of the motor connected to the body.
  • the motor connected to the body is a yaw motor.
  • the body, the pitch motor, the roll motor, the pitch motor, and the image acquisition device are connected in sequence.
  • the attitude angle adjustment speed corresponding to the roll component in the attitude of the gimbal is proportional to the second target difference, and the second target difference is the horizontal difference between the target attitude and the measurement attitude of the gimbal.
  • the difference in roll amount is proportional to the second target difference
  • the image acquisition device is provided with a mark for indicating the placement state.
  • FIG. 17 is a schematic structural diagram of a pan/tilt assembly provided by an embodiment of the present invention. with reference to FIG. 17 , the present embodiment provides a pan/tilt assembly, and the pan/tilt assembly may include:
  • the pan/tilt 21 is used for supporting the image acquisition device, and the pan/tilt includes: a base and a roll motor for driving the image acquisition device to rotate around the roll axis of the pan/tilt;
  • the pan-tilt control device 22 shown in FIG. 15 is used to control the pan-tilt 21 .
  • pan-tilt assembly provided in this embodiment are consistent with the specific implementation principle and implementation effect of the pan-tilt control device corresponding to FIG.
  • FIG. 18 is a schematic structural diagram of another pan-tilt control device provided by an embodiment of the present invention, wherein the pan-tilt is arranged on the body of the movable platform and used to support the image acquisition device, and the pan-tilt includes: for driving the image acquisition device A roll motor that rotates around the roll axis of the gimbal; specifically, as shown in FIG. 18 , the control device includes:
  • memory 31 for storing computer programs
  • the processor 32 is used for running the computer program stored in the memory 31 to realize the pan-tilt control method of FIG. 16 .
  • FIG. 19 is a schematic structural diagram of a movable platform provided by an embodiment of the present invention. Referring to FIG. 19, this embodiment provides a movable platform, and the movable platform may include:
  • the pan/tilt 42 is arranged on the body 41 and is used to support the image acquisition device.
  • the pan/tilt includes: a roll motor for driving the image acquisition device to rotate around the roll axis of the pan/tilt;
  • the pan-tilt control device 43 shown in FIG. 18 is used to control the pan-tilt 42 .
  • FIG. 20 is a schematic structural diagram of an unmanned aerial vehicle provided by an embodiment of the present invention.
  • the present embodiment provides an unmanned aerial vehicle, and the unmanned aerial vehicle may include:
  • the pan/tilt 52 is arranged on the body 51 and is used for supporting the image acquisition device.
  • the pan/tilt includes: a roll motor for driving the image acquisition device to rotate around the roll axis of the pan/tilt;
  • the pan-tilt control device is used to control the pan-tilt 52 .
  • an embodiment of the present invention provides a computer-readable storage medium, where the storage medium is a computer-readable storage medium, and program instructions are stored in the computer-readable storage medium, and the program instructions are used to implement the above-mentioned FIG. 1-FIG. 14a and FIG. 14b PTZ control method.
  • an embodiment of the present invention provides a computer-readable storage medium, where the storage medium is a computer-readable storage medium, and program instructions are stored in the computer-readable storage medium, and the program instructions are used to implement the above-mentioned pan-tilt control method in FIG. 16 . .
  • the disclosed related remote control devices and methods may be implemented in other manners.
  • the embodiments of the remote control device described above are only illustrative.
  • the division of the modules or units is only a logical function division.
  • the shown or discussed mutual coupling or direct coupling or communication connection may be through some interfaces, and the indirect coupling or communication connection of the remote control device or unit may be in electrical, mechanical or other forms.
  • the units described as separate components may or may not be physically separated, and components displayed as units may or may not be physical units, that is, may be located in one place, or may be distributed to multiple network units. Some or all of the units may be selected according to actual needs to achieve the purpose of the solution in this embodiment.
  • each functional unit in each embodiment of the present invention may be integrated into one processing unit, or each unit may exist physically alone, or two or more units may be integrated into one unit.
  • the above-mentioned integrated units may be implemented in the form of hardware, or may be implemented in the form of software functional units.
  • the integrated unit if implemented in the form of a software functional unit and sold or used as an independent product, may be stored in a computer-readable storage medium.
  • the technical solution of the present invention is essentially or the part that contributes to the prior art, or all or part of the technical solution can be embodied in the form of a software product, and the computer software product is stored in a storage medium , including several instructions for causing a computer processor (processor) to perform all or part of the steps of the methods described in the various embodiments of the present invention.
  • the aforementioned storage medium includes: U disk, mobile hard disk, Read-Only Memory (ROM, Read-Only Memory), Random Access Memory (RAM, Random Access Memory), magnetic disk or optical disk and other media that can store program codes.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Multimedia (AREA)
  • Signal Processing (AREA)
  • Accessories Of Cameras (AREA)
  • Studio Devices (AREA)

Abstract

提供了一种云台控制方法、云台组件、装置、可移动平台和存储介质。云台用于支撑图像采集设备(200),并包括:基座(100)、以及用于驱动图像采集设备绕云台的横滚轴旋转的横滚电机(101);控制方法包括:检测基座的当前放置状态(S301);根据当前放置状态,控制横滚电机的旋转,以使得图像采集设备在当前放置状态为正置状态或倒置状态时均获取正立的图像(S302);其中,基座的放置状态包括正置状态和倒置状态。此技术方案有效地实现了无论云台处于何种放置状态,通过对横滚电机的控制均可使得图像采集设备获取到正立的图像,此时无需对图像进行旋转处理,从而降低了数据处理操作而存在的数据延时,保证了数据处理的质量和效率,并且可以满足用户的使用需求。

Description

云台控制方法、云台组件、装置、可移动平台和存储介质 技术领域
本发明实施例涉及控制领域,尤其涉及一种云台控制方法、云台组件、装置、可移动平台和存储介质。
背景技术
云台是安装、固定拍摄装置的支撑设备。在对云台进行使用时,可以基于不同的使用需求调整云台的放置状态,例如:云台可以处于正置状态或者倒置状态等等。
在云台位于不同放置状态时,拍摄装置中图像传感器的成像可以有所不同,例如:在云台处于正置状态时,通过拍摄装置中图像传感器所获得的成像可以是正像;在云台处于倒置状态时,通过拍摄装置中图像传感器所获得的成像可以是倒像。
在图像传感器所获得的成像是倒像时,为了能够保证图像显示的质量和效率,需要对图像进行中心对称旋转操作,即将倒立的成像翻转为正立的图像,这样不仅增加了数据处理操作以及所对应的数据延时,并且也降低了数据处理的质量和效率,无法满足用户的使用需求。
发明内容
本发明实施例提供了一种云台控制方法、云台组件、装置、可移动平台和存储介质,用于解决现有技术中存在的增加了数据处理操作以及所对应的数据延时,并且也降低了数据处理的质量和效率,无法满足用户的使用需求的问题。
本发明的第一方面提供了一种云台控制方法,所述云台用于支撑图像采集设备,所述云台包括:基座、以及用于驱动所述图像采集设备绕所述云台的横滚轴旋转的横滚电机;所述方法包括:
检测所述基座的当前放置状态;
根据所述当前放置状态,控制所述横滚电机的旋转,以使得所述图像采集设备在所述当前放置状态为正置状态或倒置状态时均获取正立的图像;
其中,所述基座的放置状态包括所述正置状态和所述倒置状态。
本发明的第二方面提供了一种云台控制装置,所述云台用于支撑图像采集设备,所述云台包括:基座、以及用于驱动所述图像采集设备绕所述云台的横滚轴旋转的横滚电机;所述控制装置包括:
存储器,用于存储计算机程序;
处理器,用于运行所述存储器中存储的计算机程序以实现:
检测所述基座的当前放置状态;
根据所述当前放置状态,控制所述横滚电机的旋转,以使得所述图像采集设备在所述当前放置状态为正置状态或倒置状态时均获取正立的图像;
其中,所述基座的放置状态包括所述正置状态和所述倒置状态。
本发明的第三方面是为了提供一种云台组件,包括:
云台,用于支撑图像采集设备,所述云台包括:基座、以及用于驱动所述图像采集设备绕所述云台的横滚轴旋转的横滚电机;
上述第二方面所述的云台控制装置,所述云台控制装置用于对所述云台进行控制。
本发明的第四方面是为了提供一种计算机可读存储介质,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于实现上述第一方面所述的云台控制方法。
本发明的第五方面是为了提供一种云台控制方法,所述云台设置于无人机的机体上,用于支撑图像采集设备,所述云台包括:用于驱动所述图像采集设备绕所述云台的横滚轴旋转的横滚电机;所述方法包括:
获取所述云台和所述机体之间的当前相对放置状态;
根据所述当前相对放置状态,控制所述横滚电机的旋转,以使得所述图像采集设备在所述当前相对放置状态为上置状态或下置状态时均获取正立的图像;
其中,所述云台和所述机体之间的相对放置状态包括所述上置状态和所述下置状态。
本发明的第六方面是为了提供一种云台控制装置,所述云台设置于无人机的机体上,用于支撑图像采集设备,所述云台包括:用于驱动所述图像采 集设备绕所述云台的横滚轴旋转的横滚电机;所述控制装置包括:
存储器,用于存储计算机程序;
处理器,用于运行所述存储器中存储的计算机程序以实现上述第五方面所述的云台控制方法。
本发明的第七方面是为了提供一种可移动平台,包括:
机体;
云台,设置于所述机体上,用于支撑图像采集设备,所述云台包括:用于驱动所述图像采集设备绕所述云台的横滚轴旋转的横滚电机;
上述第六方面所述的云台控制装置,所述云台控制装置用于对所述云台进行控制。
本发明的第八方面是为了提供一种计算机可读存储介质,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于实现上述第五方面所述的云台控制方法。
本发明实施例提供的云台控制方法、云台组件、装置、可移动平台和存储介质,通过检测所述基座的当前放置状态,而后根据当前放置状态控制横滚电机的旋转,或通过获取云台与机体之间的相对放置状态,而后根据当前相对放置状态控制横滚电机的旋转,都有效地实现了无论云台处于何种放置状态,通过对横滚电机的控制与调整,均可以使得设置于云台上的图像采集设备获取到正立的图像,此时无需对图像进行旋转处理,从而降低了数据处理操作而存在的数据延时,保证了数据处理的质量和效率,并且使得该方法可以满足用户的使用需求,进一步提高了该方法的实用性。
附图说明
此处所说明的附图用来提供对本申请的进一步理解,构成本申请的一部分,本申请的示意性实施例及其说明用于解释本申请,并不构成对本申请的不当限定。在附图中:
图1a为本发明实施例提供的正置图像的示意图;
图1b为本发明实施例提供的倒置图像的示意图;
图2a为本发明实施例提供的一种云台处于正置状态的示意图;
图2b为本发明实施例提供的一种云台处于倒置状态的示意图一;
图2c为本发明实施例提供的一种云台处于倒置状态的示意图二;
图3为本发明实施例提供的一种云台控制方法的流程示意图;
图4为本发明实施例提供的检测所述基座的当前放置状态的流程示意图一;
图5为本发明实施例提供的基于所述基座坐标系中的Z轴方向和大地坐标系中的Z轴方向,确定所述基座的当前放置状态的流程示意图;
图6为本发明实施例提供的检测所述基座的当前放置状态的流程示意图二;
图7为本发明实施例提供的基于所述姿态信息,确定所述基座的当前放置状态的流程示意图;
图8为本发明实施例提供的另一种云台控制方法的流程示意图;
图9为本发明实施例提供的根据所述目标姿态控制所述云台的旋转,以使得所述图像采集设备保持所述目标姿态的流程示意图;
图10为本发明实施例提供的基于所述测量关节角和所述目标姿态对所述云台进行控制,以使得所述图像采集设备保持所述目标姿态的流程示意图;
图11为本发明实施例提供的根据所述测量关节角和所述目标姿态,确定与测量关节角相对应的姿态角调整速度的示意图一;
图12为本发明实施例提供的根据所述测量关节角和所述目标姿态,确定与测量关节角相对应的姿态角调整速度的示意图二;
图13为本发明实施例提供的根据所述测量关节角和所述目标姿态,确定与测量关节角相对应的姿态角调整速度的示意图三;
图14a为本发明应用实施例提供的速度调整曲线的示意图一;
图14b为本发明应用实施例提供的速度调整曲线的示意图二;
图15为本发明实施例提供的一种云台控制装置的结构示意图;
图16为本发明实施例提供的另一种云台控制方法的流程示意图;
图17为本发明实施例提供的一种云台组件的结构示意图;
图18为本发明实施例提供的另一种云台控制装置的结构示意图;
图19为本发明实施例提供的一种可移动平台的结构示意图;
图20为本发明实施例提供的一种无人机的结构示意图。
具体实施方式
为使本发明实施例的目的、技术方案和优点更加清楚,下面将结合本发 明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。
为了便于理解本申请的技术方案和技术效果,下面对现有技术进行简要说明:
现有技术中,云台上可以设置有图像采集设备,为了便于理解,以手机作为图像采集设备为例进行说明,可以理解,图像采集装置也可以为其它与云台可拆卸的电子设备,或集成于云台上:
在对云台进行使用时,可以基于不同的使用需求调整云台的放置状态,例如:云台可以处于正置状态或者倒置状态等等。
在云台位于不同放置状态时,手机中图像传感器的成像可以有所不同。具体的,图像传感器中的成像可以包括正置图像(正立的图像)和倒置图像(倒立的图像),正置图像和倒置图像是用于标识图像与显示装置的上下沿之间的不同相对状态,如图1a所示,在将图像的预设上端与显示装置的上边沿距离为d1,预设下端与显示装置的下边沿距离为d2的图像确定为正置图像时,那么,图像的预设上端与显示装置的下边沿距离为d1,预设下端与显示装置的上边沿距离为d2的图像则为倒置图像,如图1b所示。相类似的,若将图像的预设上端与显示装置的下边沿距离为d1,预设下端与显示装置的上边沿距离为d2的图像确定为正置图像,那么,可以将图像的预设上端与显示装置的上边沿距离为d1,预设下端与显示装置的下边沿距离为d2的图像确定为倒置图像。
具体的,在一应用场景中,当云台处于正置状态时,参考附图2a所示,通过手机中图像传感器所获得的成像是正置图像,此时,成像中目标对象(如图示的车)的上端对应手机的显示屏的上沿、成像中目标对象的下端对应手机的显示屏的下沿。
在一应用场景中,当云台处于倒置状态时,如图2b所示,通过手机中图像传感器所获得的成像是倒置图像,此时,成像中目标对象(如图示的车) 的上端对应手机的显示屏的上沿、成像中目标对象的下端对应手机的显示屏的下沿。需要注意的是,图像与显示装置之间的相对状态与图2a中图像与显示装置之间的相对状态不同。
在另一应用场景中,当云台处于倒置状态时,如图2c所示,通过手机中图像传感器所获得的成像可以是倒置图像,此时,尽管用户通过手机的实时图传界面能够直接看到的目标对象(如图示的车)可以是正立,但若云台上的手机通信连接有其他控制终端(控制终端可以包括如图所示的平板电脑300等等),在手机的图像传感器获取到成像之后,可以将成像传输至控制终端,而后,通过控制终端的显示界面将直接显示倒立的图像,即成像中目标对象的上端对应实际对象的下端、成像中目标对象的下端对应实际对象的上端,由于图像的倒置显示,这不利于通过控制终端对云台的远程控制。
一般情况下,用户希望通过云台支撑的图像传感器可以直接获取并查看到正立的像,但在某些应用场景下,可能由于云台的姿态引起图像传感器的倒立。因此,在图像传感器所获得的成像是倒置图像时,为了能够保证图像可以满足用户的应用或查看需求,需要对图像进行中心对称旋转操作,即将倒立的成像翻转为正立的图像。当然,可以理解的是,某些特殊场景中,在用户希望通过云台支撑的图像传感器获取到倒立的图像时,则无需对图像进行中心对称旋转操作,例如:在某些旋转拍摄的应用场景中。
然而,针对上述的一般应用场景而言,图像旋转操作无疑会增加图像处理系统的数据延时,并且数据延时与图像的分辨率成正比,例如:对于n*n像素的图像而言,需要进行旋转操作的次数为n*n次,而上述图像旋转操作所对应的数据延时无疑是较大的,尤其是对于云台、显示设备或者无线图传等对时延要求较高的应用场景而言,极大地降低了数据处理的质量和效率,无法满足用户的使用需求。
为了解决上述因需要对图像进行图像旋转处理所存在的数据延时而降低了数据处理的质量和效率,无法满足用户的使用需求的问题,本实施例提供了一种云台控制方法、云台组件、装置、可移动平台和存储介质。其中,云台控制方法通过检测基座的当前放置状态,上述的基座的放置状态包括正置状态和倒置状态,而后可以根据当前放置状态控制横滚电机的旋转,从而有效地实现了无论云台处于何种放置状态,通过对横滚电机的控制均可以使得通过设置于云台上的图像采集设备可以直接获取到正立的图像,此时无需对 图像进行旋转处理,从而降低了数据处理操作而存在的数据延时,保证了数据处理的质量和效率,并且使得该方法可以满足用户的使用需求,拓展了该方法所适用的应用场景(如远程控制场景),进一步提高了该方法的实用性。
下面结合附图,对本发明的一些实施方式作详细说明。在各实施例之间不冲突的情况下,下述的实施例及实施例中的特征可以相互组合。
图3为本发明实施例提供的一种云台控制方法的流程示意图;参考附图3所示,本实施例提供了一种云台控制方法,以三轴云台为例,如图1a-图2c所示,云台用于支撑图像采集设备200,云台包括:基座100、以及用于驱动图像采集设备200绕云台的横滚轴(roll轴)旋转的横滚电机101。另外,该方法的执行主体可以为云台控制装置,可以理解的是,该云台控制装置可以实现为软件、或者软件和硬件的组合。
可以理解的是,云台的具体类型并不限于上述的三轴云台,例如:上述的云台也可以是指包括有翻滚轴的四轴云台,其实现原理与三轴云台的实现原理相类似,因此,为了便于理解,本实施例以三轴云台为例进行说明。
在一种可实现的应用场景中,云台可以为处于开机状态的云台,由于开机状态的云台未进行任何图像处理操作,用户还未有特殊的拍摄需求,例如旋转拍摄,因此,通过对开机状态的云台进行控制,无论云台的姿态发生如何变化,有效地保证通过该云台上的图像采集设备获取的所有图像均为正立的图像,可以在降低数据延时的同时,能够给到用户较佳的开机体验。另外,当云台为处于开机状态的云台时,云台需要进行自检操作,即确定云台进行转动操作所对应的最大限位和最小限位,在进行自检操作之后,云台可以停留在关节角为预设0°的位置。而后,可以针对云台的控制进行预处理操作,即可以获取到云台基座的当前放置状态,这样有利于提高对云台进行控制的质量和效率。
当然的,云台也可以为处于使用状态中的云台,即该云台控制方法可以对处于开机状态或者使用状态中的云台进行控制,以实现对处于任意状态中的云台,均可以保证位于云台上的图像采集设备获取到正立的图像,可根据实际需求设定。具体的,该云台控制方法可以包括:
步骤S301:检测基座的当前放置状态。
步骤S302:根据当前放置状态,控制横滚电机的旋转,以使得图像采集设备在当前放置状态为正置状态或倒置状态时均获取正立的图像。
下面对上述各个步骤的具体实现过程进行详细说明:
步骤S301:检测基座的当前放置状态。
其中,基座的放置状态包括正置状态和倒置状态,而基座的当前放置状态可以为正置状态或者倒置状态。在云台处于不同的放置状态时,基座可以具有不同的放置状态,例如:在云台处于正置状态时,基座可以处于正置状态;在云台处于倒置状态时,基座可以处于倒置状态,此时,云台的放置状态与基座的放置状态相同。或者,在云台处于正置状态时,基座可以处于倒置状态;在云台处于倒置状态时,基座可以处于正置状态,此时,云台的放置状态与基座的放置状态不同。由于云台的放置状态与基座的当前放置状态之间存在预设对应关系,因此,通过检测基座的当前放置状态可以确定云台的放置状态。
另外,在云台处于不同的放置状态时,设置于云台上的图像采集设备可以具有不同的放置状态,例如:在云台处于正置状态时,设置于云台上的图像采集设备可以处于正置状态;在云台处于倒置状态时,图像采集设备可以处于倒置状态,此时,云台的放置状态与设置于云台上的图像采集设备的放置状态相同。或者,在云台处于正置状态时,设置于云台上的图像采集设备可以处于倒置状态;在云台处于倒置状态时,设置于云台上的图像采集设备可以处于正置状态,此时,云台的放置状态与设置于云台上的图像采集设备的放置状态不同。
为了能够准确地识别出云台所对应的当前放置状态,可以检测基座的当前放置状态,其中,参考附图4所示,一种可实现检测基座的当前放置状态的方式可以包括:
步骤S3011:获取与基座相对应的基座坐标系中的Z轴方向。
步骤S3012:基于基座坐标系中的Z轴方向和大地坐标系中的Z轴方向,确定基座的当前放置状态。
其中,预先建立有与基座相对应的基座坐标系,该基座坐标系中的X轴方向平行于图像采集设备的镜头朝向,Z轴方向可以为与基座的轴向相平行的方向,Y轴方向与Z轴方向和X轴方向相互垂直,并且X轴方向(食指方向)、Y轴方向(中指方向)与Z轴方向(拇指方向)之间的关系满足右手定则。
可以理解的是,上述对于基座坐标系所定义的各个坐标轴方向并不限于上述举例说明,本领域技术人员可以根据具体的应用需求和设计需求对基座 坐标系中的各个坐标轴方向进行定义,在此不再赘述。
在建立与基座相对应的基座坐标系之后,可以获取基座坐标系中的Z轴方向,而后可以基于大地坐标系对基座坐标系中的Z轴方向进行分析识别,其中,大地坐标系中的X轴方向为北方向,Y轴方向为东方向、Z轴方向为重力向下方向(指地的方向)。具体的,可以提取大地坐标系中的Z轴方向,而后将大地坐标系中的Z轴方向与基座坐标系中的Z轴方向进行分析对比,以确定基座的当前放置状态。其中,参考附图5所示,基于基座坐标系中的Z轴方向和大地坐标系中的Z轴方向,确定基座的当前放置状态可以包括:
步骤S30121:获取基座坐标系中Z轴方向与大地坐标系中Z轴方向之间的夹角信息。
步骤S30122:在夹角信息与第一角度范围匹配时,则确定基座的当前放置状态为正置状态;或者,在夹角信息与第二角度范围匹配时,则确定基座的当前放置状态为倒置状态。
其中,为了能够准确地识别出基座的当前放置状态,预先配置有第一角度范围和第二角度范围,上述的第一角度范围用于标识在基座的当前放置状态为正置状态时,基座坐标系中Z轴方向与大地坐标系中Z轴方向之间的夹角范围;第二角度范围用于标识在基座的当前放置状态为倒置状态时,基座坐标系中Z轴方向与大地坐标系中Z轴方向之间的夹角范围。可以理解的是,第一角度范围与第二角度范围不同,例如:第一角度范围可以为(90°,180°],第二角度范围可以为[0°,90°)。
具体的,在获取到基座坐标系中Z轴方向和大地坐标系中Z轴方向之后,可以获取基座坐标系中Z轴方向与大地坐标系中Z轴方向之间的夹角信息。而后可以将夹角信息与第一角度范围和第二角度范围进行分析比较,在夹角信息与第一角度范围匹配时,即夹角信息位于第一角度范围内或者为第一夹角范围所对应的上限值,则可以确定基座的当前放置状态为正置状态。在夹角信息与第二角度范围相匹配时,即夹角信息位于第二角度范围内或者为第二夹角范围所对应的下限值,则可以确定基座的当前放置状态为倒置状态。
对于检测基座的当前放置状态而言,参考附图6所示,本实施例提供了另一种可实现检测基座的当前放置状态的方式,具体包括:
步骤S3013:获取基座的姿态信息。
步骤S3014:基于姿态信息,确定基座的当前放置状态。
其中,为了能够获取到基座的当前放置状态,可以获取基座的姿态信息,具体的,在基座上设置有惯性测量模块(Inertial Measurement Unit,简称IMU)时,可以通过IMU直接获取到基座的姿态信息。或者,在云台上设置有惯性测量模块(Inertial Measurement Unit,简称IMU)时,可以通过IMU获取到云台的测量姿态,而后基于测量姿态确定基座的姿态信息。当然的,本领域技术人员也可以采用其他的方式来获取到基座的姿态信息,只要能够保证对基座的姿态信息进行获取的准确可靠性即可,在此不再赘述。
在获取到基座的姿态信息之后,可以对姿态信息进行分析处理,以确定基座的当前放置状态。具体的,参考附图7,基于姿态信息,确定基座的当前放置状态可以包括:
步骤S30141:获取用于标识基座为正置状态的第一姿态范围和用于标识基座为倒置状态的第二姿态范围。
步骤S30142:在姿态信息与第一姿态范围相匹配时,则确定基座的当前放置状态为正置状态;或者,在姿态信息与第二姿态范围相匹配时,则确定基座的放置状态基座的当前放置状态为倒置状态。
其中,基座的姿态信息可以包括基座所在的基座坐标系中Z轴方向相对于大地坐标系中Z轴方向之间的夹角信息,此时,基于姿态信息确定基座的当前放置状态的具体实现方式可参考上述图4实施例所对应的描述内容。
另外,基座的姿态信息也可以包括基座相对于大地坐标系的姿态角信息(yaw偏航角、roll横滚角、pitch俯仰角),此时,为了能够准确地识别出基座的当前放置状态,可以获取用于对基座的姿态信息进行分析处理的第一姿态范围和第二姿态范围,其中,第一姿态范围是基座处于正置状态所对应的姿态范围,第二姿态范围是基座处于倒置状态所对应的姿态范围。可以理解的是,第一角度范围与第二角度范围不同。
具体的,在获取到基座的姿态信息之后,可以将基座的姿态信息与第一姿态范围和第二姿态范围进行分析比较,在基座的姿态信息与第一姿态范围匹配时,即基座的姿态信息位于第一姿态范围内或者为第一姿态范围所对应的上限值或者下限值,则可以确定基座的当前放置状态为正置状态。在基座的姿态信息与第二姿态范围相匹配时,即基座的姿态信息位于第二姿态范围内或者为第二姿态范围所对应的上限值或者下限值,则可以确定基座的当前放置状态为倒置状态。
当然的,检测基座的当前放置状态的具体实现方式并不限于上述所限定的实现方式,本领域技术人员也可以采用其他的方式来检测基座的当前放置状态,只要能够保证对基座的当前放置状态进行获取的准确可靠性即可,在此不再赘述。
步骤S302:根据当前放置状态,控制横滚电机的旋转,以使得图像采集设备在当前放置状态为正置状态或倒置状态时均获取正立的图像。
其中,在获取到基座的当前放置状态之后,可以基于当前放置状态控制横滚电机的旋转,以使得图像采集设备在当前放置状态为正置状态或者倒置状态时均获取正立的图像。
在一种可实现的方式中,在基座处于正置状态时,图像采集设备获取到的图像为正立的图像;此时,无需控制横滚电机进行旋转操作,即可以通过图像采集设备获取到正立的图像。相对的,在基座处于倒置状态时,根据当前放置状态,控制横滚电机的旋转,以使得图像采集设备在当前放置状态为正置状态或倒置状态时均获取正立的图像可以包括:在当前放置状态为倒置状态时,通过横滚电机控制图像采集设备绕横滚轴旋转预设角度,以通过图像采集设备获取正立的图像。
其中,在基座处于倒置状态时,在未控制图像采集设备绕横滚轴旋转时,通过图像采集设备可以获取到倒立的图像。因此,为了能够获取到正立的图像,可以通过横滚电机控制图像采集设备绕横滚轴旋转预设角度,该预设角度与云台进行自检操作之后所停留在的关节角有关,例如:在云台进行自检操作之后所停留在的关节角为0°时,则可以确定预设角度为180°。若此时的基座的当前放置状态为倒置状态,则可以通过横滚电机控制图像采集设备绕横滚轴旋转180°,有效地实现了通过图像采集设备可以直接获取到正立的图像,在进行图像处理的过程中,无需对图像进行旋转操作,从而有效地提高了数据处理的质量和效率。
在另一种可实现的方式中,在基座处于正置状态时,图像采集设备获取到的图像为倒立的图像,在基座处于倒置状态时,图像采集设备获取到的图像是正立的图像;此时,根据当前放置状态控制横滚电机的旋转,以使得图像采集设备在当前放置状态为正置状态或倒置状态时均获取正立的图像可以包括:在当前放置状态为正置状态时,通过横滚电机控制图像采集设备绕横滚轴旋转预设角度,以通过图像采集设备获取正立的图像。
本实施例中上述步骤的具体实现方式和实现效果与上述的“在当前放置状态为正置状态时,通过横滚电机控制图像采集设备绕横滚轴旋转预设角度”的具体实现方式和实现效果相类似,具体可参考上述陈述内容,在此不再赘述。
在一种可实现的方式中,图像采集设备上设有用于指示放置状态的标识,该标识可根据云台的放置状态变化,例如:在云台处于正置状态时,通过图像采集设备或云台显示预设的标识“1”,在云台处于倒置状态时,通过图像采集设备或云台显示预设的标识“2”等等,从而实现了用户可以通过放置状态的标识直观地获知到基座或者云台的放置状态,进一步提高了该方法使用的灵活可靠性。
在一种可实现的方式中,图像采集设备上设有用于指示放置状态的标识,该标识可为静态标识,静态标识可以是电子显示或非电子显示,如标贴或logo,通过静态标识的正置或倒置,可提示用户图像采集设备的正置或倒置,该静态标识可以设于云台或图像采集设备上。
本实施例提供的云台控制方法,通过检测基座的当前放置状态,而后根据当前放置状态控制横滚电机的旋转,有效地实现了无论云台处于何种放置状态,通过对横滚电机的控制与调整,均可以使得设置于云台上的图像采集设备获取到正立的图像,此时无需对图像进行旋转处理,从而降低了数据处理操作而存在的数据延时,保证了数据处理的质量和效率,并且使得该方法可以满足用户的使用需求,进一步提高了该方法的实用性。
图8为本发明实施例提供的另一种云台控制方法的流程示意图;在上述实施例的基础上,继续参考附图8所示,其中,云台上还可以包括用于驱动图像采集设备绕云台的俯仰轴旋转的横滚电机,本实施例中的方法还可以包括:
步骤S801:根据当前放置状态,确定图像采集设备的目标姿态。
步骤S802:基于目标姿态对云台进行控制,以使得图像采集设备保持目标姿态;其中,目标姿态用于表征图像采集设备处于正立状态。
由于在基座处于不同的放置状态时,图像采集设备可以对应有不同的目标姿态,例如:在基座处于正置状态时,图像采集设备所对应的目标姿态可以为(0°,0°,0°)(yaw,roll,pitch);在基座处于倒置状态时,图像采集设备所对应的目标姿态可以为(180°,0°,0°)(yaw,roll,pitch);且由于基座可能有倾斜的情况出现,而导致云台在跟随基座时出现图像采集 设备采集的图像发生倾斜。因此,在获取到基座的当前放置状态之后,可以对当前放置状态进行分析处理,以确定图像采集设备的目标姿态,该目标姿态用于表征图像采集设备处于正立状态。在获取到图像采集设备的目标姿态之后,可以基于目标姿态对云台进行控制,以使得图像采集设备可以保持目标姿态。
具体的,在基于目标姿态对云台进行控制时,可以先获取图像采集设备的当前姿态,在当前姿态与目标姿态不匹配时,例如:在云台相对于水平面呈一预设倾斜角度时,图像采集设备的当前姿态与目标姿态可能不同,即当前姿态与目标姿态不匹配,则可以控制图像采集设备由当前姿态调整为目标姿态;在图像采集设备的当前姿态与目标姿态相匹配时,则可以控制图像采集设备保持目标姿态,以使得图像采集设备始终处于正立状态,以实现通过正立状态的图像采集设备获取到正立的图像。
在一种可实现的方式中,云台上还可以包括用于驱动图像采集设备绕云台的偏航轴旋转的偏航电机,上述的目标姿态还用于表征图像采集设备的姿态中的偏航分量与基座的姿态中的偏航分量一致,以使得云台的姿态中的偏航分量的变化可以跟随基座的姿态中的偏航分量的变化。其中,由于基座的不同放置状态会影响图像采集设备中所显示的图像,而通过控制横滚电机的旋转即可使得图像采集设备在基座的任何状态均可以获取到正立的图像。因此,无论云台或者基座的放置状态是正置状态还是倒置状态,均可以通过预设的控制策略对用于驱动图像采集设备绕云台的横滚轴旋转的横滚电机进行调整和控制,并结合俯仰电机控制图像采集设备的光轴朝向,例如水平设置,以获取期望的图像,那么在对云台进行控制时,无需对横滚电机、俯仰电机进行控制,以在roll、pitch方向上跟随基座。当然,可以理解的是,在实际应用中,云台的姿态中的俯仰分量的变化也可以跟随基座的姿态中的俯仰分量的变化。
进一步地,参考附图9所示,根据目标姿态控制云台的旋转,以使得图像采集设备保持目标姿态可以包括:
步骤S8021:获取与云台相对应的测量关节角。
步骤S8022:基于测量关节角和目标姿态对云台进行控制,以使得图像采集设备保持目标姿态。
其中,在云台上还包括用于驱动图像采集设备绕云台的偏航轴旋转的偏 航电机时,可以通过角度检测装置获取到与云台相对应的测量关节角,该测量关节角用于标识云台的当前测量姿态,其可以包括偏航关节测量角或俯仰关节测量角。因此,在获取到测量关节角之后,则可以基于测量关节角和目标姿态对云台进行控制,以使得图像采集设备保持目标姿态。
在一种可实现的方式中,参考附图10所示,基于测量关节角和目标姿态对云台进行控制,以使得图像采集设备保持目标姿态可以包括:
步骤S80221:根据测量关节角和目标姿态,确定与测量关节角相对应的姿态角调整速度。
步骤S80222:基于姿态角调整速度对云台进行控制,以使得图像采集设备保持目标姿态。
其中,调整速度可以包括姿态角调整速度和关节角调整速度,本实施例以调整速度为姿态角调整速度为例进行说明。
在获取到测量关节角和目标姿态之后,可以对目标姿态和测量关节角进行分析处理,以实现对云台进行准确、有效地控制。具体的,可以先获取与目标姿态相对应的目标关节角,而后对比测量关节角与目标关节角之间的关节角偏差,基于关节角偏差即可确定与测量关节角相对应的姿态角调整速度,该姿态角调整速度可以是恒定不变的速度值或者随着时间或者关节角的变化而变化的速度值。在获取到姿态角调整速度之后,则可以基于姿态角调整速度对云台进行控制,从而有效地实现了可以使得图像采集设备保持在目标姿态。
本实施例中,根据当前放置状态,确定图像采集设备的目标姿态,而后基于目标姿态对云台进行控制,有效地实现了对云台的姿态闭环控制,并可以使得图像采集设备保持目标姿态,进而保证了云台运行的稳定可靠性。
在上述实施例的基础上,当获取到测量关节角和目标姿态之后,可以基于测量关节角和目标姿态对云台进行控制,其中,在对云台进行控制时,可以采用不同的姿态角调整速度对云台进行调整,以使得云台可以由测量关节角平滑地过渡到目标姿态所对应的目标关节角。而不同的姿态角调整速度可以与当前关节角和目标关节角之间的角度差有关,例如:在测量关节角与目标关节角之间的角度差较大时,则配置与测量关节角所对应的姿态角调整速度较大,即通过上述所配置的姿态角调整速度对云台进行控制,可以快速使得测量关节角接近目标关节角。在测量关节角靠近目标关节角时,则可以配 置与测量关节角所对应的姿态角调整速度较小,即通过上述所配置的姿态角调整速度对云台进行控制,可以稳定地使得测量关节角不断地逼近目标关节角。
另外,若云台关节角所对应的角度范围较大,例如:关节角所能转动的角度范围为-270°到+270°,则在基于测量关节角和目标姿态对云台进行控制时,为了避免云台撞限位而引起云台的损坏,可以针对当前测量关节角所在的不同关节角区域对云台进行控制。具体的,当测量关节角包括偏航关节测量角或俯仰关节测量角时,本实施例提供了一种可实现根据测量关节角和目标姿态,确定与测量关节角相对应的姿态角调整速度的方式,具体包括:
步骤S901:在测量关节角大于第一角度时,则确定与测量关节角相对应的姿态角调整速度为第一速度,第一速度的方向为第一方向。
其中,第一角度是指与姿态角调整速度为第一速度所对应的角度限值,本实施例对于其所对应的具体数值范围不做限定,本领域技术人员可以根据具体的应用场景和应用需求进行设置,例如:第一角度可以为180°、90°或者270°等等。
在测量关节角大于第一角度时,则说明此时测量关节角已经超过了与第一速度所对应的最小角度限值,因此,可以确定与测量关节角相对应的姿态角调整速度为第一速度,其中,第一速度的方向为第一方向,以通过第一方向的第一速度将测量关节角度调整为小于第一角度,从而便于基于所获取到的第一速度对云台进行控制,并使得图像采集设备保持目标姿态。
步骤S902:在测量关节角小于第二角度时,则确定与测量关节角相对应的姿态角调整速度为第二速度,第二速度的方向为第二方向,第一方向与第二方向相反。
其中,第二角度与第一角度不同,其可以是指与姿态角调整速度为第二速度所对应的角度限值,具体的,本实施例对于第二角度的具体数值范围不做限定,本领域技术人员可以根据具体的应用需求和设计需求进行设置,例如:第二角度可以为-270°、-180°或者-90°等等。
在测量关节角小于第二角度时,则说明此时测量关节角小于与第二速度所对应的最大角度限值。因此,可以确定与测量关节角相对应的姿态角调整速度为第二速度,其中,第二速度的方向为第二方向,并且,第二方向可以与第一方向相反,以通过第二方向的第二速度将测量关节角度调整为大于第 二角度。在一些实例中,第一速度与第二速度的大小相等。
步骤S903:在测量关节角大于第二角度且小于第一角度时,则确定姿态角调整速度与第一目标差值呈正比,第一目标差值为目标姿态与云台的测量姿态中的相应分量的差值。
在测量关节角大于第二角度且小于第一角度时,则可以确定关节调节角度与第一目标差值呈正比,其中,第一目标差值为目标姿态与云台的测量姿态中相应分量的差值。
为了便于理解,以第一角度为180°,第二角度为-180°,图像采集设备保持目标姿态时的横滚关节角为0°为例进行说明,在获取到测量关节角为α时,参考附图11所示,若测量关节角α大于180°时,则可以确定与测量关节角相对应的姿态角调整速度为第一速度V1,第一速度V1的方向为第一方向。
在获取到测量关节角为β时,参考附图12所示,若测量关节角β大于-180°时,则可以确定与测量关节角相对应的姿态角调整速度为第二速度V2,第二速度V2的方向为第二方向。
在获取到测量关节角为γ时,参考附图13所示,若测量关节角γ大于-180°且小于180°时,则可以确定姿态角调整速度为K*(D-C),其中,D-C为目标姿态与云台测量姿态中相应分量(偏航分量、横滚分量、俯仰分量)的差值,D为目标姿态中的相应分量,C为云台测量姿态中的相应分量,K为预设参数,且K>0。其中,该差值确定了姿态角调整速度的方向,参考附图13,若差值小于0,则姿态角调整速度的方向为第一方向,若差值大于0,则姿态角调整速度的方向为第二方向。
此外,对于云台上包括的用于驱动图像采集设备绕云台的横滚轴旋转的横滚电机而言,由于在正置状态或倒置状态时,云台的姿态中包括的与横滚电机相对应的横滚分量可能已经进行了调整,而即使在未进行调整的情况下,可需调整的角度也较小,那么此时,可以无需分区域进行姿态角调整速度的调整。具体的,为了能够实现对横滚电机进行控制的稳定可靠性,可以提取出云台的姿态中与横滚电机相对应的横滚分量,该云台的姿态中的横滚分量所对应的姿态角调整速度与第二目标差值呈正比,第二目标差值为目标姿态与云台的测量姿态中的横滚分量的差值,这样不仅有效地实现了根据云台的当前姿态控制横滚电机进行旋转操作的稳定可靠性,并且通过控制横滚电机可以使得云台由当前姿态平滑地过渡到目标姿态。
举例来说,对于云台上的roll轴电机而言,在获取到云台的姿态之后,可以确定云台姿态中所包括的横滚分量,此时,该横滚分量所对应的关节角速度speed_roll=K*(D-C),其中,D-C为目标姿态与云台测量姿态中的横滚分量的差值,D为目标姿态(例如可以为0°),C为云台测量姿态中的横滚分量,K为预设参数,且K>0。
在一种可实现的方式中,在连接基座的电机的测量关节角大于第一角度或小于第二角度,且连接基座的电机的测量关节角的大小在正置状态与倒置状态相同时,连接基座的电机的测量关节角相对应的姿态角调整速度的方向在正置状态与倒置状态时相反。
其中,连接基座的电机可以为偏航电机。进一步的,在连接基座的电机为偏航电机时,对于云台而言,云台上的基座、俯仰电机、横滚电机、俯仰电机、图像采集设备依次连接。
具体的,连接基座的电机的测量关节角的大于第一角度(如180°等等)或者小于第二角度(如-180°等等),云台处于正置状态时,基座上电机的测量关节角为200°,当云台处于倒置状态时,基座上电机的测量关节角也为200°,即连接基座的电机的测量关节角的大小在正置状态与倒置状态相同。此时,对于连接基座的电机,当云台处于正置状态的测量关节角所对应的姿态角调整速度的方向为第一方向时,由于云台处于倒置状态后,云台上的横滚电机会做相应的调整,例如,180°的翻转,那么相对而言,若横滚电机与图像采集设备之间包括另一电机,则电机横滚电机与图像采集设备之间的电机也进行了诸如180°的翻转,但连接基座的电机并没有由于横滚电机的调整而实现诸如180°的翻转,因此,对于连接基座的电机,云台处于倒置状态的测量关节角所对应的姿态角调整速度的方向为与第一方向相反的第二方向。
举例来说,参考附图11所示,在云台处于正置状态时,基座上电机的测量关节角α为235°,而确定与上述测量关节角α所对应的姿态角调整速度可以为第一方向。那么,在云台处于倒置状态时,基座上电机的测量关节角α也为235°,而确定与上述测量关节角α所对应的姿态角调整速度可以为第二方向。
相类似的,参考附图12所示,在云台处于倒置状态时,基座上电机的测量关节角β为-235°,而确定与上述测量关节角β所对应的姿态角调整速度可以为第二方向。那么,在云台处于正置状态时,基座上电机的测量关节角 β也为-235°,而确定与上述测量关节角β所对应的姿态角调整速度可以为第一方向。
通过上述过程,有效地实现了可以基于云台的不同放置状态对云台进行精确控制,进一步提高了对云台进行控制的准确可靠性。
在另一种可实现的方式中,当基座处于正置状态时,云台的姿态的正反转方向与云台的关节角的正反转方向相同;在基座处于倒置状态时,云台的姿态的正反转方向与云台的关节角的正反转方向相反。
具体的,对于连接基座的云台,在基座处于正置状态时,以欧拉角表征姿态为例,其中,云台的姿态对应的欧拉角的正反转方向基于图像采集设备的坐标系表征,若云台的姿态对应的欧拉角的正转方向为顺时针方向,那么,该姿态所对应的关节角的正转方向也为顺时针方向;若云台的姿态对应的欧拉角的反转方向为逆时针方向,那么,姿态所对应的关节角的反转方向也为逆时针方向。然而,在基座处于倒置状态时,相对于基座处于正置状态时,连接基座的云台的电机的关节角的正反转方向调整了180°,但由于横滚电机的作用,图像采集设备的坐标系中Z轴(与图像采集设备的姿态中的偏航角相关)的朝向保持原状,则此时云台的关节角所对应的正反转方向相对于正置状态所对应的正反转方向进行取反操作,从而使得云台的姿态的正反转方向与云台的关节角的正反转方向相反。
在基座处于正置状态时,通过将云台的姿态的正反转方向与云台的关节角的正反转方向配置为相同,在基座处于倒置状态时,通过将云台的姿态的正反转方向与云台的关节角的正反转方向配置为相反,有效地实现了针对基座的不同放置状态对云台进行不同控制操作,进一步提高了对云台进行控制的准确可靠性。
需要说明的是,基座的放置状态、云台的姿态的正反转方向与云台的关节角的正反转方向之间的关系可以根据需要设定,例如,可以为:当基座处于正置状态时,云台的姿态的正反转方向与云台的关节角的正反转方向相反;在基座处于倒置状态时,云台的姿态的正反转方向与云台的关节角的正反转方向相同,此处不做具体限定。
具体应用时,本应用实施例提供了一种云台控制方法,该方法可以实现在云台处于正置状态或者倒置状态的开机过程中,均使得位于云台上的相机传感器(例如:手机)保证正立状态,并直接获取到正立的图像,减少图像 传输的延时。
步骤1:获取基座的测量姿态。
一般情况下,在云台上电后,需要先进行云台的自检操作,即确定云台进行转动操作所对应的最大限位和最小限位。在进行自检操作之后,云台可以停留在关节角为预设0°的位置,而后,可以对云台进行关节角闭环控制。在对云台进行关节角闭环控制的过程中,通过加速度计可以获得云台的测量姿态q_camera,确定与测量姿态q_camera所对应的关节角roll、pitch、yaw,而后基于关节角roll、pitch、yaw即可以获得基座(手柄)的姿态q_handle。
步骤2:基于基座的测量姿态,确定云台所处的放置状态。
在获取到基座的姿态q_handle之后,可以根据基座的姿态q_handle确定云台所处于的放置状态,即确定云台是处于正置状态还是倒置状态。具体的,确定云台所处的放置状态可以包括如下步骤:
步骤21:基于基座的测量姿态,获取与基座相对应的基座坐标系中的Z轴方向;
步骤22:获取基座坐标系中Z轴方向与大地坐标系中Z轴方向之间的夹角信息;
步骤23:在夹角信息大于90°匹配时,则确定基座的当前放置状态为正置状态;或者,在夹角信息小于90°时,则确定基座的当前放置状态为倒置状态。
步骤3:在云台处于正置状态时,获取目标关节角(roll,pitch,yaw),其中,roll角为横滚角,pitch角为俯仰角,yaw角为偏航角,具体的,目标关节角可以为(0°,0°,0°)。
步骤4:基于目标关节角对云台进行姿态角的闭环控制。
步骤5:在云台处于倒置状态时,则在进行姿态角闭环控制之前,通过横滚电机控制手机绕横滚轴旋转180°,以通过手机获取正立的图像。
步骤6:获取云台处于倒置状态下的目标关节角(roll,pitch,yaw),具体的,目标关节角可以为(180°,0°,0°)。
步骤7:基于目标关节角对云台进行关节角闭环控制。
具体的,当针对云台进行关节角闭环控制操作时,可以获取云台所对应的当前关节角,基于目标关节角和当前关节角自动规划梯形的速度调整曲线(如图14a所示)或者,类似梯形的速度调整曲线(如图14b所示),使得云 台可以基于满足上述速度调整曲线的速度控制云台由当前关节角平滑地运动到目标关节角的位置。
通过上述过程有效地实现了在云台处于倒置状态时,控制云台先进入关节角的闭环控制,从而使得横滚电机控制手机绕横滚轴roll旋转180°,而后再控制云台进入姿态角的闭环控制,这样有效地保证了通过手机可以获取到正立的图像。
步骤8:在关节角闭环控制完成之后,即在云台处于目标关节角时,获取云台所对应的目标姿态,基于目标姿态对云台进行姿态角的闭环控制。
通过上述控制策略对云台进行控制之后,无论云台处于正置状态还是倒置状态,均可以保证云台处于预设的目标状态,例如:对于云台中的pitch轴、roll轴水平、yaw轴而言,目标关节角可以为(0,0,与基座一致)。
另外,在确定目标关节角之后,可以基于目标关节角对云台进行控制,以控制云台由当前关节角平滑地运动到目标关节角所在的位置,具体的控制过程包括:
步骤11:测量云台的测量姿态角C和目标姿态角D。
步骤12:确定与测量姿态角C相对应的yaw关节角。
步骤13:基于yaw轴所对应的目标关节角和yaw关节角对云台进行控制。
步骤131:在yaw关节角大于180°时,则确定与yaw关节角所对应的姿态角调整速度为恒定速度,具体的,speed_yaw=-const_spd。
其中,关节角的转动范围可以为(-270°,270°),在yaw关节角大于180°时,由于此时的不同关节角可以对应同一欧拉角,因此,为了避免云台转动到限位区域,则可以提供一个反向速度,使得yaw关节角转动为小于180°,这样有效地保证避免了yaw关节角因转动限位而无法达到目标关节角的情况出现。
步骤132:在yaw关节角小于-180°时,则确定与yaw关节角所对应的姿态角调整速度为恒定速度,具体的,speed_yaw=const_spd。
相类似的,在yaw关节角小于-180°时,由于此时的不同关节角可以对应同一欧拉角,因此,则可以提供一个正向速度,使得yaw关节角大于-180°,避免yaw关节角因转动限位而无法达到目标关节角。
步骤133:在yaw关节角大于-180°、且小于180°角时,则确定与yaw关节角所对应的姿态角调整速度为speed_yaw=k*(D-C),K为预设系数,且K>0, D为目标姿态角,C为测量姿态角。
步骤134:对测量姿态角进行更新。
其中,由于云台的姿态角是平滑地由测量姿态角调整为目标姿态角的,在调整的过程中,云台的姿态角会不断的发生变化,因此需要对测量姿态角进行实时的更新操作。具体的,可以获取测量姿态角相对应的数据采集周期;基于数据采集周期和姿态角调整速度,对测量姿态角进行更新,获得更新后的测量姿态角,C`=C+speed_yaw*deltaT,具体的,C`为更新后的测量姿态角,C为测量姿态角,speed_yaw为姿态角调整速度,deltaT为与测量姿态角相对应的数据采集周期。而后可以基于更新后的测量姿态角和目标姿态角再次对云台进行控制,直至使得云台处于目标姿态角所对应的位置即可。
相类似的,对于pitch轴而言,控制过程包括:
步骤21:测量云台的测量姿态角C和目标姿态角D。
步骤22:确定与测量姿态角C相对应的pitch关节角。
步骤23:基于pitch轴所对应的目标关节角和pitch关节角对云台进行控制。
步骤231:在pitch关节角大于180°时,则确定与pitch关节角所对应的姿态角调整速度为恒定速度,具体的,speed_pitch=-const_spd。
其中,关节角的转动范围可以为(-270°,270°),在pitch关节角大于180°时,由于此时的不同关节角可以对应同一欧拉角,因此,则可以提供一个反向速度,使得pitch关节角小于180°,避免pitch关节角因转动限位而无法达到目标关节角。
步骤232:在pitch关节角小于-180°时,则确定与pitch关节角所对应的姿态角调整速度为恒定速度,具体的,speed_pitch=const_spd。
相类似的,在pitch关节角小于-180°时,由于此时的不同关节角可以对应同一欧拉角,因此,则可以提供一个正向速度,使得pitch关节角大于-180°,避免pitch关节角因转动限位而无法达到目标关节角。
步骤233:在pitch关节角大于-180°、且小于180°角时,则确定与pitch关节角所对应的姿态角调整速度为speed_pitch=k*(D-C),K为预设系数,且K>0,D为目标姿态角,C为测量姿态角。
步骤234:对测量姿态角进行更新。
其中,可以获取测量姿态角相对应的数据采集周期;基于数据采集周期 和姿态角调整速度,对测量姿态角进行更新,获得更新后的测量姿态角,C`=C+speed_pitch*deltaT,具体的,C`为更新后的测量姿态角,C为测量姿态角,speed_pitch为姿态角调整速度,deltaT为与测量姿态角相对应的数据采集周期。而后可以基于更新后的测量姿态角和目标姿态角再次对云台进行控制,直至使得云台处于目标姿态角所对应的位置即可。
相类似的,对于roll轴而言,控制过程包括:
步骤31:测量云台的测量姿态角C和目标姿态角D,由于roll轴需要水平,因此,目标姿态角可以为0。
步骤32:确定与测量姿态角C相对应的roll关节角。
步骤33:基于roll轴所对应的目标关节角和roll关节角对云台进行控制。
步骤34:确定与roll关节角所对应的姿态角调整速度为speed_roll=k*(0-C),K为预设系数,且K>0,C为测量姿态角。
步骤341:对测量姿态角进行更新。
其中,可以获取测量姿态角相对应的数据采集周期;基于数据采集周期和姿态角调整速度,对测量姿态角进行更新,获得更新后的测量姿态角,C`=C+speed_roll*deltaT,具体的,C`为更新后的测量姿态角,C为测量姿态角,speed_roll为姿态角调整速度,deltaT为与测量姿态角相对应的数据采集周期。而后可以基于更新后的测量姿态角和目标姿态角再次对云台进行控制,直至使得云台处于目标姿态角所对应的位置即可。
步骤41:在确定姿态角调整速度时,可以基于基座的不同放置状态对确定不同方向的姿态角调整速度,具体如下:
在连接基座的电机的测量关节角大于第一角度或小于第二角度,且连接基座的电机的测量关节角的大小在正置状态与倒置状态相同时,连接基座的电机的测量关节角相对应的姿态角调整速度的方向在正置状态与倒置状态时相反。
相类似的,在基于姿态角调整速度对云台进行控制时,可以基于基座的不同放置状态确定不同的转动方向,具体如下:
当基座处于正置状态时,云台的姿态的正反转方向与连接基座的电机的关节角的正反转方向相同;当基座处于倒置状态时,云台的姿态的正反转方向与连接基座的电机的关节角的正反转方向相反。
需要说明的是,在上述实施例中,也可以利用关节角调整速度控制云台 处于目标姿态,但不同于姿态角调整速度,无论基座处于正置状态或倒置状态,连接基座的电机的关节角调整速度的方向均不需要做取反操作。
本应用实施例提供的云台控制方法,有效地实现了无论云台处于何种放置状态,通过对横滚电机的控制均可以使得图像采集设备获取到正立的图像,此时无需对图像进行旋转处理,从而降低了数据处理操作而存在的数据延时,具体减少了图像传输的延时,保证了数据处理的质量和效率,并且使得该方法可以满足用户的使用需求,拓展了该方法所使用的应用场景,进一步提高了该方法的实用性。
图15为本发明实施例提供的一种云台控制装置的结构示意图;参考附图15所示,本实施例提供了一种云台控制装置,其中,云台用于支撑图像采集设备,云台包括:基座、以及用于驱动图像采集设备绕云台的横滚轴旋转的横滚电机;并且,该云台控制装置可以执行上述图3所对应的云台控制方法,具体的,该控制装置可以包括:
存储器12,用于存储计算机程序;
处理器11,用于运行存储器12中存储的计算机程序以实现:
检测基座的当前放置状态;
根据当前放置状态,控制横滚电机的旋转,以使得图像采集设备在当前放置状态为正置状态或倒置状态时均获取正立的图像;
其中,基座的当前放置状态包括正置状态和倒置状态。此外,云台控制装置的结构中还可以包括通信接口13,用于云台控制装置与其他设备或通信网络通信。
在一种可实现的方式中,在基座处于正置状态时,图像采集设备获取到的图像为正立的图像;在根据当前放置状态,控制横滚电机的旋转,以使得图像采集设备在当前放置状态为正置状态或倒置状态时均获取正立的图像时,处理器11用于:在当前放置状态为倒置状态时,通过横滚电机控制图像采集设备绕横滚轴旋转预设角度,以通过图像采集设备获取正立的图像。
在一种可实现的方式中,在检测基座的当前放置状态时,处理器11用于:获取与基座相对应的基座坐标系中的Z轴方向;基于基座坐标系中的Z轴方向和大地坐标系中的Z轴方向,确定基座的当前放置状态。
在一种可实现的方式中,在基于基座坐标系中的Z轴方向和大地坐标系中的Z轴方向,确定基座的当前放置状态时,处理器11用于:获取基座坐标系中 Z轴方向与大地坐标系中Z轴方向之间的夹角信息;在夹角信息与第一角度范围匹配时,则确定基座的当前放置状态为正置状态;或者,在夹角信息与第二角度范围匹配时,则确定基座的当前放置状态为倒置状态。
在一种可实现的方式中,在检测基座的当前放置状态时,处理器11用于:获取基座的姿态信息;基于姿态信息,确定基座的当前放置状态。
在一种可实现的方式中,在基于姿态信息,确定基座的当前放置状态时,处理器11用于:获取用于标识基座为正置状态的第一姿态范围和用于标识基座为倒置状态的第二姿态范围;在姿态信息与第一姿态范围相匹配时,则确定基座的当前放置状态为正置状态;或者,在姿态信息与第二姿态范围相匹配时,则确定基座的当前放置状态为倒置状态。
在一种可实现的方式中,云台为处于开机状态的云台。
在一种可实现的方式中,云台还包括用于驱动图像采集设备绕云台的俯仰轴旋转的横滚电机,处理器11还用于:根据当前放置状态,确定图像采集设备的目标姿态;基于目标姿态对云台进行控制,以使得图像采集设备保持目标姿态;其中,目标姿态用于表征图像采集设备处于正立状态。
在一种可实现的方式中,云台还包括用于驱动图像采集设备绕云台的偏航轴旋转的偏航电机,目标姿态还用于表征图像采集设备的姿态中的偏航分量与基座的姿态中的偏航分量一致。
在一种可实现的方式中,在根据目标姿态控制云台的旋转,以使得图像采集设备保持目标姿态时,处理器11用于:获取与云台相对应的测量关节角;基于测量关节角和目标姿态对云台进行控制,以使得图像采集设备保持目标姿态。
在一种可实现的方式中,在基于测量关节角和目标姿态对云台进行控制,以使得图像采集设备保持目标姿态时,处理器11用于:根据测量关节角和目标姿态,确定与测量关节角相对应的姿态角调整速度;基于姿态角调整速度对云台进行控制,以使得图像采集设备保持目标姿态。
在一种可实现的方式中,测量关节角包括偏航关节测量角或俯仰关节测量角,在根据测量关节角和目标姿态,确定与测量关节角相对应的姿态角调整速度时,处理器11用于:在测量关节角大于第一角度时,则确定与测量关节角相对应的姿态角调整速度为第一速度,第一速度的方向为第一方向;在测量关节角小于第二角度时,则确定与测量关节角相对应的姿态角调整速度 为第二速度,第二速度的方向为第二方向,第一方向与第二方向相反;在测量关节角大于第二角度且小于第一角度时,则确定姿态角调整速度与第一目标差值呈正比,第一目标差值为目标姿态与云台的测量姿态中的相应分量的差值。
在一种可实现的方式中,第一速度与第二速度的大小相等。
在一种可实现的方式中,在连接基座的电机的测量关节角的大于第一角度或小于第二角度,且连接基座的电机的测量关节角的大小在正置状态与倒置状态相同时,连接基座的电机的测量关节角相对应的姿态角调整速度的方向与测量关节角的历史移动方向相反。
在一种可实现的方式中,当基座处于正置状态时,云台的姿态的正反转方向与云台的关节角的正反转方向相同。
在一种可实现的方式中,连接基座的电机为偏航电机。
在一种可实现的方式中,基座、俯仰电机、横滚电机、俯仰电机、图像采集设备依次连接。
在一种可实现的方式中,云台的姿态中的横滚分量对应的姿态角调整速度与第二目标差值呈正比,第二目标差值为目标姿态与云台的测量姿态中的横滚分量的差值。
在一种可实现的方式中,图像采集设备上设有用于指示放置状态的标识。
图15所示装置可以执行图1-图14a、图14b所示实施例的方法,本实施例未详细描述的部分,可参考对图1-图14a、图14b所示实施例的相关说明。该技术方案的执行过程和技术效果参见图1-图14a、图14b所示实施例中的描述,在此不再赘述。
图16为本发明实施例提供的另一种云台控制方法的流程示意图;参考附图16所示,本实施例提供了另一种云台控制方法,其中,云台设置于可移动平台的机体上,用于支撑图像采集设备,需要注意的是,此时的云台可以包括:用于驱动图像采集设备绕云台的横滚轴旋转的横滚电机,此时,云台和可移动平台的机体之间的相对放置状态可以包括上置状态和下置状态,而后可以基于不同的相对放置状态对云台进行控制,以实现无论云台和机体之间的相对放置状态为何种放置状态,通过对横滚电机的控制均可以使得通过设置于云台上的图像采集设备可以直接获取到正立的图像。
其中,可移动平台可以包括但不限于无人机、无人船、无人车、可移动 机器人等等。以可移动平台为无人机为例,无人机的机体的顶部和底部可以分别设有用于连接云台的接口,在云台位于无人机的机体的顶部时,可以称之为上置云台,在云台位于无人机的机体的底部时,可以称之为下置云台,在实际应用中,可以根据需要改变云台在无人机的机体上的安装位置。
进一步地,该方法的执行主体可以为云台控制装置,可以理解的是,该云台控制装置可以实现为软件、或者软件和硬件的组合。具体的,本实施例中的方法还可以包括:
步骤S1501:获取云台和机体之间的当前相对放置状态。
其中,云台和机体之间的相对放置状态包括上置状态和下置状态。在云台和机体之间处于不同的相对放置状态时,云台相对于机体之间可以具有不同的位置姿态。例如:在相对放置状态为上置状态时,云台可以设置于机体的上端(如顶部);在相对放置状态为下置状态时,云台可以设置于机体的下端(如底部)。
另外,在云台和机体处于不同的相对放置状态时,设置于云台上的图像采集设备可以具有不同的放置状态,例如:在相对放置状态为上置状态时,设置于云台上的图像采集设备可以处于正置状态;在相对放置状态为下置状态时,图像采集设备可以处于倒置状态。或者,在相对放置状态为上置状态时,设置于云台上的图像采集设备可以处于倒置状态;在相对放置状态为下置状态时,图像采集设备可以处于正置状态。
在一些实例中,获取云台和机体之间的当前相对放置状态可以包括:获取与云台相对应的云台坐标系中的Z轴方向、与机体相对应的机体坐标系中的Z轴方向;基于云台坐标系中的Z轴方向和机体坐标系中的Z轴方向,确定当前相对放置状态。
其中,预先建立有与云台相对应的云台坐标系,该云台坐标系中的X轴方向平行于图像采集设备的镜头朝向,Z轴方向可以为与机体轴向相平行的方向,Y轴方向与Z轴方向和X轴方向相互垂直,并且X轴方向(食指方向)、Y轴方向(中指方向)与Z轴方向(拇指方向)之间的关系满足右手定则。相类似的,预先建立有机体坐标系,机体坐标系中的X轴可以为无人机的机头方向,Y轴为无人机右侧方向,Z轴方向与X轴方向和Y轴方向满足右手定则。
可以理解的是,上述对于云台坐标系、机体坐标系所定义的各个坐标轴方向并不限于上述举例说明,本领域技术人员可以根据具体的应用需求和设 计需求对云台坐标系中的各个坐标轴方向进行定义,在此不再赘述。
在建立云台坐标系和机体坐标系之后,可以获取与云台相对应的云台坐标系中的Z轴方向、与机体相对应的机体坐标系中的Z轴方向;而后基于云台坐标系中的Z轴方向和机体坐标系中的Z轴方向来确定当前相对放置状态。具体的,基于云台坐标系中的Z轴方向和机体坐标系中的Z轴方向,确定当前相对放置状态可以包括:获取云台坐标系中Z轴方向与机体坐标系中Z轴方向之间的夹角信息;在夹角信息与第一角度范围匹配时,则确定当前相对放置状态为上置状态;或者,在夹角信息与第二角度范围匹配时,则确定当前相对放置状态为下置状态。
本实施例中上述方法步骤的具体实现方式和实现效果与上述实施例中的步骤S30121-步骤S30122的具体实现方式和实现效果相类似,具体可参考上述陈述内容,在此不再赘述。其中,对于上述实施例中的步骤S30121-步骤S30122的具体实现方式和实现效果,本实施例中的可适应性部分,可移动平台的机体可以相当于云台的基座。
在另一些实例中,获取云台和机体之间的当前相对放置状态可以包括:获取云台的云台姿态信息和机体的机体姿态信息;基于云台姿态信息和机体姿态信息,确定当前相对放置状态。
其中,云台上可以设置有第一IMU,通过第一IMU可以获取到云台的云台姿态信息,机体上可以设置有第二IMU,通过第二IMU可以获取到机体的机体姿态信息。在获取到云台姿态信息和机体姿态信息之后,可以对云台姿态信息和机体姿态信息进行分析处理,以确定云台和机体之间的当前相对放置状态。
具体的,基于云台姿态信息和机体姿态信息,确定当前相对放置状态可以包括:获取用于标识上置状态的第一姿态范围和用于标识下置状态的第二姿态范围;在云台姿态信息和机体姿态信息与第一姿态范围相匹配时,则确定当前相对放置状态为上置状态;或者,在云台姿态信息和机体姿态信息与第二姿态范围相匹配时,则确定当前相对放置状态为下置状态。
其中,为了能够准确地识别出云台和机体之间的当前相对放置状态,预先配置有第一姿态范围和第二姿态范围,上述的第一姿态范围用于标识在云台和机体之间的当前相对放置状态为上置状态时,云台姿态信息和机体姿态信息所满足的姿态范围;第二角度范围用于标识在云台和机体之间的当前相 对放置状态为下置状态时,云台姿态信息和机体姿态信息所满足的姿态范围。可以理解的是,第一姿态范围与第二姿态范围不同。
具体的,在获取到云台姿态信息和机体姿态信息之后,可以将云台姿态信息和机体姿态信息与第一姿态范围和第二姿态范围进行分析比较,在云台姿态信息和机体姿态信息与第一姿态范围匹配时,则可以确定云台和机体之间的当前相对放置状态为上置状态。在云台姿态信息和机体姿态信息与第二姿态范围相匹配时,则可以确定云台和机体之间的当前相对放置状态为下置状态。
在另一些实例中,获取云台和机体之间的当前相对放置状态可以包括:基于第一IMU的Z轴方向和第二IMU的Z轴方向来确定当前相对放置状态。具体方法可以参考前述基于云台坐标系中的Z轴方向和机体坐标系中的Z轴方向的确定当前相对放置状态的说明,此处不做赘述。
在另一些实例中,获取云台和机体之间的当前相对放置状态可以包括:获取用户针对云台和机体之间的相对放置状态所输入的状态标识信息;基于状态标识信息,确定云台和机体之间的当前相对放置状态。
具体的,在云台和机体之间的连接结构确定之后,用户可以针对云台和机体之间的相对放置状态输入状态标识信息,从而使得云台控制装置稳定地获取到云台和机体之间的相对放置状态所输入的状态标识信息;而后可以对状态标识信息进行分析处理,以确定云台和机体之间的当前相对放置状态。举例来说,预先配置有用于标识云台和机体之间的相对放置状态为上置状态的状态标识信息“1”、以及与用于标识云台和机体之间的相对放置状态为上置状态的状态标识信息“0”。因此,在获取到用户可以针对云台和机体之间的相对放置状态所输入的状态标识信息为“1”时,则可以确定云台和机体之间的当前相对放置状态为上置状态。在获取到用户可以针对云台和机体之间的相对放置状态所输入的状态标识信息为“0”时,则可以确定云台和机体之间的当前相对放置状态为下置状态。
当然的,本领域技术人员也可以采用其他的方式来获取云台和机体之间的当前相对放置状态,只要能够保证对云台和机体之间的当前相对放置状态进行获取的准确可靠性即可,在此不再赘述。
步骤S1502:根据当前相对放置状态,控制横滚电机的旋转,以使得图像采集设备在当前相对放置状态为上置状态或下置状态时均获取正立的图像。
其中,在获取到当前相对放置状态之后,可以基于当前相对放置状态控制横滚电机的旋转,以使得图像采集设备在当前相对放置状态为上置状态或下置状态时均获取正立的图像。
在一种可实现的方式中,在当前相对放置状态为上置状态时,图像采集设备获取到的图像为正立的图像;此时,无需控制横滚电机进行旋转操作,即可以通过图像采集设备获取到正立的图像。相对的,根据当前相对放置状态,控制横滚电机的旋转,以使得图像采集设备在当前相对放置状态为上置状态或下置状态时均获取正立的图像可以包括:在当前相对放置状态为下置状态时,通过横滚电机控制图像采集设备绕横滚轴旋转预设角度,以通过图像采集设备获取正立的图像。
在一种可实现的方式中,云台还包括用于驱动图像采集设备绕云台的俯仰轴旋转的横滚电机,本实施例中的方法还可以包括:根据当前相对放置状态,确定图像采集设备的目标姿态;基于目标姿态对云台进行控制,以使得图像采集设备保持目标姿态;其中,目标姿态用于表征图像采集设备处于正立状态。
在一种可实现的方式中,云台还包括用于驱动图像采集设备绕云台的偏航轴旋转的偏航电机,目标姿态还用于表征图像采集设备的姿态中的偏航分量与机体的姿态中的偏航分量一致。
在一种可实现的方式中,根据目标姿态控制云台的旋转,以使得图像采集设备保持目标姿态可以包括:获取与云台相对应的测量关节角;基于测量关节角和目标姿态对云台进行控制,以使得图像采集设备保持目标姿态。
在一种可实现的方式中,基于测量关节角和目标姿态对云台进行控制,以使得图像采集设备保持目标姿态可以包括:根据测量关节角和目标姿态,确定与测量关节角相对应的姿态角调整速度;基于姿态角调整速度对云台进行控制,以使得图像采集设备保持目标姿态。
在一种可实现的方式中,测量关节角包括偏航关节测量角或俯仰关节测量角,根据测量关节角和目标姿态,确定与测量关节角相对应的姿态角调整速度可以包括:在测量关节角大于第一角度时,则确定与测量关节角相对应的姿态角调整速度为第一速度,第一速度的方向为第一方向;在测量关节角小于第二角度时,则确定与测量关节角相对应的姿态角调整速度为第二速度,第二速度的方向为第二方向,第一方向与第二方向相反;在测量关节角大于 第二角度且小于第一角度时,则确定姿态角调整速度与第一目标差值呈正比,第一目标差值为目标姿态与云台的测量姿态中的相应分量的差值。
在一种可实现的方式中,第一速度与第二速度的大小相等。
在一种可实现的方式中,调整速度为姿态角调整速度,其中:在连接机体的电机的测量关节角大于第一角度或小于第二角度,且连接机体的电机的测量关节角的大小在上置状态与下置状态相同时,连接机体的电机的测量关节角相对应的姿态角调整速度的方向在上置状态与下置状态时相反。
在一种可实现的方式中,当机体处于上置状态时,云台的姿态的正反转方向与连接机体的电机的关节角的正反转方向相同;当机体处于下置状态时,云台的姿态的正反转方向与连接机体的电机的关节角的正反转方向相反。
在一种可实现的方式中,连接机体的电机为偏航电机。
在一种可实现的方式中,机体、俯仰电机、横滚电机、俯仰电机、图像采集设备依次连接。
在一种可实现的方式中,云台的姿态中的横滚分量对应的姿态角调整速度与第二目标差值呈正比,第二目标差值为目标姿态与云台的测量姿态中的横滚分量的差值。
在一种可实现的方式中,图像采集设备上设有用于指示放置状态的标识。
本实施例提供的上述各个步骤的具体实现原理和实现效果与图8-图14a、图14b所对应的云台控制方法的具体实现原理和实现效果相一致,具体可参考上述陈述内容,在这里不再赘述。
图17为本发明实施例提供的一种云台组件的结构示意图;参考附图17所示,本实施例提供了一种云台组件,该云台组件可以包括:
云台21,用于支撑图像采集设备,云台包括:基座、以及用于驱动图像采集设备绕云台的横滚轴旋转的横滚电机;
上述图15所示的云台控制装置22,云台控制装置22用于对云台21进行控制。
本实施例提供的云台组件的具体实现原理和实现效果与图15所对应的云台控制装置的具体实现原理和实现效果相一致,具体可参考上述陈述内容,在这里不再赘述。
图18为本发明实施例提供的另一种云台控制装置的结构示意图,其中,云台设置于可移动平台的机体上,用于支撑图像采集设备,云台包括:用于驱 动图像采集设备绕云台的横滚轴旋转的横滚电机;具体的,参考附图18所示,控制装置包括:
存储器31,用于存储计算机程序;
处理器32,用于运行存储器31中存储的计算机程序以实现图16的云台控制方法。
图19为本发明实施例提供的一种可移动平台的结构示意图,参考附图19所示,本实施例提供了一种可移动平台,该可移动平台可以包括:
机体41;
云台42,设置于机体41上,用于支撑图像采集设备,云台包括:用于驱动图像采集设备绕云台的横滚轴旋转的横滚电机;
上述图18所示的云台控制装置43,云台控制装置43用于对云台42进行控制。
图19和图18所示实施例提供的控制装置的具体实现原理和实现效果与图16所对应的云台控制方法的具体实现原理和实现效果相一致,具体可参考上述陈述内容,在这里不再赘述。
图20为本发明实施例提供的一种无人机的结构示意图,参考附图20所示,本实施例提供了一种无人机,该无人机可以包括:
机体51;
云台52,设置于机体51上,用于支撑图像采集设备,云台包括:用于驱动图像采集设备绕云台的横滚轴旋转的横滚电机;
上述图18所示的云台控制装置,云台控制装置用于对云台52进行控制。
本实施例提供的无人机的具体实现原理和实现效果与图18所对应的云台控制装置的具体实现原理和实现效果相一致,具体可参考上述陈述内容,在这里不再赘述。
另外,本发明实施例提供了一种计算机可读存储介质,存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,程序指令用于实现上述图1-图14a、图14b的云台控制方法。
另外,本发明实施例提供了一种计算机可读存储介质,存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,程序指令用于实现上述图16的云台控制方法。
以上各个实施例中的技术方案、技术特征在与本相冲突的情况下均可以单独,或者进行组合,只要未超出本领域技术人员的认知范围,均属于本申请保护范围内的等同实施例。
在本发明所提供的几个实施例中,应该理解到,所揭露的相关遥控装置和方法,可以通过其它的方式实现。例如,以上所描述的遥控装置实施例仅仅是示意性的,例如,所述模块或单元的划分,仅仅为一种逻辑功能划分,实际实现时可以有另外的划分方式,例如多个单元或组件可以结合或者可以集成到另一个系统,或一些特征可以忽略,或不执行。另一点,所显示或讨论的相互之间的耦合或直接耦合或通信连接可以是通过一些接口,遥控装置或单元的间接耦合或通信连接,可以是电性,机械或其它的形式。
所述作为分离部件说明的单元可以是或者也可以不是物理上分开的,作为单元显示的部件可以是或者也可以不是物理单元,即可以位于一个地方,或者也可以分布到多个网络单元上。可以根据实际的需要选择其中的部分或者全部单元来实现本实施例方案的目的。
另外,在本发明各个实施例中的各功能单元可以集成在一个处理单元中,也可以是各个单元单独物理存在,也可以两个或两个以上单元集成在一个单元中。上述集成的单元既可以采用硬件的形式实现,也可以采用软件功能单元的形式实现。
所述集成的单元如果以软件功能单元的形式实现并作为独立的产品销售或使用时,可以存储在一个计算机可读取存储介质中。基于这样的理解,本发明的技术方案本质上或者说对现有技术做出贡献的部分或者该技术方案的全部或部分可以以软件产品的形式体现出来,该计算机软件产品存储在一个存储介质中,包括若干指令用以使得计算机处理器(processor)执行本发明各个实施例所述方法的全部或部分步骤。而前述的存储介质包括:U盘、移动硬盘、只读存储器(ROM,Read-Only Memory)、随机存取存储器(RAM,Random Access Memory)、磁盘或者光盘等各种可以存储程序代码的介质。
以上所述仅为本发明的实施例,并非因此限制本发明的专利范围,凡是利用本发明说明书及附图内容所作的等效结构或等效流程变换,或直接或间接运用在其他相关的技术领域,均同理包括在本发明的专利保护范围内。
最后应说明的是:以上各实施例仅用以说明本发明的技术方案,而非对其限制;尽管参照前述各实施例对本发明进行了详细的说明,本领域的普通 技术人员应当理解:其依然可以对前述各实施例所记载的技术方案进行修改,或者对其中部分或者全部技术特征进行等同替换;而这些修改或者替换,并不使相应技术方案的本质脱离本发明各实施例技术方案的范围。

Claims (62)

  1. 一种云台控制方法,其特征在于,所述云台用于支撑图像采集设备,所述云台包括:基座、以及用于驱动所述图像采集设备绕所述云台的横滚轴旋转的横滚电机;所述方法包括:
    检测所述基座的当前放置状态;
    根据所述当前放置状态,控制所述横滚电机的旋转,以使得所述图像采集设备在所述当前放置状态为正置状态或倒置状态时均获取正立的图像;
    其中,所述基座的放置状态包括所述正置状态和所述倒置状态。
  2. 根据权利要求1所述的方法,其特征在于,在所述基座处于正置状态时,所述图像采集设备获取到的图像为正立的图像;
    所述根据所述当前放置状态,控制所述横滚电机的旋转,以使得所述图像采集设备在所述当前放置状态为正置状态或倒置状态时均获取正立的图像,包括:
    在所述当前放置状态为所述倒置状态时,通过横滚电机控制所述图像采集设备绕横滚轴旋转预设角度,以通过所述图像采集设备获取正立的图像。
  3. 根据权利要求1所述的方法,其特征在于,所述检测所述基座的当前放置状态,包括:
    获取与所述基座相对应的基座坐标系中的Z轴方向;
    基于所述基座坐标系中的Z轴方向和大地坐标系中的Z轴方向,确定所述基座的当前放置状态。
  4. 根据权利要求3所述的方法,其特征在于,所述基于所述基座坐标系中的Z轴方向和大地坐标系中的Z轴方向,确定所述基座的当前放置状态,包括:
    获取所述基座坐标系中Z轴方向与大地坐标系中Z轴方向之间的夹角信息;
    在所述夹角信息与第一角度范围匹配时,则确定所述基座的当前放置状态为正置状态;或者,在所述夹角信息与第二角度范围匹配时,则确定所述基座的当前放置状态为倒置状态。
  5. 根据权利要求1所述的方法,其特征在于,检测所述基座的当前放置状态,包括:
    获取所述基座的姿态信息;
    基于所述姿态信息,确定所述基座的当前放置状态。
  6. 根据权利要求5所述的方法,其特征在于,基于所述姿态信息,确定所述基座的当前放置状态,包括:
    获取用于标识基座为正置状态的第一姿态范围和用于标识基座为倒置状态的第二姿态范围;
    在所述姿态信息与所述第一姿态范围相匹配时,则确定所述基座的当前放置状态为正置状态;或者,在所述姿态信息与所述第二姿态范围相匹配时,则确定所述基座的当前放置状态为倒置状态。
  7. 根据权利要求1所述的方法,其特征在于,所述云台为处于开机状态的云台。
  8. 根据权利要求1-7中任意一项所述的方法,其特征在于,所述云台还包括用于驱动所述图像采集设备绕所述云台的俯仰轴旋转的横滚电机,所述方法还包括:
    根据所述当前放置状态,确定所述图像采集设备的目标姿态;
    基于所述目标姿态对所述云台进行控制,以使得所述图像采集设备保持所述目标姿态;
    其中,所述目标姿态用于表征所述图像采集设备处于正立状态。
  9. 根据权利要求8所述的方法,其特征在于,所述云台还包括用于驱动所述图像采集设备绕所述云台的偏航轴旋转的偏航电机,所述目标姿态还用于表征所述图像采集设备的姿态中的偏航分量与所述基座的姿态中的偏航分量一致。
  10. 根据权利要求9所述的方法,其特征在于,所述根据所述目标姿态控制所述云台的旋转,以使得所述图像采集设备保持所述目标姿态,包括:
    获取与所述云台相对应的测量关节角;
    基于所述测量关节角和所述目标姿态对所述云台进行控制,以使得所述图像采集设备保持所述目标姿态。
  11. 根据权利要求10所述的方法,其特征在于,所述基于所述测量关节角和所述目标姿态对所述云台进行控制,以使得所述图像采集设备保持所述目标姿态,包括:
    根据所述测量关节角和所述目标姿态,确定与所述测量关节角相对应的调整速度;
    基于所述调整速度对所述云台进行控制,以使得所述图像采集设备保持 所述目标姿态。
  12. 根据权利要求11所述的方法,其特征在于,所述测量关节角包括偏航关节测量角或俯仰关节测量角,根据所述测量关节角和所述目标姿态,确定与测量关节角相对应的调整速度,包括:
    在所述测量关节角大于第一角度时,则确定与所述测量关节角相对应的调整速度为第一速度,所述第一速度的方向为第一方向;
    在所述测量关节角小于第二角度时,则确定与所述测量关节角相对应的调整速度为第二速度,所述第二速度的方向为第二方向,所述第一方向与所述第二方向相反;
    在所述测量关节角大于所述第二角度且小于所述第一角度时,则确定所述调整速度与第一目标差值呈正比,所述第一目标差值为所述目标姿态与所述云台的测量姿态中的相应分量的差值。
  13. 根据权利要求12所述的方法,其特征在于,所述第一速度与所述第二速度的大小相等。
  14. 根据权利要求12所述的方法,其特征在于,所述调整速度为姿态角调整速度,其中:
    在连接所述基座的电机的测量关节角大于所述第一角度或小于所述第二角度,且连接所述基座的电机的测量关节角的大小在所述正置状态与所述倒置状态相同时,连接所述基座的电机的测量关节角相对应的调整速度的方向在所述正置状态与所述倒置状态时相反。
  15. 根据权利要求14所述的方法,其特征在于,当所述基座处于所述正置状态时,所述云台的姿态的正反转方向与连接所述基座的电机的关节角的正反转方向相同;
    当所述基座处于所述倒置状态时,所述云台的姿态的正反转方向与连接所述基座的电机的关节角的正反转方向相反。
  16. 根据权利要求14所述的方法,其特征在于,连接所述基座的电机为所述偏航电机。
  17. 根据权利要求16所述的方法,其特征在于,所述基座、所述俯仰电机、所述横滚电机、所述俯仰电机、所述图像采集设备依次连接。
  18. 根据权利要求8所述的方法,其特征在于,所述云台的姿态中的横滚分量对应的调整速度与第二目标差值呈正比,所述第二目标差值为所述目标 姿态与所述云台的测量姿态中的横滚分量的差值。
  19. 根据权利要求1至7中任意一项所述的方法,其特征在于,所述图像采集设备上设有用于指示所述放置状态的标识。
  20. 一种云台控制装置,其特征在于,所述云台用于支撑图像采集设备,所述云台包括:基座、以及用于驱动所述图像采集设备绕所述云台的横滚轴旋转的横滚电机;所述控制装置包括:
    存储器,用于存储计算机程序;
    处理器,用于运行所述存储器中存储的计算机程序以实现:
    检测所述基座的当前放置状态;
    根据所述当前放置状态,控制所述横滚电机的旋转,以使得所述图像采集设备在所述当前放置状态为正置状态或倒置状态时均获取正立的图像;
    其中,所述基座的放置状态包括所述正置状态和所述倒置状态。
  21. 根据权利要求20所述的装置,其特征在于,在所述基座处于正置状态时,所述图像采集设备获取到的图像为正立的图像;
    在根据所述当前放置状态,控制所述横滚电机的旋转,以使得所述图像采集设备在所述当前放置状态为正置状态或倒置状态时均获取正立的图像时,所述处理器用于:
    在所述当前放置状态为所述倒置状态时,通过横滚电机控制所述图像采集设备绕横滚轴旋转预设角度,以通过所述图像采集设备获取正立的图像。
  22. 根据权利要求20所述的装置,其特征在于,在检测所述基座的当前放置状态时,所述处理器用于:
    获取与所述基座相对应的基座坐标系中的Z轴方向;
    基于所述基座坐标系中的Z轴方向和大地坐标系中的Z轴方向,确定所述基座的当前放置状态。
  23. 根据权利要求22所述的装置,其特征在于,在基于所述基座坐标系中的Z轴方向和大地坐标系中的Z轴方向,确定所述基座的当前放置状态时,所述处理器用于:
    获取所述基座坐标系中Z轴方向与大地坐标系中Z轴方向之间的夹角信息;
    在所述夹角信息与第一角度范围匹配时,则确定所述基座的当前放置状态为正置状态;或者,在所述夹角信息与第二角度范围匹配时,则确定所述基座的当前放置状态为倒置状态。
  24. 根据权利要求20所述的装置,其特征在于,在检测所述基座的当前放置状态时,所述处理器用于:
    获取所述基座的姿态信息;
    基于所述姿态信息,确定所述基座的当前放置状态。
  25. 根据权利要求24所述的装置,其特征在于,在基于所述姿态信息,确定所述基座的当前放置状态时,所述处理器用于:
    获取用于标识基座为正置状态的第一姿态范围和用于标识基座为倒置状态的第二姿态范围;
    在所述姿态信息与所述第一姿态范围相匹配时,则确定所述基座的当前放置状态为正置状态;或者,在所述姿态信息与所述第二姿态范围相匹配时,则确定所述基座的当前放置状态为倒置状态。
  26. 根据权利要求20所述的装置,其特征在于,所述云台为处于开机状态的云台。
  27. 根据权利要求20-26中任意一项所述的装置,其特征在于,所述云台还包括用于驱动所述图像采集设备绕所述云台的俯仰轴旋转的横滚电机,所述处理器还用于:
    根据所述当前放置状态,确定所述图像采集设备的目标姿态;
    基于所述目标姿态对所述云台进行控制,以使得所述图像采集设备保持所述目标姿态;
    其中,所述目标姿态用于表征所述图像采集设备处于正立状态。
  28. 根据权利要求27所述的装置,其特征在于,所述云台还包括用于驱动所述图像采集设备绕所述云台的偏航轴旋转的偏航电机,所述目标姿态还用于表征所述图像采集设备的姿态中的偏航分量与所述基座的姿态中的偏航分量一致。
  29. 根据权利要求28所述的装置,其特征在于,在根据所述目标姿态控制所述云台的旋转,以使得所述图像采集设备保持所述目标姿态时,所述处理器用于:
    获取与所述云台相对应的测量关节角;
    基于所述测量关节角和所述目标姿态对所述云台进行控制,以使得所述图像采集设备保持所述目标姿态。
  30. 根据权利要求29所述的装置,其特征在于,在基于所述测量关节角 和所述目标姿态对所述云台进行控制,以使得所述图像采集设备保持所述目标姿态时,所述处理器用于:
    根据所述测量关节角和所述目标姿态,确定与所述测量关节角相对应的调整速度;
    基于所述调整速度对所述云台进行控制,以使得所述图像采集设备保持所述目标姿态。
  31. 根据权利要求30所述的装置,其特征在于,所述测量关节角包括偏航关节测量角或俯仰关节测量角,在根据所述测量关节角和所述目标姿态,确定与测量关节角相对应的调整速度时,所述处理器用于:
    在所述测量关节角大于第一角度时,则确定与所述测量关节角相对应的调整速度为第一速度,所述第一速度的方向为第一方向;
    在所述测量关节角小于第二角度时,则确定与所述测量关节角相对应的调整速度为第二速度,所述第二速度的方向为第二方向,所述第一方向与所述第二方向相反;
    在所述测量关节角大于所述第二角度且小于所述第一角度时,则确定所述调整速度与第一目标差值呈正比,所述第一目标差值为所述目标姿态与所述云台的测量姿态中的相应分量的差值。
  32. 根据权利要求31所述的装置,其特征在于,所述第一速度与所述第二速度的大小相等。
  33. 根据权利要求31所述的装置,其特征在于,所述调整速度为姿态角调整速度,其中:
    在连接所述基座的电机的测量关节角的大于所述第一角度或小于所述第二角度,且连接所述基座的电机的测量关节角的大小在所述正置状态与所述倒置状态相同时,连接所述基座的电机的测量关节角相对应的调整速度的方向在所述正置状态与所述倒置状态时相反。
  34. 根据权利要求33所述的装置,其特征在于,当所述基座处于所述正置状态时,所述云台的姿态的正反转方向与连接所述基座的电机的关节角的正反转方向相同;
    当所述基座处于所述倒置状态时,所述云台的姿态的正反转方向与连接所述基座的电机的关节角的正反转方向相反。
  35. 根据权利要求33所述的装置,其特征在于,连接所述基座的电机为 所述偏航电机。
  36. 根据权利要求35所述的装置,其特征在于,所述基座、所述俯仰电机、所述横滚电机、所述俯仰电机、所述图像采集设备依次连接。
  37. 根据权利要求27所述的装置,其特征在于,所述云台的姿态中的横滚分量对应的姿态角调整速度与第二目标差值呈正比,所述第二目标差值为所述目标姿态与所述云台的测量姿态中的横滚分量的差值。
  38. 根据权利要求20至26中任意一项所述的装置,其特征在于,所述图像采集设备上设有用于指示所述放置状态的标识。
  39. 一种云台控制方法,其特征在于,所述云台设置于可移动平台的机体上,用于支撑图像采集设备,所述云台包括:用于驱动所述图像采集设备绕所述云台的横滚轴旋转的横滚电机;所述方法包括:
    获取所述云台和所述机体之间的当前相对放置状态;
    根据所述当前相对放置状态,控制所述横滚电机的旋转,以使得所述图像采集设备在所述当前相对放置状态为上置状态或下置状态时均获取正立的图像;
    其中,所述云台和所述机体之间的相对放置状态包括所述上置状态和所述下置状态。
  40. 根据权利要求39所述的方法,其特征在于,在所述当前相对放置状态为上置状态时,所述图像采集设备获取到的图像为正立的图像;
    所述根据所述当前相对放置状态,控制所述横滚电机的旋转,以使得所述图像采集设备在所述当前相对放置状态为上置状态或下置状态时均获取正立的图像,包括:
    在所述当前相对放置状态为所述下置状态时,通过横滚电机控制所述图像采集设备绕横滚轴旋转预设角度,以通过所述图像采集设备获取正立的图像。
  41. 根据权利要求39所述的方法,其特征在于,所述获取所述云台和所述机体之间的当前相对放置状态,包括:
    获取与所述云台相对应的云台坐标系中的Z轴方向、与所述机体相对应的机体坐标系中的Z轴方向;
    基于所述云台坐标系中的Z轴方向和机体坐标系中的Z轴方向,确定所述当前相对放置状态。
  42. 根据权利要求41所述的方法,其特征在于,所述基于所述云台坐标系中的Z轴方向和机体坐标系中的Z轴方向,确定所述当前相对放置状态,包括:
    获取所述云台坐标系中Z轴方向与机体坐标系中Z轴方向之间的夹角信息;
    在所述夹角信息与第一角度范围匹配时,则确定所述当前相对放置状态为上置状态;或者,在所述夹角信息与第二角度范围匹配时,则确定所述当前相对放置状态为下置状态。
  43. 根据权利要求39所述的方法,其特征在于,所述获取所述云台和所述机体之间的当前相对放置状态,包括:
    获取所述云台的云台姿态信息和所述机体的机体姿态信息;
    基于所述云台姿态信息和所述机体姿态信息,确定所述当前相对放置状态。
  44. 根据权利要求43所述的方法,其特征在于,基于所述云台姿态信息和所述机体姿态信息,确定所述当前相对放置状态,包括:
    获取用于标识上置状态的第一姿态范围和用于标识下置状态的第二姿态范围;
    在所述云台姿态信息和所述机体姿态信息与所述第一姿态范围相匹配时,则确定所述当前相对放置状态为上置状态;或者,在所述云台姿态信息和所述机体姿态信息与所述第二姿态范围相匹配时,则确定所述当前相对放置状态为下置状态。
  45. 根据权利要求39所述的方法,其特征在于,所述获取所述云台和所述机体之间的当前相对放置状态,包括:
    获取用户针对所述云台和所述机体之间的相对放置状态所输入的状态标识信息;
    基于所述状态标识信息,确定所述云台和所述机体之间的当前相对放置状态。
  46. 根据权利要求39-45中任意一项所述的方法,其特征在于,所述云台还包括用于驱动所述图像采集设备绕所述云台的俯仰轴旋转的横滚电机,所述方法还包括:
    根据所述当前相对放置状态,确定所述图像采集设备的目标姿态;
    基于所述目标姿态对所述云台进行控制,以使得所述图像采集设备保持 所述目标姿态;
    其中,所述目标姿态用于表征所述图像采集设备处于正立状态。
  47. 根据权利要求46所述的方法,其特征在于,所述云台还包括用于驱动所述图像采集设备绕所述云台的偏航轴旋转的偏航电机,所述目标姿态还用于表征所述图像采集设备的姿态中的偏航分量与所述机体的姿态中的偏航分量一致。
  48. 根据权利要求47所述的方法,其特征在于,所述根据所述目标姿态控制所述云台的旋转,以使得所述图像采集设备保持所述目标姿态,包括:
    获取与所述云台相对应的测量关节角;
    基于所述测量关节角和所述目标姿态对所述云台进行控制,以使得所述图像采集设备保持所述目标姿态。
  49. 根据权利要求48所述的方法,其特征在于,所述基于所述测量关节角和所述目标姿态对所述云台进行控制,以使得所述图像采集设备保持所述目标姿态,包括:
    根据所述测量关节角和所述目标姿态,确定与所述测量关节角相对应的姿态角调整速度;
    基于所述姿态角调整速度对所述云台进行控制,以使得所述图像采集设备保持所述目标姿态。
  50. 根据权利要求49所述的方法,其特征在于,所述测量关节角包括偏航关节测量角或俯仰关节测量角,根据所述测量关节角和所述目标姿态,确定与测量关节角相对应的姿态角调整速度,包括:
    在所述测量关节角大于第一角度时,则确定与所述测量关节角相对应的姿态角调整速度为第一速度,所述第一速度的方向为第一方向;
    在所述测量关节角小于第二角度时,则确定与所述测量关节角相对应的姿态角调整速度为第二速度,所述第二速度的方向为第二方向,所述第一方向与所述第二方向相反;
    在所述测量关节角大于所述第二角度且小于所述第一角度时,则确定所述姿态角调整速度与第一目标差值呈正比,所述第一目标差值为所述目标姿态与所述云台的测量姿态中的相应分量的差值。
  51. 根据权利要求50所述的方法,其特征在于,所述第一速度与所述第二速度的大小相等。
  52. 根据权利要求50所述的方法,其特征在于,所述调整速度为姿态角调整速度,其中:
    在连接所述机体的电机的测量关节角大于所述第一角度或小于所述第二角度,且连接所述机体的电机的测量关节角的大小在所述上置状态与所述下置状态相同时,连接所述机体的电机的测量关节角相对应的调整速度的方向在所述上置状态与所述下置状态时相反。
  53. 根据权利要求52所述的方法,其特征在于,当所述机体处于所述上置状态时,所述云台的姿态的正反转方向与连接所述机体的电机的关节角的正反转方向相同;
    当所述机体处于所述下置状态时,所述云台的姿态的正反转方向与连接所述机体的电机的关节角的正反转方向相反。
  54. 根据权利要求52所述的方法,其特征在于,连接所述机体的电机为所述偏航电机。
  55. 根据权利要求54所述的方法,其特征在于,所述机体、所述俯仰电机、所述横滚电机、所述俯仰电机、所述图像采集设备依次连接。
  56. 根据权利要求46所述的方法,其特征在于,所述云台的姿态中的横滚分量对应的调整速度与第二目标差值呈正比,所述第二目标差值为所述目标姿态与所述云台的测量姿态中的横滚分量的差值。
  57. 根据权利要求39至45中任意一项所述的方法,其特征在于,所述图像采集设备上设有用于指示所述相对放置状态的标识。
  58. 一种云台组件,其特征在于,包括:
    云台,用于支撑图像采集设备,所述云台包括:基座、以及用于驱动所述图像采集设备绕所述云台的横滚轴旋转的横滚电机;
    权利要求20-38中任意一项所述的云台控制装置,所述云台控制装置用于对所述云台进行控制。
  59. 一种云台控制装置,其特征在于,所述云台设置于可移动平台的机体上,用于支撑图像采集设备,所述云台包括:用于驱动所述图像采集设备绕所述云台的横滚轴旋转的横滚电机;所述控制装置包括:
    存储器,用于存储计算机程序;
    处理器,用于运行所述存储器中存储的计算机程序以实现权利要求39-57中任意一项所述的云台控制方法。
  60. 一种可移动平台,其特征在于,包括:
    机体;
    云台,设置于所述机体上,用于支撑图像采集设备,所述云台包括:用于驱动所述图像采集设备绕所述云台的横滚轴旋转的横滚电机;
    权利要求59所述的云台控制装置,所述云台控制装置用于对所述云台进行控制。
  61. 一种计算机可读存储介质,其特征在于,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于实现权利要求1-19中任意一项所述的云台控制方法。
  62. 一种计算机可读存储介质,其特征在于,所述存储介质为计算机可读存储介质,该计算机可读存储介质中存储有程序指令,所述程序指令用于实现权利要求39-57中任意一项所述的云台控制方法。
PCT/CN2020/100891 2020-07-08 2020-07-08 云台控制方法、云台组件、装置、可移动平台和存储介质 WO2022006782A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
PCT/CN2020/100891 WO2022006782A1 (zh) 2020-07-08 2020-07-08 云台控制方法、云台组件、装置、可移动平台和存储介质
CN202080005539.XA CN114158271A (zh) 2020-07-08 2020-07-08 云台控制方法、云台组件、装置、可移动平台和存储介质

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2020/100891 WO2022006782A1 (zh) 2020-07-08 2020-07-08 云台控制方法、云台组件、装置、可移动平台和存储介质

Publications (1)

Publication Number Publication Date
WO2022006782A1 true WO2022006782A1 (zh) 2022-01-13

Family

ID=79552230

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2020/100891 WO2022006782A1 (zh) 2020-07-08 2020-07-08 云台控制方法、云台组件、装置、可移动平台和存储介质

Country Status (2)

Country Link
CN (1) CN114158271A (zh)
WO (1) WO2022006782A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204141179U (zh) * 2014-10-22 2015-02-04 王军 三轴云台拍摄设备
CN204250379U (zh) * 2014-09-24 2015-04-08 深圳市大疆创新科技有限公司 云台及其使用的成像装置、以及无人机
CN105992903A (zh) * 2015-05-15 2016-10-05 深圳市大疆创新科技有限公司 云台
WO2016190994A1 (en) * 2015-05-27 2016-12-01 Gopro, Inc. Camera system using stabilizing gimbal
CN207843345U (zh) * 2018-02-01 2018-09-11 普宙飞行器科技(深圳)有限公司 一种云台及无人机
CN109196266A (zh) * 2017-09-25 2019-01-11 深圳市大疆灵眸科技有限公司 云台的控制方法、云台控制器及云台
CN210034886U (zh) * 2019-04-29 2020-02-07 深圳市大疆创新科技有限公司 连接装置及云台系统
CN111279113A (zh) * 2019-01-04 2020-06-12 深圳市大疆创新科技有限公司 手持云台控制方法和手持云台

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4063604B2 (ja) * 2002-07-17 2008-03-19 興和株式会社 監視カメラ装置
US7000883B2 (en) * 2003-01-17 2006-02-21 The Insitu Group, Inc. Method and apparatus for stabilizing payloads, including airborne cameras
JP2004274475A (ja) * 2003-03-10 2004-09-30 Sony Corp 撮像装置
US7425101B2 (en) * 2006-05-26 2008-09-16 Yi-Jen Cheng Image adjusting assembly for a monitoring camera
JP2008153842A (ja) * 2006-12-15 2008-07-03 Hitachi Kokusai Electric Inc 監視システム
CN113741554A (zh) * 2017-04-21 2021-12-03 深圳市大疆创新科技有限公司 云台及云台控制方法
CN110337560B (zh) * 2018-05-30 2021-06-25 深圳市大疆创新科技有限公司 云台的控制方法、云台、拍摄设备及可读存储介质
WO2019227410A1 (zh) * 2018-05-31 2019-12-05 深圳市大疆创新科技有限公司 姿态转换方法、姿态显示方法及云台系统

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN204250379U (zh) * 2014-09-24 2015-04-08 深圳市大疆创新科技有限公司 云台及其使用的成像装置、以及无人机
CN204141179U (zh) * 2014-10-22 2015-02-04 王军 三轴云台拍摄设备
CN105992903A (zh) * 2015-05-15 2016-10-05 深圳市大疆创新科技有限公司 云台
WO2016190994A1 (en) * 2015-05-27 2016-12-01 Gopro, Inc. Camera system using stabilizing gimbal
CN109196266A (zh) * 2017-09-25 2019-01-11 深圳市大疆灵眸科技有限公司 云台的控制方法、云台控制器及云台
CN207843345U (zh) * 2018-02-01 2018-09-11 普宙飞行器科技(深圳)有限公司 一种云台及无人机
CN111279113A (zh) * 2019-01-04 2020-06-12 深圳市大疆创新科技有限公司 手持云台控制方法和手持云台
CN210034886U (zh) * 2019-04-29 2020-02-07 深圳市大疆创新科技有限公司 连接装置及云台系统

Also Published As

Publication number Publication date
CN114158271A (zh) 2022-03-08

Similar Documents

Publication Publication Date Title
US10871258B2 (en) Method and system for controlling gimbal
CN109196266B (zh) 云台的控制方法、云台控制器及云台
CN109000612B (zh) 设备的角度估算方法、装置、摄像组件及飞行器
WO2019223270A1 (zh) 云台电机角度和角速度估算方法、装置、云台及飞行器
WO2019223271A1 (zh) 飞行器偏航角修正方法、装置及飞行器
WO2017045315A1 (zh) 确定跟踪目标的位置信息的方法及装置、跟踪装置及系统
WO2019183845A1 (zh) 云台的控制方法、装置、系统、计算机存储介质及无人机
WO2019227441A1 (zh) 可移动平台的拍摄控制方法和设备
WO2021027638A1 (zh) 一种偏航角的融合方法、装置及飞行器
CN110987021B (zh) 一种基于转台基准的惯性视觉相对姿态标定方法
US11245841B2 (en) Method for marking target position of gimbal, gimbal, and photographing device
WO2019134154A1 (zh) 非正交云台的控制方法及其云台和存储装置
WO2021052334A1 (zh) 一种无人飞行器的返航方法、装置及无人飞行器
WO2018120351A1 (zh) 一种对无人机进行定位的方法及装置
WO2019227384A1 (zh) 一种云台控制方法及云台
CN110487277B (zh) 一种偏航角的融合方法、装置及飞行器
CN108780324A (zh) 无人机、无人机控制方法和装置
WO2021217371A1 (zh) 可移动平台的控制方法和装置
WO2021043214A1 (zh) 一种标定方法、装置及飞行器
WO2019205087A1 (zh) 图像增稳方法和装置
WO2020172800A1 (zh) 可移动平台的巡检控制方法和可移动平台
CN105718232A (zh) 一种任意角平面旋转显示方法及显示装置
US20210097696A1 (en) Motion estimation methods and mobile devices
WO2020062089A1 (zh) 磁传感器校准方法以及可移动平台
WO2019183789A1 (zh) 无人机的控制方法、装置和无人机

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20944293

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20944293

Country of ref document: EP

Kind code of ref document: A1