WO2015102374A1 - 유체교환막 모듈 - Google Patents

유체교환막 모듈 Download PDF

Info

Publication number
WO2015102374A1
WO2015102374A1 PCT/KR2014/013044 KR2014013044W WO2015102374A1 WO 2015102374 A1 WO2015102374 A1 WO 2015102374A1 KR 2014013044 W KR2014013044 W KR 2014013044W WO 2015102374 A1 WO2015102374 A1 WO 2015102374A1
Authority
WO
WIPO (PCT)
Prior art keywords
hollow fiber
fluid
fiber membrane
housing
bundle
Prior art date
Application number
PCT/KR2014/013044
Other languages
English (en)
French (fr)
Inventor
김경주
오영석
이진형
Original Assignee
코오롱인더스트리 주식회사
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 코오롱인더스트리 주식회사 filed Critical 코오롱인더스트리 주식회사
Publication of WO2015102374A1 publication Critical patent/WO2015102374A1/ko

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/022Encapsulating hollow fibres
    • B01D63/0221Encapsulating hollow fibres using a mould
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04141Humidifying by water containing exhaust gases
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/04Auxiliary arrangements, e.g. for control of pressure or for circulation of fluids
    • H01M8/04082Arrangements for control of reactant parameters, e.g. pressure or concentration
    • H01M8/04089Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants
    • H01M8/04119Arrangements for control of reactant parameters, e.g. pressure or concentration of gaseous reactants with simultaneous supply or evacuation of electrolyte; Humidifying or dehumidifying
    • H01M8/04126Humidifying
    • H01M8/04149Humidifying by diffusion, e.g. making use of membranes
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M8/00Fuel cells; Manufacture thereof
    • H01M8/02Details
    • H01M8/0289Means for holding the electrolyte
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/06External membrane module supporting or fixing means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2313/00Details relating to membrane modules or apparatus
    • B01D2313/19Specific flow restrictors
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D2315/00Details relating to the membrane module operation
    • B01D2315/22Membrane contactor
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B01PHYSICAL OR CHEMICAL PROCESSES OR APPARATUS IN GENERAL
    • B01DSEPARATION
    • B01D63/00Apparatus in general for separation processes using semi-permeable membranes
    • B01D63/02Hollow fibre modules
    • B01D63/021Manufacturing thereof
    • B01D63/022Encapsulating hollow fibres
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Definitions

  • the present invention relates to a fluid exchange membrane module, and more particularly, a fluid exchange membrane module capable of minimizing size and weight by maximizing performance by using a hollow fiber membrane of the same area by lengthening the residence time of the fluid so as to utilize the entire hollow fiber membrane evenly. It is about.
  • a fuel cell is a power generation type battery which produces electricity by combining hydrogen and oxygen. Unlike general chemical cells such as batteries and accumulators, fuel cells can continue to produce electricity as long as hydrogen and oxygen are supplied. Fuel cells have twice the efficiency of internal combustion engines due to no heat loss. In addition, pollutant emissions are low because chemical energy generated by the combination of hydrogen and oxygen is converted directly into electrical energy. Therefore, the fuel cell is not only environmentally friendly but also has an advantage of reducing anxiety about resource depletion due to increased energy consumption. Such fuel cells are classified into polymer electrolyte fuel cells (PEMFCs), phosphoric acid fuel cells (PAFCs), molten carbonate fuel cells (MCFCs), and solid oxide fuel cells, depending on the type of electrolyte used.
  • PEMFCs polymer electrolyte fuel cells
  • PAFCs phosphoric acid fuel cells
  • MCFCs molten carbonate fuel cells
  • solid oxide fuel cells depending on the type of electrolyte used.
  • SOFC sulfur-semiconductor
  • AFC alkaline fuel cell
  • Each of these fuel cells operates on essentially the same principle, but differs in the type of fuel used, operating temperature, catalyst, electrolyte, and the like.
  • the polymer electrolyte fuel cell is known to be most promising not only in small stationary power generation equipment but also in transportation systems because it can operate at a lower temperature than other fuel cells and can be miniaturized due to its high power density.
  • a method of humidifying a polymer electrolyte membrane includes 1) a bubbler humidification method in which water is supplied to a pressure vessel and a target gas is passed through a diffuser to supply moisture, and 2) the amount of water supplied for a fuel cell reaction is determined.
  • a direct injection method of supplying water directly to the gas flow pipe through the solenoid valve and 3) a humidification method of supplying water to the fluidized bed of gas using a polymer membrane.
  • a humidification membrane system for humidifying a polymer electrolyte membrane by providing water vapor to a gas supplied to the polymer electrolyte membrane by using a membrane that selectively permeates only water vapor contained in the exhaust gas is advantageous in that the humidifier can be reduced in weight and size.
  • the selective permeable membrane used in the humidification membrane system is preferably a hollow fiber membrane having a large permeation area per unit volume when forming a module. That is, when the humidifier is manufactured using the hollow fiber membrane, the high density of the hollow fiber membrane with a large contact surface area is possible, so that the humidification of the fuel cell can be sufficiently performed even with a small capacity, the use of low-cost materials is possible, and the fuel cell is discharged at a high temperature. The moisture and heat contained in the unreacted gas may be recovered and reused through a humidifier.
  • the conventional hollow fiber membrane applied module has a disadvantage that the entire hollow fiber membrane applied to the product is not fully utilized due to the asymmetry of the inlet and the outlet through which the fluid is introduced and the nonuniform flow resistance caused by the hollow fiber membrane.
  • Patent Document 1 Republic of Korea Patent Publication No. 10-2010-0131631 (Published: 2010.12.16)
  • Patent Document 2 Republic of Korea Patent Publication No. 10-2011-0063366 (published: 2011.06.10)
  • Patent Document 3 Republic of Korea Patent Publication No. 10-2011-0109814 (published: 2011.10.06)
  • Patent Document 4 Republic of Korea Patent Publication No. 10-2013-0034404 (Published: 2013.04.05)
  • An object of the present invention is to provide a fluid exchange membrane module that can be reduced in size and light weight by maximizing the performance of the hollow fiber membrane of the same area by making the entire hollow fiber membrane evenly utilized by increasing the residence time of the fluid.
  • the fluid exchange membrane module includes a housing and a bundle of hollow fiber membranes formed in the housing and integrated with a plurality of hollow fiber membranes to form a bundle, wherein a first fluid flows into the hollow fiber membrane and is spaced between the hollow fiber membrane and the housing.
  • the second fluid flows, and the space between the outside of the hollow fiber membrane bundle and the housing is provided with at least one splitting portion that changes the flow direction of the second fluid and divides the space between the outside of the hollow fiber membrane bundle and the housing.
  • the dividing portion is provided with a through hole for passing the second fluid to form a flow path.
  • the through-holes of each adjacent division are arranged in opposite directions to each other.
  • the division may be formed in a symmetrical ring shape in which the hollow fiber membrane bundle is inserted into the inner center, or in the form of an asymmetric ring in which the hollow fiber membrane bundle is inserted in the inner center.
  • the hollow fiber membrane bundle may be installed in close contact with a portion of the inner surface of the housing, and the splitting portion may be formed in a plate shape to block a space between the outer surface of the hollow fiber membrane bundle and the housing.
  • the hollow fiber membrane bundle may be inclined zigzag along the longitudinal direction.
  • the hollow fiber membrane bundles may be reduced in cross-sectional area by divisions along the longitudinal direction.
  • the housing may be circular or rectangular in cross-sectional shape.
  • the housing may consist of a housing body and a housing cap coupled to both ends of the housing body.
  • the fluid exchange membrane module may further include a potting part that fixes both ends of the hollow fiber membrane to the housing and is in airtight contact with both ends of the housing.
  • the fluid exchange membrane module may be any one selected from the group consisting of a moisture exchange module (humidification module), a heat exchange module, a gas separation module, and a water treatment module.
  • the entire residence time of the hollow fiber membrane is evenly utilized by increasing the residence time of the fluid, thereby maximizing the performance of the hollow fiber membrane of the same area, thereby miniaturizing and reducing the size.
  • FIG. 1 is a cross-sectional view showing a fluid exchange membrane module according to a first embodiment of the present invention.
  • FIG. 2 is a cross-sectional view taken along the line A-A of FIG. 1.
  • FIG 3 is an operational state diagram of the fluid exchange membrane module according to the first embodiment of the present invention.
  • FIG. 4 is a cross-sectional view of a partition portion as a fluid exchange membrane module according to a second embodiment of the present invention.
  • Fig. 5 is a cross sectional view of a partition portion as a fluid exchange membrane module according to a third embodiment of the present invention.
  • FIG. 6 is a cross-sectional view of a partition portion as a fluid exchange membrane module according to a fourth embodiment of the present invention.
  • FIG. 7 is a cross-sectional view of a partition portion as a fluid exchange membrane module according to a fifth embodiment of the present invention.
  • FIG. 8 is a cross-sectional view of a partition portion as a fluid exchange membrane module according to a sixth embodiment of the present invention.
  • FIG. 9 is a view showing a fluid exchange membrane module and its working state according to the seventh embodiment of the present invention.
  • FIG. 10 is a view showing a fluid exchange membrane module and its working state according to the eighth embodiment of the present invention.
  • FIG. 11 is a view showing a fluid exchange membrane module and its working state according to the ninth embodiment of the present invention.
  • Fluid exchange membrane module according to an embodiment of the present invention is shown as an example of a humidification module.
  • the fluid exchange membrane module of the present invention is not limited to a moisture exchange module, and may be a heat exchange module, a gas separation module, a water treatment module, or the like.
  • the fluid exchange membrane module 100 includes a housing 110, a hollow fiber membrane bundle 120, a potting part 130, and a division part 140.
  • the housing 110 forms an outer shape of the fluid exchange membrane module 100 and may be made of hard plastic or metal such as polycarbonate. As shown in FIG. 2, the housing 110 has a cylindrical shape having a circular cross section, but is not limited thereto.
  • the housing 110 may have a rectangular cross section such as a rectangle, a square, a trapezoid, a parallelogram, a pentagon, and a hexagon.
  • the square may have a rounded corner.
  • the circle may also be elliptical.
  • the first fluid inlet 111 and the first fluid outlet 112 are formed at each side of both ends of the housing 110, and the second fluid inlet 113 and the second fluid outlet are formed at each outer surface of both ends of the housing 110.
  • 114 is formed.
  • the second fluid inlet 113 is formed at the side of the first fluid outlet 112
  • the second fluid outlet 114 is formed at the side of the first fluid inlet 111.
  • the housing 110 may include a housing body and a housing cap coupled to both ends of the housing body. Since the housing consisting of the housing body and the housing cap is known in various forms, a detailed description thereof will be omitted.
  • the hollow fiber membrane bundle 120 is disposed in and fixed to the housing 110 in parallel with the longitudinal direction of the housing 110. Both ends of the hollow fiber membrane bundle 120 are coupled by the potting part 130 to be in close contact with the inner surface of the housing 110 and sealed in the inner space of the housing 110.
  • the hollow fiber membrane selectively passes moisture. Since the material and configuration of the hollow fiber membrane are well known to those skilled in the art, a detailed description thereof will be omitted herein.
  • the hollow fiber membrane bundle 120 is a plurality of hollow fiber membrane 121 is integrated.
  • the potting part 130 connects the ends of the hollow fiber membranes 121 to each other and fills the gap between the hollow fiber membranes 121.
  • the potting part 130 is adhered to the inner surface of the end of the housing 110, and the first fluid flowing in the space between the potting part 130 and the end of the housing 110, and the intermediate portion of the potting part 130 and the housing 110. Do not mix the second fluid flowing in the space between them.
  • the potting part 130 is formed by curing a liquid synthetic resin such as polyurethane, epoxy, or silicone resin. Since the pair of potting portions 130 are bonded to both ends of the housing 110, both ends of the hollow fiber membrane bundle 120 are fixed to the housing 110.
  • a plurality of partitions 140 are provided in the space between the outside of the hollow fiber membrane bundle 120 and the housing 110 to change the flow direction of the second fluid while the outside of the hollow fiber membrane bundle 120 and the housing 110. Divide the space between.
  • the first fluid may be a low humidity fluid
  • the second fluid may be a high humidity fluid, but the present invention is not limited thereto, and the first fluid may be a high humidity fluid, and the second fluid may be a low humidity fluid.
  • the partition 140 has two parts, and the hollow fiber membrane bundle 120 penetrates into an inner center thereof to form a symmetrical ring-shaped plate.
  • the through hole 141 is formed at the edge of the dividing unit 140 to form a flow path through which the second fluid passes.
  • the through hole 141 is a long hole forming an arc.
  • the through hole 141 may be formed in a form in which a plurality of holes are arranged.
  • the through holes 141 of the adjacent division parts 140 are arranged in opposite directions so that the flow direction of the second fluid is zigzag. have.
  • FIG. 3 is an operational state diagram of the fluid exchange membrane module according to the first embodiment of the present invention.
  • the working gas to be supplied to the fuel cell is introduced into one inner space S1 of the housing 110 through the first fluid inlet 111.
  • the moisture-containing humidifying gas discharged from the fuel cell is introduced into the intermediate internal space S21 of the housing 110 through the second fluid inlet 113.
  • the working gas introduced into one inner space S1 flows to the other inner space S3 of the housing 110 through the hollow portion of the hollow fiber membrane bundle 120.
  • the humidifying gas introduced into the intermediate inner space S21 flows through the outer and hollow fiber membranes 121 of the hollow fiber membrane bundle 120 and zigzags through the through-hole 141 of the partition 140, and the intermediate inner space S22. (S23) is continuously flowing.
  • the second fluid inlet 113 is formed on the side of the first fluid outlet 112
  • the second fluid outlet 114 is formed on the side of the first fluid inlet 111
  • the housing ( The moisture contained in the humidifying gas is sufficiently transmitted through the entire portion of the hollow fiber membrane 121 positioned inside the 110. That is, in the case of the working gas moving from the first fluid inlet 111 to the first fluid outlet 112, the humidity is low at the first fluid inlet 111, but moisture is continuously supplied from the humidifying gas through the hollow fiber membrane 121. Since it is supplied, the humidity increases toward the first fluid outlet 112.
  • a humidification gas having a relatively low humidity contacts the hollow fiber membrane 121 located at the first fluid inlet 111 and relatively close to the hollow fiber membrane 121 located at the first fluid outlet 112. Since the humidified gas of high humidity contacts, it is possible to achieve uniform moisture permeation over the entire hollow fiber membrane 121.
  • a plurality of dividing parts 140 are provided in the space between the outer portion of the hollow fiber membrane bundle 120 and the housing 110, and the middle inner space is divided into a plurality of pieces, and a humidifying gas (second fluid) is formed through the through hole 141.
  • FIG. 4 is a cross-sectional view of a partition portion as a fluid exchange membrane module according to a second embodiment of the present invention.
  • the housing 210, the hollow fiber membrane bundle 220, and the splitter 240 have a square cross-sectional shape.
  • the through hole 241 is formed at one side of the division part 240 having a square ring shape. Since the rest of the configuration and operation of the second embodiment is similar to the first embodiment, a detailed description thereof will be omitted.
  • Fig. 5 is a cross sectional view of a partition portion as a fluid exchange membrane module according to a third embodiment of the present invention.
  • the housing 310, the hollow fiber membrane bundle 320, and the partition 340 have a rectangular cross-sectional shape.
  • the through hole 341 is formed at a short width of the divided portion 340 having a rectangular ring shape. Since the rest of the configuration and operation of the third embodiment is similar to the first embodiment, detailed description thereof will be omitted.
  • FIG. 6 is a cross-sectional view of a partition portion as a fluid exchange membrane module according to a fourth embodiment of the present invention.
  • the housing 410, the hollow fiber membrane bundle 420, and the partition 440 have a circular cross-sectional shape, and the partition 440 has the hollow fiber membrane bundle 420 inside.
  • the through hole 441 is an arc-shaped long hole formed in the wide width of the dividing portion 440. Since the rest of the configuration and operation of the fourth embodiment is similar to the first embodiment, detailed description thereof will be omitted.
  • FIG. 7 is a cross-sectional view of a partition portion as a fluid exchange membrane module according to a fifth embodiment of the present invention.
  • the housing 510, the hollow fiber membrane bundle 520, and the divided portion 540 have a rectangular cross-sectional shape, and the hollow fiber membrane bundle 520 is a part of the inner surface of the housing 510. It is provided in close contact with the partition portion 540 is in the form of a plate to block the space between the outer surface of the hollow fiber membrane bundle 520 and the housing 510.
  • the through hole 541 is a long hole formed along the longitudinal direction of the divided portion 540.
  • the hollow fiber membrane bundle 620 and the split portion 640 are formed of a housing 610 having a circular cross-sectional shape, a part of which has an arc surface, and the hollow fiber membrane bundle 620 is formed. It is installed in close contact with a part of the inner surface of the housing 610, the partition 640 is in the form of a plate blocking the space between the outer surface of the hollow fiber membrane bundle 620 and the housing 610.
  • the through hole 641 is a long hole having an arc surface formed long along the longitudinal direction of the divided portion 640.
  • FIG. 9 is a view showing a fluid exchange membrane module and its working state according to the seventh embodiment of the present invention.
  • the hollow fiber membrane bundle 720 is inclined zigzag along the longitudinal direction of the housing 710 so that the first fluid flows zigzag along the hollow fiber membrane, and the hollow fiber membrane bundle 720
  • Three split portions 740 and 740 are formed between the potting portions 730 formed at both sides of the bottom portion, and four inner spaces are formed so that the second fluid flows in a zigzag.
  • the first fluid is introduced through the first fluid inlet 711 and discharged through the first fluid outlet 712 through the hollow fiber membrane of the hollow fiber membrane bundle 720, and the second fluid is the second fluid inlet 713. Inflows through the second fluid outlet 714 through a space between the hollow fiber membrane outside of the hollow fiber membrane bundle 720 and the inside of the housing 710.
  • the first fluid and the second fluid stay longer in the housing 710 so that the entire hollow fiber membrane is more uniformly utilized, and the mass transfer efficiency between the first fluid and the second fluid is further increased.
  • FIG. 10 is a view showing a fluid exchange membrane module and its working state according to the eighth embodiment of the present invention.
  • the hollow fiber membrane bundle 820 is reduced in cross-sectional area by the dividing portion 840 along the longitudinal direction of the housing 810 so that the first fluid contracts and expands while the hollow fiber membrane bundle ( 820 flows inside the hollow fiber membrane, and two split portions 840 are formed between the potting portions 830 formed on both sides of the hollow fiber membrane bundle 820 to form three internal spaces, thereby causing the second fluid to be zigzag. It is supposed to flow.
  • the first fluid is introduced through the first fluid inlet 811 and discharged through the first fluid outlet 812 through the hollow fiber membrane of the hollow fiber membrane bundle 820, and the second fluid is the second fluid inlet 813. Inflows through the second fluid outlet 814 through a space between the hollow fiber membrane outside of the hollow fiber membrane bundle 820 and the inside of the housing 810.
  • FIG. 11 is a view showing a fluid exchange membrane module and its working state according to the ninth embodiment of the present invention.
  • the fluid exchange membrane module 900 of the ninth embodiment an outer surface of one side of the hollow fiber membrane bundle 920 is installed in close contact with a portion of the inner surface along the longitudinal direction of the housing 910, and the hollow fiber membrane bundle 920 is divided into the longitudinal direction.
  • the cross-sectional area is reduced by the installment part 940 so that the first fluid contracts and expands to flow inside the hollow fiber membrane of the hollow fiber membrane bundle 920.
  • the first fluid is introduced through the first fluid inlet 911 and discharged through the first fluid outlet 912 through the hollow fiber membrane of the hollow fiber membrane bundle 920, and the second fluid is the second fluid inlet 913. Inflows through the second fluid outlet 914 via a space between the hollow fiber membrane outside of the hollow fiber membrane bundle 920 and the inside of the housing 910.
  • the pot was formed on both ends of the housing body, and the potting composition was injected into the space between the hollow fiber membrane bundle and the space between the hollow fiber membrane bundle and the housing body, and then cured and sealed. After removing the pot forming cap, the end of the cured hollow fiber membrane potting composition was cut so that the ends of the hollow fiber membrane bundles were exposed to the potting cut portion to form a potting portion, and then covered housing caps at both ends of the housing body.
  • a fluid exchange membrane module was prepared.
  • the pot was formed on both ends of the housing body, and the potting composition was injected into the space between the hollow fiber membrane bundle and the space between the hollow fiber membrane bundle and the housing body, and then cured and sealed. After removing the pot forming cap, the end of the cured hollow fiber membrane potting composition was cut so that the ends of the hollow fiber membrane bundles were exposed to the potting cut portion to form a potting portion, and then covered housing caps at both ends of the housing body.
  • a fluid exchange membrane module was prepared.
  • Humidification performance was measured in terms of dew point (Dew Point) by measuring the temperature and humidity of the point where the dry air is humidified, the results are shown in Table 1 below.
  • the fluid exchange membrane module prepared in the embodiment is superior to the humidification efficiency compared to the fluid exchange membrane module prepared in the comparative example.
  • the present invention is not limited to the above embodiments, and easily changed and equalized by those skilled in the art from the embodiments of the present invention. It includes all changes to the extent deemed acceptable.
  • fluid exchange membrane module 110 housing
  • first fluid inlet 112 first fluid outlet

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Sustainable Development (AREA)
  • Sustainable Energy (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Separation Using Semi-Permeable Membranes (AREA)
  • Fuel Cell (AREA)

Abstract

본 발명은 하우징과 중공사막 다발과 분할부를 포함하는 유체교환막 모듈에 관한 것이다. 중공사막 다발은 하우징에 내장되며 복수의 중공사막이 집적되어 다발을 이루고, 중공사막의 내부로 제1유체가 흐르고 중공사막과 하우징의 사이 공간으로 제2유체가 흐르면서 제1유체와 제2유체가 서로 물질교환을 한다. 분할부는 중공사막 다발의 외부와 하우징의 사이 공간에 구비되며 제2유체의 흐름방향을 바꾸는 한편 중공사막 다발의 외부와 하우징의 사이 공간을 분할하며 적어도 하나 이상 구비된다. 본 발명에 의한 유체교환막 모듈에 의하면, 유체의 체류 시간을 길게 하여 중공사막 전체가 골고루 활용되도록 함으로써 동일한 면적의 중공사막으로 성능이 극대화되어 크기가 소형화되고 경량화될 수 있다.

Description

[규칙 제26조에 의한 보정 06.02.2015] 유체교환막 모듈
본 발명은 유체교환막 모듈에 대한 것으로서, 보다 상세하게는 유체의 체류 시간을 길게 하여 중공사막 전체가 골고루 활용되도록 함으로써 동일한 면적의 중공사막으로 성능이 극대화되어 크기가 소형화되고 경량화될 수 있는 유체교환막 모듈에 관한 것이다.
연료 전지란 수소와 산소를 결합시켜 전기를 생산하는 발전(發電)형 전지이다. 연료 전지는 건전지나 축전지 등 일반 화학전지와 달리 수소와 산소가 공급되는 한 계속 전기를 생산할 수 있고, 열손실이 없어 내연기관보다 효율이 2배가량 높다는 장점이 있다. 또한, 수소와 산소의 결합에 의해 발생하는 화학 에너지를 전기 에너지로 직접 변환하기 때문에 공해물질 배출이 낮다. 따라서, 연료 전지는 환경 친화적일 뿐만 아니라 에너지 소비 증가에 따른 자원 고갈에 대한 걱정을 줄일 수 있다는 장점을 갖는다. 이러한 연료 전지는 사용되는 전해질의 종류에 따라 크게 고분자 전해질형 연료 전지(Polymer Electrolyte Membrane Fuel Cell: PEMFC), 인산형 연료 전지(PAFC), 용융 탄산염형 연료 전지(MCFC), 고체 산화물형 연료 전지(SOFC), 및 알칼리형 연료 전지(AFC) 등으로 분류할 수 있다. 이들 각각의 연료 전지는 근본적으로 동일한 원리에 의해 작동하지만 사용되는 연료의 종류, 운전 온도, 촉매, 전해질 등이 서로 다르다. 이 가운데서 고분자 전해질형 연료 전지는 다른 연료 전지에 비해 저온에서 동작한다는 점, 및 출력밀도가 커서 소형화가 가능하기 때문에 소규모 거치형 발전장비뿐만 아니라 수송 시스템에서도 가장 유망한 것으로 알려져 있다.
고분자 전해질형 연료 전지의 성능을 향상시키는데 있어서 가장 중요한 요인 중 하나는, 막전극 접합체(Membrane Electrode Assembly: MEA)의 고분자 전해질 막(Polymer Eletrolyte Membrane 또는 Proton Exchange Membrane: PEM)에 일정량 이상의 수분을 공급함으로써 함수율을 유지하도록 하는 것이다. 고분자 전해질 막이 건조되면 발전 효율이 급격히 저하되기 때문이다. 고분자 전해질 막을 가습하는 방법으로는, 1) 내압용기에 물을 채운 후 대상 기체를 확산기(diffuser)로 통과시켜 수분을 공급하는 버블러(bubbler) 가습 방식, 2) 연료 전지 반응에 필요한 공급 수분량을 계산하여 솔레노이드 밸브를 통해 가스 유동관에 직접 수분을 공급하는 직접 분사(direct injection) 방식, 및 3) 고분자 분리막을 이용하여 가스의 유동층에 수분을 공급하는 가습 막 방식 등이 있다. 이들 중에서도 배기 가스 중에 포함되는 수증기만을 선택적으로 투과시키는 막을 이용하여 수증기를 고분자 전해질 막에 공급되는 가스에 제공함으로써 고분자 전해질 막을 가습하는 가습 막 방식이 가습기를 경량화 및 소형화할 수 있다는 점에서 유리하다.
가습 막 방식에 사용되는 선택적 투과막은 모듈을 형성할 경우 단위 체적당 투과 면적이 큰 중공사막이 바람직하다. 즉, 중공사막을 이용하여 가습기를 제조할 경우 접촉 표면적이 넓은 중공사막의 고집적화가 가능하여 소용량으로도 연료 전지의 가습이 충분히 이루어질 수 있고, 저가 소재의 사용이 가능하며, 연료 전지에서 고온으로 배출되는 미반응 가스에 포함된 수분과 열을 회수하여 가습기를 통해 재사용할 수 있다는 이점을 갖는다.
그러나, 종래의 중공사막이 적용되는 모듈의 경우 유체가 유입되는 입구와 출구의 비대칭성과 중공사막에 의한 불균일한 흐름 저항으로 인하여 제품에 적용된 중공사막 전체가 충분히 활용되지 못하는 단점이 있다.
[선행기술문헌]
(특허문헌 1) 대한민국 공개특허 제10-2010-0131631호(공개일: 2010.12.16)
(특허문헌 2) 대한민국 공개특허 제10-2011-0063366호(공개일: 2011.06.10)
(특허문헌 3) 대한민국 공개특허 제10-2011-0109814호(공개일: 2011.10.06)
(특허문헌 4) 대한민국 공개특허 제10-2013-0034404호(공개일: 2013.04.05)
본 발명의 목적은 유체의 체류 시간을 길게 하여 중공사막 전체가 골고루 활용되도록 함으로써 동일한 면적의 중공사막으로 성능이 극대화되어 크기가 소형화되고 경량화될 수 있는 유체교환막 모듈을 제공하는 데 있다.
본 발명에 의한 유체교환막 모듈은 하우징과, 하우징에 내장되며 복수의 중공사막이 집적되어 다발을 이룬 중공사막 다발을 포함하고, 중공사막의 내부로 제1유체가 흐르고 중공사막과 하우징의 사이 공간으로 제2유체가 흐르며, 중공사막 다발의 외부와 하우징의 사이 공간에는 제2유체의 흐름방향을 바꾸는 한편 중공사막 다발의 외부와 하우징의 사이 공간을 분할하는 적어도 하나의 분할부가 구비된다.
분할부에는 제2유체가 통과하여 유로를 형성하는 관통홀이 구비된다. 2개 이상의 분할부가 구비된 유체교환막 모듈에서, 인접하는 각 분할부의 관통홀은 서로 반대 방향으로 배열된다.
분할부는 중공사막 다발이 내부 중앙으로 삽입되는 대칭 링 형태나, 중공사막 다발이 내부 중앙에서 치우쳐 삽입되는 비대칭 링 형태로 이루어질 수 있다. 중공사막 다발은 하우징의 내면 일부에 밀착하여 설치되고, 분할부는 중공사막 다발의 외면과 하우징의 사이 공간을 막는 판 형태로 이루어질 수도 있다.
중공사막 다발은 길이방향을 따라 지그재그 형으로 경사져 있을 수도 있다.
중공사막 다발은 길이방향을 따라 분할부에 의하여 단면적이 축소될 수 있다.
하우징은 횡단면 형상이 원형 또는 각형일 수 있다.
하우징은 하우징 몸체와, 하우징 몸체의 양단부에 결합된 하우징 캡으로 이루어 질 수 있다.
유체교환막 모듈은 중공사막의 양단부를 상기 하우징에 고정시키며, 하우징의 양단부와 기밀 가능하게 접하는 포팅부를 더 포함할 수 있다.
유체교환막 모듈은 수분 교환 모듈(가습 모듈), 열교환 모듈, 기체 분리 모듈 및 수처리 모듈로 이루어진 군에서 선택되는 어느 하나일 수 있다.
본 발명의 유체교환막 모듈에 의하면, 유체의 체류 시간을 길게 하여 중공사막 전체가 골고루 활용되도록 함으로써 동일한 면적의 중공사막으로 성능이 극대화되어 크기가 소형화되고 경량화될 수 있다.
도 1은 본 발명의 제1실시예에 의한 유체교환막 모듈을 나타내는 단면도이다.
도 2는 도 1에서 화살표 A-A선에 따른 단면도이다.
도 3은 본 발명의 제1실시예에 의한 유체교환막 모듈의 작용 상태도이다.
도 4는 본 발명의 제2실시예에 의한 유체교환막 모듈로서 분할부 부분의 단면도이다.
도 5는 본 발명의 제3실시예에 의한 유체교환막 모듈로서 분할부 부분의 단면도이다.
도 6은 본 발명의 제4실시예에 의한 유체교환막 모듈로서 분할부 부분의 단면도이다.
도 7은 본 발명의 제5실시예에 의한 유체교환막 모듈로서 분할부 부분의 단면도이다.
도 8은 본 발명의 제6실시예에 의한 유체교환막 모듈로서 분할부 부분의 단면도이다.
도 9는 본 발명의 제7실시예에 의한 유체교환막 모듈 및 그 작용 상태를 나타내는 도면이다.
도 10은 본 발명의 제8실시예에 의한 유체교환막 모듈 및 그 작용상태를 나타내는 도면이다.
도 11은 본 발명의 제9실시예에 의한 유체교환막 모듈 및 그 작용상태를 나타내는 도면이다.
이하, 본 발명이 속하는 기술 분야에서 통상의 지식을 가진 자가 용이하게 실시할 수 있도록 본 발명의 실시예에 대하여 상세히 설명한다. 그러나, 본 발명은 여러 가지 상이한 형태로 구현될 수 있으며 여기에서 설명하는 실시예에 한정되지 않는다. 본 발명의 실시예에 의한 유체교환막 모듈은 가습 모듈로 예로 들어 도시한 것이다. 본 발명의 유체교환막 모듈은 수분 교환 모듈에 한정되지 않으며, 열교환 모듈, 기체 분리 모듈 또는 수처리 모듈 등일 수 있다.
도 1은 본 발명의 제1실시예에 의한 유체교환막 모듈을 나타내는 단면도이고, 도 2는 도 1에서 화살표 A - A 선에 따른 단면도다. 도시한 바와 같이 제1실시예에 의한 유체교환막 모듈(100)은 하우징(110)과, 중공사막 다발(120)과, 포팅부(130)와, 분할부(140)를 포함한다.
하우징(110)은 유체교환막 모듈(100)의 외형을 이루며, 폴리카보네이트 등의 경질 플라스틱이나 금속으로 이루어질 수 있다. 하우징(110)은 도 2에 도시한 바와 같이 그 단면이 원형인 원통으로 되어 있으나, 이에 한정되지 않고 직사각형, 정사각형, 사다리꼴, 평행사변형, 오각형, 육각형 등의 각형 단면으로 되어 있을 수 있다. 각형은 모서리가 라운드진 형태일 수도 있다. 또한, 원형은 타원형일 수도 있다. 하우징(110)의 양단부 각 측면에는 제1유체 유입구(111)와 제1유체 배출구(112)가 형성되고, 하우징(110)의 양단부 각 외면에는 제2유체 유입구(113)와 제2유체 배출부(114)가 형성된다. 하우징(110)에서 제2유체 유입구(113)는 제1유체 배출구(112) 측에 형성되고, 제2유체 배출구(114)는 제1유체 유입구(111) 측에 형성된다.
하우징(110)은 하우징 몸체와, 하우징 몸체의 양단부에 결합되는 하우징 캡으로 이루어질 수도 있다. 하우징 몸체와 하우징 캡으로 이루어진 하우징은 다양한 형태로 공지되어 있으므로 자세한 설명은 생략한다.
중공사막 다발(120)은 하우징(110) 내에 하우징(110)의 길이방향과 평행하게 배치되어 고정된다. 중공사막 다발(120)의 양단부는 포팅부(130)에 의해 결합되어 하우징(110)의 내면에 밀착하여 하우징(110)의 내부공간에 밀봉된다. 중공사막은 수분을 선택적으로 통과시킨다. 중공사막의 재질과 구성은 당업자에게 잘 알려져 있으므로 본 명세서에서는 이에 대한 자세한 설명은 생략하기로 한다. 중공사막 다발(120)은 복수의 중공사막(121)이 집적된 것이다.
포팅부(130)는 중공사막(121)들의 단부들을 서로 연결시키며, 중공사막(121)들 사이의 공극을 메운다. 또한, 포팅부(130)는 하우징(110)의 단부 내면에 접착되어, 포팅부(130)와 하우징(110) 단부 사이의 공간에 흐르는 제1유체와 포팅부(130)와 하우징(110) 중간 사이의 공간에 흐르는 제2유체가 서로 섞이지 않도록 한다.
포팅부(130)는 폴리우레탄, 에폭시, 실리콘 수지와 같은 액상의 합성수지를 경화시켜 형성된다. 한 쌍의 포팅부(130)가 하우징(110)의 양단에 접착되므로, 중공사막 다발(120)의 양 단부가 하우징(110)에 고정된다.
분할부(140)는 중공사막 다발(120)의 외부와 하우징(110)의 사이 공간에 다수개가 구비되어, 제2유체의 흐름방향을 바꾸는 한편 중공사막 다발(120)의 외부와 하우징(110)의 사이 공간을 분할한다. 제1유체는 중공사막(121)의 내부로 흐르고 제2유체는 중공사막(121)과 하우징(110)의 사이 공간으로 흐르면서, 제1유체와 제2유체는 서로 물질교환을 하게 된다. 제1유체는 저습의 유체이고, 제2유체는 고습의 유체일 수 있으나, 본 발명은 이에 한정되는 것은 아니고 제1유체가 고습의 유체이고, 제2유체가 저습의 유체일 수 있다.
제1실시예에서 분할부(140)는 2개로 되어 있으며, 그 내부 중앙으로 중공사막 다발(120)이 관통하여 삽입되는 대칭 링 형태의 판으로 되어 있다. 분할부(140)의 가장자리에는 제2유체가 통과하여 유로를 형성하는 관통홀(141)이 형성된다. 관통홀(141)은 원호를 이루는 장공으로 되어 있다. 관통홀(141)은 다수의 구멍이 배열된 형태로 형성될 수도 있다. 2개 이상의 분할부(140)가 구비된 유체교환막 모듈에서, 인접하는 각 분할부(140)의 관통홀(141)은 서로 반대방향으로 배열되어, 제2유체의 흐름방향이 지그재그로 형성하게 되어 있다.
도 3은 본 발명의 제1실시예에 의한 유체교환막 모듈의 작용 상태도이다. 도 3의 이하 설명에서는 연료전지에 사용되는 가습 모듈로서 작동되는 상태를 예로 들어 설명한다. 도시한 바와 같이 제1실시예에 의한 유체교환막 모듈(100)에서, 연료전지로 공급될 작동기체가 제1유체 유입구(111)를 통해 하우징(110)의 일측 내부공간(S1)에 유입되는 한편 연료전지로부터 배출되는 수분 함유 가습기체가 제2유체 유입구(113)를 통해 하우징(110)의 중간 내부공간(S21)에 유입된다. 일측 내부공간(S1)에 유입된 작동기체는 중공사막 다발(120)의 중공부를 통해 하우징(110)의 타측 내부공간(S3) 측으로 유동한다. 중간 내부공간(S21)에 유입된 가습기체는 중공사막 다발(120)의 외부 및 중공사막(121)을 통해 흐르면서 분할부(140)의 관통홀(141)를 통해 지그재그로 흐르며 중간 내부공간(S22)(S23)으로 연속하여 유동하게 된다.
제1유체 유입구(111)를 통해 유입되어 중공사막 다발(120)의 중공부로 흐르는 작동기체는 건조한 상태인 반면, 제2유체 유입구(113)를 통해 하우징(110)의 중간 내부공간(S21)(S22)(S23)에 유입되어 흐르는 가습기체는 다량의 수분을 함유하고 있기 때문에 중공사막 다발(120)의 중공사막(121) 내외에서 습도 차이가 발생하게 된다. 이러한 중공사막(121) 내외의 습도 차이로 인해 가습기체의 수분이 막을 통해 중공부로 선택적으로 투과하게 되고, 중공사막(121)의 중공부를 따라 하우징(110)의 타측 내부공간(S3)로 유동하는 작동기체의 습도가 높아지게 된다.
반면, 제2유체 유입구(113)를 통해 중간 내부공간(S21)(S22)(S23)로 순차적으로 유입되어 흐르는 가습기체는 수분을 상실하게 되어 점차적으로 건조하게 되며, 이렇게 건조된 가습기체는 제2유체 배출구(114)를 통해 외부로 배출된다. 따라서, 원래의 작동기체보다 높은 습도를 갖는 작동기체를 연료전지로 공급할 수 있게 된다.
한편, 하우징(110)에서 제2유체 유입구(113)는 제1유체 배출구(112) 측에 형성되고, 제2유체 배출구(114)는 제1유체 유입구(111) 측에 형성되어 있으므로, 하우징(110)의 내부에 위치하는 중공사막(121)의 전체 부분에 걸쳐 가습기체에 함유된 수분을 충분히 투과시키게 된다. 즉, 제1유체 유입구(111)에서 제1유체 배출구(112)로 이동하는 작동기체의 경우 제1유체 유입구(111) 측에서는 그 습도가 낮으나 중공사막(121)을 통해 가습기체로부터 수분이 지속적으로 공급되기 때문에 제1유체 배출구(112) 측으로 갈수록 그 습도가 증가하게 된다. 따라서, 제1유체 유입구(111) 측에 위치하는 중공사막(121) 부분에는 상대적으로 낮은 습도의 가습기체가 접촉하고, 제1유체 배출구(112) 측에 위치하는 중공사막(121) 부분에는 상대적으로 높은 습도의 가습기체가 접촉하게 되므로 중공사막(121) 전체 부분에 걸쳐 균일한 수분 투과를 달성할 수 있게 된다.
그리고, 중공사막 다발(120)의 외부와 하우징(110)의 사이 공간에는 다수의 분할부(140)가 구비되어 중간 내부공간이 다수개로 분할되어 관통홀(141)을 통해 가습기체(제2유체)가 지그재그로 순차적으로 흐르면서 작동기체(제1유체)와 물질교환을 하므로, 가습기체(제2유체)가 유체교환막 모듈(100)에 체류하는 시간을 극대화하여 중공사막(121) 전체가 균일하게 활용되도록 하고 가습효율(물질 전달 효율)을 극대화할 수 있다.
도 4는 본 발명의 제2실시예에 의한 유체교환막 모듈로서 분할부 부분의 단면도이다. 제2실시예의 유체교환막 모듈(200)에서는 하우징(210)과 중공사막 다발(220)과 분할부(240)가 정사각 단면 형태로 되어 있다. 관통홀(241)은 정사각 링 형태의 분할부(240)의 일측에 형성된다. 제2실시예의 나머지 구성 및 작용은 제1실시예와 유사하므로 자세한 설명은 생략한다.
도 5는 본 발명의 제3실시예에 의한 유체교환막 모듈로서 분할부 부분의 단면도이다. 제3실시예의 유체교환막 모듈(300)에서는 하우징(310)과 중공사막 다발(320)과 분할부(340)가 직사각 단면 형태로 되어 있다. 관통홀(341)은 직사각 링 형태의 분할부(340)의 짧은 폭에 형성된다. 제3실시예의 나머지 구성 및 작용은 제1실시예와 유사하므로 자세한 설명은 생략한다.
도 6은 본 발명의 제4실시예에 의한 유체교환막 모듈로서 분할부 부분의 단면도이다. 제4실시예의 유체교환막 모듈(400)에서는 하우징(410)과 중공사막 다발(420)과 분할부(440)가 원형 단면 형태로 되어 있으며, 분할부(440)는 중공사막 다발(420)이 내부 중앙에서 치우쳐 관통하여 삽입되는 비대칭 링 형태로 되어 있고, 관통홀(441)은 분할부(440)의 넓은 폭에 형성된 원호상의 장공으로 되어 있다. 제4실시예의 나머지 구성 및 작용은 제1실시예와 유사하므로 자세한 설명은 생략한다.
도 7은 본 발명의 제5실시예에 의한 유체교환막 모듈로서 분할부 부분의 단면도이다. 제5실시예의 유체교환막 모듈(500)에서는 하우징(510)과 중공사막 다발(520)과 분할부(540)가 사각 단면 형태로 되어 있고, 중공사막 다발(520)은 하우징(510)의 내면 일부에 밀착하여 설치되고, 분할부(540)는 중공사막 다발(520)의 외면과 하우징(510)의 사이 공간을 막는 판 형태로 되어 있다. 관통홀(541)은 분할부(540)의 길이방향을 따라 길게 형성된 장공으로 되어 있다. 제5실시예의 나머지 구성 및 작용은 제1실시예와 유사하므로 자세한 설명은 생략한다.
도 8은 본 발명의 제6실시예에 의한 유체교환막 모듈로서 분할부 부분의 단면도이다. 제6실시예의 유체교환막 모듈(600)에서는 원형 단면 형태의 하우징(610)과, 일부가 원호면을 이룬 중공사막 다발(620)과 분할부(640)로 형성되며, 중공사막 다발(620)은 하우징(610)의 내면 일부에 밀착하여 설치되고, 분할부(640)는 중공사막 다발(620)의 외면과 하우징(610)의 사이 공간을 막는 판 형태로 되어 있다. 관통홀(641)은 분할부(640)의 길이방향을 따라 길게 형성된 원호면을 가진 장공으로 되어 있다. 제6실시예의 나머지 구성 및 작용은 제1실시예와 유사하므로 자세한 설명은 생략한다.
도 9는 본 발명의 제7실시예에 의한 유체교환막 모듈 및 그 작용 상태를 나타내는 도면이다. 제7실시예의 유체교환막 모듈(700)에서는 중공사막 다발(720)이 하우징(710)의 길이방향을 따라 지그재그 형으로 경사져 제1유체가 중공사막을 따라 지그재그로 흐르게 되어 있으며, 중공사막 다발(720)의 양측에 형성된 포팅부(730) 사이에는 3개의 분할부(740)(740)가 형성되어 4개의 내부공간이 형성되어 제2유체가 지그재그로 흐르게 되어 있다.
제1유체는 제1유체 유입구(711)을 통해 유입하여 중공사막 다발(720)의 중공사막 내부를 거쳐 제1유체 배출구(712)를 통해 배출되고, 제2유체는 제2유체 유입구(713)을 통해 유입하여 중공사막 다발(720)의 중공사막 외부와 하우징(710)의 내부 사이 공간을 거쳐 제2유체 배출구(714)를 통해 배출된다. 제7실시예에서는 제1유체와 제2유체가 하우징(710) 내에 체류하는 시간을 더욱 길게 하여 중공사막 전체가 더욱 균일하게 활용되도록 하고 제1유체와 제2유체간의 물질 전달 효율을 더욱 높인다.
도 10은 본 발명의 제8실시예에 의한 유체교환막 모듈 및 그 작용 상태를 나타내는 도면이다. 제8실시예의 유체교환막 모듈(800)에서는 중공사막 다발(820)이 하우징(810)의 길이방향을 따라 분할부(840)에 의하여 단면적이 축소되어 제1유체가 수축하고 팽창하면서 중공사막 다발(820)의 중공사막 내부를 흐르게 되어 있으며, 중공사막 다발(820)의 양측에 형성된 포팅부(830) 사이에는 2개의 분할부(840)가 형성되어 3개의 내부공간이 형성되어 제2유체가 지그재그로 흐르게 되어 있다. 제1유체는 제1유체 유입구(811)을 통해 유입하여 중공사막 다발(820)의 중공사막 내부를 거쳐 제1유체 배출구(812)을 통해 배출되고, 제2유체는 제2유체 유입구(813)를 통해 유입하여 중공사막 다발(820)의 중공사막 외부와 하우징(810)의 내부 사이 공간을 거쳐 제2유체 배출구(814)를 통해 배출된다.
도 11은 본 발명의 제9실시예에 의한 유체교환막 모듈 및 그 작용 상태를 나타내는 도면이다. 제9실시예의 유체교환막 모듈(900)에서는 중공사막 다발(920)의 일측 외면이 하우징(910)의 길이방향을 따라 내면 일부에 밀착하여 설치되고, 중공사막 다발(920)은 길이방향을 따라 분할부(940)에 의하여 단면적이 축소되어 제1유체가 수축하고 팽창하면서 중공사막 다발(920)의 중공사막 내부를 흐르게 되어 있다. 중공사막 다발(920)의 양측에 형성된 포팅부(930) 사이에는 2개의 분할부(940)가 형성되어 3개의 내부공간이 형성되고, 2개의 분할부(940)에 형성된 관통홀(941)은 서로 동일한 위치에 형성되고 중공사막 다발(920)의 확장된 부분이 제2유체의 흐름방향을 변화시키게 되어 있다. 제1유체는 제1유체 유입구(911)을 통해 유입하여 중공사막 다발(920)의 중공사막 내부를 거쳐 제1유체 배출구(912)를 통해 배출되고, 제2유체는 제2유체 유입구(913)를 통해 유입하여 중공사막 다발(920)의 중공사막 외부와 하우징(910)의 내부 사이 공간을 거쳐 제2유체 배출구(914)를 통해 배출된다.
[실시예: 유체교환막 모듈의 제조]
(비교예 1)
폴리설폰 중공사막(외경 900um, 내경 800um) 14,000개를 하나의 다발로 원통형 하우징 몸체(지름: 280mm, 길이: 300mm) 내부에 배치시켰다.
하우징 몸체 양단에 포팅부 형성용 캡을 씌우고, 중공사막 다발의 사이 공간 및 중공사막 다발과 하우징 몸체 사이 공간에 포팅용 조성물을 주입한 후, 경화시켜 실(seal)하였다. 포팅부 형성용 캡을 제거한 후, 경화된 중공사막 포팅용 조성물의 끝단을 절단하여 중공사막 다발의 끝단이 포팅부 절단부에 드러나도록 하여 포팅부를 형성한 후, 하우징 몸체의 양단부에 각각 하우징 캡을 씌워 유체교환막 모듈을 제조하였다.
(실시예 1)
폴리설폰 중공사막(외경 900um, 내경 800um) 14,000개에 도 2와 같이 대칭 링 형태의 판으로 이루어진 분할부 2개를 적절한 간격으로 끼운 후, 원통형 하우징 몸체(지름: 280mm , 길이: 300mm) 내부에 배치시키고, 분할부를 하우징 내부에 고정시켰다. 이때, 2개의 분할부의 관통홀은 서로 반대방향으로 배열되도록 하여 유체의 흐름방향이 지그재그가 되도록 하였다.
하우징 몸체 양단에 포팅부 형성용 캡을 씌우고, 중공사막 다발의 사이 공간 및 중공사막 다발과 하우징 몸체 사이 공간에 포팅용 조성물을 주입한 후, 경화시켜 실(seal)하였다. 포팅부 형성용 캡을 제거한 후, 경화된 중공사막 포팅용 조성물의 끝단을 절단하여 중공사막 다발의 끝단이 포팅부 절단부에 드러나도록 하여 포팅부를 형성한 후, 하우징 몸체의 양단부에 각각 하우징 캡을 씌워 유체교환막 모듈을 제조하였다.
[실험예: 제조된 유체교환막 모듈의 성능 측정]
실시예 및 비교예에서 제조된 유체교환막 모듈의 제1유체 유입구로 100 g/sec의 건조공기를 유입하고, 제2유체 유입구로 온도 80℃, 상대습도 60%의 고온 고습 공기를 유입하여 기체-기체 가습을 실시하였다.
가습 성능은 건조공기가 가습되어 나오는 지점의 온도와 습도를 측정하여 노점(Dew Point)으로 환산하여 측정하였고, 그 결과를 하기 표 1에 나타내었다.
표 1
구분 비교예 1 실시예 1
가습성능(℃) 41 48
상기 표 1을 참조하면, 실시예에서 제조된 유체교환막 모듈은 비교예에서 제조된 유체교환막 모듈에 비하여 가습 효율이 우수함을 알 수 있다.
이상으로 본 발명에 관한 바람직한 실시예를 설명하였으나, 본 발명은 상기 실시예에 한정되지 아니하며, 본 발명의 실시예로부터 당해 발명이 속하는 기술분야에서 통상의 지식을 가진 자에 의한 용이하게 변경되어 균등하다고 인정되는 범위의 모든 변경을 포함한다.
[부호의 설명]
100: 유체교환막 모듈 110: 하우징
111: 제1유체 유입구 112: 제1유체 배출구
113: 제2유체 유입구 114: 제2유체 배출구
120: 중공사막 다발 121: 중공사막
130: 포팅부 140: 분할부
141: 관통홀

Claims (8)

  1. 하우징과,
    상기 하우징에 내장되며 복수의 중공사막이 집적되어 다발을 이룬 중공사막 다발을 포함하고,
    상기 중공사막의 내부로 제1유체가 흐르고 상기 중공사막과 상기 하우징의 사이 공간으로 제2유체가 흐르며,
    상기 중공사막 다발의 외부와 상기 하우징의 사이 공간에는 상기 제2유체의 흐름방향을 바꾸는 한편 상기 중공사막 다발의 외부와 상기 하우징의 사이 공간을 분할하는 적어도 하나의 분할부가 구비되는 유체교환막 모듈.
  2. 제1항에 있어서,
    상기 분할부에는 상기 제2유체가 통과하여 유로를 형성하는 관통홀이 구비되는 것인 유체교환막 모듈.
  3. 제2항에 있어서,
    2개 이상의 상기 분할부가 구비된 유체교환막 모듈에서, 인접하는 각 분할부의 상기 관통홀은 서로 반대 방향으로 배열되는 것인 유체교환막 모듈.
  4. 제1항에 있어서,
    상기 분할부는 상기 중공사막 다발이 내부 중앙으로 삽입되는 대칭 링 형태인 것인 유체교환막 모듈.
  5. 제1항에 있어서,
    상기 분할부는 상기 중공사막 다발이 내부 중앙에서 치우쳐 삽입되는 비대칭 링 형태인 것인 유체교환막 모듈.
  6. 제1항에 있어서,
    상기 중공사막 다발은 상기 하우징의 내면 일부에 밀착하여 설치되고, 상기 분할부는 상기 중공사막 다발의 외면과 상기 하우징의 사이 공간을 막는 판 형태로 이루어지는 것인 유체교환막 모듈.
  7. 제1항에 있어서,
    상기 중공사막 다발은 길이방향을 따라 지그재그 형으로 경사져 있는 것인 유체교환막 모듈.
  8. 제1항에 있어서,
    상기 중공사막 다발은 길이방향을 따라 상기 분할부에 의하여 단면적이 축소되어 있는 것인 유체교환막 모듈.
PCT/KR2014/013044 2013-12-31 2014-12-30 유체교환막 모듈 WO2015102374A1 (ko)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
KR1020130167971A KR102006140B1 (ko) 2013-12-31 2013-12-31 유체교환막 모듈
KR10-2013-0167971 2013-12-31

Publications (1)

Publication Number Publication Date
WO2015102374A1 true WO2015102374A1 (ko) 2015-07-09

Family

ID=53493656

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/KR2014/013044 WO2015102374A1 (ko) 2013-12-31 2014-12-30 유체교환막 모듈

Country Status (2)

Country Link
KR (1) KR102006140B1 (ko)
WO (1) WO2015102374A1 (ko)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110854409A (zh) * 2018-08-20 2020-02-28 现代自动车株式会社 用于燃料电池的加湿器

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105597547B (zh) * 2015-12-22 2018-05-25 南京九思高科技有限公司 一种套管式膜组件
KR20220108568A (ko) * 2021-01-27 2022-08-03 코오롱인더스트리 주식회사 연료전지 막가습기 및 이를 포함하는 연료전지 시스템

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20080057772A (ko) * 2006-12-21 2008-06-25 에스케이케미칼주식회사 중공사막 모듈의 제조방법
JP4111086B2 (ja) * 2003-07-17 2008-07-02 Nok株式会社 中空糸膜モジュール及び燃料電池の加湿装置
KR20090095696A (ko) * 2008-03-06 2009-09-10 현대자동차주식회사 연료전지용 가습장치
US8272431B2 (en) * 2005-12-27 2012-09-25 Caterpillar Inc. Heat exchanger using graphite foam

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101375447B1 (ko) 2009-06-08 2014-03-17 코오롱인더스트리 주식회사 연료전지용 가습기
CN102648547B (zh) 2009-12-04 2015-06-03 可隆工业株式会社 用于燃料电池的加湿器
KR101185326B1 (ko) 2010-03-31 2012-09-26 코오롱인더스트리 주식회사 연료전지용 가습기
KR101675742B1 (ko) 2011-09-28 2016-11-15 코오롱인더스트리 주식회사 연료전지용 가습기

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4111086B2 (ja) * 2003-07-17 2008-07-02 Nok株式会社 中空糸膜モジュール及び燃料電池の加湿装置
US8272431B2 (en) * 2005-12-27 2012-09-25 Caterpillar Inc. Heat exchanger using graphite foam
KR20080057772A (ko) * 2006-12-21 2008-06-25 에스케이케미칼주식회사 중공사막 모듈의 제조방법
KR20090095696A (ko) * 2008-03-06 2009-09-10 현대자동차주식회사 연료전지용 가습장치

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110854409A (zh) * 2018-08-20 2020-02-28 现代自动车株式会社 用于燃料电池的加湿器

Also Published As

Publication number Publication date
KR102006140B1 (ko) 2019-08-01
KR20150078533A (ko) 2015-07-08

Similar Documents

Publication Publication Date Title
WO2016208878A1 (ko) 중공사막 모듈
WO2016105021A1 (ko) 중공사막 카트리지형 가습 모듈 및 그 제조방법
WO2019235800A1 (ko) 연료전지 막가습기
WO2014171677A1 (en) Hollow fiber module
WO2015147511A1 (ko) 중공사막 모듈
JP2004031134A (ja) 固体高分子型セルアセンブリ
WO2021107679A1 (ko) 연료전지용 가습기의 카트리지 및 연료전지용 가습기
KR20100131631A (ko) 연료전지용 가습기
WO2019066371A1 (ko) 조립형 카트리지 블록 및 이를 포함하는 중공사막 모듈
WO2014119976A1 (ko) 중공사막 및 이를 포함하는 중공사막 모듈
WO2022164162A1 (ko) 가습막의 훼손을 방지하는 연료전지 막가습기
WO2015102374A1 (ko) 유체교환막 모듈
WO2019132606A1 (ko) 유체의 흐름 방향 제어가 가능한 연료전지 막가습기
KR102068135B1 (ko) 중공사막 모듈
WO2021107668A1 (ko) 연료전지용 가습기
WO2022196963A1 (ko) 연료전지용 가습기의 카트리지 및 연료전지용 가습기
WO2015102377A1 (ko) 유체교환막 모듈
WO2022097870A1 (ko) 연료전지용 가습기의 카트리지 및 연료전지용 가습기
WO2022005089A1 (ko) 연료전지용 가습기
WO2020138852A1 (ko) 멀티 채널 중공사막을 포함하는 연료전지용 막가습기
WO2022145791A1 (ko) 연료전지 막가습기
WO2024144010A1 (ko) 연료전지용 막가습기
WO2022265294A1 (ko) 연료전지 막가습기
WO2023033393A1 (ko) 막가습기용 카트리지 및 이를 포함하는 연료전지 막가습기
WO2023243862A1 (ko) 연료전지용 가습기의 패킹부 및 연료전지용 가습기

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 14876561

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 14876561

Country of ref document: EP

Kind code of ref document: A1