WO2020133670A1 - 倒置qled器件的制备方法 - Google Patents

倒置qled器件的制备方法 Download PDF

Info

Publication number
WO2020133670A1
WO2020133670A1 PCT/CN2019/076115 CN2019076115W WO2020133670A1 WO 2020133670 A1 WO2020133670 A1 WO 2020133670A1 CN 2019076115 W CN2019076115 W CN 2019076115W WO 2020133670 A1 WO2020133670 A1 WO 2020133670A1
Authority
WO
WIPO (PCT)
Prior art keywords
manufacturing
layer
precursor solution
electron transport
transport layer
Prior art date
Application number
PCT/CN2019/076115
Other languages
English (en)
French (fr)
Inventor
张育楠
Original Assignee
深圳市华星光电半导体显示技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市华星光电半导体显示技术有限公司 filed Critical 深圳市华星光电半导体显示技术有限公司
Publication of WO2020133670A1 publication Critical patent/WO2020133670A1/zh

Links

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K50/00Organic light-emitting devices
    • H10K50/10OLEDs or polymer light-emitting diodes [PLED]
    • H10K50/14Carrier transporting layers
    • H10K50/16Electron transporting layers
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10KORGANIC ELECTRIC SOLID-STATE DEVICES
    • H10K71/00Manufacture or treatment specially adapted for the organic devices covered by this subclass
    • H10K71/10Deposition of organic active material
    • H10K71/12Deposition of organic active material using liquid deposition, e.g. spin coating
    • H10K71/13Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing
    • H10K71/135Deposition of organic active material using liquid deposition, e.g. spin coating using printing techniques, e.g. ink-jet printing or screen printing using ink-jet printing

Definitions

  • the present application relates to a display technology, in particular to a method for manufacturing an inverted QLED device.
  • QLED Quantum Dot Light Emitting Diodes
  • ZnO zinc oxide
  • the ZnO thin film prepared by the method of ZnO nanoparticle solution has poor film forming properties and it is difficult to obtain a flat film. Further affect the photoelectric performance of the device.
  • the embodiments of the present application provide a method for preparing an inverted QLED device to solve the technical problem of poor film-forming and flatness of an electron transport layer of an existing inverted QLED device.
  • An embodiment of the present application provides a method for manufacturing an inverted QLED device, which includes:
  • Step S1 providing a substrate
  • Step S2 forming a pixel defining layer with recesses on the substrate
  • Step S3 forming a cathode layer in the recess
  • Step S4 forming an electron transport layer on the cathode layer
  • Step S5 a light emitting layer, a hole transport layer and an anode layer are sequentially formed on the electron transport layer;
  • the step S4 includes:
  • Step S41 preparing a precursor solution of the electron transport layer
  • Step S42 adjusting the surface tension and viscosity of the precursor solution to meet the needs of inkjet printing
  • Step S43 spraying the adjusted precursor solution on the cathode layer using an inkjet printing process, and drying to form a film layer;
  • Step S44 heat treating the film layer to form the electron transport layer
  • the step S41 includes:
  • the first set time is stirred to obtain the precursor solution of the electron transport layer
  • the electron transport layer is a ZnO film layer.
  • the ratio of the ethylene glycol methyl ether and the ethanolamine is 625:18;
  • the concentration of the zinc acetate dihydrate is between 0.08g/ml and 0.11g/ml.
  • the first set temperature is between 50°C and 70°C, and the first set time is greater than or equal to 10 hours.
  • the step S42 includes:
  • the surface tension modifier is selected from imidazole and its derivatives, phenol and hydroquinone, and the viscosity modifier is selected from It is a combination of one or more of alcohol, ether, ester, phenol and amine.
  • step S43 the drying process of step S43 is performed in a vacuum state, and the degree of vacuum is less than or equal to 1*10 -4 Pa.
  • the step S44 includes:
  • the film layer is placed at a second set temperature for a second set time to allow the film layer to fully react to form the electron transport layer.
  • the second set temperature is between 200°C and 230°C, and the second set time is greater than or equal to 1 hour.
  • An embodiment of the present application also provides a method for manufacturing an inverted QLED device, which includes:
  • Step S1 providing a substrate
  • Step S2 forming a pixel defining layer with recesses on the substrate
  • Step S3 forming a cathode layer in the recess
  • Step S4 forming an electron transport layer on the cathode layer
  • Step S5 a light emitting layer, a hole transport layer and an anode layer are sequentially formed on the electron transport layer;
  • the step S4 includes:
  • Step S41 preparing a precursor solution of the electron transport layer
  • Step S42 adjusting the surface tension and viscosity of the precursor solution to meet the needs of the inkjet printer
  • Step S43 spraying the adjusted precursor solution on the cathode layer using an inkjet printing process, and drying to form a film layer;
  • Step S44 heat treating the film layer to form the electron transport layer.
  • the step S41 includes:
  • the first set time is stirred to obtain the precursor solution of the electron transport layer.
  • the ratio of the ethylene glycol methyl ether and the ethanolamine is 625:18;
  • the concentration of the zinc acetate dihydrate is between 0.08g/ml and 0.11g/ml.
  • the first set temperature is between 50°C and 70°C, and the first set time is greater than or equal to 10 hours.
  • the step S42 includes:
  • the surface tension modifier is selected from imidazole and its derivatives, phenol and hydroquinone, and the viscosity modifier is selected from It is a combination of one or more of alcohol, ether, ester, phenol and amine.
  • step S43 the drying process of step S43 is performed in a vacuum state, and the degree of vacuum is less than or equal to 1*10 -4 Pa.
  • the step S44 includes:
  • the film layer is placed at a second set temperature for a second set time to allow the film layer to fully react to form the electron transport layer.
  • the second set temperature is between 200°C and 230°C, and the second set time is greater than or equal to 1 hour.
  • the electron transport layer is a ZnO film layer.
  • the method for manufacturing an inverted QLED device of the present application improves the film forming property, uniformity and flatness of the electron transport layer by using an in-situ reaction method to form the electron transport layer; The technical problem of poor film forming and flatness of the electron transport layer of the existing inverted QLED device is solved.
  • FIG. 1 is a flowchart of an embodiment of a method for manufacturing an inverted QLED device of the present application
  • FIG. 2 is a flowchart of preparing an electron transport layer according to an embodiment of a method for manufacturing an inverted QLED device of the present application
  • FIG 3 is a schematic structural view of a QLED device made by an embodiment of a method for manufacturing an inverted QLED device of the present application.
  • FIG. 1 is a flowchart of an embodiment of a method for manufacturing an inverted QLED device of the present application
  • FIG. 2 is a flowchart of an embodiment of a method of manufacturing an inverted QLED device of the present application for preparing an electron transport layer
  • 3 is a schematic structural view of a QLED device made by an embodiment of a method for manufacturing an inverted QLED device of the present application.
  • the method for manufacturing an inverted QLED device according to an embodiment of the present application includes:
  • Step S1 providing a substrate
  • Step S2 forming a pixel defining layer with recesses on the substrate
  • Step S3 forming a cathode layer in the recess
  • Step S4 forming an electron transport layer on the cathode layer
  • Step S5 a light emitting layer, a hole transport layer and an anode layer are sequentially formed on the electron transport layer;
  • the step S4 includes:
  • Step S41 preparing a precursor solution of the electron transport layer
  • Step S42 adjusting the surface tension and viscosity of the precursor solution to meet the needs of the inkjet printer
  • Step S43 spraying the adjusted precursor solution on the cathode layer using an inkjet printing process, and drying to form a film layer;
  • Step S44 heat treating the film layer to form the electron transport layer.
  • the recessed portion is a recess, the recess penetrates the pixel defining layer 12 and exposes the substrate 11 corresponding to the recessed area.
  • a cathode layer 13, an electron transport layer 14, a light-emitting layer 15, a hole transport layer 16, and an anode layer 17 are formed in this recessed portion in this order.
  • the light emitting layer 15 is a quantum dot light emitting layer.
  • the electron transport layer 14 is formed by the in-situ reaction method, which improves the film forming property, uniformity and flatness of the electron transport layer 14, thereby improving the efficiency of the device.
  • the preparation scheme is simple and the process is easy to control.
  • step S41 is a precursor solution for preparing the electron transport layer 14, which includes:
  • the first set time is stirred to obtain the precursor solution of the electron transport layer.
  • the ratio of the ethylene glycol methyl ether and the ethanolamine is 625:18; the concentration of the zinc acetate dihydrate is between 0.08g/ml and 0.11g/ml (g/ml).
  • 1 g (g) of zinc acetate dihydrate is added to a mixed solution of 10 ml (ml) of ethylene glycol methyl ether and 288 ⁇ l (microliter) to make a precursor solution for the electron transport layer.
  • zinc acetate dihydrate was dissolved in the mixed solution of ethylene glycol methyl ether and ethanolamine, and zinc acetate dihydrate ionization occurred.
  • the first set temperature is between 50°C and 70°C, and the first set time is greater than or equal to 10 hours.
  • the first set temperature is between 50°C and 70°C.
  • the first set temperature may be 50°C, 55°C, 60°C, 65°C, or 70 °C.
  • the first set time is at least 10 hours.
  • step S42 of the process for preparing the electron transport layer 14 of this embodiment is to adjust the surface tension and viscosity of the precursor solution to meet the needs of the inkjet printer, which includes:
  • step S42 two regulators are added to change the corresponding physical properties of the precursor solution, that is, the added regulator does not chemically react with the precursor solution. Therefore, in this embodiment, there is no order for adding the surface tension modifier and the viscosity modifier, that is, the two modifiers can be added to the precursor solution in steps, or can be added to the precursor solution at the same time. As long as the surface tension and viscosity of the precursor solution meet the requirements of the inkjet printer, the inkjet printer can be prompted to spray-print the precursor solution on the cathode layer 13.
  • the addition amount of the two regulators is not limited.
  • the surface tension adjusting agent is a combination of one or more of small molecule compounds.
  • the surface tension modifier is selected from one or a combination of imidazole and its derivatives, phenol and hydroquinone.
  • the mass percentage of the viscosity modifier is between 0.1% and 5%, and the viscosity modifier is selected from one or more combinations of alcohol, ether, ester, phenol and amine.
  • step S43 of the manufacturing process of the electron transport layer 14 of this embodiment is to spray the adjusted precursor solution on the cathode layer by an inkjet printing process, and dry to form a film layer.
  • the drying process is performed in a vacuum state, and the degree of vacuum is less than or equal to 1*10 -4 Pa (Pa).
  • the precursor solution undergoes a chemical reaction and produces zinc hydroxide [Zn(OH) 2 ].
  • the precursor solution added with the modifier is dried by vacuum drying to remove the evaporated water, modifier and other reaction products to obtain a pure Zn(OH) 2 film layer.
  • step S44 is heat treatment of the film layer to form the electron transport layer.
  • Step S44 includes: placing the film layer at a second set temperature for a second set time to allow the film layer to fully react to form the electron transport layer.
  • Step S44 by heat-treating the Zn(OH) 2 film in the air, the Zn(OH) 2 decomposes and obtains ZnO (zinc oxide) and water, and the water volatilizes at a high temperature, thereby forming a ZnO film, that is Electron transport layer 14.
  • ZnO zinc oxide
  • the second set temperature is between 200°C and 230°C, and the second set time is greater than or equal to 1 hour.
  • the second set temperature is between 200°C and 230°C.
  • the second set temperature may be 200°C, 210°C, 220°C, or 230°C.
  • the setting of the second set time is greater than or equal to 1 hour is to make Zn(OH) 2 react sufficiently.
  • the present embodiment has completed the preparation of the electron transport layer 14.
  • the method for manufacturing an inverted QLED device of the present application improves the film forming property, uniformity and flatness of the electron transport layer by using an in-situ reaction method to form the electron transport layer; The technical problem of poor film forming and flatness of the electron transport layer of the existing inverted QLED device is solved.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Cold Cathode And The Manufacture (AREA)
  • Electroluminescent Light Sources (AREA)
  • Ink Jet (AREA)
  • Inks, Pencil-Leads, Or Crayons (AREA)

Abstract

本申请提供一种倒置QLED器件的制备方法,包括一制备电子传输层的制程,制备电子传输层的制程包括制备电子传输层的前驱体溶液;调节前驱体溶液的表面张力和黏度,以适应喷墨打印的需求;采用喷墨打印工艺将调节完毕的前驱体溶液喷涂在阴极层上,并干燥形成一膜层;热处理膜层,以形成电子传输层。

Description

倒置QLED器件的制备方法 技术领域
本申请涉及一种显示技术,特别涉及一种倒置QLED器件的制备方法。
背景技术
在QLED(Quantum Dot Light Emitting Diodes,量子点发光二极管)器件中,一般采用ZnO(氧化锌)作为器件的电子传输层,但是利用ZnO纳米粒子溶液的方法制备得到的ZnO薄膜成膜性差,很难得到平整的薄膜,进一步影响器件的光电性能。
技术问题
本申请实施例提供一种倒置QLED器件的制备方法,以解决现有的倒置QLED器件的电子传输层的成膜性和平整性差的技术问题。
技术解决方案
本申请实施例提供一种倒置QLED器件的制备方法,其包括:
步骤S1,提供一基板;
步骤S2,在所述基板上形成具有凹陷部的像素界定层;
步骤S3,在所述凹陷部内形成阴极层;
步骤S4,在所述阴极层上形成电子传输层;
步骤S5,在所述电子传输层上依次形成发光层、空穴传输层和阳极层;
其中所述步骤S4包括:
步骤S41,制备所述电子传输层的前驱体溶液;
步骤S42,调节所述前驱体溶液的表面张力和黏度,以适应喷墨打印的需求;
步骤S43,采用喷墨打印工艺将调节完毕的前驱体溶液喷涂在所述阴极层上,并干燥形成一膜层;
步骤S44,热处理所述膜层,以形成所述电子传输层;
所述步骤S41包括:
将二水合乙酸锌加入到乙二醇甲醚和乙醇胺的混合溶液中;
在第一设定温度下,搅拌第一设定时间,获得所述电子传输层的前驱体溶液;
所述电子传输层为ZnO膜层。
在本申请的倒置QLED器件的制备方法中,所述乙二醇甲醚和所述乙醇胺的配比比例为625:18;
所述二水合乙酸锌的浓度介于0.08g/ml~0.11g/ml之间。
在本申请的倒置QLED器件的制备方法中,所述第一设定温度介于50℃~70℃之间,所述第一设定时间大于等于10小时。
在本申请的倒置QLED器件的制备方法中,所述步骤S42包括:
向所述前驱体溶液中加入表面张力调节剂,以使所述前驱体溶液的表面张力达到喷墨打印机的要求;
向所述前驱体溶液中加入黏度调节剂,以使所述前驱体溶液的黏度达到喷墨打印机的要求。
在本申请的倒置QLED器件的制备方法中,所述表面张力调节剂选自于咪唑及其衍生物、苯酚和对苯二酚中的一种或多种的组合,所述黏度调节剂选自于醇、醚、酯、酚和胺中的一种或多种的组合。
在本申请的倒置QLED器件的制备方法中,所述步骤S43的干燥制程在真空的状态下进行,且真空度小于等于1*10 -4Pa。
在本申请的倒置QLED器件的制备方法中,所述步骤S44包括:
将所述膜层处于第二设定温度下,持续第二设定时间,以使所述膜层充分反应形成所述电子传输层。
在本申请的倒置QLED器件的制备方法中,所述第二设定温度介于200℃~230℃之间,所述第二设定时间大于等于1小时。
本申请实施例还提供一种倒置QLED器件的制备方法,其包括:
步骤S1,提供一基板;
步骤S2,在所述基板上形成具有凹陷部的像素界定层;
步骤S3,在所述凹陷部内形成阴极层;
步骤S4,在所述阴极层上形成电子传输层;
步骤S5,在所述电子传输层上依次形成发光层、空穴传输层和阳极层;
其中所述步骤S4包括:
步骤S41,制备所述电子传输层的前驱体溶液;
步骤S42,调节所述前驱体溶液的表面张力和黏度,以适应喷墨打印机的需求;
步骤S43,采用喷墨打印工艺将调节完毕的前驱体溶液喷涂在所述阴极层上,并干燥形成一膜层;
步骤S44,热处理所述膜层,以形成所述电子传输层。
在本申请的倒置QLED器件的制备方法中,所述步骤S41包括:
将二水合乙酸锌加入到乙二醇甲醚和乙醇胺的混合溶液中;
在第一设定温度下,搅拌第一设定时间,获得所述电子传输层的前驱体溶液。
在本申请的倒置QLED器件的制备方法中,所述乙二醇甲醚和所述乙醇胺的配比比例为625:18;
所述二水合乙酸锌的浓度介于0.08g/ml~0.11g/ml之间。
在本申请的倒置QLED器件的制备方法中,所述第一设定温度介于50℃~70℃之间,所述第一设定时间大于等于10小时。
在本申请的倒置QLED器件的制备方法中,所述步骤S42包括:
向所述前驱体溶液中加入表面张力调节剂,以使所述前驱体溶液的表面张力达到喷墨打印机的要求;
向所述前驱体溶液中加入黏度调节剂,以使所述前驱体溶液的黏度达到喷墨打印机的要求。
在本申请的倒置QLED器件的制备方法中,所述表面张力调节剂选自于咪唑及其衍生物、苯酚和对苯二酚中的一种或多种的组合,所述黏度调节剂选自于醇、醚、酯、酚和胺中的一种或多种的组合。
在本申请的倒置QLED器件的制备方法中,所述步骤S43的干燥制程在真空的状态下进行,且真空度小于等于1*10 -4Pa。
在本申请的倒置QLED器件的制备方法中,所述步骤S44包括:
将所述膜层处于第二设定温度下,持续第二设定时间,以使所述膜层充分反应形成所述电子传输层。
在本申请的倒置QLED器件的制备方法中,所述第二设定温度介于200℃~230℃之间,所述第二设定时间大于等于1小时。
在本申请的倒置QLED器件的制备方法中,所述电子传输层为ZnO膜层。
有益效果
相较于现有技术的倒置QLED器件的制备方法,本申请的倒置QLED器件的制备方法通过采用原位反应法形成电子传输层,提高了电子传输层的成膜性、均一性和平整性;解决了现有的倒置QLED器件的电子传输层的成膜性和平整性差的技术问题。
附图说明
为了更清楚地说明本申请实施例或现有技术中的技术方案,下面对实施例中所需要使用的附图作简单的介绍。下面描述中的附图仅为本申请的部分实施例,对于本领域普通技术人员而言,在不付出创造性劳动的前提下,还可以根据这些附图获取其他的附图。
图1为本申请的倒置QLED器件的制备方法的实施例的流程图;
图2为本申请的倒置QLED器件的制备方法的实施例制备电子传输层的流程图;
图3为由本申请的倒置QLED器件的制备方法的实施例制成的QLED器件的结构示意图。
本发明的实施方式
请参照附图中的图式,其中相同的组件符号代表相同的组件。以下的说明是基于所例示的本申请具体实施例,其不应被视为限制本申请未在此详述的其它具体实施例。
请参照图1至图3,图1为本申请的倒置QLED器件的制备方法的实施例的流程图;图2为本申请的倒置QLED器件的制备方法的实施例制备电子传输层的流程图;图3为由本申请的倒置QLED器件的制备方法的实施例制成的QLED器件的结构示意图。本申请实施例的倒置QLED器件的制备方法,其包括:
步骤S1,提供一基板;
步骤S2,在所述基板上形成具有凹陷部的像素界定层;
步骤S3,在所述凹陷部内形成阴极层;
步骤S4,在所述阴极层上形成电子传输层;
步骤S5,在所述电子传输层上依次形成发光层、空穴传输层和阳极层;
其中所述步骤S4包括:
步骤S41,制备所述电子传输层的前驱体溶液;
步骤S42,调节所述前驱体溶液的表面张力和黏度,以适应喷墨打印机的需求;
步骤S43,采用喷墨打印工艺将调节完毕的前驱体溶液喷涂在所述阴极层上,并干燥形成一膜层;
步骤S44,热处理所述膜层,以形成所述电子传输层。
在倒置QLED器件100的制备方法的实施例中,凹陷部为一凹槽,该凹槽贯穿像素界定层12并裸露出对应于该凹槽区域的基板11。凹陷部内依次形成有阴极层13、电子传输层14、发光层15、空穴传输层16和阳极层17。发光层15为量子点发光层。
本实施例通过采用原位反应法形成电子传输层14,提高了电子传输层14的成膜性、均一性和平整性,进而提高了器件的效率,同时本制备方案简单,过程易于控制。
在本实施例的制备电子传输层14的制程(步骤S4)中,步骤S41为制备电子传输层14的前驱体溶液,其包括:
将二水合乙酸锌加入到乙二醇甲醚和乙醇胺的混合溶液中;
在第一设定温度下,搅拌第一设定时间,获得所述电子传输层的前驱体溶液。
其中,所述乙二醇甲醚和所述乙醇胺的配比比例为625:18;所述二水合乙酸锌的浓度介于0.08g/ml~0.11g/ml(克/毫升)之间。
比如,取1g(克)二水合乙酸锌加入到10ml(毫升)乙二醇甲醚和288μl(微升)的混合溶液中,以制成电子传输层的前驱体溶液。在形成前驱体溶液的过程中,二水合乙酸锌溶解于乙二醇甲醚和乙醇胺的混合溶液中,且二水合乙酸锌发生电离现象。
另外,所述第一设定温度介于50℃~70℃之间,所述第一设定时间大于等于10小时。
当所述第一设定温度低于50℃(摄氏度)时,二水合乙酸锌的溶解速度较慢,不利于快速的溶解二水合乙酸锌;当所述第一设定温度高于70℃时,混合溶液会发生挥发现象。因此在本实施例中,所述第一设定温度介于50℃~70℃之间,可选的,所述第一设定温度可以为50℃、55℃、60℃、65℃或70℃。
为了使得二水合乙酸锌能够充分地溶解于乙二醇甲醚和乙醇胺的混合溶液中,需要进行搅拌操作,以加快二水合乙酸锌的溶解速度。显而易见的是,随着所述第一设定温度的提升,二水合乙酸锌的溶解速度就会加快。因此在本实施例中,所述第一设定时间至少为10个小时。
在本实施例的制备电子传输层14的制程的步骤S42中,步骤S42为调节前驱体溶液的表面张力和黏度,以适应喷墨打印机的需求,其包括:
向所述前驱体溶液中加入表面张力调节剂,以使所述前驱体溶液的表面张力达到喷墨打印机的要求;
向所述前驱体溶液中加入黏度调节剂,以使所述前驱体溶液的黏度达到喷墨打印机的要求。
在步骤S42中,通过加入两种调节剂以改变前驱体溶液相应的物理特性,即加入的调节剂不与前驱体溶液发生化学反应。因此在本实施例中,对于加入表面张力调节剂和黏度调节剂并没有先后之分,即两种调节剂可以分步添加入前驱体溶液中,也可以同时添加入前驱体溶液中。只要使得前躯体溶液的表面张力和黏度满足喷墨打印机的要求即可,促使喷墨打印机可以将前驱体溶液喷涂打印在阴极层13上。
由于不同的喷墨打印机对喷涂液体的表面张力和黏度的要求不同,因此在本实施例中,并不限制两种调节剂的添加量。
其中,所述表面张力调节剂为小分子化合物中的一种或多种的组合。可选的,所述表面张力调节剂选自于咪唑及其衍生物、苯酚和对苯二酚中的一种或多种的组合。
所述黏度调节剂的质量百分比介于0.1%~5%之间,所述黏度调节剂选自于醇、醚、酯、酚和胺中的一种或多种的组合。
在本实施例的制备电子传输层14的制程的步骤S43中,步骤S43为采用喷墨打印工艺将调节完毕的前驱体溶液喷涂在所述阴极层上,并干燥形成一膜层。其中,干燥制程在真空的状态下进行,且真空度小于等于1*10 -4Pa(帕)。
在干燥制程之前,前驱体溶液发生化学反应并生成氢氧化锌[Zn(OH) 2]。
采用真空干燥的方式对添加了调节剂的前驱体溶液进行干燥,去除挥发掉的水分、调节剂和其他反应生成物,以得到纯净的Zn(OH) 2膜层。
在本实施例的制备电子传输层14的制程的步骤S44中,步骤S44为热处理所述膜层,以形成所述电子传输层。步骤S44包括:将所述膜层处于第二设定温度下,持续第二设定时间,以使所述膜层充分反应形成所述电子传输层。
步骤S44通过在空气中热处理Zn(OH) 2膜层,使得Zn(OH) 2并发生分解反应,进而获得ZnO(氧化锌)和水,而水在高温下挥发,从而形成ZnO膜层,即电子传输层14。
其中,所述第二设定温度介于200℃~230℃之间,所述第二设定时间大于等于1小时。
当所述第二设定温度低于200℃时,Zn(OH) 2不发生分解反应;当所述第二设定温度高于230℃时,高温会破坏像素界定层。因此在本实施例中,所述第二设定温度介于200℃~230℃之间。可选的,所述第二设定温度可以为200℃、210℃、220℃或230℃。
所述第二设定时间大于等于1小时的设置,是为了使得Zn(OH) 2进行充分的反应。
至此,本实施例便完成了电子传输层14的制备。
相较于现有技术的倒置QLED器件的制备方法,本申请的倒置QLED器件的制备方法通过采用原位反应法形成电子传输层,提高了电子传输层的成膜性、均一性和平整性;解决了现有的倒置QLED器件的电子传输层的成膜性和平整性差的技术问题。
以上所述,对于本领域的普通技术人员来说,可以根据本发明的技术方案和技术构思作出其他各种相应的改变和变形,而所有这些改变和变形都应属于本发明后附的权利要求的保护范围。

Claims (18)

  1. 一种倒置QLED器件的制备方法,其包括:
    步骤S1,提供一基板;
    步骤S2,在所述基板上形成具有凹陷部的像素界定层;
    步骤S3,在所述凹陷部内形成阴极层;
    步骤S4,在所述阴极层上形成电子传输层;
    步骤S5,在所述电子传输层上依次形成发光层、空穴传输层和阳极层;
    其中所述步骤S4包括:
    步骤S41,制备所述电子传输层的前驱体溶液;
    步骤S42,调节所述前驱体溶液的表面张力和黏度,以适应喷墨打印的需求;
    步骤S43,采用喷墨打印工艺将调节完毕的前驱体溶液喷涂在所述阴极层上,并干燥形成一膜层;
    步骤S44,热处理所述膜层,以形成所述电子传输层;
    所述步骤S41包括:
    将二水合乙酸锌加入到乙二醇甲醚和乙醇胺的混合溶液中;
    在第一设定温度下,搅拌第一设定时间,获得所述电子传输层的前驱体溶液;
    所述电子传输层为ZnO膜层。
  2. 根据权利要求1所述的倒置QLED器件的制备方法,其中,所述乙二醇甲醚和所述乙醇胺的配比比例为625:18;
    所述二水合乙酸锌的浓度介于0.08g/ml~0.11g/ml之间。
  3. 根据权利要求1所述的倒置QLED器件的制备方法,其中,所述第一设定温度介于50℃~70℃之间,所述第一设定时间大于等于10小时。
  4. 根据权利要求1所述的倒置QLED器件的制备方法,其中,所述步骤S42包括:
    向所述前驱体溶液中加入表面张力调节剂,以使所述前驱体溶液的表面张力达到喷墨打印机的要求;
    向所述前驱体溶液中加入黏度调节剂,以使所述前驱体溶液的黏度达到喷墨打印机的要求。
  5. 根据权利要求4所述的倒置QLED器件的制备方法,其中,所述表面张力调节剂选自于咪唑及其衍生物、苯酚和对苯二酚中的一种或多种的组合,所述黏度调节剂选自于醇、醚、酯、酚和胺中的一种或多种的组合。
  6. 根据权利要求1所述的倒置QLED器件的制备方法,其中,所述步骤S43的干燥制程在真空的状态下进行,且真空度小于等于1*10 -4Pa。
  7. 根据权利要求1所述的倒置QLED器件的制备方法,其中,所述步骤S44包括:
    将所述膜层处于第二设定温度下,持续第二设定时间,以使所述膜层充分反应形成所述电子传输层。
  8. 根据权利要求7所述的倒置QLED器件的制备方法,其中,所述第二设定温度介于200℃~230℃之间,所述第二设定时间大于等于1小时。
  9. 一种倒置QLED器件的制备方法,其包括:
    步骤S1,提供一基板;
    步骤S2,在所述基板上形成具有凹陷部的像素界定层;
    步骤S3,在所述凹陷部内形成阴极层;
    步骤S4,在所述阴极层上形成电子传输层;
    步骤S5,在所述电子传输层上依次形成发光层、空穴传输层和阳极层;
    其中所述步骤S4包括:
    步骤S41,制备所述电子传输层的前驱体溶液;
    步骤S42,调节所述前驱体溶液的表面张力和黏度,以适应喷墨打印的需求;
    步骤S43,采用喷墨打印工艺将调节完毕的前驱体溶液喷涂在所述阴极层上,并干燥形成一膜层;
    步骤S44,热处理所述膜层,以形成所述电子传输层。
  10. 根据权利要求9所述的倒置QLED器件的制备方法,其中,所述步骤S41包括:
    将二水合乙酸锌加入到乙二醇甲醚和乙醇胺的混合溶液中;
    在第一设定温度下,搅拌第一设定时间,获得所述电子传输层的前驱体溶液。
  11. 根据权利要求10所述的倒置QLED器件的制备方法,其中,所述乙二醇甲醚和所述乙醇胺的配比比例为625:18;
    所述二水合乙酸锌的浓度介于0.08g/ml~0.11g/ml之间。
  12. 根据权利要求10所述的倒置QLED器件的制备方法,其中,所述第一设定温度介于50℃~70℃之间,所述第一设定时间大于等于10小时。
  13. 根据权利要求9所述的倒置QLED器件的制备方法,其中,所述步骤S42包括:
    向所述前驱体溶液中加入表面张力调节剂,以使所述前驱体溶液的表面张力达到喷墨打印机的要求;
    向所述前驱体溶液中加入黏度调节剂,以使所述前驱体溶液的黏度达到喷墨打印机的要求。
  14. 根据权利要求13所述的倒置QLED器件的制备方法,其中,所述表面张力调节剂选自于咪唑及其衍生物、苯酚和对苯二酚中的一种或多种的组合,所述黏度调节剂选自于醇、醚、酯、酚和胺中的一种或多种的组合。
  15. 根据权利要求9所述的倒置QLED器件的制备方法,其中,所述步骤S43的干燥制程在真空的状态下进行,且真空度小于等于1*10 -4Pa。
  16. 根据权利要求9所述的倒置QLED器件的制备方法,其中,所述步骤S44包括:
    将所述膜层处于第二设定温度下,持续第二设定时间,以使所述膜层充分反应形成所述电子传输层。
  17. 根据权利要求16所述的倒置QLED器件的制备方法,其中,所述第二设定温度介于200℃~230℃之间,所述第二设定时间大于等于1小时。
  18. 根据权利要求9所述的倒置QLED器件的制备方法,其中,所述电子传输层为ZnO膜层。
PCT/CN2019/076115 2018-12-29 2019-02-26 倒置qled器件的制备方法 WO2020133670A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811631537.2A CN109755417B (zh) 2018-12-29 2018-12-29 倒置qled器件的制备方法
CN201811631537.2 2018-12-29

Publications (1)

Publication Number Publication Date
WO2020133670A1 true WO2020133670A1 (zh) 2020-07-02

Family

ID=66404323

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/076115 WO2020133670A1 (zh) 2018-12-29 2019-02-26 倒置qled器件的制备方法

Country Status (2)

Country Link
CN (1) CN109755417B (zh)
WO (1) WO2020133670A1 (zh)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN111653678B (zh) * 2020-06-12 2023-10-24 京东方科技集团股份有限公司 量子点发光二极管及其制作方法、显示面板、显示装置
CN112420937B (zh) * 2020-11-26 2023-01-13 合肥福纳科技有限公司 有机分子在制备具有改善的热稳定性的固态膜中的应用

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106409636A (zh) * 2016-10-25 2017-02-15 福州大学 一种基于喷墨打印图形化的ZnO阴极及其制备方法
CN106972115A (zh) * 2017-05-27 2017-07-21 深圳市华星光电技术有限公司 Oled显示面板的制作方法及oled显示面板
US20170221969A1 (en) * 2016-02-02 2017-08-03 Apple Inc. Quantum dot led and oled integration for high efficiency displays
CN108269927A (zh) * 2016-12-30 2018-07-10 Tcl集团股份有限公司 一种反置顶发射qled器件及其制备方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109004090B (zh) * 2018-08-07 2019-12-31 吉林大学 一种拓宽有机太阳能电池聚电解质类修饰层加工窗口的方法

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20170221969A1 (en) * 2016-02-02 2017-08-03 Apple Inc. Quantum dot led and oled integration for high efficiency displays
CN106409636A (zh) * 2016-10-25 2017-02-15 福州大学 一种基于喷墨打印图形化的ZnO阴极及其制备方法
CN108269927A (zh) * 2016-12-30 2018-07-10 Tcl集团股份有限公司 一种反置顶发射qled器件及其制备方法
CN106972115A (zh) * 2017-05-27 2017-07-21 深圳市华星光电技术有限公司 Oled显示面板的制作方法及oled显示面板

Also Published As

Publication number Publication date
CN109755417B (zh) 2021-03-23
CN109755417A (zh) 2019-05-14

Similar Documents

Publication Publication Date Title
TWI483292B (zh) 用於形成金屬氧化物薄膜的塗佈液,金屬氧化物薄膜,場效電晶體以及用於製造該場效電晶體的方法
US8742414B2 (en) Composition for an oxide thin film, a preparation method of the composition, a method for forming an oxide thin film using the composition, an electronic device including the oxide thin film, and a semiconductor device including the oxide thin film
CN105190854A (zh) 用于形成金属氧化物膜的涂布液、金属氧化物膜、场效应晶体管和制造场效应晶体管的方法
WO2020133670A1 (zh) 倒置qled器件的制备方法
WO2019075866A1 (zh) 电子传输层喷墨打印墨水及其制备方法
WO2020047915A1 (zh) 喷墨打印用钙钛矿墨水及其制备方法
KR20130015887A (ko) 박막의 제조방법, 박막, 박막의 제조장치 및 전자소자
EP4254530A1 (en) Perovskite layer, manufacture method for perovskite layer, perovskite layer solar cell, and perovskite layer solar cell assembly
CN111446385B (zh) 一种基于气刀和刮涂工艺制备钙钛矿发光二极管的方法
CN103613114A (zh) 一种硫化亚铜薄膜的液相制备方法
WO2021031247A1 (zh) 墨水组合物
CN110048031B (zh) Oled面板发光层的处理方法、oled面板制备方法及oled面板
WO2014173146A1 (zh) 薄膜晶体管及其制作方法、阵列基板及显示装置
CN106847890B (zh) 氧化物薄膜晶体管及其制备方法、阵列基板、显示面板
CN109103349A (zh) Oled面板的制作方法与oled面板
CN110517808B (zh) 一种基于银纳米线的复合导电薄膜及其制备方法
CN113745438A (zh) 一种大面积钙钛矿发光薄膜及其发光二极管
TWI662730B (zh) 製備有機發光二極體之熱轉印膜及其製備方法
US20210355338A1 (en) Quantum dot ink, method of manufacturing display panel, and display panel
CN113054115A (zh) 量子点发光二极管的制备方法
CN115368777A (zh) 油墨、发光器件及发光器件制作方法
WO2021035937A1 (zh) 一种发光器件及其制备方法
JP5956560B2 (ja) 金属酸化膜の製造方法
JP2010283002A (ja) 金属酸化物薄膜パターンの製造方法、金属酸化物薄膜、半導体および薄膜トランジスタ
CN109841735B (zh) Tft的制备方法、用于制备tft的墨水及其制备方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19904471

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19904471

Country of ref document: EP

Kind code of ref document: A1