WO2020135162A1 - 电子膨胀阀及使用该电子膨胀阀的空调系统 - Google Patents

电子膨胀阀及使用该电子膨胀阀的空调系统 Download PDF

Info

Publication number
WO2020135162A1
WO2020135162A1 PCT/CN2019/126027 CN2019126027W WO2020135162A1 WO 2020135162 A1 WO2020135162 A1 WO 2020135162A1 CN 2019126027 W CN2019126027 W CN 2019126027W WO 2020135162 A1 WO2020135162 A1 WO 2020135162A1
Authority
WO
WIPO (PCT)
Prior art keywords
electronic expansion
valve
expansion valve
screw
needle
Prior art date
Application number
PCT/CN2019/126027
Other languages
English (en)
French (fr)
Inventor
贺宇辰
许学飞
刘乐强
Original Assignee
浙江盾安人工环境股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201811593354.6A external-priority patent/CN111365466B/zh
Priority claimed from CN201920318827.5U external-priority patent/CN209926669U/zh
Application filed by 浙江盾安人工环境股份有限公司 filed Critical 浙江盾安人工环境股份有限公司
Priority to US17/312,924 priority Critical patent/US11796234B2/en
Priority to JP2021526753A priority patent/JP7244640B2/ja
Priority to EP19905334.9A priority patent/EP3904734A4/en
Priority to KR1020217019615A priority patent/KR102498207B1/ko
Publication of WO2020135162A1 publication Critical patent/WO2020135162A1/zh

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16KVALVES; TAPS; COCKS; ACTUATING-FLOATS; DEVICES FOR VENTING OR AERATING
    • F16K1/00Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces
    • F16K1/02Lift valves or globe valves, i.e. cut-off apparatus with closure members having at least a component of their opening and closing motion perpendicular to the closing faces with screw-spindle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B41/00Fluid-circulation arrangements
    • F25B41/30Expansion means; Dispositions thereof
    • F25B41/31Expansion valves
    • F25B41/34Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators
    • F25B41/35Expansion valves with the valve member being actuated by electric means, e.g. by piezoelectric actuators by rotary motors, e.g. by stepping motors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2700/00Sensing or detecting of parameters; Sensors therefor
    • F25B2700/21Temperatures
    • F25B2700/2117Temperatures of an evaporator
    • F25B2700/21175Temperatures of an evaporator of the refrigerant at the outlet of the evaporator
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/70Efficient control or regulation technologies, e.g. for control of refrigerant flow, motor or heating

Definitions

  • the invention relates to the technical field of refrigeration equipment, in particular to an electronic expansion valve and an air conditioning system using the electronic expansion valve.
  • the electronic expansion valve opens or closes the valve port through the movement of the valve stem assembly in the guide sleeve and the nut sleeve, which can achieve the purposes of adjusting the flow rate and throttle and reducing the pressure, and is widely used in the field of refrigeration equipment technology.
  • Conventional electronic expansion valves generally have balls and spring seats in contact with each other at one end of the screw to release relative rotation between the screw and the valve needle. However, there is still a large friction force between the ball and the spring seat.
  • the sliding friction form of the single point contact between the ball and the spring seat has a large friction force, which is easy to cause friction damage at the contact point, and at the same time will drive the valve needle relative
  • the rotation of the valve port causes the valve needle and valve port to wear out, and the reliability and stability of the electronic expansion valve are relatively low.
  • the present invention provides an electronic expansion valve.
  • the electronic expansion valve includes a screw, a valve needle, and an elastic member. One end of the elastic member acts on the screw, and the other end acts on the valve needle.
  • a bearing is provided between the valve needles, the bearing has an inner ring and an outer ring, one of the screw and the valve needle is fixed to the inner ring of the bearing, and the other acts on the outer of the bearing through an elastic member ring.
  • the electronic expansion valve includes a gasket disposed between the elastic member and the outer ring of the bearing, and the gasket is connected to the bearing under the resistance of the elastic member Outer ring.
  • the screw is fixed to the inner ring of the bearing, and the valve needle is connected to the outer ring of the bearing through the elastic member and the gasket.
  • the electronic expansion valve includes a valve needle sleeve for fixing the valve needle, and the side of the screw extends outward in the radial direction of the screw and forms a protrusion.
  • valve needle is fixed to the inner ring of the bearing, and the screw is connected to the outer ring of the bearing through the elastic member and the gasket.
  • valve needle there is an interference fit between the valve needle and the inner ring of the bearing.
  • the electronic expansion valve further includes a pressure sleeve provided with a stepped surface, the stepped surface abuts against the valve needle to restrict the axial movement of the valve needle.
  • the gasket has a cavity extending in the axial direction thereof, and the inner surface of the gasket near the valve needle is provided as a tapered surface.
  • the electronic expansion valve includes:
  • the valve seat has an annular groove structure at one end;
  • the first takeover which is fitted on one end of the valve seat
  • valve seat is in clearance fit with the first nozzle, and the welding ring is in interference fit with the first nozzle;
  • the boss structure is connected with the groove structure to prevent the welding ring from falling off.
  • the valve seat includes a first mounting tube and a second mounting tube connected in the axial direction, and the outer diameter of the first mounting tube is larger than the outer diameter of the second mounting tube; On the tube, the boss structure and the ring groove structure are both provided on the second mounting tube.
  • a jack is opened on the side wall of the first installation tube; the electronic expansion valve further includes:
  • the second connector is inserted into the socket and communicates with the first connector through the valve seat.
  • the first connection pipe includes a casing section and an extension section; the casing section is sleeved on the second installation pipe and is perpendicular to the first connection pipe; the extension section is connected to the casing section.
  • a ring slot is opened at an end of the first mounting tube connected to the second mounting tube, and the first receiving tube is inserted into the ring slot.
  • an accommodating cavity is provided in the valve seat, and the accommodating cavity communicates the first and second nozzles;
  • the electronic expansion valve further includes:
  • the valve needle is arranged in the valve seat and has a needle arranged toward the second installation tube; the maximum outer diameter of the needle is larger than the inner diameter of the second installation tube.
  • the electronic expansion valve further includes:
  • the cover body is installed on the valve seat and forms a containing cavity with the valve seat;
  • the lifting assembly is arranged in the accommodating cavity, and the central axis coincides with the central axis of the valve seat, and is used to drive the valve needle to move up and down along the central axis of the valve seat through rotation;
  • the rotor assembly which is rotatably installed in the cover;
  • the screw assembly is installed in the cover body, and the axial limit end is connected to the lifting assembly; the rotor assembly is arranged around the screw assembly and is used to drive the screw assembly to rotate and move axially.
  • the lifting assembly includes a spring, a gasket and a ball; the spring is installed in the lifting assembly, and one end is connected to the screw assembly; the other end is connected to the gasket and connected to the valve needle through the ball; the ball is placed on the gasket and the valve Between the needles, the friction of the valve needle during the rotation and movement of the lifting assembly driven by the screw assembly to the central axis of the valve seat is reduced.
  • the electronic expansion valve is installed between the liquid storage cylinder and the evaporator, and the refrigerant in the liquid storage cylinder is transmitted to the evaporator through the electronic expansion valve; the electronic expansion valve further includes:
  • the thermistor which is arranged at the outlet of the evaporator, is connected to a power source in parallel with the stator assembly fixed on the valve seat positioning sheet.
  • a groove for placing a welding ring is designed on the valve seat, the first connecting pipe is sleeved on one end of the valve seat, so that after the welding ring is put into the groove, the interference fits with the connecting pipe, and the gap between the valve seat and the connecting pipe The cooperation can improve the penetration rate of the internal welding of the electronic expansion valve under the condition that the first connecting pipe is not easy to fall off.
  • the welding ring adopts a built-in method to judge the welding quality of the valve seat assembly through appearance inspection.
  • the valve seat is provided with a boss structure connected to the groove structure, and the welding ring is limited to the valve seat by the boss structure without falling off. The welding ring can be installed in the groove in advance, and then one end of the valve seat and the welding The ring is inserted into the first takeover together to realize automated assembly.
  • the present invention also provides a refrigeration system, which includes a liquid storage container, an evaporator, and a control valve, and the refrigerant in the liquid storage container is transmitted to the evaporator through the control valve; the control valve is any of the above The electronic expansion valve.
  • the present invention also provides an air-conditioning system.
  • the air-conditioning system includes an electronic expansion valve, and the electronic expansion valve is any one of the above-mentioned electronic expansion valves.
  • the electronic expansion valve provided by the invention is provided with the bearing between the valve needle and the screw, so that the rotation of the screw is released by the bearing with multi-point rolling contact, thereby Point rolling contact sliding friction is converted into multi-point rolling contact rolling friction, which reduces the friction force required to open the valve and reduces the damage caused by friction, and improves the reliability and reliability of electronic expansion valves and air-conditioning systems using the above electronic expansion valves. Stability, with broad application prospects.
  • FIG. 1 is a schematic perspective view of an electronic expansion valve in the first embodiment of the present invention after omitting part of the structure;
  • FIG. 2 is a perspective exploded view of the electronic expansion valve shown in FIG. 1;
  • FIG. 3 is a schematic cross-sectional view of the electronic expansion valve shown in FIG. 1 after omitting part of the structure;
  • FIG. 4 is a schematic structural view of the valve body in the electronic expansion valve shown in FIG. 1;
  • FIG. 5 is a schematic structural view of a guide sleeve in the electronic expansion valve shown in FIG. 3;
  • FIG. 6 is a schematic cross-sectional view of the screw assembly in the electronic expansion valve shown in FIG. 1;
  • FIG. 7 is a schematic cross-sectional view of the screw assembly and rotor assembly in the electronic expansion valve shown in FIG. 1;
  • FIG. 8 is a schematic cross-sectional view of an electronic expansion valve in a second embodiment of the invention.
  • FIG. 9 is a schematic structural view of a valve seat component of an electronic expansion valve according to a third embodiment of the present invention.
  • FIG. 10 is an enlarged view of the area A in FIG. 9;
  • FIG. 11 is a perspective view of the valve seat component of the electronic expansion valve in FIG. 9;
  • FIG. 12 is a front view of the valve seat component of the electronic expansion valve in FIG. 9;
  • FIG. 13 is a plan view of the valve seat component of the electronic expansion valve in FIG. 9;
  • FIG. 14 is a side view of the valve seat component of the electronic expansion valve in FIG. 9;
  • FIG. 15 is a perspective view of the valve seat of the electronic expansion valve in FIG. 9;
  • FIG. 16 is a schematic structural diagram of a valve seat component of an electronic expansion valve according to a fifth embodiment of the present invention.
  • FIG. 17 is a schematic structural diagram of an electronic expansion valve according to a sixth embodiment of the present invention.
  • valve seat; 2-2 first takeover; 2-3, welding ring; 2-4, second takeover; 2-5, valve needle; 2-6, cover; 2-7, lifting assembly ; 2-8, rotor assembly; 2-9, screw assembly; 2-11, boss structure; 2-12, annular groove structure; 2-13, first installation tube; 2-14, second installation tube; 2-15, annular slot; 2-16, accommodating cavity; 2-21, casing section; 2-22, extension section; 2-71, spring; 2-72, gasket; 2-73, ball; 2 -131, jack.
  • a component when a component is said to be “installed on” another component, it can be directly mounted on another component or there can also be a centered component.
  • a component When a component is considered to be “set on” another component, it may be set directly on another component or there may be a centered component at the same time.
  • a component When a component is considered to be “fixed” to another component, it may be directly fixed to another component or there may be a centered component at the same time.
  • FIG. 1 is a schematic perspective view of the electronic expansion valve 1-100 in the first embodiment of the present invention after omitting part of its structure
  • FIG. 2 is a perspective exploded schematic view of the electronic expansion valve 1-100 shown in FIG. 1.
  • 3 is a schematic cross-sectional view of the electronic expansion valve 1-100 shown in FIG. 1 after omitting part of the structure.
  • the electronic expansion valve 1-100 provided by the present invention is used to adjust the flow rate and pressure of the fluid medium to realize the control of the fluid flow rate.
  • the electronic expansion valve 1-100 is used in an air conditioning system, and the fluid medium flowing through the electronic expansion valve 1-100 is the refrigerant used for heat and cold exchange in the air conditioning system; the electronic expansion valve 1-100 is installed in the air conditioner At the entrance of the evaporator of the system, the electronic expansion valve 1-100 serves as the boundary element between the high-pressure side and the low-pressure side of the air-conditioning system, throttles and reduces the pressure of the high-pressure liquid refrigerant, thereby regulating and controlling the amount of liquid refrigerant entering the evaporator or other devices , So that the dosage of liquid refrigerant can adapt to the requirements of external refrigeration load.
  • the electronic expansion valve 1-100 can also be applied to other types of refrigeration equipment other than air conditioning systems, and the flow through the electronic expansion valve 1-100 can also be other than refrigerant As for the fluid medium, as long as the electronic expansion valve 1-100 can achieve throttling and pressure reduction of the fluid medium.
  • Electronic expansion valve 1-100 includes valve body 1-10, valve needle assembly 1-20, screw assembly 1-30, guide sleeve 1-16, sleeve 1-40, rotor assembly 1-50 and stator assembly (not shown) ), the valve needle assembly 1-20, the screw assembly 1-30, the sleeve 1-40, the guide sleeve 1-16 and the stator assembly are installed on the valve body 1-10, one end of the screw assembly 1-30 and the valve needle assembly 1-20 connection, the other end is connected to the rotor assembly 1-50.
  • the valve body 1-10 is used to carry the valve needle assembly 1-20, the screw assembly 1-30, the guide sleeve 1-16, the sleeve 1-40 and the stator assembly, and the valve needle assembly 1-20 is used to control the electronic expansion valve 1-
  • the screw assembly 1-30 is used to drive the valve needle assembly 1-20.
  • the casing 1-40 isolates the external environment from the valve needle assembly 1-20, the screw assembly 1-30 and the rotor assembly 1-50 , So as to protect the valve needle assembly 1-20, the screw assembly 1-30 and the rotor assembly 1-50, to avoid media leakage, the rotor assembly 1-50 is used to drive the screw assembly 1-30 movement, and the stator assembly is used to drive the rotor assembly 1- 50 sports.
  • the stator assembly is energized to generate a magnetic field and drives the rotor assembly 1-50 to rotate through the action of the magnetic force.
  • the rotor assembly 1-50 drives the screw assembly 1-30 to move, and the valve needle assembly 1-20 controls the electronic expansion under the drive of the screw assembly 1-30
  • the valve 1-100 is opened or closed, so as to complete the purpose of the electronic expansion valve 1-100 regulating the flow and pressure of the fluid medium.
  • FIG. 4 is a schematic structural view of the valve body 1-10 in the electronic expansion valve 1-100 shown in FIG. 1.
  • the medium inlet pipe 1-101 and the medium outlet are respectively connected to both sides of the valve body 1-10.
  • the medium fluid enters the interior of the electronic expansion valve 1-100 through the medium inlet pipe 1-101, and then flows out of the electronic expansion valve 1-100 through the medium outlet pipe 1-102.
  • the valve body 1-10 is provided with a valve port 1-11, a valve cavity 1-12, a through hole 1-13, an installation cavity 1-14 and a connection cavity 1-15 in the direction of its own axis 1-103, and the valve port 1- 11.
  • the valve cavity 1-12, the through hole 1-13, the installation cavity 1-14 and the connection cavity 1-15 are sequentially communicated in the direction of the axis 1-103.
  • valve port 1-11 and the medium outlet pipe 1-102 communicate with each other, and the valve port 1-11 is used to extend the valve needle assembly 1-20, thereby blocking the fluid medium in the electronic expansion valve 1-100 from passing through the valve port 1- 11 Outgoing.
  • the valve needle assembly 1-20 closes the valve port 1-11, that is, the valve port 1-11 is disconnected from the valve cavity 1-12, the electronic expansion valve 1-100 closes; when the valve needle assembly 1-20 releases the valve
  • the port 1-11 is sealed, that is, when the valve port 1-11 communicates with the valve cavity 1-12, the electronic expansion valve 1-100 opens.
  • the valve cavity 1-12 is used to accommodate the portion of the valve needle assembly 1-20, and the fluid medium flows into the valve port 1-11 through the valve cavity 1-12.
  • the through hole 1-13 is provided between the valve cavity 1-12 and the mounting cavity 1-14.
  • the diameter of the through hole 1-13 is smaller than the inner diameter of the mounting cavity 1-14.
  • the bottom of the mounting cavity 1-14 forms a ring-shaped first positioning
  • the step 1-14a, the interior of the valve body 1-10 is used to accommodate the guide sleeve 1-16, and the through hole 1-13 and the installation cavity 1-14 cooperate with each other to realize the fixed installation of the guide sleeve 1-16.
  • the connecting cavity 1-15 is also provided with a connecting piece 1-17 for fixing the screw assembly 1-30.
  • the connecting cavity 1-15 and the connecting piece 1-17 cooperate with each other to realize the accommodation of the screw assembly 1-30 And fixed.
  • the valve body 1-10 is provided with a connection cavity 1-15.
  • the end face is contracted in the direction of the axis 1-103 and forms a stepped surface 1-151.
  • the sleeve 1-40 is sleeved with the valve body 1-10 and the connection cavity 1-15 is provided.
  • the step surface 1-151 limits the extension length of the sleeve 1-40 sleeve of the valve body 1-10, the valve body 1-10 opens the end face of the connection cavity 1-15 The sleeve 1-40 thereby restricts the radial movement of the sleeve 1-40.
  • the valve body 1-10 and the sleeve 1-40 are fixedly connected to each other by welding.
  • the step surface 1 -151 is the welding fixed surface between the valve sleeve 1-40 and the valve body 1-10.
  • other connection methods such as riveting and gluing may also be used to realize the fixed connection between the valve body 1-10 and the sleeve 1-40.
  • valve body 1-10 is made of stainless steel, and the valve body 1-10 is substantially cylindrical. It can be understood that, in other embodiments, the valve body 1-10 may also be manufactured by using other materials, which are not listed here one by one, and the valve body 1-10 may also adopt other shapes besides a cylinder.
  • FIG. 5 is a schematic structural view of the guide sleeve 1-16 in the electronic expansion valve 1-100 shown in FIG. 3.
  • the guide sleeve 1-16 is installed in the installation cavity 1-14 and has an interference fit with the installation cavity 1-14.
  • interference fit means that the size of the inner diameter of the mounting cavity 1-14 minus the outer diameter of the matching guide sleeve 1-16 is a negative value.
  • the guide sleeve 1-16 is used to guide the movement of the valve needle assembly 1-20 along the axis 1-103 of the valve body 1-10.
  • the connecting piece 1-17 is installed in the connecting cavity 1-15 for installing the screw assembly 1-30.
  • the connection piece 1-17 is installed in the connection cavity 1-15 by welding.
  • the guide sleeves 1-16 are made of brass material, that is, the guide sleeves 1-16 are brass guide sleeves.
  • the brass guide sleeve is relatively soft, which can facilitate the installation between the guide sleeve 1-16 and the screw assembly 1-30 and/or the valve body 1-10. It can be understood that, in other embodiments, the guide sleeves 1-16 may also be manufactured using materials other than brass.
  • the guide sleeves 1-16 are roughly cylindrical.
  • the guide sleeve 1-16 is provided with a guide hole 1-161 penetrating through the guide sleeve 1-16 along its own axis.
  • the valve needle assembly 1-20 is installed in the guide hole 1-161 and moves under the guide hole 1-161 .
  • the guide sleeve 1-16 includes a first cylindrical section 1-162 installed in the installation cavity 1-14, a second cylindrical section 1-163 for cooperating with the screw assembly 1-30, and a valve chamber 1-12 The third cylindrical segment 1-164.
  • the first cylindrical section 1-162 and the installation cavity 1-14 have an interference fit to ensure that during the installation of the guide sleeve 1-16, the axis of the guide sleeve 1-16 and the axis of the valve body 1-10
  • the 1-103 overlap setting ensures the coaxiality between the guide sleeve 1-16 and the valve port 1-11.
  • first cylindrical section 1-162 is an intermediate section, that is, located between the second cylindrical section 1-163 and the third cylindrical section 1-164.
  • the outer diameter of the first cylindrical section 1-162 is greater than the outer diameter of the second cylindrical section 1-163 and the outer diameter of the third cylindrical section 1-164, respectively. Therefore, it should be understood that steps 1-162a are formed between the first cylindrical segment 1-162, the second cylindrical segment 1-163, and the third cylindrical segment 1-164, respectively.
  • the step 1-162a between the first cylindrical section 1-162 and the third cylindrical section 1-164 cooperates with the first positioning step 1-14a at the bottom of the installation cavity 1-14 to achieve the positioning of the third cylindrical section 1-164 .
  • the first cylindrical section 1-162 has a first end 1-162b and a second end 1-162c
  • the second cylindrical section 1-163 is connected to the first end 1 of the first cylindrical section 1-162 -162b
  • the third cylindrical segment 1-164 is connected to the second end 1-162c of the first cylindrical segment 1-162.
  • the second end 1-162c of the first cylindrical section 1-162 has a guide structure 1-165, so as to facilitate installation between the first cylindrical section 1-162 and the installation cavity 1-14.
  • the guide structure 1-165 includes a guide portion provided at the second end 1-162c of the first cylindrical section.
  • the guide portion is a rounded guide portion or a conical guide portion.
  • the length of the second cylindrical section 1-163 is 1/4-1/3 times the length of the guide sleeve.
  • the guide sleeve 1-16 has a sufficient fitting size to cooperate with the screw assembly 1-30 to improve the connection Reliability, while reducing the risk of the guide sleeve 1-16 loosening due to vibration and other reasons.
  • first end 1-162b of the second cylindrical section 1-163 away from the first cylindrical section also has a guide structure 1-165.
  • a guide structure 1-165 is provided to facilitate installation between the guide sleeve 1-16 and the screw assembly 1-30.
  • the guide structure 1-165 includes a guide portion 1-165a disposed on the second cylindrical section 1-163 away from the first cylindrical section 1-162.
  • the guide portion 1-165a is a rounded guide portion or a conical guide portion.
  • FIG. 6 is a schematic cross-sectional view of the screw assembly 1-30 in the electronic expansion valve 1-100 shown in FIG. 1
  • FIG. 7 is a screw in the electronic expansion valve 1-100 shown in FIG. A schematic cross-sectional view of assembly 1-30 and rotor assembly 1-50.
  • the valve needle assembly 1-20 includes a valve needle sleeve 1-21 installed in the guide sleeve 1-16, and a valve needle 1-22 installed in the valve needle sleeve 1-21.
  • the valve needle 1-22 has an axis, and the axis of the valve needle 1-22 coincides with the axis 1-103 of the valve body 1-10.
  • One end of the valve needle 1-22 is connected with the screw assembly 1-30, and the other end is matched with the valve port 1-11.
  • the screw assembly 1-30 drives the valve needle 1-22 to control the opening or closing of the valve ports 1-11, thereby realizing the opening/closing of the electronic expansion valve 1-100.
  • the valve needle assembly 1-20 further includes a bearing 1-23, a gasket 1-24 and an elastic member 1-25, a bearing 1-23 and a gasket 1-24 are provided at the end of the screw assembly 1-30 close to the valve needle 1-22 , One end of the elastic member 1-25 contacts the gasket 1-24, and the other end contacts the valve needle 1-22; one end of the bearing 1-23 bears against the screw assembly 1-30 and the valve needle sleeve 1-21, the other end Contact with the gasket 1-24; the gasket 1-24 is accommodated in the valve needle sleeve 1-21 and is in contact with the outer ring of the bearing 1-23.
  • the screw assembly 1-30 includes a nut sleeve 1-32 and a screw 1-31 installed in the nut sleeve 1-32.
  • the screw 1-31 has a first end and a second end that are oppositely arranged.
  • the first end of the screw 1-31 is connected to the rotor assembly 1-50, and the second end of the screw 1-31 is threaded into the nut sleeve 1-32.
  • One end of the nut sleeve 1-32 is installed on the connecting piece 1-17, and the other end is located in the sleeve 1-40.
  • the screw 1-31 is provided with a protrusion 1-311 extending in the radial direction of the screw 1-31.
  • the protrusion 1-311 is flush with the inner side of the valve needle sleeve 1-21.
  • the outer ring of the bearing 1-23 resists The inner side of the protrusion 1-311 and the valve needle sleeve 1-21, the inside of the protrusion 1-311 and the valve needle sleeve 1-21 face the resistance of the outer ring of the bearing 1-23, realizing the screw 1-31 and the valve needle Set 1-21 limits the bearings 1-23.
  • the screw 1-31 is fixedly connected to the inner ring of the bearing 1-23.
  • the screw 1-31 and the inner ring of the bearing 1-23 are fixed to each other through an interference fit, that is, the size of the screw 1-31 is larger than the bore diameter of the inner ring of the bearing 1-23.
  • the screw 1-31 and the bearing 1-23 has relatively better connection stability.
  • the screw 1-31 and the inner ring of the bearing 1-23 may also be fixed to each other by riveting, gluing, or other connection methods.
  • the screw 1-31 rotates under the drive of the rotor assembly 1-50. Due to the fixed connection between the screw 1-31 and the inner ring of the bearing 1-23, the screw 1-31 drives the inner ring of the bearing 1-23 to rotate.
  • the rolling element in the bearing 1-23 is in rolling contact with the outer ring of the bearing 1-23, thereby releasing the rotation of the screw 1-31.
  • the rotation of the screw is released by the bearing, so that relative rotation friction does not occur when the valve needle contacts the valve port, and the reliability and life of the valve needle and valve port are improved.
  • the contact force on the rolling body is perpendicular to the gravity direction of the screw 1-31, which also relatively reduces the contact force at the contact point in the traditional electronic expansion valve, Improves the stability and reliability of the electronic expansion valve 1-100.
  • the elastic members 1-25 are springs. At this time, the elastic members 1-25 have relatively high connection stability. It can be understood that, in other embodiments, the elastic members 1-25 may also be other types of elastic elements such as elastic columns.
  • the second cylindrical section 1-163 extends from the first end of the nut sleeve 1-32 into the nut sleeve 1-32, and is fixedly connected with the nut sleeve 1-32.
  • the fixed connection includes any one of a screw connection or an interference fit or a transition fit.
  • the axis of is aligned with the axis of the guide sleeve 1-16 and the axis 1-103 of the valve body 1-10.
  • valve body 1-10 is guided through the first cylindrical section 1-162, and the nut sleeve 1-32 is guided on the second cylindrical section 1-163; thus the valve body 1-10, the guide sleeve 1-16 and the nut
  • the axis between the three sets of 1-32 coincides to ensure the coaxiality between the valve needle 1-22 and the valve port 1-11, thereby reducing the valve needle 1-22 and the valve body 1 during the movement
  • the collision between -10 in order to reduce the wear of the valve needle 1-22 and other components, improve the service life of the electronic expansion valve 1-100.
  • the nut sleeve 1-32 is screwed to the screw 1-31. Since the nut sleeve 1-32 is welded to the connecting piece 1-17, when the screw 1-31 rotates under the drive of the rotor 1-51, the nut sleeve 1-32 is The screw-nut coordination relationship formed between the screw 1-31, the screw 1-31 and the rotor assembly 1-50 fixedly connected to the screw 1-31, etc. will extend and contract along the axis direction of the screw 1-31, thereby realizing the screw 1 -31 drives the movement process of the valve needle assembly 1-20.
  • a second positioning step 1-321 can be provided in the nut sleeve 1-32.
  • the second cylindrical section 1-163 extends into the nut sleeve 1-32 and abuts on the second positioning step 1-321, thereby improving the guide sleeve 1 -16 The reliability of the installation, to avoid the axial movement of the guide sleeve 1-16, and noise.
  • the rotor assembly 1-50 includes a rotor 1-51 in the sleeve 1-40, an adapter plate 1-52 for mounting the screw 1-31, and a limiter 1-53 for limiting the rotation angle of the rotor 1-51 , And the guide piece 1-54 mounted on the adapter board 1-52.
  • the rotor 1-51 is mounted on the adapter plate 1-52.
  • the adapter plate 1-52 and the screw 1-31 are fixedly connected by welding or the like.
  • the limiter 1-53 includes a spring 1-531 sleeved on the nut sleeve, and a stop ring 1-532 mounted on the spring 1-531.
  • One end of the spring 1-531 is connected to the connecting piece 1-17.
  • the other end of the spring 1-531 is provided with a stopper 1-531a.
  • the stop ring 1-532 is wound around the spring 1-531.
  • a stop table 1-322 is provided on the outer wall of the nut sleeve 1-32, and the stop table 1-322 is used to cooperate with the stop ring 1-532 to limit the rotation angle of the rotor 1-51.
  • the stop ring 1-532 moves along the spring 1-531; the stop ring 1- 532 abuts against the stop table 1-322, limits the rotation angle of the rotor 1-51, and is the lower limit of the rotor 1-51.
  • the stop ring 1-532 moves along the spring 1-531; The stop ring 1-532 abuts the stop portion 1-531a to limit the rotation angle of the rotor 1-51, which is the upper limit of the rotor 1-51.
  • the stator assembly includes coils and other components to generate a magnetic field after being energized, and under the action of the magnetic field force, the rotor 1-51 is driven to rotate, thereby realizing the driving of the rotation of the screw 1-31.
  • a fixed disc 1-18 is further provided on the valve body 1-10, the fixed disc 1-18 is used to carry and fix the stator assembly, and a plurality of mounting holes 1-181 are also provided on the fixed disc 1-18, The mounting hole 1-181 is used for the stator assembly to be fixedly installed on the fixing plate 1-18.
  • the electronic expansion valve 1-100 is an electric electronic expansion valve
  • the rotor 1-51 is a motor rotor made of permanent magnets in the stepper motor
  • the stator assembly is the motor stator in the stepper motor
  • the stepper motor After receiving the logic digital signal provided by the control circuit, the signal is transmitted to each phase coil of the motor stator.
  • the rotor of the motor made of permanent magnets is subjected to magnetic torque to produce rotational motion, thereby achieving the rotation process of the stator assembly driving the rotor assembly.
  • the rotor 1-51 made of magnetic material rotates under the drive of the magnetic field.
  • the rotor 1-51 and the screw 1-31 are fixedly connected through the guide piece 1-54.
  • the rotation of the rotor 1-51 drives
  • the screw 1-31 rotates, and a screw nut is formed between the screw 1-31 and the nut sleeve 1-32.
  • the nut sleeve 1-32 is fixedly arranged on the valve body 1-10, so the screw 1-31 is opposite to the nut sleeve 1-32
  • the rotation of the screw will drive the screw 1-31 to expand and contract relative to the nut sleeve 1-32, so as to realize the stator assembly drives the rotor assembly 1-50 movement, and the rotor assembly 1-50 then drives the screw assembly 1-30 movement;
  • the telescopic movement of the screw 1-31 relative to the valve body 1-10 axis 1-103 direction drives the valve needle 1-22 through the elastic member 1-25, and the valve needle 1-22 is driven by the screw 1-31 toward the valve body 1
  • the valve port 1-11 opened on -10 moves.
  • the valve needle 1-22 closes the valve port 1-11, that is, the valve cavity 1-12 is disconnected from the valve port 1-11, the electronic expansion valve 1-100 is closed.
  • valve needle 1-22 unblocks the valve port 1-11, that is, the valve cavity 1-12 and the valve port 1-11 communicate with each other, the electronic expansion valve 1-100 opens, because the electronic expansion valve 1-100 The opening diameter of the valve ports 1-11 is relatively small, and the flow rate of the fluid medium is reduced, thereby realizing the throttling and depressurizing process of the electronic expansion valve 1-100 to the fluid medium.
  • FIG. 8 is a schematic cross-sectional view of the electronic expansion valve 1-100a in the second embodiment of the present invention.
  • the bearing 1-23 is provided at the end of the screw 1-31 near the valve needle 1-22
  • the bearing 1-23a is provided in the valve needle 1-22a Close to the end of the screw 1-31a.
  • the bearing 1-23 can Transform the single-point rolling contact of the traditional electronic expansion valve into a multi-point rolling contact, so as to use the better distribution characteristics of the multi-point rolling contact to reduce the friction damage caused by opening the valve, and reduce the rotation of the screw to drive the valve needle to rotate relative to the valve port. Friction, which provides better reliability and stability.
  • the inner ring of the bearing 1-23a is sleeved with the valve needle 1-22a and fixed to each other, and the end face of the outer ring of the bearing 1-23a contacts the gasket 1-24a and resists each other;
  • One end of the elastic member 1-25a is connected to the screw 1-31a, and the other end is sleeved with a gasket 1-24a.
  • the elastic member 1-25a connected to the screw 1-31a is driven by the screw 1-31a, and the elastic member 1-25a will drive the gasket 1-24a to rotate, and the gasket 1-
  • the rotation of 24a drives the rotation of the outer ring of the bearing 1-23a that is in contact with itself. Since the inner ring of the bearing 1-23a is fixed to the valve needle 1-22a, the rotation of the screw 1-31 will be transmitted to the bearing 1-23a. The rotation of the outer ring relative to the inner ring.
  • the multiple rolling elements in the bearing 1-23a transform the single-point rolling contact of the traditional electronic expansion valve into multi-point rolling contact, the contact force is shared by the multiple rolling elements, reducing the contact pressure at each contact point, rolling Friction is reduced.
  • the inner ring of the bearing 1-23a and the end of the valve needle 1-22a close to the screw 1-31 have an interference fit, and the inner ring of the bearing 1-23a and the valve needle 1-22a are fixed to each other by an interference fit;
  • the way of using the interference fit to fix the inner ring is relatively simple during assembly, which can improve assembly efficiency.
  • the inner ring of the bearing 1-23a may also be glued, riveted, etc. to achieve mutual fixation with the valve needle 1-22a in other ways.
  • gasket 1-24a is pressed against the outer ring of the bearing 1-23a by the elastic action of the elastic member 1-25a, that is, the outer ring of the bearing 1-23a is in contact with the gasket 1-24a by the end face Tighten and fix each other; using this method to fix, the installation of gaskets 1-24a is also relatively simple.
  • the outer ring of the bearing 1-23a may also use other means such as concave-convex fitting to achieve contact and fixation with the gasket 1-24a.
  • gaskets 1-24a are generally hollow cylindrical, and the portion near the valve needle 1-22a extends radially outwards of the self and forms a protrusion 1-241, and the gasket 24a snaps against the bearing through the protrusion 1-241 End face of the outer ring of 1-23a.
  • the portion of the inner cavity of the gasket 1-24a near the valve needle 1-22a is provided with a tapered surface (not labeled), and the tapered surface is provided to match the shape of the conical top of the valve needle 1-22a, thereby improving the gasket The fitting relationship between the piece 1-24a and the valve needle 1-22a.
  • the valve needle assembly 1-20 is also provided with a pressure
  • the sleeve 1-26, the pressure sleeve 1-26 and the valve needle sleeve 1-21a are fixed to each other, the pressure sleeve 1-26 is provided with a step surface 1-261, and the pressure sleeve 1-26 snaps against the valve needle 1 through the step surface 1-261 -22a and there is no direct contact between the two, leaving a slight gap to avoid friction between the valve needle 1-22a and the pressure sleeve 1-261, thereby preventing the valve needle 1-22a from moving toward the valve port 1-11a
  • the deep causes the valve needle 1-22a to disengage from the inner ring of the bearing 1-23a, affecting the normal operation of the electronic expansion valve 1-100a.
  • the pressure sleeve 1-26 is fixed to the valve needle sleeve 1-21a by welding. It can be understood that, in other embodiments, the pressure sleeve 1-26 can also be fixed to the valve needle sleeve 1-21a by other methods such as riveting and glue fixing.
  • the clearance existing between the inner ring and the outer ring of the bearing 1-23a itself can provide the valve needle 1-22a to a certain extent
  • the degree of freedom of assembly which helps to eliminate the coaxiality error during processing and assembly.
  • a certain swing angle is allowed between the valve needle 1-22a and the bearings 1-23a, and this swing angle can help the valve needle 1-22a reduce the coaxiality error.
  • the invention also provides an air-conditioning system (not shown) using the above-mentioned electronic expansion valve. Due to the use of the above-mentioned electronic expansion valve, the reliability and stability of the entire system are improved, and it has a wider application prospect.
  • the electronic expansion valve provided by the present invention transforms the single-point rolling contact sliding friction of the traditional electronic expansion valve into multi-point rolling contact rolling by setting a bearing between the valve needle and the screw so that the rotation of the screw is released by the multi-point rolling contact bearing Friction reduces the frictional force required to open the valve and reduces the damage caused by friction, improves the reliability and stability of the electronic expansion valve and the air-conditioning system using the electronic expansion valve, and has a broad application prospect.
  • this embodiment provides an electronic expansion valve seat component, which includes a valve seat 2-1, a first takeover 2-2, a welding ring 2-3, and may also include a second takeover 2 -4.
  • the electronic expansion valve is used in refrigeration equipment, and is installed between the liquid storage cylinder and the evaporator, and the refrigerant in the liquid storage cylinder is transmitted to the evaporator through the electronic expansion valve.
  • One end of the valve seat 2-1 has a boss structure 2-11, and an annular groove structure 2-12 connected to the boss structure 2-11 is provided.
  • the valve seat 2-1 can be made of the material of the valve body of the existing expansion valve, and its size can also be the same as the valve seat of the existing expansion valve.
  • the valve seat 2-1 has a column shape as a whole, and may be composed of multiple segments connected in sequence, and the multiple segments are coaxially arranged and communicated in sequence.
  • the other end of the valve seat 2-1 can be covered by a valve cover and form a closed end.
  • the boss structure 2-11 may have a circular truncated cone shape, and the radius of the end away from the annular groove structure 2-12 is smaller.
  • the groove of the annular groove structure 2-12 may be an annular groove, an annular groove with a rectangular cross section, or a groove of other shapes. It should be noted here that the boss structure 2-11 and the annular groove structure 2-12 may be separately provided, or may be integrally formed, and serve as an end structure of the valve seat 2-1.
  • the accommodating chamber 2-16 is provided in the valve seat 2-1, and the accommodating chamber 2-16 communicates with the first connecting pipe 2-2 and the second connecting pipe 2-4.
  • the valve seat 2-1 includes a first mounting tube 2-13 and a second mounting tube 2-14, the first mounting tube 2-13 and the second mounting tube 2-14 are connected in the axial direction, and the first mounting tube 2
  • the outer diameter of -13 is larger than the outer diameter of the second mounting tube 2-14.
  • the first connecting tube 2-2 is sleeved on the second mounting tube 2-14, and the boss structure 2-11 and the ring groove structure 2-12 are both disposed on the second mounting tube 2-14.
  • the side wall of the first mounting tube 2-13 is provided with an insertion hole 2-131, and the insertion hole 2-131 may be a round hole.
  • the first connecting pipe 2-2 is sleeved on one end of the valve seat 2-1.
  • the first connecting pipe 2-2 includes a casing section 2-21 and an extension section 2-22.
  • the radius of the casing section 2-21 may be larger than the radius of the extension section 2-22. Of course, the radius of the casing section 2-21 may also be equal to or smaller than Radius of extension 2-22.
  • the casing section 2-21 is sleeved on the second installation pipe 2-14 and is perpendicular to the first connecting pipe 2, and the extension section 2-22 is connected to the casing section 2-21.
  • the welding ring 2-3 is snapped into the groove of the annular groove structure 2-12, and is connected to the inner wall of the first connecting pipe 2-2, the valve seat 2-1 is in clearance fit with the first connecting pipe 2-2, and the welding ring 2- 3 Interference fit with the first takeover 2-2.
  • this assembly method can ensure that the first connecting pipe 2-2 is not easy to fall off, so that the valve seat 2-1 and the first connecting pipe 2-2 are connected more stably, and the first connecting pipe 2-2 can be guaranteed Improve the penetration of the internal welding of the expansion valve when it is not easy to fall off.
  • the built-in welding ring method can be used to judge the welding quality of the valve seat assembly through visual inspection.
  • the welding ring 2-3 is caught in the groove of the groove structure 2-12 through the boss structure 2-11, and the boss structure 2-11 will restrict the movement of the welding ring 2-3 and prevent the welding ring 2-3 from The valve seat 2-1 comes off.
  • the welding ring 2-3 can be fixed to the valve seat 2-1 in advance, and then the second mounting pipe 2-14 can be inserted into the first connecting pipe 2 -2, realize automatic assembly and facilitate the installation of welding ring 2-3.
  • the second connection 2-4 is inserted into the insertion hole 2-131, and communicates with the first connection 2-2 through the valve seat 2-1.
  • the second connecting pipe 2-4 can communicate with the liquid storage cylinder, so that the refrigerant in the liquid storage cylinder enters the accommodating cavity 2-16, and further enters the evaporator through the first connecting pipe 2-2, so that the evaporator can perform evaporation and cooling .
  • the electronic expansion valve of this embodiment has the following advantages:
  • a groove for placing a welding ring is designed on the valve seat 2-1 of the electronic expansion valve, so that the welding ring 2-3 is limited to the valve seat 2-1 to ensure the valve
  • the seat 2-1 is in clearance fit with the first nozzle 2-2
  • the welding ring 2-3 is in interference fit with the first nozzle 2-2.
  • valve seat 2-1 is provided with a boss structure 2-11 connected to the groove structure 2-12, so that the welding ring 2-3 is limited to the valve seat 2-1 without falling off, so that during assembly Install the welding ring 2-3 in the groove in advance, and then insert the end of the valve seat 2-1 and the welding ring 2-3 into the first connecting pipe 2-2 together to realize automatic assembly and facilitate the installation of the welding ring 2-3 .
  • the refrigeration system may include multiple refrigeration devices, and may also be applied to various refrigeration equipment.
  • the refrigeration system in this embodiment mode includes a liquid storage container, an evaporator, and a control valve.
  • the control valve uses the electronic expansion valve in Embodiment Mode 3.
  • the liquid storage container stores the liquid refrigerant, and communicates with the second connecting pipe 2-4 of the electronic expansion valve.
  • the evaporator communicates with the first connecting pipe 2-2 of the electronic expansion valve, and receives the refrigerant of the liquid storage container through the electronic expansion valve to achieve evaporative cooling. It should be noted here that the effect of the refrigeration system in this embodiment mode is the same as the effect of the electronic expansion valve in Embodiment Mode 3, and the refrigeration system is applied as a system.
  • this embodiment provides an electronic expansion valve, which is similar to the electronic expansion valve in Embodiment 3, except that in this embodiment, the first mounting tube 2-13 and the second mounting tube 2 At the end of the -14 connection, a circular slot 2-15 is opened, and the first takeover 2-2 is inserted into the slot 2-15.
  • the first connecting pipe 2-2 is fixed to the valve seat 2-1, which can prevent the first connecting pipe 2-2 from bending the angle, press fitting equipment tooling or other problems or the gap is too large, etc. 2-2 is skewed, and there is a gap between the valve seat 2-1 and the first take-over 2-2, resulting in insufficient solder.
  • this embodiment provides an electronic expansion valve, which adds a valve needle 2-5, a cover 2-6, a lifting assembly 2-7, and a rotor assembly 2- on the basis of Embodiment 3 8 and screw assembly 2-9.
  • the accommodating cavity 2-16 is provided in the valve seat 2-1, and the accommodating cavity 2-16 communicates with the first connecting tube 2-2 and the second connecting tube 2-4.
  • the cover body 2-6 is mounted on the valve seat 2-1, and surrounds the valve seat 2-1 to form a receiving cavity 2-16.
  • the valve needle 2-5 is disposed in the valve seat 2-1 and has a needle disposed toward the second mounting tube 2-14; the maximum outer diameter of the needle is larger than the inner diameter of the second mounting tube 2-14.
  • the lifting assembly 2-7 is placed in the accommodating cavity 2-16, and the central axis coincides with the central axis of the valve seat 2-1, and is used to rotate the valve needle 2-5 to move up and down along the central axis of the valve seat 2-1 .
  • the rotor assembly 2-8 is rotatably installed in the cover body 2-6, the screw assembly 2-9 is installed in the cover body 2-6, and the axial limit end is connected to the lifting assembly 2-7.
  • the rotor assembly 2-8 is arranged around the screw assembly 2-9, and is used to drive the screw assembly 2-9 to rotate and move axially. In this way, the rotor assembly 2-8 can rotate by itself, so that the lifting assembly 2-7 rotates and drives the valve needle 2-5 to lift, thereby changing the gap between the needle and the second mounting tube 2-14.
  • the lifting assembly 2-7 may include a spring 2-71, a washer 2-72, and a ball 2-73.
  • the spring 2-71 lift assembly 2-7, and one end is connected with the screw assembly 2-9.
  • the other end is connected to the gasket 2-72, and is connected to the valve needle 2-5 through the ball 2-73.
  • the ball 2-73 is placed between the gasket 2-72 and the valve needle 2-5, and both ends slide along the central axis of the valve seat 2-1 on the side wall of the valve seat 2-1, reducing the lifting assembly at
  • the screw assembly drives the friction of the valve needle during the rotation and movement of the central axis of the downward valve seat. Since the lifting assembly 2-7 will rotate and move up and down with the screw assembly 2-9, and then lift the valve needle 2-5, thereby controlling the size of the gap between the needle and the second mounting tube 2-14.
  • the user can control the stator assembly to drive the rotation of the rotor assembly 2-8, so that the valve needle 2-5 moves along the axial direction of the valve seat 2-1, so that the needle and the second
  • the gap between the installation tubes 2-14 is increased or decreased, thereby achieving the control of the flow rate, thereby controlling the cooling effect of the evaporator, and preventing the underutilization of the evaporator area and knocking on the cylinder.
  • This embodiment mode provides an electronic expansion valve, which adds a thermistor on the basis of Embodiment Mode 3.
  • the thermistor is installed at the outlet of the evaporator, and is connected to a power supply in parallel with the stator assembly fixed on the positioning plate of the valve seat 2-1. Since the resistance value of the thermistor changes with temperature, this makes the voltage across the stator assembly change with temperature, and further makes the position of the valve needle 2-5 change with temperature, so as to adjust the electronic expansion The flow rate of the valve.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Electrically Driven Valve-Operating Means (AREA)
  • Lift Valve (AREA)

Abstract

一种电子膨胀阀(1-100),该电子膨胀阀(1-100)包括螺杆(1-31)、阀针(1-22)及弹性件(1-25),弹性件(1-25)的一端作用于螺杆(1-31),另一端作用于阀针(1-22),螺杆(1-31)与阀针(1-22)之间设置有轴承(1-23),轴承(1-23)具有内圈及外圈,螺杆(1-31)与阀针(1-22)中的一个与轴承(1-23)的内圈固定,另一个通过弹性件(1-25)作用于轴承(1-23)的外圈;一种使用该电子膨胀阀(1-100)的空调系统,该电子膨胀阀(1-100)通过在阀针(1-22)与螺杆(1-31)之间设置轴承(1-23),使得螺杆(1-31)的转动由多点滚动接触的轴承(1-23)释放,将传统电子膨胀阀的单点滚动接触滑动摩擦转变为多点滚动接触滚动摩擦,降低了开阀所需的摩擦力并且减少了因摩擦导致的损伤,提高了电子膨胀阀及使用上述电子膨胀阀的空调系统的可靠性与稳定性,具有广泛的应用前景。

Description

电子膨胀阀及使用该电子膨胀阀的空调系统 技术领域
本发明涉及制冷设备技术领域,特别是涉及一种电子膨胀阀及使用该电子膨胀阀的空调系统。
背景技术
电子膨胀阀通过阀杆组件在导向套及螺母套内的运动来打开或关闭阀口,能够实现调节流量和节流降压的目的,在制冷设备技术领域中应用广泛。传统的电子膨胀阀一般在螺杆的一端设置相互接触的滚珠与弹簧座,以释放螺杆与阀针之间的相对转动。但是滚珠与弹簧座之间依然存在较大的摩擦力,滚珠与弹簧座之间单点接触的滑动摩擦形式具有较大的摩擦力,极易导致接触点的摩擦损伤,同时会带动阀针相对于阀口产生旋转,导致阀针、阀口磨损,电子膨胀阀的可靠性与稳定性相对较低。
发明内容
有鉴于此,有必要提供一种改进的电子膨胀阀及使用该电子膨胀阀的空调系统,该电子膨胀阀及使用该电子膨胀阀的空调系统的可靠性与稳定性提高。
本发明提供一种电子膨胀阀,所述电子膨胀阀包括螺杆、阀针及弹性件,所述弹性件的一端作用于所述螺杆,另一端作用于所述阀针,所述螺杆与所述阀针之间设置有轴承,所述轴承具有内圈及外圈,所述螺杆与所述阀针中的一个与所述轴承的内圈固定,另一个通过弹性件作用于所述轴承的外圈。
进一步地,所述电子膨胀阀包括垫片,所述垫片设置于所述弹性件与所述轴承的外圈之间,所述垫片在所述弹性件的抵持下连接所述轴承的外圈。
进一步地,所述螺杆与所述轴承的内圈固定,所述阀针通过所述弹性件及垫片连接所述轴承的外圈。
进一步地,所述电子膨胀阀包括用以固定所述阀针的阀针套,所述螺杆的侧面沿自身的径向向外延伸并形成凸起,所述凸起与所述阀针套的内侧面平齐。
进一步地,所述螺杆与所述轴承的内圈之间过盈配合。
进一步地,所述阀针与所述轴承的内圈固定,所述螺杆通过所述弹性件及垫片连接所述轴承的外圈。
进一步地,所述阀针与所述轴承的内圈之间过盈配合。
进一步地,所述电子膨胀阀还包括压套,所述压套上设置有台阶面,所述台阶面抵持所述阀针以限制所述阀针的轴向移动。
进一步地,所述垫片具有沿自身轴向延伸的空腔,所述垫片靠近所述阀针的内侧面设置为锥面。
进一步地,电子膨胀阀包括:
阀座,其一端具有环形凹槽结构;
第一接管,其套装在阀座的一端上;
焊环,将其卡入环形凹槽结构的凹槽中,并与第一接管的内壁相连;
其中,阀座与第一接管间隙配合,焊环与第一接管过盈配合;
凸台结构,其与凹槽结构相连,共同防止焊环脱落。
作为上述方案的进一步改进,阀座包括沿轴向相连的第一安装管以及第二安装管,且第一安装管的外径大于第二安装管的外径;第一接管套在第二安装管上,凸台结构和环形凹槽结构均设置在第二安装管上。
进一步地,第一安装管的侧壁上开设插孔;所述电子膨胀阀还包括:
第二接管,其插入在插孔中,并通过阀座与第一接管连通。
再进一步地,第一接管包括套管段和延伸段;套管段套在第二安装管上,并垂直于第一接管;延伸段连接在套管段上。
再进一步地,第一安装管与第二安装管连接的一端开设环形插槽,第一接管插入在环形插槽中。
再进一步地,阀座内设置容置腔,容置腔连通第一接管与第二接管;所述电子膨胀阀还包括:
阀针,其设置在阀座中,且具有朝向第二安装管设置的针头;所述针头的最大外径大于第二安装管的内径。
再进一步地,所述电子膨胀阀还包括:
盖体,其安装在阀座上,并与阀座围成容置腔;
升降组件,其设置在容置腔中,且中心轴与阀座的中心轴重合,并用于通过旋转以带动阀针沿阀座的中心轴升降;
转子组件,其转动安装在盖体中;以及
螺杆组件,其安装在盖体中,且轴向限位端与升降组件相连;转子组件围绕螺杆组件设置,并用于带动螺杆组件转动及轴向移动。
再进一步地,升降组件包括弹簧、垫片以及滚珠;弹簧安装在升降组件内,且一端与螺杆组件相连;另一端与垫片相连,并通过滚珠与阀针连接;滚珠放在垫片与阀针之间,减少升降组件在螺杆组件驱动下延阀座的中心轴方向转动和移动过程中对阀针的摩擦。
再进一步地,所述电子膨胀阀安装在储液筒和蒸发器之间,所述储液筒内的制冷剂通过所述电子膨胀阀传输至所述蒸发器;所述电子膨胀阀还包括:
热敏电阻,其设置在所述蒸发器的出口,且与固定在阀座定位片上的定子组件并联后接入一个电源。
本发明的电子膨胀阀,其阀座上设计了放置焊环的凹槽,第一接管套装在阀座的一端上,使得焊环放入凹槽后与接管过盈配合,阀座与接管间隙配合,可在保证第一接管不容易脱落的情况下提高电子膨胀阀内部焊接的渗透率,同时焊环采用内置方式可通过外观检查来判定阀座组件焊接质量。并且,阀座设置与凹槽结构相连凸台结构,焊环通过凸台结构限位在阀座上而不会脱落,可提前将焊环安装在凹槽中,再将阀座的一端以及焊环一同插入第一接管中,实现自动化装配。
本发明还提供了一种制冷系统,其包括储液容器、蒸发器以及控制阀,所述储液容器内的制冷剂通过所述控制阀传输至所述蒸发器;所述控制阀为上述任意所述的电子膨胀阀。
本发明的制冷系统,其有益效果与电子膨胀阀的有益效果相同,在此不做赘述。
本发明还提供一种空调系统,所述空调系统包括电子膨胀阀,所述电子膨胀阀为上述任意一项所述的电子膨胀阀。
本发明提供的所述电子膨胀阀通过在所述阀针与所述螺杆之间设置所述轴承,使得所述螺杆的转动由多点滚动接触的所述轴承释放,将传统电子膨胀阀的单点滚动接触滑动摩擦转变为多点滚动接触滚动摩擦,降低了开阀所需的摩擦力并且减少了因摩擦导致的损伤,提高了电子膨胀阀及使用上述电子膨胀阀的空调系统的可靠性与稳定性,具有广泛的应用前景。
附图说明
构成本申请的一部分的说明书附图用来提供对本发明的进一步理解,本发明的示意性实施例及其说明用于解释本发明,并不构成对本发明的不当限定。在附图中:
图1本发明第一个实施方式中电子膨胀阀省略部分结构后的立体示意图;
图2为图1所示电子膨胀阀的立体分解示意图;
图3为图1所示电子膨胀阀省略部分结构后的剖视示意图;
图4为图1所示电子膨胀阀中阀体的结构示意图;
图5为图3所示电子膨胀阀中导向套的结构示意图;
图6为图1所示电子膨胀阀中螺杆组件的剖视示意图;
图7为图1所示电子膨胀阀中螺杆组件及转子组件的剖视示意图;
图8为本发明第二个实施方式中电子膨胀阀的剖视示意图;
图9为本发明第三个实施方式的电子膨胀阀阀座部件的结构示意图;
图10为图9中的区域A的放大图;
图11为图9中的电子膨胀阀阀座部件的立体图;
图12为图9中的电子膨胀阀阀座部件的正视图;
图13为图9中的电子膨胀阀阀座部件的俯视图;
图14为图9中的电子膨胀阀阀座部件的侧视图;
图15为图9中的电子膨胀阀的阀座的立体图;
图16为本发明第五个实施方式的电子膨胀阀阀座部件的结构示意图;
图17为本发明第六个实施方式的电子膨胀阀的结构示意图。
其中,上述附图包括以下附图标记:
1-100、电子膨胀阀;1-100a、电子膨胀阀;1-101、介质进管;1-102、介质出管;1-103、轴线;1-10、阀体;1-11、阀口;1-12、阀腔;1-13、通孔;1-14、安装腔;1-15、连接腔;1-151、台阶面;1-16、导向套;1-161、导向孔;1-162、第一圆柱段;1-162a、台阶;1-162b、第一端;1-162c、第二端;1-163、第二圆柱段;1-164、第三圆柱段;1-165、导向结构;1-165a、导向部;1-17、连接片;1-18、固定盘;1-181、安装孔;1-20、阀针组件;1-21、阀针套;1-22、阀针;1-22a、阀针;1-23、轴承;1-23a、轴承;1-24、垫片;1-24a、垫片;1-241、凸起;1-25、弹性件;1-25a、弹性件;1-26、压套;1-261、台阶面;1-30、螺杆组件;1-31、螺杆;1-31a、螺杆;1-311、凸起;1-32、螺母套;1-321、第二定位台阶;1-322、止挡台;1-40、套管;1-50、转子组件;1-51、转子;1-52、转接板;1-53、限位板;1-531、弹簧;1-531a、止挡部;1-532、止挡圈;1-54、导动片;
2-1、阀座;2-2、第一接管;2-3、焊环;2-4、第二接管;2-5、阀针;2-6、盖体;2-7、升降组件;2-8、转子组件;2-9、螺杆组件;2-11、凸台结构;2-12、环形凹槽结构;2-13、第一安装管;2-14、第二安装管;2-15、环形插槽;2-16、容置腔;2-21、套管段;2-22、延伸段;2-71、弹簧;2-72、垫片;2-73、滚珠;2-131、插孔。
如下具体实施方式将结合上述附图进一步说明本发明。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将参考附图并结合实施例来详细说明本发明。
下面将结合本发明实施例中的附图,对本发明实施例中的技术方案进行清楚、完整地描述,显然,所描述的实施例仅仅是本发明一部分实施例,而不是全部的实施例。基于本发明中的实施例,本领域普通技术人员在没有做出创造性劳动前提下所获得的所有其他实施例,都属于本发明保护的范围。
需要说明的是,当组件被称为“装设于”另一个组件,它可以直接装设在另一个组件上或者也可以存在居中的组件。当一个组件被认为是“设置于”另一个组件,它可以是直接设置在另一个组件上或者可能同时存在居中组件。当一个组件被认为是“固定于”另一个组件,它可以是直接固定在另一个组件上或者可能同时存在居中组件。
除非另有定义,本文所使用的所有的技术和科学术语与属于本发明的技术领域的技术人员通常理解的含义相同。本文中在本发明的说明书中所使用的术语只是为了描述具体的实施例的目的,不是旨在于限制本发明。本文所使用的术语“或/及”包括一个或多个相关的所列项目的任意的和所有的组合。
请参阅图1至图3,图1本发明第一个实施方式中电子膨胀阀1-100省略部分结构后的立体示意图,图2为图1所示电子膨胀阀1-100的立体分解示意图,图3为图1所示电子膨胀阀1-100省略部分结构后的剖视示意图。本发明提供的电子膨胀阀1-100用以调节流体介质的流量及压力,实现对流体流量的控制。
本实施方式中,电子膨胀阀1-100应用于空调系统中,流经电子膨胀阀1-100的流体介质为空调系统中用以进行冷热交换的冷媒;电子膨胀阀1-100安装于空调系统的蒸发器入口处,电子膨胀阀1-100作为空调系统高压侧与低压侧的分界元件,将高压液态冷媒节流降压,从而调节和控制进入蒸发器或其他器件中的液态冷媒的剂量,使得液态冷媒的剂量能够适应外界制冷负载的要求。
可以理解,在其他的实施方式中,电子膨胀阀1-100还可以应用于除空调系统之外的其他类型的制冷设备中,流经电子膨胀阀1-100还可以是除冷媒之外的其他流体介质,只要电子膨胀阀1-100能够实现对该种流体介质的节流降压即可。
电子膨胀阀1-100包括阀体1-10、阀针组件1-20、螺杆组件1-30、导向套1-16、套管1-40、转子组件1-50以及定子组件(图未示),阀针组件1-20、螺杆组件1-30、套管1-40、导向套1-16及定子组件均安装于阀体1-10上,螺杆组件1-30的一端与阀针组件1-20连接,另一端与转子组件1-50连接。
阀体1-10用以承载阀针组件1-20、螺杆组件1-30、导向套1-16、套管1-40及定子组件,阀针组件1-20用以控制电子膨胀阀1-100的开启或关闭,螺杆组件1-30用以带动阀针组件1-20运动,套管1-40将外部环境与阀针组件1-20、螺杆组件1-30及转子组件1-50隔离,从而保 护阀针组件1-20、螺杆组件1-30及转子组件1-50,避免介质泄露,转子组件1-50用以带动螺杆组件1-30运动,定子组件用以驱动转子组件1-50运动。
定子组件通电产生磁场并通过磁场力的作用驱动转子组件1-50转动,转子组件1-50带动螺杆组件1-30运动,阀针组件1-20在螺杆组件1-30的带动下控制电子膨胀阀1-100开启或关闭,从而完成电子膨胀阀1-100对流体介质流量和压力调节的目的。
请一并参阅图4,图4为图1所示电子膨胀阀1-100中阀体1-10的结构示意图,阀体1-10的两侧分别连接有介质进管1-101及介质出管1-102,介质流体通过介质进管1-101进入电子膨胀阀1-100的内部,再通过介质出管1-102流出电子膨胀阀1-100。阀体1-10上沿自身轴线1-103方向依次开设有阀口1-11、阀腔1-12、通孔1-13、安装腔1-14及连接腔1-15,阀口1-11、阀腔1-12、通孔1-13、安装腔1-14及连接腔1-15沿轴线1-103的方向依次连通。
阀口1-11与介质出管1-102相互连通,阀口1-11用以供阀针组件1-20伸入,从而阻断电子膨胀阀1-100内的流体介质通过阀口1-11向外排出。当阀针组件1-20封闭阀口1-11,也即阀口1-11与阀腔1-12断开连通时,电子膨胀阀1-100关闭;当阀针组件1-20解除对阀口1-11的密封,也即阀口1-11与阀腔1-12相互连通时,电子膨胀阀1-100打开。
阀腔1-12用以容置阀针组件1-20的部分,流体介质通过阀腔1-12流入阀口1-11内。通孔1-13设置于阀腔1-12与安装腔1-14之间,通孔1-13孔径小于安装腔1-14的内径,安装腔1-14的底部形成环形状的第一定位台阶1-14a,阀体1-10的内部用以容置导向套1-16,通孔1-13与安装腔1-14相互配合,用以实现对导向套1-16的固定安装。连接腔1-15内还装设有用以固定螺杆组件1-30的连接片1-17,连接腔1-15与连接片1-17相互配合,用以实现对螺杆组件1-30的容置和固定。
阀体1-10开设有连接腔1-15的端面向轴线1-103的方向收缩并形成一台阶面1-151,套管1-40套设阀体1-10开设有连接腔1-15的一端并且抵持台阶面1-151,台阶面1-151限制套管1-40套设阀体1-10的伸入长度,阀体1-10开设有连接腔1-15的端面穿设套管1-40从而限制套管1-40的径向移动。
本实施方式中,为了进一步提高阀体1-10与套管1-40的连接稳定性,阀体1-10与套管1-40之间通过焊接的方式相互固定连接,此时台阶面1-151为阀套1-40与阀体1-10之间的焊接固定面。可以理解,在其他的实施方式中,阀体1-10与套管1-40之间还可以采用铆接、胶固等其他的连接方式实现固定连接。
本实施方式中,阀体1-10由不锈钢材质加工制造,阀体1-10大致呈圆柱形。可以理解,在其他的实施方式中,阀体1-10还可以采用其他的材料加工制造而成,在此不一一列举,阀体1-10还可以采用除圆柱之外的其他形状。
请一并参阅图5,图5为图3所示电子膨胀阀1-100中导向套1-16的结构示意图。导向套1-16安装于安装腔1-14内并与安装腔1-14之间过盈配合。在这里,过盈配合是指:安装腔1-14内径的尺寸减去相配合的导向套1-16的外径尺寸为负值。导向套1-16用于引导阀针组件 1-20沿着阀体1-10的轴线1-103方向运动。连接片1-17安装于连接腔1-15内,用以安装螺杆组件1-30。优选地,连接片1-17通过焊接方式安装于连接腔1-15内。
本实施方式中,导向套1-16由黄铜材质加工制造而成,即导向套1-16为黄铜导向套。黄铜导向套相对较软,可便于导向套1-16与螺杆组件1-30及/或阀体1-10之间的安装。可以理解,在其他的实施方式中,导向套1-16也可以采用除黄铜之外的其他材料加工制造而成。
导向套1-16大致呈圆柱状。导向套1-16上沿自身的轴线开设有贯穿导向套1-16的导向孔1-161,阀针组件1-20安装于导向孔1-161内,并在导向孔1-161导向下运动。
导向套1-16包括安装于安装腔1-14内的第一圆柱段1-162、用以与螺杆组件1-30配合的第二圆柱段1-163、以及位于阀腔1-12内的第三圆柱段1-164。
第一圆柱段1-162与安装腔1-14之间过盈配合,以保证在导向套1-16安装的过程中,使得导向套1-16的自身的轴线与阀体1-10的轴线1-103重合设置,从而保证导向套1-16与阀口1-11之间的同轴度。
进一步地,第一圆柱段1-162为中间段,即位于第二圆柱段1-163和第三圆柱段1-164之间。第一圆柱段1-162的外径分别大于第二圆柱段1-163的外径、第三圆柱段1-164的外径。从而,应该可以理解的是,第一圆柱段1-162分别与第二圆柱段1-163、第三圆柱段1-164之间形成台阶1-162a。第一圆柱段1-162与第三圆柱段1-164之间的台阶1-162a与安装腔1-14的底部的第一定位台阶1-14a配合,以实现第三圆柱段1-164定位。
优选地,第一圆柱段1-162具有相对设置的第一端1-162b,以及第二端1-162c,第二圆柱段1-163连接于第一圆柱段1-162的第一端1-162b;第三圆柱段1-164连接于第一圆柱段1-162的第二端1-162c。
进一步地,第一圆柱段1-162的第二端1-162c具有导向结构1-165,从而以便于第一圆柱段1-162的与安装腔1-14之间的安装。优选地,导向结构1-165包括设于第一圆柱段的第二端1-162c的导向部。具体地,导向部为圆角导向部或者圆锥导向部。
优选地,第二圆柱段1-163的长度为导向套的长度的1/4-1/3倍,此时导向套1-16具有足够的配合尺寸与螺杆组件1-30配合,提高连接的可靠性,同时降低因震动等原因导向套1-16松脱的风险。
进一步地,第二圆柱段1-163远离第一圆柱段的第一端1-162b也具有导向结构1-165。在这里,设置导向结构1-165,可便于导向套1-16与螺杆组件1-30之间安装。
优选地,导向结构1-165包括设于第二圆柱段1-163远离第一圆柱段1-162的导向部1-165a。具体地,导向部1-165a为圆角导向部或者圆锥导向部。
请再一并参阅图6及图7,图6为图1所示电子膨胀阀1-100中螺杆组件1-30的剖视示意图,图7为图1所示电子膨胀阀1-100中螺杆组件1-30及转子组件1-50的剖视示意图。
阀针组件1-20包括安装在导向套1-16内的阀针套1-21、以及安装于阀针套1-21内的阀针1-22。阀针1-22具有轴线,阀针1-22的轴线与阀体1-10的轴线1-103重合设置。阀针1-22的一端与螺杆组件1-30连接,另一端与阀口1-11配合。螺杆组件1-30带动阀针1-22运动以控制阀口1-11的开启或者关闭,从而实现电子膨胀阀1-100的开启/关闭。
阀针组件1-20还包括轴承1-23、垫片1-24及弹性件1-25、轴承1-23及垫片1-24设置于螺杆组件1-30靠近阀针1-22的一端,弹性件1-25的一端与垫片1-24接触,另一端与阀针1-22接触;轴承1-23的一端抵持于螺杆组件1-30及阀针套1-21,另一端与垫片1-24接触;垫片1-24容置于阀针套1-21内并与轴承1-23的外圈相接触。
螺杆组件1-30包括螺母套1-32以及安装于螺母套1-32内的螺杆1-31。螺杆1-31具有相对设置的第一端和第二端,螺杆1-31的第一端与转子组件1-50连接,螺杆1-31的第二端穿设于螺母套1-32内,并与轴承1-23相互连接。螺母套1-32的一端安装于连接片1-17上,另一端位于套管1-40内。
螺杆1-31上设有沿螺杆1-31径向延伸的凸起1-311,凸起1-311与阀针套1-21的内侧面平齐;轴承1-23的外圈抵持于凸起1-311及阀针套1-21的内侧面,凸起1-311及阀针套1-21的内侧面对轴承1-23外圈的抵持,实现螺杆1-31及阀针套1-21对轴承1-23的限位。
螺杆1-31与轴承1-23的内圈固定连接。本实施方式中,螺杆1-31与轴承1-23的内圈通过过盈配合相互固定,也即螺杆1-31的尺寸大于轴承1-23内圈的孔径,此时螺杆1-31与轴承1-23之间具有相对较佳的连接稳定性。
可以理解,在其他的实施方式中,螺杆1-31与轴承1-23的内圈之间还可以通过铆接、胶固等其他的连接方式相互固定。
螺杆1-31在转子组件1-50的驱动下转动,由于螺杆1-31与轴承1-23内圈之间的固定连接,螺杆1-31带动轴承1-23的内圈转动。轴承1-23内的滚动体与轴承1-23的外圈滚动接触,从而释放螺杆1-31的转动。轴承1-23内具有多个滚动体,因此螺杆1-31转动的释放由传统电子膨胀阀1-100中的单点滚动接触,改为本实施方式中的多点滚动接触。因此接触力由多个滚动体分担承受,降低了每个接触点上的接触压力,滚动摩擦减小。螺杆的旋转被轴承释放,从而阀针与阀口接触时不会发生相对旋转摩擦,提高阀针、阀口的可靠性与寿命。
此外,由于轴承1-23与螺杆1-31的同轴安装,滚动体上的接触力垂直于螺杆1-31的重力方向,这也相对降低了传统电子膨胀阀中接触点上的接触力,提高了电子膨胀阀1-100的稳定性与可靠性。
本实施方式中,弹性件1-25为弹簧,此时弹性件1-25具有相对较高的连接稳定性。可以理解,在其他的实施方式中,弹性件1-25还可以为弹性柱等其他类型的弹性元件。
进一步地,第二圆柱段1-163从螺母套1-32的第一端伸入螺母套1-32内,并与螺母套1-32之间固定连接。优选地,固定连接包括螺纹连接或者过盈配合或过渡配合中的任意一种。在本实施例中,第二圆柱段1-163与螺母套1-32之间为过渡配合,从而以通过第二圆柱段1-163 导正螺母套1-32,以使螺母套1-32的轴线与导向套1-16的轴线及阀体1-10的轴线1-103重合设置。
可以理解的是,通过第一圆柱段1-162导正阀体1-10,第二圆柱段1-163导正螺母套1-32;从而阀体1-10、导向套1-16以及螺母套1-32三者之间的轴线重合,以使保证阀针1-22与阀口1-11之间的同轴度,从而在运动的过程中,减少阀针1-22与阀体1-10之间的碰撞,进而以减少阀针1-22等部件的磨损,提高电子膨胀阀1-100的使用寿命。
螺母套1-32与螺杆1-31螺纹连接,由于螺母套1-32焊接在连接片1-17上,螺杆1-31在转子1-51的驱动下转动时,由于螺母套1-32与螺杆1-31之间形成的螺母丝杆配合关系,螺杆1-31以及与螺杆1-31固定连接的转子组件1-50等会沿着螺杆1-31的轴线方向伸缩运动,从而实现螺杆1-31带动阀针组件1-20的运动过程。
螺母套1-32内可以设置第二定位台阶1-321,第二圆柱段1-163伸入螺母套1-32内,并抵靠于第二定位台阶1-321上,从而提高导向套1-16安装的可靠性,避免导向套1-16轴向窜动,发生噪音。
转子组件1-50包括位于套管1-40内的转子1-51、用以安装螺杆1-31的转接板1-52、用以限制转子1-51转动角度的限位件1-53、以及安装于转接板1-52上的导动片1-54。转子1-51安装于转接板1-52上。转接板1-52与螺杆1-31之间通过焊接等方式固定连接。
限位件1-53包括套设在螺母套上的弹簧1-531,以及安装于弹簧1-531上的止挡圈1-532。弹簧1-531的一端与连接片1-17连接。弹簧1-531的另一端设有止挡部1-531a。止挡圈1-532缠绕在弹簧1-531上。优选地,螺母套1-32外壁上设有止挡台1-322,止挡台1-322用以止挡圈1-532配合,以限制转子1-51转动角度。
在转子1-51转动地沿轴线1-103运动,以驱动螺杆1-31带动阀针1-22关闭的过程中,止挡圈1-532沿着弹簧1-531运动;止挡圈1-532抵靠于止挡台1-322,限制转子1-51转动角度,为转子1-51的下限位。在转子1-51转动地沿轴线1-103运动,以驱动螺杆1-31带动阀针1-22关闭阀口1-11的过程中,止挡圈1-532沿着弹簧1-531运动;止挡圈1-532抵靠于止挡部1-531a,以限制转子1-51转动角度,为转子1-51的上限位。
定子组件包括线圈等部件,用以通电后产生磁场,并在该磁场力的作用下,带动转子1-51转动,从而实现对螺杆1-31转动的驱动。
本实施方式中,阀体1-10上还设置有固定盘1-18,固定盘1-18用以承载并固定定子组件,固定盘1-18上还开设有多个安装孔1-181,安装孔1-181用以供定子组件固定装设于固定盘1-18上。
本实施方式中,电子膨胀阀1-100为电动式电子膨胀阀,转子1-51为步进电机中由永磁铁制成的电机转子,定子组件为步进电机中的电机定子,步进电机收到控制电路提供的逻辑数字信号后将信号传递至电机定子的各相线圈中,永久磁铁制成的电机转子受磁力矩作用产生旋转运动,从而实现定子组件驱动转子组件转动的运动过程。
下面阐释电子膨胀阀1-100的工作原理:
定子组件通电后产生磁场,由磁性材料制成的转子1-51在磁场的驱动下转动,转子1-51与螺杆1-31通过导动片1-54固定连接,转子1-51的转动带动螺杆1-31转动,螺杆1-31与螺母套1-32之间形成螺母丝杆配合,螺母套1-32固定设置在阀体1-10上,因此螺杆1-31相对螺母套1-32的转动会驱使螺杆1-31相对螺母套1-32伸缩运动,从而实现定子组件驱动转子组件1-50运动,转子组件1-50再驱动螺杆组件1-30运动的工作过程;
螺杆1-31相对阀体1-10轴线1-103方向的伸缩运动通过弹性件1-25再带动阀针1-22运动,阀针1-22在螺杆1-31的驱动下朝向阀体1-10上开设的阀口1-11运动,当阀针1-22封闭阀口1-11,也即阀腔1-12与阀口1-11断开连通时,电子膨胀阀1-100关闭;当阀针1-22解除对阀口1-11的封闭,也即阀腔1-12与阀口1-11相互连通时,电子膨胀阀1-100开启,由于电子膨胀阀1-100中阀口1-11的开设口径相对较小,流体介质的流通量降低,从而实现电子膨胀阀1-100对流体介质的节流降压过程。
请再参阅图8,图8为本发明第二个实施方式中电子膨胀阀1-100a的剖视示意图。与发明第一个实施方式中将轴承1-23设置在螺杆1-31靠近阀针1-22一端的方式不同,本发明第二个实施方式中将轴承1-23a设置在阀针1-22a靠近螺杆1-31a的一端。
可以理解,轴承1-23只要设置在螺杆1-31与阀针1-22之间,无论轴承1-23是设置在螺杆1-31上,还是直接设置在阀针1-22上,均能够将传统电子膨胀阀的单点滚动接触转变为多点滚动接触,从而利用多点滚动接触较佳的分布特性减少开阀所产生的摩擦损伤,减小螺杆旋转带动阀针旋转相对阀口产生的摩擦力,从而提供更佳的可靠性与稳定性。
就本发明第二个实施方式的具体结构而言,轴承1-23a的内圈套设阀针1-22a并相互固定,轴承1-23a的外圈端面接触垫片1-24a并相互抵持;弹性件1-25a的一端连接螺杆1-31a,另一端套设垫片1-24a。
当螺杆1-31a转动并下降时,与螺杆1-31a连接的弹性件1-25a在螺杆1-31a的带动下转动,弹性件1-25a会带动垫片1-24a转动,垫片1-24a的转动带动与自身卡抵的轴承1-23a的外圈转动,由于轴承1-23a的内圈固定在阀针1-22a上,因此螺杆1-31的转动会传动为轴承1-23a的外圈相对内圈的转动。轴承1-23a内具有的多个滚动体将传统电子膨胀阀的单点滚动接触转变为多点滚动接触,接触力由多个滚动体分担承受,降低了每个接触点上的接触压力,滚动摩擦减小。
进一步地,轴承1-23a的内圈与阀针1-22a靠近螺杆1-31的端部之间过盈配合,轴承1-23a的内圈与阀针1-22a通过过盈配合相互固定;采用过盈配合实现内圈固定的方式在装配时相对简便,能够提高装配效率。
可以理解,在其他的实施方式中,轴承1-23a的内圈还可以胶固、铆接等采用其他的方式实现与阀针1-22a的相互固定。
进一步地,垫片1-24a通过弹性件1-25a的弹性作用压紧在轴承1-23a的外圈处,也即轴承1-23a的外圈通过端面卡抵的方式与垫片1-24a相互压紧并且固定;采用此方式固定,垫片1-24a的安装也相对简便。
可以理解,在其他的实施方式中,轴承1-23a的外圈还可以采用凹凸配合等其他的方式来实现与垫片1-24a的接触和固定。
进一步地,垫片1-24a大致呈中空圆柱状,其靠近阀针1-22a的部分沿自身径向向外延伸并形成凸起1-241,垫片24a通过凸起1-241卡抵轴承1-23a的外圈端面。
进一步地,垫片1-24a内部中空腔体靠近阀针1-22a的部分设置为锥面(未标号),锥面的设置用以匹配阀针1-22a的圆锥形顶部形状,从而提高垫片1-24a与阀针1-22a之间的装配配合关系。
进一步地,为了实现对阀针1-22a的轴向限位,避免阀针1-22a在过大的压力差下与轴承1-23a的内圈脱离,阀针组件1-20还设置有压套1-26,压套1-26与阀针套1-21a相互固定,压套1-26上设置有台阶面1-261,压套1-26通过台阶面1-261卡抵阀针1-22a并且两者之间不直接接触,留有微小间隙,避免阀针1-22a与压套1-261之间产生摩擦,从而防止阀针1-22a朝阀口1-11a运动的位置过深造成阀针1-22a与轴承1-23a的内圈脱离,影响电子膨胀阀1-100a的正常运转。
本实施方式中,压套1-26通过焊接的方式与阀针套1-21a相互固定。可以理解,在其他的实施方式中,压套1-26还可以采用铆接、胶固等其他的方式与阀针套1-21a相互固定。
此外,由于轴承1-23a在螺杆1-31a与阀针1-22a之间的设置,使得轴承1-23a自身内圈与外圈之间存在的游隙能够提供阀针1-22a一定程度上的装配自由程度,这有助于消除加工及装配过程中的同轴度误差。例如阀针1-22a与轴承1-23a之间允许存在一定的摆动角度,该摆动角度就可以帮助阀针1-22a降低同轴度误差。
本发明还提供一种使用上述电子膨胀阀的空调系统(图未示),该空调系统由于使用了上述的电子膨胀阀,整个系统的可靠性与稳定性提高,具有更为广泛的应用前景。
本发明提供的电子膨胀阀通过在阀针与螺杆之间设置轴承,使得螺杆的转动由多点滚动接触的轴承释放,将传统电子膨胀阀的单点滚动接触滑动摩擦转变为多点滚动接触滚动摩擦,降低了开阀所需的摩擦力并且减少了因摩擦导致的损伤,提高了电子膨胀阀及使用上述电子膨胀阀的空调系统的可靠性与稳定性,具有广泛的应用前景。
实施例方式3
请参阅图9-15,本实施例方式提供了一种电子膨胀阀阀座部件,其包括阀座2-1、第一接管2-2、焊环2-3,还可包括第二接管2-4。该电子膨胀阀应用于制冷设备中,并且安装在储液筒和蒸发器之间,储液筒内的制冷剂通过电子膨胀阀传输至蒸发器。
请继续参阅图15,阀座2-1的一端具有凸台结构2-11,并设置与凸台结构2-11相连的环形凹槽结构2-12。阀座2-1可通过现有的膨胀阀的阀体的材料制成,同时其尺寸也可与现有的膨胀阀的阀座相同。阀座2-1整体呈柱状,并且可以由依次相连多段组成,且多段均同轴设置并依次相通。阀座2-1另一端可通过阀盖盖住,并形成一个封闭端。凸台结构2-11可呈圆台形,且远离环形凹槽结构2-12的一端的半径更小。环形凹槽结构2-12的凹槽可为圆环槽,也可为横截面为矩形的环形槽,还可为其他形状的槽。这里需要说明的是,凸台结构2-11和环形凹槽结构2-12可分别单独设置,也可一体成型,并作为阀座2-1的端部结构。
在本实施例方式中,阀座2-1内设置容置腔2-16,容置腔2-16连通第一接管2-2与第二接管2-4。其中,阀座2-1包括第一安装管2-13以及第二安装管2-14,第一安装管2-13以及第二安装管2-14沿轴向相连,且第一安装管2-13的外径大于第二安装管2-14的外径。第一接管2-2套在第二安装管2-14上,凸台结构2-11和环形凹槽结构2-12均设置在第二安装管2-14上。第一安装管2-13的侧壁上开设插孔2-131,插孔2-131可为圆孔。
第一接管2-2套装在阀座2-1的一端上。第一接管2-2包括套管段2-21和延伸段2-22,套管段2-21的半径可以大于延伸段2-22的半径,当然,套管段2-21的半径也可以等于或者小于延伸段2-22的半径。套管段2-21套在第二安装管2-14上,并垂直于第一接管2,而延伸段2-22连接在套管段2-21上。
焊环2-3卡入环形凹槽结构2-12的凹槽中,并与第一接管2-2的内壁相连,阀座2-1与第一接管2-2间隙配合,焊环2-3与第一接管2-2过盈配合。在阀座组件装配好后,这样装配方式可以保证第一接管2-2不容易脱落,使得阀座2-1与第一接管2-2连接得更加稳定,可在保证第一接管2-2不容易脱落的情况下提高膨胀阀内部焊接的渗透率,同时采用焊环内置方式可通过外观检查来判定阀座组件焊接质量。
其中,焊环2-3通过凸台结构2-11卡入凹槽结构2-12的凹槽中,凸台结构2-11会限制焊环2-3的移动,防止焊环2-3从阀座2-1上脱落。而且,在将阀座2-1与第一接管2-2连接时,可提前将焊环2-3固定在阀座2-1上,再将第二安装管2-14插入第一接管2-2,实现自动化装配,方便焊环2-3的安装。第二接管2-4插入在插孔2-131中,并通过阀座2-1与第一接管2-2连通。第二接管2-4可与储液筒相连通,使得储液筒中的制冷剂进入容置腔2-16中,并进一步通过第一接管2-2进入蒸发器,以供蒸发器进行蒸发降温。
综上所述,相较于现有的电子膨胀阀,本实施例方式的电子膨胀阀具有以下优点:
本实施例方式的电子膨胀阀及其制冷系统,电子膨胀阀的阀座2-1上设计了放置焊环的凹槽,使得焊环2-3限位在阀座2-1上,保证阀座2-1与第一接管2-2间隙配合,而焊环2-3与第一接管2-2过盈配合,在阀座组件装配好后,保证第一接管2-2不容易脱落的同时可提高膨胀阀内部焊接的渗透率,同时焊环采用内置方式可通过外观检测来判定阀座组件焊接质量。 并且,阀座2-1设置与凹槽结构2-12相连的凸台结构2-11,使得焊环2-3限位在阀座2-1上而不会脱落,这样在装配时,可提前将焊环2-3安装在凹槽中,再将阀座2-1的一端以及焊环2-3一同插入第一接管2-2中,实现自动化装配,方便焊环2-3的安装。
实施例方式4
本实施例方式提供了一种制冷系统,该制冷系统可包括多种制冷器件,也可应用在各种制冷设备中。本实施例方式的制冷系统包括储液容器、蒸发器以及控制阀,控制阀采用实施例方式3中的电子膨胀阀。储液容器内储存呈液态的制冷剂,并与电子膨胀阀的第二接管2-4连通。蒸发器与电子膨胀阀的第一接管2-2连通,并通过电子膨胀阀接收储液容器的制冷剂,以实现蒸发制冷。这里需要说明的是,本实施例方式的制冷系统的效果和实施例方式3中的电子膨胀阀的效果相同,并且该制冷系统作为一个系统进行应用。
实施例方式5
请参阅图16,本实施例方式提供了一种电子膨胀阀,其与实施例方式3的电子膨胀阀相似,区别在于本实施例方式中,第一安装管2-13与第二安装管2-14连接的一端开设环形插槽2-15,第一接管2-2插入在插槽2-15中。这样,第一接管2-2就与阀座2-1实现固定,可以防止由于第一接管2-2的弯管角度、压装设备工装等问题或者间隙量过大等原因,导致第一接管2-2歪斜,并在阀座2-1与第一接管2-2出现间隙,导致焊料不饱满情况。
实施例方式6
请参阅图17,本实施例方式提供了一种电子膨胀阀,其在实施例方式3的基础上增加了阀针2-5、盖体2-6、升降组件2-7、转子组件2-8以及螺杆组件2-9。其中,阀座2-1内设置容置腔2-16,容置腔2-16连通第一接管2-2与第二接管2-4。具体而言,盖体2-6其安装在阀座2-1上,并与阀座2-1围成容置腔2-16。
阀针2-5设置在阀座2-1中,且具有朝向第二安装管2-14设置的针头;针头的最大外径大于第二安装管2-14的内径。升降组件2-7置在容置腔2-16中,且中心轴与阀座2-1的中心轴重合,并用于通过旋转以带动阀针2-5沿阀座2-1的中心轴升降。转子组件2-8转动安装在盖体2-6中,螺杆组件2-9安装在盖体2-6中,且轴向限位端与升降组件2-7相连。转子组件2-8围绕螺杆组件2-9设置,并用于带动螺杆组件2-9转动及轴向移动。这样,转子组件2-8就可以通过自身的转动,使得升降组件2-7旋转并带动阀针2-5升降,从而使针头与第二安装管2-14之间的缝隙发生变化。
其中,升降组件2-7可包括弹簧2-71、垫片2-72以及滚珠2-73。弹簧2-71升降组件2-7内,且一端与螺杆组件2-9相连。另一端与垫片2-72相连,并通过滚珠2-73与阀针2-5连接。滚珠2-73放置在垫片2-72与阀针2-5之间,且两端沿着阀座2-1的中心轴方向在阀座2-1的侧壁上滑行,减少升降组件在螺杆组件驱动下延阀座的中心轴方向转动和移动过程中对阀针的摩擦。由于升降组件2-7会随着螺杆组件2-9转动及上下移动,进而升降阀针2-5,从而控制针头与第二安装管2-14之间的缝隙的大小。
在需要调节电子膨胀阀的流量时,使用人员可通过控制定子组件以驱使转子组件2-8的转动,使得阀针2-5沿着阀座2-1的轴向移动,使得针头与第二安装管2-14之间的缝隙增加或者减小,进而实现对流量的控制,从而控制蒸发器的制冷效果,同时防止出现蒸发器面积利用不足和敲缸现象。
实施例方式5
本实施例方式提供了一种电子膨胀阀,其在实施例方式3的基础上增加了热敏电阻。热敏电阻设置在蒸发器的出口,且与固定在阀座2-1定位片上的定子组件并联后接入一个电源。由于热敏电阻的电阻值随着温度的变化而变化,这样使得定子组件两端的电压随温度的变化而变化,进一步使阀针2-5的位置随温度的变化而变化,从而实现调节电子膨胀阀的流量。
本技术领域的普通技术人员应当认识到,以上的实施方式仅是用来说明本发明,而并非用作为对本发明的限定,只要在本发明的实质精神范围内,对以上实施方式所作的适当改变和变化都落在本发明要求保护的范围内。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (20)

  1. 一种电子膨胀阀,所述电子膨胀阀包括螺杆、阀针及弹性件,所述弹性件的一端作用于所述螺杆,另一端作用于所述阀针,其特征在于,所述螺杆与所述阀针之间设置有轴承,所述轴承具有内圈及外圈,所述螺杆与所述阀针中的一个与所述轴承的内圈固定,另一个通过弹性件作用于所述轴承的外圈。
  2. 根据权利要求1所述的电子膨胀阀,其特征在于,所述电子膨胀阀包括垫片,所述垫片设置于所述弹性件与所述轴承的外圈之间,所述垫片在所述弹性件的抵持下连接所述轴承的外圈。
  3. 根据权利要求2所述的电子膨胀阀,其特征在于,所述螺杆与所述轴承的内圈固定,所述阀针通过所述弹性件及垫片连接所述轴承的外圈。
  4. 根据权利要求3所述的电子膨胀阀,其特征在于,所述电子膨胀阀包括用以固定所述阀针的阀针套,所述螺杆的侧面沿自身的径向向外延伸并形成凸起,所述凸起与所述阀针套的内侧面平齐。
  5. 根据权利要求3所述的电子膨胀阀,其特征在于,所述螺杆与所述轴承的内圈之间过盈配合。
  6. 根据权利要求2所述的电子膨胀阀,其特征在于,所述阀针与所述轴承的内圈固定,所述螺杆通过所述弹性件及垫片连接所述轴承的外圈。
  7. 根据权利要求6所述的电子膨胀阀,其特征在于,所述阀针与所述轴承的内圈之间过盈配合。
  8. 根据权利要求6所述的电子膨胀阀,其特征在于,所述电子膨胀阀还包括压套,所述压套上设置有台阶面,所述台阶面抵持所述阀针以限制所述阀针的轴向移动。
  9. 根据权利要求6所述的电子膨胀阀,其特征在于,所述垫片具有沿自身轴向延伸的空腔,所述垫片靠近所述阀针的内侧面设置为锥面。
  10. 根据权利要求1所述的电子膨胀阀,其特征在于,所述电子膨胀阀包括:
    阀座(2-1);
    第一接管(2-2),其套装在阀座(2-1)的一端上;
    其特征在于,阀座(2-1)的一端具有环形凹槽结构(2-12),并设置与环形凹槽结构(2-12)相连的凸台结构(2-11);所述电子膨胀阀还包括:
    焊环(2-3),将其卡入环形凹槽结构(2-12)的凹槽中,并与第一接管(2-2)的内壁相连;
    其中,阀座(2-1)与第一接管(2-2)间隙配合,焊环(2-3)与第一接管(2-2)过盈配合。
  11. 根据权利要求10所述的电子膨胀阀,其特征在于,阀座(2-1)包括沿轴向相连的第一安装管(2-13)以及第二安装管(2-14),且第一安装管(2-13)的外径大于第二安装管(2-14)的外径;第一接管(2-2)套在第二安装管(2-14)上,凸台结构(2-11)和环形凹槽结构(2-12)均设置在第二安装管(2-14)上。
  12. 根据权利要求11所述的电子膨胀阀,其特征在于,第一安装管(2-13)的侧壁上开设插孔(2-131);所述电子膨胀阀还包括:
    第二接管(2-4),其插入在插孔(2-131)中,并通过阀座(2-1)与第一接管(2-2)连通。
  13. 根据权利要求11所述的电子膨胀阀,其特征在于,第一接管(2-2)包括套管段(2-21)和延伸段(2-22);套管段(2-21)套在第二安装管(2-14)上,并垂直于第一接管(2-2);延伸段(2-22)连接在套管段(2-21)上。
  14. 根据权利要求11所述的电子膨胀阀,其特征在于,第一安装管(2-13)与第二安装管(2-14)连接的一端开设环形插槽(2-15),第一接管(2-2)插入在环形插槽(2-15)中。
  15. 根据权利要求12所述的电子膨胀阀,其特征在于,阀座(2-1)内设置容置腔(2-16),容置腔(2-16)连通第一接管(2-2)与第二接管(2-4);所述电子膨胀阀还包括:
    阀针(2-5),其设置在阀座(2-1)中,且具有朝向第二安装管(2-14)设置的针头;所述针头的最大外径大于第二安装管(2-14)的内径。
  16. 根据权利要求15所述的电子膨胀阀,其特征在于,所述电子膨胀阀还包括:
    盖体(2-6),其安装在阀座(2-1)上,并与阀座(2-1)围成容置腔(2-16);
    升降组件(2-7),其设置在容置腔(2-16)中,且中心轴与阀座(2-1)的中心轴重合,并用于通过旋转以带动阀针(2-5)沿阀座(2-1)的中心轴升降;
    转子组件(2-8),其转动安装在盖体(2-6)中;以及
    螺杆组件(2-9),其安装在盖体(2-6)中,且轴向限位端与升降组件(2-7)相连;转子组件(2-8)围绕螺杆组件(2-9)设置,并用于带动螺杆组件(2-9)转动及轴向移动。
  17. 根据权利要求16所述的电子膨胀阀,其特征在于,升降组件(2-7)包括弹簧(2-71)、垫片(2-72)以及滚珠(2-73);弹簧(2-71)安装在升降组件(2-7)内,且一端与螺杆组件(2-9)相连;另一端与垫片(2-72)相连,并通过滚珠(2-73)与阀针(2-5)连接;滚珠(2-73)放在垫片(2-72)与阀针(2-5)之间。
  18. 根据权利要求17所述的电子膨胀阀,其特征在于,所述电子膨胀阀安装在储液筒和蒸发器之间,所述储液筒内的制冷剂通过所述电子膨胀阀传输至所述蒸发器;所述电子膨胀阀还包括:
    热敏电阻,其设置在所述蒸发器的出口,且与固定在阀座(2-1)定位片的定子组件并联后接入一个电源。
  19. 一种空调系统,所述空调系统包括电子膨胀阀,其特征在于,所述电子膨胀阀为权利要求1-9任意一项所述的电子膨胀阀。
  20. 一种制冷系统,其包括储液容器、蒸发器以及控制阀,所述储液容器内的制冷剂通过所述控制阀传输至所述蒸发器;其特征在于,所述控制阀为如权利要求10至19中任意一项所述的电子膨胀阀。
PCT/CN2019/126027 2018-12-25 2019-12-17 电子膨胀阀及使用该电子膨胀阀的空调系统 WO2020135162A1 (zh)

Priority Applications (4)

Application Number Priority Date Filing Date Title
US17/312,924 US11796234B2 (en) 2018-12-25 2019-12-17 Electronic expansion valve and air conditioning system with electronic expansion valve
JP2021526753A JP7244640B2 (ja) 2018-12-25 2019-12-17 電子膨張弁及びこの電子膨張弁を用いた空調システム
EP19905334.9A EP3904734A4 (en) 2018-12-25 2019-12-17 ELECTRONIC EXPANSION VALVE AND AIR CONDITIONING WITH IT
KR1020217019615A KR102498207B1 (ko) 2018-12-25 2019-12-17 전자 팽창 밸브 및 상기 전자 팽창 밸브를 사용한 공조 시스템

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201811593354.6 2018-12-25
CN201811593354.6A CN111365466B (zh) 2018-12-25 2018-12-25 电子膨胀阀及使用该电子膨胀阀的空调系统
CN201920318827.5U CN209926669U (zh) 2019-03-13 2019-03-13 电子膨胀阀及其制冷系统
CN201920318827.5 2019-03-13

Publications (1)

Publication Number Publication Date
WO2020135162A1 true WO2020135162A1 (zh) 2020-07-02

Family

ID=71128363

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126027 WO2020135162A1 (zh) 2018-12-25 2019-12-17 电子膨胀阀及使用该电子膨胀阀的空调系统

Country Status (5)

Country Link
US (1) US11796234B2 (zh)
EP (1) EP3904734A4 (zh)
JP (1) JP7244640B2 (zh)
KR (1) KR102498207B1 (zh)
WO (1) WO2020135162A1 (zh)

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310844A (ja) * 1994-05-18 1995-11-28 Pacific Ind Co Ltd 電動弁
JPH09317922A (ja) * 1996-05-24 1997-12-12 Pacific Ind Co Ltd 電動弁
JPH11315949A (ja) * 1998-05-08 1999-11-16 Matsushita Seiko Co Ltd 電動弁とその組立方法
CN202501077U (zh) * 2012-02-28 2012-10-24 艾默生环境优化技术(苏州)有限公司 电子膨胀阀
CN102889410A (zh) * 2012-06-29 2013-01-23 浙江盾安人工环境股份有限公司 电子膨胀阀
CN203421269U (zh) * 2013-08-15 2014-02-05 浙江三花股份有限公司 带减速机构的电子膨胀阀及制冷系统
CN107166052A (zh) * 2017-06-14 2017-09-15 诸暨百胜环境科技股份有限公司 一种电子膨胀阀
CN206874928U (zh) * 2017-03-22 2018-01-12 浙江盾安机械有限公司 一种大口径电子膨胀阀

Family Cites Families (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3406688B2 (ja) * 1994-06-24 2003-05-12 東芝キヤリア株式会社 冷凍サイクル装置
JPH08296758A (ja) * 1995-04-24 1996-11-12 Aisan Ind Co Ltd 流量制御弁とその製造方法
JP3937029B2 (ja) 1999-03-26 2007-06-27 株式会社鷺宮製作所 電動弁
JP2001153236A (ja) 1999-11-26 2001-06-08 Saginomiya Seisakusho Inc 二段式電動膨張弁
CN1916455A (zh) 2006-09-07 2007-02-21 浙江盾安精工集团有限公司 一种用于制冷系统的电子膨胀阀
CN101173714B (zh) 2006-11-03 2010-09-01 浙江三花制冷集团有限公司 电子膨胀阀
CN201013922Y (zh) 2007-03-16 2008-01-30 浙江盾安精工集团有限公司 一种制冷用电子膨胀阀
CN102454819B (zh) * 2010-10-15 2013-03-06 浙江三花股份有限公司 电动阀及其止动装置
CN102734476B (zh) 2011-04-02 2014-09-17 浙江三花股份有限公司 一种电子膨胀阀
CN102927342B (zh) 2011-08-09 2014-05-14 浙江三花股份有限公司 一种电子膨胀阀及其阀体组件
CN103291999B (zh) * 2012-02-28 2015-10-07 艾默生环境优化技术(苏州)有限公司 电子膨胀阀
US9435451B2 (en) * 2012-02-28 2016-09-06 Emerson Climate Technologies (Suzhou) Co., Ltd. Electronic expansion valve
CN102878730B (zh) * 2012-06-29 2014-07-30 浙江盾安人工环境股份有限公司 电子膨胀阀
CN103672131B (zh) * 2012-09-06 2016-06-08 艾默生环境优化技术(苏州)有限公司 电子膨胀阀
CN203009981U (zh) 2012-12-25 2013-06-19 浙江三花股份有限公司 一种电子膨胀阀
CN104295784B (zh) * 2013-07-17 2016-09-28 浙江三花制冷集团有限公司 电子膨胀阀及其制作方法
JP6163263B2 (ja) 2013-07-17 2017-07-12 浙江三花制冷集団有限公司 電子膨張弁およびその製造方法
JP6527837B2 (ja) * 2016-05-11 2019-06-05 株式会社鷺宮製作所 電動弁
CN106641430B (zh) * 2016-10-12 2024-04-26 诸暨市亿霸电子阀门有限公司 一种新型电子膨胀阀
CN108506548B (zh) * 2017-02-24 2022-03-08 浙江盾安机械有限公司 电子膨胀阀
CN206861006U (zh) * 2017-06-16 2018-01-09 安徽华海金属有限公司 一种电子膨胀阀
CN207864635U (zh) 2018-01-02 2018-09-14 浙江三花智能控制股份有限公司 一种电子膨胀阀
CN109990103A (zh) * 2018-01-02 2019-07-09 浙江三花智能控制股份有限公司 一种电子膨胀阀
CN208252794U (zh) * 2018-04-02 2018-12-18 浙江三花制冷集团有限公司 一种电动阀
JP6889685B2 (ja) 2018-06-20 2021-06-18 株式会社鷺宮製作所 電動弁及び冷凍サイクルシステム
CN209012516U (zh) * 2018-08-28 2019-06-21 浙江盾安禾田金属有限公司 电子膨胀阀

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07310844A (ja) * 1994-05-18 1995-11-28 Pacific Ind Co Ltd 電動弁
JPH09317922A (ja) * 1996-05-24 1997-12-12 Pacific Ind Co Ltd 電動弁
JPH11315949A (ja) * 1998-05-08 1999-11-16 Matsushita Seiko Co Ltd 電動弁とその組立方法
CN202501077U (zh) * 2012-02-28 2012-10-24 艾默生环境优化技术(苏州)有限公司 电子膨胀阀
CN102889410A (zh) * 2012-06-29 2013-01-23 浙江盾安人工环境股份有限公司 电子膨胀阀
CN203421269U (zh) * 2013-08-15 2014-02-05 浙江三花股份有限公司 带减速机构的电子膨胀阀及制冷系统
CN206874928U (zh) * 2017-03-22 2018-01-12 浙江盾安机械有限公司 一种大口径电子膨胀阀
CN107166052A (zh) * 2017-06-14 2017-09-15 诸暨百胜环境科技股份有限公司 一种电子膨胀阀

Also Published As

Publication number Publication date
JP7244640B2 (ja) 2023-03-22
KR20210095667A (ko) 2021-08-02
JP2022515315A (ja) 2022-02-18
US20220042728A1 (en) 2022-02-10
US11796234B2 (en) 2023-10-24
KR102498207B1 (ko) 2023-02-09
EP3904734A4 (en) 2022-12-14
EP3904734A1 (en) 2021-11-03

Similar Documents

Publication Publication Date Title
US20180202570A1 (en) Direct-action-type electrically-operated valve and assembly method therefor
US11473820B2 (en) Air conditioning system and electronic expansion valve thereof
WO2020083065A1 (zh) 电子膨胀阀
KR20080013701A (ko) 파일럿형 제어 밸브
JP2019044880A (ja) 電動弁及び冷凍サイクルシステム
US20220316777A1 (en) Electronic expansion valve and air conditioning system using the same
CN111365466B (zh) 电子膨胀阀及使用该电子膨胀阀的空调系统
CN113883284B (zh) 电动阀以及冷冻循环系统
WO2020135162A1 (zh) 电子膨胀阀及使用该电子膨胀阀的空调系统
CN110836271A (zh) 电子膨胀阀及使用该电子膨胀阀的空调系统
CN108799528B (zh) 阀装置
CN111810653B (zh) 电动阀以及冷冻循环系统
CN108800680A (zh) 冰箱制冷系统
US11959561B2 (en) Electronic expansion valve and refrigeration system
CN214949953U (zh) 一种可防螺纹卡死的电子膨胀阀
JP7356521B2 (ja) 電子膨張弁及びその取り付け方法
CN110836269B (zh) 电子膨胀阀及使用该电子膨胀阀的空调系统
CN210372219U (zh) 电子膨胀阀
CN108799533B (zh) 阀装置
CN216159399U (zh) 一种节流装置及空调器
CN110836562A (zh) 电子膨胀阀及使用该电子膨胀阀的空调系统
CN111795155A (zh) 电动阀以及冷冻循环系统
CN214368084U (zh) 一种简易可靠的阀针组件结构
WO2018196728A1 (zh) 阀装置及具有该阀装置的冰箱制冷系统
EP4303476A1 (en) Flow rate control valve

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19905334

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2021526753

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20217019615

Country of ref document: KR

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

ENP Entry into the national phase

Ref document number: 2019905334

Country of ref document: EP

Effective date: 20210726