WO2020138852A1 - 멀티 채널 중공사막을 포함하는 연료전지용 막가습기 - Google Patents

멀티 채널 중공사막을 포함하는 연료전지용 막가습기 Download PDF

Info

Publication number
WO2020138852A1
WO2020138852A1 PCT/KR2019/018168 KR2019018168W WO2020138852A1 WO 2020138852 A1 WO2020138852 A1 WO 2020138852A1 KR 2019018168 W KR2019018168 W KR 2019018168W WO 2020138852 A1 WO2020138852 A1 WO 2020138852A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
channels
membrane
fuel cell
fiber membrane
Prior art date
Application number
PCT/KR2019/018168
Other languages
English (en)
French (fr)
Inventor
오영석
김경주
안웅전
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Priority to JP2021529747A priority Critical patent/JP7092946B2/ja
Priority to US17/417,767 priority patent/US20220013797A1/en
Priority to EP19903931.4A priority patent/EP3903913A4/en
Priority to CN201980086478.1A priority patent/CN113226522B/zh
Publication of WO2020138852A1 publication Critical patent/WO2020138852A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/033Specific distribution of fibres within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/04Hollow fibre modules comprising multiple hollow fibre assemblies
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/031Two or more types of hollow fibres within one bundle or within one potting or tube-sheet
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/081Hollow fibre membranes characterised by the fibre diameter
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04149Humidifying by diffusion, e.g. making use of membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D69/00Semi-permeable membranes for separation processes or apparatus characterised by their form, structure or properties; Manufacturing processes specially adapted therefor
    • B01D69/08Hollow fibre membranes
    • B01D69/082Hollow fibre membranes characterised by the cross-sectional shape of the fibre
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a membrane humidifier for a fuel cell including a multi-channel hollow fiber membrane, and more specifically, by having a plurality of channels of various sizes, while maintaining a humidification performance at a high flow rate while preventing a flooding at a low flow rate due to low humidification performance. It relates to a membrane humidifier for a fuel cell comprising a multi-channel hollow fiber membrane.
  • a fuel cell is a power generation type cell that generates electricity by combining hydrogen and oxygen.
  • Fuel cells have the advantage of being able to continue to produce electricity as long as hydrogen and oxygen are supplied, and are twice as efficient as internal combustion engines because they have no heat loss.
  • the fuel cell is not only environmentally friendly, but also has the advantage of reducing the worry of resource exhaustion due to increased energy consumption.
  • PEMFC Polymer Electrolyte Membrane Fuel Cell
  • PAFC Phosphoric Acid Fuel Cell
  • MCFC Molten Carbonate Fuel Cell
  • SOFC solid oxide fuel cell
  • AFC alkaline fuel cell
  • PEMFC polymer electrolyte fuel cell
  • PEMFC polymer electrolyte fuel cell
  • MEA membrane-electrode assembly
  • a bubbler humidification method that supplies moisture by passing a target gas through a diffuser after filling the pressure resistant container with water, and 2) supplying the amount of moisture required for fuel cell reaction
  • a direct injection method of calculating and supplying water directly to the gas flow pipe through a solenoid valve
  • the humidifying membrane method for humidifying the polymer electrolyte membrane is advantageous in that the humidifier can be made lighter and smaller by providing water to the gas supplied to the polymer electrolyte membrane using a membrane that selectively transmits only water vapor contained in the exhaust gas.
  • the selective permeable membrane used in the humidifying membrane method is preferably a hollow fiber membrane having a large permeable area per unit volume when forming a module. That is, when the membrane humidifier is manufactured using the hollow fiber membrane, the high density of the hollow fiber membrane with a large contact surface area is possible, so that the humidification of the fuel cell can be sufficiently achieved even with a small capacity, the use of a low-cost material is possible, and the fuel cell has a high temperature. It has the advantage that it can be reused through the humidifier to recover the moisture and heat contained in the unreacted gas discharged.
  • Membrane humidifiers supply moisture to the fuel cell stack, helping the stack to produce electricity smoothly. However, if excessive moisture is supplied at a low flow rate, moisture may condense and a flow path in the stack may be blocked, resulting in a problem that a part of the stack is deteriorated.
  • One aspect of the present invention provides a membrane humidifier for a fuel cell including a multi-channel hollow fiber membrane capable of preventing flooding due to low humidification performance at low flow rate while maintaining humidification performance at high flow rate by having a plurality of channels of various sizes. Is to do.
  • a middle case in which a plurality of hollow fiber membranes are accommodated;
  • a cap case coupled with the middle case;
  • a fixing part having ends of the plurality of hollow fiber membranes ported, a plurality of channels formed in each of the hollow fiber membranes, and a difference between a maximum inner diameter and a minimum inner diameter among the inner diameters of the plurality of channels.
  • Each of the hollow fiber membranes may have an outer diameter of 1000 to 5000 ⁇ m.
  • Each of the plurality of channels may have an inner diameter of 300 ⁇ 1300 ⁇ m.
  • the shortest distances between the outer peripheral surface of each hollow fiber membrane and its channels may be 60 to 500 ⁇ m.
  • the sum of the cross-sectional areas of the plurality of channels of each hollow fiber membrane may be 40 to 90% of the cross-sectional area of the hollow fiber membrane.
  • a hollow fiber membrane having a plurality of channels having various sizes to a membrane humidifier for a fuel cell, in a low flow rate section, fluid flows only to a channel having a large size due to a differential pressure, thereby preventing flooding by lowering the water transfer efficiency and In the high flow rate section, both a large channel and a small channel are used for water transfer, so that sufficient water transfer is possible.
  • the strength and durability of the hollow fiber membrane can be improved by forming a multi-channel on the hollow fiber membrane, so that the thickness can be thicker than that of the hollow fiber membrane on which a single channel is formed.
  • FIG. 1 is an exploded perspective view of a membrane humidifier for a fuel cell according to an embodiment of the present invention.
  • FIG. 2 is an exploded perspective view of a membrane humidifier for a fuel cell according to another embodiment of the present invention.
  • FIG 3 is a cross-sectional view of a hollow fiber membrane according to an embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a hollow fiber membrane according to a comparative example.
  • the membrane humidifier 100 for a fuel cell of the present invention includes a middle case 110, a cap case 120, a fixing part 130, and a hollow fiber membrane bundle 200. do.
  • the middle case 110 is combined with the cap case 120 to form the outer shape of the film humidifier 100.
  • the middle case 110 and the cap case 120 may be made of hard plastic or metal such as polycarbonate.
  • the middle case 110 and the cap case 120 may have a circular cross-sectional shape in the width direction as shown in FIG. 1, or a polygonal cross-sectional shape in the width direction as shown in FIG. 2.
  • the polygon may be a square, a square, a trapezoid, a parallelogram, a pentagon, or a hexagon, and the polygon may have a rounded corner. Further, the circle may be oval.
  • a second fluid inlet 112 through which the second fluid is supplied and a second fluid outlet 113 through which the second fluid is discharged are respectively formed.
  • the plurality of hollow fiber membranes 210 is illustrated as being disposed in the middle case 110 in the form of a single hollow fiber membrane bundle 200, but the hollow fiber membranes 210 have two or more cartridges. It may be disposed in the middle case 110 in a dividedly accommodated state in (cartridges).
  • a fluid inlet 121 is formed in the cap case 120.
  • the fluid inlet 121 formed in one of the cap cases 120 respectively coupled to both ends of the middle case 110 becomes the first fluid inlet, and the fluid inlet 121 formed in the other one becomes the first fluid outlet.
  • the first fluid introduced through the fluid inlet 121 serving as the first fluid inlet passes through the inner channels (ie, the hollows) of the hollow fiber membranes 210 accommodated in the middle case 110. Then, it exits to the fluid inlet 121, which functions as a first fluid outlet.
  • the hollow fiber membrane 210 is Nafion, polyetherimide, polyimide (PI), polyphenylsulfone, polysulfone (PS), polyethersulfone (PES), or two or more of them It can be formed into a mixture.
  • the ends of the hollow fiber membranes 210 are ported to the fixing part 130.
  • the fixing part 130 fills the gap between the hollow fiber membranes 210 and the gap between the hollow fiber membranes 210 and the middle case 110 while binding the hollow fiber membranes 210. Accordingly, each of both ends of the middle case 110 is blocked by the fixing part 130, and a flow path through which the second fluid passes is formed therein.
  • the material of the fixing part 130 is according to a known bar, and detailed description is omitted herein.
  • FIG. 3 is a cross-sectional view of the hollow fiber membrane 210 according to an embodiment of the present invention
  • FIG. 4 is a cross-sectional view of the hollow fiber membrane 220 according to the comparative example.
  • a plurality of channels 211, 212, 213, 214 are formed inside the hollow fiber membrane 210, and the inner diameters D1 of the plurality of channels 211, 212, 213, 214 , D2, D3, D4), the difference between the maximum inner diameter (D1) and the minimum inner diameter (D4) is 30 to 600 ⁇ m.
  • At least one of the plurality of channels 211, 212, 213, and 214 has an inner diameter of a different size from the other channel(s), and the difference between the inner diameters is 30 to 600 ⁇ m.
  • the hollow fiber membrane 210 may have four channels 211, 212, 213 and 214 having different sizes.
  • the number of channels formed in one hollow fiber membrane 210 is not limited to four, and 2 to 12 channels may be formed. Even if the number of channels is formed differently, as described above, at least one of the plurality of channels has an inner diameter different from that of the other channel(s), but the difference in inner diameter is 30 to 600 ⁇ m.
  • a plurality of channels of the hollow fiber membrane may be composed of two channels having a relatively large first inner diameter and two channels having a relatively small second inner diameter, wherein the first inner diameter and the second The difference in inner diameter may be 30 to 600 ⁇ m.
  • the plurality of channels of the hollow fiber membrane 210 are smaller than the first channel 211, the second channel 212 smaller than the first channel 211, and the second channel 212 smaller than the first channel 211.
  • the third channel 213 may be composed of a fourth channel 214 smaller than the third channel 213. As such, all of the channels 211, 212, 213, and 214 may be formed to have different inner diameters.
  • each channel 211, 212, 213, 214 are arranged at the same distance from the center of the hollow fiber membrane 210, so that the centers C1, C2, C3, C4 are It may be arranged on one virtual circle 215 having a center coincident with the center of the hollow fiber membrane 210.
  • the plurality of channels 211, 212, 213, and 214 are such that the centers C1, C2, C3, and C4 are not arranged on one virtual circle 215 concentric with the hollow fiber membrane 210. ).
  • the plurality of channels 211, 212, 213, and 214 have thicknesses T1, T2, T3, and T4, which are the shortest distances between the outer circumferential surface of the hollow fiber membrane 210 and each channel 211, 212, 213, 214. It may be arranged in the hollow fiber membrane 210 to be the same or different from each other.
  • the channels 211, 212, 213, 214 Since the inner diameters of) differ by at least 30 ⁇ m, at least one of the thicknesses T1, T2, T3, and T4 may become too large, thereby deteriorating the humidification performance of the hollow fiber membrane.
  • the channels 211 in consideration of the humidification performance of the hollow fiber membrane 210, the channels 211, so that the thicknesses T1, T2, T3, T4 corresponding to the channels 211, 212, 213, 214, respectively, are not excessively large.
  • 212, 213, and 214 are preferably formed in the hollow fiber membrane 210.
  • the shortest distances (ie, thicknesses) (T1, T2, T3, T4) between the outer peripheral surface of the hollow fiber membrane 210 and the channels 211, 212, 213, and 214 are 60 to 500 ⁇ m. Can.
  • the channels 211 so that virtual segments connecting the centers C1, C2, C3, and C4 of the channels 211, 212, 213, and 214, respectively, and the center of the hollow fiber membrane 210 form 90 degrees to each other.
  • 212, 213, 214 may be arranged in the hollow fiber membrane 210, but the present invention is not limited to this, and the channels 211, 212, 213, 214 are arranged to be spaced apart from each other at predetermined intervals. If so, the imaginary segments may not form 90 degrees to each other.
  • the hollow fiber membrane 210 may have an outer diameter of 1000 to 5000 ⁇ m.
  • the hollow fiber membrane 210 of the present invention having a plurality of channels 211, 212, 213, and 214 may have an outer diameter of twice or more larger than that of a hollow fiber membrane having only one channel.
  • Each of the plurality of channels 211, 212, 213, and 214 may have an inner diameter (D1, D2, D3, D4) of 300 to 1300 ⁇ m.
  • the channels 211, 212, 213, and 214 have inner diameters D1, D2, and D3 of 900 ⁇ m, 800 ⁇ m, 700 ⁇ m, and 600 ⁇ m. , D4).
  • the shortest distances (ie, thicknesses) (T1, T2, T3, T4) between the outer peripheral surface of the hollow fiber membrane 210 and the channels 211, 212, 213, and 214 may be 60 to 500 ⁇ m.
  • At least one of the thicknesses (T1, T2, T3, T4) is less than 60 ⁇ m, there is a risk of damage due to pressure, and if at least one of the thicknesses (T1, T2, T3, T4) exceeds 500 ⁇ m, Humidification performance of the hollow fiber membrane 210 may be deteriorated.
  • a part of the channels may be formed in the central portion of the hollow fiber membrane 210.
  • the sum of the cross-sectional areas of the plurality of channels 211, 212, 213, and 214 may be 40 to 90% of the cross-sectional area of the hollow fiber membrane 210.
  • the outer diameter of the hollow fiber membrane 210 is 2300 ⁇ m and the channels 211, 212, 213, and 214 have inner diameters D1, D2, D3, and D4 of 900 ⁇ m, 800 ⁇ m, 700 ⁇ m, and 600 ⁇ m.
  • the sum of the cross-sectional areas of the plurality of channels 211, 212, 213, and 214 is about 43.5% of the cross-sectional area of the hollow fiber membrane 210.
  • the cross-sectional area ratio may increase as the number of channels having a relatively small inner diameter increases.
  • the hollow fiber membrane 210 may be formed by spinning a spinning dope through a nozzle. As the nozzle, a radiation hole corresponding to the hollow fiber membrane 210 shown in FIG. 3 is used.
  • the spinning dope is composed of polymers, additives and solvents.
  • the polymer is PVDF (polyvinylidene fluoride), polyacrylonitrile (polyacrylonitril), polyacrylonitrile copolymer, polysulfone (polysulfone), sulfonated polysulfone (polysulfone), polyester sulfone (polyethersulfone), cellulose acetate (cellulose acetate), cellulose triacetate (cellulose triacetate), polymethyl methacrylate (polymethyl methacrylate) and may be any one selected from the group consisting of a mixture of two or more of them.
  • the additive may be any one selected from the group consisting of water, methyl alcohol, ethyl alcohol, ethylene glycol, polyethylene glycol, polypropylene glycol, glycerin, polyvinyl pyrrolidone (PVP), and mixtures of two or more of them. have.
  • the solvent is N-methyl-2-pyrrolidone (NMP: N-methyl-2-pyrrolidone), dimethyl formamide (DMF), dimethyl acetamide (DMAc), chloroform, tetra Hydrofuran (tetrahhydrofuran) and any one selected from the group consisting of a mixture of two or more of them.
  • NMP N-methyl-2-pyrrolidone
  • DMF dimethyl formamide
  • DMAc dimethyl acetamide
  • chloroform tetra Hydrofuran (tetrahhydrofuran) and any one selected from the group consisting of a mixture of two or more of them.
  • a bundle of hollow fiber membranes 210 may be obtained by simultaneously radiating the spinning dope through a plurality of nozzles.
  • the bundle of hollow fiber membranes that have been spun can be washed after being solidified and then wound onto a roll.
  • the hollow fiber membrane 220 according to the comparative example shown in FIG. 4 has the same outer diameter as the outer diameter D of the hollow fiber membrane 210 of FIG. 3, but the same as the inner diameter D2 of the second channel 212 of FIG. 3.
  • Four channels 222 having an inner diameter are arranged symmetrically with respect to the center of the hollow fiber membrane 220.
  • the multi-channel hollow fiber membranes 210 maintain high humidification performance while maintaining high humidification performance in a high flow rate region requiring much humidification, but less humidification.
  • the humidification performance is automatically lowered to prevent flooding. This is because, in the case of low flow rate, the first fluid flows through only relatively large channels among the plurality of channels due to the differential pressure to exchange moisture.
  • a membrane humidifier was prepared using a bundle of 2500 strands of multi-channel hollow fiber membranes having an outer diameter of 2300 ⁇ m and four channels of different sizes (inner diameter: 900 ⁇ m, 800 ⁇ m, 700 ⁇ m, 600 ⁇ m).
  • a membrane humidifier was prepared in the same manner as in the above example, except that a bundle of 4,000 strands of hollow fiber membranes formed with only one channel (inner diameter: 900 ⁇ m, outer diameter: 1100 ⁇ m) was used.
  • a membrane humidifier was prepared in the same manner as in the above example, except that a bundle of 2500 strands of multi-channel hollow fiber membranes having an outer diameter of 2300 ⁇ m and 4 channels (inner diameter: 800 ⁇ m) of the same size was formed.
  • Dry air (flow rate: 1000-4000 sLPM, temperature: 80°C, relative humidity: 0 to 5 %RH, absolute pressure: 1.8 bar) and wet air (flow rate: 900-3600 sLPM, temperature: 80°C, relative humidity: 90 %RH, absolute pressure: 1.6bar) was humidified by supplying through the first fluid inlet and the second fluid inlet of the membrane humidifier, respectively.
  • the dew point (low flow outlet dew point) was measured respectively.
  • the outlet dew point at high flow was 50°C and the outlet dew point at low flow was 60°C.
  • the outlet dew point at high flow was 51°C and the outlet dew point at low flow was 39°C. From this, it can be seen that, while maintaining the humidification performance in the high flow rate section similar to the prior art, in the low flow rate section, the humidification performance is very low and thus is effective in preventing flooding.
  • the outlet dew point at high flow was 50.5°C and the outlet dew point at low flow was 59°C.
  • the outlet dew point in the low flow rate section is similar to that of the conventional example. From this, it can be seen that in the case of the comparative example, there was little effect of preventing flooding in the low flow rate section.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Fuel Cell (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Air Humidification (AREA)

Abstract

다양한 크기의 복수의 채널들을 가짐으로써 고유량시 가습 성능을 유지하면서도 저유량시 가습 성능이 낮아서 플러딩을 방지할 수 있는 멀티 채널 중공사막을 포함하는 연료전지용 막가습기가 개시된다. 본 발명의 연료전지용 막가습기는 복수의 중공사막들이 수용되는 미들 케이스; 상기 미들 케이스와 결합되는 캡 케이스; 및 상기 복수의 중공사막들 단부들이 포팅되어 있는 고정부를 포함하고, 상기 중공사막들 각각의 내부에 복수의 채널들이 형성되어 있고, 상기 복수의 채널들의 내경들 중 최대 내경과 최소 내경의 차이가 30~600㎛이다.

Description

멀티 채널 중공사막을 포함하는 연료전지용 막가습기
본 발명은 멀티 채널 중공사막을 포함하는 연료전지용 막가습기에 관한 것으로서, 더욱 구체적으로는 다양한 크기의 복수의 채널들을 가짐으로써 고유량시 가습 성능을 유지하면서도 저유량시 가습 성능이 낮아서 플러딩을 방지할 수 있는 멀티 채널 중공사막을 포함하는 연료전지용 막가습기에 관한 것이다.
연료 전지란 수소와 산소를 결합시켜 전기를 생산하는 발전(發電)형 전지이다. 연료 전지는 건전지나 축전지 등 일반 화학전지와 달리 수소와 산소가 공급되는 한 계속 전기를 생산할 수 있고, 열손실이 없어 내연기관보다 효율이 2배 가량 높다는 장점이 있다.
또한, 수소와 산소의 결합에 의해 발생하는 화학 에너지를 전기 에너지로 직접 변환하기 때문에 공해물질 배출이 적다. 따라서, 연료 전지는 환경 친화적일 뿐만 아니라 에너지 소비 증가에 따른 자원 고갈에 대한 걱정을 줄일 수 있다는 장점이 있다.
이러한 연료 전지는 사용되는 전해질의 종류에 따라 크게 고분자 전해질형 연료 전지(Polymer Electrolyte Membrane Fuel Cell: PEMFC), 인산형 연료 전지(Phosphoric Acid Fuel Cell: PAFC), 용융 탄산염형 연료 전지(Molten Carbonate Fuel Cell: MCFC), 고체 산화물형 연료 전지(Solid Oxide Fuel Cell: SOFC), 및 알칼리형 연료 전지(Alkaline Fuel Cell: AFC) 등으로 분류할 수 있다.
이들 각각의 연료 전지는 근본적으로 동일한 원리에 의해 작동하지만 사용되는 연료의 종류, 운전 온도, 촉매, 전해질 등이 서로 다르다. 이 중에서 고분자 전해질형 연료 전지(PEMFC)는 다른 연료 전지에 비해 저온에서 동작한다는 점, 및 출력밀도가 커서 소형화가 가능하기 때문에 소규모 거치형 발전장비뿐만 아니라 수송 시스템에서도 가장 유망한 것으로 알려져 있다.
고분자 전해질형 연료 전지(PEMFC)의 성능을 향상시키는데 있어서 가장 중요한 요인 중 하나는, 막-전극 접합체(Membrane Electrode Assembly: MEA)의 고분자 전해질 막(Polymer Electrolyte Membrane 또는 Proton Exchange Membrane: PEM)에 일정량 이상의 수분을 공급함으로써 함수율을 유지하도록 하는 것이다. 고분자 전해질 막이 건조되면 발전 효율이 급격히 저하되기 때문이다.
고분자 전해질 막을 가습하는 방법으로는, 1) 내압 용기에 물을 채운 후 대상 기체를 확산기(diffuser)로 통과시켜 수분을 공급하는 버블러(bubbler) 가습 방식, 2) 연료 전지 반응에 필요한 공급 수분량을 계산하여 솔레노이드 밸브를 통해 가스 유동관에 직접 수분을 공급하는 직접 분사(direct injection) 방식, 및 3) 고분자 분리막을 이용하여 가스의 유동층에 수분을 공급하는 가습 막 방식 등이 있다.
이들 중에서도 배기 가스 중에 포함되는 수증기만을 선택적으로 투과시키는 막을 이용하여 수증기를 고분자 전해질 막에 공급되는 가스에 제공함으로써 고분자 전해질 막을 가습하는 가습막 방식이 가습기를 경량화 및 소형화할 수 있다는 점에서 유리하다.
가습 막 방식에 사용되는 선택적 투과막은 모듈을 형성할 경우 단위 체적당 투과 면적이 큰 중공사막이 바람직하다. 즉, 중공사막을 이용하여 막가습기를 제조할 경우 접촉 표면적이 넓은 중공사막의 고집적화가 가능하여 소용량으로도 연료 전지의 가습이 충분히 이루어질 수 있고, 저가 소재의 사용이 가능하며, 연료 전지에서 고온으로 배출되는 미반응 가스에 포함된 수분과 열을 회수하여 가습기를 통해 재사용할 수 있다는 이점을 갖는다.
막가습기는 연료전지 스택에 수분을 공급하여 스택이 원활하게 전기를 생산하는데 도움을 준다. 하지만, 저유량에서 과도한 수분이 공급되면 수분이 응축되어 스택 내 유로가 막혀서 스택의 일부가 열화되는 문제가 생길 수 있다.
따라서, 수분이 많이 필요한 고유량 구간에서는 수분을 많이 공급해 주고, 수분이 적게 필요한 저유량 구간에서는 수분을 적게 공급해 주는 것이 필요하다.
[관련 특허문헌]
1. 대한민국 등록특허 제10-0750289호
2. 대한민국 등록특허 제10-1848817호
본 발명의 일 관점은, 다양한 크기의 복수의 채널들을 가짐으로써 고유량시 가습 성능을 유지하면서도 저유량시 가습 성능이 낮아서 플러딩을 방지할 수 있는 멀티 채널 중공사막을 포함하는 연료전지용 막가습기를 제공하는 것이다.
본 발명의 일 관점에 따라, 복수의 중공사막들이 수용되는 미들 케이스; 상기 미들 케이스와 결합되는 캡 케이스; 및 상기 복수의 중공사막들 단부들이 포팅되어 있는 고정부를 포함하고, 상기 중공사막들 각각의 내부에 복수의 채널들이 형성되어 있고, 상기 복수의 채널들의 내경들 중 최대 내경과 최소 내경의 차이가 30~600㎛인 것을 특징으로 하는 연료전지용 막가습기가 제공된다.
상기 중공사막들 각각은 1000~5000㎛의 외경을 가질 수 있다.
상기 복수의 채널들 각각은 300~1300㎛의 내경을 가질 수 있다.
각 중공사막의 외주면과 그것의 채널들 사이의 최단 거리들은 60~500㎛일 수 있다..
각 중공사막의 상기 복수의 채널들의 단면적들의 합은 상기 중공사막의 단면적의 40~90%일 수 있다.
본 발명에 의하면, 다양한 크기를 가진 복수의 채널들을 가진 중공사막을 연료전지용 막가습기에 적용함으로써, 저유량 구간에서는 차압으로 인해 크기가 큰 채널에만 유체가 흘러 수분 전달 효율을 낮게 함으로써 플러딩을 방지하고 고유량 구간에서는 크기가 큰 채널과 작은 채널 모두 수분 전달에 이용됨으로써 충분한 수분 전달이 가능한 효과가 있다.
또한, 중공사막에 멀티 채널을 형성함으로써 단일 채널이 형성된 중공사막에 비해 두께가 두꺼워질 수 있으므로 중공사막의 강도와 내구성이 향상될 수 있다.
도 1은 본 발명의 일 실시예에 따른 연료전지용 막가습기의 분해 사시도이다.
도 2는 본 발명의 다른 실시예에 따른 연료전지용 막가습기의 분해 사시도이다.
도 3은 본 발명의 일 실시예에 따른 중공사막의 단면도이다.
도 4는 비교예에 따른 중공사막의 단면도이다.
도 1 및 도 2에 도시된 바와 같이, 본 발명의 연료전지용 막가습기(100)는, 미들 케이스(110), 캡 케이스(120), 고정부(130), 그리고 중공사막 다발(200)을 포함한다.
미들 케이스(110)는 캡 케이스(120)와 결합하여 막가습기(100)의 외형을 형성한다. 미들 케이스(110)와 캡 케이스(120)는 폴리카보네이트 등의 경질 플라스틱이나 금속으로 이루어질 수 있다. 미들 케이스(110)와 캡 케이스(120)는, 도 1과 같이, 폭 방향 단면 형상이 원형이거나 또는, 도 2와 같이, 폭 방향 단면 형상이 다각형일 수 있다. 상기 다각형은 사각형, 정사각형, 사다리꼴, 평행사변형, 오각형, 육각형 등일 수 있으며, 상기 다각형은 모서리가 라운드진 형태일 수도 있다. 또한, 상기 원형은 타원형일 수도 있다.
미들 케이스(110)에는 제2유체가 공급되는 제2유체유입구(112)와 제2유체가 배출되는 제2유체유출구(113)가 각각 형성되어 있다.
도 1 및 도 2에서는 복수의 중공사막들(210)이 하나의 중공사막 다발(200) 형태로 미들 케이스(110) 내에 배치된 것이 예시되어 있으나, 상기 중공사막들(210)은 2 이상의 카트리지들(cartridges)에 분할 수용된 상태로 상기 미들 케이스(110) 내에 배치될 수도 있다.
캡 케이스(120)에는 유체출입구(121)가 형성되어 있다. 미들 케이스(110)의 양단에 각각 결합된 캡 케이스들(120) 중 하나에 형성된 유체출입구(121)는 제1유체유입구가 되고, 나머지 하나에 형성된 유체출입구(121)는 제1유체유출구가 된다. 제1유체유입구로서 기능하는 유체출입구(121)를 통해 유입된 제1유체는 미들 케이스(110) 내부에 수용된 중공사막들(210)의 내부 관로들[즉, 중공들(lumens)]을 통과한 후, 제1유체유출구로서 기능하는 유체출입구(121)로 빠져나가게 된다.
중공사막(210)은 나피온(Nafion), 폴리에테르이미드(polyetherimide), 폴리이미드(PI), 폴리페닐설폰(polyphenylsulfone), 폴리설폰(PS), 폴리에테르설폰(PES), 또는 이들 중 2 이상의 혼합물로 형성될 수 있다.
중공사막들(210)의 단부들은 고정부(130)에 포팅되어 있다. 상기 고정부(130)는 중공사막들(210)을 결속하면서 중공사막들(210) 사이의 갭 및 중공사막들(210)과 미들 케이스(110) 사이의 갭을 채운다. 이로써, 미들 케이스(110)의 양 단부들 각각은 고정부(130)에 의해 막히고, 그 내부에는 제2유체가 통과하는 유로가 형성된다. 고정부(130)의 재질은 공지된 바에 따른 것으로 본 명세서에서 자세한 설명은 생략한다.
도 3은 본 발명의 일 실시예에 따른 중공사막(210)의 단면도이고, 도 4는 비교예에 따른 중공사막(220)의 단면도이다.
본 발명에 의하면, 중공사막(210)의 내부에 복수의 채널들(211, 212, 213, 214)이 형성되어 있고, 복수의 상기 채널들(211, 212, 213, 214)의 내경들(D1, D2, D3, D4) 중 최대 내경(D1)과 최소 내경(D4)의 차이가 30~600㎛이다.
즉, 본 발명에 의하면, 상기 복수의 채널들(211, 212, 213, 214) 중 적어도 하나는 다른 채널(들)과 다른 크기의 내경을 갖되, 이러한 내경 차이는 30~600㎛이다.
도 3에 예시된 바와 같이, 본 발명의 일 실시예에 따른 중공사막(210)은 서로 다른 크기를 가진 4개의 채널들(211, 212, 213, 214)을 가질 수 있다. 하나의 중공사막(210)에 형성되는 채널들의 개수는 4개로 한정되지 않고, 2~12개의 채널들이 형성될 수 있다. 채널들의 개수가 달리 형성되더라도, 전술한 바와 같이, 복수의 채널들 중 적어도 하나는 다른 채널(들)과 다른 크기의 내경을 갖되, 이러한 내경 차이는 30~600㎛이다. 예를 들어, 중공사막의 복수의 채널들은 상대적으로 큰 제1 내경을 가진 2개의 채널들과 상대적으로 작은 제2 내경을 가진 2개의 채널들로 구성될 수 있고, 상기 제1 내경과 상기 제2 내경의 차이가 30~600㎛일 수 있다.
도 3에 예시된 바와 같이, 중공사막(210)의 복수의 채널들은 가장 큰 제1채널(211), 제1채널(211)보다 작은 제2채널(212), 제2채널(212)보다 작은 제3채널(213), 및 제3채널(213)보다 작은 제4채널(214)로 구성될 수 있다. 이와 같이, 채널들(211, 212, 213, 214) 모두가 서로 다른 내경을 가지도록 형성될 수 있다.
각 채널(211, 212, 213, 214)의 중심(C1, C2, C3, C4)이 중공사막(210)의 중심으로부터 동일 거리에 배열됨으로써, 상기 중심들(C1, C2, C3, C4)이 중공사막(210)의 중심과 일치하는 중심을 가진 하나의 가상원(215) 상에 배열될 수 있다. 대안적으로, 복수의 채널들(211,212,213,214)은 그 중심들(C1, C2, C3, C4)이 중공사막(210)과 동심원인 하나의 가상원(215) 상에 배열되지 않도록 상기 중공사막(210) 내에 랜덤하게 배열될 수 있다.
복수의 채널들(211, 212, 213, 214)은 중공사막(210)의 외주면과 각 채널(211, 212, 213, 214) 사이의 최단 거리들인 두께들(T1, T2, T3, T4)이 서로 동일하게 또는 상이하게 되도록 상기 중공사막(210) 내에 배열될 수 있다.
채널들(211, 212, 213, 214)의 중심들(C1, C2, C3, C4)이 중공사막(210)의 중심으로부터 동일 거리에 배열될 경우, 상기 채널들(211, 212, 213, 214)의 내경들이 최소 30㎛ 차이가 나기 때문에, 상기 두께들(T1, T2, T3, T4) 중 적어도 하나가 너무 커져서 중공사막의 가습 성능이 저하될 수 있다.
즉, 중공사막(210)의 가습 성능을 고려하여, 채널들(211, 212, 213, 214)에 각각 대응하는 두께들(T1, T2, T3, T4)이 지나치게 크지 않도록 상기 채널들(211, 212, 213, 214)이 중공사막(210) 내에 형성되는 것이 바람직하다. 예를 들어, 상기 중공사막(210)의 외주면과 채널들(211, 212, 213, 214) 사이의 최단 거리들(즉, 두께들)(T1, T2, T3, T4)은 60~500㎛일 수 있다.
또한, 채널들(211, 212, 213, 214)의 중심들(C1, C2, C3, C4)과 중공사막(210)의 중심을 각각 잇는 가상의 선분들이 서로 90도를 이루도록 상기 채널들(211, 212, 213, 214)이 중공사막(210) 내에 배열될 수 있으나, 본 발명이 이것으로 한정되는 것은 아니며, 상기 채널들(211, 212, 213, 214)이 서로 소정 간격으로 이격되게 배열되기만 한다면 상기 가상의 선분들이 서로 90도를 이루지 않을 수도 있다.
상기 중공사막(210)은 1000~5000㎛의 외경을 가질 수 있다. 복수개의 채널들(211, 212, 213, 214)을 가진 본 발명의 중공사막(210)은 단 하나의 채널만을 가진 중공사막에 비해 외경이 2배 이상 크게 형성될 수 있다.
상기 복수의 채널들(211, 212, 213, 214) 각각은 300~1300㎛의 내경(D1, D2, D3, D4)을 가질 수 있다. 중공사막(210)의 외경이 클수록 상기 채널들(211, 212, 213, 214)의 내경들(D1, D2, D3, D4)도 커질 것이다. 예를 들어, 중공사막(210)의 외경이 2300㎛일 때, 채널들(211, 212, 213, 214)은 900㎛, 800㎛, 700㎛, 및 600㎛의 내경들(D1, D2, D3, D4)을 각각 가질 수 있다.
상기 중공사막(210)의 외주면과 채널들(211, 212, 213, 214) 사이의 최단 거리들(즉, 두께들)(T1, T2, T3, T4)은 60~500㎛일 수 있다
상기 두께들(T1, T2, T3, T4) 중 적어도 하나라도 60㎛ 미만이면 압력에 의한 파손 위험이 있고, 상기 두께들(T1, T2, T3, T4) 중 적어도 하나라도이 500㎛를 초과하면 상기 중공사막(210)의 가습 성능이 저하될 수 있다.
채널들의 내경이 비교적 작고 채널들의 개수가 많은 경우, 중공사막(210)의 중심 부위에도 상기 채널들의 일부가 형성될 수 있다.
상기 복수의 채널들(211, 212, 213, 214)의 단면적들의 합은 중공사막(210)의 단면적의 40~90%일 수 있다. 중공사막(210)의 외경이 2300㎛이고 상기 채널들(211, 212, 213, 214)이 900㎛, 800㎛, 700㎛, 및 600㎛의 내경들(D1, D2, D3, D4)을 가질 경우, 상기 복수의 채널들(211, 212, 213, 214)의 단면적들의 합은 중공사막(210)의 단면적의 약 43.5%이다.
상기 단면적 비율은 상대적으로 작은 내경의 채널들의 수가 많아질수록 커질 수 있다.
이하에서는, 중공사막(210)을 제조하는 방법을 설명한다.
중공사막(210)은 방사원액을 노즐을 통해 방사하여 형성될 수 있다. 노즐은 도 3에 도시된 중공사막(210)에 대응하는 방사구멍이 형성되어 있는 것이 사용된다.
방사원액은 폴리머, 첨가제 및 용매로 구성된다.
상기 폴리머는 PVDF(polyvinylidene fluoride), 폴리아크릴로나이트릴(polyacrylonitril), 폴리아크릴로나이트릴 공중합체, 폴리술폰(polysulfone), 술폰화폴리술폰(sulfonated polysulfone), 폴리에스테르술폰(polyethersulfone), 셀룰로즈 아세테이트(cellulose acetate), 셀룰로즈트리아세테이트(cellulose triacetate), 폴리메틸메타아크릴레이트(polymethyl methacrylate) 및 이들 중 2 이상의 혼합물로 구성된 군으로부터 선택된 어느 하나일 수 있다.
상기 첨가제는 물, 메틸알콜, 에틸알콜, 에틸렌글리콜, 폴리에틸렌글리콜, 폴리프로필렌글리콜, 글리세린, 폴리비닐피롤리돈(polyvinyl pyrrolidone, PVP)류 및 이들 중 2 이상의 혼합물로 구성된 군으로부터 선택된 어느 하나일 수 있다.
상기 용매는 N-메틸-2-피롤리돈(NMP: N-methyl-2-pyrrolidone), 디메틸포름아미드(DMF:dimethyl formamide), 디메틸아세트아미드(DMAc:dimethyl acetamide), 클로로포름(chloroform), 테트라하이드로퓨란(tetrahhydrofuran) 및 이들 중 2 이상의 혼합물로 구성된 군으로부터 선택되는 어느 하나리 수 있다.
상기 방사원액을 복수의 노즐들을 통해 동시에 방사하여 중공사막들(210)의 다발(bundle)을 얻을 수 있다. 방사된 중공사막 다발은 응고된 후 세정한 다음 롤에 권취될 수 있다.
도 4에 도시된 비교예에 따른 중공사막(220)은 도 3의 중공사막(210)의 외경(D)과 동일한 외경을 갖되, 도 3의 제2채널(212)의 내경(D2)과 동일한 내경을 가진 4개의 채널들(222)이 중공사막(220)의 중심에 대해 서로 대칭적으로 배열되어 있다.
비교예의 중공사막들(220)을 이용하여 막가습기를 제조하는 경우, 외부로부터 유입되는 제1유체의 유량에 상관없이 일정한 가습 성능이 유지된다. 이 경우, 가습이 적게 필요한 저유량 구간에서도 필요 이상으로 많이 가습되기 때문에 연료전지 스택에 플러딩(flooding) 현상이 발생하는 문제가 있다.
이에 반해, 본 발명의 멀티 채널 중공사막들(210)을 이용하여 막가습기를 제조하는 경우, 멀티 채널 중공사막들(210)이 가습이 많이 필요한 고유량 구간에서는 높은 가습 성능을 유지하면서도 가습이 적게 필요한 저유량 구간에서는 그 가습 성능이 자동으로 낮아지기 때문에 플러딩 현상을 방지할 수 있다. 저유량의 경우, 차압으로 인하여 복수의 채널들 중 상대적으로 큰 채널들을 통해서만 제1유체가 흘러서 수분 교환을 하기 때문이다.
이하에서, 본 발명의 바람직한 실시예에 따른 중공사막을 적용한 막가습기를 종래예 및 비교예와 대비하여 설명한다.
[실시예]
2300㎛의 외경을 갖고, 상이한 크기의 4개의 채널들(내경: 900㎛, 800㎛, 700㎛, 600㎛)이 형성된 멀티 채널 중공사막 2500가닥의 다발을 이용하여 막가습기를 제조하였다.
[종래예]
하나의 단 하나의 채널(내경: 900㎛, 외경: 1100㎛)만이 형성된 중공사막 4000가닥의 다발을 이용하였다는 것을 제외하고 상기 실시예와 동일한 방법으로 막가습기를 제조하였다.
[비교예]
2300㎛의 외경을 갖고 동일한 크기의 4개 채널들(내경: 800㎛)이 형성된 멀티 채널 중공사막 2500가닥의 다발을 이용하였다는 것을 제외하고 상기 실시예와 동일한 방법으로 막가습기를 제조하였다.
실시예, 종래예 및 비교예의 막가습기들의 가습 성능을 다음과 같이 각각 평가하였고, 그 결과를 아래의 표 1에 나타내었다.
[가습 성능 평가]
건조 공기(유량: 1000-4000 sLPM, 온도: 80℃, 상대습도: 0~5 %RH, 절대압력: 1.8bar)와 습윤 공기(유량: 900-3600 sLPM, 온도: 80℃, 상대습도: 90 %RH, 절대압력: 1.6bar)를 막가습기의 제1 유체유입구 및 제2 유체유입구를 통해 각각 공급하여 가습을 수행하였다. 상기 건조 공기가 고유량(4000 sLPM)일 때 막가습기로부터 배출되는 가습된 공기의 이슬점(고유량 출구 이슬점) 및 상기 건조 공기가 저유량(1000 sLPM)일 때 막가습기로부터 배출되는 가습된 공기의 이슬점(저유량 출구 이슬점)을 각각 측정하였다.
고유량 출구 이슬점(℃) 저유량 출구 이슬점(℃)
종래예 50 60
비교예 50.5 59
실시예 51 39
표 1에 나타낸 바와 같이, 종래예의 경우, 고유량시 출구 이슬점이 50℃이었고 저유량시 출구 이슬점이 60℃이었다.
이슬점이 낮을수록 습도가 상대적으로 낮다는 것(즉, 가습이 상대적으로 덜 되었다는 것)을 의미한다.
실시예의 경우, 고유량시 출구 이슬점이 51℃이었고, 저유량시 출구 이슬점은 39℃이었다. 이로부터 고유량 구간에서 가습 성능은 종래와 비슷하게 유지하면서도, 저유량 구간에서는 가습 성능이 매우 낮아져서 플러딩 방지에 효과가 있음을 알 수 있다.
반면, 비교예의 경우, 고유량시 출구 이슬점이 50.5℃이었고 저유량시 출구 이슬점이 59℃이었다. 비교예는 멀티 채널이 형성되었음에도 불구하고 채널들의 크기가 서로 동일하기 때문에, 저유량 구간에서 출구 이슬점이 종래예와 유사하게 나타나는 것이다. 이로부터 비교예의 경우 저유량 구간에서 플러딩 방지 효과가 거의 없음을 알 수 있다.

Claims (5)

  1. 복수의 중공사막들이 수용되는 미들 케이스;
    상기 미들 케이스와 결합되는 캡 케이스; 및
    상기 복수의 중공사막들 단부들이 포팅되어 있는 고정부를 포함하고,
    상기 중공사막들 각각의 내부에 복수의 채널들이 형성되어 있고, 상기 복수의 채널들의 내경들 중 최대 내경과 최소 내경의 차이가 30~600㎛인 것을 특징으로 하는 연료전지용 막가습기.
  2. 제1항에 있어서,
    상기 중공사막들 각각은 1000~5000㎛의 외경을 갖는 것을 특징으로 하는 연료전지용 막가습기.
  3. 제2항에 있어서,
    상기 복수의 채널들 각각은 300~1300㎛의 내경을 갖는 것을 특징으로 하는 연료전지용 막가습기.
  4. 제1항에 있어서,
    각 중공사막의 외주면과 그것의 채널들 사이의 최단 거리들은 60~500㎛인 것을 특징으로 하는 연료전지용 막가습기.
  5. 제1항에 있어서,
    각 중공사막의 상기 복수의 채널들의 단면적들의 합은 상기 중공사막의 단면적의 40~90%인 것을 특징으로 하는 연료전지용 막가습기.
PCT/KR2019/018168 2018-12-27 2019-12-20 멀티 채널 중공사막을 포함하는 연료전지용 막가습기 WO2020138852A1 (ko)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP2021529747A JP7092946B2 (ja) 2018-12-27 2019-12-20 マルチチャンネル中空糸膜を含む燃料電池用膜加湿器
US17/417,767 US20220013797A1 (en) 2018-12-27 2019-12-20 Membrane humidifier for fuel cell, comprising multi-channel hollow fiber membranes
EP19903931.4A EP3903913A4 (en) 2018-12-27 2019-12-20 FUEL CELL MEMBRANE HUMIDIFIER INCLUDING MULTI-CHANNEL HOLLOW FIBER MEMBRANES
CN201980086478.1A CN113226522B (zh) 2018-12-27 2019-12-20 包括多通道中空纤维膜的用于燃料电池的膜加湿器

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR10-2018-0171120 2018-12-27
KR20180171120 2018-12-27

Publications (1)

Publication Number Publication Date
WO2020138852A1 true WO2020138852A1 (ko) 2020-07-02

Family

ID=71128267

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2019/018168 WO2020138852A1 (ko) 2018-12-27 2019-12-20 멀티 채널 중공사막을 포함하는 연료전지용 막가습기

Country Status (6)

Country Link
US (1) US20220013797A1 (ko)
EP (1) EP3903913A4 (ko)
JP (1) JP7092946B2 (ko)
KR (1) KR102447831B1 (ko)
CN (1) CN113226522B (ko)
WO (1) WO2020138852A1 (ko)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20230127732A (ko) 2022-02-25 2023-09-01 주식회사 씨엠피 연료 전지용 가습기 모니터링 방법 및 장치

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100750289B1 (ko) 2006-06-26 2007-08-20 한국화학연구원 다중채널을 갖는 고강도 내오염성 중공사막의 제조방법
KR20110060048A (ko) * 2009-11-30 2011-06-08 현대자동차주식회사 연료전지용 가습장치
KR20130029306A (ko) * 2011-09-14 2013-03-22 현대자동차주식회사 연료전지용 막 가습기
KR20140099753A (ko) * 2013-02-04 2014-08-13 코오롱인더스트리 주식회사 중공사막 모듈
JP2017196556A (ja) * 2016-04-26 2017-11-02 Nok株式会社 水蒸気透過膜
KR101848817B1 (ko) 2015-08-31 2018-04-16 주식회사 퓨어엔비텍 다공형 중공사막

Family Cites Families (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4134223C1 (ko) * 1991-10-16 1992-11-12 Stora Feldmuehle Ag, 4000 Duesseldorf, De
FR2776286B1 (fr) * 1998-03-20 2000-05-12 Ceramiques Tech Soc D Fibre ceramique poreuse multi-canal
JP4477730B2 (ja) * 2000-01-19 2010-06-09 本田技研工業株式会社 加湿装置
JP3430402B2 (ja) * 2000-01-19 2003-07-28 本田技研工業株式会社 燃料電池用の加湿装置
DE10110419A1 (de) * 2000-03-08 2003-10-23 Honda Motor Co Ltd Brennstoffzellensystem
JP5189719B2 (ja) * 2001-01-22 2013-04-24 本田技研工業株式会社 燃料電池システム
DE602007010505D1 (de) * 2006-10-18 2010-12-23 Gambro Lundia Ab Hohlfasermembran und verfahren zu ihrer herstellung
CN100589269C (zh) * 2006-11-01 2010-02-10 比亚迪股份有限公司 燃料电池增湿装置
KR101000650B1 (ko) * 2008-03-06 2010-12-10 기아자동차주식회사 연료전지용 가습장치
CN201220152Y (zh) * 2008-07-08 2009-04-15 天津膜天膜科技有限公司 加强型中空纤维膜丝
JP2010112568A (ja) 2008-11-04 2010-05-20 Honda Motor Co Ltd 加湿装置
KR20100125553A (ko) * 2009-05-21 2010-12-01 현대자동차주식회사 연료전지용 막 가습기
EP2507860B1 (en) * 2009-12-04 2017-10-18 Kolon Industries, Inc. Humidifier for fuel cell
KR101449115B1 (ko) 2012-08-22 2014-10-08 현대자동차주식회사 구조물 적용 연료전지용 막 가습기
JP6692291B2 (ja) * 2013-05-02 2020-05-13 ビーエーエスエフ ソシエタス・ヨーロピアBasf Se ブロックコポリマー
CN103349918B (zh) * 2013-06-19 2015-11-11 南京工业大学 一种制备多通道陶瓷中空纤维膜的方法
TWI520778B (zh) * 2015-03-31 2016-02-11 財團法人工業技術研究院 多通道的中空纖維
CN106378013B (zh) * 2016-11-10 2020-02-07 南京工业大学 一种多级孔道分子筛膜的制备方法及其应用

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100750289B1 (ko) 2006-06-26 2007-08-20 한국화학연구원 다중채널을 갖는 고강도 내오염성 중공사막의 제조방법
KR20110060048A (ko) * 2009-11-30 2011-06-08 현대자동차주식회사 연료전지용 가습장치
KR20130029306A (ko) * 2011-09-14 2013-03-22 현대자동차주식회사 연료전지용 막 가습기
KR20140099753A (ko) * 2013-02-04 2014-08-13 코오롱인더스트리 주식회사 중공사막 모듈
KR101848817B1 (ko) 2015-08-31 2018-04-16 주식회사 퓨어엔비텍 다공형 중공사막
JP2017196556A (ja) * 2016-04-26 2017-11-02 Nok株式会社 水蒸気透過膜

Also Published As

Publication number Publication date
KR20200081258A (ko) 2020-07-07
KR102447831B1 (ko) 2022-09-27
EP3903913A4 (en) 2022-05-04
CN113226522A (zh) 2021-08-06
CN113226522B (zh) 2023-03-24
US20220013797A1 (en) 2022-01-13
JP2022513637A (ja) 2022-02-09
EP3903913A1 (en) 2021-11-03
JP7092946B2 (ja) 2022-06-28

Similar Documents

Publication Publication Date Title
US11876259B2 (en) Composite hollow fiber membrane, manufacturing method therefor, hollow fiber membrane cartridge including same, and fuel cell membrane humidifier
WO2016208878A1 (ko) 중공사막 모듈
WO2019235800A1 (ko) 연료전지 막가습기
WO2014171677A1 (en) Hollow fiber module
KR20100108092A (ko) 연료전지용 가습기
KR20090013304A (ko) 중공사막 및 그 제조방법
WO2015147511A1 (ko) 중공사막 모듈
WO2021107679A1 (ko) 연료전지용 가습기의 카트리지 및 연료전지용 가습기
KR20100131631A (ko) 연료전지용 가습기
WO2019132606A1 (ko) 유체의 흐름 방향 제어가 가능한 연료전지 막가습기
WO2020138852A1 (ko) 멀티 채널 중공사막을 포함하는 연료전지용 막가습기
WO2015102374A1 (ko) 유체교환막 모듈
WO2022196963A1 (ko) 연료전지용 가습기의 카트리지 및 연료전지용 가습기
WO2022097870A1 (ko) 연료전지용 가습기의 카트리지 및 연료전지용 가습기
WO2015102377A1 (ko) 유체교환막 모듈
WO2022005089A1 (ko) 연료전지용 가습기
WO2022145791A1 (ko) 연료전지 막가습기
WO2022164067A1 (ko) 연료전지 막가습기 및 이를 포함하는 연료전지 시스템
WO2023033393A1 (ko) 막가습기용 카트리지 및 이를 포함하는 연료전지 막가습기
WO2022191557A1 (ko) 바이패스 유량 조절이 가능한 연료전지 시스템
WO2022164140A1 (ko) 연료전지 막가습기 및 이를 포함하는 연료전지 시스템
WO2022169177A1 (ko) 바이패스 유량 조절이 가능한 연료전지 시스템
WO2022191606A1 (ko) 연료전지 막가습기
WO2023033341A1 (ko) 막가습기용 카트리지 및 이를 포함하는 연료전지 막가습기
WO2022191498A1 (ko) 연료전지 막가습기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19903931

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021529747

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019903931

Country of ref document: EP

Effective date: 20210727