WO2020129796A1 - 電源装置 - Google Patents

電源装置 Download PDF

Info

Publication number
WO2020129796A1
WO2020129796A1 PCT/JP2019/048638 JP2019048638W WO2020129796A1 WO 2020129796 A1 WO2020129796 A1 WO 2020129796A1 JP 2019048638 W JP2019048638 W JP 2019048638W WO 2020129796 A1 WO2020129796 A1 WO 2020129796A1
Authority
WO
WIPO (PCT)
Prior art keywords
power supply
arm
switching element
supply device
circuit
Prior art date
Application number
PCT/JP2019/048638
Other languages
English (en)
French (fr)
Inventor
正芳 古木
Original Assignee
ソニー株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ソニー株式会社 filed Critical ソニー株式会社
Priority to JP2020561349A priority Critical patent/JPWO2020129796A1/ja
Priority to US17/309,662 priority patent/US20220077787A1/en
Publication of WO2020129796A1 publication Critical patent/WO2020129796A1/ja

Links

Images

Classifications

    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/0048Circuits or arrangements for reducing losses
    • H02M1/0054Transistor switching losses
    • H02M1/0058Transistor switching losses by employing soft switching techniques, i.e. commutation of transistors when applied voltage is zero or when current flow is zero
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M1/00Details of apparatus for conversion
    • H02M1/08Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters
    • H02M1/083Circuits specially adapted for the generation of control voltages for semiconductor devices incorporated in static converters for the ignition at the zero crossing of the voltage or the current
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/01Resonant DC/DC converters
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02MAPPARATUS FOR CONVERSION BETWEEN AC AND AC, BETWEEN AC AND DC, OR BETWEEN DC AND DC, AND FOR USE WITH MAINS OR SIMILAR POWER SUPPLY SYSTEMS; CONVERSION OF DC OR AC INPUT POWER INTO SURGE OUTPUT POWER; CONTROL OR REGULATION THEREOF
    • H02M3/00Conversion of dc power input into dc power output
    • H02M3/22Conversion of dc power input into dc power output with intermediate conversion into ac
    • H02M3/24Conversion of dc power input into dc power output with intermediate conversion into ac by static converters
    • H02M3/28Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac
    • H02M3/325Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal
    • H02M3/335Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only
    • H02M3/33569Conversion of dc power input into dc power output with intermediate conversion into ac by static converters using discharge tubes with control electrode or semiconductor devices with control electrode to produce the intermediate ac using devices of a triode or a transistor type requiring continuous application of a control signal using semiconductor devices only having several active switching elements
    • H02M3/33573Full-bridge at primary side of an isolation transformer
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B70/00Technologies for an efficient end-user side electric power management and consumption
    • Y02B70/10Technologies improving the efficiency by using switched-mode power supplies [SMPS], i.e. efficient power electronics conversion e.g. power factor correction or reduction of losses in power supplies or efficient standby modes

Definitions

  • the present invention relates to a power supply device.
  • a switching power supply device (hereinafter, referred to as LLC type switching power supply device) by an LLC current resonance power supply using two inductors (L) and one capacitor (C) is known.
  • the existing LLC type switching power supply device is typically, for example, an upper arm and a lower arm which are respectively configured by switching elements and are connected in series, a series resonance circuit including a capacitor and an inductor, and a series resonance circuit connected to the series resonance circuit. And a transformer that is used.
  • the LLC type switching power supply device alternately drives the upper arm and the lower arm to generate an alternating current, and the action of the series resonance circuit based on the alternating current causes the secondary winding of the transformer to input the direct current power. The corresponding output is retrieved.
  • the LLC type switching power supply device has been widely used in recent years because it can efficiently supply power with a relatively simple configuration. Therefore, it is required to further improve the characteristics and enhance the convenience.
  • the present disclosure aims to provide a more convenient power supply device.
  • a power supply device of the present disclosure includes a first switching element forming an upper arm and a second switching element forming a lower arm, which are connected in series between a positive electrode and a negative electrode of a DC power supply.
  • a first arm circuit including a switching element, a third switching element forming an upper arm and a fourth switching element forming a lower arm, which are connected in series between a positive electrode and a negative electrode of a DC power supply.
  • a second arm circuit including a primary winding, and a transformer including a secondary winding to which an output circuit that outputs a direct current is connected, and one end of the primary winding is a first end of the primary winding.
  • a series resonance circuit including a first inductor connected to the first inductor and a capacitor connected to the other end of the first inductor, and one end at a connection point of the series connection of the third switching element and the fourth switching element.
  • a connection point that includes a second inductor that is connected, and a control circuit that controls driving of the first arm circuit and the second arm circuit, and that connects the first switching element and the second switching element in series. Is connected to the second end of the primary winding of the transformer, and the other end of the second inductor is connected to the connection point where the first inductor and the capacitor are connected.
  • FIG. 1 It is a block diagram which shows the example of a more detailed structure of the control unit applicable to 1st Embodiment. It is a figure which shows the example of the drive signal for driving each switching element by the control unit which concerns on 1st Embodiment. It is a figure which shows the example which compared the output of the power supply device which concerns on 1st Embodiment, and the output of the power supply device by the existing technology. It is a figure for explaining control concerning a 1st modification of a 1st embodiment more concretely. It is a figure which shows the example of a change of each part at the time of switching the operation
  • FIG. 11 is a diagram showing an example of actual measurement of changes in output voltage when the duty of the drive signal supplied to the second arm circuit is gradually changed according to the second modification of the first embodiment. It is a figure which shows the example of a change of each part when the operation
  • FIG. 9 is a diagram for considering suppression of fluctuations in output voltage at a switching point according to a second modification of the first embodiment.
  • FIG. 9 is a diagram for considering suppression of fluctuations in output voltage at a switching point according to a second modification of the first embodiment.
  • FIG. 9 is a diagram for considering suppression of fluctuations in output voltage at a switching point according to a second modification of the first embodiment.
  • FIG. 9 is a diagram for considering suppression of fluctuations in output voltage at a switching point according to a second modification of the first embodiment.
  • FIG. 9 is a diagram for considering suppression of fluctuations in output voltage at a switching point according to a second modification of the first embodiment. It is a circuit diagram which shows the structure of an example of the power supply device which concerns on the 4th modification of 1st Embodiment. It is a figure which shows the example of the drive signal for driving each switching element by the control unit 10 which concerns on 2nd Embodiment. It is a figure which shows the example of the simulation result of the characteristic which used the equivalent circuit of the LLC type switching power supply device by the existing technology. It is a figure which shows the example of the simulation result at the time of adding an antiphase drive signal to the equivalent circuit of the LLC type switching power supply which concerns on 2nd Embodiment.
  • a switching power supply device (hereinafter abbreviated as a power supply device) using the LLC current resonance power supply according to the first embodiment of the present disclosure will be described.
  • a power supply device using the LLC current resonance power supply according to the first embodiment of the present disclosure will be described.
  • FIG. 1 is a circuit diagram showing an example of the configuration of a power supply device according to the existing technology.
  • the power supply device 1000 according to the existing technology includes an arm circuit unit 1001, a resonance circuit unit 1002, a transformer Tr, an output circuit unit 1003, and a control unit 20.
  • the transformer Tr includes a primary winding and a secondary winding.
  • the end of the primary winding on which the black dots are not attached is the first end, and the end on the side where the black dots are attached is the end. Will be described as the second end.
  • Arm circuit section 1001 constitutes an upper arm and a lower arm, respectively, and includes switching elements Q1 and Q2 connected in series.
  • the switching elements Q1 and Q2 are, for example, N-type MOSFETs (Metal Oxide Semiconductor Field Effect Transistors), and are turned on (closed state) and turned off (open state) according to a drive signal supplied from the control unit 20 described later to the gate. Controlled.
  • the source of switching element Q1 and the drain of switching element Q2 are connected, and switching elements Q1 and Q2 are connected in series.
  • the positive terminal of the DC power supply Vm which is an input is connected to the drain of the switching element Q1, and the negative terminal of the DC power supply Vm is connected to the source of the switching element Q2.
  • the connection point of the series connection of the switching elements Q1 and Q2 is connected to the second end of the primary winding of the transformer Tr.
  • the resonance circuit unit 1002 includes a series resonance circuit including an inductor Lr1 and a capacitor Cr1 connected in series.
  • the end of the series resonance circuit on the inductor Lr1 side is connected to the first end of the primary winding of the transformer Tr, and the end on the capacitor Cr1 side is connected to the source of the switching element Q2 and the negative side of the DC power supply Vm.
  • the inductor Lp is based on the exciting inductance of the primary winding of the transformer Tr.
  • the inductor Lp is shown as being connected in parallel to the primary winding of the transformer Tr.
  • the output circuit unit 1003 is connected to the secondary winding of the transformer Tr.
  • the output circuit unit 1003 includes diodes D1 and D2 and a smoothing capacitor CL1 in the example of FIG.
  • the output circuit unit 1003 performs a two-phase full-wave rectification on the alternating current extracted from the secondary winding of the transformer Tr by the diodes D1 and D2, smoothes the rectified output by the smoothing capacitor CL1, and displays it as a DC power source as a resistor R1. Output to the load.
  • the control unit 20 includes a drive circuit 200, an oscillator 210, and a control logic unit 220.
  • the oscillator 210 generates a signal according to PWM (Pulse Width Modulation) of the frequency and duty instructed by the control logic unit 220.
  • the drive circuit 200 drives the switching elements Q1 and Q2 in accordance with the PWM signal generated by the oscillator 210. At this time, the drive circuit 200 drives the switching element Q1 based on the signal generated by the oscillator 210, and also drives the switching element Q2 based on an inverted signal obtained by inverting the signal.
  • the output of the output circuit unit 1003 is also supplied to the control logic unit 220.
  • the control logic unit 220 controls the frequency and duty (hereinafter, referred to as Duty) of the PWM drive signal generated by the oscillator 210, for example, based on the supplied voltage value of the output of the output circuit unit 1003. By this feedback control, the output of the output circuit unit 1003 can be stabilized.
  • FIG. 2 is a circuit diagram corresponding to FIG. 1 described above, in consideration of parasitic elements of the power supply device 1000 according to the existing technology.
  • switching element Q1 includes a switch SW1, a diode DQ1, a resistor RQ1, and a capacitor C3.
  • the switch SW1 is controlled to be turned on and off according to a drive signal supplied from the drive circuit 200.
  • the anode of the diode DQ1 is connected to one end of the switch SW1 and one end of the capacitor C3, respectively.
  • the connection point of the anode of the diode DQ1, the one end of the switch SW1, and the one end of the capacitor C3 corresponds to the source of the switching element Q1.
  • the cathode of the diode DQ1 is connected to one end of the resistor RQ1.
  • the other end of the resistor RQ1 is connected to the other end of the capacitor C3.
  • the connection point between the other end of the resistor RQ1 and the other end of the capacitor C3 corresponds to the drain of the switching element Q1.
  • the connection point between the cathode of the diode DQ1 and the resistor RQ1 is connected to the other end of the switch SW1.
  • the switching element Q2 is similar to the switching element Q1. That is, the switching element Q2 includes a switch SW1 of the switching element Q1, a diode DQ1, a resistor RQ1, a switch SW2 corresponding to the capacitor C3, a diode DQ2, a resistor RQ2, and a capacitor C1. ..
  • the connection relationship among the switch SW2, the diode DQ2, the resistor RQ2, and the capacitor C1 is the same as the connection by the switch SW1 in the switching element Q1, the diode DQ1, the resistor RQ1, and the capacitor C3 described above. Detailed description is omitted.
  • the inductor Lr1 is connected between the second end of the primary winding and one end of the capacitor Cr1.
  • the inductor Lr1 is, for example, a leakage inductance of the primary winding of the transformer Tr.
  • the second end of the primary winding of the transformer Tr is connected to the connection point of the capacitors C1 and C3.
  • the control unit 20 alternately switches the switches SW1 and SW2 according to the PWM drive signal generated by the drive circuit 200 to generate an alternating current from the direct current power supply Vm on the primary winding side of the transformer Tr.
  • an alternating current according to the winding ratio of the transformer Tr is generated on the secondary winding side of the transformer Tr.
  • the alternating current generated on the secondary winding side of the transformer Tr is rectified by the diodes D1 and D2 in the output circuit unit 1003 and further smoothed by the smoothing capacitor CL1, and is output to a load represented as a resistor R1 as a DC power source. To be done.
  • control unit 20 switches the switches SW1 and SW2, for example, performs zero voltage switching (ZVS) in which the switch SW2 is turned on when the voltage of the switch SW2 (switching element Q2) is approximately 0V. ..
  • ZVS zero voltage switching
  • 3A to 3D are diagrams for more specifically explaining the operation of the power supply device 1000 according to the existing technology.
  • the switch SW1 the switching element Q1 is on and the switch SW2 (switching element Q2) is off as shown in FIG. 3A.
  • the switch SW1 since the switch SW1 is on, the switch SW1 is positive. 3A, this current is supplied from the switch SW1 (switching element Q1) to the series resonance circuit including the inductor Lr1 and the capacitor Cr1 via the inductor Lp, as indicated by the solid arrow in FIG. It
  • FIGS. 3A and 3C indicate the current flowing through the primary winding of the transformer Tr.
  • switch SW1 is turned off while a current in the forward direction is flowing through switch SW1.
  • a negative current flows through the switching element Q2 side through the diode DQ2 included in the switching element Q2, as indicated by a solid arrow in FIG. 3B.
  • the resonance current in the series resonance circuit changes continuously.
  • the switch SW2 is turned on while the current is flowing through the diode DQ2.
  • ZVS zero voltage switching
  • FIG. 4 is a circuit diagram showing a configuration of an example of the power supply device according to the first embodiment. 4, the power supply device 1 according to the first embodiment has switching elements Q3 and Q4 and an inductor Lr2 added to the power supply device 1000 according to the existing technology shown in FIG.
  • the arm circuit unit 1010 includes the first arm circuit unit 1020 corresponding to the arm circuit unit 1001 described above, and upper and lower arms, respectively, and includes switching elements Q3 and Q4 connected in series. And a second arm circuit portion 1021.
  • the source of the switching element Q3 and the drain of the switching element Q3 are connected, and the switching elements Q3 and Q4 are connected in series.
  • the positive terminal of the DC power supply Vm that is an input is connected to the drain of the switching element Q3, and the negative terminal of the DC power supply Vm is connected to the source of the switching element Q4. That is, the first arm circuit unit 1020 and the second arm circuit unit 1021 are connected in parallel to the DC power supply Vm.
  • connection point where the switching elements Q3 and Q4 are connected in series is connected to one end of the inductor Lr2.
  • the other end of the inductor Lr2 is connected to a connection point where the inductor Lr1 and the capacitor Cr1 are connected. That is, the connection point of the switching elements Q3 and Q4 is connected to the first end of the primary winding of the transformer Tr via the inductors Lr2 and Lr1.
  • the control unit 10 corresponding to the above-described control unit 20 includes a drive circuit 100 corresponding to the drive circuit 200, the oscillator 110, and the control logic unit 120, an oscillator 110, and a control logic unit 120, respectively.
  • the drive circuit 100 can independently control each of the switching elements Q1, Q2, Q3, and Q4, for example.
  • FIG. 5 is a circuit diagram of an example corresponding to FIG. 4 described above in consideration of parasitic elements of the power supply device 1 according to the first embodiment.
  • the configuration considering the parasitic elements of the switching elements Q3 and Q4 is the same as the configuration of the switching elements Q1 and Q2 described with reference to FIG.
  • the switching element Q3 includes a switch SW1 of the switching element Q1, a diode DQ1, a resistor RQ1, and a switch SW3 corresponding to the capacitor C3, a diode DQ3, a resistor RQ3, and a capacitor C4.
  • the switching element Q4 includes a switch SW1 of the switching element Q1, a diode DQ1, a resistor RQ1, a switch SW4 corresponding to the capacitor C3, a diode DQ4, a resistor RQ4, and a capacitor C2.
  • the switch SW3 included in the switching element Q3, the diode DQ3, the resistor RQ3, and the capacitor C4 are connected by the switch SW1 in the switching element Q1, the diode DQ1, the resistor RQ1, and the capacitor C3. Since it is the same as, the detailed description will be omitted.
  • the connection relationship among the switch SW4 included in the switching element Q4, the diode DQ4, the resistor RQ4, and the capacitor C2 is such that the switch SW2 in the switching element Q2 described above, the diode DQ2, the resistor RQ2, the capacitor C1, Since it is the same as the connection by, detailed description will be omitted.
  • the connection point between the capacitors C2 and C4 is connected to one end of the inductor Lr2.
  • FIG. 6 is a block diagram showing an example of a more detailed configuration of the control unit 10 applicable to the first embodiment.
  • the control unit 10 includes drive circuits 100 1 , 100 2 , 100 3 and 100 4 , an oscillator 110, and a control logic unit 120 including a Duty control unit 121 and a phase control unit 122.
  • the drive circuits 100 1 , 100 2 , 100 3 and 100 4 output drive signals for driving the switching elements Q1, Q2, Q3 and Q4, respectively, based on the signals supplied from the oscillator 110 and the phase controller 122.
  • the oscillator 110 In the control unit 10, the oscillator 110 generates a PWM signal for each of the switching elements Q1, Q2, Q3 and Q4.
  • the duty control unit 121 controls the frequency and duty of each signal generated by the PWM generated by the oscillator 110.
  • the oscillator 110 supplies the generated signals to the drive circuits 100 1 , 100 2 , 100 3 and 100 4 , respectively.
  • the phase control unit 122 controls the phase of the PWM signals supplied to the drive circuits 100 1 , 100 2 , 100 3 and 100 4 .
  • the phase controller 122 can independently invert the PWM signals supplied to the drive circuits 100 1 , 100 2 , 100 3 and 100 4 .
  • the phase control unit 122 can include a predetermined margin in the low state for each signal by PWM supplied to each drive circuit 100 1 , 100 2 , 100 3 and 100 4 . As a result, the switching elements Q1 to Q4 can be switched on and off alternately in the off state with a predetermined margin, and ZVS can be realized.
  • FIG. 7 is a diagram showing an example of drive signals for driving the switching elements Q1, Q2, Q3, and Q4 by the control unit 10 according to the first embodiment.
  • FIG. 7 shows an example of a PWM drive signal for driving the switching elements Q1, Q2, Q3, and Q4 from the top.
  • each drive signal for driving the switching elements Q1 and Q3 has a duty of 50%.
  • the signal included in the first arm circuit unit 1020 which is the inverted drive signal for driving the switching element Q1 is the drive signal for driving the switching element Q2.
  • each drive signal for driving each switching element Q1 and Q2 included in the first arm circuit unit 1020 and each switching element Q3 and Q4 included in the second arm circuit unit 1021 are driven.
  • the respective drive signals to be set have the same phase. That is, the switching elements Q1 and Q3 are controlled to be turned on and off at the same timing. Further, the switching elements Q2 and Q4 are controlled at the same timing and inverted with respect to the switching elements Q1 and Q3 so as to be turned on and off.
  • the low period of the drive signal that drives the switching element Q2 is widely controlled with respect to the high period of the drive signal that drives the switching element Q1 that corresponds to the low period.
  • the low period of the drive signal for driving the switching element Q4 is widely controlled with respect to the high period of the drive signal for driving the switching element Q2 corresponding to the low period.
  • FIG. 8 is a diagram showing an example in which the output of the power supply device 1 according to the first embodiment and the output of the power supply device 1000 according to the existing technology described with reference to FIGS. 1 and 2 are compared.
  • the vertical axis represents efficiency and the horizontal axis represents output power.
  • characteristic lines 30 and 31 show output examples of the power supply device 1000 according to the existing technology.
  • the characteristic line 30 is an example when the inductance of the inductor Lp (see FIGS. 1 and 2) is the first value (for example, 235 [ ⁇ H]), and the characteristic line 31 is the inductance of the inductor Lp is the first value.
  • An example in the case of approximately twice the value of (eg, 484 [ ⁇ H]) is shown.
  • the characteristic line 32 shows an output example of the power supply device 1 according to the first embodiment.
  • the inductance of the inductor Lp is set to the above-mentioned second value (for example, 484 [ ⁇ H]), and the inductance of the inductor Lr2 is set to a value close to the second value (for example, 520 [ ⁇ H]).
  • this lower limit input voltage is referred to as the regulation lower limit voltage.
  • the regulation lower limit voltages of the respective configurations corresponding to the characteristic lines 30, 31, and 32 described above are 223 [V], 274 [V], and 223 [V], respectively.
  • the higher the regulation lower limit voltage the higher the efficiency.
  • the lower regulation lower limit voltage indicates that a wider range of input voltages can be accommodated.
  • the efficiency indicated by the characteristic line 32 is 70% less than the efficiency indicated by the characteristic line 30. In the range of about [W] to about 700 [W], it is as high as 0.5% to 1.5%. Further, regarding the characteristic line 31 when the regulation lower limit voltage is higher than the configuration of the characteristic line 32, in a region where the output voltage is high with a certain output power (in the example of FIG. 8, around 260 [W]) as a boundary. The efficiency indicated by the characteristic line 32 is about 0.5% higher than the efficiency indicated by the characteristic line 31.
  • the efficiency means the ratio of the output power to the input DC power supply. If the input DC power is equal to the output power, the efficiency is 100%. Further, when the output power is 1/2 of the input DC power, the efficiency is 50%.
  • the power supply device 1 according to the first embodiment is more efficient than the power supply device 1000 according to the existing technology under the condition that the regulation lower limit voltage is the same. It turns out that is high.
  • each switching element Q1, Q2, Q3 and Q4 is related.
  • the resistance of each switching element Q1, Q2, Q3 and Q4 included in the power supply device 1 and each switching element Q1 and Q2 included in the power supply device 1000 is 1 [ ⁇ ]
  • the current of the DC power supply Vm is 4 [A]. ]].
  • the power supply device 1 according to the first embodiment is more efficient than the power supply device 1000 according to the existing technology. Another reason is that in the power supply device 1, the first arm circuit unit 1020 and the second arm are provided.
  • the excitation current may be dispersed by the circuit portion 1021. That is, it is conceivable that the conduction loss is reduced by dispersing the exciting current, similarly to the example of the conduction loss Los caused by the switching elements Q1, Q2, Q3, and Q4 described above.
  • the value of the inductor Lp generally acts as the regulation lower limit voltage.
  • the inductor Lr2 added to the power supply device 1000 according to the existing technology is connected in parallel to the inductor Lp as the entire circuit. ..
  • the capacitances of the inductors Lr2 and Lp connected in parallel are selected so that the combined capacitance of the inductors Lr2 and Lp is equivalent to that of the inductor Lp in the power supply device 1000.
  • the configuration of the power supply device 1000 according to the existing technology corresponding to the characteristic line 30 and the configuration of the power supply device 1 according to the first embodiment corresponding to the characteristic line 32 are regulated.
  • the lower limit voltage can be made substantially equal.
  • the power supply device 1 according to the first embodiment improves efficiency only by adding the two switching elements Q3 and Q4 and the one inductor Lr2 to the power supply device 1000 according to the existing technology. be able to. Further, as a result, the power supply device 1 according to the first embodiment can be more convenient than the power supply device 1000 according to the existing technology.
  • FIG. 9 is a diagram for more specifically explaining the control according to the first modification of the first embodiment.
  • the characteristic lines 30, 31 and 32 are the same as the characteristic lines 30, 31 and 32 of FIG. 8 described above.
  • the power supply device 1 stops the operation of the second arm circuit unit 1021 and the output power is the power of the switching point 40. In the above case, the second arm circuit unit 1021 is operated.
  • the characteristic line 31 corresponding to the configuration having the higher regulation lower limit voltage is compared with the characteristic line 30 corresponding to the configuration having the lower regulation lower limit voltage than that of the characteristic line 31.
  • the characteristic line 31 is the configuration of the power supply device 1 according to the first embodiment described above, and has a lower load than the characteristic line 32 corresponding to the regulation lower limit voltage equivalent to that of the characteristic line 30.
  • the inductance of the inductor Lp is set to 484 [ ⁇ H]
  • the inductance of the inductor Lp in the configuration of the power supply device 1 corresponding to the characteristic line 32 is also 484. It is set to [ ⁇ H].
  • the inductance of the inductor Lp of the power supply device 1 is selected as described above. More specifically, the inductance of the inductor Lp of the power supply device 1 is selected to be equal to the inductance of the inductor Lp in the high-efficiency configuration indicated by the characteristic line 31. Further, the inductance of the inductor Lp of the power supply device 1 is substantially equal to the inductance of the inductor Lp in the configuration corresponding to the low regulation lower limit voltage shown by the characteristic line 30, when the inductor Lp and the inductor Lr2 are connected in parallel. Choose to be.
  • the power supply device 1 according to the first modification of the first embodiment stops the operation of the second arm circuit unit 1021 when the output power is less than the power of the switching point 40.
  • the power supply device 1 according to the first modification of the first embodiment can be more convenient than the existing power supply device 1000.
  • the operation of the second arm circuit unit 1021 can be stopped by setting the duty of the drive signal supplied to the switching elements Q3 and Q4 to 0%, for example.
  • the control unit 10 obtains output power based on the output supplied from the output circuit unit 1003, and determines whether the obtained output power is less than the switching point 40.
  • the duty control unit 121 controls the oscillator 110 so that the duty of the switching elements Q3 and Q4 is 0%. ..
  • the oscillator 110 supplies the generated signal with 0% Duty to the drive circuits 100 3 and 100 4 for driving the switching elements Q3 and Q4.
  • duty control unit 121 controls the oscillator 110 so that the switching elements Q1 and Q2 of the first arm circuit unit 1020 generate the same signals as before switching.
  • the operation of the power supply device 1 is as follows, for example. That is, when the output power is less than the power of the switching point 40, the first arm circuit unit 1020 operates and the second arm circuit unit 1021 stops. When the output voltage transitions from the state to the electric power of the switching point 40 or more, the power supply device 1 switches the second arm circuit unit 1021 from the stopped state to the operating state while the first arm circuit unit 1020 remains operating.
  • FIG. 10 is a diagram showing an example of fluctuations in each part when the operation of the second arm circuit portion 1021 is switched from the stopped state to the operating state.
  • FIG. 10 shows an example of the result of actual measurement based on the circuit described with reference to FIGS. 4 and 5.
  • the vertical axis represents voltage or current
  • the horizontal axis represents time
  • a characteristic 50 indicates an output voltage output from the output circuit section 1003 of the power supply device 1
  • characteristics 51 and 52 indicate examples of current and voltage of the capacitor Cr1 included in the resonance circuit section 1002, respectively.
  • the frequencies of the drive signals output from the drive circuits 100 1 to 100 4 change.
  • the frequency of the drive signal is substantially zero. It is 80 kHz.
  • the output voltage greatly increases at the timing corresponding to the fluctuations in the voltage and current of the capacitor Cr1. In the power supply device 1, such a variation of the output voltage is not preferable.
  • control for switching the second arm circuit unit 1021 from the stopped state to the operating state at the switching point 40 is performed by setting the duty of the drive signal supplied to the second arm circuit unit 1021. It is done by gradually changing.
  • FIG. 11 shows an example of actually measuring the change in the output voltage when the duty of the drive signal supplied to the second arm circuit unit 1021 is gradually changed according to the second modification of the first embodiment. It is a figure.
  • the duty of the drive signal supplied to each of the switching elements Q3 and Q4 included in the second arm circuit unit 1021 is gradually changed from 50% to 0% as indicated by an arrow in FIG. I'm lowering it.
  • the characteristic line 60 it can be seen that the output voltage of the power supply device 1 gradually decreases as the duty of the drive signal changes.
  • the second arm circuit unit 1021 is switched from the stopped state to the operating state while the first arm circuit unit 1020 is operating. At this time, the duty of the drive signal supplied to each of the switching elements Q3 and Q4 included in the second arm circuit portion 1021 is controlled to be gradually increased. As a result, it is possible to expect rapid changes in the voltage and current of the capacitor Cr1 at the switching point 40 and suppression of changes in the output voltage as described with reference to FIG. Further, as a result, the power supply device 1 according to the second modification of the first embodiment can be more convenient than the power supply device 1000 according to the existing technology.
  • FIG. 12 is a diagram showing an example of the variation of each unit when the operation of the second arm circuit unit 1021 is switched from the operating state to the stopped state according to the second modified example of the first embodiment. Similar to FIG. 10, FIG. 12 shows an example of the result of actual measurement using the circuit described with reference to FIGS. 4 and 5.
  • the voltage and current of the capacitor Cr1 temporarily and sharply drop at the switching point 40, as shown by characteristics 51' and 52' in FIG.
  • the change in the output voltage at the switching point 40 is suppressed to be small as compared with the characteristic 50 of FIG. 10 described above, as shown by the characteristic 50'.
  • 13A to 13D are diagrams for considering suppression of fluctuations in the output voltage at the switching point 40 according to the second modification of the first embodiment.
  • 13A and 13B correspond to FIG. 3A in which the operation of the first arm circuit unit 1020 is described.
  • the switching element Q1 switch SW1
  • the switching element Q2 switch SW2
  • the current from the DC power supply Vm is composed of the inductor Lr1 and the capacitor Cr1 from the switch SW1 via the inductor Lp by the path A corresponding to the solid arrow in FIG. 3A in the first arm circuit unit 1020. It is supplied to the series resonance circuit.
  • the current from the DC power supply Vm is transferred to the second arm by the path B.
  • FIG. 13B is a diagram showing a state in which the operation of the second arm circuit unit 1021 is stopped from the state of FIG. 13A.
  • the current flow in the first arm circuit unit 1020 is the same as in FIG. 13A described above (path A).
  • the switch SW3 switching element Q3
  • the inductor current due to the electromotive force of the inductor Lr2 is generated in the switching element Q4 as shown by a path C in FIG. 13B. It continues to flow through the diode DQ4.
  • 13C and 13D correspond to the operation of the first arm circuit unit 1020 described above with reference to FIG. 3C, and the switch SW1 is off and the switch SW2 is on in the first arm circuit unit 1020.
  • the current from the DC power supply Vm flows in the first arm circuit unit 1020 as a forward current to the switch SW2 through the path D corresponding to the solid arrow in FIG. 3C.
  • the switch SW3 is turned off and the switch SW4 is turned on in the second arm circuit unit 1021.
  • the current from the power supply Vm is supplied to the switch SW3 included in the second arm circuit unit 1021 via the inductor Lr2 by the path E.
  • FIG. 13D is a diagram showing a state in which the operation of the second arm circuit unit 1021 is stopped from the state of FIG. 13C.
  • the current flow in the first arm circuit unit 1020 is the same as in FIG. 13C described above (path D).
  • the inductor current due to the electromotive force of the inductor Lr2 passes through the diode DQ3 in the switching element Q3, as shown by a path F in FIG. 13D. Keep flowing.
  • FIG. 14 is a circuit diagram showing a configuration of an example of a power supply device according to a fourth modification of the first embodiment.
  • a resonance circuit section 1002′ includes an inductor Lr1 in the power supply device 1 shown in FIGS. 4 and 5, a connection point between capacitors C1 and C3, and a primary winding of a transformer Tr. It is provided between the second end and. In the example of FIG. 4, this is because the inductor is provided between the connection point where the switching elements Q1 and Q2 of the first arm circuit unit 1020 are connected in series and the second end of the primary winding of the transformer Tr. This corresponds to providing Lr1.
  • the power supply device 1 according to the third modification of the first embodiment is controlled by the power supply device 1 according to the first embodiment and the first and second modifications thereof. Can also be applied to'. That is, the ON/OFF control of the second arm circuit unit 1021 at the switching point 40 of the predetermined output power according to the first modification of the first embodiment is performed by the third modification of the first embodiment. It can be applied as it is to the power supply device 1'. Further, when the second arm circuit unit 1021 is switched from the OFF state to the ON state at the switching point 40 according to the second modification of the first embodiment, the drive signal for the second arm circuit unit 1021 is changed. The control for gradually changing the duty can also be directly applied to the power supply device 1′ according to the third modified example of the first embodiment.
  • the power supply device 1 ′ according to the third modification of the first embodiment can be more convenient than the power supply device 1000 according to the existing technology.
  • FIG. 15 is a diagram showing an example of drive signals for driving the switching elements Q1, Q2, Q3, and Q4 by the control unit 10 according to the second embodiment.
  • FIG. 15 corresponds to FIG. 7 described above and shows an example of a drive signal by PWM for driving the switching elements Q1, Q2, Q3 and Q4 from the top.
  • each drive signal for driving the switching elements Q1 and Q3 has a duty of 50%.
  • a signal included in the first arm circuit unit 1020 which is an inverted drive signal for driving the switching element Q1
  • a signal, which is included in the second arm circuit unit 1021 and which is an inverted drive signal for driving the switching element Q3 is set as a drive signal for driving the switching element Q4.
  • drive signals for driving the switching elements Q1 and Q2 included in the first arm circuit section 1020 and switching elements Q3 and Q3 included in the second arm circuit section 1021 are included.
  • the respective drive signals for driving Q4 have the opposite phase. That is, in the second embodiment, the switching element Q1 and the switching element Q4 are controlled to be turned on and off at the same timing. Further, the switching element Q2 and the switching element Q3 are turned on and off at the same timing and inverted with respect to the switching elements Q1 and Q4.
  • the low level of the drive signal that drives the switching element Q1 is reduced. Widely controlled for the high period corresponding to the period.
  • the low period of the drive signal for driving the switching element Q4 is widely controlled with respect to the high period of the drive signal for driving the switching element Q2 corresponding to the low period.
  • FIG. 16 is a diagram showing an example of simulation results of characteristics using an equivalent circuit of an LLC type switching power supply device according to the existing technology.
  • the vertical axis represents the output voltage on the secondary winding side of the transformer Tr, and the horizontal axis represents the drive frequency of each switching element.
  • a peak of the output voltage appears at a specific drive frequency, and at a frequency higher than the drive frequency, the output voltage changes so as to converge to a predetermined voltage value.
  • a range 70 of frequencies higher than the drive frequency from the peak drive frequency of the output voltage is a range in which the power supply device is used.
  • FIG. 17 is a diagram showing an example of a simulation result when an antiphase drive signal is added to the equivalent circuit used in the simulation of FIG. 16 according to the second embodiment.
  • the characteristic line 81 the peak of the output voltage appears at the first drive frequency, and when the drive frequency is further increased, the output voltage drops and the output voltage at the second drive frequency. Appears.
  • the driving frequency is further increased from this output voltage dip, the output voltage gradually increases.
  • an output voltage of about 200 [V] is obtained at the peak, whereas an output voltage of about 0 [V] is obtained at the dip. That is, in the LLC type switching power supply device, by adding an arm circuit (called a sub arm circuit) driven in a phase opposite to that of the main arm circuit to the main arm circuit (called a main arm circuit), It has been suggested that the voltage can be lowered from the peak voltage to around 0 [V] (or 0 [V]). In other words, by controlling the drive frequency of the sub-arm circuit, for example, the second arm circuit unit 1021 in the power supply device 1, the output voltage becomes approximately 0 [V] of the peak voltage and the dip voltage. It means that it is possible to change between.
  • the control unit 10 can control the switching elements Q1 to Q4 independently. Therefore, the control for driving the first arm circuit unit 1020 and the second arm circuit unit 1021 according to the second embodiment in opposite phases, the first embodiment described above, and the first embodiment according to each modification thereof.
  • the control for driving the arm circuit unit 1020 and the second arm circuit unit 1021 in the same phase can be realized by the common configuration of the power supply device 1.
  • the frequency of the drive signal output from each of the drive circuits 100 1 to 100 4 can be independently controlled by the control logic unit 120, for example, by a predetermined instruction to the Duty control unit 121. ..
  • the control logic unit 120 initially drives the first arm circuit unit 1020 and the second arm circuit unit 1021 in opposite phases to the duty control unit 121 and the phase control unit 122. Further, the frequency of the drive signal is instructed to be the rightmost frequency in the range 80 of FIG. 17, for example.
  • the drive circuits 100 1 to 100 4 cause the first arm circuit unit 1020 and the second arm circuit unit 1021 to have opposite phases, and In the initial stage, each drive signal that outputs a low voltage is output.
  • control logic unit 120 instructs, for example, the Duty control unit 121 to increase the frequency of the drive signal.
  • the frequency of the drive signal output from each drive circuit 100 1 to 100 4 increases.
  • the control logic unit 120 determines that the output voltage of the power supply device 1 has reached a desired value
  • the control logic unit 120 instructs the phase control unit 122 to operate the first arm circuit unit 1020 and the second arm circuit unit 1021.
  • the drive circuits 100 1 to 100 4 output drive signals for driving the first arm circuit unit 1020 and the second arm circuit unit 1021 in the same phase.
  • the control logic unit 120 can instruct the duty control unit 121 to set the frequency of the drive signal to a predetermined frequency.
  • an example of charging a secondary battery such as a lithium ion battery can be considered.
  • a secondary battery such as a lithium-ion battery
  • the lower limit of the available output voltage is high, and it may be difficult to provide the required voltage at the initial charging of the secondary battery. ..
  • the control unit 10 causes the drive signal of the second arm circuit unit 1021 to have a phase opposite to that of the drive signal of the first arm circuit unit 1020. Can be dealt with by making a transition from to the same phase.
  • the power supply device 1 is more flexible. Various applications are possible. Further, as a result, the power supply device 1 according to the second embodiment can be more convenient than the power supply device 1000 according to the existing technology.
  • a first arm circuit including a first switching element forming an upper arm and a second switching element forming a lower arm, which are connected in series between a positive electrode and a negative electrode of a DC power supply;
  • a second arm circuit including a third switching element forming an upper arm and a fourth switching element forming a lower arm, which is connected in series between a positive electrode and a negative electrode of the DC power supply;
  • a transformer including a primary winding and a secondary winding to which an output circuit that outputs a direct current is connected;
  • a series resonance circuit including a first inductor having one end connected to the first end of the primary winding, and a capacitor connected to the other end of the first inductor;
  • a second inductor whose one end is connected to a connection point of series connection of the third switching element and the fourth switching element;
  • a control circuit for controlling driving of the first arm circuit and the second arm circuit Equipped with A connection point at which the first switching element and the second switching element are connected in series is connected to a
  • the control circuit is The power supply device according to (1), wherein the first arm circuit and the second arm circuit are driven in the same phase.
  • the control circuit is The power supply device according to (1) or (2), wherein the output power output from the output circuit is a predetermined power and the state of the second arm circuit is switched between a stopped state and an operating state.
  • the control circuit is Any of (1) to (3) above, wherein the duty of the PWM signal for driving the second arm circuit is gradually changed to switch the state of the second arm circuit from the stopped state to the operating state.
  • the control circuit is The power supply device according to (1), wherein the first arm circuit and the second arm circuit are driven in opposite phases.
  • a first arm circuit including a first switching element forming an upper arm and a second switching element forming a lower arm, which are connected in series between a positive electrode and a negative electrode of a DC power supply;
  • a second arm circuit including a third switching element forming an upper arm and a fourth switching element forming a lower arm, which is connected in series between a positive electrode and a negative electrode of the DC power supply;
  • a transformer including a primary winding and a secondary winding to which an output circuit that outputs a direct current is connected;
  • a series resonance circuit including a capacitor having one end connected to the first end of the primary winding, and a first inductor having one end connected to the second end of the primary winding;
  • a second inductor whose one end is connected to a connection point of series connection of the third switching element and the fourth switching element;
  • a control circuit for controlling driving of the first arm circuit and the second arm circuit Equipped with A connection point at which the first switching element and the second switching element are connected in series is connected to the other end
  • the control circuit is The power supply device according to (6), wherein the first arm circuit and the second arm circuit are driven in the same phase.
  • the control circuit is The power supply device according to (6) or (7), wherein the voltage of the DC power supply output from the output circuit is a predetermined voltage, and the state of the second arm circuit is switched between a stopped state and an operating state.
  • the control circuit is Any of (6) to (8) above, wherein the duty of the PWM signal for driving the second arm circuit is gradually changed to switch the state of the second arm circuit from the stopped state to the operating state.
  • the power supply device according to. 10
  • the control circuit is The power supply device according to (6), wherein the first arm circuit and the second arm circuit are driven in opposite phases.
  • Control unit 100 100 1 , 100 2 , 100 3 , 100 4 , 200 Drive circuit 110, 210 Oscillator 120, 220 Control logic part 1001, 1010 Arm circuit part 1002 Resonance circuit part 1003 Output Circuit Section 1020 First Arm Circuit Section 1021 Second Arm Circuit Section C1, C2, C3, C4, Cr1 Capacitors L11, Lr1, Lr2, Lp Inductors D1, D2, DQ1, DQ2, DQ3, DQ4 Diodes RQ1, RQ2, RQ3, RQ4 resistors Q1, Q2, Q3, Q4 switching elements SW1, SW2, SW3, SW4 switches

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Dc-Dc Converters (AREA)

Abstract

それぞれ上アームと下アームとを含む第1および第2のアーム回路(1020,1021)と、一端がトランス(Tr)の1次巻線の第1の端に接続される第1のインダクタ(Lr1)と、第1のインダクタの他端に接続されるコンデンサ(Cr1)とを含む直列共振回路と、第2のアーム回路の上アームおよび下アームの接続点に一端が接続される第2のインダクタ(Lr2)と、第1および第2のアーム回路の駆動を制御する制御回路(10)と、を備える。第1のアーム回路の上アームおよび下アームの接続点がトランスの1次巻線の第2の端に接続され、第1のインダクタとコンデンサとの接続点に第2のインダクタの他端が接続される。

Description

電源装置
 本発明は、電源装置に関する。
 2つのインダクタ(L)と、1つのコンデンサ(C)とを用いたLLC電流共振電源によるスイッチング電源装置(以下、LLC型スイッチング電源装置と呼ぶ)が知られている。
 既存のLLC型スイッチング電源装置は、典型的には、例えば、それぞれスイッチング素子により構成され、直列接続される上アームおよび下アームと、コンデンサおよびインダクタを含む直列共振回路と、この直列共振回路に接続されるトランスと、を備える。LLC型スイッチング電源装置は、上アームおよび下アームを交互に駆動して交流電流を発生させ、この交流電流に基づく直列共振回路の作用により、トランスの2次巻線から、入力された直流電源に対応する出力が取り出される。
特開2015-177595号公報
 LLC型スイッチング電源装置は、比較的簡易な構成で効率的に電源を供給できるため、近年では、広く用いられている。そのため、特性をより向上させ、利便性を高めることが求められている。
 本開示は、より利便性の高い電源装置を提供することを目的とする。
 上記目的を解決するために、本開示の電源装置は、直流電源の正極と負極との間に直列接続される、上アームを構成する第1のスイッチング素子と、下アームを構成する第2のスイッチング素子と、を含む第1のアーム回路と、直流電源の正極と負極との間に直列接続される、上アームを構成する第3のスイッチング素子と、下アームを構成する第4のスイッチング素子と、を含む第2のアーム回路と、1次巻線と、直流を出力する出力回路が接続される2次巻線と、を含むトランスと、一端が1次巻線の第1の端に接続される第1のインダクタと、第1のインダクタの他端に接続されるコンデンサと、を含む直列共振回路と、第3のスイッチング素子および第4のスイッチング素子の直列接続の接続点に一端が接続される第2のインダクタと、第1のアーム回路および第2のアーム回路の駆動を制御する制御回路と、を備え、第1のスイッチング素子および第2のスイッチング素子が直列接続される接続点がトランスの1次巻線の第2の端に接続され、第1のインダクタとコンデンサとが接続される接続点に第2のインダクタの他端が接続される。
既存技術による電源装置の一例の構成を示す回路図である。 既存技術による電源装置の寄生要素を考慮した一例の回路図である。 既存技術による電源装置の動作をより具体的に説明するための図である。 既存技術による電源装置の動作をより具体的に説明するための図である。 既存技術による電源装置の動作をより具体的に説明するための図である。 既存技術による電源装置の動作をより具体的に説明するための図である。 第1の実施形態に係る電源装置の一例の構成を示す回路図である。 第1の実施形態に係る電源装置の寄生要素を考慮した一例の回路図である。 第1の実施形態に適用可能な制御ユニットのより詳細な構成の例を示すブロック図である。 第1の実施形態に係る制御ユニットによる、各スイッチング素子を駆動するための駆動信号の例を示す図である。 第1の実施形態に係る電源装置の出力と、既存技術による電源装置の出力とを比較した例を示す図である。 第1の実施形態の第1の変形例に係る制御をより具体的に説明するための図である。 第2のアーム回路の動作を停止状態から動作状態に切り替えた際の各部の変動の例を示す図である。 第1の実施形態の第2の変形例に係る、第2のアーム回路に供給する駆動信号のDutyを徐々に変化させた場合の出力電圧の変化を実測した例を示す図である。 第1の実施形態の第2の変形例に係る、第2のアーム回路の動作を動作状態から停止状態に切り替えた際の各部の変動の例を示す図である。 第1の実施形態の第2の変形例による、切り替えポイントにおける出力電圧の変動の抑制について考察するための図である。 第1の実施形態の第2の変形例による、切り替えポイントにおける出力電圧の変動の抑制について考察するための図である。 第1の実施形態の第2の変形例による、切り替えポイントにおける出力電圧の変動の抑制について考察するための図である。 第1の実施形態の第2の変形例による、切り替えポイントにおける出力電圧の変動の抑制について考察するための図である。 第1の実施形態の第4の変形例に係る電源装置の一例の構成を示す回路図である。 第2の実施形態に係る、制御ユニット10による各スイッチング素子を駆動するための駆動信号の例を示す図である。 既存技術によるLLC型スイッチング電源装置の等価回路を用いた特性のシミュレーション結果の例を示す図である。 第2の実施形態に係る、LLC型スイッチング電源装置の等価回路に、逆位相の駆動信号を追加した場合のシミュレーション結果の例を示す図である。
 以下、本開示の実施形態について、図面に基づいて詳細に説明する。なお、以下の実施形態において、同一の部位には同一の符号を付することにより、重複する説明を省略する。
[第1の実施形態]
 本開示の第1の実施形態に係るLLC電流共振電源によるスイッチング電源装置(以下、電源装置と略称する)について説明する。先ず、理解を容易とするために、既存技術による電源装置について説明する。
 図1は、既存技術による電源装置の一例の構成を示す回路図である。図1において、既存技術による電源装置1000は、アーム回路部1001と、共振回路部1002と、トランスTrと、出力回路部1003と、制御ユニット20と、を含む。トランスTrは、1次巻線と2次巻線とを含み、以下、便宜上、1次巻線の黒点が付されていない側の端を第1の端、黒点が付されている側の端を第2の端として説明を行う。
 アーム回路部1001は、それぞれ上アームおよび下アームを構成し、直列接続されるスイッチング素子Q1およびQ2を含む。スイッチング素子Q1およびQ2は、例えば、N型MOSFET(Metal Oxide Semiconductor Field Effect Transistor)が用いられ、後述する制御ユニット20からゲートに供給される駆動信号に従いオン(閉状態)およびオフ(開状態)が制御される。スイッチング素子Q1のソースとスイッチング素子Q2のドレインとが接続され、スイッチング素子Q1およびQ2が直列接続される。スイッチング素子Q1のドレインに、入力となる直流電源Vmの正極端が接続され、スイッチング素子Q2のソースに、当該直流電源Vmの負極端が接続される。また、スイッチング素子Q1およびQ2の直列接続の接続点が、トランスTrにおける1次巻線の第2の端に接続される。
 共振回路部1002は、直列接続されるインダクタLr1とコンデンサCr1とからなる直列共振回路を含む。直列共振回路のインダクタLr1側の端がトランスTrにおける1次巻線の第1の端に接続され、コンデンサCr1側の端がスイッチング素子Q2のソースおよび直流電源Vmの負極側に接続される。
 インダクタLpは、トランスTrの1次巻線の励磁インダクタンスによるものである。図1の例では、インダクタLpがトランスTrの1次巻線に並列に接続されているように示されている。
 トランスTrの2次巻線に、出力回路部1003が接続される。出力回路部1003は、図1の例では、ダイオードD1およびD2と、平滑コンデンサCL1と、を含む。出力回路部1003は、トランスTrの2次巻線から取り出される交流電流を、ダイオードD1およびD2により二相全波整流し、整流出力を平滑コンデンサCL1により平滑し、直流電源として、抵抗R1として表される負荷に出力する。
 制御ユニット20は、ドライブ回路200と、オシレータ210と、制御ロジック部220と、を含む。オシレータ210は、制御ロジック部220に指示された周波数およびデューティのPWM(Pulse Width Modulation)による信号を生成する。ドライブ回路200は、オシレータ210により生成されたPWMによる信号に従い、スイッチング素子Q1およびQ2を駆動する。このとき、ドライブ回路200は、オシレータ210により生成された信号に基づきスイッチング素子Q1を駆動すると共に、当該信号を反転した反転信号に基づきスイッチング素子Q2を駆動する。
 また、出力回路部1003の出力は、制御ロジック部220にも供給される。制御ロジック部220は、例えば、供給された出力回路部1003の出力の電圧値に基づき、オシレータ210により生成されるPWMによる駆動信号の周波数およびデューティ(以下、Dutyとして説明する)を制御する。このフィードバック制御により、出力回路部1003の出力を安定化できる。
 図2は、上述した図1に対応する、既存技術による電源装置1000の寄生要素を考慮した一例の回路図である。図2において、スイッチング素子Q1は、スイッチSW1と、ダイオードDQ1と、抵抗RQ1と、コンデンサC3とを含む。スイッチSW1は、ドライブ回路200から供給される駆動信号に従いオン、オフが制御される。ダイオードDQ1のアノードが、スイッチSW1の一端とコンデンサC3の一端とにそれぞれ接続される。この、ダイオードDQ1のアノードと、スイッチSW1の一端と、コンデンサC3の一端との接続点が、スイッチング素子Q1のソースに対応する。ダイオードDQ1のカソードは、抵抗RQ1の一端に接続される。抵抗RQ1の他端は、コンデンサC3の他端に接続される。この、抵抗RQ1の他端と、コンデンサC3の他端との接続点が、スイッチング素子Q1のドレインに対応する。ダイオードDQ1のカソードと抵抗RQ1との接続点が、スイッチSW1の他端に接続される。
 スイッチング素子Q2も、スイッチング素子Q1と同様である。すなわち、スイッチング素子Q2は、それぞれスイッチング素子Q1のスイッチSW1と、ダイオードDQ1と、抵抗RQ1と、コンデンサC3と、にそれぞれ対応するスイッチSW2と、ダイオードDQ2と、抵抗RQ2と、コンデンサC1と、を含む。これらスイッチSW2と、ダイオードDQ2と、抵抗RQ2と、コンデンサC1と、の接続関係は、上述したスイッチング素子Q1におけるスイッチSW1と、ダイオードDQ1と、抵抗RQ1と、コンデンサC3と、による接続と同様なので、詳細な説明を省略する。
 トランスTrにおいて、1次巻線の第2の端と、コンデンサCr1の一端との間に、インダクタLr1が接続される。インダクタLr1は、例えばトランスTrの1次巻線の漏れインダクタンスである。トランスTrの1次巻線の第2の端と、コンデンサC1およびC3の接続点とが接続される。
 制御ユニット20は、ドライブ回路200により生成されるPWMによる駆動信号に従いスイッチSW1およびSW2を交互に切り替えて、トランスTrの1次巻線側において直流電源Vmから交流電流を生成する。これにより、トランスTrの2次巻線側にトランスTrの巻線比に応じた交流電流が発生する。トランスTrの2次巻線側において発生した交流電流は、出力回路部1003においてダイオードD1およびD2により整流され、さらに平滑コンデンサCL1により平滑されて、直流電源として、抵抗R1として表される負荷に出力される。
 このとき、制御ユニット20は、スイッチSW1およびSW2の切り替えを、例えば、スイッチSW2(スイッチング素子Q2)の電圧が略0Vになった状態でスイッチSW2をオンとする、ゼロ電圧スイッチング(ZVS)を行う。
 図3A~図3Dは、既存技術による電源装置1000の動作をより具体的に説明するための図である。先ず、図3Aに示されるように、スイッチSW1(スイッチング素子Q1がオン、スイッチSW2(スイッチング素子Q2)がオフの状態を考える。この場合、スイッチSW1がオンとなっているので、スイッチSW1に正方向の電流が流れる。この電流は、図3Aにおいて実線矢印にて示されるように、スイッチSW1(スイッチング素子Q1)から、インダクタLpを介して、インダクタLr1およびコンデンサCr1からなる直列共振回路に供給される。
 なお、図3Aおよび図3Cの点線矢印は、トランスTrの1次巻線に流れる電流を示している。
 次に、スイッチSW1に正方向の電流が流れている状態で、スイッチSW1をオフにする。スイッチSW1をオフにした直後は、図3Bに実線矢印にて示されるように、スイッチング素子Q2に含まれるダイオードDQ2を介してスイッチング素子Q2側に負方向の電流が流れる。直列共振回路における共振電流は、連続的に変化する。ダイオードDQ2に電流が流れている間に、スイッチSW2をオンとする。このとき、スイッチング素子Q2の電圧が略0Vになった状態でスイッチSW2をオンとする、ゼロ電圧スイッチング(ZVS)を行う。
 スイッチSW2がオンとされると、図3Cに示されるように、スイッチSW2(スイッチング素子Q2)に対して正方向の電流が流れる。この状態でスイッチSW2をオフとすると、スイッチSW2をオフとした直後は、図3Dに実線矢印にて示されるように、スイッチング素子Q1に含まれるダイオードDQ1を介してスイッチング素子Q1側に負方向の電流が流れる。直列共振回路における共振電流は、連続的に変化する。ダイオードDQ1に電流が流れている間に、スイッチSW1を、ZVSによりオンとする。これにより、図3Aの状態に戻る。以降、スイッチSW1およびSW2(スイッチング素子Q1およびQ2)を、上述のように順次に駆動制御し、図3A~図3Dの動作を巡回的に行う。
(第1の実施形態に係る構成)
 次に、第1の実施形態に係る構成について説明する。図4は、第1の実施形態に係る電源装置の一例の構成を示す回路図である。図4において、第1の実施形態に係る電源装置1は、図1に示した既存技術による電源装置1000に対して、スイッチング素子Q3およびQ4と、インダクタLr2と、を追加している。
 電源装置1において、アーム回路部1010は、上述したアーム回路部1001に対応する第1のアーム回路部1020と、それぞれ上アームおよび下アームを構成し、直列接続されるスイッチング素子Q3およびQ4を含む第2のアーム回路部1021と、を含む。
 第2のアーム回路部1021において、スイッチング素子Q3のソースとスイッチング素子Q3のドレインとが接続され、スイッチング素子Q3およびQ4が直列接続される。スイッチング素子Q3のドレインに、入力となる直流電源Vmの正極端が接続され、スイッチング素子Q4のソースに、当該直流電源Vmの負極端が接続される。すなわち、第1のアーム回路部1020と第2のアーム回路部1021とは、直流電源Vmに対して並列に接続されている。
 スイッチング素子Q3およびQ4が直列接続される接続点が、インダクタLr2の一端に接続される。インダクタLr2の他端が、インダクタLr1とコンデンサCr1とが接続される接続点に接続される。すなわち、スイッチング素子Q3およびQ4の接続点は、インダクタLr2およびLr1を介してトランスTrの1次巻線における第1の端に接続される。
 また、上述した制御ユニット20に対応する制御ユニット10は、それぞれドライブ回路200、オシレータ110および制御ロジック部120に対応するドライブ回路100と、オシレータ110と、制御ロジック部120と、を含む。ドライブ回路100は、例えば各スイッチング素子Q1、Q2、Q3およびQ4を独立して制御可能とされている。
 図5は、上述した図4に対応する、第1の実施形態に係る電源装置1の寄生要素を考慮した一例の回路図である。図5において、スイッチング素子Q3およびQ4の寄生要素を考慮した構成は、図2を用いて説明したスイッチング素子Q1およびQ2の構成と同様である。
 すなわち、スイッチング素子Q3は、それぞれスイッチング素子Q1のスイッチSW1と、ダイオードDQ1と、抵抗RQ1と、コンデンサC3と、に対応するスイッチSW3と、ダイオードDQ3と、抵抗RQ3と、コンデンサC4と、を含む。さらに、スイッチング素子Q4は、それぞれスイッチング素子Q1のスイッチSW1と、ダイオードDQ1と、抵抗RQ1と、コンデンサC3と、に対応するスイッチSW4と、ダイオードDQ4と、抵抗RQ4と、コンデンサC2と、を含む。
 スイッチング素子Q3が含むスイッチSW3と、ダイオードDQ3と、抵抗RQ3と、コンデンサC4と、の接続関係は、上述したスイッチング素子Q1におけるスイッチSW1と、ダイオードDQ1と、抵抗RQ1と、コンデンサC3と、による接続と同様なので、詳細な説明を省略する。また、スイッチング素子Q4が含むスイッチSW4と、ダイオードDQ4と、抵抗RQ4と、コンデンサC2と、の接続関係は、上述したスイッチング素子Q2におけるスイッチSW2と、ダイオードDQ2と、抵抗RQ2と、コンデンサC1と、による接続と同様なので、詳細な説明を省略する。コンデンサC2とコンデンサC4との接続点が、インダクタLr2の一端に接続される。
 図6は、第1の実施形態に適用可能な制御ユニット10のより詳細な構成の例を示すブロック図である。図6において、制御ユニット10は、ドライブ回路1001、1002、1003および1004と、オシレータ110と、Duty制御部121および位相制御部122を含む制御ロジック部120と、を有する。ドライブ回路1001、1002、1003および1004は、オシレータ110および位相制御部122から供給される各信号に基づき、それぞれスイッチング素子Q1、Q2、Q3およびQ4を駆動する駆動信号を出力する。
 制御ユニット10において、オシレータ110は、スイッチング素子Q1、Q2、Q3およびQ4毎にPWMによる信号を生成する。Duty制御部121は、オシレータ110が生成するPWMによる各信号の周波数およびDutyを制御する。オシレータ110は、生成した各信号を、ドライブ回路1001、1002、1003および1004にそれぞれ供給する。
 位相制御部122は、各ドライブ回路1001、1002、1003および1004に供給されたPWMによる信号の位相を制御する。例えば、位相制御部122は、各ドライブ回路1001、1002、1003および1004に供給されたPWMによる各信号を、それぞれ独立して反転させることができる。また、位相制御部122は、各ドライブ回路1001、1002、1003および1004に供給されたPWMによる各信号に対して、ロー状態に所定のマージンを含めることができる。これにより、各スイッチング素子Q1~Q4は、オフ状態に所定のマージンを含んで交互にオン、オフを切り替えられ、ZVSを実現できる。
(第1の実施形態に係る動作)
 次に、第1の実施形態に係る電源装置1による動作について説明する。第1の実施形態では、電源装置1は、第1のアーム回路部1020と第2のアーム回路部1021とを同位相で制御する。図7は、第1の実施形態に係る制御ユニット10による、各スイッチング素子Q1、Q2、Q3およびQ4を駆動するための駆動信号の例を示す図である。図7において、上から、スイッチング素子Q1、Q2、Q3およびQ4を駆動するための、PWMによる駆動信号の例を示している。この図7の例では、スイッチング素子Q1およびQ3を駆動するための各駆動信号は、Dutyが50%とされている。
 図7に例示されるように、第1のアーム回路部1020に含まれる、スイッチング素子Q1を駆動する駆動信号が反転された信号が、スイッチング素子Q2を駆動する駆動信号とされている。同様に、第2のアーム回路部1021に含まれる、スイッチング素子Q3を駆動する駆動信号が反転された信号が、スイッチング素子Q4を駆動する駆動信号とされている。
 また、図7の例では、第1のアーム回路部1020に含まれる各スイッチング素子Q1およびQ2を駆動する各駆動信号と、第2のアーム回路部1021に含まれる各スイッチング素子Q3およびQ4を駆動する各駆動信号とが、同位相とされている。すなわち、スイッチング素子Q1およびQ3は、同一のタイミングでオン、オフが制御される。また、スイッチング素子Q2およびQ4は、同一のタイミング、且つ、スイッチング素子Q1およびQ3に対して反転して、オン、オフが制御される。
 なお、図7の例では、スイッチング素子Q2を駆動する駆動信号のロー期間は、スイッチング素子Q1を駆動する駆動信号の、当該ロー期間に対応するハイ期間に対して広く制御される。同様に、スイッチング素子Q4を駆動する駆動信号のロー期間は、スイッチング素子Q2を駆動する駆動信号の、当該ロー期間に対応するハイ期間に対して広く制御される。これにより、上述したZVSが実行される。
 図8は、第1の実施形態に係る電源装置1の出力と、図1および図2を用いて説明した既存技術による電源装置1000の出力とを比較した例を示す図である。図8において、縦軸は効率、横軸は出力電力を示している。図8において、特性線30および31は、既存技術による電源装置1000の出力例を示す。
 これらのうち、特性線30は、インダクタLp(図1および図2参照)のインダクタンスが第1の値(例えば235[μH])の場合の例、特性線31は、インダクタLpのインダクタンスが第1の値の略2倍(例えば484[μH])の場合の例を示す。特性線32は、第1の実施形態に係る電源装置1の出力例を示す。この場合、インダクタLpのインダクタンスが上述の第2の値(例えば484[μH])とされ、インダクタLr2のインダクタンスが当該第2の値と近い値(例えば520[μH])とされている。
 また、スイッチング方式の電源装置においては、入力電圧に対して出力電圧が維持できる下限の入力電圧が存在する。以下では、この下限の入力電圧を、レギュレート下限電圧と呼ぶ。上述した各特性線30、31および32に対応する各構成のレギュレート下限電圧が、それぞれ223[V]、274[V]および223[V]であるものとする。一般的に、LLC型スイッチング方式の電源装置においては、レギュレート下限電圧と効率とは、トレードオフの関係にある。すなわち、レギュレート下限電圧が高いほど効率が高くなる。一方、レギュレート下限電圧が低いことは、より広い範囲の入力電圧に対応可能であることを示している。
 図8から分かるように、レギュレート下限電圧が等しい構成に基づく特性線32と特性線30とを比較した場合、特性線32の示す効率は、特性線30が示す効率に対して出力電力が70[W]程度から700[W]程度の範囲について、0.5%~1.5%ほど高い。また、レギュレート下限電圧が特性線32の構成に対して高い場合の特性線31については、ある出力電力(図8の例では260[W]付近)を境界に、当該出力電圧が高い領域では、特性線32の示す効率が、特性線31の示す効率に対して0.5%程度、高い。
 なお、ここでいう効率は、入力される直流電源による電力に対する、出力される電力の比率をいう。入力される直流電源による電力と、出力される電力とが等しい場合、100%の効率である。また、出力される電力が、入力される直流電源による電力の1/2である場合、50%の効率である。
 図8の特性線32と特性線30とを比較すると、レギュレート下限電圧が同一の条件下においては、第1の実施形態に係る電源装置1は、既存技術による電源装置1000と比較して効率が高いことが分かる。
 この理由の一つとして、各スイッチング素子Q1、Q2、Q3およびQ4の導通損失が関係していることが考えられる。ここで、電源装置1が含む各スイッチング素子Q1、Q2、Q3およびQ4、ならびに、電源装置1000が含む各スイッチング素子Q1およびQ2の抵抗が1[Ω]とし、直流電源Vmの電流が4[A]であるものとする。また、抵抗Rの素子に電流Iが流れた場合の、当該素子における導通損失Los[W]は、Los=I×I×Rにて算出される。
 電源装置1000においては、電流I=4[A]の直流電源Vmがスイッチング素子Q1に流れ込み、この場合のスイッチング素子Q1における導通損失Losは、Los=4×4×1=16[W]となる。
 一方、電源装置1においては、直流電源Vmは、直流電源Vmに対して共通して接続されるスイッチング素子Q1とスイッチング素子Q3とにそれぞれ流れ込む。したがって、スイッチング素子Q1およびQ3に流れ込む電流は、それぞれ電流I×(1/2)=2[A]となる。この場合のスイッチング素子Q1およびQ3における導通損失Losは、Los=(2×2×1)×2=8[W]となり、上述した電源装置1000の例と比較して、1/2となっている。
 また、第1の実施形態に係る電源装置1が既存技術による電源装置1000と比較して効率が高い、別の理由として、当該電源装置1では、第1のアーム回路部1020と第2のアーム回路部1021とによる励磁電流の分散が考えられる。すなわち、励磁電流が分散することにより、上述した各スイッチング素子Q1、Q2、Q3およびQ4による導通損失Losの例と同様に、導通損失を低減していることが考えられる。
 ここで、レギュレート下限電圧は、一般的には、インダクタLpの値が作用する。第1の実施形態に係る電源装置1では、既存技術による電源装置1000に対して追加されたインダクタLr2が、回路全体として、インダクタLpに対して並列に接続されていると見做すことができる。この並列接続されたインダクタLr2およびLpの各容量を、これらの合成容量が電源装置1000におけるインダクタLpと同等となるように、選択する。これにより、上述したように、特性線30に対応する、既存技術による電源装置1000に係る構成と、特性線32に対応する、第1の実施形態による電源装置1に係る構成とで、レギュレート下限電圧を略等しくすることができる。
 このように、第1の実施形態に係る電源装置1は、既存技術による電源装置1000に対して、2つのスイッチング素子Q3およびQ4と、1つのインダクタLr2とを追加するだけで、効率を改善することができる。またこれにより、第1の実施形態に係る電源装置1は、既存技術による電源装置1000と比較して、より利便性を高めることが可能である。
(第1の実施形態の第1の変形例)
 次に、第1の実施形態の第1の変形例について説明する。上述したように、図8において、上述した第1の実施形態に係る電源装置1による特性線32に対して、特性線31が所定点(例えば出力電力=260[W])にて交差し、当該所定点未満の出力電圧において、電源装置1の効率が、既存技術による電源装置1000の効率を下回っている。そこで、第1の実施形態の第1の変形例では、レギュレート下限電圧が高い場合に、この特性線31と特性線32とが交差する所定点を切り替えポイントとして、第2のアーム回路部1021の動作を切り替える。
 図9は、第1の実施形態の第1の変形例に係る制御をより具体的に説明するための図である。図9において、各特性線30、31および32は、上述した図8の各特性線30、31および32と同一である。図9に例示されるように、電源装置1は、出力電力が切り替えポイント40の電力未満の場合には、第2のアーム回路部1021の動作を停止させ、出力電力が当該切り替えポイント40の電力以上の場合に、第2のアーム回路部1021を動作させる。
 すなわち、図9に示されるように、レギュレート下限電圧の高い構成に対応する特性線31は、レギュレート下限電圧が当該特性線31の場合よりも低い構成に対応する特性線30と比較して、全体にわたって高効率を示している。一方、特性線31は、上述の第1の実施形態に係る電源装置1の構成であって、特性線30の場合と同等のレギュレート下限電圧に対応する特性線32と比較して、低負荷時、すなわち切り替えポイント40の電力未満の出力電力では高効率であり、高負荷時、すなわち切り替えポイント40以上の出力電力では低効率となっている。また、上述したように、特性線31に対応する電源装置1000の構成において、インダクタLpのインダクタンスが484[μH]とされ、特性線32に対応する電源装置1の構成におけるインダクタLpのインダクタンスも484[μH]とされている。
 第1の実施形態の第1の変形例では、電源装置1のインダクタLpのインダクタンスを、上述のように選択する。より具体的には、電源装置1のインダクタLpのインダクタンスを、特性線31に示す高効率の構成におけるインダクタLpのインダクタンスと同等になるように選択する。さらに、電源装置1のインダクタLpのインダクタンスを、インダクタLpとインダクタLr2とを並列接続した際の合成インダクタンスが、特性線30で示す低レギュレート下限電圧に対応する構成におけるインダクタLpのインダクタンスと略同等になるように選択する。
 第1の実施形態の第1の変形例に係る電源装置1は、このような構成とすることで、出力電力が切り替えポイント40の電力未満の場合に第2のアーム回路部1021の動作を停止させ(オフ)、出力電力が切り替えポイント40の電力以上の場合に第2のアーム回路部1021を動作させる(オン)ことにより、出力電力の広い範囲において、高効率を得ることができる。またこれにより、第1の実施形態の第1の変形例に係る電源装置1は、既存の電源装置1000に対して、より利便性を高めることが可能である。
 なお、第2のアーム回路部1021の動作停止は、例えば、スイッチング素子Q3およびQ4に供給する駆動信号のDutyを0%にすることで実現できる。例えば、制御ユニット10は、出力回路部1003から供給された出力に基づき、出力電力を求め、求めた出力電力が切り替えポイント40未満であるか否かを判定する。
 制御ユニット10は、出力電力が切り替えポイント40未満であると判定した場合、Duty制御部121により、スイッチング素子Q3およびQ4に対してDutyが0%の信号を生成するように、オシレータ110を制御する。オシレータ110は、生成したDutyが0%の信号を、スイッチング素子Q3およびQ4を駆動するためのドライブ回路1003および1004に供給する。
 なお、Duty制御部121は、第1のアーム回路部1020のスイッチング素子Q1およびQ2については、切り替え以前と同様の信号を生成するように、オシレータ110を制御する。
(第1の実施形態の第2の変形例)
 次に、第1の実施形態の第2の変形例について説明する。第1の実施形態の第2の変形例は、例えば上述した第1の実施形態の第1の変形例において、出力電力が切り替えポイント40の電力未満から、当該切り替えポイント40の電力以上に遷移した場合の対応例である。
 出力電力が切り替えポイント40の電力未満から、当該切り替えポイント40の電力以上に遷移した場合、電源装置1の動作は、例えば次のようになる。すなわち、出力電力が切り替えポイント40の電力未満の状態では、第1のアーム回路部1020が動作し、第2のアーム回路部1021が停止している。この状態から出力電圧が切り替えポイント40の電力以上に遷移すると、電源装置1は、第1のアーム回路部1020が動作したまま、第2のアーム回路部1021が停止状態から動作状態に切り替わる。
 この場合、第2のアーム回路部1021が停止状態から動作状態に切り替わる瞬間に、電源装置1において、電圧、電流が大きく上昇する部分が発生する。図10は、第2のアーム回路部1021の動作を停止状態から動作状態に切り替えた際の各部の変動の例を示す図である。この図10は、図4および図5を用いて説明した回路に基づき実測した結果の例を示している。
 図10において、縦軸は電圧または電流、横軸は時間を示し、切り替えポイント40に対して時間的に前の期間は、第2のアーム回路部1021が停止状態(Duty=0%)とされ、切り替えポイント40において、第2のアーム回路部1021が停止状態から動作状態(Duty=50%)に移行される。特性50は、電源装置1の出力回路部1003から出力される出力電圧、特性51および52は、それぞれ、共振回路部1002に含まれるコンデンサCr1の電流および電圧の例を示している。
 切り替えポイント40の前後において、ドライブ回路1001~1004から出力される駆動信号の周波数が変化する。図10の例では、切り替えポイント40の前の、スイッチング素子Q1およびQ2がDuty=50%で駆動され、スイッチング素子Q3およびQ4がDuty=0%で駆動されている場合、駆動信号の周波数が略80kHzとなっている。これに対して、切り替えポイント40の後の、スイッチング素子Q1~Q4がDuty=50%で駆動されている場合には、駆動信号の周波数が略122kHzとなっている。
 また、図10の特性51および52に示されるように、切り替えポイント40において、コンデンサCr1の電圧および電流の急激な上昇が一時的に発生する。このとき、駆動信号の周波数を80kHzから122kHzに変化させる必要があるが、駆動信号の周波数は、制御の遅延により瞬時に変わらず、過剰な電力供給により、コンデンサCr1の電圧および電流が増大する。このコンデンサCr1の電圧および電流の変動と対応するタイミングで、特性50に示されるように、出力電圧が大きく上昇している。電源装置1において、このような出力電圧の変動は好ましくない。
 第1の実施形態の第2の変形例では、切り替えポイント40において第2のアーム回路部1021を停止状態から動作状態に切り替える制御を、第2のアーム回路部1021に供給する駆動信号のDutyを徐々に変化させることで行う。
 図11は、第1の実施形態の第2の変形例に係る、第2のアーム回路部1021に供給する駆動信号のDutyを徐々に変化させた場合の出力電圧の変化を実測した例を示す図である。図11の例では、第2のアーム回路部1021に含まれる各スイッチング素子Q3およびQ4に供給する駆動信号のDutyを、図11中に矢印で示されるように、50%から0%に徐々に下げている。図11によれば、特性線60に示されるように、この駆動信号のDutyの変化に伴い、電源装置1の出力電圧が緩やかに低下していくことが分かる。
 第1の実施形態の第2の変形例では、この図11に示される結果に基づき、第1のアーム回路部1020が動作中に、第2のアーム回路部1021を停止状態から動作状態に切り替える際に、第2のアーム回路部1021に含まれる各スイッチング素子Q3およびQ4に供給する駆動信号のDutyを徐々に上げていくように制御する。これにより、図10を用いて説明したような、切り替えポイント40におけるコンデンサCr1の電圧および電流の急激な変動、および、出力電圧の変化の抑制が期待できる。またこれにより、第1の実施形態の第2の変形例に係る電源装置1は、既存技術による電源装置1000と比較して、より利便性を高めることが可能である。
(第2のアーム回路の動作を停止状態に遷移させた場合の動作)
 なお、第1のアーム回路部1020が動作状態の場合に、第2のアーム回路部1021を動作状態から停止状態に切り替えた場合には、上述した出力電圧の大きな変化や、コンデンサCr1の電圧および電流の急激な上昇は、発生しない。
 図12は、第1の実施形態の第2の変形例に係る、第2のアーム回路部1021の動作を動作状態から停止状態に切り替えた際の各部の変動の例を示す図である。この図12は、図10と同様に、図4および図5を用いて説明した回路を用いて実測した結果の例を示している。
 図12において、切り替えポイント40に対して時間的に前の期間は、第2のアーム回路部1021が動作状態(Duty=50%)とされ、切り替えポイント40において、第2のアーム回路部1021が停止状態(Duty=0%)とされる。コンデンサCr1の電圧および電流は、図12に特性51’および52’として示されるように、切り替えポイント40において一時的に急激に下降する。一方、切り替えポイント40における出力電圧は、特性50’に示されるように、上述した図10の特性50に比べて、変動が小さく抑えられている。
 図13A~図13Dは、第1の実施形態の第2の変形例による、切り替えポイント40における出力電圧の変動の抑制について考察するための図である。図13Aおよび図13Bは、第1のアーム回路部1020の動作が上述した図3Aに対応するもので、第1のアーム回路部1020においてスイッチング素子Q1(スイッチSW1)がオン、スイッチング素子Q2(スイッチSW2)がオフ状態となっている。
 図13Aにおいて、直流電源Vmからの電流は、第1のアーム回路部1020において、図3Aの実線矢印に対応する経路Aにより、スイッチSW1から、インダクタLpを介して、インダクタLr1およびコンデンサCr1からなる直列共振回路に供給される。
 第1のアーム回路部1020と第2のアーム回路部1021とが同位相で駆動されている場合、第2のアーム回路部1021においても、直流電源Vmからの電流が、経路Bにより、第2のアーム回路部1021に含まれるスイッチSW3(スイッチング素子Q3)に供給され、当該スイッチSW3からインダクタLr2を介して、直流共振回路を構成するインダクタr1とコンデンサCr1との接続点に供給される。
 図13Bは、図13Aの状態から、第2のアーム回路部1021の動作が停止された状態を示す図である。この場合、第1のアーム回路部1020における電流の流れは、上述した図13Aと変わらない(経路A)。
 第2のアーム回路部1021において、スイッチSW3(スイッチング素子Q3)がオンからオフの状態に切り替えられると、図13Bに経路Cとして示すように、インダクタLr2の起電力によるインダクタ電流がスイッチング素子Q4におけるダイオードDQ4を介して流れ続ける。ここで、インダクタLr2の起電力による電圧Vs(以下、起電圧Vs)は、接地電位をVGNDとし、ダイオードDQ4の両端の電位をDiとするとき、Vs=VGND-Diとなる。
 このインダクタLr2の起電圧Vsは、ダイオードDQ4により所定電圧にクランプされるため、インダクタLr1およびコンデンサCr1による直流共振回路に対する影響が小さいものと考えられ、これにより、トランスTrの2次巻線側への影響も抑えられるものと考えられる。
 図13Cおよび図13Dは、第1のアーム回路部1020の動作が上述した図3Cに対応するもので、第1のアーム回路部1020においてスイッチSW1がオフ、スイッチSW2がオン状態となっている。
 図13Cにおいて、直流電源Vmからの電流は、第1のアーム回路部1020において、図3Cの実線矢印に対応する経路Dにより、スイッチSW2に対して正方向の電流として流れる。また、第1のアーム回路部1020と第2のアーム回路部1021とが同位相で駆動されている場合、第2のアーム回路部1021においてスイッチSW3がオフ、スイッチSW4がオン状態とされ、直流電源Vmからの電流が、経路Eにより、インダクタLr2を介して、第2のアーム回路部1021に含まれるスイッチSW3に供給される。
 図13Dは、図13Cの状態から、第2のアーム回路部1021の動作が停止された状態を示す図である。この場合、第1のアーム回路部1020における電流の流れは、上述した図13Cと変わらない(経路D)。
 第2のアーム回路部1021において、スイッチSW4がオンからオフの状態に切り替えられると、図13Dに経路Fとして示すように、インダクタLr2の起電力によるインダクタ電流がスイッチング素子Q3におけるダイオードDQ3を介して流れ続ける。ここで、インダクタLr2の起電圧Vs’は、直流電源Vmの電圧を電圧Viとし、ダイオードDQ3の両端の電位をDiするとき、Vs’=Vi+Diとなる。
 このインダクタLr2の起電圧Vs’は、ダイオードDQ32により所定電圧にクランプされるため、インダクタLr1およびコンデンサCr1による直流共振回路に対する影響が小さいものと考えられ、これにより、トランスTrの2次巻線側への影響も抑えられるものと考えられる。
(第1の実施形態の第3の変形例)
 次に、第1の実施形態の第3の変形例について説明する。図4および図5を用いて説明した電源装置1では、直流共振回路を構成するインダクタLr1を、コンデンサCr1と直接的に接続していた。これに対して、第1の実施形態の第3の変形例では、当該インダクタLr1の位置を、上述した図4および図5の位置に対して変更する。
 図14は、第1の実施形態の第4の変形例に係る電源装置の一例の構成を示す回路図である。図14に示す電源装置1’において、共振回路部1002’は、図4および図5に示した電源装置1におけるインダクタLr1を、コンデンサC1およびC3の接続点と、トランスTrにおける1次巻線の第2の端と、の間に設けている。これは、図4の例では、第1のアーム回路部1020のスイッチング素子Q1およびQ2が直列接続される接続点と、トランスTrの1次巻線の第2の端と、の間に、インダクタLr1を設けることに相当する。
 第2のアーム回路部1021のスイッチング素子Q3およびQ4が直列接続される接続点は、インダクタLr2を介して、コンデンサCr1とトランスTrの1次巻線の第1の端と、の接続点に対して接続される。
 このように、コンデンサCr1と共に直流共振回路を構成するインダクタLr1を、コンデンサCr1に対してトランスTrの1次巻線を介して配置しても、コンデンサCr1およびインダクタLr1による直列共振回路を構成することができる。
 なお、上述した第1の実施形態、ならびに、その第1の変形例および第2の変形例に係る電源装置1に対する制御は、この第1の実施形態の第3の変形例に係る電源装置1’に対しても、そのまま適用できる。すなわち、第1の実施形態の第1の変形例に係る、所定出力電力の切り替えポイント40での第2のアーム回路部1021のオン、オフ制御を、第1の実施形態の第3の変形例に係る電源装置1’に対してそのまま適用できる。また、第1の実施形態の第2の変形例に係る、当該切り替えポイント40において第2のアーム回路部1021のオフ状態からオン状態への切り替え時に、第2のアーム回路部1021に対する駆動信号のDutyを徐々に変化させる制御も、第1の実施形態の第3の変形例に係る電源装置1’に対してそのまま適用できる。
 またこれにより、第1の実施形態の第3の変形例に係る電源装置1’は、既存技術による電源装置1000と比較して、より利便性を高めることが可能である。
[第2の実施形態]
 次に、第2の実施形態について説明する。上述した第1の実施形態およびその各変形例では、第1のアーム回路部1020と、第2のアーム回路部1021と、を同位相で駆動していた。これに対して、第2の実施形態では、第1のアーム回路部1020と、第2のアーム回路部1021と、を逆位相にて駆動する。なお、第2の実施形態では、図4および図5を用いて説明した第1の実施形態に係る電源装置1の構成をそのまま適用するものとし、構成に関する詳細な説明を省略する。
(第2の実施形態に係る動作)
 第2の実施形態に係る電源装置1による動作について説明する。図15は、第2の実施形態に係る、制御ユニット10による各スイッチング素子Q1、Q2、Q3およびQ4を駆動するための駆動信号の例を示す図である。図15は、上述した図7と対応するもので、上から、スイッチング素子Q1、Q2、Q3およびQ4を駆動するための、PWMによる駆動信号の例を示している。この図7の例では、スイッチング素子Q1およびQ3を駆動するための各駆動信号は、Dutyが50%とされている。
 図15に例示されるように、第1のアーム回路部1020に含まれる、スイッチング素子Q1を駆動する駆動信号が反転された信号が、スイッチング素子Q2を駆動する駆動信号とされている。同様に、第2のアーム回路部1021に含まれる、スイッチング素子Q3を駆動する駆動信号が反転された信号が、スイッチング素子Q4を駆動する駆動信号とされている。
 ここで、第2の実施形態においては、第1のアーム回路部1020に含まれる各スイッチング素子Q1およびQ2を駆動する各駆動信号と、第2のアーム回路部1021に含まれる各スイッチング素子Q3およびQ4を駆動する各駆動信号とが、逆位相とされている。すなわち、第2の実施形態においては、スイッチング素子Q1とスイッチング素子Q4とが、同一のタイミングでオン、オフを制御される。また、スイッチング素子Q2とスイッチング素子Q3とが、同一のタイミング、且つ、スイッチング素子Q1およびQ4に対して反転して、オン、オフが制御される。
 また、図15に示されるように、第2の実施形態では、図7の例と同様に、スイッチング素子Q2を駆動する駆動信号のロー期間は、スイッチング素子Q1を駆動する駆動信号の、当該ロー期間に対応するハイ期間に対して広く制御される。同様に、スイッチング素子Q4を駆動する駆動信号のロー期間は、スイッチング素子Q2を駆動する駆動信号の、当該ロー期間に対応するハイ期間に対して広く制御される。これにより、上述したZVSが実行される。
 図16および図17を用いて、第2の実施形態に係る逆位相の制御の効果について説明する。図16は、既存技術によるLLC型スイッチング電源装置の等価回路を用いた特性のシミュレーション結果の例を示す図である。図16において、縦軸は、トランスTrの2次巻線側における出力電圧、横軸は、各スイッチング素子の駆動周波数を示している。
 特性線71で示されるように、特定の駆動周波数において出力電圧のピークが現れ、当該駆動周波数以上の周波数では、出力電圧が所定の電圧値に収束するように変化する。図16の例では、出力電圧が280[V]付近でピークとなり、以降、駆動周波数が高くなるに連れ、出力電圧が所定電圧値=60[V]に向けて下降し、収束する様子が示されている。出力電圧のピークの駆動周波数から、当該駆動周波数より高い周波数の範囲70が、当該電源装置を使用する範囲となる。
 図17は、第2の実施形態に係る、図16のシミュレーションに用いた等価回路に、逆位相の駆動信号を追加した場合のシミュレーション結果の例を示す図である。この図17の例では、特性線81で示されるように、第1の駆動周波数において出力電圧のピークが現れ、さらに駆動周波数を高くすると、出力電圧が降下し、第2の駆動周波数において出力電圧のディップが現れる。この出力電圧のディップからさらに駆動周波数を高くすると、出力電圧が徐々に高くなる。
 この図17の例では、ピークにおいて200[V]程度の出力電圧が得られていることに対して、ディップにおいて略0[V]の出力電圧が得られている。すなわち、LLC型スイッチング電源装置において、主たるアーム回路(主アーム回路と呼ぶ)に対して、当該主アーム回路と逆位相で駆動されるアーム回路(副アーム回路と呼ぶ)を追加することで、出力電圧をピークの電圧から0[V]付近(あるいは0[V])まで降下可能となることが示唆されている。これは、換言すれば、副アーム回路、例えば、電源装置1における第2のアーム回路部1021の駆動周波数を制御することで、出力電圧をピークの電圧とディップの電圧の略0[V]との間で可変とすることが可能となることを意味している。
 図4、図5および図6を用いて説明したように、制御ユニット10は、スイッチング素子Q1~Q4をそれぞれ独立して制御可能とされている。したがって、第2の実施形態に係る第1のアーム回路部1020および第2のアーム回路部1021を逆位相で駆動する制御と、上述した第1の実施形態、ならびに、その各変形例による第1のアーム回路部1020および第2のアーム回路部1021を同位相で駆動する制御と、は、電源装置1の共通の構成により実現可能である。また、制御ユニット10において、制御ロジック部120により、例えばDuty制御部121に対する所定の指示により、各ドライブ回路1001~1004から出力される駆動信号の周波数を、それぞれ独立して制御可能である。
 例えば、出力電圧を0[V]に近い低電圧から、高電圧に変化させ、その後、当該高電圧にて安定させる場合について考える。この場合、制御ユニット10において、制御ロジック部120は、当初、Duty制御部121および位相制御部122に対して、第1のアーム回路部1020と第2のアーム回路部1021とを逆位相で駆動し、また、駆動信号の周波数を、例えば図17の範囲80における右端の周波数とするように指示する。
 この指示に基づくDuty制御部121および位相制御部122の制御に応じて、各ドライブ回路1001~1004により、第1のアーム回路部1020と第2のアーム回路部1021とを逆位相、且つ、初期には低電圧の出力となるような各駆動信号が出力される。
 その後、制御ロジック部120は、例えばDuty制御部121に対し、駆動信号の周波数を上昇させるように指示する。この指示に応じて、各ドライブ回路1001~1004から出力される駆動信号の周波数が上昇する。
 制御ロジック部120は、例えば、電源装置1の出力電圧が所望の値に達したと判定した場合、位相制御部122に対して、第1のアーム回路部1020と第2のアーム回路部1021とを同位相で駆動するように指示する。この指示に基づく位相制御部122の制御に応じて、各ドライブ回路1001~1004により、第1のアーム回路部1020と第2のアーム回路部1021とを同位相で駆動する駆動信号が出力される。ここで、必要に応じて、制御ロジック部120は、Duty制御部121に対して、駆動信号の周波数を所定の周波数とするように指示することもできる。
(第2の実施形態に係る電源装置の適用例)
 第2の実施形態に係る電源装置1の制御の適用例としては、リチウムイオンバッテリといった2次電池を充電する例が考えられる。例えば、リチウムイオンバッテリといった2次電池を充電する場合には、充電初期にバッテリの状態を判定する過程などを含めて、より低電圧から電源を提供する必要がある。既存技術によるLLC型スイッチング電源装置の構成では、図16に例を示したように、利用可能な出力電圧の下限が高く、当該2次電池の充電初期の必要電圧の提供が難しい可能性がある。
 これに対して、第2の実施形態に係る電源装置1では、利用可能な出力電圧を略0[V]からピーク電圧まで可変することが可能であり、当該2次電池の充電初期の必要電圧の提供が容易であると考えられる。また、充電動作において高電圧が必要となった場合には、制御ユニット10により、第2のアーム回路部1021の駆動信号の第1のアーム回路部1020の駆動信号の位相に対して、逆位相から同位相に遷移させることで対応が可能である。
 このように、本開示に係る電源装置1に対し、第1の実施形態、および、その各変形例に係る制御と、第2の実施形態に係る制御とを組み合わせて適用することで、より柔軟な適用が可能となる。またこれにより、第2の実施形態に係る電源装置1は、既存技術による電源装置1000と比較して、より利便性を高めることが可能である。
 なお、本明細書に記載された効果はあくまで例示であって限定されるものでは無く、また他の効果があってもよい。
 なお、本技術は以下のような構成も取ることができる。
(1)
 直流電源の正極と負極との間に直列接続される、上アームを構成する第1のスイッチング素子と、下アームを構成する第2のスイッチング素子と、を含む第1のアーム回路と、
 前記直流電源の正極と負極との間に直列接続される、上アームを構成する第3のスイッチング素子と、下アームを構成する第4のスイッチング素子と、を含む第2のアーム回路と、
 1次巻線と、直流を出力する出力回路が接続される2次巻線と、を含むトランスと、
 一端が前記1次巻線の第1の端に接続される第1のインダクタと、該第1のインダクタの他端に接続されるコンデンサと、を含む直列共振回路と、
 前記第3のスイッチング素子および前記第4のスイッチング素子の直列接続の接続点に一端が接続される第2のインダクタと、
 前記第1のアーム回路および前記第2のアーム回路の駆動を制御する制御回路と、
を備え、
 前記第1のスイッチング素子および前記第2のスイッチング素子が直列接続される接続点が前記トランスの前記1次巻線の第2の端に接続され、
 前記第1のインダクタと前記コンデンサとが接続される接続点に前記第2のインダクタの他端が接続される
電源装置。
(2)
 前記制御回路は、
 前記第1のアーム回路と、前記第2のアーム回路と、を同位相で駆動する
前記(1)に記載の電源装置。
(3)
 前記制御回路は、
 前記出力回路から出力される出力電力が所定電力で、前記第2のアーム回路の状態を、停止状態と動作状態とで切り替える
前記(1)または前記(2)に記載の電源装置。
(4)
 前記制御回路は、
 前記第2のアーム回路を駆動するためのPWM信号のデューティを徐々に変化させて、前記第2のアーム回路の状態を停止状態から動作状態へと切り替える
前記(1)乃至(3)の何れかに記載の電源装置。
(5)
 前記制御回路は、
 前記第1のアーム回路と、前記第2のアーム回路と、を逆位相で駆動する
前記(1)に記載の電源装置。
(6)
 直流電源の正極と負極との間に直列接続される、上アームを構成する第1のスイッチング素子と、下アームを構成する第2のスイッチング素子と、を含む第1のアーム回路と、
 前記直流電源の正極と負極との間に直列接続される、上アームを構成する第3のスイッチング素子と、下アームを構成する第4のスイッチング素子と、を含む第2のアーム回路と、
 1次巻線と、直流を出力する出力回路が接続される2次巻線と、を含むトランスと、
 一端が前記1次巻線の第1の端に接続されるコンデンサと、一端が該1次巻線の第2の端に接続される第1のインダクタと、を含む直列共振回路と、
 前記第3のスイッチング素子および前記第4のスイッチング素子の直列接続の接続点に一端が接続される第2のインダクタと、
 前記第1のアーム回路および前記第2のアーム回路の駆動を制御する制御回路と、
を備え、
 前記第1のスイッチング素子および前記第2のスイッチング素子が直列接続される接続点が前記第1のインダクタの他端に接続され、
 前記第2のインダクタの他端が前記コンデンサと、前記1次巻線の前記第1の端と、の接続点に接続される
電源装置。
(7)
 前記制御回路は、
 前記第1のアーム回路と、前記第2のアーム回路と、を同位相で駆動する
前記(6)に記載の電源装置。
(8)
 前記制御回路は、
 前記出力回路から出力される直流電源の電圧が所定電圧で、前記第2のアーム回路の状態を、停止状態と動作状態とで切り替える
前記(6)または前記(7)に記載の電源装置。
(9)
 前記制御回路は、
 前記第2のアーム回路を駆動するためのPWM信号のデューティを徐々に変化させて、前記第2のアーム回路の状態を停止状態から動作状態へと切り替える
前記(6)乃至(8)の何れかに記載の電源装置。
(10)
 前記制御回路は、
 前記第1のアーム回路と、前記第2のアーム回路と、を逆位相で駆動する
前記(6)に記載の電源装置。
1,1’,1000 電源装置
10,20 制御ユニット
100,1001,1002,1003,1004,200 ドライブ回路
110,210 オシレータ
120,220 制御ロジック部
1001,1010 アーム回路部
1002 共振回路部
1003 出力回路部
1020 第1のアーム回路部
1021 第2のアーム回路部
C1,C2,C3,C4,Cr1 コンデンサ
Ll1,Lr1,Lr2,Lp インダクタ
D1,D2,DQ1,DQ2,DQ3,DQ4 ダイオード
RQ1,RQ2,RQ3,RQ4 抵抗
Q1,Q2,Q3,Q4 スイッチング素子
SW1,SW2,SW3,SW4 スイッチ

Claims (10)

  1.  直流電源の正極と負極との間に直列接続される、上アームを構成する第1のスイッチング素子と、下アームを構成する第2のスイッチング素子と、を含む第1のアーム回路と、
     前記直流電源の正極と負極との間に直列接続される、上アームを構成する第3のスイッチング素子と、下アームを構成する第4のスイッチング素子と、を含む第2のアーム回路と、
     1次巻線と、直流を出力する出力回路が接続される2次巻線と、を含むトランスと、
     一端が前記1次巻線の第1の端に接続される第1のインダクタと、該第1のインダクタの他端に接続されるコンデンサと、を含む直列共振回路と、
     前記第3のスイッチング素子および前記第4のスイッチング素子の直列接続の接続点に一端が接続される第2のインダクタと、
     前記第1のアーム回路および前記第2のアーム回路の駆動を制御する制御回路と、
    を備え、
     前記第1のスイッチング素子および前記第2のスイッチング素子が直列接続される接続点が前記トランスの前記1次巻線の第2の端に接続され、
     前記第1のインダクタと前記コンデンサとが接続される接続点に前記第2のインダクタの他端が接続される
    電源装置。
  2.  前記制御回路は、
     前記第1のアーム回路と、前記第2のアーム回路と、を同位相で駆動する
    請求項1に記載の電源装置。
  3.  前記制御回路は、
     前記出力回路から出力される出力電力が所定電力で、前記第2のアーム回路の状態を、停止状態と動作状態とで切り替える
    請求項1に記載の電源装置。
  4.  前記制御回路は、
     前記第2のアーム回路を駆動するためのPWM信号のデューティを徐々に変化させて、前記第2のアーム回路の状態を停止状態から動作状態へと切り替える
    請求項1に記載の電源装置。
  5.  前記制御回路は、
     前記第1のアーム回路と、前記第2のアーム回路と、を逆位相で駆動する
    請求項1に記載の電源装置。
  6.  直流電源の正極と負極との間に直列接続される、上アームを構成する第1のスイッチング素子と、下アームを構成する第2のスイッチング素子と、を含む第1のアーム回路と、
     前記直流電源の正極と負極との間に直列接続される、上アームを構成する第3のスイッチング素子と、下アームを構成する第4のスイッチング素子と、を含む第2のアーム回路と、
     1次巻線と、直流を出力する出力回路が接続される2次巻線と、を含むトランスと、
     一端が前記1次巻線の第1の端に接続されるコンデンサと、一端が該1次巻線の第2の端に接続される第1のインダクタと、を含む直列共振回路と、
     前記第3のスイッチング素子および前記第4のスイッチング素子の直列接続の接続点に一端が接続される第2のインダクタと、
     前記第1のアーム回路および前記第2のアーム回路の駆動を制御する制御回路と、
    を備え、
     前記第1のスイッチング素子および前記第2のスイッチング素子が直列接続される接続点が前記第1のインダクタの他端に接続され、
     前記第2のインダクタの他端が前記コンデンサと、前記1次巻線の前記第1の端と、の接続点に接続される
    電源装置。
  7.  前記制御回路は、
     前記第1のアーム回路と、前記第2のアーム回路と、を同位相で駆動する
    請求項6に記載の電源装置。
  8.  前記制御回路は、
     前記出力回路から出力される直流電源の電圧が所定電圧で、前記第2のアーム回路の状態を、停止状態と動作状態とで切り替える
    請求項6に記載の電源装置。
  9.  前記制御回路は、
     前記第2のアーム回路を駆動するためのPWM信号のデューティを徐々に変化させて、前記第2のアーム回路の状態を停止状態から動作状態へと切り替える
    請求項6に記載の電源装置。
  10.  前記制御回路は、
     前記第1のアーム回路と、前記第2のアーム回路と、を逆位相で駆動する
    請求項6に記載の電源装置。
PCT/JP2019/048638 2018-12-21 2019-12-12 電源装置 WO2020129796A1 (ja)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020561349A JPWO2020129796A1 (ja) 2018-12-21 2019-12-12 電源装置
US17/309,662 US20220077787A1 (en) 2018-12-21 2019-12-12 Power supply apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018240208 2018-12-21
JP2018-240208 2018-12-21

Publications (1)

Publication Number Publication Date
WO2020129796A1 true WO2020129796A1 (ja) 2020-06-25

Family

ID=71100452

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/048638 WO2020129796A1 (ja) 2018-12-21 2019-12-12 電源装置

Country Status (3)

Country Link
US (1) US20220077787A1 (ja)
JP (1) JPWO2020129796A1 (ja)
WO (1) WO2020129796A1 (ja)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229676A (ja) * 1997-02-17 1998-08-25 Tdk Corp スイッチング電源
US20080298093A1 (en) * 2007-05-30 2008-12-04 Taotao Jin Multiphase resonant converter for dc-dc applications
US20120275197A1 (en) * 2009-02-27 2012-11-01 Delta Electronics (Shanghai) Co., Ltd. Layouts of multiple transformers and multiple rectifiers of interleaving converter
JP2013236531A (ja) * 2012-05-07 2013-11-21 Skynet Electronics Co Ltd Llc直列共振コンバータ
US9337743B2 (en) * 2013-10-11 2016-05-10 Futurewei Technologies, Inc. Apparatus and method for multiple primary bridge resonant converters
WO2018019100A1 (zh) * 2016-07-25 2018-02-01 中兴通讯股份有限公司 一种三相半桥llc谐振变换器的控制方法及装置

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9178438B2 (en) * 2012-04-05 2015-11-03 Futurewei Technologies, Inc. Apparatus for resonant converters
US9263960B2 (en) * 2013-09-16 2016-02-16 Delta Electronics, Inc. Power converters for wide input or output voltage range and control methods thereof
US9484821B2 (en) * 2013-11-04 2016-11-01 Futurewei Technologies, Inc. Adjustable resonant apparatus for power converters
JP2015139258A (ja) * 2014-01-21 2015-07-30 サンケン電気株式会社 スイッチング電源装置
US9548668B2 (en) * 2014-03-14 2017-01-17 Futurewei Technologies, Inc. Hybrid power converter and method
CN105576983B (zh) * 2016-02-19 2019-06-04 杭州中恒电气股份有限公司 一种谐振直流/直流变换器
US10181804B1 (en) * 2017-08-11 2019-01-15 Linear Technology Holding Llc Soft-start circuit for switched resonant power converters
EP3787168A4 (en) * 2018-04-26 2021-06-23 Panasonic Intellectual Property Management Co., Ltd. CURRENT CONVERSION DEVICE
US10763756B2 (en) * 2018-12-13 2020-09-01 Power Integrations, Inc. Apparatus and methods for sensing resonant circuit signals to enhance control in a resonant converter
FR3096847B1 (fr) * 2019-05-29 2021-04-30 Renault Sas Procédé de commande d’un Convertisseur continu-continu pour un chargeur de batterie d’accumulateurs électriques bidirectionnel
US10819244B1 (en) * 2019-06-20 2020-10-27 Abb Power Electronics Inc. Single-stage isolated DC-DC converters with interleaved arms
US11038430B2 (en) * 2019-08-02 2021-06-15 Analog Devices International Unlimited Company LLCC secondary overtone resonant power converter

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10229676A (ja) * 1997-02-17 1998-08-25 Tdk Corp スイッチング電源
US20080298093A1 (en) * 2007-05-30 2008-12-04 Taotao Jin Multiphase resonant converter for dc-dc applications
US20120275197A1 (en) * 2009-02-27 2012-11-01 Delta Electronics (Shanghai) Co., Ltd. Layouts of multiple transformers and multiple rectifiers of interleaving converter
JP2013236531A (ja) * 2012-05-07 2013-11-21 Skynet Electronics Co Ltd Llc直列共振コンバータ
US9337743B2 (en) * 2013-10-11 2016-05-10 Futurewei Technologies, Inc. Apparatus and method for multiple primary bridge resonant converters
WO2018019100A1 (zh) * 2016-07-25 2018-02-01 中兴通讯股份有限公司 一种三相半桥llc谐振变换器的控制方法及装置

Also Published As

Publication number Publication date
JPWO2020129796A1 (ja) 2021-11-04
US20220077787A1 (en) 2022-03-10

Similar Documents

Publication Publication Date Title
US7652898B2 (en) Soft start circuit and power supply including soft start circuit
US10277107B1 (en) Synchronous rectifier gate driver with active clamp
WO2014103105A1 (ja) Dc/dcコンバータ
EP1681760A2 (en) Dual mode buck regulator with improved transition between LDO and PWM operation
US8803494B2 (en) Method for reducing body diode conduction in NMOS synchronous rectifiers
TWI399020B (zh) Switching regulator circuit
JP5644125B2 (ja) 直流−直流変換回路の起動方法
JPH11289778A (ja) 圧電トランスインバータ
JPH07118915B2 (ja) 共振型dc−dcコンバ−タ
US20110194317A1 (en) Stacked flyback converter with independent current loop control
JP2007097319A (ja) 交直変換回路
US11018592B2 (en) Flyback converter controller, flyback converter and methods of operation
JP2005065497A (ja) パルス幅変調ソフトスイッチング制御
JP2005117883A (ja) 電源装置
US20220060120A1 (en) Dynamic transient control in resonant converters
CN114389456A (zh) 同步整流器驱动器电路、集成电路、谐振转换器及方法
JP2007295709A (ja) スイッチング電源
US11258441B2 (en) Drive circuit
JP4352319B2 (ja) 電源供給装置
JP6707003B2 (ja) スイッチ駆動回路及びこれを用いたスイッチング電源装置
US9331259B2 (en) Intrinsic adaptive and autonomic piezotransformer circuits
WO2020129796A1 (ja) 電源装置
JP7492441B2 (ja) スイッチング電源装置、その制御装置及び制御方法
WO2014077281A1 (ja) 電力変換装置
JP2006158137A (ja) スイッチング電源装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901324

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561349

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901324

Country of ref document: EP

Kind code of ref document: A1