WO2020137287A1 - 摺動布帛 - Google Patents

摺動布帛 Download PDF

Info

Publication number
WO2020137287A1
WO2020137287A1 PCT/JP2019/045820 JP2019045820W WO2020137287A1 WO 2020137287 A1 WO2020137287 A1 WO 2020137287A1 JP 2019045820 W JP2019045820 W JP 2019045820W WO 2020137287 A1 WO2020137287 A1 WO 2020137287A1
Authority
WO
WIPO (PCT)
Prior art keywords
fiber
fluororesin
dtex
sliding
fibers
Prior art date
Application number
PCT/JP2019/045820
Other languages
English (en)
French (fr)
Inventor
関山雅人
須山浩史
二ノ宮有希
原田大
Original Assignee
東レ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 東レ株式会社 filed Critical 東レ株式会社
Priority to JP2020562937A priority Critical patent/JP7414007B2/ja
Priority to EP19904809.1A priority patent/EP3904575A4/en
Priority to CN201980081478.2A priority patent/CN113166985B/zh
Priority to KR1020217018001A priority patent/KR20210101234A/ko
Priority to US17/415,222 priority patent/US20220065293A1/en
Publication of WO2020137287A1 publication Critical patent/WO2020137287A1/ja

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/18Sliding surface consisting mainly of wood or fibrous material
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D1/00Woven fabrics designed to make specified articles
    • D03D1/0035Protective fabrics
    • D03D1/0041Cut or abrasion resistant
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D13/00Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft
    • D03D13/004Woven fabrics characterised by the special disposition of the warp or weft threads, e.g. with curved weft threads, with discontinuous warp threads, with diagonal warp or weft with weave pattern being non-standard or providing special effects
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/20Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads
    • D03D15/283Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the material of the fibres or filaments constituting the yarns or threads synthetic polymer-based, e.g. polyamide or polyester fibres
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/40Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads
    • D03D15/43Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the structure of the yarns or threads with differing diameters
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/573Tensile strength
    • DTEXTILES; PAPER
    • D03WEAVING
    • D03DWOVEN FABRICS; METHODS OF WEAVING; LOOMS
    • D03D15/00Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used
    • D03D15/50Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads
    • D03D15/58Woven fabrics characterised by the material, structure or properties of the fibres, filaments, yarns, threads or other warp or weft elements used characterised by the properties of the yarns or threads characterised by the coefficients of friction
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/02Parts of sliding-contact bearings
    • F16C33/04Brasses; Bushes; Linings
    • F16C33/20Sliding surface consisting mainly of plastics
    • F16C33/201Composition of the plastic
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2321/00Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • D10B2321/04Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons
    • D10B2321/042Fibres made from polymers obtained by reactions only involving carbon-to-carbon unsaturated bonds polymers of halogenated hydrocarbons polymers of fluorinated hydrocarbons, e.g. polytetrafluoroethene [PTFE]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2331/00Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products
    • D10B2331/04Fibres made from polymers obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds, e.g. polycondensation products polyesters, e.g. polyethylene terephthalate [PET]
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2401/00Physical properties
    • D10B2401/06Load-responsive characteristics
    • D10B2401/063Load-responsive characteristics high strength
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2403/00Details of fabric structure established in the fabric forming process
    • D10B2403/01Surface features
    • D10B2403/011Dissimilar front and back faces
    • D10B2403/0114Dissimilar front and back faces with one or more yarns appearing predominantly on one face, e.g. plated or paralleled yarns
    • DTEXTILES; PAPER
    • D10INDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10BINDEXING SCHEME ASSOCIATED WITH SUBLASSES OF SECTION D, RELATING TO TEXTILES
    • D10B2505/00Industrial
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2208/00Plastics; Synthetic resins, e.g. rubbers
    • F16C2208/20Thermoplastic resins
    • F16C2208/30Fluoropolymers
    • F16C2208/32Polytetrafluorethylene [PTFE]

Definitions

  • the present invention relates to a sliding cloth having abrasion resistance.
  • Patent Document 1 discloses a multi-layered woven fabric including a sliding woven fabric containing PTFE fibers and a base woven fabric, which has an optimal base surface to have high heat resistance and wear resistance, and to be used in a high temperature environment.
  • a heat-resistant abrasion-resistant multiple woven fabric capable of exhibiting long-term slidability even when exposed to heat is disclosed.
  • Patent Document 2 discloses a woven fabric in which a fluorine fiber yarn and a high-strength fiber yarn having a tensile strength of 2 GPa or more are interwoven, and the fluorine fiber is 30% of one side surface area of either one of the fabrics. Disclosed is a fluorine fiber mixed woven fabric characterized by covering the above area. Further, in Patent Document 2, with the above structure, when the composite material bearing is used as a base material, the low friction property of the fluorine fiber is exhibited, and the fluorine fiber is not peeled off, which is excellent in durability and mechanical characteristics. It is disclosed that a composite material sliding material having the above can be provided.
  • Patent Document 3 discloses a sliding fabric having a compression amount of 25 ⁇ m or less, in which fluororesin fibers and other fibers are alternately arranged as warp yarns and/or weft yarns on at least one surface of the fabric. ..
  • the heat-resistant wear-resistant multi-layered woven fabric described in Patent Document 1 has a multi-woven structure composed of a layer made of fluorine fibers and a layer made of fibers other than the fluorine fibers. Therefore, the dimension changes in the thickness direction depending on the degree of compressive deformation and wear of the layer made of fluorine fiber, and when used as a bearing or a sliding fabric, rattling tends to occur between members, and the longer length There was still room for improvement in order to exhibit sliding performance for a certain period.
  • the fluorine fiber mixed woven fabric described in Patent Document 2 is a twill weave structure using a fluorine fiber in either the warp or weft and a high strength fiber in the other as a means for increasing the area of the fluorine fiber occupying on one side of either side. It is a technique to make a satin weave.
  • the twill weave design and satin weave design have less warp/weft crossing points than the plain weave design, the dimensional stability of the fabric is inferior, and wear resistance is not sufficient when subjected to repeated frictional forces accompanied by shearing force. There was a problem.
  • a means employing a plain weave design is also disclosed.
  • the resulting woven fabric has a problem in that it has insufficient wear durability when subjected to repeated frictional forces accompanied by shearing forces.
  • a polytetrafluoroethylene fiber having a large fineness and another fiber such as a polyphenylene sulfide fiber having a small fineness and another fiber such as carbon fiber are alternately arranged and used as a warp and a weft.
  • the fabric was excellent in that there was no rattling, but since the polytetrafluoroethylene fiber and other fibers appear in the same way as the front and back, it has a long length that is subject to repeated frictional force accompanied by shearing force for a long time. There was room for improvement in time slidability.
  • an object of the present invention is to provide a sliding cloth which has high wear resistance and can exhibit slidability for a long period of time even when subjected to repeated frictional forces accompanied by shearing forces.
  • the present invention has the following configurations.
  • a single-ply woven fabric comprising a fluororesin fiber A and at least one kind of a fiber B having a tensile strength of 10 cN/dtex or more, and an area ratio of the fluororesin fiber A occupying one surface of the cloth.
  • Fluororesin fiber A1 Fluororesin fiber A with total fineness a1 Fiber B1: Fiber B with total fineness b1 Fiber B2: Fiber B with total fineness b2 Fiber C: Fluororesin fiber A2 or fiber B3, the fluororesin fiber A2 is a fluororesin fiber A having a total fineness x2, and the fiber B3 is the fiber B having a total fineness x2. a1/b1 ⁇ 1.5...(i) b2/x2 ⁇ 1.5...(ii) (3) The sliding fabric according to (2), wherein b2/b1 ⁇ 1.5. (4) The sliding fabric according to (2) or (3), wherein a1/x2 ⁇ 1.5.
  • a sliding fabric having high wear resistance and capable of exhibiting slidability for a long period of time when subjected to repeated frictional force accompanied by shearing force.
  • FIG. 7 is a plan view of the front and back surfaces of the fabric described in Comparative Example 2.
  • FIG. 7 is a plan view of the front and back surfaces of the fabric described in Comparative Example 3.
  • FIG. 7 is a plan view of the front and back surfaces of the fabric described in Comparative Example 3.
  • the sliding fabric according to the present invention is a single-ply woven fabric comprising a fluororesin fiber A and at least one type of fiber B having a tensile strength of 10 cN/dtex or more, and the fluororesin fiber occupies one side of the fabric.
  • the ratio of the area ratio of A to the area ratio of the fluororesin fiber A on the other surface is 1.5 or more.
  • the sliding cloth of the present invention has a single flat structure.
  • the dimensional stability of the fabric is improved by using the flat design in which the warp and weft cross points are the most.
  • the strength and rigidity of the fibers constituting the cloth can be maximized, and thus a cloth having excellent wear durability can be obtained.
  • the use of a single flat structure suppresses dimensional changes in the thickness direction due to compressive deformation and abrasion compared to multi-layer structures such as double structure and triple structure, and rattling and size between members when used as bearings or sliding fabrics. The shift can be prevented.
  • Examples of the form of alternately arranging the two kinds of fibers having different fineness include, for example, when the fibers A and B are alternately arranged, three A3 and B3 are alternately arranged, and two A2 and B2 are arranged. There are two alternating arrangements of alternating A, and one alternating arrangement of A1 and B1.
  • the area where the front surface and the back surface are symmetrical is the smallest, so that the ratio of the area ratio of the fluororesin fiber A on the front surface to the back surface is increased. can do. Therefore, it is preferable that one alternating array is alternate.
  • the fluororesin fiber A is not excessively localized in the cloth, and a state in which the strength and the low frictional property are well balanced over the entire cloth can be realized, and the wear durability is improved. Can be improved.
  • the ratio of the area ratio of the fluororesin fiber A on one surface of the cloth to the area ratio of the fluororesin fiber A on the other surface is 1.5 or more.
  • the ratio of the area ratio of the fluororesin fiber A occupying one surface of the cloth to the area ratio of the fluororesin fiber A occupying the other surface of the cloth is the fluororesin fiber of the front surface and the back surface of the cloth.
  • the area ratio of the fluororesin fiber A of the cloth increases, the low friction property of the surface improves, but the adhesive property decreases. That is, in the sliding cloth, the surface having a large area ratio of the fluororesin fibers A is useful as a sliding surface, and the larger the area ratio of the fluororesin fibers A in the sliding surface is, the more preferable the other surface is. The smaller the area ratio, the more preferable. Therefore, paying attention to "the ratio of the area ratio of the fluororesin fiber A occupying one surface of the cloth to the area ratio of the fluororesin fiber A occupying the other surface" as a parameter constituting the sliding cloth, and optimizing this ratio. It has been found that excellent wear durability can be obtained by doing so is the basis of the present invention.
  • the ratio of the area ratio of the fluororesin fibers A on one surface of the fabric to the area ratio of the fluororesin fibers A on the other surface may be 1.5 or more.
  • the low frictional property due to the fluororesin fiber A on the surface and the strength due to the fiber B on the other surface are balanced, and excellent wear durability can be obtained. It is more preferably 2.0 or more, and particularly preferably 4.0 or more.
  • the ratio of the area ratio of the fluororesin fiber A occupying one surface of the cloth to the area ratio of the fluororesin fiber A occupying the other surface is within a range of 1.0 or more and less than 1.5, low friction property and strength are obtained.
  • the wear resistance cannot be obtained when the balance is lost and repeated frictional force accompanied by shearing force is applied.
  • the practical upper limit of the ratio of the area ratio of the fluororesin fiber A to one surface of the cloth and the area ratio of the fluororesin fiber A to the other surface is 100.
  • the means for adjusting the ratio of the area ratio of the fluororesin fiber A occupying one surface to the area ratio of the fluororesin fiber A occupying the other surface is a structure that achieves the above-mentioned area ratio and has a structure
  • one of the following fluororesin fibers A1 and one fiber B1 having a total fineness b1 is alternately arranged on either the warp or the weft, and the fluororesin fibers A1 and This can be realized by alternately arranging one fiber B2 and one fiber C below in a weft or warp that is orthogonal to the fiber B1 and satisfying the following formulas (i) and (ii).
  • Fluororesin fiber A1 Fluororesin fiber A with total fineness a1 Fiber B1: Fiber B with total fineness b1 Fiber B2: Fiber B with total fineness b2 Fiber C: Fluororesin fiber A2 or fiber B3, the fluororesin fiber A2 is a fluororesin fiber A having a total fineness x2, and the fiber B3 is the fiber B having a total fineness x2. a1/b1 ⁇ 1.5...(i) b2/x2 ⁇ 1.5...(ii)
  • the fiber having the larger total fineness of the fluororesin fibers A1 and A2 is designated as A1.
  • the fiber B3 is used as the fiber C, two kinds of fibers B, that is, the fiber B2 and the fiber B3 are used as the warp or the weft for arranging the fiber C.
  • the smaller total fineness is the fiber having the total fineness x2.
  • the fiber having the larger total fineness is treated as the fiber B2 having the total fineness b2.
  • the fineness ratio a1/b1 is preferably 1.5 or more, more preferably 1.5 to 30.0.
  • the ratio of the fluororesin fibers A on the front surface and the back surface can be adjusted to an appropriate range, the unevenness of the fabric can be suppressed, and the weaving property is also excellent. Can be mentioned.
  • the fineness ratio b2/x2 is preferably 1.5 or more, and more preferably within the range of 1.5 to 30.0. Above all, if it is in the range of 5.0 to 15.0, the ratio of the fluororesin fibers A on the front surface and the back surface can be adjusted to an appropriate range, the unevenness of the fabric can be suppressed, and the weaving property is also excellent. Can be mentioned.
  • the fiber C is the fluororesin fiber A2
  • the ratio of the area ratios of the fluororesin fibers A on the front surface and the back surface is further increased, which can be mentioned as a particularly preferable condition.
  • the fluororesin which is a component of the fluororesin fiber may be any fluororesin as long as it is composed of a monomer unit containing at least one fluorine atom in its main chain or side chain. Among them, those composed of monomer units having a large number of fluorine atoms are preferable.
  • the monomer unit containing at least one fluorine atom preferably contains 70 mol% or more of the repeating structural unit of the polymer, more preferably 90 mol% or more, and further preferably 95 mol% or more. ..
  • Examples of the monomer containing one or more fluorine atoms include fluorine atom-containing vinyl monomers such as tetrafluoroethylene, hexafluoropropylene, and chlorotrifluoroethylene. Among them, at least tetrafluoroethylene is preferably used.
  • fluororesin examples include polytetrafluoroethylene (PTFE), tetrafluoroethylene-hexafluoropropylene copolymer (FEP), tetrafluoroethylene-p-fluoroalkyl vinyl ether copolymer (PFA), polychlorotrifluoroethylene. (PCTFE), ethylene-tetrafluoroethylene copolymer (ETFE) and the like may be used alone or in a blend of two or more kinds.
  • PTFE polytetrafluoroethylene
  • FEP tetrafluoroethylene-hexafluoropropylene copolymer
  • PFA tetrafluoroethylene-p-fluoroalkyl vinyl ether copolymer
  • PCTFE polychlorotrifluoroethylene
  • EFE ethylene-tetrafluoroethylene copolymer
  • EFE ethylene-tetrafluoroethylene copolymer
  • the content of the tetrafluoroethylene unit is large from the viewpoint of sliding properties, and 90 mol% or more, preferably 95 mol% or more of the total amount of tetrafluoroethylene is a copolymer.
  • polytetrafluoroethylene fiber as a homopolymer of tetrafluoroethylene.
  • the form of the fluororesin fiber used in the present invention either a monofilament composed of one filament or a multifilament composed of a plurality of filaments can be used. From the viewpoint of unevenness, a multifilament is preferable.
  • the total fineness of the fluororesin fiber used in the present invention is preferably in the range of 50 to 6000 dtex.
  • the total fineness of the fluororesin fiber having a large total fineness is preferably in the range of 1000 to 6000 dtex, and more preferably in the range of 3000 to 5500 dtex.
  • the total fineness of the fluororesin fiber having a small total fineness is preferably in the range of 50 to 1000 dtex, and more preferably in the range of 400 to 900 dtex.
  • the strength of the fibers is strong, the fiber breakage during abrasion can be suppressed, and the yarn breakage during weaving can be reduced, so that the process passability is improved. If it is 6000 dtex or less, the amount of compression in the thickness direction can be reduced when a load is applied, so rattling between members can be suppressed, and long-term durability is improved.
  • the fineness ratio a1/x2 of the total fineness a1 of the fluororesin fiber having a large total fineness and the total fineness x2 of the fluororesin fiber having a small total fineness is 1 It is preferably not less than 0.5 and more preferably in the range of 1.5 to 30.0. Above all, the range of 5.0 to 15.0 is particularly preferable.
  • the fiber B is at least one kind of fiber having a tensile strength of 10 cN/dtex or more, but it is preferable that the tensile strength is 10 to 50 cN/dtex, and further, the tensile strength is 20 to 50 cN. /Dtex. Due to this, even when repeated frictional force accompanied by shearing force is applied, the rupture of the fabric can be further suppressed, and the formation of the self-lubricating film due to the abrasion of the fluororesin fiber on the surface is assisted, and therefore, more preferable conditions can be mentioned. it can.
  • the tensile elastic modulus of the fiber B constituting the present invention is preferably in the range of 20 to 800 cN/dtex. Further, when the tensile elastic modulus of the fiber B is in the range of 450 to 800 cN/dtex, the fabric structure can be maintained even when a repeated frictional force accompanied by a shearing force is applied, and particularly excellent abrasion durability is obtained. be able to. When the tensile elastic modulus of the fiber B is 20 cN/dtex or more, the dimensional stability of the cloth is improved, and the cloth having excellent wear durability can be obtained. If it is 800 cN/dtex or less, the rigidity of the fiber does not become too high, and the weavability is not impaired even when it is woven with a fluororesin fiber having low rigidity, which is preferable.
  • the elongation of the fiber B constituting the present invention is preferably 1 to 15%, more preferably 1 to 5%. Above all, if it is 1 to 3%, it is possible to reduce the dimensional change of the cloth when a frictional force is applied, so that it can be mentioned as a particularly preferable condition.
  • the elongation of the fiber B is 1% or more, yarn breakage during weaving can be reduced, so that process passability is improved.
  • the dimensional stability of the cloth is improved, and the sliding cloth can be applied to a portion where dimensional accuracy is required.
  • the type of the fiber B constituting the present invention is not particularly limited as long as it satisfies the above conditions, but examples thereof include polyparaphenylene terephthalamide, polymetaphenylene isophthalamide, polyparaphenylene benzobisoxazole (PBO), Organic fibers such as ultra high molecular weight polyethylene (UHMWPE) and liquid crystal polyester, and inorganic fibers such as glass, carbon and silicon carbide can be used, and one kind or two or more kinds can be used.
  • UHMWPE ultra high molecular weight polyethylene
  • inorganic fibers such as glass, carbon and silicon carbide
  • the form of the fiber B constituting the present invention is not particularly limited, and either a filament (long fiber) or a span (spun yarn) may be adopted, but it is a filament from the viewpoint of tensile strength and tensile rigidity. It is preferable. Furthermore, either a monofilament composed of one filament or a multifilament composed of a plurality of filaments can be used, but the multifilament is preferred from the viewpoint of weavability and surface irregularity when formed into a cloth. ..
  • the total fineness of the fiber B of the present invention is preferably in the range of 200 to 4000 dtex.
  • the total fineness of the fiber B having a large total fineness is preferably in the range of 500 to 4000 dtex, and more preferably in the range of 800 to 2000 dtex.
  • the total fineness of the fiber B having a small total fineness is preferably in the range of 200 to 1000 dtex, and more preferably in the range of 400 to 900 dtex.
  • the strength of the fibers is strong, the fiber breakage during abrasion can be suppressed, and the yarn breakage during weaving can be reduced, so that the process passability is improved.
  • it is 4000 dtex or less, the unevenness of the fabric surface is small, and the influence on the low friction property can be suppressed.
  • the total fineness b1 of the fibers B alternately arranged with the fluororesin fibers A (however, when the fluororesin fibers A are arranged in both the warp and the weft, the total fineness b1 of the fibers B alternately arranged with the fluororesin fibers A having a large fineness)
  • the fineness ratio b2/b1 of the total fineness b1) and the total fineness b2 of the fiber B orthogonal thereto is preferably 1.5 or more, and more preferably within the range of 1.5 to 30.0. Above all, the range of 5.0 to 15.0 is particularly preferable.
  • thermosetting resin examples include phenol resin, melamine resin, urea resin, unsaturated polyester resin, epoxy resin, polyurethane resin, diallyl phthalate resin, silicon resin, polyimide resin, vinyl ester.
  • thermoplastic resin such as resin or its modified resin, vinyl chloride resin, polystyrene, ABS resin, polyethylene, polypropylene, fluororesin, polyamide resin, polyacetal resin, polycarbonate resin, polyester, polyamide, etc., and thermoplastic polyurethane
  • a synthetic rubber such as butadiene rubber, nitrile rubber, neoprene, polyester, or an elastomer can be preferably used.
  • resins mainly composed of phenol resin and polyvinyl butyral resin, unsaturated polyester resins, vinyl ester resins, polyolefin resins such as polyethylene and polypropylene, and polyester resins include impact resistance, dimensional stability, strength, price, etc. Can be preferably used.
  • the thermosetting resin and the thermoplastic resin may contain various additives which are usually used industrially for the purpose, use, productivity in the manufacturing process or processing process or improvement of properties.
  • a modifier, a plasticizer, a filler, a release agent, a colorant, a diluent and the like can be contained.
  • the term "main component” as used herein means the component having the largest weight ratio among the components excluding the solvent, and in the case of a resin containing a phenol resin and a polyvinyl butyral resin as main components, these two types of resins are It means that the weight ratio is first, second and largest (in no particular order).
  • thermosetting resin As a method of impregnating the sliding cloth with a resin, when a thermosetting resin is used, the thermosetting resin is dissolved in a solvent to prepare a varnish, and knife coating, roll coating, comma coating, and gravure are performed. A method of impregnating and coating a cloth by a coating process or the like is generally used. When a thermoplastic resin is used, melt extrusion lamination or the like is generally used.
  • a lubricant or the like can be added to the sliding cloth of the present invention as needed.
  • the type of lubricant is not particularly limited, but a silicon-based lubricant or a fluorine-based lubricant is preferable.
  • the sliding fabric of the present invention thus obtained has a single flat structure with many intersections of warp and weft, it suppresses the strain of the fabric due to an external force and the stress concentration accompanying it, and improves the strength and rigidity of the fibers constituting the fabric. Since it can be exerted to the maximum extent, a fabric having excellent wear durability can be obtained.
  • by optimizing the configuration of the fluororesin fiber A and the fiber B it is possible to achieve both low friction property of the sliding surface and fabric strength, and high even when subjected to repeated frictional force accompanied by shearing force. A sliding cloth exhibiting sliding durability can be obtained.
  • the sliding fabric of the present invention can exhibit high sliding durability in applications where it has been difficult to use for a long period of time because it receives repeated frictional forces accompanied by shearing forces, and is extremely industrially practical. It can also be used for highly versatile applications. Above all, it is preferably used for a cable cover for a robot arm and a bearing member. Since the cable cover for a robot arm using the sliding fabric of the present invention at least in part thereof has low friction and fabric strength, it does not break early even if it rubs against a part of the device. The product life can be improved.
  • the bearing member using the sliding fabric of the present invention at least in part thereof has both the low torque of the bearing and the high adhesiveness with the base material by optimizing the fluororesin fiber ratio of the front surface and the back surface.
  • it since it is a single-ply woven fabric having high dimensional stability, it has less rattling and can form a sliding portion with high dimensional accuracy.
  • the method of measuring various characteristics used in this example is as follows.
  • Fineness The fineness of the fiber was measured according to JIS L1013:2010 (chemical fiber filament yarn test method).
  • Fineness ratio T L /T S (3)
  • Tensile Strength of Fiber The breaking strength was measured according to JIS L1013:2010 (chemical fiber filament yarn test method).
  • Fiber Elongation was measured according to JIS L1013:2010 (chemical fiber filament yarn test method).
  • Fabric Thickness The fabric thickness was measured according to JIS L1013:2010 (textile and knit fabric test method).
  • the woven fabric was sampled in a length of 30 mm and a width of 30 mm, and placed on a POM resin plate having the same size and a thickness of 2 mm and fixed to a sample holder. ..
  • the mating material is made of S45C and has a hollow cylindrical surface with an outer diameter of 25.6 mm, an inner diameter of 20 mm, and a length of 15 mm, which is polished with sandper and measured with a roughness meter (MJTOYO SJ-201). A counterpart material in the range of 8 ⁇ mm ⁇ 0.1 RA was used.
  • MODEL:EFM-III-EN manufactured by ORIENTEC Co., Ltd. was used to perform a test at a friction load of 2 MPa and a friction speed of 200 mm/sec.
  • the dynamic torque became stable, the dynamic friction coefficient of the stable portion was calculated.
  • the warp includes a PTFE fiber having a total fineness of 440 dtex, a single yarn number of 60 filaments, and a total fineness of 850 dtex, a single yarn number of 144 filaments, a tensile strength of 24 cN/dtex, a tensile elastic modulus of 690 cN/dtex, and a liquid crystal polyester fiber having an elongation of 2.8%.
  • the weft yarn has a total fineness of 5320 dtex, the PTFE fiber of 240 filaments and the total fineness of 425 dtex, the single yarn number of 72 filaments, the tensile strength of 24 cN/dtex, the tensile elastic modulus of 690 cN/ Liquid crystal polyester fibers having dtex and elongation of 2.8% were alternately arranged at 1 (piece): 1 (piece), and a single plain fabric was manufactured by a loom. After that, scouring was performed in a scouring tank at 80° C., and the temperature was set at 200° C.
  • 1 is a plan view of the front surface and the back surface of the cloth obtained above, and the surface corresponding to the sliding surface has a large total fineness “fluorine resin fiber A1 used for weft” 1 and a small total fineness “ The fluororesin fiber A2"2 used for the warp is exposed more, and on the back side, the "fiber B1 used for the weft” 3 having a small total fineness and the "fiber B2 used for the warp” 4 having a large total fineness are more exposed. It is shown to be an exposed fabric.
  • Table 1 summarizes the weaving density, thickness, area ratio of the fluororesin fibers A on the front surface and the back surface of the woven fabric, the ratio of the area ratios, the coefficient of dynamic friction, the wear durability, and the rattling.
  • Example 2 Polytetraphenylene terephthalamide fiber with a total fineness of 440 dtex for warp, a PTFE fiber with 60 filaments per filament, and a total fineness of 850 dtex, 144 filaments per filament, tensile strength 20 cN/dtex, tensile elastic modulus 490 cN/dtex, elongation 3.6%. And (1) are alternately arranged, and the weft has a total fineness of 5320 dtex, a PTFE fiber having 240 filaments and a total fineness of 425 dtex, 72 filaments, a tensile strength of 20 cN/dtex, a tensile elasticity.
  • Polyparaphenylene terephthalamide fibers having a rate of 490 cN/dtex and an elongation of 3.6% were alternately arranged at 1 (piece): 1 (piece), and a single-ply woven fabric was produced by a loom. After that, scouring was performed in a scouring tank at 80° C., and the temperature was set at 200° C.
  • Table 1 summarizes the weaving density, thickness, area ratio of the fluororesin fibers A on the front surface and the back surface of the woven fabric, the ratio of the area ratios, the coefficient of dynamic friction, the wear durability, and the rattling.
  • the warp includes a PTFE fiber having a total fineness of 440 dtex and a single yarn number of 60 filaments, and a total fineness of 850 dtex, a single yarn number of 144 filaments, a tensile strength of 8.0 cN/dtex, a tensile elastic modulus of 115 cN/dtex, and an elongation of 13.0% polyester fiber.
  • the weft yarn has a total fineness of 5320 dtex, the PTFE fiber of 240 filaments and the total fineness of 425 dtex, the single yarn number of 72 filaments, the tensile strength of 8.0 cN/dtex, the tensile elasticity.
  • a polyester fiber having a rate of 115 cN/dtex and an elongation of 13.0% was alternately arranged at 1 (piece): 1 (piece), and a single-ply woven fabric was produced by a loom. After that, scouring was performed in a scouring tank at 80° C., and the temperature was set at 200° C.
  • Table 1 summarizes the weaving density, thickness, area ratio of the fluororesin fibers A on the front surface and the back surface of the woven fabric, the ratio of the area ratios, the coefficient of dynamic friction, the wear durability, and the rattling.
  • the warp includes a PTFE fiber having a total fineness of 440 dtex, a single yarn number of 60 filaments, and a total fineness of 850 dtex, a single yarn number of 144 filaments, a tensile strength of 24 cN/dtex, a tensile elastic modulus of 690 cN/dtex, and a liquid crystal polyester fiber having an elongation of 2.8%.
  • a weft yarn has a total fineness of 2660 dtex, a PTFE fiber having 120 filaments and a total fineness of 425 dtex, a single yarn number of 72 filaments, a tensile strength of 24 cN/dtex, a tensile elastic modulus of 690 cN/ Liquid crystal polyester fibers having dtex and elongation of 2.8% were alternately arranged at 1 (piece): 1 (piece), and a single plain fabric was manufactured by a loom. After that, scouring was performed in a scouring tank at 80° C., and the temperature was set at 200° C.
  • Table 1 summarizes the weaving density, thickness, area ratio of the fluororesin fibers A on the front surface and the back surface of the woven fabric, the ratio of the area ratios, the coefficient of dynamic friction, the wear durability, and the rattling.
  • the warp includes a PTFE fiber having a total fineness of 440 dtex, a single yarn number of 60 filaments, and a total fineness of 425 dtex, a single yarn number of 72 filaments, a tensile strength of 24 cN/dtex, a tensile elastic modulus of 690 cN/dtex, and a liquid crystal polyester fiber having an elongation of 2.8%.
  • 1 (pieces): 1 (pieces) are alternately arranged, and the weft has a total fineness of 1330 dtex, a PTFE fiber having 60 filaments and a total fineness of 425 dtex, 72 filaments, a tensile strength of 24 cN/dtex, a tensile elastic modulus of 690 cN/ Liquid crystal polyester fibers having dtex and elongation of 2.8% were alternately arranged at 1 (piece): 1 (piece), and a single plain fabric was manufactured by a loom. After that, scouring was performed in a scouring tank at 80° C., and the temperature was set at 200° C.
  • Table 1 summarizes the weaving density, thickness, area ratio of the fluororesin fibers A on the front surface and the back surface of the woven fabric, the ratio of the area ratios, the coefficient of dynamic friction, the wear durability, and the rattling.
  • the warp includes a PTFE fiber having a total fineness of 440 dtex, a single yarn number of 60 filaments, and a total fineness of 425 dtex, a single yarn number of 72 filaments, a tensile strength of 24 cN/dtex, a tensile elastic modulus of 690 cN/dtex, and a liquid crystal polyester fiber having an elongation of 2.8%.
  • a weft yarn has a total fineness of 880 dtex, a PTFE fiber of 60 filaments and a total fineness of 425 dtex, a single yarn number of 72 filaments, a tensile strength of 24 cN/dtex, a tensile elastic modulus of 690 cN/ Liquid crystal polyester fibers having dtex and elongation of 2.8% were alternately arranged at 1 (piece): 1 (piece), and a single plain fabric was manufactured by a loom. After that, scouring was performed in a scouring tank at 80° C., and the temperature was set at 200° C.
  • Table 1 summarizes the weaving density, thickness, area ratio of the fluororesin fibers A on the front surface and the back surface of the woven fabric, the ratio of the area ratios, the coefficient of dynamic friction, the wear durability, and the rattling.
  • the warp and weft have a total fineness of 440 dtex, a PTFE fiber having 60 filaments and a total fineness of 425 dtex, 72 filaments per filament, a tensile strength of 24 cN/dtex, a tensile elastic modulus of 690 cN/dtex and an elongation of 2.8%, and a liquid crystal polyester fiber.
  • FIG. 2 is a plan view of the front surface and the back surface of the cloth obtained above, and the total exposure of “the fluororesin fiber A1 used for the weft” and “the fluororesin fiber A2 used for the warp” on the front surface and the back surface. It is shown that the area and the total area of exposure of “fiber B1 used for weft” 3 and “fiber B2 used for warp” 4 were about the same.
  • Table 1 summarizes the weaving density, thickness, area ratio of the fluororesin fibers A on the front surface and the back surface of the woven fabric, the ratio of the area ratios, the coefficient of dynamic friction, the wear durability, and the rattling.
  • Comparative Example 3 A liquid crystal polyester fiber having a total fineness of 425 dtex, 72 filaments per filament, a tensile strength of 24 cN/dtex, a tensile elastic modulus of 690 cN/dtex, and an elongation of 2.8% is used for the warp, and a weft yarn has a total fineness of 440 dtex and a PTFE of 60 filaments.
  • a single-ply woven fabric was produced using a fiber on a loom. After that, scouring was performed in a scouring tank at 80° C., and the temperature was set at 200° C.
  • Table 2 summarizes the weaving density, thickness, area ratio of the fluororesin fibers A on the front and back surfaces, the area ratio, dynamic friction coefficient, wear durability, and rattling of this woven fabric.
  • FIG. 3 is a plan view of the front surface and the back surface of the cloth obtained above, and the total exposure of “the fluororesin fiber A1 used for the weft” and “the fluororesin fiber A2 used for the warp” on the front surface and the back surface. It is shown that the area and the total area of exposure of “fiber B1 used for weft” 3 and “fiber B2 used for warp” 4 were about the same.
  • Comparative Example 4 A liquid crystal polyester fiber having a total fineness of 425 dtex, 72 filaments per filament, a tensile strength of 24 cN/dtex, a tensile modulus of 690 cN/dtex, and an elongation of 2.8% is used for the warp, and the weft has a total fineness of 5320 dtex and a PTFE of 240 filaments.
  • a single-ply woven fabric was produced using a fiber on a loom. After that, scouring was performed in a scouring tank at 80° C., and the temperature was set at 200° C.
  • Table 2 summarizes the weaving density, thickness, area ratio of the fluororesin fibers A on the front and back surfaces, the area ratio, dynamic friction coefficient, wear durability, and rattling of this woven fabric.
  • Comparative Example 5 A liquid crystal polyester fiber having a total fineness of 425 dtex, 72 filaments per filament, a tensile strength of 24 cN/dtex, a tensile elastic modulus of 690 cN/dtex, and an elongation of 2.8% is used for the warp, and a weft yarn has a total fineness of 440 dtex and a PTFE of 60 filaments.
  • a single 1/3 twill fabric was produced on the loom using the fibers. After that, scouring was performed in a scouring tank at 80° C., and the temperature was set at 200° C.
  • Table 2 summarizes the weaving density, thickness, area ratio of the fluororesin fibers A on the front and back surfaces, the area ratio, dynamic friction coefficient, wear durability, and rattling of this woven fabric.
  • the front surface is a plain weave made of PTFE fiber with a total fineness of 440 dtex for warp and weft, and the number of single filament is 60 filaments, the back surface is a total fineness of 425 dtex for warp and weft, 72 filaments per filament, tensile strength 24 cN/dtex, tensile elastic modulus 690 cN/dtex.
  • a double woven fabric which is a plain woven fabric using liquid crystal polyester fiber having an elongation of 2.8%, was manufactured by a loom. After that, scouring was performed in a scouring tank at 80° C., and the temperature was set at 200° C.
  • Table 2 summarizes the weaving density, thickness, area ratio of the fluororesin fibers A on the front and back surfaces, the area ratio, dynamic friction coefficient, wear durability, and rattling of this woven fabric.
  • Comparative Example 7 For the warp and weft, a PTFE fiber having a total fineness of 440 dtex and a single filament of 60 filaments and a total fineness of 220 dtex, a single filament of 36 filaments, a tensile strength of 5 cN/dtex, a tensile elastic modulus of 40 cN/dtex, and a PPS fiber having an elongation of 30% are used.
  • Books One (book) was alternately arranged, and a single plain fabric was manufactured by a loom. After that, scouring was performed in a scouring tank at 80° C., and the temperature was set at 200° C.
  • Table 2 summarizes the weaving density, thickness, area ratio of the fluororesin fibers A on the front and back surfaces, the area ratio, dynamic friction coefficient, wear durability, and rattling of this woven fabric.
  • Comparative Example 8 For the warp and the weft, a PTFE fiber having a total fineness of 440 dtex, a single filament of 60 filaments, and a total fineness of 40 dtex, a single filament of 750 filaments, a tensile strength of 20 cN/dtex, a tensile elastic modulus of 1300 cN/dtex, and an elongation of 1% are used.
  • Books 4 (books) were alternately arranged, and a single flat fabric was manufactured by a loom. After that, scouring was performed in a scouring tank at 80° C., and the temperature was set at 200° C.
  • Table 2 summarizes the weaving density, thickness, area ratio of the fluororesin fibers A on the front and back surfaces, the area ratio, dynamic friction coefficient, wear durability, and rattling of this woven fabric.
  • Fluororesin fiber A1 used for weft 2 Fluororesin fiber A2 used for warp 3: Fiber B1 used for weft 4: Fiber B2 used for warp

Landscapes

  • Engineering & Computer Science (AREA)
  • Textile Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Woven Fabrics (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

本発明は耐摩耗性が高く、せん断力を伴う繰り返しの摩擦力を受けた場合でも、長期間摺動性を発揮することができる摺動布帛が提供するものである。本発明は、フッ素樹脂繊維Aと、引張強度が10cN/dtex以上の少なくとも1種類以上の繊維Bを用いてなる一重平織物であり、前記布帛の一方の面に占めるフッ素樹脂繊維Aの面積率と他方の面に占めるフッ素樹脂繊維Aの面積率の比が1.5以上である摺動布帛、それを用いてなるロボットアーム用ケーブルカバーおよびベアリング部材である。

Description

摺動布帛
本発明は、耐摩耗性を有する摺動布帛に関する。
従来からフッ素樹脂の低摩擦係数を生かし、摺動部材の表層にラミネートやコーティングされて使用されている。しかしながら、フッ素樹脂のラミネートやコーティングではフッ素樹脂膜が薄く、かつ非接着性のため剥がれやすいので、長期的に摺動性を維持するためにはラミネートやコーティングを繰り返す必要があった。このような欠点を解消するためにフッ素樹脂を繊維化し、織り編み物や不織布として摺動部材の表面に配置させることで摩擦耐久性を向上させ、さらに他素材と接着しやすい織り編み物と複合してより強固に接着する摺動布帛が開発されている。
 例えば、特許文献1には、PTFE繊維を含んだ摺動織物とベース織物からなる多重織物であって、ベース面を最適な構成とすることで、耐熱性と耐摩耗性が高く、高温環境下に曝された場合でも長期摺動性を発揮することができる耐熱摩耗性多重織物が開示されている。
 さらにせん断力を伴う繰り返しの摩擦力を受けた場合でも摩耗耐久性を有する摺動布帛を得るため、フッ素樹脂繊維と高強度繊維からなる摺動布帛が開発されている。
 例えば、特許文献2には、フッ素繊維糸条と、引張強度が2GPa以上である高強度繊維糸条とが交織された織物であって、フッ素繊維が織物のいずれか一方の片面面積の30%以上の面積を被覆していることを特徴とするフッ素繊維交織織物が開示されている。そして特許文献2には、さらに上記構成により、複合材料軸受けの基材とした際にフッ素繊維の低摩擦性が発揮され、かつ、フッ素繊維が剥がれることがなく、優れた耐久性、機械的特性を有する複合材料摺動材を提供できることが開示されている。
 特許文献3には、布帛の少なくとも片面において、タテ糸および/またはヨコ糸として、フッ素樹脂繊維と他の繊維とが交互に配置された、圧縮量が25μm以下の摺動布帛が開示されている。
特許第6398189号公報 特開2005-220486号公報 国際公開第2018/074207号
 しかしながら上記特許文献1に記載の耐熱摩耗性多重織物は、フッ素繊維からなる層とフッ素繊維以外の繊維からなる層からなる多重織組織である。そのため、フッ素繊維からなる層の圧縮変形や摩耗の程度によっては厚さ方向に寸法が変化し、ベアリングや摺動布帛として用いる場合には部材間でガタツキが発生しやすくなる傾向にあり、より長期間摺動性を発揮させるには、いまだ改善の余地あった。
 さらに特許文献2に記載のフッ素繊維交織織物は、いずれか一方の片面に占めるフッ素繊維の面積を増加させる手段として、経糸または緯糸のいずれかにフッ素繊維、他方に高強度繊維を用いた綾織組織や朱子織組織とする技術である。しかし、綾織り組織や朱子織組織は平織組織と比べ経糸/緯糸の交錯点が少なく、織物の寸法安定性に劣り、せん断力を伴う繰り返しの摩擦力を受けた場合の摩耗耐久性が十分でないという問題があった。一方、平織組織を採用した手段も開示されている。しかし、その場合、表面のフッ素繊維の被覆率を上げるためには高強度繊維の比率を下げる必要があり、織物の強度が低下する。その結果得られた織物はせん断力を伴う繰り返しの摩擦力を受けた場合の摩耗耐久性が十分でないという問題があった。
 特許文献3に具体的に開示された、繊度の大きいポリテトラフルオロエチレン繊維と繊度の小さいポリフェニレンスルフィド繊維や炭素繊維等の他の繊維を交互に配列して経糸、緯糸に用いた一重平織物は、ガタツキがない点で優れた布帛であったが、表裏同様にポリテトラフルオロエチレン繊維と他の繊維が出現するものであるため、長時間、せん断力を伴う繰り返しの摩擦力を受けるような長時間摺動性については、改善の余地があった。
 よって本発明は耐摩耗性が高く、せん断力を伴う繰り返しの摩擦力を受けた場合でも、長期間摺動性を発揮することができる摺動布帛を提供することを課題とする。
 かかる課題を解決するため本発明は、次の構成を有する。
(1)フッ素樹脂繊維Aと、引張強度が10cN/dtex以上の少なくとも1種類以上の繊維Bを用いてなる一重平織物であり、前記布帛の一方の面に占めるフッ素樹脂繊維Aの面積率と他方の面に占めるフッ素樹脂繊維Aの面積率の比が1.5以上である摺動布帛。
(2)経糸または緯糸のいずれか一方に下記フッ素樹脂繊維A1と下記繊維B1を1本交互に配し、前記フッ素樹脂繊維A1および前記繊維B1に直交する緯糸または経糸に下記繊維B2と、下記繊維Cを一本交互に配し、かつ下記式(i)、(ii)を満たす(1)に記載の摺動布帛。
フッ素樹脂繊維A1:総繊度a1のフッ素樹脂繊維A
繊維B1:総繊度b1の繊維B
繊維B2:総繊度b2の繊維B
繊維C:フッ素樹脂繊維A2または繊維B3であり、前記フッ素樹脂繊維A2は総繊度x2のフッ素樹脂繊維Aであり、繊維B3は総繊度x2の前記繊維Bである。
a1/b1≧1.5・・(i)
b2/x2≧1.5・・(ii)
(3)b2/b1≧1.5である(2)に記載の摺動布帛。
(4)a1/x2≧1.5である(2)または(3)に記載の摺動布帛。
(5)前記繊維Cがフッ素樹脂繊維A2である(2)~(4)のいずれかに記載の摺動布帛。
(6)フッ素樹脂繊維Aがポリテトラフルオロエチレン樹脂からなる、(1)~(5)のいずれかに記載の摺動布帛。
(7)前記繊維Bが引張強度20~50cN/dtexの繊維であることを特徴とする、(1)~(6)のいずれかに記載の摺動布帛。
(8)前記繊維Bが引張弾性率450~800cN/dtexの繊維であることを特徴とする、(1)~(7)のいずれかに記載の摺動布帛。
(9)前記繊維Bが有機繊維であることを特徴とする、(1)~(8)のいずれかに記載の摺動布帛。
(10)前記繊維Bが液晶ポリエステル繊維であることを特徴とする(1)~(9)のいずれかに記載の摺動布帛。
(11)(1)~(10)のいずれかに記載の摺動布帛を少なくとも一部に使用する、ロボットアーム用ケーブルカバー。 
(12)(1)~(10)のいずれかに記載の摺動布帛を少なくとも一部に使用する、ベアリング部材。
 本発明によれば、耐摩耗性が高く、せん断力を伴う繰り返しの摩擦力を受けた場合で、長期間摺動性を発揮することができる摺動布帛が提供される。
本発明の一実施態様に係る、実施例1に記載の布帛の表面および裏面の平面図である。 比較例2に記載の布帛の表面および裏面の平面図である。 比較例3に記載の布帛の表面および裏面の平面図である。
 本発明による摺動布帛は、フッ素樹脂繊維Aと、引張強度が10cN/dtex以上の少なくとも1種類以上の繊維Bを用いてなる一重平織物であり、前記布帛の一方の面に占めるフッ素樹脂繊維Aの面積率と他方の面に占めるフッ素樹脂繊維Aの面積率の比が1.5以上であることを特徴とする。
 <布帛設計>
 本発明の摺動布帛は、一重平組織である。経糸と緯糸の交錯点が最も多い平組織とすることで、布帛の寸法安定性が向上する。その結果、せん断力を伴う繰り返しの摩擦力を受けた場合でも、布帛を構成する繊維の強度や剛性を最大限発揮することができるため、摩耗耐久性の優れた布帛が得られる。さらに一重平組織とすることで、二重組織や三重組織といった多層組織と比べ圧縮変形や摩損による厚さ方向の寸法変化を抑制し、ベアリングや摺動布帛として用いる場合の部材間のガタツキや寸法ずれを防止することができる。
 さらに一重平組織の中でも、経糸および緯糸のいずれにも、繊度の異なる2種類の繊維を交互配列する組織であることが好ましい。このような組織とすることで、フッ素樹脂繊維Aの面積率と他方の面に占めるフッ素樹脂繊維Aの面積率を制御することが容易となる。
 前記繊度の異なる2種類の繊維を交互配列する際の形態としては、例えば繊維Aと繊維Bを交互配列するとき、A3本とB3本を交互に配列する3本交互や、A2本とB2本を交互に配列する2本交互、A1本とB1本を交互に配列する1本交互などがある。中でもA1本とB1本を交互に配列する1本交互に配置する形態では、表面と裏面が対称となる領域が最も小さくなるため、表面と裏面におけるフッ素樹脂繊維Aの面積率の比をより大きくすることができる。よって交互配列は1本交互であることが好ましい。また1本交互とした場合には、フッ素樹脂繊維Aが布帛中に過度に局在化することがなく、布帛全体にわたって強度と低摩擦性のバランスがとれた状態を実現でき、摩耗耐久性を向上することができる。
 本発明の摺動布帛は、布帛の一方の面に占めるフッ素樹脂繊維Aの面積率と他方の面に占めるフッ素樹脂繊維Aの面積率の比が1.5以上である。ここでいうフッ素樹脂繊維Aの面積率とは、布帛の表面をマイクロスコープにより撮影した際に、撮影面積αに占めるフッ素樹脂繊維Aが占める面積βの割合を意味し、以下の式で求められる。
フッ素樹脂繊維Aの面積率=β/α×100[%]
 また、ここでいうところの布帛の一方の面に占めるフッ素樹脂繊維Aの面積率と他方の面に占めるフッ素樹脂繊維Aの面積率の比とは、布帛の表面と裏面のうち、フッ素樹脂繊維Aの面積率が大きい方の面(以下摺動面と証する場合もある)におけるフッ素樹脂繊維Aの面積率Sa、他方の面のフッ素樹脂繊維Aの面積率をSbとして以下の式で求められる。
面積率の比=Sa/Sb
 ここで布帛のフッ素樹脂繊維Aの面積率が大きいほど、その面の低摩擦性は向上するが、接着性は低下する。すなわち摺動布帛において、フッ素樹脂繊維Aの面積率が大きい面は摺動面として有用であり、摺動面に占めるフッ素樹脂繊維Aの面積率は大きいほど好ましく、他方の面はフッ素樹脂繊維Aの面積率が小さいほど好ましい。よって摺動布帛を構成するパラメータとして、「布帛の一方の面に占めるフッ素樹脂繊維Aの面積率と他方の面に占めるフッ素樹脂繊維Aの面積率の比」に着目し、この比を適正化することで優れた摩耗耐久性が得られることを見出した点が、本発明の基礎となっている。
 このような観点から、布帛の一方の面に占めるフッ素樹脂繊維Aの面積率と他方の面に占めるフッ素樹脂繊維Aの面積率の比が1.5以上であればよく、このとき、摺動面のフッ素樹脂繊維Aに起因する低摩擦性と他方の面の繊維Bに起因する強度のバランスが取れ、優れた摩耗耐久性を得ることができる。さらに好ましくは2.0以上であり、4.0以上であることが特に好ましい。布帛の一方の面に占めるフッ素樹脂繊維Aの面積率と他方の面に占めるフッ素樹脂繊維Aの面積率の比が1.0以上1.5未満の範囲内であると、低摩擦性と強度のバランスが崩れ、せん断力を伴う繰り返しの摩擦力を受けた場合に摩耗耐久性を得ることができない。布帛の一方の面に占めるフッ素樹脂繊維Aの面積率と他方の面に占めるフッ素樹脂繊維Aの面積率の比の実質的な上限は100である。
 本発明の摺動布帛において、一方の面に占めるフッ素樹脂繊維Aの面積率と他方の面に占めるフッ素樹脂繊維Aの面積率の比を調整する手段は、左記面積比を達成し、かつ組織を一重平織物とする以外特に限定するものではないが、経糸または緯糸のいずれか一方に下記フッ素樹脂繊維A1と総繊度b1の繊維B1を1本交互に配し、前記フッ素樹脂繊維A1および前記繊維B1に直交する緯糸または経糸に下記繊維B2と、繊維Cを一本交互に配し、かつ下記式(i)、(ii)を満たす摺動布帛とすることで実現できる。
フッ素樹脂繊維A1:総繊度a1のフッ素樹脂繊維A
繊維B1:総繊度b1の繊維B
繊維B2:総繊度b2の繊維B
繊維C:フッ素樹脂繊維A2または繊維B3であり、前記フッ素樹脂繊維A2は総繊度x2のフッ素樹脂繊維Aであり、繊維B3は総繊度x2の前記繊維Bである。
a1/b1≧1.5・・(i)
b2/x2≧1.5・・(ii)
 なお、繊維Cとしてフッ素樹脂繊維A2を用いる場合、フッ素樹脂繊維A1、A2のうち、総繊度の大きい方の繊維をA1とする。また、繊維Cとして繊維B3を用いる場合、繊維Cを配する経糸または緯糸は2種の繊維B、すなわち繊維B2、繊維B3を用いることになるが、総繊度の小さい方を総繊度x2の繊維B3とし、総繊度の大きい方を総繊度b2の繊維B2として取り扱う。
 フッ素樹脂繊維Aに直交する繊維の繊度が大きいほどこれら直交する2繊維が重なり合う面積は大きくなり、直交する繊維の繊度が小さいほど、重なり合う面積が小さくなる。よってフッ素樹脂繊維Aに直交する緯糸または経糸に繊度の異なる二種類の繊維を一本交互に配することで、表面と裏面のフッ素樹脂繊維Aの比率を調整できるのである。上記繊度比a1/b1は、1.5以上が好ましく、さらに好ましくは1.5~30.0の範囲内である。中でも5.0~15.0の範囲内であれば、表面と裏面のフッ素樹脂繊維Aの比率を適正範囲に調整でき、かつ布帛の凹凸を抑制し、製織性にも優れるため特に好ましい条件として挙げることができる。
 さらに上記繊度比b2/x2は、1.5以上であることが好ましく、さらに好ましくは1.5~30.0の範囲内である。中でも5.0~15.0の範囲内であれば、表面と裏面のフッ素樹脂繊維Aの比率を適正範囲に調整でき、かつ布帛の凹凸を抑制し、製織性にも優れるため特に好ましい条件として挙げることができる。
 前記繊維Cが、フッ素樹脂繊維A2であると、表面と裏面のフッ素樹脂繊維Aの面積率の比がより一層大きくなるため、特に好ましい条件として挙げることができる。
 <フッ素樹脂繊維A>
 本発明において、フッ素樹脂繊維の成分であるフッ素樹脂としては、主鎖または側鎖にフッ素原子を1個以上含む単量体単位で構成されたものであればよい。その中でも、フッ素原子数の多い単量体単位で構成されたものが好ましい。
 上記フッ素原子を1個以上含む単量体単位は、重合体の繰り返し構造単位の70モル%以上含むことが好ましく、90モル%以上を含むことがより好ましく、95モル%以上含むことがさらに好ましい。
 フッ素原子を1個以上含む単量体としては、テトラフルオロエチレン、ヘキサフルオロプロピレン、クロロトリフルオロエチレンなどのフッ素原子含有ビニル系単量体が挙げられ、中でも少なくともテトラフルオロエチレンを用いることが好ましい。
 フッ素樹脂としては、例えば、ポリテトラフルオロエチレン(PTFE)、テトラフルオロエチレン-ヘキサフルオロプロピレン共重合体(FEP)、テトラフルオロエチレン-p-フルオロアルキルビニルエーテル共重合体(PFA)、ポリクロロトリフルオロエチレン(PCTFE)、エチレン-テトラフルオロエチレン共重合体(ETFE)等を単独または2種類以上ブレンドしたものを使用することができる。
 テトラフルオロエチレン単位を含むフッ素樹脂においては、摺動特性の点からテトラフルオロエチレン単位の含有量は多い方が好ましく、全体の90モル%以上、好ましくは95モル%以上がテトラフルオロエチレンであるコポリマーであることが好ましく、テトラフルオロエチレンのホモポリマーとしてのポリテトラフルオロエチレン繊維を用いるのが最も好ましい。
 本発明で用いるフッ素樹脂繊維の形態としては、1本のフィラメントで構成されるモノフィラメント、複数本のフィラメントで構成されるマルチフィラメントのいずれも用いることができるが、製織性や布帛とした際の表面凹凸の観点から、マルチフィラメントであることが好ましい。
 また、本発明で用いるフッ素樹脂繊維の総繊度としては、50~6000dtexの範囲内が好ましい。総繊度の異なる2種類のフッ素樹脂繊維を用いる場合、総繊度の大きいフッ素樹脂繊維の総繊度は1000~6000dtexの範囲であることが好ましく、さらに好ましくは3000~5500dtexの範囲内である。総繊度の小さいフッ素樹脂繊維の総繊度は50~1000dtexの範囲であることが好ましく、さらに好ましくは400~900dtexの範囲内である。布帛を構成する繊維の総繊度が50dtex以上であると繊維の強力が強く、摩耗時の繊維破断が抑制できるほか、製織時の糸切れを低減できるので工程通過性が向上する。6000dtex以下であれば荷重負荷時に厚さ方向の圧縮量を低減できるので、部材間でのガタツキを抑制でき、長期耐久性が向上する。
 上記において、総繊度の異なる2種類のフッ素樹脂繊維Aを用いる場合、総繊度の大きいフッ素樹脂繊維の総繊度a1と総繊度の小さいフッ素樹脂繊維の総繊度x2の繊度比率a1/x2は、1.5以上であることが好ましく、さらに好ましくは1.5~30.0の範囲内である。中でも5.0~15.0の範囲内であることが特に好ましい。
 <繊維B>
 本発明において、繊維Bとしては、引張強度が10cN/dtex以上の少なくとも1種類以上の繊維とするが、引張強度が10~50cN/dtexであることが好まく、さらには引張強度が20~50cN/dtexである。これによりせん断力を伴う繰り返しの摩擦力が加わった場合でも織物の破断をよりいっそう抑制でき、表面のフッ素樹脂繊維が摩耗することによる自己潤滑膜の形成を助けるため、より好ましい条件として挙げることができる。
 本発明を構成する繊維Bの引張弾性率としては、20~800cN/dtexの範囲内が好ましい。さらに繊維Bの引張弾性率が450~800cN/dtexの範囲内であれば、せん断力を伴う繰り返しの摩擦力が加わった場合でも布帛構造を維持することができ、特に優れた摩耗耐久性を得ることができる。繊維Bの引張弾性率が20cN/dtex以上であると布帛の寸法安定性が向上し、摩耗耐久性に優れる布帛が得られる。800cN/dtex以下であれば繊維の剛性が高くなり過ぎず、剛性の低いフッ素樹脂繊維と交織する場合においても製織性を損なうことがないため好ましい。
 本発明を構成する繊維Bの伸度としては、1~15%が好ましく、さらに好ましくは1~5%の範囲内である。中でも1~3%であれば摩擦力が加わった際に布帛の寸法変化を低減することができるため、特に好ましい条件として挙げることができる。繊維Bの伸度が1%以上であると製織時の糸切れを低減できるので工程通過性が向上する。1~15%の範囲内であれば布帛の寸法安定性が向上し、摺動布帛として寸法精度が求められる部分への適用が可能となる。
 本発明を構成する繊維Bの種類は上記の条件を満たす範囲内で特に限定するものではないが、例えば、ポリパラフェニレンテレフタルアミド、ポリメタフェニレンイソフタルアミド、ポリパラフェニレンベンゾビスオキサゾール(PBO)、超高分子量ポリエチレン(UHMWPE)、液晶ポリエステル等の有機繊維や、ガラス、炭素、炭化ケイ素等の無機繊維を使用することができ、1種または2種以上を用いることができる。特に繊維Bとして有機繊維を用いることで、摺動布帛とした際にせん断力に対する耐久性を向上できるため、より好ましい条件として挙げることができる。中でも、高強度・高弾性率である液晶ポリエステル繊維を用いることが特に好ましい。
 本発明を構成する繊維Bの形態は特に限定するものではなく、フィラメント(長繊維)およびスパン(紡績糸)のいずれを採用しても良いが、引張強度や引張剛性の観点から、フィラメントであることが好ましい。さらに1本のフィラメントで構成されるモノフィラメント、複数本のフィラメントで構成されるマルチフィラメントのいずれも用いることができるが、製織性や布帛とした際の表面凹凸の観点からマルチフィラメントであることが好ましい。
 また、本発明の繊維Bの総繊度としては、200~4000dtexの範囲内が好ましい。総繊度の異なる2種類の繊維Bを用いる場合、総繊度の大きい繊維Bの総繊度は500~4000dtexの範囲であることが好ましく、さらに好ましくは800~2000dtexの範囲内である。総繊度の小さい繊維Bの総繊度は200~1000dtexの範囲であることが好ましく、さらに好ましくは400~900dtexの範囲内である。布帛を構成する繊維の総繊度が200dtex以上であると繊維の強力が強く、摩耗時の繊維破断が抑制できるほか、製織時の糸切れを低減できるので工程通過性が向上する。4000dtex以下であれば布帛表面の凹凸が小さく、低摩擦性への影響を押さえることができる。
 上記において、フッ素樹脂繊維Aと交互配列する繊維Bの総繊度b1(ただし経糸と緯糸のいずれにもフッ素樹脂繊維Aを配する場合は、繊度の大きいフッ素樹脂繊維Aと交互配列する繊維Bの総繊度b1)とこれに直交する繊維Bの総繊度b2の繊度比b2/b1は、1.5以上であることが好ましく、さらに好ましくは1.5~30.0の範囲内である。中でも5.0~15.0の範囲内であることが特に好ましい。
 上記の構成で得られた摺動布帛の摩耗耐久性をさらに高めるために、前記摺動布帛に樹脂を含浸して使用することも可能である。ここで、樹脂含浸する樹脂は、熱硬化性樹脂や熱可塑性樹脂を用いることができる。特に限定されるものではないが、熱硬化性樹脂としては、例えば、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル樹脂、エポキシ樹脂、ポリウレタン樹脂、ジアリルフタレート樹脂、珪素樹脂、ポリイミド樹脂、ビニルエステル樹脂などやその変性樹脂など、熱可塑性樹脂であれば塩化ビニル樹脂、ポリスチレン、ABS樹脂、ポリエチレン、ポリプロピレン、フッ素樹脂、ポリアミド樹脂、ポリアセタール樹脂、ポリカーボネート樹脂、ポリエステル、ポリアミドなど、さらには熱可塑性ポリウレタン、ブタジエンゴム、ニトリルゴム、ネオプレン、ポリエステル等の合成ゴム又はエラストマーなどが好ましく使用できる。中でも、フェノール樹脂とポリビニルブチラール樹脂とを主成分とする樹脂、不飽和ポリエステル樹脂、ビニルエステル樹脂、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂、ポリエステル樹脂が、耐衝撃性、寸法安定性、強度、価格などから好ましく使用できる。かかる熱硬化性樹脂及び熱可塑性樹脂には、工業的にその目的、用途、製造工程や加工工程での生産性あるいは特性改善のため通常使用されている各種添加剤を含んでいてもよい。例えば、変性剤、可塑剤、充填剤、離型剤、着色剤、希釈剤などを含有せしめることができる。なお、ここでいう主成分とは、溶媒を除いた成分のうちで重量比率が一番大きい成分をいい、フェノール樹脂とポリビニルブチラール樹脂を主成分とする樹脂の場合では、これら2種類の樹脂の重量比率が1番目、2番目(順不同)に大きいことを意味する。
 前記摺動布帛に樹脂を含浸する方法としては、熱硬化性樹脂を用いる場合は、熱硬化性樹脂を溶剤に溶解してワニスに調整し、ナイフコート加工やロールコート加工、コンマコート加工、グラビアコート加工などで布帛に含浸コートする方法が一般的に用いられる。また、熱可塑性樹脂を用いる場合には溶融押し出しラミネートなどが一般的に用いられる。
 本発明の摺動布帛に、必要に応じ潤滑剤などを添加することも可能である。潤滑剤の種類は特に限定されないが、シリコン系の潤滑剤やフッ素系の潤滑材であることが好ましい。
 かくして得られる本発明の摺動布帛は、経糸と緯糸の交錯点が多い一重平組織であるため、外力による布帛の歪みやそれに伴う応力集中を抑制し、布帛を構成する繊維の強度や剛性を最大限発揮することができるため、摩耗耐久性の優れた布帛が得られる。加えてフッ素樹脂繊維Aと繊維Bの構成を最適化することで、摺動面の低摩擦性と布帛強度を両立することができ、せん断力を伴う繰り返しの摩擦力を受けた場合でも、高い摺動耐久性を発揮する摺動布帛が得られる。そのため、本発明の摺動布帛は、せん断力を伴う繰り返しの摩擦力を受けるために従来長期間使用することが困難であった用途において、高い摺動耐久性を発揮でき、工業的に極めて実用性が高い用途にも用いることができる。なかでもロボットアーム用ケーブルカバーやベアリング部材用途に好ましく用いられる。本発明の摺動布帛を少なくともその一部に使用したロボットアーム用ケーブルカバーは、低摩擦性と布帛強度を有するため、装置の一部と擦れ合った場合でも早期に破断することがないため、製品寿命を向上することができる。本発明の摺動布帛を少なくともその一部に使用したベアリング部材は、表面と裏面のフッ素樹脂繊維比率を最適化することで、ベアリングの低トルク化と基材との高い接着性を両立することができるほか、寸法安定性の高い一重平織物であるためガタツキが少なく、寸法精度の高い摺動部を形成することができる。
以下、本発明の実施例を比較例と共に説明する。
 なお、本実施例で用いる各種特性の測定方法は、以下のとおりである。
 (1)繊度
 JIS L1013:2010(化学繊維フィラメント糸試験方法)に準じて繊維の繊度を測定した。
 (2)繊度比
 比較対象となる2種類の繊維について、繊度の大きい繊維の繊度をT[dtex]、繊度の小さい繊維の繊度をT[dtex]とし、以下の式から算出した。
繊度比=T/T
 (3)繊維の引張強度
 JIS L1013:2010(化学繊維フィラメント糸試験方法)に準じて破断強度を測定した。
 (4)繊維の引張弾性率
 JIS L1013:2010(化学繊維フィラメント糸試験方法)に準じて繊維の引張弾性率を測定した。
 (5)繊維の伸度
 JIS L1013:2010(化学繊維フィラメント糸試験方法)に準じて繊維の伸度を測定した。
 (6)織り密度
 JIS1096:2010(織物及び編物の生地試験方法)に準じ、試料を平らな台上に置き,不自然なしわ及び張力を除いて,異なる箇所について50mmの間隔中に含まれるたて糸及びよこ糸の本数を数え,それぞれの平均値を単位長さについて算出した。
 (7)布帛のカバーファクター
 各素材の比重差を鑑みて、以下の式により布帛のカバーファクター(CF)を算出した。ただし、経糸および緯糸としてそれぞれ2種類以上の繊維を用いる場合を想定し、経糸に用いる繊維を経糸1、経糸2、・・・、緯糸に用いる繊維を緯糸1、緯糸2、・・・のように番号付けする。
 CF=(経糸1の繊度(dtex)/経糸1の比重)1/2×経糸1の密度(本/in(2.54cm))+(経糸2の繊度(dtex)/経糸2の比重)1/2×経糸2の密度(本/in(2.54cm))+・・・+(緯糸1の繊度(dtex)/緯糸1の比重)1/2×緯糸1の密度(本/in(2.54cm))+(緯糸2の繊度(dtex)/緯糸2の比重)1/2×緯糸2の密度(本/in(2.54cm))+・・・
 (8)布帛の厚さ
 JIS L1013:2010(織物及び編物の生地試験方法)に準じて布帛の厚さを測定した。
 (9)フッ素樹脂繊維Aの面積率=β/α×100[%]
 布帛表面をキーエンス製マイクロスコープVHX-2000にて50倍に拡大した写真を撮影し、撮影面積をα、そのうちフッ素樹脂繊維Aが占める面積をβとし、以下の計算式からフッ素樹脂繊維Aの面積率を算出した。
フッ素樹脂繊維Aの面積率=β/α×100[%]
 なお、撮影面積αとフッ素樹脂繊維Aが占める面積βは、三谷商事製画像解析ソフトWinR00F2013を用いて算出した。
 (10)布帛の一方の面に占めるフッ素樹脂繊維Aの面積率と他方の面に占めるフッ素樹脂繊維Aの面積率の比
 布帛の表面と裏面のうち、フッ素樹脂繊維Aの面積率が大きい方の面におけるフッ素樹脂繊維Aの面積率をSa、他方の面のフッ素樹脂繊維Aの面積率をSbとして以下の式で求めた。
フッ素樹脂繊維Aの面積率の比=Sa/Sb
 (11)動摩擦係数
 以下に示すリング摩耗試験により測定した。
 JIS K7218:1986 (プラスチックの滑り摩耗試験方法)A法に準じ、織物は、縦30mm、横30mmにサンプリングし、同じ大きさの厚さ2mmのPOM樹脂板の上にのせてサンプルホルダーに固定した。
 相手材はS45Cで作られた、外径 25.6mm、内径 20mm、長さ 15mm の中空円筒形状の表面をサンドパーパーで磨き、粗さ測定器(ミツトヨ製SJ-201)にて測定し0.8μmm±0.1RAの範囲の相手材を使用した。
 リング摩耗試験機は、オリエンテック製MODEL:EFM-III-ENを用い、摩擦荷重:2MPa、摩擦速度:200mm/秒にて試験を行い、摺動トルクを測定し、測定開始後測定される摺動トルクが安定したところで、その安定部分の動摩擦係数を計算した。
 (12)摩耗耐久性
 上記のリング摩耗試験を摺動距離5000mまで実施した後に試験後の布帛表面を観察し、布帛の破断や繊維の破断がほとんどないものを◎、布帛の破断はないが繊維の一部が破断しているものを〇、布帛の摩擦された部分が一部破断しているものを△、布帛の摩擦された部分が完全に破断しているものを×とした。
 (13)ガタツキ
 得られた布帛を3ヶ月の期間、ベアリングの摺動材として用い、部材間のガタツキ程度を確認し、ガタツキがほとんどないものを◎、わずかなものを○、顕著であるが破壊がいないものを△、破壊されたものを×とした。
 実施例1
 経糸に総繊度440dtex、単糸数60フィラメントのPTFE繊維と総繊度850dtex、単糸数144フィラメント、引張強度24cN/dtex、引張弾性率690cN/dtex、伸度が2.8%の液晶ポリエステル繊維とを、1(本):1(本)にて交互に配置し、緯糸に総繊度5320dtex、単糸数240フィラメントのPTFE繊維と総繊度425dtex、単糸数72フィラメント、引張強度24cN/dtex、引張弾性率690cN/dtex、伸度2.8%の液晶ポリエステル繊維とを、1(本):1(本)にて交互に配置し、織機にて一重平織物を製作した。その後80℃の精練槽にて精練を行い、200℃でセットした。図1は上記で得られた布帛の表面および裏面の平面図であり、摺動面に相当する表面には、総繊度の大きい「緯糸に用いたフッ素樹脂繊維A1」1と総繊度の小さい「経糸に用いたフッ素樹脂繊維A2」2がより多く露出し、裏面には、総繊度の小さい「緯糸に用いた繊維B1」3と総繊度の大きい「経糸に用いた繊維B2」4がより多く露出する布帛であることが示されている。
 この織物の織密度、厚さ、表面と裏面のフッ素樹脂繊維Aの面積率および面積率の比、動摩擦係数、摩耗耐久性、ガタツキの評価結果を表1にまとめた。
 実施例2
 経糸に総繊度440dtex、単糸数60フィラメントのPTFE繊維と総繊度850dtex、単糸数144フィラメント、引張強度20cN/dtex、引張弾性率490cN/dtex、伸度が3.6%のポリパラフェニレンテレフタルアミド繊維とを、1(本):1(本)にて交互に配置し、緯糸に総繊度5320dtex、単糸数240フィラメントのPTFE繊維と総繊度425dtex、単糸数72フィラメント、引張強度20cN/dtex、引張弾性率490cN/dtex、伸度が3.6%のポリパラフェニレンテレフタルアミド繊維とを、1(本):1(本)にて交互に配置し、織機にて一重平織物を製作した。その後80℃の精練槽にて精練を行い、200℃でセットした。
 この織物の織密度、厚さ、表面と裏面のフッ素樹脂繊維Aの面積率および面積率の比、動摩擦係数、摩耗耐久性、ガタツキの評価結果を表1にまとめた。
 比較例1
 経糸に総繊度440dtex、単糸数60フィラメントのPTFE繊維と総繊度850dtex、単糸数144フィラメント、引張強度8.0cN/dtex、引張弾性率115cN/dtex、伸度が13.0%のポリエステル繊維とを、1(本):1(本)にて交互に配置し、緯糸に総繊度5320dtex、単糸数240フィラメントのPTFE繊維と総繊度425dtex、単糸数72フィラメント、引張強度8.0cN/dtex、引張弾性率115cN/dtex、伸度が13.0%のポリエステル繊維とを、1(本):1(本)にて交互に配置し、織機にて一重平織物を製作した。その後80℃の精練槽にて精練を行い、200℃でセットした。
 この織物の織密度、厚さ、表面と裏面のフッ素樹脂繊維Aの面積率および面積率の比、動摩擦係数、摩耗耐久性、ガタツキの評価結果を表1にまとめた。
 実施例3
 経糸に総繊度440dtex、単糸数60フィラメントのPTFE繊維と総繊度850dtex、単糸数144フィラメント、引張強度24cN/dtex、引張弾性率690cN/dtex、伸度が2.8%の液晶ポリエステル繊維とを、1(本):1(本)にて交互に配置し、緯糸に総繊度2660dtex、単糸数120フィラメントのPTFE繊維と総繊度425dtex、単糸数72フィラメント、引張強度24cN/dtex、引張弾性率690cN/dtex、伸度2.8%の液晶ポリエステル繊維とを、1(本):1(本)にて交互に配置し、織機にて一重平織物を製作した。その後80℃の精練槽にて精練を行い、200℃でセットした。
 この織物の織密度、厚さ、表面と裏面のフッ素樹脂繊維Aの面積率および面積率の比、動摩擦係数、摩耗耐久性、ガタツキの評価結果を表1にまとめた。
 実施例4
 経糸に総繊度440dtex、単糸数60フィラメントのPTFE繊維と総繊度425dtex、単糸数72フィラメント、引張強度24cN/dtex、引張弾性率690cN/dtex、伸度が2.8%の液晶ポリエステル繊維とを、1(本):1(本)にて交互に配置し、緯糸に総繊度1330dtex、単糸数60フィラメントのPTFE繊維と総繊度425dtex、単糸数72フィラメント、引張強度24cN/dtex、引張弾性率690cN/dtex、伸度2.8%の液晶ポリエステル繊維とを、1(本):1(本)にて交互に配置し、織機にて一重平織物を製作した。その後80℃の精練槽にて精練を行い、200℃でセットした。
 この織物の織密度、厚さ、表面と裏面のフッ素樹脂繊維Aの面積率および面積率の比、動摩擦係数、摩耗耐久性、ガタツキの評価結果を表1にまとめた。
 実施例5
 経糸に総繊度440dtex、単糸数60フィラメントのPTFE繊維と総繊度425dtex、単糸数72フィラメント、引張強度24cN/dtex、引張弾性率690cN/dtex、伸度が2.8%の液晶ポリエステル繊維とを、1(本):1(本)にて交互に配置し、緯糸に総繊度880dtex、単糸数60フィラメントのPTFE繊維と総繊度425dtex、単糸数72フィラメント、引張強度24cN/dtex、引張弾性率690cN/dtex、伸度2.8%の液晶ポリエステル繊維とを、1(本):1(本)にて交互に配置し、織機にて一重平織物を製作した。その後80℃の精練槽にて精練を行い、200℃でセットした。
 この織物の織密度、厚さ、表面と裏面のフッ素樹脂繊維Aの面積率および面積率の比、動摩擦係数、摩耗耐久性、ガタツキの評価結果を表1にまとめた。
 比較例2
 経糸および緯糸に総繊度440dtex、単糸数60フィラメントのPTFE繊維と総繊度425dtex、単糸数72フィラメント、引張強度24cN/dtex、引張弾性率690cN/dtex、伸度が2.8%の液晶ポリエステル繊維とを、1(本):1(本)にて交互に配置し、織機にて一重平織物を製作した。その後80℃の精練槽にて精練を行い、200℃でセットした。
 図2は上記で得られた布帛の表面および裏面の平面図であり、表面、裏面において、「緯糸に用いたフッ素樹脂繊維A1」1と「経糸に用いたフッ素樹脂繊維A2」の露出の合計面積と、「緯糸に用いた繊維B1」3と「経糸に用いた繊維B2」4の露出の合計面積が同程度であったことが示されている。
 この織物の織密度、厚さ、表面と裏面のフッ素樹脂繊維Aの面積率および面積率の比、動摩擦係数、摩耗耐久性、ガタツキの評価結果を表1にまとめた。
 比較例3
 経糸に総繊度425dtex、単糸数72フィラメント、引張強度24cN/dtex、引張弾性率690cN/dtex、伸度が2.8%の液晶ポリエステル繊維を用い、緯糸に総繊度440dtex、単糸数60フィラメントのPTFE繊維を用い、織機にて一重平織物を製作した。その後80℃の精練槽にて精練を行い、200℃でセットした。
 この織物の織密度、厚さ、表面と裏面のフッ素樹脂繊維Aの面積率および面積率の比、動摩擦係数、摩耗耐久性、ガタツキの評価結果を表2にまとめた。
 図3は上記で得られた布帛の表面および裏面の平面図であり、表面、裏面において、「緯糸に用いたフッ素樹脂繊維A1」1と「経糸に用いたフッ素樹脂繊維A2」の露出の合計面積と、「緯糸に用いた繊維B1」3と「経糸に用いた繊維B2」4の露出の合計面積が同程度であったことが示されている。
 比較例4
 経糸に総繊度425dtex、単糸数72フィラメント、引張強度24cN/dtex、引張弾性率690cN/dtex、伸度が2.8%の液晶ポリエステル繊維を用い、緯糸に総繊度5320dtex、単糸数240フィラメントのPTFE繊維を用い、織機にて一重平織物を製作した。その後80℃の精練槽にて精練を行い、200℃でセットした。
 この織物の織密度、厚さ、表面と裏面のフッ素樹脂繊維Aの面積率および面積率の比、動摩擦係数、摩耗耐久性、ガタツキの評価結果を表2にまとめた。
 比較例5
 経糸に総繊度425dtex、単糸数72フィラメント、引張強度24cN/dtex、引張弾性率690cN/dtex、伸度が2.8%の液晶ポリエステル繊維を用い、緯糸に総繊度440dtex、単糸数60フィラメントのPTFE繊維を用い、織機にて一重1/3綾織物を製作した。その後80℃の精練槽にて精練を行い、200℃でセットした。
 この織物の織密度、厚さ、表面と裏面のフッ素樹脂繊維Aの面積率および面積率の比、動摩擦係数、摩耗耐久性、ガタツキの評価結果を表2にまとめた。
 比較例6
 表面が経糸および緯糸に総繊度440dtex、単糸数60フィラメントのPTFE繊維を用いた平織物、裏面が経糸および緯糸に総繊度425dtex、単糸数72フィラメント、引張強度24cN/dtex、引張弾性率690cN/dtex、伸度が2.8%の液晶ポリエステル繊維を用いた平織物である、二重織物を織機にて製作した。その後80℃の精練槽にて精練を行い、200℃でセットした。
 この織物の織密度、厚さ、表面と裏面のフッ素樹脂繊維Aの面積率および面積率の比、動摩擦係数、摩耗耐久性、ガタツキの評価結果を表2にまとめた。
 比較例7
 経糸および緯糸に総繊度440dtex、単糸数60フィラメントのPTFE繊維と総繊度220dtex、単糸数36フィラメント、引張強度5cN/dtex、引張弾性率40cN/dtex、伸度が30%のPPS繊維とを、1(本):1(本)にて交互に配置し、織機にて一重平織物を製作した。その後80℃の精練槽にて精練を行い、200℃でセットした。
 この織物の織密度、厚さ、表面と裏面のフッ素樹脂繊維Aの面積率および面積率の比、動摩擦係数、摩耗耐久性、ガタツキの評価結果を表2にまとめた。
 比較例8
 経糸および緯糸に総繊度440dtex、単糸数60フィラメントのPTFE繊維と総繊度40dtex、単糸数750フィラメント、引張強度20cN/dtex、引張弾性率1300cN/dtex、伸度が1%の炭素繊維とを、4(本):4(本)にて交互に配置し、織機にて一重平織物を製作した。その後80℃の精練槽にて精練を行い、200℃でセットした。
 この織物の織密度、厚さ、表面と裏面のフッ素樹脂繊維Aの面積率および面積率の比、動摩擦係数、摩耗耐久性、ガタツキの評価結果を表2にまとめた。
Figure JPOXMLDOC01-appb-T000001
Figure JPOXMLDOC01-appb-T000002
1:緯糸に用いたフッ素樹脂繊維A1
2:経糸に用いたフッ素樹脂繊維A2
3:緯糸に用いた繊維B1
4:経糸に用いた繊維B2

Claims (12)

  1. フッ素樹脂繊維Aと、引張強度が10cN/dtex以上の少なくとも1種類以上の繊維Bを用いてなる一重平織物であり、前記布帛の一方の面に占めるフッ素樹脂繊維Aの面積率と他方の面に占めるフッ素樹脂繊維Aの面積率の比が1.5以上である摺動布帛。
  2. 経糸または緯糸のいずれか一方に下記フッ素樹脂繊維A1と下記繊維B1を1本交互に配し、前記フッ素樹脂繊維A1および前記繊維B1に直交する緯糸または経糸に下記繊維B2と、下記繊維Cを一本交互に配し、かつ下記式(i)、(ii)を満たす請求項1に記載の摺動布帛。
    フッ素樹脂繊維A1:総繊度a1のフッ素樹脂繊維A
    繊維B1:総繊度b1の繊維B
    繊維B2:総繊度b2の繊維B
    繊維C:フッ素樹脂繊維A2または繊維B3であり、前記フッ素樹脂繊維A2は総繊度x2のフッ素樹脂繊維Aであり、繊維B3は総繊度x2の前記繊維Bである。
    a1/b1≧1.5・・(i)
    b2/x2≧1.5・・(ii)
  3. b2/b1≧1.5である請求項2に記載の摺動布帛。
  4. a1/x2≧1.5である請求項2または請求項3に記載の摺動布帛。
  5. 前記繊維Cがフッ素樹脂繊維A2である請求項2~4のいずれかに記載の摺動布帛。
  6. フッ素樹脂繊維Aがポリテトラフルオロエチレン樹脂からなる、請求項1~5のいずれかに記載の摺動布帛。
  7. 前記繊維Bが引張強度20~50cN/dtexの繊維であることを特徴とする、請求項1~6のいずれかに記載の摺動布帛。
  8. 前記繊維Bが引張弾性率450~800cN/dtexの繊維であることを特徴とする、請求項1~7のいずれかに記載の摺動布帛。
  9. 前記繊維Bが有機繊維であることを特徴とする、請求項1~8のいずれかに記載の摺動布帛。
  10. 前記繊維Bが液晶ポリエステル繊維であることを特徴とする請求項1~9のいずれかに記載の摺動布帛。
  11. 請求項1~10のいずれかに記載の摺動布帛を少なくとも一部に使用する、ロボットアーム用ケーブルカバー。
  12. 請求項1~10のいずれかに記載の摺動布帛を少なくとも一部に使用する、ベアリング部材。
PCT/JP2019/045820 2018-12-26 2019-11-22 摺動布帛 WO2020137287A1 (ja)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2020562937A JP7414007B2 (ja) 2018-12-26 2019-11-22 摺動布帛
EP19904809.1A EP3904575A4 (en) 2018-12-26 2019-11-22 GLIDING TISSUE
CN201980081478.2A CN113166985B (zh) 2018-12-26 2019-11-22 滑动布帛
KR1020217018001A KR20210101234A (ko) 2018-12-26 2019-11-22 접동 포백
US17/415,222 US20220065293A1 (en) 2018-12-26 2019-11-22 Sliding fabric

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018242695 2018-12-26
JP2018-242695 2018-12-26

Publications (1)

Publication Number Publication Date
WO2020137287A1 true WO2020137287A1 (ja) 2020-07-02

Family

ID=71126576

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/045820 WO2020137287A1 (ja) 2018-12-26 2019-11-22 摺動布帛

Country Status (6)

Country Link
US (1) US20220065293A1 (ja)
EP (1) EP3904575A4 (ja)
JP (1) JP7414007B2 (ja)
KR (1) KR20210101234A (ja)
CN (1) CN113166985B (ja)
WO (1) WO2020137287A1 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124687A1 (ja) * 2019-12-20 2021-06-24 東レ株式会社 織物およびロボットアーム用ケーブルカバー

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180837A (ja) * 1982-04-15 1983-10-22 Oiles Ind Co Ltd 複層摺動材料ならびにその製造方法
JPS62261716A (ja) * 1986-05-06 1987-11-13 Nippon Seiko Kk すべり軸受用ライナ−およびその製造方法
JP2005220486A (ja) 2004-02-06 2005-08-18 Toray Ind Inc フッ素繊維交織織物および複合材料
JP2005220487A (ja) * 2004-02-06 2005-08-18 Toray Ind Inc フッ素繊維布帛および複合材料
WO2018074207A1 (ja) 2016-10-20 2018-04-26 東レ株式会社 摺動布帛
JP2018145545A (ja) * 2017-03-02 2018-09-20 帝人株式会社 織物および繊維製品
JP6398189B2 (ja) 2013-12-26 2018-10-03 東レ株式会社 耐熱耐摩耗性多重織物

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20060182962A1 (en) * 2005-02-11 2006-08-17 Bucher Richard A Fluoropolymer fiber composite bundle
US9334587B2 (en) * 2005-02-11 2016-05-10 W. L. Gore & Associates, Inc. Fluoropolymer fiber composite bundle
JP5253857B2 (ja) * 2008-03-27 2013-07-31 株式会社東芝 摺動材料、摺動材料の製造方法およびそれを用いた軸受装置
CN102535167A (zh) * 2012-01-04 2012-07-04 江苏中天航空配件有限公司 一种轴承用自润滑复合材料衬垫及其制备方法
CN103572454B (zh) * 2012-08-07 2016-08-10 东丽纤维研究所(中国)有限公司 一种低摩擦系数织物及其用途
BR112016001387B1 (pt) * 2013-07-25 2022-03-03 Toray Industries, Inc Tecido multicamadas resistente ao desgaste
JP5521096B1 (ja) * 2013-07-25 2014-06-11 新日鉄住金エンジニアリング株式会社 滑り免震装置
KR20160103028A (ko) * 2013-12-27 2016-08-31 도레이 카부시키가이샤 토너 클리닝용 시트 및 그의 제조 방법
KR20160110481A (ko) * 2014-01-31 2016-09-21 도레이 카부시키가이샤 액정 폴리에스테르 섬유 및 그의 제조 방법
WO2015133298A1 (ja) * 2014-03-07 2015-09-11 東レ株式会社 複合摺動材およびoa機器用耐熱性複合摺動材
JP7147752B2 (ja) * 2018-03-02 2022-10-05 東レ株式会社 液晶ポリエステルマルチフィラメント製撚糸コード、その製造方法およびそれを用いてなる製品
US20210244118A1 (en) * 2018-06-26 2021-08-12 Toray Industries, Inc. Layered article

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS58180837A (ja) * 1982-04-15 1983-10-22 Oiles Ind Co Ltd 複層摺動材料ならびにその製造方法
JPS62261716A (ja) * 1986-05-06 1987-11-13 Nippon Seiko Kk すべり軸受用ライナ−およびその製造方法
JP2005220486A (ja) 2004-02-06 2005-08-18 Toray Ind Inc フッ素繊維交織織物および複合材料
JP2005220487A (ja) * 2004-02-06 2005-08-18 Toray Ind Inc フッ素繊維布帛および複合材料
JP6398189B2 (ja) 2013-12-26 2018-10-03 東レ株式会社 耐熱耐摩耗性多重織物
WO2018074207A1 (ja) 2016-10-20 2018-04-26 東レ株式会社 摺動布帛
JP2018145545A (ja) * 2017-03-02 2018-09-20 帝人株式会社 織物および繊維製品

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3904575A4

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2021124687A1 (ja) * 2019-12-20 2021-06-24 東レ株式会社 織物およびロボットアーム用ケーブルカバー

Also Published As

Publication number Publication date
CN113166985A (zh) 2021-07-23
CN113166985B (zh) 2022-05-31
EP3904575A4 (en) 2022-09-07
KR20210101234A (ko) 2021-08-18
JP7414007B2 (ja) 2024-01-16
US20220065293A1 (en) 2022-03-03
EP3904575A1 (en) 2021-11-03
JPWO2020137287A1 (ja) 2021-11-11

Similar Documents

Publication Publication Date Title
JP7006274B2 (ja) 摺動布帛
JP5988006B1 (ja) 耐摩耗性多重織物
CN107849759B (zh) 一种自润滑织物及其生产方法和用途
WO2010107030A1 (ja) 摺動部材および画像定着装置
WO2020137287A1 (ja) 摺動布帛
JP2015124450A (ja) 耐熱耐摩耗性多重織物
CN114829689B (zh) 机织物及机械臂用电缆罩
JP6957943B2 (ja) 摺動布帛およびウインドウガラススタビライザ
JP6481606B2 (ja) 低摩擦摺動材およびトナー定着装置用低摩擦加圧部材
JP2005220487A (ja) フッ素繊維布帛および複合材料
WO2020175304A1 (ja) 摺動布帛
WO2022209961A1 (ja) 織物および摺動材
WO2023171604A1 (ja) 布帛

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020562937

Country of ref document: JP

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904809

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019904809

Country of ref document: EP

Effective date: 20210726