WO2020223989A1 - 一种切削刀具及其刀头结构 - Google Patents

一种切削刀具及其刀头结构 Download PDF

Info

Publication number
WO2020223989A1
WO2020223989A1 PCT/CN2019/086724 CN2019086724W WO2020223989A1 WO 2020223989 A1 WO2020223989 A1 WO 2020223989A1 CN 2019086724 W CN2019086724 W CN 2019086724W WO 2020223989 A1 WO2020223989 A1 WO 2020223989A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
cutting edge
head structure
structure according
tool
Prior art date
Application number
PCT/CN2019/086724
Other languages
English (en)
French (fr)
Inventor
颜炳姜
李伟秋
Original Assignee
汇专科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 汇专科技集团股份有限公司 filed Critical 汇专科技集团股份有限公司
Publication of WO2020223989A1 publication Critical patent/WO2020223989A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23PMETAL-WORKING NOT OTHERWISE PROVIDED FOR; COMBINED OPERATIONS; UNIVERSAL MACHINE TOOLS
    • B23P15/00Making specific metal objects by operations not covered by a single other subclass or a group in this subclass
    • B23P15/28Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools
    • B23P15/34Making specific metal objects by operations not covered by a single other subclass or a group in this subclass cutting tools milling cutters
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D1/00Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor
    • B28D1/18Working stone or stone-like materials, e.g. brick, concrete or glass, not provided for elsewhere; Machines, devices, tools therefor by milling, e.g. channelling by means of milling tools
    • B28D1/186Tools therefor, e.g. having exchangeable cutter bits
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28DWORKING STONE OR STONE-LIKE MATERIALS
    • B28D5/00Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor
    • B28D5/02Fine working of gems, jewels, crystals, e.g. of semiconductor material; apparatus or devices therefor by rotary tools, e.g. drills

Definitions

  • the invention relates to the technical field of precision machining tools, in particular to a cutting tool and its bit structure.
  • Graphite molds are more and more widely used due to their excellent thermal and electrical conductivity, lubrication properties and wear resistance, but graphite molds are not easy to process; at present, when semi-finishing or finishing curved surfaces on graphite molds are needed, ordinary Although flat-bottom milling cutter mills curved surfaces, although the processing efficiency is high, the residual material steps left behind are obvious, and the processing contour is poor; and the current milling cutters usually coat their surfaces with wear-resistant coatings in order to increase their wear resistance. Layer (such as WC, diamond, etc.), the tool is difficult to process and has a short life, and makes the surface roughness and uniformity of the workpiece formed by the tool poor.
  • the cutting edge distribution density processed by the existing processing equipment is low, and the level of the cutting edge distribution density is directly related to the surface roughness of the processed workpiece.
  • the processed surface is difficult to meet the increasing requirements for processing accuracy, and the processing efficiency is low.
  • the purpose of the present invention is to overcome the shortcomings of the prior art, and provide a cutting tool and its head structure, which can mill curved surfaces, increase the distribution density of cutting edges under the same diameter, ensure the roughness of the processed surface, and improve the processing efficiency.
  • the first aspect of the present invention provides a tool head structure for a cutting tool.
  • the tool head structure includes a connecting portion and a cutting edge portion provided at the front end of the connecting portion.
  • the material is polycrystalline diamond
  • the cutting edge portion includes a cutting body fixed at the front end of the connecting portion and a plurality of first cutting edges
  • the outer surface of the cutting body is a convex arc surface
  • the first cutting edge is In a spiral shape
  • the number S of the first cutting edge and the diameter D of the cutting body must satisfy the following relationship: 4D ⁇ S ⁇ 15D; the diameter D of the cutting body is 0.5 ⁇ 32mm; the first cutting
  • the blade width L of the blade is 0.01mm ⁇ 0.1mm.
  • the number of edges S of the first cutting edge is that the diameter D of the cutting body satisfies the following relationship 7D ⁇ S ⁇ 12D, and the diameter D of the cutting body is 3-20mm; the first cutting edge
  • the blade width L is 0.03mm ⁇ 0.08mm.
  • the material of the cutting edge portion is any one of polycrystalline diamond, single crystal diamond, chemical vapor deposition diamond, polycrystalline cubic boron nitride, ceramic, and cemented carbide.
  • each of the first cutting edges is circumferentially disposed on the outer surface of the cutting body along the central axis of the cutting body, and the rotation direction of each of the first cutting edges is the same, and two adjacent A first chip flute is formed between the cutting edges.
  • the outer surface of the cutting body is a hemispherical surface.
  • one end of the first cutting edge is provided at the top area of the cutting body, and the other end of the first cutting edge is provided at the connection between the cutting body and the connecting portion.
  • one end of the first cutting edge is provided in the top area of the cutting body, and the other end of the first cutting edge extends to the outer surface of the connecting portion.
  • the first cutting edges provided on opposite sides of the cutting body are connected at the top area of the cutting body to form a coherent cutting edge, and the other first cutting edges are not connected to each other.
  • the helix angle of the first cutting edge is 1° to 80°.
  • the groove depth of the first chip flute is 0.02 mm to 0.4 mm.
  • the number of the first cutting edges is 2-100.
  • the first cutting edge and the cutting body are integrally formed.
  • the cutting edges of the first cutting edges are arranged on the same side.
  • the rotation direction of the first cutting edge is left-handed or right-handed.
  • the rotation direction of the first cutting edge is left-handed, and the cutting edge of the first cutting edge is arranged on the right side of the first cutting edge.
  • the outer surface of the cutting body is further provided with a plurality of spiral second cutting edges, the second cutting edges are provided in the first chip flute and separate the first chip flute A plurality of second chip flutes are formed; and the rotation direction of the second cutting edge is the same as the rotation direction of the first cutting edge.
  • one end of the second cutting edge is connected to the first cutting edge, and the other end of the second cutting edge is provided at the connection between the cutting body and the connecting portion.
  • one end of the second cutting edge is connected to the first cutting edge, and the other end of the second cutting edge extends to the outer surface of the connecting portion.
  • At least two second cutting edges are connected to each of the first cutting edges.
  • the second cutting edge and the cutting body are integrally formed.
  • the cutting edge portion and the connecting portion are integrally formed, and the cutting edge portion and the connecting portion are made of the same material.
  • the second aspect of the present invention provides a cutting tool, which includes a tool shank and the tool head structure according to any one of the first aspects mounted on the front end of the tool shank, and the rear of the connecting part The end surface is fixedly connected with the front end surface of the tool handle.
  • the present invention has the following beneficial effects:
  • the head structure includes a connecting portion and a cutting edge portion, wherein the cutting edge portion includes a cutting main body and a plurality of first cutting edges provided on the surface of the cutting main body, and the outer surface of the cutting main body is convex outward The arc surface, the first cutting edge is helical.
  • the cutting body rotates along its own central axis while moving in a certain direction, so that the curved surface can be machined on the workpiece, and the machining of the tool can be effectively improved Precision and machining efficiency; and the number of edges S of the first cutting edge and the diameter D of the cutting body must satisfy the following relationship: 4D ⁇ S ⁇ 15D, that is, the number of edges S of the first cutting edge is 4-15 of the diameter D of the cutting body
  • the diameter D of the cutting body is in the range of 0.5-32mm, and the width L of the first cutting edge is 0.01mm-0.1mm, so that under the same diameter, the first cutting edge on the cutting body is more densely distributed, and
  • the surface roughness of the machined curved surface is lower, the machined surface is more delicate, and the processing efficiency can be improved; when the tool head structure is applied to CNC to process 3D glass graphite molds, the surface roughness can reach 90nm.
  • the overall material of the cutting edge portion is any one of polycrystalline diamond, single crystal diamond, chemical vapor deposition diamond, polycrystalline cubic boron nitride, ceramics, and cemented carbide, which can improve the wear resistance of the cutting edge and is relatively For tools with a coating structure, the service life is longer.
  • first cutting edges provided on opposite sides of the cutting body are connected to form a coherent cutting edge at the top area of the cutting body.
  • the cutting edge can be used for machining a plane, so that when the cutter head is working on a plane, The plane is processed by cutting, the surface roughness is lower than that of ordinary ball knife extrusion, the surface is more delicate, and the flatness is higher; in addition, a continuous cutting edge is formed on the top of the cutting body, which can cut large flat.
  • Fig. 1 is a schematic structural diagram of a cutter head structure in the first embodiment of the present invention
  • Figure 2 is a top view of a cutter head structure in the first embodiment of the present invention.
  • Figure 3 is a left view of a cutter head structure in the first embodiment of the present invention.
  • Fig. 4 is a schematic structural diagram of a cutter head structure in the second embodiment of the present invention.
  • the connecting part 20, the cutting edge portion; 21, the cutting body; 22, the first cutting edge; 221, the edge of the first cutting edge; 23, the first chip flute; 24, the second cutting edge 241, the edge of the second cutting edge; 25, the second chip flute; 26, the chip space.
  • front and rear refer to the end of the cutting tool that is close to the workpiece during use as “front” and the end away from the workpiece as “Rear”.
  • the first aspect of the present invention provides a cutter head structure for cutting tools.
  • the specific implementation of the cutter head structure is as follows:
  • this embodiment provides a cutter head structure for cutting tools.
  • the cutter head structure includes a connecting portion 10 and a cutting edge portion 20 provided at the front end of the connecting portion 10.
  • the cutting edge portion 20 includes a cutting body 21 fixed at the front end of the connecting portion 10 and a plurality of first cutting edges 22.
  • the outer surface of the cutting body 21 is a convex arc surface, and the first cutting edge 22 is spiral.
  • the number of edges of the first cutting edge 22 is defined as S, and the diameter of the cutting body 21 is defined as D.
  • the relationship between S and D must satisfy the following relationship: 4D ⁇ S ⁇ 15D, that is, the number of edges S of the first cutting edge 22 is
  • the diameter D of the cutting body 21 is 4 to 15 times, and the diameter D of the cutting body 21 is 0.5 to 32 mm, and the blade width L of the first cutting edge 22 is 0.01 to 0.1 mm.
  • the cutter head structure in this embodiment is mainly used for milling and shaping the curved surface of graphite workpieces, especially graphite molds.
  • the rotation of the cutter head structure drives the rotation of each first cutting edge 22, because the outer surface of the cutting body 21 is an outwardly convex arc Surface, so that the tangent method is used to mill the curved surface on the workpiece. While the cutting edge rotates, the cutting body 21 drives it to move on the trajectory to complete the milling of the entire curved surface; when the cutter head structure is applied to CNC to process 3D glass graphite molds , The surface roughness can reach 90nm.
  • the cutter head structure in this embodiment is also suitable for processing workpieces of materials such as glass and sapphire.
  • the outer surface of the cutting body 21 is set as an outwardly convex arc surface, which can be used to mill the curved surface of workpieces such as graphite molds.
  • the processed surface will not have any residual material steps and can obtain a processed surface with good roughness , And the processing efficiency is high.
  • the number of edges S of the first cutting edge 22 is 4-15 times the diameter D of the cutting body 21, the diameter D of the cutting body 21 is in the range of 0.5 to 32 mm, and the The blade width L is 0.03mm ⁇ 0.08mm, so that the first cutting edges 22 on the cutting main body 21 are more densely distributed under the same diameter, thereby making the surface roughness of the processed curved surface better and the processing efficiency higher.
  • each of the first cutting edges 22 is evenly arranged on the outer surface of the cutting body 21 along the central axis of the cutting body 21, so that the cutting force is more uniform, and the The direction of rotation is the same, a first chip flute 23 is formed between two adjacent cutting edges 22, and the debris removed from the surface of the workpiece by the first cutting edge 22 is discharged from the first chip flute 23.
  • the relationship between S and D further satisfies the following relationship: 7D ⁇ S ⁇ 12D, that is, the number of edges S of the first cutting edge 22 is 9-12 times the diameter D of the cutting body 21, and the cutting body
  • the diameter D of 21 is in the range of 3-20 mm
  • the blade width L of the first cutting edge 22 is 0.03 mm-0.08 mm, so that the surface roughness of the processed curved surface is better and the processing efficiency is higher.
  • the relationship between S and D may be that the number S of the first cutting edge 22 is 4, 5, 6, 7, 8, 9, 10, 11, 12, 13 or the diameter D of the cutting body 21 14 times etc.
  • the diameter D of the cutting body 21 can be: 1-3 mm, or 4-6 mm, or 7-10 mm, or 12-18 mm, or 21-25 mm, or 26-28 mm, etc.
  • the edge width L of the first cutting edge 22 may be 0.01, 0.02, 0.03, 0.04, 0.05, 0.06, 0.07, 0.08, 0.09, 0.1 mm, etc.
  • the overall material of the cutting edge portion 20 of the cutter head structure is polycrystalline diamond.
  • the integrated polycrystalline diamond structure greatly increases the resistance of the cutting edge. Grinding performance, and there is no easy peeling off the coating, so that the service life of the tool is greatly extended, the number of tool changes in the processing process is reduced, and the processing accuracy and processing efficiency of the tool can be effectively improved.
  • the cutting edge portion 20, which is made of polycrystalline diamond as a whole needs special equipment and precise processing to be able to process more first cutting edges 22 on a certain diameter of polycrystalline diamond.
  • the prior art cannot process more first cutting edges 22, such as the cutting body 21 with a diameter of 1 mm.
  • the prior art can only process less than 3 first cutting edges 22, while the cutting method of the present invention adopts polycrystalline diamond.
  • the main body 21 can process more than four first cutting edges 22.
  • the material of the cutter head structure can also be any one of single crystal diamond, chemical vapor deposited diamond, polycrystalline cubic boron nitride, ceramics and cemented carbide, which can also achieve the effect of wear resistance.
  • the stress point is mainly concentrated on the top area of the cutting body 21.
  • the outer surface of the cutting body 21 is a hemispherical surface.
  • the cutting edges 22 are densest in the top area of the cutting body 21.
  • one end of the first cutting edge 22 is provided at the top area of the cutting body 21 and extends along the outer surface of the cutting body 21 so that the other end of the first cutting edge 22 Located at the connection between the cutting body 21 and the connecting portion 10, the cutting position is mainly concentrated on the top area of the cutting body 21.
  • the tool head will process the plane by cutting when machining the plane.
  • the surface roughness is lower than that of ordinary ball knife extrusion and the surface is more delicate.
  • the flatness is higher.
  • the first cutting edges 22 provided on opposite sides of the cutting body 21 are connected at the top area of the cutting body 21 to form a continuous cutting edge; likewise, In order to take into account the chip removal function, the other first cutting edges 22 are not connected to each other, so that a chip removal space 26 is formed in the top area of the cutting main body 21 to facilitate the discharge of residues in the top area of the cutting main body 21.
  • a continuous cutting edge is formed on the top of the cutting body to cut a large plane.
  • the helix angle ⁇ of the first cutting edge 22 is 1° to 80°.
  • Appropriately increasing the helix angle of the first cutting edge 22 can make the tool in the process of machining
  • the cutting force is reduced, the tool has strong impact resistance, prevents tool vibration, and can ensure better surface quality and extend the service life of the cutting tool; based on the above-mentioned spiral angle, the strength and sharpness of the first cutting edge 22
  • the cutting force and the discharge speed of waste chips are very ideal.
  • the distance L between the two side surfaces of the first cutting edge 22 is defined as the edge width of the first cutting edge 22, and the edge width L of the first cutting edge 22 0.01mm ⁇ 0.1mm;
  • the groove depth of the first chip flute 23 is 0.02mm ⁇ 0.4mm to ensure the smooth discharge of debris during the milling process;
  • the number of the first cutting edge 22 is 2-100, and the number of the first cutting edge 22 is appropriately increased.
  • the number can evenly distribute the cutting force to each first cutting edge 22, so that the cutting tool can withstand greater cutting force, can adapt to higher cutting speed and feed, and can improve machining accuracy.
  • Figures 1-3 show specific embodiments in which the cutter head structure includes six. By using the cutter head structure to process a workpiece, the surface roughness of the machined surface can reach 300 nm or less, compared with the traditional 800 nm or more. Greatly reduce the surface roughness.
  • first cutting edge 22 and the cutting body 21 are integrally formed, so that a larger number of first cutting edges 22 can be machined on a smaller cutting body 21, making the forming easier and more feasible. Ensure the wear resistance of cutting tools and extend the service life.
  • the cutting edges of the first cutting edges 22 are arranged on the same side.
  • the rotation of the first cutting edge 22 is left-handed, the waste chips are discharged through the first chip flute 23 in a direction away from the workpiece, and the cutting edge of the first cutting edge 221 is arranged on the right side of the first cutting edge 22; similarly, the rotation direction of the first cutting edge 22 can also be set to right-handed, and the waste chip direction is opposite at this time.
  • the outer surface of the cutting body 21 is also provided with a plurality of spiral second cutting edges 24, so The second cutting edge 24 is provided in the first chip flute 23.
  • one end of the second cutting edge 24 is connected to the first cutting edge 22, and the other end of the second cutting edge 24 is provided at the connection between the cutting body 21 and the connecting portion 10.
  • the second cutting edge 24 divides the first chip flute 23 into a plurality of second chip flutes 25; and the rotation direction of the second cutting edge 24 is the same as the rotation direction of the first cutting edge 22. It can be left-handed or right-handed.
  • the rotation direction of the second cutting edge 24 is consistent with the rotation direction of the first cutting edge 22, and both are left-handed; in addition, the cutting edge 241 of the second cutting edge is also arranged on the right side.
  • FIGS. 1-3 show a situation where each first cutting edge 22 is connected with two second cutting edges 24.
  • the second cutting edge 24 and the cutting body 21 are integrally formed, and multiple second cutting edges 24 can be designed according to usage requirements.
  • the cutting edge portion 20 and the connecting portion 10 are integrally formed, which can be easily formed, and the cutting edge portion 20 and the connecting portion 10 are made of the same material.
  • this embodiment provides another cutter head structure.
  • the difference between this embodiment and the first embodiment is only that: one end of the first cutting edge 22 is provided on the top area of the cutting body 21 , The other end of the first cutting edge 22 extends to the outer surface of the connecting portion 10; one end of the second cutting edge 24 is connected to the first cutting edge 22, and the other end of the second cutting edge 24 One end extends to the outer surface of the connecting portion 10.
  • the cutter head structure in this embodiment has a larger processing range.
  • the second aspect of the embodiments of the present invention provides a cutting tool (not shown in the drawings), which includes a tool shank and a front end of the tool shank as in any embodiment of the first aspect.
  • a cutting tool (not shown in the drawings), which includes a tool shank and a front end of the tool shank as in any embodiment of the first aspect.
  • the rear end surface of the connecting portion 10 is fixedly connected with the front end surface of the cutter handle.
  • the cutting tool of the present invention includes the cutter head structure as described in any one of the embodiments of the first aspect, it has all the beneficial effects of the cutter head structure and will not be described here.
  • the embodiment of the present invention provides a cutter head structure and a cutting tool including the cutter head structure.
  • the cutter head structure includes a cutting body and a plurality of first cutting edges provided on the cutting body, and the outer surface of the cutting body is outward
  • the convex arc surface can be used for the curved surface processing of the formed workpiece, and the roughness of the processed surface is guaranteed; and the number S of the first cutting edge and the diameter D of the cutting body must satisfy the following relationship: 4D ⁇ S ⁇ 15D,
  • the diameter D of the cutting body is in the range of 0.5 to 32mm, so that the first cutting edge on the cutting body is more densely distributed under the same diameter.
  • the width L of the first cutting edge is 0.01mm to 0.1mm, making the surface
  • the surface roughness is good and the processing efficiency is higher; when the cutting tool is used in CNC to process 3D glass graphite molds, the surface roughness can reach 90nm.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Mining & Mineral Resources (AREA)
  • Milling Processes (AREA)

Abstract

本发明涉及精密加工工具技术领域,公开了一种切削刀具及其刀头结构,所述刀头结构包括连接部及设于所述连接部前端的切削刃部,所述切削刃部包括固定在连接部前端的切削主体及若干第一切削刃,所述切削主体的外表面为向外凸起的弧面,所述第一切削刃为螺旋状,所述第一切削刃的刃数S与所述切削主体直径D之间要满足以下关系:4D≤S≤15D;所述切削主体的直径D为0.5~32mm;所述第一切削刃的刃宽L为0.01mm~0.1mm。本发明的有益效果为:使用该切削刀具铣削曲面,相同的直径下刀刃分布密度高,表面粗糙度好,且加工效率高;将该切削刀具应用于CNC中以加工3D玻璃石墨模具时,表面粗糙度可达90nm。

Description

一种切削刀具及其刀头结构 技术领域
本发明涉及精密加工工具技术领域,特别是涉及一种切削刀具及其刀头结构。
背景技术
石墨模具以其优良的导热导电、润滑性能以及抗磨性等,其应用越来越广泛,但石墨模具不易加工;目前,当需要在石墨模具上半精加工或者精加工曲面时,常采用普通平底铣刀铣曲面,虽然加工效率高,但是留下的残料台阶明显,加工加工轮廓度较差;且目前的铣刀刀具为了增加其耐磨性能,通常是在其表面涂覆耐磨涂层(如WC、金刚石等),刀具的加工较难且寿命较短,且使得利用该刀具成型的工件表面的加工粗糙度及均匀性差。另外,受限于刀头的直径尺寸较小,现有的加工设备加工出的刀刃分布密度较低,而刀刃分布密度的高低与加工工件表面粗糙度直接相关,刀刃分布密度较低的刀头加工出的表面,难以符合对加工精度日益提高的要求,且加工效率较低。
发明内容
本发明的目的是克服现有技术的不足,提供一种切削刀具及其刀头结构,能够铣削曲面,提高相同直径下的刀刃分布密度,保证加工表面的粗糙度,提高加工效率。
为了实现上述目的,本发明的第一方面提供一种用于切削刀具的刀头结构,所述刀头结构包括连接部及设于所述连接部前端的切削刃部,所述切削刃部的材质为聚晶金刚石,所述切削刃部包括固定在连接部前端的切削主体及若干第一切削刃,所述切削主体的外表面为向外凸起的弧面,所述第一切削刃为螺旋状,所述第一切削刃的刃数S与所述切削主体直径D之间要满足以下关系:4D≤S≤15D;所述切削 主体的直径D为0.5~32mm;所述第一切削刃的刃宽L为0.01mm~0.1mm。
作为优选方案,所述第一切削刃的刃数S为所述切削主体直径D之间满足以下关系7D≤S≤12D,所述切削主体的直径D为3~20mm;所述第一切削刃的刃宽L为0.03mm~0.08mm。
作为优选方案,所述切削刃部的材质为聚晶金刚石、单晶金刚石、化学气相沉积金刚石、聚晶立方氮化硼、陶瓷、硬质合金中的任一种。
作为优选方案,各所述第一切削刃沿所述切削主体的中心轴周向设置于所述切削主体的外表面,且各所述第一切削刃的旋向相同,相邻两个所述切削刃之间形成有第一排屑槽。
作为优选方案,所述切削主体的外表面呈半球面。
作为优选方案,所述第一切削刃的一端设于所述切削主体的顶部区域,所述第一切削刃的另一端设于所述切削主体与所述连接部的连接处。
作为优选方案,所述第一切削刃的一端设于所述切削主体的顶部区域,所述第一切削刃的另一端延伸至所述连接部的外侧面。
作为优选方案,设于所述切削主体相对两侧的所述第一切削刃在所述切削主体的顶部区域相连并形成一条连贯的切削刃,其它各所述第一切削刃互不相连。
作为优选方案,所述第一切削刃的螺旋角为1°~80°。
作为优选方案,所述第一排屑槽的槽深为0.02mm~0.4mm。
作为优选方案,所述第一切削刃的个数为2~100个。
作为优选方案,所述第一切削刃与所述切削主体采用一体成型。
作为优选方案,各所述第一切削刃的刃口设置于同一侧。
作为优选方案,所述第一切削刃的旋向为左旋或者右旋。
作为优选方案,所述第一切削刃的旋向为左旋,所述第一切削刃的刃口设置在所述第一切削刃的右侧。
作为优选方案,所述切削主体的外表面还设有若干呈螺旋状的第 二切削刃,所述第二切削刃设于所述第一排屑槽内且将所述第一排屑槽分隔成若干第二排屑槽;且所述第二切削刃的旋向与所述第一切削刃的旋向相同。
作为优选方案,所述第二切削刃的一端与所述第一切削刃连接,所述第二切削刃的另一端设于所述切削主体与所述连接部的连接处。
作为优选方案,所述第二切削刃的一端与所述第一切削刃连接,所述第二切削刃的另一端延伸至所述连接部的外侧面。
作为优选方案,各所述第一切削刃上均连接有至少两个所述第二切削刃。
作为优选方案,所述第二切削刃与所述切削主体采用一体成型。
作为优选方案,所述切削刃部与所述连接部采用一体成型,且所述切削刃部与所述连接部的材质相同。
同样的目的,本发明第二方面提供一种切削刀具,其包括刀具柄部及安装于所述刀具柄部前端的如第一方面任一项所述的刀头结构,所述连接部的后端面与所述刀具柄部的前端面固定相连。
与现有技术相比,本发明的有益效果在于:
本发明实施例的切削刀具,刀头结构包括连接部及切削刃部,其中,切削刃部包括切削主体及设于切削主体表面的若干第一切削刃,切削主体的外表面呈向外凸起的弧面,第一切削刃为螺旋状,加工过程中,切削主体沿其自身的中心轴旋转的同时,沿一定方向作轨迹运动,从而可在工件上加工曲面,且可有效提高刀具的加工精度及加工效率;且第一切削刃的刃数S与切削主体直径D之间要满足以下关系:4D≤S≤15D,即第一切削刃的刃数S为切削主体直径D的4~15倍,切削主体的直径D在0.5~32mm范围内,第一切削刃的刃宽L为0.01mm~0.1mm,从而使得在相同的直径下,切削主体上的第一切削刃分布更加密集,进而使得加工曲面的表面粗糙度较低,加工的表面更加细腻,并且可提高加工效率;将该刀头结构应用于CNC中以加工3D玻璃石墨模具时,表面粗糙度可达90nm。
进一步地,切削刃部整体材质为聚晶金刚石、单晶金刚石、化学气相沉积金刚石、聚晶立方氮化硼、陶瓷、硬质合金中的任一种,能够提高切削刃的耐磨性能,相对于涂层结构的刀具来说,使用寿命更长。
进一步地,设于所述切削主体相对两侧的第一切削刃在所述切削主体的顶部区域相连形成一条连贯的切削刃,该切削刃可用于加工平面,使得该刀头在加工平面时,通过切削的作用来加工平面,表面粗糙度相比于普通球刀挤压的加工方式更低,表面更细腻,平面度更高;此外,在切削主体的顶部形成连贯的切削刃,可切削大平面。
附图说明
图1是本发明实施例一中一种刀头结构的结构示意图;
图2是本发明实施例一中一种刀头结构的俯视图;
图3是本发明实施例一中一种刀头结构的左视图;
图4是本发明实施例二中一种刀头结构的结构示意图。
图中,10、连接部;20、切削刃部;21、切削主体;22、第一切削刃;221、第一切削刃的刃口;23、第一排屑槽;24、第二切削刃;241、第二切削刃的刃口;25、第二排屑槽;26、排屑空间。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
在本发明的描述中,需要理解的是,术语“上”、“下”、“左”、“右”、“顶”、“底”等指示的方位或位置关系为基于附图所示的方位或位置关系,仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此不能理解为对本发明的限制。应当理解的是,本发明中采用术语“第一”、“第二”等来描述各种信息,但这些信息不应限于这些术语,这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本发明范围的情况 下,“第一”信息也可以被称为“第二”信息,类似的,“第二”信息也可以被称为“第一”信息。
另外,需要说明的是,本发明的描述中,术语“前”和“后”指的是,切削刀具在使用过程时,靠近于加工工件的一端为“前”,背离加工工件的一端为“后”。
本发明的第一方面提供一种用于切削刀具的刀头结构,刀头结构的具体实施方式如下:
实施例一
如图1-图3所示,本实施例提供一种用于切削刀具的刀头结构,所述刀头结构包括连接部10及设于所述连接部10前端的切削刃部20,所述切削刃部20包括固定在连接部10前端的切削主体21及若干第一切削刃22,所述切削主体21的外表面为向外凸起的弧面,所述第一切削刃22为螺旋状,将第一切削刃22的刃数定义为S,切削主体21的直径定义为D,S与D之间要满足以下关系:4D≤S≤15D,即第一切削刃22的刃数S为切削主体21的直径D的4~15倍,且切削主体21的直径D为0.5~32mm,第一切削刃22的刃宽L为0.01mm~0.1mm。
本实施例中的刀头结构主要用于对石墨工件特别是石墨模具的曲面铣削成型,刀头结构旋转带动各第一切削刃22旋转,由于切削主体21的外表面为向外凸起的弧面,从而用相切法在工件上铣削曲面,切削刃旋转的同时,切削主体21带动其进行轨迹运动,完成整个曲面的铣削;将该刀头结构应用于CNC中以加工3D玻璃石墨模具时,表面粗糙度可达90nm。
同样地,本实施例中的刀头结构还可适用于玻璃、蓝宝石等材料的工件加工。
基于上述技术方案,切削主体21的外表面设置成向外凸起的弧面,可用于对如石墨模具等工件的曲面铣削,加工表面不会出现残料台阶,能够得到粗糙度好的加工表面,且加工效率高。
重要的是,如图2所示,第一切削刃22的刃数S为切削主体21 直径D的4~15倍,切削主体21的直径D在0.5~32mm范围内,且第一切削刃的刃宽L为0.03mm~0.08mm,从而使得在相同的直径下切削主体21上的第一切削刃22分布更加密集,进而使得加工曲面的表面粗糙度好,加工效率更高。
具体地,各所述第一切削刃22沿所述切削主体21的中心轴周向均匀设置于所述切削主体21的外表面,使得切削力更加均匀,且各所述第一切削刃22的旋向相同,相邻两个所述切削刃22之间形成有第一排屑槽23,工件表面被第一切削刃22切除掉的残屑从第一排屑槽23排出。
优选地,S与D之间进一步地满足以下关系:7D≤S≤12D,即所述第一切削刃22的刃数S为所述切削主体21直径D的9~12倍,所述切削主体21的直径D在3~20mm范围内,第一切削刃22的刃宽L为0.03mm~0.08mm,如此使得加工曲面的表面粗糙度更好,加工效率更高。其中,S与D之间的关系可以是,第一切削刃22的刃数S为所述切削主体21直径D的4、5、6、7、8、9、10、11、12、13或14倍等。切削主体21的直径D可以是:1-3mm,或4-6mm,或7-10mm,或12-18mm,或21-25mm,或26-28mm等。第一切削刃22的刃宽L可以为0.01、0.02、0.03、0.04、0.05、0.06、0.07、0.08、0.09或0.1mm等。
优选地,本实施例中,所述刀头结构的切削刃部20整体材质为聚晶金刚石,整体式聚晶金刚石结构相对于传统的涂层铣刀来说,大幅度增加了切削刃的耐磨性能,且不存在涂层易剥落的情况,使得刀具的使用寿命大幅度延长,减少加工过程中的换刀次数,且可有效提高刀具的加工精度及加工效率。本发明经过研究分析和试验得出,整体为聚晶金刚石的切削刃部20需要经过专用的设备和精密的加工,才能够在一定直径的聚晶金刚石上加工出更多的第一切削刃22,现有技术并不能加工较多的第一切削刃22,如直径为1mm的切削主体21现有技术只能加工3个以下的第一切削刃22,而本发明的采用聚晶金刚石的切削主体21,可以加工4个以上的第一切削刃22。
作为可替换方案,所述刀头结构的材质还可以为单晶金刚石、化 学气相沉积金刚石、聚晶立方氮化硼、陶瓷及硬质合金中的任一种,同样可以达到耐磨的效果。
进一步地,在利用铣刀铣削曲面时,受力点主要集中于切削主体21的顶部区域,为了防止刀具在铣削过程中发生颤刀现象,所述切削主体21的外表面呈半球面,第一切削刃22在切削主体21的顶部区域最密集。
本实施例中,具体地,所述第一切削刃22的一端设于所述切削主体21的顶部区域,且沿切削主体21的外表面延伸,以使所述第一切削刃22的另一端设于所述切削主体21与所述连接部10的连接处,切削位置主要集中于切削主体21的顶部区域。
进一步地,为了提高刀具顶部区域的的切削力,使得该刀头在加工平面时,通过切削的作用来加工平面,表面粗糙度相比于普通球刀挤压的加工方式更低,表面更细腻,平面度更高,本实施例中,设于所述切削主体21相对两侧的所述第一切削刃22在所述切削主体21的顶部区域相连并形成一条连贯的切削刃;同样地,为了兼顾排屑功能,其它各所述第一切削刃22互不相连,从而在切削主体21的顶部区域形成有排屑空间26,便于切削主体21顶部区域的残渣排出,具体参阅附图1和图2所示。此外,在切削主体的顶部形成连贯的切削刃,可切削大平面。
优选地,本实施例中,如图2所示,所述第一切削刃22的螺旋角α为1°~80°,适当增加第一切削刃22的螺旋角度能够让刀具在加工过程中的切削力减小,刀具抗冲击性强,防止振刀,并能保证更好的表面加工质量,延长切削刀具的使用寿命;基于上述的螺旋角度下,第一切削刃22的强度、锋利程度、切削力的大小及废屑的排出速度均十分理想。
本实施例中,如图1和图2所示,将第一切削刃22的两侧面之间的距离L定义为第一切削刃22的刃宽,所述第一切削刃22的刃宽L为0.01mm~0.1mm;另外,所述第一排屑槽23的槽深为0.02mm~0.4mm,以 保证铣削过程中残屑顺利排出;
基于上述对第一切削刃22的刃宽以及对第一排屑槽23的槽深的限定,所述第一切削刃22的个数为2~100个,适当增加第一切削刃22的个数可将切削力平均分配于各第一切削刃22,使得切削刀具能够承受更大的切削力,可适应更高的切削速度及进给量,且可提高加工精度。示例性地,附图1-3中示出了刀头结构包括6个的具体实施例,利用该刀头结构加工工件,加工表面粗糙度可达到300nm以下,相较于传统的800nm以上,可大幅度降低表面粗糙度。
本实施例中,所述第一切削刃22与所述切削主体21采用一体成型,从而能够在较小的切削主体21上加工较多数量的第一切削刃22,使得成型更加简单,且可保证切削刀具的耐磨性以及延长使用寿命。
示例性地,本实施例中,各所述第一切削刃22的刃口设置于同一侧。
参见图1-图3所示,本实施例中,第一切削刃22的旋向为左旋,废屑通过第一排屑槽23向背离加工工件的方向排出,且第一切削刃的刃口221设置在第一切削刃22的右侧;同样地,第一切削刃22的旋向也可设为右旋,此时废屑方向相反。本实施例中,为了进一步提高刀头结构的耐磨性,以延长使用寿命,同时提高排屑能力,所述切削主体21的外表面还设有若干呈螺旋状的第二切削刃24,所述第二切削刃24设于所述第一排屑槽23内。
优选地,所述第二切削刃24的一端与所述第一切削刃22连接,所述第二切削刃24的另一端设于所述切削主体21与所述连接部10的连接处,所述第二切削刃24将所述第一排屑槽23分隔成若干第二排屑槽25;且所述第二切削刃24的旋向与所述第一切削刃22的旋向相同,可以为左旋也可为右旋。
示例性地,本实施例中,第二切削刃24的旋向与第一切削刃22的旋向一致,均为左旋;另外,第二切削刃的刃口241也设置在右侧。
优选地,各所述第一切削刃22上均连接有至少两个所述第二切削 刃24,两个第二切削刃24连接于第一切削刃22的同一侧面。示例性地,附图1-3中示出了每个第一切削刃22上连接有两个第二切削刃24的情况。
同样地,为了便于成型,同时为了确保切削刀具的耐磨性能以及使用寿命,所述第二切削刃24与所述切削主体21采用一体成型,可根据使用需求设计多个第二切削刃24。
进一步地,所述切削刃部20与所述连接部10采用一体成型,能够便于成型,且切削刃部20与连接部10的材质相同。
实施例二
具体参阅附图4所示,本实施例提供另一种刀头结构,本实施例与实施例一的区别仅在于:所述第一切削刃22的一端设于所述切削主体21的顶部区域,所述第一切削刃22的另一端延伸至所述连接部10的外侧面;所述第二切削刃24的一端与所述第一切削刃22连接,所述第二切削刃24的另一端延伸至所述连接部10的外侧面。
此实施例中的刀头结构相较于实施例一来说,加工范围更大。
同样的目的,本发明实施例的第二方面提供一种切削刀具(附图中未示出),其包括刀具柄部及安装于所述刀具柄部前端的如第一方面任一实施例中的刀头结构,所述连接部10的后端面与所述刀具柄部的前端面固定相连。
本发明的切削刀具,由于包括如第一方面任一实施例所述的刀头结构,因此,具有所述刀头结构的全部有益效果,在此不作一一陈述。
综上,本发明实施例提供一种刀头结构及包括该刀头结构的切削刀具,刀头结构包括切削主体及设于切削主体上的若干第一切削刃,切削主体的外表面呈向外凸起的弧面,能够用于成型工件的曲面加工,且保证加工表面的粗糙度;且第一切削刃的刃数S与切削主体直径D之间要满足以下关系:4D≤S≤15D,切削主体的直径D在0.5~32mm范围内,从而使得在相同的直径下切削主体上的第一切削刃分布更加密集, 第一切削刃的刃宽L为0.01mm~0.1mm,使得加工曲面的表面粗糙度好,加工效率更高;将该切削刀具应用于CNC中以加工3D玻璃石墨模具时,表面粗糙度可达90nm。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说,在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。

Claims (22)

  1. 一种刀头结构,其特征在于,所述刀头结构包括连接部及设于所述连接部前端的切削刃部,所述切削刃部包括固定在连接部前端的切削主体及若干第一切削刃,所述切削主体的外表面为向外凸起的弧面,所述第一切削刃为螺旋状;
    所述第一切削刃的刃数S与所述切削主体直径D之间要满足以下关系:4D≤S≤15D;所述切削主体的直径D为0.5~32mm;所述第一切削刃的刃宽L为0.01mm~0.1mm。
  2. 如权利要求1所述的刀头结构,其特征在于,所述第一切削刃的刃数S与所述切削主体直径D之间满足以下关系7D≤S≤12D,所述切削主体的直径D为3~20mm,所述第一切削刃的刃宽L为0.03mm~0.08mm。
  3. 如权利要求1所述的刀头结构,其特征在于,所述切削刃部的材质为聚晶金刚石、单晶金刚石、化学气相沉积金刚石、聚晶立方氮化硼、陶瓷及硬质合金中的任一种。
  4. 如权利要求1所述的刀头结构,其特征在于,各所述第一切削刃沿所述切削主体的中心轴周向设置于所述切削主体的外表面,且各所述第一切削刃的旋向相同,相邻两个所述切削刃之间形成有第一排屑槽。
  5. 如权利要求3所述的刀头结构,其特征在于,所述切削主体的外表面呈半球面。
  6. 如权利要求1所述的刀头结构,其特征在于,所述第一切削刃的一端设于所述切削主体的顶部区域,所述第一切削刃的另一端设于所述切削主体与所述连接部的连接处。
  7. 如权利要求1所述的刀头结构,其特征在于,所述第一切削刃的一端设于所述切削主体的顶部区域,所述第一切削刃的另一端延伸至所述连接部的外侧面。
  8. 如权利要求6或7所述的刀头结构,其特征在于,设于所述切削主体相对两侧的第一切削刃在所述切削主体的顶部区域相连并形成一条连贯的切削刃,其它各所述第一切削刃互不相连。
  9. 如权利要求1所述的刀头结构,其特征在于,所述第一切削刃的螺旋角为1°~80°。
  10. 如权利要求1所述的刀头结构,其特征在于,所述第一排屑槽的槽深为0.02mm~0.4mm。
  11. 如权利要求1所述的刀头结构,其特征在于,所述第一切削刃的个数为2~100个。
  12. 如权利要求1所述的刀头结构,其特征在于,所述第一切削刃与所述切削主体采用一体成型。
  13. 如权利要求1所述的刀头结构,其特征在于,各所述第一切削刃的刃口设置于同一侧。
  14. 如权利要求1所述的刀头结构,其特征在于,所述第一切削刃的旋向为左旋或者右旋。
  15. 如权利要求14所述的刀头结构,其特征在于,所述第一切削刃的旋向为左旋,所述第一切削刃的刃口设置在所述第一切削刃的右侧。
  16. 如权利要求1所述的刀头结构,其特征在于,所述切削主体的外表面还设有若干呈螺旋状的第二切削刃,所述第二切削刃设于所述第一排屑槽内且将所述第一排屑槽分隔成若干第二排屑槽;
    且所述第二切削刃的旋向与所述第一切削刃的旋向相同。
  17. 如权利要求16所述的刀头结构,其特征在于,所述第二切削刃的一端与所述第一切削刃连接,所述第二切削刃的另一端设于所述切削主体与所述连接部的连接处。
  18. 如权利要求16所述的刀头结构,其特征在于,所述第二切削刃的一端与所述第一切削刃连接,所述第二切削刃的另一端延伸至所述连接部的外侧面。
  19. 如权利要求16所述的刀头结构,其特征在于,各所述第一切削刃上均连接有至少两个所述第二切削刃。
  20. 如权利要求16所述的刀头结构,其特征在于,所述第二切削刃与所述切削主体采用一体成型。
  21. 如权利要求1所述的刀头结构,其特征在于,所述切削刃部与所述连接部采用一体成型,且所述切削刃部与所述连接部的材质相同。
  22. 一种切削刀具,其特征在于,包括刀具柄部及安装于所述刀具柄部前端的如权利要求1-21任一项所述的刀头结构,所述连接部的后端面与所述刀具柄部的前端面固定相连。
PCT/CN2019/086724 2018-09-25 2019-05-14 一种切削刀具及其刀头结构 WO2020223989A1 (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CN201821568653 2018-09-25
CN201910375074.6 2019-05-07
CN201910375074.6A CN110103344A (zh) 2018-09-25 2019-05-07 一种切削刀具及其刀头结构

Publications (1)

Publication Number Publication Date
WO2020223989A1 true WO2020223989A1 (zh) 2020-11-12

Family

ID=67488513

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/086724 WO2020223989A1 (zh) 2018-09-25 2019-05-14 一种切削刀具及其刀头结构

Country Status (2)

Country Link
CN (2) CN210552206U (zh)
WO (1) WO2020223989A1 (zh)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN210552206U (zh) * 2018-09-25 2020-05-19 汇专科技集团股份有限公司 一种切削刀具及其刀头结构
WO2021036113A1 (zh) * 2019-08-26 2021-03-04 汇专科技集团股份有限公司 一种刀头结构及切削刀具
WO2021046864A1 (zh) * 2019-09-12 2021-03-18 汇专科技集团股份有限公司 一种切削刀具及其刀头结构
CN110560768A (zh) * 2019-09-12 2019-12-13 汇专绿色工具有限公司 一种切削刀具及其刀头结构
CN112355333B (zh) * 2020-10-20 2023-08-08 科益展智能装备有限公司 一种刀具及其刀头结构

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2646128A1 (de) * 1976-10-13 1978-04-20 Wernicke & Co Gmbh Verfahren zum durchbohren eines brillenglases, insbesondere eines silikat- brillenglases
JPH08118133A (ja) * 1994-10-25 1996-05-14 Toshiba Tungaloy Co Ltd 回転工具
JPH11156623A (ja) * 1997-11-28 1999-06-15 Hitachi Tool Eng Ltd 球状刃エンドミル
EP2404689A1 (de) * 2010-07-07 2012-01-11 Gebr. Brasseler GmbH & Co. KG Dentalwekzeug
CN108943436A (zh) * 2018-09-25 2018-12-07 汇专科技集团股份有限公司 一种聚晶金刚石刀头加工刀具
CN109128325A (zh) * 2018-09-27 2019-01-04 基准精密工业(惠州)有限公司 球刀
CN109262863A (zh) * 2018-09-27 2019-01-25 基准精密工业(惠州)有限公司 成型刀
CN109352838A (zh) * 2018-09-27 2019-02-19 基准精密工业(惠州)有限公司 圆鼻刀

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3581115B2 (ja) * 2001-07-30 2004-10-27 三菱マテリアル神戸ツールズ株式会社 ボールエンドミル及び該ボールエンドミルを用いた加工方法
DE102006026853A1 (de) * 2006-06-09 2007-12-13 Franken GmbH + Co KG Fabrik für Präzisionswerkzeuge Spanabhebendes Werkzeug
CN203725866U (zh) * 2014-01-07 2014-07-23 上海工程技术大学 一种双刃义齿钨钢铣刀
CN108672780A (zh) * 2018-06-07 2018-10-19 三砥新材(深圳)有限公司 用于加工石墨工件的铣刀
CN210552206U (zh) * 2018-09-25 2020-05-19 汇专科技集团股份有限公司 一种切削刀具及其刀头结构

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2646128A1 (de) * 1976-10-13 1978-04-20 Wernicke & Co Gmbh Verfahren zum durchbohren eines brillenglases, insbesondere eines silikat- brillenglases
JPH08118133A (ja) * 1994-10-25 1996-05-14 Toshiba Tungaloy Co Ltd 回転工具
JPH11156623A (ja) * 1997-11-28 1999-06-15 Hitachi Tool Eng Ltd 球状刃エンドミル
EP2404689A1 (de) * 2010-07-07 2012-01-11 Gebr. Brasseler GmbH & Co. KG Dentalwekzeug
CN108943436A (zh) * 2018-09-25 2018-12-07 汇专科技集团股份有限公司 一种聚晶金刚石刀头加工刀具
CN109128325A (zh) * 2018-09-27 2019-01-04 基准精密工业(惠州)有限公司 球刀
CN109262863A (zh) * 2018-09-27 2019-01-25 基准精密工业(惠州)有限公司 成型刀
CN109352838A (zh) * 2018-09-27 2019-02-19 基准精密工业(惠州)有限公司 圆鼻刀

Also Published As

Publication number Publication date
CN110103344A (zh) 2019-08-09
CN210552206U (zh) 2020-05-19

Similar Documents

Publication Publication Date Title
WO2020223989A1 (zh) 一种切削刀具及其刀头结构
WO2020232817A1 (zh) 一种刀头结构及切削刀具
WO2005102572A1 (ja) ボールエンドミル
KR20120023659A (ko) 날끝교환식 드릴 및 드릴본체
JP2011126007A (ja) 仕上げフライス切削用の正面フライス
JP6853240B2 (ja) 切削工具
CN109396558A (zh) 一种用于加工硬脆性难加工材料的金刚石切削刀具
CA2981149C (en) Monolithic ceramic end mill cutter set having a helix angle in the interval of 28 degrees to 43 degrees
JP7112584B2 (ja) 硬脆性難削材加工用ダイヤモンド切削工具
CN210160488U (zh) 一种刀头结构及切削刀具
CN110560768A (zh) 一种切削刀具及其刀头结构
CN210648706U (zh) 一种切削刀具及其刀头结构
CN210648707U (zh) 一种切削刀具及其刀头结构
JP5906838B2 (ja) スクエアエンドミル
JPH08141816A (ja) グラファイト加工用ボ−ルエンドミル
JPWO2017138170A1 (ja) 刃先交換式回転切削工具及びインサート
CN209867497U (zh) 基于hsk63标准刀柄的pcd玉米粒铣刀
JP5786770B2 (ja) 切削インサート
CN217492835U (zh) 高速精加工铣刀
JP6602804B2 (ja) 切削工具
JP5219618B2 (ja) 切削工具
JP5294648B2 (ja) 回転工具
WO2021035770A1 (zh) 一种切削刀具及其刀头结构
KR20210002485U (ko) 더블 헤드 챔퍼링 기능을 가진 절삭 공구 및 그 절삭날부
CN216263705U (zh) 超多刃刀具

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19927713

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19927713

Country of ref document: EP

Kind code of ref document: A1