WO2020133511A1 - 一种具有硬质涂层和超硬涂层的刀具及其制造方法 - Google Patents

一种具有硬质涂层和超硬涂层的刀具及其制造方法 Download PDF

Info

Publication number
WO2020133511A1
WO2020133511A1 PCT/CN2018/125833 CN2018125833W WO2020133511A1 WO 2020133511 A1 WO2020133511 A1 WO 2020133511A1 CN 2018125833 W CN2018125833 W CN 2018125833W WO 2020133511 A1 WO2020133511 A1 WO 2020133511A1
Authority
WO
WIPO (PCT)
Prior art keywords
hard coating
cutter body
cutter
tool
super
Prior art date
Application number
PCT/CN2018/125833
Other languages
English (en)
French (fr)
Inventor
陈成
屈建国
黄盈盈
章国辉
卢成
Original Assignee
深圳市金洲精工科技股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳市金洲精工科技股份有限公司 filed Critical 深圳市金洲精工科技股份有限公司
Priority to PCT/CN2018/125833 priority Critical patent/WO2020133511A1/zh
Priority to JP2020535134A priority patent/JP7061193B2/ja
Priority to KR1020207018224A priority patent/KR102479383B1/ko
Publication of WO2020133511A1 publication Critical patent/WO2020133511A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B51/00Tools for drilling machines
    • B23B51/02Twist drills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
    • B23P15/32Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools twist-drills
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C28/00Coating for obtaining at least two superposed coatings either by methods not provided for in a single one of groups C23C2/00 - C23C26/00 or by combinations of methods provided for in subclasses C23C and C25C or C25D
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23BTURNING; BORING
    • B23B2224/00Materials of tools or workpieces composed of a compound including a metal

Definitions

  • the invention belongs to the technical field of drilling tools, in particular to a cutter with a hard coating and a super-hard coating and a manufacturing method thereof.
  • the present invention aims to solve at least one of the above technical problems, and provides a tool with a hard coating and a super-hard coating and a manufacturing method thereof, which has a good tool machining effect and a long service life.
  • a cutter with a hard coating and a super-hard coating including a cutter body, the front end of the cutter body is a tip, and the cutter body is provided with at least one self-tool body tip on the outer periphery A chip flute spirally extending toward the end of the tool, the tool body is further provided with at least one spiral surface spirally extending from the tip of the tool body toward the tool tip on the outer periphery, and the length of the chip flute along the axial direction of the tool body Is L1, the length of the spiral surface along the axial direction of the cutter body is L4, and L4 is smaller than L1;
  • the outer diameter of the spiral surface in the cutter body is larger than the outer diameter of the cutter body outside the spiral surface, and the total length of the spiral surface along the outer circumferential direction of the cutter body is more than 0% and 80% of the circumferential length of the cutter body
  • a hard coating is deposited on the spiral surface, and the thickness of the hard coating at the tip L3 of the tool body along the axial direction of the tool body is H1, and the spiral surface is axially distanced from the tool body along the axial direction
  • the thickness of the hard coating at the tip L2 of the cutter body is H2, L2 is greater than L3, and the ratio of H2/H1 is 1 or more and 1.5 or less;
  • the outer diameter of the cutter body at the hard coating is D1
  • the outer diameter of the cutter body outside the spiral surface is D2
  • D2 is less than D1
  • the difference between D1 and D2 is greater than 0.001mm and less than 0.1mm;
  • the cutter body is also provided with a super-hard coating, which is deposited on the surface of the cutter body and the surface of the hard coating.
  • the thickness of the super-hard coating is 0.01 to 5 microns; the hardness of the super-hard coating is greater than 40 GPa.
  • the surface friction coefficient of the super-hard coating is less than 0.1; the super-hard coating is a tetrahedral amorphous carbon film composed of C element.
  • the thickness of the hard coating layer is in the range of 0.4 to 20 microns along the axial direction.
  • the surface friction coefficient of the hard coating is 0.10 to 0.40.
  • the difference between D2 and D1 is between 0.001 and 0.08 mm.
  • the cutter body is made of cemented carbide containing WC and Co.
  • the front end of the spiral surface is at a distance L3 from the tool body tip along the axial direction of the tool body, and the end of the spiral surface is at a distance L2 from the tool body tip along the axial direction of the tool body.
  • the thickness of the hard coating layer at the tip L3 of the cutter body along the axial direction of the cutter body is 4 ⁇ m.
  • the length of the spiral surface along the axial direction of the cutter body is less than 2 mm.
  • the length of the spiral surface along the axial direction of the tool body is 0.7 mm; and/or,
  • the total length of the spiral surface along the outer circumferential direction of the cutter body is 10% of the circumferential length of the cutter body; and/or,
  • D1-D2 is 0.018mm
  • the minimum thickness of the hard coating is 4 microns, and H2/H1 is 1.1.
  • the invention also provides a method for manufacturing a cutter, which is used to manufacture the above-mentioned cutter with a hard coating and a super-hard coating, including the following steps:
  • a spiral surface with a length L4 along the axial direction of the tool body is formed on the outer periphery of the tool body, and L4 is less than L1;
  • a hard coating is deposited on the spiral surface, and the ratio between the thickness of the hard coating at the tip L3 of the tool body and the thickness of the hard coating at the tip L2 of the tool body 1 or more and 1.5 or less;
  • a superhard coating layer with a hardness greater than that of the hard coating layer is deposited on the entire surface of the cutter body.
  • the invention provides a tool with a hard coating layer and a super hard coating layer and a manufacturing method thereof, and the surface friction coefficient of the tool body is reduced by the super hard coating layer, and the drill bit and the printed circuit board are reduced Friction force can significantly improve chip evacuation performance and reduce the risk of tool breakage.
  • the tool has good machining effect and long service life.
  • FIG. 1 is a schematic plan view of a tool with a hard coating and a super-hard coating provided by an embodiment of the present invention
  • FIG. 2 is a schematic plan view of a tool with a hard coating and a super-hard coating provided by an embodiment of the present invention
  • FIG. 3 is a partially enlarged schematic plan view of a tool with a hard coating and a super hard coating provided by an embodiment of the present invention
  • FIG. 4 is a schematic view of wear in a comparative experiment of a tool with a hard coating and a super-hard coating provided by an embodiment of the present invention
  • Figure 5 is a schematic diagram of the wear of a common tool in a comparative experiment.
  • setting and “connection” should be understood in a broad sense, for example, it can be directly set and connected, or it can be set and connected indirectly through a centering element or centering structure.
  • an embodiment of the present invention provides a tool with a hard coating and a super hard coating, which can be used for the processing of a printed circuit board (PCB), including a tool body 10, the tool The front end of the body 10 is a tip (tip), the cutter body 10 is provided on the outer circumference with at least one chip flute 11 extending spirally from the tip of the cutter body 10 toward the end of the cutter, and the cutter body 10 is further provided on the outer circumference At least one helical surface 12 extending helically from the tip of the tool body 10 toward the end of the tool, the chip flute 11 has a length L1 from the tool tip in the axial direction of the tool body 10, and the helical surface 12 starts from the tool tip The length in the axial direction of the cutter body 10 is L4, and L4 is smaller than L1.
  • the outer diameter of the spiral surface 12 in the cutter body 10 is larger than the outer diameter of the cutter body 10 outside the spiral surface 12, the spiral surface 12 and the chip flute 11 are circumferentially offset, and the total length of the spiral surface 12 along the outer circumference of the cutter body 10 is Above 0% and below 80% of the circumferential length of the tool body 10, a hard coating 2 is deposited on the spiral surface 12, and the thickness of the hard coating 2 along the axial direction of the tool body 10 from the tip L3 of the tool body 10 is H1 (ie Is the front edge of the side of the tool body 10), the thickness of the hard coating 2 at the tip L2 of the tool body 10 along the axial direction of the tool body 10 is H2, L2 is greater than L3, and the ratio of H2/H1 is 1 to 1.5. That is, the thickness of the hard coating layer 2 is relatively thicker from the tip of the cutter body 10, and the thickness ratio of the thickest portion to the thinnest portion of the hard coating layer 2 is less than 1.5.
  • the hard coating layer 2 deposited on the spiral surface 12 has a metallic component containing at least Cr and a non-metallic component containing at least Si and N.
  • the thickness of the hard coating layer 2 is adjustable from 0.4 to 10 microns, and the hard coating layer
  • the hardness of layer 2 is greater than 30GPa, and the cemented carbide is generally 20GPa; at the same time, the surface friction coefficient of the hard coating 2 is 0.30, and the friction coefficient of the cemented carbide substrate in the same state is 0.7, that is, through the hard coating 2
  • the thickness of the hard coating layer 2 at the front end of the spiral surface 12 is H1
  • the thickness of the hard coating layer 2 at the rear end of the spiral surface 12 is H2.
  • the ratio of H2/H1 is 1.0 or more and 1.5 or less, preferably, the ratio of H2/H1 is between 1.001 and 1.25.
  • the hard coating 2 needs to have a certain thickness to play a role of lubrication and wear resistance, but the tool always contacts the hole wall during the processing of the hard circuit board, causing the hard coating 2 of the spiral surface 12 to wear out. Moreover, the tool needs to be ground multiple times and used repeatedly. It has a large number of processed holes and a long service life.
  • the tool is designed to have a structure where the front end of the tool H1 is smaller than the rear end of the tool H2. Both the new tool and the polished coating can maintain sufficient thickness, so that the performance of the new knife tool and the polished coated tool remains the same.
  • the outer diameter of the tool body 10 at the hard coating 2 is D1, that is, the outer diameter of the hard coating 2 is D1, and the outer diameter of the tool body 10 outside the spiral surface 12 is D2, D2 ⁇ D1, D1 and The difference between D2 is greater than 0.001mm and less than 0.1mm.
  • the corresponding outer diameter of the surface of the hard coating layer 2 is D1
  • the hard coating layer 2 The thickness gradually increases in the section from the beginning of the spiral surface 12 to the end of the spiral surface 12, the diameter of the cutter body 10 in the section from the beginning of the spiral surface 12 to the end of the spiral surface 12 gradually decreases, and the cutter
  • the diameter of the body 10 at the end of the spiral surface 12 and the diameter of the cutter body 10 (the section corresponding to L5 in the figure) connected to the spiral surface 12 can both be D2.
  • the cutter body 10 may be connected with a tapered connecting shank.
  • the rear end of the connecting shank may be welded with a tool shank with a diameter greater than D2.
  • the tool shank may be made of stainless steel.
  • one or more chip flutes 11 are formed on the outer periphery of the tool body 101 from the tip of the tool toward the end, and the length of the chip flutes 11 is L1; the chip flutes 11 can be formed by grinding wheels, which can be optimized Grinding wheel particle size and grooving parameters to adjust the surface finish of the chip chute 11 and reduce the surface friction coefficient of the chip chute 11 to improve the chip evacuation performance of the tool. And because D2 ⁇ D1, the front end of the tool participates in cutting, and the hole diameter processed on the printed circuit board is D1, which is larger than the outer diameter D2 of the tool body 10 outside the spiral surface 12 (L5 segment), avoiding the back end of the tool and the hole wall Wear.
  • the contact area between the spiral surface 12 and the hole wall of the printed circuit board can be optimized. Reduce surface friction and improve hole wall quality.
  • a layer of super-hard coating 6 is deposited on the surface of the tool body 10, and the super-hard coating 6 is deposited on the surface of the tool body (including the entire surface of the tool tip surface, chip flute and the surface of the hard coating 2),
  • the superhard coating 6 is a tetrahedral amorphous carbon film composed of C (carbon) elements.
  • the thickness H3 of the super-hard coating 6 is adjustable from 0.01 to 5 microns, and the hardness is greater than 40 GPa, while the hardness of the general hard alloy (tool body) does not exceed 20 GPa; meanwhile, the surface friction coefficient of the super-hard coating 6 is less than 0.1 (the friction coefficient of the cemented carbide matrix of the cutter body is 0.7). That is, the super-hard coating 6 reduces the surface friction coefficient of the tool body 10 and reduces the friction between the drill bit and the printed circuit board to be processed, which can significantly improve the chip evacuation performance and reduce the risk of tool breakage.
  • the thickness of the super-hard coating layer 6 may be 0.1 to 3 microns, or 0.5 to 2.5 microns.
  • the hard coating layer 2 includes a metal component and a non-metal component, and the metal component contains at least Cr, which has high hardness and good wear resistance, and the non-metal component contains at least Si and N.
  • the atomic percentage of Si element is 0.05% to 15%.
  • the atomic percentage of Si element in non-metallic component is 0.1 to 10%, specifically 0.2% to 8%.
  • the non-metallic component The Si element accounts for 0.5 to 6% of the atoms.
  • the thickness of the hard coating layer 2 is in the range of 0.4 to 10 ⁇ m along the axial direction, that is, the thinnest thickness of the hard coating layer 2 may be 0.4 ⁇ m, or The maximum thickness may be 10 ⁇ m, and the thickness of the hard coating layer 2 gradually becomes thicker and the thickness ratio is less than 1.5 within the range of L3 to L2 from the tip of the tool body 10.
  • the front end of the spiral surface 12 is located along the axial direction of the tool body 10 from the tip L3 of the tool body 10, and along the axial direction from the tip L3 of the tool body 10, that is, the front end edge of the side of the tool body 10, along the tool
  • the body 10 is axially away from the tip L2 of the cutter body 10 as the end of the spiral surface 12.
  • the hard coating 2 needs to have a certain thickness to play a role of lubrication and wear resistance, but the tool always contacts the hole wall during the processing of the hard circuit board, causing the hard coating 2 of the spiral surface 12 to wear out. And in the service life, the tool needs to be ground many times and used repeatedly, and the number of processed holes is large, and the service life is long.
  • the tool is designed as a hard coating on the front end of the tool 2
  • the thickness H1 is less than the hard coating of the rear end of the tool (relative).
  • the thickness H2 structure allows the new tool and the polished coating to maintain sufficient thickness, so that the new tool and the polished coating tool are processed. The performance is consistent, and the consistency of the pore size of the added product is good.
  • the surface friction coefficient of the hard coating layer 2 is 0.25 to 0.35.
  • the surface friction coefficient of the hard coating layer 2 is 0.28 to 0.32.
  • the surface friction coefficient of the hard coating layer 2 is 0.30 .
  • the difference between D2 and D1 is between 0.001 and 0.080 mm, preferably, the difference between D2 and D1 is between 0.01 and 0.060 mm or 0.02 to 0.05 mmmm.
  • the cutter body 10 is made of cemented carbide containing WC and Co.
  • the thickness of the hard coating 2 at the tip L3 of the cutter body 10 (at the front edge of the side of the cutter body 10) along the axial direction of the cutter body 10 is 4 microns.
  • the length of the spiral surface 12 in the axial direction of the cutter body 10 may be less than 4 mm.
  • the length of the spiral surface 12 in the axial direction of the cutter body 10 may be less than 3 mm.
  • the spiral The length of the face 12 in the axial direction of the tool body 10 is less than 2 mm.
  • the length of the spiral surface 12 along the axial direction of the cutter body 10 is 0.7 mm or 0.5 mm.
  • the total length of the spiral surface 12 along the outer circumferential direction of the cutter body 10 is 10% of the circumferential length of the cutter body 10.
  • D1-D2 is 0.018mm.
  • the minimum thickness of the hard coating 2 is 4 microns, and H2/H1 is 1.1.
  • a super-hard coating layer may also be deposited on the surface of the tool body 10, and the super-hard coating layer may be a tetrahedral amorphous carbon film composed of C element.
  • This embodiment also provides a tool manufacturing method for manufacturing the above-mentioned tool with a hard coating and a super hard coating, including the following steps:
  • a chip chute 11 with a length of L1 in the axial direction from the tip of the tool body 10 is formed in the tool body 10 by grooving the grinding wheel;
  • a spiral surface 12 with a length L4 along the axial direction of the tool body 10 is formed on the outer periphery of the tool body 10, and L4 is smaller than L1;
  • a hard coating 2 is deposited on the spiral surface 12 and the ratio between the thickness of the hard coating 2 at the tip L3 of the cutter body 10 and the thickness of the hard coating 2 at the tip L2 of the cutter body 10 is 1 or more and 1.5 or less;
  • a super-hard coating with a hardness greater than the hard coating 2 is deposited on the entire surface of the tool body 10.
  • the present invention deposits a coating material (composite coating material) on the spiral surface 12 to form a hard coating layer 2, which significantly reduces the frictional force in the direction of the outer periphery of the tool, does not affect the surface finish of the tool, and ensures the chip evacuation performance of the tool.
  • a coating material composite coating material
  • D2 is smaller than D1
  • the front end of the tool participates in cutting
  • the hole diameter processed on the printed circuit board is D1, which is larger than the outer diameter D2 of the tool body 10 outside the spiral surface 12 (L5 section), avoiding the back end of the tool and the hole wall Wear.
  • the composite coating tool prepared by the invention can reduce the wear of the outer diameter and the needle breakage rate when processing common FR-4, halogen-free, HTG board and other printed circuit boards, and can at least increase the service life of the micro-drill To 2 to 4 times, at the same time can ensure the quality of drilling, greatly improve the processing efficiency and reduce production costs.
  • a super-hard coating 6 is deposited on the surface of the tool body (including the entire surface of the tool tip surface, chip flute and the surface of the hard coating 2), the super-hard coating 6 is composed of C (carbon) elements on four sides Bulk amorphous carbon film.
  • the thickness of the super-hard coating 6 is adjustable from 0.01 to 5 microns, the hardness is greater than 40GPa, and the hardness of the general hard alloy (tool body) does not exceed 20GPa; at the same time, the surface friction coefficient of the super-hard coating 6 is less than 0.1 (The friction coefficient of the carbide body of the tool body is 0.7). That is, the super-hard coating 6 reduces the surface friction coefficient of the tool body 10 and reduces the friction between the drill bit and the printed circuit board to be processed, which can significantly improve the chip evacuation performance and reduce the risk of tool breakage.
  • the length of the spiral surface 12 along the axis is preferably 0.5 mm.
  • the total length of the spiral surface 12 in the tool outer circumferential direction is 8% of the tool circumferential length ( ⁇ d), and the outer diameters D1 and L5 of the spiral surface 12 are D2 and D2 ⁇ D1; and D1-D2 is 0.018mm, the thickness of the hard coating layer 2 is 4 microns, and H2/H1 is 1.1.
  • the thickness of the super-hard coating 6 is 0.2 microns.
  • a hard coating 2 is deposited on the spiral surface 12 of the tool, and a super-hard coating 6 is deposited on the tool body 10.
  • test conditions are as follows:
  • the test result is:
  • the outer diameter D1 of the spiral surface 4 is compared, and it can be found that the outer diameter of the common tool is seriously reduced, while the change of the outer diameter of this tool is small.
  • test results are as follows: after the 260,000 holes are processed by the common tool and the tool according to the above processing conditions, the spiral surface 12 of the ordinary tool is seriously worn, as shown in FIG. 5; the spiral surface 12 of the tool is slightly worn, as shown in FIG.
  • this tool can maintain better hole wall quality after processing a more porous number, and the service life is much higher than that of ordinary tools, which is conducive to improving production efficiency and reducing production costs, and through super-hard coating 6 Reducing the surface friction coefficient of the tool body 10 and reducing the friction between the drill bit and the printed circuit board being processed can significantly improve the chip evacuation performance and reduce the risk of tool breakage.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Materials Engineering (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Drilling Tools (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

一种具有硬质涂层和超硬涂层的刀具及其制造方法。刀具包括刀具本体(10),刀具本体在外周上设置有排屑槽(11)和螺旋面(12);螺旋面周向长度为刀具本体圆周长度的0%以上且80%以下,螺旋面上沉积有硬质涂层(2),沿刀具本体轴向距离刀具本体尖端L3、L2处硬质涂层的厚度分别为H1、H2,L2大于L3,且H2/H1的比值为1以上且1.5以下;刀具本体于硬质涂层处的外径为D1,刀具本体于螺旋面以外处的外径为D2,且D2小于D1,刀具本体还设置有超硬涂层(6),超硬涂层沉积于刀具本体表面及硬质涂层的表面。该具有硬质涂层和超硬涂层的刀具加工效果佳、使用寿命长。

Description

一种具有硬质涂层和超硬涂层的刀具及其制造方法 技术领域
本发明属于钻孔工具技术领域,尤其涉及一种具有硬质涂层和超硬涂层的刀具及其制造方法。
背景技术
随着印制电路板行业的发展,刀具的使用量显著增加,需要新型涂层材料提升刀具的寿命,以降低加工成本;同时印制电路行业涌现出大量的新材料,如高频高速板、陶瓷填充板、软板和封装板等,加工难度显著增大。寿命提升和新材料的出现对刀具的磨损、排尘等有更高的要求,而现有的未涂层刀具可以通过刀具结构参数和基体材质进行一定的提升,但提升幅度有限,已经不能很好地解决这一系列问题。
为了提高刀具的寿命及其加工印制电路板的质量,国内外很多企业都对刀具进行表面改性处理,如化学气相沉积(CVD)和物理气相沉积(PVD)等,同时该技术已经广泛运用在钢铁等金属加工上,但是涂层刀具在印制电路板的运用较少,存在极大的需求量。虽然国内通过多年的消耗吸收国外涂层设备和技术,在涂层技术、涂层装备和涂层工艺等方面取得了一定进展,但将这些方法直接运用到印制电路板刀具时,存在较多问题。譬如:(1)涂层本身的厚度、硬度和表面质量需要提升;(2)涂层与基体结合力仍需提升;(3)涂层技术与刀具的设计结合需要更加紧密。
发明内容
本发明旨在至少解决上述技术问题之一,提供了一种具有硬质涂层和超硬 涂层的刀具及其制造方法,其刀具加工效果佳、使用寿命长。
本发明的技术方案是:一种具有硬质涂层和超硬涂层的刀具,包括刀具本体,所述刀具本体的前端为尖端,所述刀具本体在外周上设置有至少一个自刀具本体尖端朝向刀具末端螺旋延伸的排屑槽,所述刀具本体在外周上还设置有至少一个自刀具本体尖端朝向刀具末端螺旋延伸的螺旋面,所述排屑槽沿所述刀具本体轴向方向的长度为L1,所述螺旋面沿所述刀具本体轴向方向的长度为L4,且L4小于L1;
所述刀具本体中所述螺旋面处的外径大于所述螺旋面以外处刀具本体的外径,所述螺旋面沿刀具本体外周方向长度的总长为刀具本体圆周长度的0%以上且80%以下,所述螺旋面上沉积有硬质涂层,沿刀具本体轴向距离所述刀具本体尖端L3处所述硬质涂层的厚度为H1,所述螺旋面沿刀具本体轴向距离所述刀具本体尖端L2处所述硬质涂层的厚度为H2,L2大于L3,且H2/H1的比值为1以上且1.5以下;
所述刀具本体于所述硬质涂层处的外径为D1,所述刀具本体于螺旋面以外处的外径为D2,且D2小于D1,D1与D2之间差值大于0.001mm且小于0.1mm;
所述刀具本体还设置有超硬涂层,所述超硬涂层沉积于所述刀具本体表面及所述硬质涂层的表面。
可选地,所述超硬涂层的厚度为0.01至5微米;所述超硬涂层硬度大于40GPa。
可选地,所述超硬涂层的表面摩擦系数小于0.1;所述超硬涂层为由为C元素组成的四面体非晶碳膜。
可选地,所述螺旋面中沿轴向方向,所述硬质涂层的厚度在0.4至20微米范围内。
可选地,所述硬质涂层的表面摩擦系数为0.10至0.40。
可选地,D2与D1之间的差值在0.001至0.08mm之间。
可选地,所述刀具本体由含有WC和Co的硬质合金制成。
可选地,沿刀具本体轴向距离所述刀具本体尖端L3处为所述螺旋面的前端,沿刀具本体轴向距离所述刀具本体尖端L2处为所述螺旋面的末端。
可选地,沿刀具本体轴向距离所述刀具本体尖端L3处所述硬质涂层的厚度为4微米。
可选地,所述螺旋面沿所述刀具本体轴向方向的长度小于2mm。
可选地,所述螺旋面沿刀具本体轴线方向的长度为0.7mm;且/或,
所述螺旋面沿刀具本体外周方向长度的总长为刀具本体圆周长度的10%;且/或,
D1-D2为0.018mm;且/或,
所述硬质涂层的最小厚度为4微米,且H2/H1为1.1。
本发明还提供了一种刀具的制造方法,用于制造上述的一种具有硬质涂层和超硬涂层的刀具,包括以下步骤:
制备含有WC和Co的硬质合金;
将所述硬质合金加工成刀具本体;
通过砂轮开槽的方式于所述刀具本体形成自刀具本体尖端起沿轴向方向长度为L1的排屑槽;
于所述刀具本体的外周形成沿所述刀具本体轴向方向的长度为L4的螺旋面,且L4小于L1;
于所述螺旋面上沉积硬质涂层,且距离所述刀具本体尖端L3处所述硬质涂层的厚度与距离所述刀具本体尖端L2处所述硬质涂层的厚度之间的比值为1以上且1.5以下;
于所述刀具本体的整体表面上沉积一层硬度大于所述硬质涂层的超硬涂层。
本发明所提供的一种具有硬质涂层和超硬涂层的刀具及其制造方法,其且通过超硬涂层降低刀具本体的表面摩擦系数,减小钻头与被加工印制电路板的 摩擦力,可以显著提升排屑性能,降低断刀的风险,刀具加工效果佳、使用寿命长。
附图说明
为了更清楚地说明本发明实施例中的技术方案,下面将对实施例中所需要使用的附图作简单地介绍,显而易见地,下面描述中的附图仅仅是本发明的一些实施例,对于本领域普通技术人员来讲,在不付出创造性劳动的前提下,还可以根据这些附图获得其他的附图。
图1是本发明实施例提供的一种具有硬质涂层和超硬涂层的刀具的平面示意图;
图2是本发明实施例提供的一种具有硬质涂层和超硬涂层的刀具的平面示意图;
图3是本发明实施例提供的一种具有硬质涂层和超硬涂层的刀具的平面局部放大示意图;
图4是本发明实施例提供的一种具有硬质涂层和超硬涂层的刀具对比实验中的磨损示意图;
图5是对比实验中普通刀具的磨损示意图。
具体实施方式
为了使本发明的目的、技术方案及优点更加清楚明白,以下结合附图及实施例,对本发明进行进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本发明,并不用于限定本发明。
需要说明的是,术语“设置”、“连接”应做广义理解,例如,可以是直接设置、连接,也可以通过居中元部件、居中结构间接设置、连接。
另外,本发明实施例中若有“纵向”、“横向”、“长度”、“宽度”、“厚度”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、 “外”等指示的方位或位置关系的用语,其为基于附图所示的方位或位置关系或常规放置状态或使用状态,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的结构、特征、装置或元件必须具有特定的方位或位置关系、也不是必须以特定的方位构造和操作,因此不能理解为对本发明的限制。在本发明的描述中,除非另有说明,“多个”的含义是两个或两个以上。
在具体实施方式中所描述的各个具体技术特征和各实施例,在不矛盾的情况下,可以通过任何合适的方式进行组合,例如通过不同的具体技术特征/实施例的组合可以形成不同的实施方式,为了避免不必要的重复,本发明中各个具体技术特征/实施例的各种可能的组合方式不再另行说明。
如图1至图3所示,本发明实施例提供的一种具有硬质涂层和超硬涂层的刀具,可用于印制电路板(PCB)的加工,包括刀具本体10,所述刀具本体10的前端为尖端(刀尖),所述刀具本体10在外周上设置有至少一个自刀具本体10尖端朝向刀具末端螺旋延伸的排屑槽11,所述刀具本体10在外周上还设置有至少一个自刀具本体10尖端朝向刀具末端螺旋延伸的螺旋面12,所述排屑槽11自刀尖处起沿所述刀具本体10轴向方向的长度为L1,螺旋面12自刀尖处起沿刀具本体10轴向方向的长度为L4,且L4小于L1。
刀具本体10中螺旋面12处的外径大于螺旋面12以外处刀具本体10的外径,螺旋面12与排屑槽11周向错位设置,螺旋面12沿刀具本体10外周方向长度的总长为刀具本体10圆周长度的0%以上且80%以下,螺旋面12上沉积有硬质涂层2,沿刀具本体10轴向距离刀具本体10尖端L3处硬质涂层2的厚度为H1(即为刀具本体10侧面前端沿处),沿刀具本体10轴向距离刀具本体10尖端L2处硬质涂层2的厚度为H2,L2大于L3,且H2/H1的比值为1以上且1.5以下,即离刀具本体10尖端相对较远处,硬质涂层2的厚度较厚,且硬质涂层2的最厚处与最薄处的厚度比值小于1.5。
本实施例中,螺旋面12上沉积的硬质涂层2,其金属成分至少含有Cr,非金属成分至少含有Si和N,硬质涂层2厚度在0.4至10微米可调,硬质涂层2 的硬度大于30GPa,而硬质合金一般为20GPa;同时该硬质涂层2的表面摩擦系数为0.30,而相同状态下的硬质合金基体的摩擦系数为0.7,即通过硬质涂层2提升螺旋面12的表面硬度,降低螺旋面12的表面摩擦系数,减小螺旋面12与被加工印制电路板的孔壁摩擦产生的摩擦力,显著减少了刀具前端L2的磨损。
本实施例中,硬质涂层2于螺旋面12前端处(螺旋面12起点)的厚度为H1,硬质涂层2于螺旋面12后端处(螺旋面12终点)的厚度为H2,且H2/H1的比值为1.0以上且1.5以下,优选地,H2/H1的比值在1.001至1.25之间。硬质涂层2需要具有一定的厚度才能发挥润滑耐磨作用,但是刀具在加工硬质电路板的过程中,始终与孔壁有接触,造成螺旋面12的硬质涂层2整体磨损。且该刀具都需要进行多次研磨,反复使用,其加工孔数多,使用寿命长,为了保证研磨后仍有足够的涂层厚度,将刀具设计成刀具前端H1小于刀具后端H2的结构,使得全新刀具和研磨后的涂层均能保持足够的厚度,这样新刀刀具和研磨后的涂层刀具加工的性能保持一致。
刀具本体10于硬质涂层2处的外径为D1,即硬质涂层2外周面的直径为D1,刀具本体10于螺旋面12以外处的外径为D2,D2<D1,D1与D2之间差值大于0.001mm且小于0.1mm。在硬质涂层2的区段处,即从螺旋面12起始处至螺旋面12终点处的区段内,硬质涂层2表面对应的外径为D1,而硬质涂层2的厚度从螺旋面12起始处至螺旋面12终点处的区段内逐渐变厚,则刀具本体10在螺旋面12起始处至螺旋面12终点处的区段内的直径逐渐减小,刀具本体10于螺旋面12终点处的直径及连接于螺旋面12的刀具本体10(图中L5对应的区段)的直径均可以为D2。L1段中,除去L2段,则为L5段,即L1=L2+L5;L2段中,除去L3段,则为L4段,即L2=L3+L4。刀具本体10可以连接有锥形的连接柄,连接柄的后端可以焊接有直径大于D2的刀柄,刀柄可以采用不锈钢材制制成。在本实施例中,于刀具本体101的外周上形成一个或者多个从刀具尖端朝向末端的排屑槽11,排屑槽11的长度为L1;排屑槽11可由砂轮开槽形 成,可以优化砂轮粒度和开槽参数,以调节排屑槽11的表面光洁度,降低排屑槽11的表面摩擦系数,以提升刀具的排屑性能。且由于D2<D1,刀具前端参与切削,在印制电路板上加工的孔径为D1,大于刀具本体10于螺旋面12以外处(L5段)的外径D2,避免了刀具后端与孔壁磨损。在刀具加工过程中,仅有螺旋面12与印制电路板孔壁接触;通过调节螺旋面12的轴向长度和圆周长度可以优化螺旋面12与被加工印制电路板的孔壁接触面积,减少表面摩擦力,提升孔壁质量。
在刀具本体10的表面沉积一层超硬涂层6,超硬涂层6沉积于刀具本体表面(包括刀具本体的刀尖面、排屑槽等整体表面及硬质涂层2的表面),该超硬涂层6为由C(碳)元素组成四面体非晶碳膜。该超硬涂层6的厚度H3为0.01至5微米可调,硬度大于40GPa,而一般硬质合金(刀具本体)的硬度不超过20GPa;同时该超硬硬质涂层6的表面摩擦系数小于0.1(刀具本体硬质合金基体的摩擦系数为0.7)。即通过超硬涂层6降低刀具本体10的表面摩擦系数,减小钻头与被加工印制电路板的摩擦力,可以显著提升排屑性能,降低断刀的风险。
具体应用中,超硬涂层6的厚度可为0.1至3微米,或0.5至2.5微米等。
具体地,硬质涂层2包括金属成分和非金属成分,且金属成分至少含有Cr,其硬度高,耐磨性佳,非金属成分至少含有Si和N。其中Si元素所占原子百分比在0.05%至15%,本实施例中,非金属成分中Si元素所占原子百分比在0.1至10%,具体可以0.2%至8%,优选地,非金属成分中Si元素所占原子百分比在0.5至6%。
具体地,螺旋面12中沿轴向方向,硬质涂层2的厚度在0.4至10微米范围内,即硬质涂层2的厚度最薄可为0.4微米,或者,硬质涂层2的厚度最厚可为10微米,且需满足在距离刀具本体10尖端L3至L2范围内,硬质涂层2的厚度逐渐变厚且厚度比小于1.5。本实施例中,沿刀具本体10轴向距离刀具本体10尖端L3处为螺旋面12的前端,沿刀具本体10轴向距离刀具本体10 尖端L3处即刀具本体10侧面的前端沿处,沿刀具本体10轴向距离刀具本体10尖端L2处为螺旋面12的末端。硬质涂层2需要具有一定的厚度才能发挥润滑耐磨作用,但是刀具在加工硬质电路板的过程中,始终与孔壁接触,造成螺旋面12的硬质涂层2整体磨损。且在使用寿命中,刀具都需要进行多次研磨,反复使用,其加工孔数多,使用寿命长,为了保证研磨后仍有足够的涂层厚度,将刀具设计成刀具前端之硬质涂层2厚度H1小于刀具后端(相对)之硬质涂层2厚度H2的结构,使得全新刀具和研磨后的涂层均能保持足够的厚度,这样新刀刀具和研磨后的涂层刀具加工的性能保持一致,所加的产品孔径的一致性佳。
具体地,硬质涂层2的表面摩擦系数为0.25至0.35,优选地,硬质涂层2的表面摩擦系数为0.28至0.32,本实施例中,硬质涂层2的表面摩擦系数为0.30。
具体地,D2与D1之间的差值在0.001至0.080mm之间,优选地,D2与D1之间的差值在0.01至0.060mm之间或0.02至0.05mmmm。
具体地,刀具本体10由含有WC和Co的硬质合金制成。
本实施例中,沿刀具本体10轴向距离刀具本体10尖端L3处(刀具本体10侧面前端沿处)硬质涂层2的厚度为4微米。
具体地,螺旋面12沿刀具本体10轴向方向的长度(即L4的长度)可小于4mm,优选地,螺旋面12沿刀具本体10轴向方向的长度可小于3mm,本实施例中,螺旋面12沿刀具本体10轴向方向的长度小于2mm。
本实施例中,螺旋面12沿刀具本体10轴线方向的长度为0.7mm或0.5mm。
本实施例中,螺旋面12沿刀具本体10外周方向长度的总长为刀具本体10圆周长度的10%。
本实施例中,D1-D2为0.018mm。
本实施例中,硬质涂层2的最小厚度为4微米,且H2/H1为1.1。
具体应用中,还可以在刀具本体10的表面沉积一层超硬涂层,该超硬涂层可为四面体非晶碳膜,由C元素组成。
本实施例还提供了一种刀具的制造方法,用于制造上述的一种具有硬质涂层和超硬涂层的刀具,包括以下步骤:
制备含有WC和Co的硬质合金;
将硬质合金加工成刀具本体10;
通过砂轮开槽的方式于刀具本体10形成自刀具本体10尖端起沿轴向方向长度为L1的排屑槽11;
于刀具本体10的外周形成沿刀具本体10轴向方向的长度为L4的螺旋面12,且L4小于L1;
于螺旋面12上沉积硬质涂层2,且距离刀具本体10尖端L3处硬质涂层2的厚度与距离刀具本体10尖端L2处硬质涂层2的厚度之间的比值为1以上且1.5以下;
于刀具本体10的整体表面上沉积一层硬度大于硬质涂层2的超硬涂层。
本发明在螺旋面12沉积涂层材料(复合涂层材料)形成硬质涂层2,显著减小到刀具外周方向的摩擦力,同时不影响刀具表面光洁度,保证了刀具的排屑性能。且由于D2小于D1,刀具前端参与切削,在印制电路板上加工的孔径为D1,大于刀具本体10于螺旋面12以外处(L5段)的外径D2,避免了刀具后端与孔壁磨损。在刀具加工过程中,仅有螺旋面12与印制电路板孔壁接触;通过调节螺旋面12的轴向长度和圆周长度,可以优化螺旋面12与被加工印制电路板的孔壁接触面积,减少表面摩擦力,提升孔壁质量。通过本发明制备的复合涂层刀具,在加工普通FR-4、无卤素、HTG板材等印制电路板时,可以减少外径磨损,减少断针率,还能将微钻的使用寿命至少提高至2至4倍,同时可保证钻孔质量,大幅度提升加工效率,降低生产成本。超硬涂层6沉积于刀具本体表面(包括刀具本体的刀尖面、排屑槽等整体表面及硬质涂层2的表面),该超硬涂层6为由C(碳)元素组成四面体非晶碳膜。该超硬涂层6的厚度为0.01至5微米可调,硬度大于40GPa,而一般硬质合金(刀具本体)的硬度不超过20GPa;同时该超硬硬质涂层6的表面摩擦系数小于0.1(刀具本体硬质合 金基体的摩擦系数为0.7)。即通过超硬涂层6降低刀具本体10的表面摩擦系数,减小钻头与被加工印制电路板的摩擦力,可以显著提升排屑性能,降低断刀的风险。
在对比实验中,优选钻径0.11mm的普通刀具、本实施例中提供的具有硬质涂层和超硬涂层的刀具(以下简称本刀具)两者对比,两种结构参数一致。该螺旋面12沿轴线的长度优选0.5mm,螺旋面12沿刀具外周方向长度的总长为刀具圆周长度(πd)的8%,同时螺旋面12的外径D1,L5的外径D2,D2<D1;且D1-D2为0.018mm,硬质涂层2厚度为4微米,且H2/H1为1.1。超硬涂层6的厚度为0.2微米。
唯一的区别在于本刀具的螺旋面12上沉积硬质涂层2,在刀具本体10上沉积超硬涂层6。
测试条件如下表:
板材 三菱HL832NX t0.20mm*6片
盖垫板 1.5mm的酚醛垫板和明象7030盖板
刀具 钻径0.11mm的普通刀、硬质和超硬复合涂层刀具
钻床 日立300Krpm钻机
参数 转速S295Krpm,进给F3.2m/min,回刀R300mm/s;
测试结果为:
1、普通刀具、本刀具的断刀对比
Figure PCTCN2018125833-appb-000001
2、外径对比
普通刀具、本刀具加工4000孔后,螺旋面4的外径D1对比,可以发现普通刀具外径严重变小,而本刀具外径变化较小。
Figure PCTCN2018125833-appb-000002
3、普通刀具和本刀具加工的孔壁质量
Figure PCTCN2018125833-appb-000003
测试结果为:普通刀具和本刀具按上述加工条件加工260000孔后,普通刀具螺旋面12磨损情况严重,如图5所示;本刀具螺旋面12磨损情况轻微,如图4所示。
可见,本刀具即使研磨多次后,加工较多孔数后,也能保持较佳的孔壁质量,使用寿命远高于普通刀具,利于提高生产效率及降低生产成本,且通过超硬涂层6降低刀具本体10的表面摩擦系数,减小钻头与被加工印制电路板的摩擦力,可以显著提升排屑性能,降低断刀的风险。
以上仅为本发明的较佳实施例而已,并不用以限制本发明,凡在本发明的精神和原则之内所作的任何修改、等同替换或改进等,均应包含在本发明的保护范围之内。

Claims (12)

  1. 一种具有硬质涂层和超硬涂层的刀具,其特征在于,包括刀具本体,所述刀具本体的前端为尖端,所述刀具本体在外周上设置有至少一个自刀具本体尖端朝向刀具末端螺旋延伸的排屑槽,所述刀具本体在外周上还设置有至少一个自刀具本体尖端朝向刀具末端螺旋延伸的螺旋面,所述排屑槽沿所述刀具本体轴向方向的长度为L1,所述螺旋面沿所述刀具本体轴向方向的长度为L4,且L4小于L1;
    所述刀具本体中所述螺旋面处的外径大于所述螺旋面以外处刀具本体的外径,所述螺旋面沿刀具本体外周方向长度的总长为刀具本体圆周长度的0%以上且80%以下,所述螺旋面上沉积有硬质涂层,沿刀具本体轴向距离所述刀具本体尖端L3处所述硬质涂层的厚度为H1,所述螺旋面沿刀具本体轴向距离所述刀具本体尖端L2处所述硬质涂层的厚度为H2,L2大于L3,且H2/H1的比值为1以上且1.5以下;
    所述刀具本体于所述硬质涂层处的外径为D1,所述刀具本体于螺旋面以外处的外径为D2,且D2小于D1,D1与D2之间差值大于0.001mm且小于0.2mm;
    所述刀具本体还设置有超硬涂层,所述超硬涂层沉积于所述刀具本体表面及所述硬质涂层的表面。
  2. 如权利要求1所述的一种具有硬质涂层和超硬涂层的刀具,其特征在于,所述超硬涂层的厚度为0.01至5微米;所述超硬涂层硬度大于40GPa。
  3. 如权利要求1或2所述的一种具有硬质涂层和超硬涂层的刀具,其特征在于,所述超硬涂层的表面摩擦系数小于0.1;所述超硬涂层为由为C元素组成的四面体非晶碳膜。
  4. 如权利要求1所述的一种具有硬质涂层和超硬涂层的刀具,其特征在于,所述螺旋面中沿轴向方向,所述硬质涂层的厚度在0.4至20微米范围内。
  5. 如权利要求1所述的一种具有硬质涂层和超硬涂层的刀具,其特征在于, 所述硬质涂层的表面摩擦系数为0.10至0.40。
  6. 如权利要求1所述的一种具有硬质涂层和超硬涂层的刀具,其特征在于,D2与D1之间的差值在0.001至0.08mm之间。
  7. 如权利要求1所述的一种具有硬质涂层和超硬涂层的刀具,其特征在于,所述刀具本体由含有WC和Co的硬质合金制成。
  8. 如权利要求1所述的一种具有硬质涂层和超硬涂层的刀具,其特征在于,沿刀具本体轴向距离所述刀具本体尖端L3处为所述螺旋面的前端,沿刀具本体轴向距离所述刀具本体尖端L2处为所述螺旋面的末端。
  9. 如权利要求8所述的一种具有硬质涂层和超硬涂层的刀具,其特征在于,沿刀具本体轴向距离所述刀具本体尖端L3处所述硬质涂层的厚度为4微米。
  10. 如权利要求8所述的一种具有硬质涂层和超硬涂层的刀具,其特征在于,所述螺旋面沿所述刀具本体轴向方向的长度小于2mm。
  11. 如权利要求6所述的一种具有硬质涂层和超硬涂层的刀具,其特征在于,所述螺旋面沿刀具本体轴线方向的长度为0.7mm;且/或,
    所述螺旋面沿刀具本体外周方向长度的总长为刀具本体圆周长度的10%;且/或,
    D1-D2为0.018mm;且/或,
    所述硬质涂层的最小厚度为4微米,且H2/H1为1.1。
  12. 一种刀具的制造方法,其特征在于,用于制造如权利要求1至11中任一项所述的一种具有硬质涂层和超硬涂层的刀具,包括以下步骤:
    制备含有WC和Co的硬质合金;
    将所述硬质合金加工成刀具本体;
    通过砂轮开槽的方式于所述刀具本体形成自刀具本体尖端起沿轴向方向长度为L1的排屑槽;
    于所述刀具本体的外周形成沿所述刀具本体轴向方向的长度为L4的螺旋面,且L4小于L1;
    于所述螺旋面上沉积硬质涂层,且距离所述刀具本体尖端L3处所述硬质涂层的厚度与距离所述刀具本体尖端L2处所述硬质涂层的厚度之间的比值为1以上且1.5以下;
    于所述刀具本体的整体表面上沉积一层硬度大于所述硬质涂层的超硬涂层。
PCT/CN2018/125833 2018-12-29 2018-12-29 一种具有硬质涂层和超硬涂层的刀具及其制造方法 WO2020133511A1 (zh)

Priority Applications (3)

Application Number Priority Date Filing Date Title
PCT/CN2018/125833 WO2020133511A1 (zh) 2018-12-29 2018-12-29 一种具有硬质涂层和超硬涂层的刀具及其制造方法
JP2020535134A JP7061193B2 (ja) 2018-12-29 2018-12-29 硬質コーティングと超硬質コーティングを有する工具及びその製造方法
KR1020207018224A KR102479383B1 (ko) 2018-12-29 2018-12-29 경질 코팅층 및 초경 코팅층을 갖는 절삭공구 및 그 제조 방법

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/125833 WO2020133511A1 (zh) 2018-12-29 2018-12-29 一种具有硬质涂层和超硬涂层的刀具及其制造方法

Publications (1)

Publication Number Publication Date
WO2020133511A1 true WO2020133511A1 (zh) 2020-07-02

Family

ID=71127470

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/125833 WO2020133511A1 (zh) 2018-12-29 2018-12-29 一种具有硬质涂层和超硬涂层的刀具及其制造方法

Country Status (3)

Country Link
JP (1) JP7061193B2 (zh)
KR (1) KR102479383B1 (zh)
WO (1) WO2020133511A1 (zh)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114918460A (zh) * 2022-06-01 2022-08-19 深圳市金洲精工科技股份有限公司 一种耐磨钻头、其制备方法和用途

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263934A (ja) * 2001-03-14 2002-09-17 Mmc Kobelco Tool Kk 高速高送り切削ですぐれた耐チッピング性を発揮する表面被覆超硬合金製ドリル
CN1432444A (zh) * 2001-12-26 2003-07-30 住友电气工业株式会社 表面涂覆加工刀具
CN1786253A (zh) * 2005-12-15 2006-06-14 西安理工大学 一种提高微型钻头使用寿命的复合镀层及其制备方法
CN105316629A (zh) * 2015-11-19 2016-02-10 上海应用技术学院 一种超硬纳微米多层复合涂层及其制备方法
CN108179398A (zh) * 2017-12-29 2018-06-19 深圳市金洲精工科技股份有限公司 一种金刚石涂层钻头及其制备方法
CN108300993A (zh) * 2018-01-26 2018-07-20 东南大学 氮化硅-硬质合金梯度涂层刀具及其制备方法
CN108823526A (zh) * 2018-07-06 2018-11-16 成都工业职业技术学院 一种纳米多层复合超硬刀具涂层及其制备方法

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002172510A (ja) * 2000-12-11 2002-06-18 Mmc Kobelco Tool Kk 極小径ドリル及びその製造方法
JP2012086317A (ja) * 2010-10-20 2012-05-10 Kyocera Corp 回転工具

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002263934A (ja) * 2001-03-14 2002-09-17 Mmc Kobelco Tool Kk 高速高送り切削ですぐれた耐チッピング性を発揮する表面被覆超硬合金製ドリル
CN1432444A (zh) * 2001-12-26 2003-07-30 住友电气工业株式会社 表面涂覆加工刀具
CN1786253A (zh) * 2005-12-15 2006-06-14 西安理工大学 一种提高微型钻头使用寿命的复合镀层及其制备方法
CN105316629A (zh) * 2015-11-19 2016-02-10 上海应用技术学院 一种超硬纳微米多层复合涂层及其制备方法
CN108179398A (zh) * 2017-12-29 2018-06-19 深圳市金洲精工科技股份有限公司 一种金刚石涂层钻头及其制备方法
CN108300993A (zh) * 2018-01-26 2018-07-20 东南大学 氮化硅-硬质合金梯度涂层刀具及其制备方法
CN108823526A (zh) * 2018-07-06 2018-11-16 成都工业职业技术学院 一种纳米多层复合超硬刀具涂层及其制备方法

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114918460A (zh) * 2022-06-01 2022-08-19 深圳市金洲精工科技股份有限公司 一种耐磨钻头、其制备方法和用途
CN114918460B (zh) * 2022-06-01 2024-03-19 深圳市金洲精工科技股份有限公司 一种耐磨钻头、其制备方法和用途

Also Published As

Publication number Publication date
KR20200095498A (ko) 2020-08-10
KR102479383B1 (ko) 2022-12-19
JP7061193B2 (ja) 2022-04-27
JP2021511970A (ja) 2021-05-13

Similar Documents

Publication Publication Date Title
CN104772509B (zh) 带有涂层主体的聚晶金刚石切削工具
CN101282806A (zh) 麻花钻
JP6606840B2 (ja) 多結晶ダイヤモンド焼結体付き回転切削工具
TWI547332B (zh) 切削工具、切削工具之製造方法,以及使用切削工具來製造切削加工物之方法
WO2020223989A1 (zh) 一种切削刀具及其刀头结构
WO2020133511A1 (zh) 一种具有硬质涂层和超硬涂层的刀具及其制造方法
WO2021197215A1 (zh) 坯体以及具有螺旋状超硬材料前刀面的切削工具
CN214392488U (zh) 一种用于复合材料钻孔用环形刀具
JP2012115928A (ja) ダイヤモンド被覆切削工具
TWM584717U (zh) 具有硬質塗層和超硬塗層的刀具
TWI693118B (zh) 具有硬質塗層和超硬塗層的刀具及其製造方法
CN210059913U (zh) 一种具有硬质涂层的刀具
JP7112584B2 (ja) 硬脆性難削材加工用ダイヤモンド切削工具
WO2020133512A1 (zh) 一种具有硬质涂层的刀具及其制造方法
TWI693293B (zh) 具有硬質塗層的刀具及其製造方法
JP2008238354A (ja) ドリルおよび切削方法
TWI765827B (zh) 背鑽刀具及其製備方法
CN102581350B (zh) 金刚石包覆硬质合金制钻头
JP2003251512A (ja) ダイヤモンド工具及びこれを用いた穿孔方法
JP2004283951A (ja) エンドミル
CN209867497U (zh) 基于hsk63标准刀柄的pcd玉米粒铣刀
CN220679467U (zh) 一种带有断屑槽的螺旋槽钻头
CN219130877U (zh) Pcd钻头
CN108687976B (zh) 一种石材切割刀具
CN116551037A (zh) 一种带有断屑槽的螺旋槽钻头

Legal Events

Date Code Title Description
ENP Entry into the national phase

Ref document number: 2020535134

Country of ref document: JP

Kind code of ref document: A

ENP Entry into the national phase

Ref document number: 20207018224

Country of ref document: KR

Kind code of ref document: A

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18944261

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18944261

Country of ref document: EP

Kind code of ref document: A1