WO2021036113A1 - 一种刀头结构及切削刀具 - Google Patents

一种刀头结构及切削刀具 Download PDF

Info

Publication number
WO2021036113A1
WO2021036113A1 PCT/CN2019/126775 CN2019126775W WO2021036113A1 WO 2021036113 A1 WO2021036113 A1 WO 2021036113A1 CN 2019126775 W CN2019126775 W CN 2019126775W WO 2021036113 A1 WO2021036113 A1 WO 2021036113A1
Authority
WO
WIPO (PCT)
Prior art keywords
cutting
cutting edge
head structure
section
cutter head
Prior art date
Application number
PCT/CN2019/126775
Other languages
English (en)
French (fr)
Inventor
颜炳姜
李伟秋
张国立
Original Assignee
汇专科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from CN201910789384.2A external-priority patent/CN110421202A/zh
Priority claimed from CN201922157875.3U external-priority patent/CN211331527U/zh
Application filed by 汇专科技集团股份有限公司 filed Critical 汇专科技集团股份有限公司
Priority to US16/759,363 priority Critical patent/US20220001468A1/en
Priority to KR1020207001769A priority patent/KR102308963B1/ko
Publication of WO2021036113A1 publication Critical patent/WO2021036113A1/zh

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C5/00Milling-cutters
    • B23C5/02Milling-cutters characterised by the shape of the cutter
    • B23C5/10Shank-type cutters, i.e. with an integral shaft
    • B23C5/1009Ball nose end mills
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0407Cutting angles
    • B23C2210/0414Cutting angles different
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0485Helix angles
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/04Angles
    • B23C2210/0485Helix angles
    • B23C2210/0492Helix angles different
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/08Side or top views of the cutting edge
    • B23C2210/084Curved cutting edges
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/32Details of teeth
    • B23C2210/325Different teeth, i.e. one tooth having a different configuration to a tooth on the opposite side of the flute
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2210/00Details of milling cutters
    • B23C2210/54Configuration of the cutting part
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/12Boron nitride
    • B23C2226/125Boron nitride cubic [CBN]
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/18Ceramic
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/31Diamond
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23CMILLING
    • B23C2226/00Materials of tools or workpieces not comprising a metal
    • B23C2226/31Diamond
    • B23C2226/315Diamond polycrystalline [PCD]

Definitions

  • the invention relates to the technical field of precision machining, in particular to a cutter head structure and a cutting tool.
  • the main cutting edge is provided at the top center point of the traditional spherical milling cutter.
  • the surface material of the workpiece is removed by the extrusion or cutting action at the apex of the main cutting edge.
  • the main cutting edge is located at the apex of the tool, and the service life of the tool is limited.
  • the main cutting edge The secondary cutting edges are provided on both sides of the main cutting edge to assist the cutting and extrusion of the main cutting edge.
  • the cutting edges are dense in the top area of the tool, the chips are not discharged smoothly, which will not only concentrate the processing heat, but also affect the processing accuracy of the workpiece. And processing stability has a great impact.
  • the purpose of the present invention is to overcome the shortcomings of the prior art and provide a cutting tool that can reduce tool wear to prolong the service life of the tool, ensure the surface roughness of the processed workpiece, improve processing stability, and improve chip removal performance. .
  • the first aspect of the present invention provides a cutter head structure, which includes a cutting edge portion, the cutting edge portion includes a cutting body, and the outer surface of the cutting body is a forward convex arc surface,
  • the outer surface of the cutting body is provided with a first cutting edge and at least two second cutting edges, the first cutting edge extends from one side of the cutting body to the top area of the cutting body, and then extends to the cutting body
  • each of the second cutting edges is respectively provided on both sides of the first cutting edge, and a first chip removal is defined between the first cutting edge and the adjacent second cutting edge Groove, the width of the first chip flute gradually increases from the top area of the cutting body to both ends.
  • a first chip flute is defined between the first cutting edge and the adjacent second cutting edge, and the first cutting edge includes a first section, a middle section, and a second section that are connected in sequence, The edge widths of the second cutting edge, the first section and the second section are all larger than the edge width of the middle section. Under normal circumstances, most of the margin is removed by the secondary cutting edge, and the remaining small machining allowance is squeezed by the main cutting edge.
  • This processing condition will cause serious wear on the secondary cutting edges on both sides, while the main cutting edge in the middle
  • the blade wear is less, but because the main and minor cutting edges have the same blade width, after the first workpiece is processed, the minor cutting edges on both sides will become lower due to wear, and will form a "hill"-shaped milling with the main cutting edge in the middle.
  • most of the margin can only be processed by the middle cutting edge, which eventually leads to higher roughness of the processed workpiece and shortens the service life of the milling cutter.
  • the width of the middle section of the first cutting edge is smaller than that of the second cutting edges on both sides, which can provide effective sharp cutting force and improve the surface roughness of the machining mold; the width of the middle section After the reduction, the degree of wear becomes faster than before, and it can form a nearly uniform wear state with the second cutting edge, ensuring uniform cutting during processing, and maintaining good cutting performance and mold roughness when processing subsequent molds. Thereby improving the service life of the tool and maintaining a stable roughness of the workpiece.
  • At least one side surface of the first section and the side surface of the corresponding side of the middle section are transitionally connected by chamfering, and at least one side surface of the second section is connected to the side surface of the corresponding side of the middle section. They are connected by chamfering transitions.
  • the chamfer transition is used in the above connection.
  • one side surface of the first section is connected to the corresponding side surface of the middle section through a chamfer transition
  • one side surface of the second section is connected to the corresponding side side of the middle section through a chamfer transition.
  • the two sides of the middle section are the first side and the second side
  • the two sides of the first section are the third side and the fourth side
  • the two sides of the second section are the fifth side and the fourth side.
  • the sixth side surface, the first side surface and the third side surface are on the same plane, the second side surface and the fourth side surface are connected by a chamfer transition; the second side surface and the sixth side surface are on the same plane, the first side surface and the fifth side surface Transition connection by chamfering.
  • the blade width of the first segment and the second segment are both equal to the blade width of the second cutting edge.
  • the blade width of the middle section is 0.002 to 0.1 mm
  • the blade width of the first and second sections is 0.005 mm to 0.2 mm.
  • the blade widths of the first segment and the second segment are both equal to the blade width of the second cutting edge, and the blade width of the second cutting edge is 0.005 mm to 0.2 mm.
  • the length of the middle section is 0.02-0.2 mm, and the diameter of the cutting body is 0.2 mm-20 mm.
  • the length of the middle section should not be too long, because if the length of the middle section is too long, the first cutting edge will remove most of the margin when processing the side of the workpiece. At this time, the cutting edges on both sides will wear faster. Ultimately, the service life of the milling cutter will be shortened.
  • the first cutting edge passes through the apex of the cutting body, and the cutting body is symmetrically distributed with respect to the first cutting edge.
  • each of the second cutting edges is symmetrically distributed with respect to the first cutting edge.
  • the second cutting edge has an arc shape convex toward the first cutting edge.
  • the second cutting edge includes a first cutting segment and a second cutting segment, and the first cutting segment extends from one side of the cutting body to the top area of the cutting body and is connected to an end of the second cutting segment.
  • the second cutting section extends from the top area of the cutting body to the other side of the cutting body; the first cutting section and the second cutting section are both helical, and the first cutting section
  • the direction of rotation of one cutting segment is opposite to the direction of rotation of the second cutting segment.
  • the helix angles of the first cutting segment and the second cutting segment are both 0-80°.
  • the second cutting edge is provided on both sides of the first cutting edge.
  • the diameter of the cutting body is 0.2 mm to 20 mm
  • the edge widths of the first cutting edge and the second cutting edge are 0.005 mm to 0.2 mm
  • the groove depth of the first chip flute It is 0.05mm ⁇ 1mm.
  • the cutting body, the first cutting edge, and the second cutting edge are integrally formed.
  • the outer surface of the cutting body is further provided with a plurality of third cutting edges, and each of the third cutting edges is respectively arranged on the outer side of the two second cutting edges located at the outermost side, and two adjacent cutting edges are provided.
  • a second chip flute is defined between the third cutting edge and between the third cutting edge and the second cutting edge adjacent thereto.
  • each of the third cutting edges is symmetrically distributed with respect to the first cutting edge.
  • each of the third cutting edges has a spiral shape.
  • each of the third cutting edges located on the same side of the first cutting edge is a cutting edge group, and the cutting edge group has a symmetrical structure and is located on the side of the symmetrical centerline of the cutting edge group The direction of rotation of each of the third cutting edges is opposite to that of each of the third cutting edges located on the other side of the symmetrical center line of the cutting edge group.
  • the helix angle of the third cutting edge is 0-80°, and the helix angle of each third cutting edge in the cutting edge group gradually decreases from both sides to the middle.
  • one end of the third cutting edge is connected to the second cutting edge, and the other end of the third cutting edge is disposed on the outer surface of the cutting body.
  • the outer surface of the cutting body is a hemispherical surface.
  • the material of the cutting edge portion is any one of polycrystalline diamond, single crystal diamond, chemical vapor deposition diamond, polycrystalline cubic boron nitride, ceramic, and cemented carbide.
  • the cutter head structure further includes a connecting portion, and the rear end surface of the cutting body is connected to the front end of the connecting portion.
  • the cutting edge portion and the connecting portion are made of the same material, and the cutting edge portion and the connecting portion are integrally formed.
  • the second aspect of the present invention also provides a cutting tool, which includes a tool shank and the tool head structure according to any one of the first aspects, and the rear end surface of the cutting body is connected to the tool shank The front end of the department.
  • the cutting tool of the present invention has beneficial effects in that: the cutting tool of the embodiment of the present invention is provided with a first cutting edge and a first cutting edge on the outer surface of the cutting body and a second cutting edge respectively provided on both sides of the first cutting edge.
  • the first cutting edge extends from one side of the cutting body to the top area and then to the other side; in the milling process, the second cutting edge performs cutting action to remove most of the margin, and the remaining
  • the smaller machining allowance is processed by the extrusion of the first cutting edge, which has the nature of roughing and finishing, which can effectively improve the machining accuracy and reduce the wear of the first cutting edge to extend the service life of the first cutting edge ;
  • the width of the first chip flute defined between the second cutting edge and the first cutting edge gradually increases from the top area of the cutting body to both ends, which can optimize the chip evacuation ability and avoid waste chips on the top of the cutting body The area is backlogged to adversely affect the forming accuracy and tool life.
  • Fig. 1 is a schematic structural diagram of a cutter head structure in the first embodiment of the present invention
  • Figure 2 is a top view of Figure 1;
  • Figure 3 is a left side view of Figure 2;
  • FIG. 4 is a schematic structural diagram of a cutter head structure in the second embodiment of the present invention.
  • Figure 5 is a top view of Figure 4.
  • Fig. 6 is a partial enlarged view of A in Fig. 5;
  • Figure 7 is a front view of the cutter head structure in the second embodiment
  • Fig. 8 is a schematic structural diagram of a cutter head structure in the third embodiment of the present invention.
  • Figure 9 is a schematic diagram of the structure of a cutting tool in an embodiment of the present invention.
  • the cutter head structure 100 the connecting portion 1; the cutting edge portions 2, 3; the cutting bodies 21, 31; the first cutting edges 22, 32; the first section 321; the middle section 322; the second section 323; the second cutting Edges 23, 33; first cutting segments 231, 331; second cutting segments 232, 332; first chip flutes 24, 34; cutting edge group 25; third cutting edges 251, 351; second chip flutes 26, 36; the third chip flute 27; the tool shank 200.
  • front and rear are used in the present invention to refer to the end of the cutting tool that is close to the workpiece being "front” during use, and that it is away from the workpiece. One end is “rear”.
  • vertex of the cutting body in the present invention refers to the position on the outer surface of the cutting body that is the furthest away from the shank of the cutting tool during use, "the top area of the cutting body” It refers to the location of the area on the outer surface of the cutting body that includes the apex of the cutting body and is closer to the apex of the cutting body.
  • first, second, etc. are used in the present invention to describe various information, but the information should not be limited to these terms, and these terms are only used to distinguish the same type of information from each other.
  • first information can also be referred to as “second” information
  • second information can also be referred to as “first” information.
  • a cutter head structure 100 includes a connecting portion 1 and a cutting edge portion 2 provided at the front end of the connecting portion 1, and the cutting edge portion 2 includes The cutting body 21 fixed at the front end of the connecting portion 1, the outer surface of the cutting body 21 is an outwardly convex arc surface, and the outer surface of the cutting body 21 is provided with a first cutting edge 22 and at least two second cutting edges 22 Two cutting edges 23, the first cutting edge 22 extends from one side of the cutting body 21 to the top area of the cutting body 21, and then extends to the other side of the cutting body 21, each of the second cutting edges 23 is respectively Located on both sides of the first cutting edge 22, a first chip flute 24 is defined between the first cutting edge 22 and the second cutting edge 23 adjacent thereto, and the first chip flute The width of 24 gradually increases from the top area of the cutting body 21 to both ends.
  • the cutter head structure 100 is provided with a first cutting edge 22 and a plurality of second cutting edges 23.
  • FIG. 2 shows a top view of the cutter head structure 100. From the top view, the first cutting edge 22 passes Cutting the central area of the main body 21, and includes two second cutting edges 23, each of the second cutting edges 23 are respectively provided on both sides of the first cutting edge 22, wherein, in the milling process, the second cutting edge 23 cuts the workpiece Most of the allowance, and the remaining small part of the machining allowance is finished by the extrusion of the first cutting edge 22, so as to ensure the machining accuracy, improve the surface roughness of the machined surface, and avoid the impact on the first cutting edge. The wear of 22 prolongs the service life of the first cutting edge 22.
  • the first cutting edge 22 passes through the apex of the cutting body 21, and the cutting body 21 is symmetrically distributed with respect to the first cutting edge 22; in the milling process, the first cutting edge 22 is mainly used
  • the middle area of the cutting edge 22 squeezes the workpiece with a small margin, so that the surface roughness and profile of the processed workpiece can be improved.
  • each of the second cutting edges 23 is symmetrically distributed with respect to the first cutting edge 22, which can ensure the stability of the tool during rotation and avoid the chatter phenomenon during the machining process.
  • the first cutting edge 22 may also be offset from the apex of the cutting body 21, that is, the first cutting edge 22 may be offset from the symmetrical center line of the cutting body 21.
  • the second cutting edge 23 is in the shape of an arc protruding toward the first cutting edge 22 so that the width of the first chip flute 24 gradually increases from the middle to the two ends.
  • the second cutting edge 23 includes a first cutting section 231 and a second cutting section 232, and the first cutting section 231 extends from one side of the cutting body 21 to the top area of the cutting body 21 and then interacts with the second cutting section 231.
  • One end of the cutting section 232 is connected, and the second cutting section 232 extends from the top area of the cutting body 21 to the other side of the cutting body 21; the first cutting section 231 and the second cutting 232
  • the segments are all helical, and the rotation direction of the first cutting segment 231 is opposite to the rotation direction of the second cutting segment 232.
  • the first cutting segment 231 and the second cutting segment 232 with opposite rotations are connected to form an arc shape protruding toward the first cutting edge 22, which can cut most of the margin of the processed workpiece and ensure The profile of the machined surface.
  • the helix angles of the first cutting segment 231 and the second cutting segment 232 are both 0-80°. Based on the helix angle, the strength, sharpness, and cutting force of the second cutting edge 23 All are very ideal, and can ensure the chip removal speed.
  • the edge width of the first cutting edge 22 is L1
  • the edge width of the second cutting edge 23 is L2, where L1 and L2 are both 0.005 mm to 0.2 mm;
  • the groove depth of the first chip flute 24 is set to 0.05 mm ⁇ 1mm to ensure the smooth discharge of waste chips during the milling process.
  • the outer surface of the cutting body 21 is also provided with a number of third cutting edges 251, and each of the third cutting edges 251 is arranged on the outermost side.
  • the outer sides of the two second cutting edges 23, between two adjacent third cutting edges 251, and between the third cutting edge 251 and the adjacent second cutting edge 23 A second chip flute 26 is defined; during the milling process, the third cutting edge 251 and the second cutting edge 23 act simultaneously to cut most of the margin of the workpiece, and then cooperate with the first cutting edge 22 for finishing.
  • the third cutting edge 251 is provided on the cutting body 21, it is possible to avoid line marks during machining, ensure the depth of finishing, and play the role of layered cutting.
  • each of the third cutting edges 251 is symmetrically distributed with respect to the first cutting edge 22, which can ensure the stability of the tool during rotation and prevent the tool from chattering during milling.
  • each of the third cutting edges 251 has a spiral shape, and the spiral arrangement can ensure a sufficiently large cutting force, thereby improving processing efficiency.
  • each of the third cutting edges 251 located on the same side of the first cutting edge 22 is defined as a cutting edge group 25.
  • the upper and lower sides of the first cutting edge 22 are respectively provided There is a cutting edge group 25;
  • the cutting edge group 25 is a symmetrical structure, and each of the third cutting edges 251 located on one side of the symmetrical center line of the cutting edge group 25 and the symmetric center of the cutting edge group 25
  • the rotation directions of the third cutting edges 251 on the other side of the line are opposite, which can further improve the cutting accuracy and improve the wear resistance of the tool to prolong the service life of the tool.
  • the helix angle of the third cutting edge 251 is 0-80°, and the helix angle of each third cutting edge 251 in the cutting edge group 25 is gradually from both sides to the middle. The reduction can further improve the wear resistance of the tool and ensure the machining accuracy.
  • the third cutting edge 251 is connected to the second cutting edge 23; specifically, one end of the third cutting edge 251 is connected to the second cutting edge 23, and the third cutting edge 251 The other end is set on the outer surface of the cutting body 21.
  • the third cutting edge 251 can be extended to the outer surface of the connecting portion 1, so as to increase the processing range of the tool; for example, the first cutting edge 22 and the second cutting edge Both ends of 23 also extend to the outer surface of the connecting portion 1.
  • third cutting edges 251 are respectively provided on both sides of the first cutting edge 22; the number of third cutting edges 251 can be appropriately increased to improve machining accuracy.
  • the outer surface of the cutting body 21 is a hemispherical surface
  • the connecting portion 1 is a cylindrical structure with the same diameter as the cutting body 21.
  • the cutting body 21, the first cutting edge 22, the second cutting edge 23, and the third cutting edge 251 are integrally formed, which not only facilitates the molding of each cutting edge on the outer surface of the cutting body 21 , And can ensure the overall wear resistance and overall strength of the cutting edge portion 2.
  • the material of the cutting edge portion 2 is preferably polycrystalline diamond.
  • the tool with the monolithic polycrystalline diamond structure has greatly improved wear resistance and effectively improves the machining accuracy. And processing efficiency, and can extend the life of the tool.
  • the material of the cutting edge portion 2 can also be set to single crystal diamond, chemical vapor deposition diamond, polycrystalline cubic boron nitride, ceramics and cemented carbide or others, which can also ensure the wear resistance of the tool.
  • the cutting edge portion 2 and the connecting portion 1 are made of the same material, and the cutting edge portion 2 and the connecting portion 1 are integrally formed, which can ensure the strength of the entire cutter head structure 100.
  • a cutter head structure includes a cutting edge portion 3, the cutting edge portion 3 includes a cutting main body 31, the outer surface of the cutting main body 31 is a convex arc surface, so The outer surface of the cutting body 3 is provided with a first cutting edge 32 and at least two second cutting edges 33.
  • the first cutting edge 32 extends from one side of the cutting body 31 to its top area, and then extends to
  • the second cutting edges 33 are respectively provided on both sides of the first cutting edge 32, the first cutting edge 32 and the second cutting edge 33 adjacent thereto
  • a first chip flute 34 is defined therebetween, and the width of the first chip flute 34 gradually increases from the top area of the cutting body 31 to both ends.
  • the first cutting edge 32 includes a first section 321, a middle section 322, and a second section 323 connected in sequence, and the blade widths of the second cutting edge 33, the first section 321 and the second section 323 are all greater than the blade width of the middle section 322.
  • the blade width of the middle section 322 is smaller than that of the second cutting edge 33, the first section 321 and the second section 323, which can provide effective sharp cutting force and improve the surface roughness of the processing mold; and the blade width of the middle section 322 After the reduction, the degree of wear becomes faster than before, and it can form an approximately uniform wear state with the second cutting edge 33, ensuring uniform cutting during processing, and maintaining good cutting performance and mold roughness when processing subsequent workpieces. Thereby improving the service life of the tool and maintaining a stable roughness of the workpiece.
  • At least one side surface of the first section 321 and the side surface of the corresponding side of the middle section 322 are transitionally connected by chamfering, and at least one side surface of the second section 323 and the side surface of the corresponding side of the middle section 322 are connected by chamfering. Transition connection.
  • the chamfer transition is used in the above connection.
  • one side surface of the first section is connected to the corresponding side surface of the middle section by a chamfer transition
  • one side surface of the second section is connected to the corresponding side side of the middle section by a chamfer transition.
  • the two sides of the middle section 322 are the first side and the second side, respectively, the two sides of the first section 321 are the third side and the fourth side, respectively, and the two sides of the second section 323 are the fifth side.
  • Side and sixth side the first side and the third side are on the same plane, the second side and the fourth side are connected by chamfer transition; the second side and the sixth side are on the same plane, the first side and the first side The five sides are connected by chamfering transitions.
  • the blade width of the first section and the second section are equal and larger than the blade width of the middle section.
  • the specific size is determined according to the size of the curved surface to be processed. The distance between the two sides of the cutting edge is defined as the edge width.
  • the edge width of the first segment 321 of the first cutting edge 32 is L3, and the second The blade width of the cutting edge 33 is L4, where L3 is equal to L4 and both are 0.005 mm to 0.2 mm, and the blade width of the middle section 322 is L5, and L5 is 0.002 to 0.1 mm.
  • the groove depth of the first chip flute 24 is set to 0.05 mm to 1 mm to ensure the smooth discharge of waste chips during the milling process.
  • the cutter head structure of the second embodiment is the same as that of the first embodiment except for the above description.
  • This embodiment also proposes a cutter head structure 100, which is specifically shown in FIG. 7.
  • the difference from the first embodiment is only that the cutting body 21 in this embodiment is provided with six second cutting edges, and the first cutting Three second cutting edges are respectively provided on both sides of the edge 22, and a third chip flute 27 is defined between two adjacent second cutting edges.
  • two, four, or more than four second cutting edges 23 may be provided on both sides of the first cutting edge 22, and the second cutting edges 23 are arranged at intervals.
  • This embodiment also proposes a cutter head structure, which is different from the second embodiment only in that the side surfaces on both sides of the first section and the second section and the side surfaces of the corresponding side of the middle section are all connected by chamfering, and the others are all connected with The second embodiment is the same.
  • the second aspect of the present invention also provides a cutting tool.
  • a cutting tool For details, refer to FIG. 8, which includes a tool shank portion 200 and the tool bit structure 100 according to any one of the embodiments of the first aspect.
  • the rear end surface is connected to the front end surface of the tool shank 200.
  • the cutting tool in the embodiment of the present invention includes the cutter head structure 100 of any embodiment of the first aspect, it has all the beneficial effects of the cutter head structure 100, which will not be repeated here.
  • the cutting tool in the embodiment of the present invention is mainly used for processing graphite molds; when the cutting tool is rotated, the second cutting edges 23, 33 and the third cutting edges 251, 351 can be Most of the allowance in the workpiece is removed, and the remaining machining allowance of about 0.01 mm is processed by the first cutting edge 22, 32, which has the nature of roughing and finishing, and it is generated during the milling process.
  • the waste chips are discharged outward through the first chip flutes 24 and 34 and the second chip flutes 26 and 36 respectively.
  • the cutting tools in the embodiment of the present invention are mainly used for processing graphite molds.
  • the graphite mold is processed by the cutter head structure described in the first embodiment, 5 or more than 5 cutting tools can be processed continuously.
  • Graphite molds, while traditional tungsten steel coated ball knives can usually only process 1 to 2 graphite molds; and the surface roughness stability of the processed graphite molds is high, which can reach below 500nm.
  • graphite mold When the graphite mold is processed with the cutter head structure described in the second embodiment, 6 or more graphite molds can be processed continuously; and the surface roughness stability of each processed graphite mold is high, which can reach below 1200 nm.
  • the embodiment of the present invention provides a cutting tool and its bit structure, which is achieved by arranging a first cutting edge and a plurality of second cutting edges located on both sides of the first cutting edge on the cutting body.
  • the cutting action and the squeezing action of the first cutting edge work together to improve the surface roughness of the workpiece and prolong the service life of the first cutting edge; and the first cutting edge is defined between the first cutting edge and the second cutting edge.
  • the chip groove gradually widens from the middle area to the two ends, which can ensure the chip removal performance and prevent the accumulation of waste chips in the top area of the cutting body during the milling process, so as to avoid adverse effects on the machining accuracy.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Milling Processes (AREA)
  • Cutting Tools, Boring Holders, And Turrets (AREA)

Abstract

一种切削刀具及其刀头结构(100),刀头结构(100)包括切削刃部(2),切削刃部(2)包括切削主体(21),切削主体(21)的外表面为向前凸起的弧面,切削主体(21)的外表面设有第一切削刃(22)和至少两个第二切削刃(23),第一切削刃(22)从切削主体(21)的一侧延伸至其顶部区域后,再延伸至切削主体(21)的另一侧,各第二切削刃(23)分别设于第一切削刃(22)的两侧,第一切削刃(22)和与其相邻的第二切削刃(23)之间限定有第一排屑槽(24),第一排屑槽(24)的宽度从切削主体(21)的顶部区域至两端逐渐变大。使用该切削刀具,加工精度高,加工稳定性高,排屑性能好,且刀具的使用寿命能够大幅度延长。

Description

一种刀头结构及切削刀具 技术领域
本发明涉及精密加工技术领域,特别是涉及一种刀头结构及切削刀具。
背景技术
目前,传统的球形铣刀的顶部中心点处设置有主切削刃,在铣削曲面时,靠主切削刃顶点处的挤压或者切削作用去除工件的表面材料,但由于顶点处的受力集中,使得主切削刃位于刀具的顶点位置磨损大,刀具的使用寿命受限,在批量加工工件时,加工不稳定,各工件的表面粗糙度及轮廓度不稳定;针对此问题,可在主切削刃的两侧设置副切削刃,以辅助主切削刃切削挤压,但由于切削刃在刀具的顶部区域密集,导致切削屑排出不顺畅,不仅会使得加工热集中,且同样会对工件的加工精度及加工稳定性造成极大的影响。
发明内容
本发明的目的是:克服现有技术的不足,提供一种切削刀具,能够减小刀具磨损以延长刀具的使用寿命,并保证加工工件的表面粗糙度,提高加工稳定性,同时提升排屑性能。
为了实现上述目的,本发明的第一方面提供了一种刀头结构,其包括切削刃部,所述切削刃部包括切削主体,所述切削主体的外表面为向前凸起的弧面,所述切削主体的外表面设有第一切削刃和至少两个第二切削刃,所述第一切削刃从所述切削主体的一侧延伸至其顶部区域后,再延伸至所述切削主体的另一侧,各所述第二切削刃分别设于所述第一切削刃的两侧,所述第一切削刃和与其相邻的所述第二切削刃之间限定有第一排屑槽,所述第一排屑槽的宽度从所述切削主体的顶部区域至两端逐渐变大。
作为优选方案,所述第一切削刃和与其相邻的所述第二切削刃之间限定有第一排屑槽,第一切削刃包括依次连接的第一段、中间段和第二段,第二切削刃、第一段和第二段的刃宽均大于中间段的刃宽。通常情况下由副切削刃去除大部分余量,而剩余较小的加工余量由主切削刃挤压加工,这种加工状况将会导致两侧的副切削刃磨损严重,而中间的主切削刃磨损较少,但由于主副切削刃的刃宽相同,在加工完第一个工件后,两侧的副切削刃因磨损变低,与中间的主切削刃会形成“山”字形的铣刀,在后续加工过程中,绝大部分的余量只能由中间的切削刃加工,最终导致被加工工件粗糙度变高,也缩短了铣刀的使用寿命。而上述改进后的刀头结构,第一切削刃的中间段的刃宽较两侧的第二切削刃小,可以提供有效锋利的切削力,提高加工模具的表面粗糙度;中间段的刃宽减小后,磨损程度相对之前变快,可与第 二切削刃形成近似均匀的磨损状态,加工时可保证均匀切削,在加工后续的模具时,都可保持良好的切削性能和模具粗糙度,从而提高刀具的使用寿命,维持稳定的工件粗糙度。
作为优选方案,所述第一段的至少一个侧面与所述中间段的相应侧的侧面之间通过倒角过渡连接,所述第二段的至少一个侧面与所述中间段的相应侧的侧面之间通过倒角过渡连接。上述连接中使用倒角过渡,在磨削的过程中,可以避免直角形成的尖点使模具出现拉丝的不良现象,而且避免磨削过程中产生的屑堆积在中间段的边角处不容易排出,避免导致工件粗糙度变高。
作为优选方案,第一段的一个侧面与中间段的相应侧的侧面通过倒角过渡连接,第二段的一个侧面与中间段的相应侧的侧面通过倒角过渡连接。
作为优选方案,中间段的两个侧面分别为第一侧面和第二侧面,第一段的两个侧面分别为第三侧面和第四侧面,第二段的两个侧面分别为第五侧面和第六侧面,所述第一侧面与第三侧面处于同一平面上,第二侧面与第四侧面通过倒角过渡连接;第二侧面与第六侧面处于同一平面上,第一侧面与第五侧面通过倒角过渡连接。
作为优选方案,第一段和第二段的刃宽均等于第二切削刃的刃宽。
作为优选方案,中间段的刃宽为0.002~0.1mm,第一段和第二段的刃宽为0.005㎜~0.2mm。
作为优选方案,第一段和第二段的刃宽均等于第二切削刃的刃宽,所述第二切削刃的刃宽为0.005㎜~0.2㎜。
作为优选方案,中间段的长度为0.02~0.2mm,所述切削主体的直径为0.2㎜~20㎜。中间段的长度不可过长,因为如果中间段长度过长,在加工工件的侧面时,第一切削刃起到去除大部分余量的作用,此时相对于两侧的切削刃磨损更快,最终将缩短铣刀的使用寿命。
作为优选方案,所述第一切削刃通过所述切削主体的顶点,且所述切削主体关于所述第一切削刃呈对称分布。
作为优选方案,各所述第二切削刃关于所述第一切削刃呈对称分布。
作为优选方案,所述第二切削刃呈朝所述第一切削刃凸起的弧线状。
作为优选方案,所述第二切削刃包括第一切削段及第二切削段,所述第一切削段从所述切削主体的一侧延伸至其顶部区域后与所述第二切削段的一端相连,且所述第二切削段从所述切削主体的顶部区域延伸至所述切削主体的另一侧;所述第一切削段和所述第二切削段均为螺旋状,且所述第一切削段的旋向与所述第二切削段的旋向相反。
作为优选方案,所述第一切削段及第二切削段的螺旋角均为0~80°。
作为优选方案,所述第一切削刃的两侧分别设置有一所述第二切削刃。
作为优选方案,所述切削主体的直径为0.2㎜~20㎜,所述第一切削刃和所述第二切削刃的刃宽为0.005㎜~0.2㎜,所述第一排屑槽的槽深为0.05㎜~1㎜。
作为优选方案,所述切削主体、所述第一切削刃及所述第二切削刃采用一体成型。
作为优选方案,所述切削主体的外表面还设有若干第三切削刃,各所述第三切削刃分别设置于位于最外侧的两个所述第二切削刃的外侧,相邻两个所述第三切削刃之间、以及所述第三切削刃和与其相邻的所述第二切削刃之间均限定有第二排屑槽。
作为优选方案,各所述第三切削刃关于所述第一切削刃呈对称分布。
作为优选方案,各所述第三切削刃均呈螺旋状。
作为优选方案,位于所述第一切削刃的同一侧的各所述第三切削刃为一切削刃组,所述切削刃组为对称结构,且位于所述切削刃组的对称中心线一侧的各所述第三切削刃与位于所述切削刃组的对称中心线的另一侧的各所述第三切削刃的旋向相反。
作为优选方案,所述第三切削刃的螺旋角为0~80°,所述切削刃组中的各所述第三切削刃从两侧至中间其螺旋角逐渐减小。
作为优选方案,所述第三切削刃的一端与所述第二切削刃相连,所述第三切削刃的另一端设置于所述切削主体的外表面。
作为优选方案,所述切削主体的外表面呈半球面。
作为优选方案,所述切削刃部的材质为聚晶金刚石、单晶金刚石、化学气相沉积金刚石、聚晶立方氮化硼、陶瓷及硬质合金中的任一种。
作为优选方案,所述刀头结构还包括连接部,所述切削主体的后端面连接于所述连接部的前端。
作为优选方案,所述切削刃部与所述连接部的材质相同,且所述切削刃部与所述连接部采用一体成型。
同样的目的,本发明的第二方面还提出一种切削刀具,其包括刀具柄部及如第一方面任一项所述的刀头结构,所述切削主体的后端面连接于所述刀具柄部的前端。
本发明的切削刀具与现有技术相比,其有益效果在于:本发明实施例的切削刀具,其在切削主体的外表面设置有第一切削刃和分别设于第一切削刃两侧的第二切削刃,其中,第一切削刃从切削主体的一侧延伸至顶部区域后再延伸至另一侧;在铣削过程中,通过第二切削 刃进行切削作用以去除大部分余量,而剩余较小的加工余量则通过第一切削刃挤压加工,具有先粗加工后精加工的性质,能够有效提高加工精度,且减少第一切削刃的磨损,以延长第一切削刃的使用寿命;再者,第二切削刃与第一切削刃之间限定的第一排屑槽宽度从切削主体的顶部区域至两端逐渐变大,能够优化排屑能力,避免废屑在切削主体的顶部区域积压以对成型精度及刀具寿命造成不利的影响。
附图说明
图1是本发明实施例一中一种刀头结构的结构示意图;
图2是图1的俯视图;
图3是图2的左视图;
图4为本发明实施例二中一种刀头结构的结构示意图;
图5为图4的俯视图;
图6为图5中A处的局部放大图;
图7是实施例二中的所述刀头结构的主视图;
图8是本发明实施例三中一种刀头结构的结构示意图;
图9是本发明实施例中一种切削刀具的结构示意图;
图中,刀头结构100;连接部1;切削刃部2、3;切削主体21、31;第一切削刃22、32;第一段321;中间段322;第二段323;第二切削刃23、33;第一切削段231、331;第二切削段232、332;第一排屑槽24、34;切削刃组25;第三切削刃251、351;第二排屑槽26、36;第三排屑槽27;刀具柄部200。
具体实施方式
下面结合附图和实施例,对本发明的具体实施方式作进一步详细描述。以下实施例用于说明本发明,但不用来限制本发明的范围。
在本发明的描述中,应当理解的是,本发明中采用术语“前”和“后”,指的是切削刀具在使用过程时,靠近于加工工件的一端为“前”,背离加工工件的一端为“后”。
另外,需要指出的是,本发明中术语“切削主体的顶点”指的是切削刀具在使用过程中,切削主体的外表面上与刀具柄部距离最远的位置,“切削主体的顶部区域”指的是切削主体的外表面上包括切削主体的顶点且距离切削主体的顶点较近的区域位置。
应当理解的是,本发明中采用术语“第一”、“第二”等来描述各种信息,但这些信息不应限于这些术语,这些术语仅用来将同一类型的信息彼此区分开。例如,在不脱离本发明 范围的情况下,“第一”信息也可以被称为“第二”信息,类似的,“第二”信息也可以被称为“第一”信息。
实施例一
如图1~3所示,本发明实施例优选实施例的一种刀头结构100,其包括连接部1及设于所述连接部1前端的切削刃部2,所述切削刃部2包括固定在所述连接部1前端的切削主体21,所述切削主体21的外表面为向外凸起的弧面,所述切削主体21的外表面设有第一切削刃22和至少两个第二切削刃23,所述第一切削刃22从所述切削主体21的一侧延伸至其顶部区域后,再延伸至所述切削主体21的另一侧,各所述第二切削刃23分别设于所述第一切削刃22的两侧,所述第一切削刃22和与其相邻的所述第二切削刃23之间限定有第一排屑槽24,所述第一排屑槽24的宽度从所述切削主体21的顶部区域至两端逐渐变大。
基于上述技术方案,刀头结构100上设置有第一切削刃22和若干第二切削刃23,附图2示出了刀头结构100的俯视图,从该俯视图观察,该第一切削刃22经过切削主体21的中心区域,且包括两个第二切削刃23,各第二切削刃23分别设于第一切削刃22的两侧,其中,在铣削过程中,第二切削刃23切削工件的大部分余量,而剩余的小部分加工余量则通过第一切削刃22的挤压作用进行精加工,从而能够保证加工精度,提高加工面的表面粗糙度,且能够避免对第一切削刃22的磨损,延长第一切削刃22的使用寿命。
另外,本实施例中,由于第一切削刃22与第二切削刃23之间所限定的第一排屑槽24,从切削主体21的顶部区域至两端其宽度逐渐增大,从而能够保证刀具顶部区域的废屑及时排出,避免废屑积压在切削主体21的顶部区域对加工效果以及刀具的寿命所造成的不利影响。
优选地,本实施例中,所述第一切削刃22通过所述切削主体21的顶点,且所述切削主体21关于所述第一切削刃22呈对称分布;铣削过程中,主要利用第一切削刃22的中间区域对工件进行小余量的挤压,从而能够提高加工工件的表面粗糙度及轮廓度。
具体地,本实施例中,各所述第二切削刃23关于所述第一切削刃22呈对称分布,能够保证刀具转动时的稳定性,避免加工过程中的颤刀现象。
作为上述技术方案的替换方案,也可将第一切削刃22偏离切削主体21的顶点,即第一切削刃22偏离于切削主体21的对称中心线设置。
继续参阅附图2所示,所述第二切削刃23呈朝所述第一切削刃22凸起的弧线状,以使得第一排屑槽24的宽度从中间至两端逐渐增大。
具体地,所述第二切削刃23包括第一切削段231及第二切削段232,所述第一切削段231 从所述切削主体21的一侧延伸至其顶部区域后与所述第二切削段232的一端相连,且所述第二切削段232从所述切削主体21的顶部区域延伸至所述切削主体21的另一侧;所述第一切削段231和所述第二切削232段均为螺旋状,且所述第一切削段231的旋向与所述第二切削段232的旋向相反。
本技术方案中,通过旋向相反的第一切削段231与第二切削段232相连形成朝第一切削刃22凸起的弧线状,能够对加工工件的大部分余量进行切削,且保证加工曲面的轮廓度。
本实施例中,所述第一切削段231及所述第二切削段232的螺旋角均为0~80°,基于该螺旋角度,第二切削刃23的强度、锋利程度、切削力的大小均十分理想,且能够保证排屑速度。
如图2所示,所述切削主体21的直径为D,D=0.2㎜~20㎜,具体尺寸根据所加工的曲面大小来确定;将切削刃的两侧面之间的距离定义为刃宽,第一切削刃22的刃宽为L1,第二切削刃23的刃宽为L2,其中,L1及L2均为0.005㎜~0.2㎜;另外,第一排屑槽24的槽深设置为0.05㎜~1㎜,以保证铣削过程中废屑的顺利排出。
同样地,为了进一步增加切削力及加工精度,并提高排屑能力,所述切削主体21的外表面还设有若干第三切削刃251,各所述第三切削刃251分别设置于位于最外侧的两个所述第二切削刃23的外侧,相邻两个所述第三切削刃251之间、以及所述第三切削刃251和与其相邻的所述第二切削刃23之间均限定有第二排屑槽26;在铣削过程中,第三切削刃251与第二切削刃23同时作用以切削加工工件的大部分余量,再配合第一切削刃22进行精加工。
本实施例中,由于在切削主体21上设置有第三切削刃251,能够避免加工产生线痕,保证精加工深度,起到分层切削的作用。
优选地,本实施例中,各所述第三切削刃251关于所述第一切削刃22呈对称分布,能够保证刀具在转动过程中的稳定性能,防止刀具在铣削过程中发生颤刀现象。
本实施例中,各所述第三切削刃251均呈螺旋状,螺旋状排布能够保证足够大的切削力,从而提高加工效率。
为了便于描述,将位于所述第一切削刃22的同一侧的各所述第三切削刃251定义为一切削刃组25,如图2所示,第一切削刃22的上下两侧分别设置有一切削刃组25;所述切削刃组25为对称结构,且位于所述切削刃组25的对称中心线一侧的各所述第三切削刃251与位于所述切削刃组25的对称中心线的另一侧的各所述第三切削刃251的旋向相反,能够进一步提高切削精度,并提高刀具的耐磨性能以延长刀具的使用寿命。
同样的目的,本实施例中,所述第三切削刃251的螺旋角为0~80°,所述切削刃组25中 的各所述第三切削刃251从两侧至中间其螺旋角逐渐减小,可进一步刀具的耐磨性,且保证加工精度。
为了保证刀具的强度,所述第三切削刃251与第二切削刃23相连;具体地,所述第三切削刃251的一端与所述第二切削刃23相连,所述第三切削刃251的另一端设置于所述切削主体21的外表面。
作为上述技术方案的可替换方案,可将第三切削刃251延伸至所述连接部1的外侧面,从而能够增大刀具的加工范围;示例性地,第一切削刃22及第二切削刃23的两端部也均延伸至连接部1的外侧面。
示例性地,本实施例中,在所述第一切削刃22的两侧分别设置有6个第三切削刃251;可适当增加第三切削刃251的数量,以提高加工精度。
本实施例中,所述切削主体21的外表面呈半球面,连接部1为与切削主体21的直径相同的圆柱体结构。
本实施例中,所述切削主体21、所述第一切削刃22、所述第二切削刃23及第三切削刃251采用一体成型,不仅便于将各切削刃成型于切削主体21的外表面,且能够保证切削刃部2的整体耐磨性能及整体强度。
本实施例中,将切削刃部2的材质优选为聚晶金刚石,整体式聚晶金刚石结构的刀具相对于传统的涂层铣刀来说,耐磨性能得到了大幅度提高,有效提高加工精度及加工效率,且能够延长刀具的使用寿命。
同样地,也可将切削刃部2的材质设为单晶金刚石、化学气相沉积金刚石、聚晶立方氮化硼、陶瓷及硬质合金或者其它,同样能够保证刀具的耐磨性能。
所述切削刃部2与所述连接部1的材质相同,且所述切削刃部2与所述连接部1采用一体成型,能够保证整个刀头结构100的强度。
实施例二
如图4-7所示,一种刀头结构,其包括切削刃部3,所述切削刃部3包括切削主体31,所述切削主体31的外表面为向外凸起的弧面,所述切削主体3的外表面设有第一切削刃32和至少两个第二切削刃33,所述第一切削刃32从所述切削主体31的一侧延伸至其顶部区域后,再延伸至所述切削主体31的另一侧,所述第二切削刃33分别设于所述第一切削刃32的两侧,所述第一切削刃32和与其相邻的所述第二切削刃33之间限定有第一排屑槽34,所述第一排屑槽34的宽度从所述切削主体31的顶部区域至两端逐渐变大。
第一切削刃32包括依次连接的第一段321、中间段322和第二段323,第二切削刃33、第一段321和第二段323的刃宽均大于中间段322的刃宽。中间段322的刃宽相对于第二切削刃33、第一段321和第二段323的较小,可提供有效锋利的切削力,提高加工模具的表面粗糙度;而且中间段322的刃宽减小后,磨损程度相对之前变快,可与第二切削刃33形成近似均匀的磨损状态,加工时可保证均匀切削,在加工后续的工件时,可保持良好的切削性能和模具粗糙度,从而提高刀具的使用寿命,维持稳定的工件粗糙度。
进一步地,第一段321的至少一个侧面与中间段322的相应侧的侧面之间通过倒角过渡连接,第二段323的至少一个侧面与中间段322的相应侧的侧面之间通过倒角过渡连接。上述连接中使用倒角过渡,在磨削的过程中,可以避免直角形成的尖点使模具出现拉丝的不良现象,而且避免磨削过程中产生的屑堆积在中间段的边角处不容易排出,避免导致工件粗糙度变高。
例如,第一段的一个侧面与中间段的相应侧的侧面通过倒角过渡连接,第二段的一个侧面与中间段的相应侧的侧面通过倒角过渡连接。
具体地,中间段322的两个侧面分别为第一侧面和第二侧面,第一段321的两个侧面分别为第三侧面和第四侧面,第二段323的两个侧面分别为第五侧面和第六侧面,所述第一侧面与第三侧面处于同一平面上,第二侧面与第四侧面通过倒角过渡连接;第二侧面与第六侧面处于同一平面上,第一侧面与第五侧面通过倒角过渡连接。
进一步的,第一段和第二段的刃宽相等,且大于中间段的刃宽。如图7所示,所述切削主体31的外表面呈半球面,切削主体31的直径为D,D=0.2㎜~20㎜,如图3所示,中间段322的长度为0.02~0.2mm,具体尺寸根据所加工的曲面大小来确定将切削刃的两侧面之间的距离定义为刃宽,如图6所示,第一切削刃32的第一段321的刃宽为L3,第二切削刃33的刃宽为L4,其中,L3与L4相等,且均为0.005㎜~0.2㎜,中间段322的刃宽为L5,且L5为0.002~0.1mm。另外,第一排屑槽24的槽深设置为0.05㎜~1㎜,以保证铣削过程中废屑的顺利排出。
实施例二的刀头结构,除上述说明外,其他均与实施例1中相同。
实施例三
本实施例同样提出一种刀头结构100,具体如图7所示,其与实施例一的区别仅在于,本实施例中的切削主体21上设置有六个第二切削刃,第一切削刃22的两侧分别设置有三个第二切削刃,且相邻两个第二切削刃之间限定形成有第三排屑槽27。
同样地,也可在第一切削刃22的两侧分别设置两个、四个或者四个以上的第二切削刃23,且各第二切削刃23间隔排布。
实施例四
本实施例同样提出一种刀头结构,其与实施例二的区别仅在于,第一段和第二段两侧的侧面与中间段的相应侧的侧面均通过倒角过渡连接,其他均与实施例二相同。
本发明的第二方面还提出一种切削刀具,具体参阅附图8所示,其包括刀具柄部200及如第一方面任一实施例所述的刀头结构100,所述连接部1的后端面与所述刀具柄部200的前端面相连。
本发明中实施例中的切削刀具,由于包括第一方面任一实施例的刀头结构100,因此具有刀头结构100的全部有益效果,在此不作赘述。
另外,需要说明的是,本发明实施例中的切削刀具主要用于加工石墨模具;当转动切削刀具时,第二切削刃23、33及第三切削刃251、351在转动进给过程中能够去除工件中的大部分余量,而剩余的约0.01㎜左右的加工余量则通过第一切削刃22、32挤压加工,具有先粗加工后精加工的性质,且铣削过程中所产生的废屑分别通过第一排屑槽24、34及第二排屑槽26、36向外排出。
另外,需要说明的是,本发明实施例中的切削刀具主要用于加工石墨模具,采用实施例一种所述的刀头结构对石墨模具进行加工时,能够连续加工5个或者5个以上的石墨模具,而传统的钨钢涂层球刀通常仅能够加工1~2个石墨模具;且加工的各石墨模具的表面粗糙度稳定性高,可达到500nm以下。
采用实施例二中所述的刀头结构对石墨模具进行加工时,能够连续加工6个或者6个以上的石墨模具;且加工的各石墨模具的表面粗糙度稳定性高,可达到1200nm以下。
综上,本发明实施例提供一种切削刀具及其刀头结构,其通过在切削主体上设置第一切削刃及位于第一切削刃两侧的若干第二切削刃,通过第二切削刃的切削作用及第一切削刃的挤压作用相配合加工,能够提高加工件的表面粗糙度,且延长第一切削刃的使用寿命;并且第一切削刃与第二切削刃之间限定的第一排屑槽从中间区域至两端逐渐变宽,能够保证排屑性能,防止铣削过程中废屑积压在切削主体的顶部区域,以避免对加工精度所造成的不良影响。
以上所述仅是本发明的优选实施方式,应当指出,对于本技术领域的普通技术人员来说, 在不脱离本发明技术原理的前提下,还可以做出若干改进和替换,这些改进和替换也应视为本发明的保护范围。

Claims (27)

  1. 一种刀头结构,其特征在于,包括切削刃部,所述切削刃部包括切削主体,所述切削主体的外表面为向前凸起的弧面,所述切削主体的外表面设有第一切削刃和至少两个第二切削刃,所述第一切削刃从所述切削主体的一侧延伸至其顶部区域后,再延伸至所述切削主体的另一侧,各所述第二切削刃分别设于所述第一切削刃的两侧,所述第一切削刃和与其相邻的所述第二切削刃之间限定有第一排屑槽,所述第一排屑槽的宽度从所述切削主体的顶部区域至两端逐渐变大。
  2. 如权利要求1所述的刀头结构,其特征在于,第一切削刃包括依次连接的第一段、中间段和第二段,第二切削刃、第一段和第二段的刃宽均大于中间段的刃宽。
  3. 如权利要求2所述的刀头结构,其特征在于,所述第一段的至少一个侧面与所述中间段的相应侧的侧面之间通过倒角过渡连接,所述第二段的至少一个侧面与所述中间段的相应侧的侧面之间通过倒角过渡连接。
  4. 如权利要求2所述的刀头结构,其特征在于,第一段的一个侧面与中间段的相应侧的侧面通过倒角过渡连接,第二段的一个侧面与中间段的相应侧的侧面通过倒角过渡连接。
  5. 如权利要求2所述的刀头结构,其特征在于,中间段的两个侧面分别为第一侧面和第二侧面,第一段的两个侧面分别为第三侧面和第四侧面,第二段的两个侧面分别为第五侧面和第六侧面,所述第一侧面与第三侧面处于同一平面上,第二侧面与第四侧面通过倒角过渡连接;第二侧面与第六侧面处于同一平面上,第一侧面与第五侧面通过倒角过渡连接。
  6. 如权利要求2所述的刀头结构,其特征在于,第一段和第二段的刃宽均等于第二切削刃的刃宽。
  7. 如权利要求2所述的刀头结构,其特征在于,中间段的刃宽为0.002~0.1mm,第一段和第二段的刃宽均为0.005㎜~0.2mm。
  8. 如权利要求2所述的刀头结构,其特征在于,中间段的长度为0.02~0.2mm,所述切削主体的直径为0.2㎜~20㎜。
  9. 如权利要求1所述的刀头结构,其特征在于,所述第一切削刃通过所述切削主体的顶点,且所述切削主体关于所述第一切削刃呈对称分布。
  10. 如权利要求9所述的刀头结构,其特征在于,各所述第二切削刃关于所述第一切削刃呈对称分布。
  11. 如权利要求9所述的刀头结构,其特征在于,所述第二切削刃呈朝所述第一切削刃凸起的弧线状。
  12. 如权利要求11所述的刀头结构,其特征在于,所述第二切削刃包括第一切削段及第二切削段,所述第一切削段从所述切削主体的一侧延伸至其顶部区域后与所述第二切削段的一端相连,且所述第二切削段从所述切削主体的顶部区域延伸至所述切削主体的另一侧;所述第一切削段和所述第二切削段均为螺旋状,且所述第一切削段的旋向与所述第二切削段的旋向相反。
  13. 如权利要求12所述的刀头结构,其特征在于,所述第一切削段及所述第二切削段的螺旋角均为0~80°。
  14. 如权利要求9所述的刀头结构,其特征在于,所述第一切削刃的两侧分别设置有一所述第二切削刃。
  15. 如权利要求1所述的刀头结构,其特征在于,所述切削主体的直径为0.2㎜~20㎜,所述第一切削刃和所述第二切削刃的刃宽为0.005㎜~0.2㎜,所述第一排屑槽的槽深为0.05㎜~1㎜。
  16. 如权利要求1所述的刀头结构,其特征在于,所述切削主体、所述第一切削刃及所述第二切削刃采用一体成型。
  17. 如权利要求1~16中任一项所述的刀头结构,其特征在于,所述切削主体的外表面还设有若干第三切削刃,各所述第三切削刃分别设置于位于最外侧的两个所述第二切削刃的外侧,相邻两个所述第三切削刃之间、以及所述第三切削刃和与其相邻的所述第二切削刃之间均限定有第二排屑槽。
  18. 如权利要求17所述的刀头结构,其特征在于,各所述第三切削刃关于所述第一切削刃呈对称分布。
  19. 如权利要求17所述的刀头结构,其特征在于,各所述第三切削刃均呈螺旋状。
  20. 如权利要求19所述的刀头结构,其特征在于,位于所述第一切削刃的同一侧的各所述第三切削刃为一切削刃组,所述切削刃组为对称结构,且位于所述切削刃组的对称中心线一侧的各所述第三切削刃与位于所述切削刃组的对称中心线的另一侧的各所述第三切削刃的旋向相反。
  21. 如权利要求20所述的刀头结构,其特征在于,所述第三切削刃的螺旋角为0~80°,所述切削刃组中的各所述第三切削刃从两侧至中间其螺旋角逐渐减小。
  22. 如权利要求17所述的刀头结构,其特征在于,所述第三切削刃的一端与所述第二切削刃相连,所述第三切削刃的另一端设置于所述切削主体的外表面。
  23. 如权利要求1所述的刀头结构,其特征在于,所述切削主体的外表面呈半球面。
  24. 如权利要求1所述的刀头结构,其特征在于,所述切削刃部的材质为聚晶金刚石、单晶金刚石、化学气相沉积金刚石、聚晶立方氮化硼、陶瓷及硬质合金中的任一种。
  25. 如权利要求1所述的刀头结构,其特征在于,还包括连接部,所述切削主体的后端面连接于所述连接部的前端。
  26. 如权利要求25所述的刀头结构,其特征在于,所述切削刃部与所述连接部的材质相同,且所述切削刃部与所述连接部采用一体成型。
  27. 一种切削刀具,其特征在于,包括刀具柄部及如权利要求1~26中任一项所述的刀头结构,所述切削主体的后端面连接于所述刀具柄部的前端。
PCT/CN2019/126775 2019-08-26 2019-12-19 一种刀头结构及切削刀具 WO2021036113A1 (zh)

Priority Applications (2)

Application Number Priority Date Filing Date Title
US16/759,363 US20220001468A1 (en) 2019-08-26 2019-12-19 Cutting tool and cutter head structure thereof
KR1020207001769A KR102308963B1 (ko) 2019-08-26 2019-12-19 바이트 구조 및 절삭 커터

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
CN201910789384.2A CN110421202A (zh) 2019-08-26 2019-08-26 一种切削刀具及其刀头结构
CN201910789384.2 2019-08-26
CN201922157875.3 2019-12-05
CN201922157875.3U CN211331527U (zh) 2019-12-05 2019-12-05 一种刀头结构及切削刀具

Publications (1)

Publication Number Publication Date
WO2021036113A1 true WO2021036113A1 (zh) 2021-03-04

Family

ID=71402830

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/126775 WO2021036113A1 (zh) 2019-08-26 2019-12-19 一种刀头结构及切削刀具

Country Status (5)

Country Link
US (1) US20220001468A1 (zh)
JP (1) JP6968933B2 (zh)
KR (1) KR102308963B1 (zh)
DE (1) DE202020103056U1 (zh)
WO (1) WO2021036113A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2646128A1 (de) * 1976-10-13 1978-04-20 Wernicke & Co Gmbh Verfahren zum durchbohren eines brillenglases, insbesondere eines silikat- brillenglases
DE3230688A1 (de) * 1982-08-18 1984-02-23 Carl Hurth Maschinen- und Zahnradfabrik GmbH & Co, 8000 München Fraeswerkzeug
JPH11156623A (ja) * 1997-11-28 1999-06-15 Hitachi Tool Eng Ltd 球状刃エンドミル
CN201320632Y (zh) * 2008-11-28 2009-10-07 常州市精刃工具制造有限公司 球头铣刀
CN110064788A (zh) * 2019-05-22 2019-07-30 汇专绿色工具有限公司 一种刀头结构及切削刀具
CN110421202A (zh) * 2019-08-26 2019-11-08 汇专绿色工具有限公司 一种切削刀具及其刀头结构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2531187A1 (fr) * 1982-05-03 1984-02-03 Vasilia Ltd Briquet avec breloque
JPH09136208A (ja) * 1995-11-16 1997-05-27 Yutaka Giken Co Ltd ろう付けエンドミル
IL127895A (en) * 1998-12-31 2001-08-26 Iscar Ltd Tool assembly
US8714890B2 (en) * 2007-02-09 2014-05-06 The Boeing Company Cutter for drilling and reaming
US10265784B2 (en) * 2012-10-29 2019-04-23 Kyocera Corporation Ball end mill
JP6462474B2 (ja) 2015-04-24 2019-01-30 京セラ株式会社 切削工具及びこれを用いた切削加工物の製造方法
JP2018122365A (ja) 2017-01-30 2018-08-09 三菱日立ツール株式会社 ボールエンドミル
CN210552206U (zh) * 2018-09-25 2020-05-19 汇专科技集团股份有限公司 一种切削刀具及其刀头结构

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2646128A1 (de) * 1976-10-13 1978-04-20 Wernicke & Co Gmbh Verfahren zum durchbohren eines brillenglases, insbesondere eines silikat- brillenglases
DE3230688A1 (de) * 1982-08-18 1984-02-23 Carl Hurth Maschinen- und Zahnradfabrik GmbH & Co, 8000 München Fraeswerkzeug
JPH11156623A (ja) * 1997-11-28 1999-06-15 Hitachi Tool Eng Ltd 球状刃エンドミル
CN201320632Y (zh) * 2008-11-28 2009-10-07 常州市精刃工具制造有限公司 球头铣刀
CN110064788A (zh) * 2019-05-22 2019-07-30 汇专绿色工具有限公司 一种刀头结构及切削刀具
CN110421202A (zh) * 2019-08-26 2019-11-08 汇专绿色工具有限公司 一种切削刀具及其刀头结构

Also Published As

Publication number Publication date
JP2021030429A (ja) 2021-03-01
DE202020103056U1 (de) 2020-06-17
KR20210027225A (ko) 2021-03-10
US20220001468A1 (en) 2022-01-06
JP6968933B2 (ja) 2021-11-17
KR102308963B1 (ko) 2021-10-05

Similar Documents

Publication Publication Date Title
KR101351727B1 (ko) 라디우스 엔드밀 및 절삭 가공 방법
WO2012111405A1 (ja) 高硬度材料切削用エンドミル
CN210552206U (zh) 一种切削刀具及其刀头结构
JP2018534159A (ja) 旋削インサートおよび方法
WO2020232817A1 (zh) 一种刀头结构及切削刀具
TW200846109A (en) Rotary cutting tool
JP7341058B2 (ja) エンドミル本体及びエンドミル
JP2004141975A (ja) ラジアスエンドミル
CN111230195B (zh) 一种球头铣刀
CN113399723B (zh) 一种铣削刀片
JP2009119572A (ja) インサート及び刃先交換式切削工具
CN211360799U (zh) 高效鼓形仿形立铣刀
CN210702770U (zh) 具有端部排屑槽的铣刀
CN210648706U (zh) 一种切削刀具及其刀头结构
CN110560768A (zh) 一种切削刀具及其刀头结构
WO2020063006A1 (zh) 一种用于加工硬脆性难加工材料的金刚石切削刀具
WO2021036113A1 (zh) 一种刀头结构及切削刀具
CN110695426A (zh) 一种高效鼓形仿形立铣刀
CN113399724B (zh) 一种快进给铣削刀片及其铣削刀具
CN210648707U (zh) 一种切削刀具及其刀头结构
WO2021035770A1 (zh) 一种切削刀具及其刀头结构
CN210160488U (zh) 一种刀头结构及切削刀具
CN210702774U (zh) 不锈钢高效率铣削刀具
CN210996740U (zh) 一种加工铝型材的直铣刀
CN212217123U (zh) 硬质合金球刀

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19943530

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19943530

Country of ref document: EP

Kind code of ref document: A1

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205N DATED 12/08/2022)

122 Ep: pct application non-entry in european phase

Ref document number: 19943530

Country of ref document: EP

Kind code of ref document: A1