WO2020129466A1 - シクロヘキサントリカルボン酸無水物の結晶の製造方法および結晶 - Google Patents
シクロヘキサントリカルボン酸無水物の結晶の製造方法および結晶 Download PDFInfo
- Publication number
- WO2020129466A1 WO2020129466A1 PCT/JP2019/044241 JP2019044241W WO2020129466A1 WO 2020129466 A1 WO2020129466 A1 WO 2020129466A1 JP 2019044241 W JP2019044241 W JP 2019044241W WO 2020129466 A1 WO2020129466 A1 WO 2020129466A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- mass
- crystal
- anhydride
- crystallization
- cyclohexanetricarboxylic
- Prior art date
Links
- 0 C*C(C)C(CCC1C(O2)=O)CC1C2=O Chemical compound C*C(C)C(CCC1C(O2)=O)CC1C2=O 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C07—ORGANIC CHEMISTRY
- C07D—HETEROCYCLIC COMPOUNDS
- C07D307/00—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom
- C07D307/77—Heterocyclic compounds containing five-membered rings having one oxygen atom as the only ring hetero atom ortho- or peri-condensed with carbocyclic rings or ring systems
- C07D307/87—Benzo [c] furans; Hydrogenated benzo [c] furans
- C07D307/89—Benzo [c] furans; Hydrogenated benzo [c] furans with two oxygen atoms directly attached in positions 1 and 3
Definitions
- the present invention relates to a method for producing crystals of cyclohexanetricarboxylic anhydride and crystals.
- Cyclohexanetricarboxylic acid anhydride is used for paints, adhesives, molded products, resins for semiconductor encapsulants, curing agents for thermosetting resin compositions, polyimide resins, polyamideimide resins, polyamide resins, polyester resins, alkyd resins, etc. It is known to be useful as a raw material, a modifier or a modifier, a plasticizer, a lubricating oil raw material, a pharmaceutical/agrochemical intermediate, a coating resin raw material, a toner resin, and the like.
- Patent Document 1 describes a crystal of cyclohexanetricarboxylic acid anhydride. Specifically, by crystallization with water, a mixture of cis,cis-1,2,4-cyclohexanetricarboxylic acid and trans,trans-1,2,4-cyclohexanetricarboxylic acid is converted into trans,trans-1,2. Disclosed is a method for producing trans,trans-1,2,4-cyclohexanetricarboxylic acid-1,2-anhydride, which comprises separating 1,4-cyclohexanetricarboxylic acid.
- the Wet crystal has a liquid remaining on the surface of the crystal, and in particular, when a large amount of cyclohexanetricarboxylic anhydride crystals are produced, the following problems occur when the liquid on the surface of the Wet crystal is large.
- An object of the present invention is to solve such a problem, and a method for producing a crystal of a cyclohexanetricarboxylic acid anhydride, in which a crystal having a small amount of liquid on the surface is obtained in a Wet crystal state, and , Cyclohexanetricarboxylic acid anhydride crystals are provided.
- the crystallization system contains a component derived from the mother liquor after crystallization of cyclohexanetricarboxylic anhydride at the start of crystallization, and the composition of the crystallization system at the start of crystallization is represented by the following formula (1):
- Each component is added such that the ratio of the cyclohexanetricarboxylic anhydride is 5.0 to 49.9 parts by mass and the solvent is 50 to 95.0 parts by mass with respect to more than 20 parts by mass and 1.00 parts by mass or less.
- n is an integer of 0-4.
- ⁇ 2> The method for producing a crystal according to ⁇ 1>, wherein the cyclohexanetricarboxylic acid anhydride is cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride.
- ⁇ 3> The method for producing the crystal according to ⁇ 1> or ⁇ 2>, wherein n is an integer of 1 to 3 in the compound represented by the formula (1).
- ⁇ 4> The method for producing a crystal according to any one of ⁇ 1> to ⁇ 3>, wherein the compound represented by the formula (1) is 4-methyl-1,2-cyclohexanedicarboxylic acid anhydride. .. ⁇ 5>
- the solvent of ⁇ 1> to ⁇ 4> contains 50 to 100% by mass of a monocarboxylic acid that is liquid at 20° C. and 0 to 50% by mass of an anhydride of a monocarboxylic acid that is liquid at 20° C.
- ⁇ 6> The method for producing a crystal according to any one of ⁇ 1> to ⁇ 5>, wherein the monocarboxylic acid is acetic acid.
- the total of the monocarboxylic acid and the monocarboxylic acid anhydride does not exceed 100% by mass
- ⁇ 8> The method for producing a crystal according to any one of ⁇ 1> to ⁇ 7>, which comprises separating a mother liquor and a crystal of cyclohexanetricarboxylic acid anhydride after the crystallization.
- the method for producing crystals according to ⁇ 8> which comprises drying the separated crystals of cyclohexanetricarboxylic anhydride.
- Production of the crystal according to ⁇ 9> which is a crystal of the separated cyclohexanetricarboxylic anhydride and has a liquid content represented by the following formula of the crystal before drying of 8.5% by mass or less.
- Liquid content (%) [(mass of crystal before drying ⁇ mass of crystal after drying)/mass of crystal before drying] ⁇ 100
- the drying means heating at 130° C. for 12 hours.
- the crystal according to ⁇ 12> or ⁇ 13> which is a crystal obtained by the production method according to any one of ⁇ 1> to ⁇ 11>.
- the present invention it is possible to provide a method for producing a crystal of cyclohexanetricarboxylic acid anhydride, which can obtain a crystal having a small amount of liquid on the surface in a Wet crystal state, and a crystal of cyclohexanetricarboxylic acid anhydride.
- 1 is a scheme showing an example of a method for producing crystals of cyclohexanetricarboxylic acid anhydride of the present invention. It is a scheme which shows the analysis method of each component in an Example.
- 3 is a graph showing the relationship between the initial amount of MeHHPA (4-methyl-1,2-cyclohexanedicarboxylic acid anhydride) in the crystallization system and the liquid content in Wet crystals in the example. 3 is a graph showing the relationship between the amount of MeHHPA in Dry crystals and the liquid content in Wet crystals in Examples.
- the method for producing crystals of cyclohexanetricarboxylic acid anhydride according to the present invention comprises a cyclohexanetricarboxylic acid anhydride of 0 to 100% by mass of a monocarboxylic acid which is liquid at 20° C. and an anhydride of monocarboxylic acid which is liquid at 20° C.
- Cyclohexanetricarboxylic acid anhydride including crystallization in a crystallization system in which a solvent containing 100 to 0% by mass (however, the total amount of the monocarboxylic acid and the monocarboxylic acid anhydride does not exceed 100% by mass) is present.
- a method for producing a crystal of a product wherein the crystallization system includes a component derived from a mother liquor after crystallization of cyclohexanetricarboxylic anhydride at the start of crystallization, and the composition at the start of crystallization of the crystallization system.
- n is an integer of 0-4.
- the liquid content in the obtained Wet crystal can be lowered.
- the Wet crystal refers to a crystal that has been crystallized, separated from the mother liquor, and then dried, and is distinguished from a dry crystal that is a dried crystal.
- the crystal in the present invention is meant to include both Wet crystal and Dry crystal unless otherwise specified.
- the crystal obtained by the method for producing a crystal of the present invention has a low liquid content in the Wet crystal state. Therefore, the problems described above can be avoided. Further, the obtained crystal is slightly different from the conventional one in that it contains a certain amount of MeHHPA.
- the method for producing a crystal of the present invention will be described according to the scheme shown in FIG. Needless to say, all of the following steps are not essential in the manufacturing method of the present invention.
- cyclohexanetricarboxylic acid (H-TMA) is used as a monocarboxylic acid (eg, acetic acid) 0 to 100% by mass that is liquid at 20° C. and a monocarboxylic acid that is liquid at 20° C.
- Cyclohexanetricarboxylic acid added to a solvent containing 100 to 0% by mass of a carboxylic acid anhydride (for example, acetic anhydride) (however, the total of the monocarboxylic acid and the monocarboxylic acid anhydride does not exceed 100% by mass)
- a carboxylic acid anhydride for example, acetic anhydride
- the cyclohexanetricarboxylic acid is preferably cyclohexane-1,2,4-tricarboxylic acid. These cyclohexanetricarboxylic acids may be in cis form, trans form, or a mixture. In the present invention, it is preferable that at least a cis isomer is contained, and 90% by mass or more of cyclohexanetricarboxylic acid is a cis isomer.
- the solvent preferably contains 0 to 100% by mass of a monocarboxylic acid that is liquid at 20° C. and 100 to 0% by mass of an anhydride of a monocarboxylic acid that is liquid at 20° C.
- the solvent preferably contains 50 to 100% by mass of monocarboxylic acid and 0 to 50% by mass of an anhydride of monocarboxylic acid which is liquid at 20°C, and 60 to 90% by mass of monocarboxylic acid and is liquid at 20°C. It is more preferable to contain 10 to 40% by mass of an anhydride of monocarboxylic acid.
- the monocarboxylic acid that is liquid at 20° C. include acetic acid and propionic acid, and acetic acid is preferable.
- the above monocarboxylic acid anhydride (anhydromonocarboxylic acid) is preferable.
- the monocarboxylic acid anhydride is preferably a monocarboxylic acid anhydride to be used in combination.
- the anhydride of monocarboxylic acid include acetic anhydride and propionic anhydride, and acetic anhydride is preferable.
- a solvent other than the monocarboxylic acid and the monocarboxylic acid anhydride may or may not be included.
- a hydrocarbon solvent having a boiling point of 50° C. or higher, a halogenated hydrocarbon solvent, an ester solvent, a ketone solvent, an ether solvent, and a fatty acid solvent are exemplified.
- other solvent is contained, its content is preferably 1 to 100% by mass based on the total of the monocarboxylic acid and the monocarboxylic anhydride.
- a solvent other than the monocarboxylic acid and the monocarboxylic acid anhydride is not substantially contained.
- substantially free from means that the amount of the other solvent is less than 1% by mass of the total amount of the solvent, preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
- the total amount of the solvent is preferably 200 to 800 parts by mass, more preferably 300 to 700 parts by mass, relative to 100 parts by mass of cyclohexanetricarboxylic acid. With such a range, both the purity and the yield of the product obtained by the crystallization operation can be increased.
- each of cyclohexanetricarboxylic acid, monocarboxylic acid, anhydride of monocarboxylic acid, and other solvent may be used alone or in combination of two or more. When two or more kinds are used, the total amount is preferably within the above range.
- the dehydration reaction it is preferable to proceed the dehydration reaction with the mother liquor added.
- the amount of the mother liquor at the start of the crystallization step described later is such that the amount contained in the crystallization system is more than 0.20 parts by mass of the compound represented by the formula (1) and not more than 1.00 parts by mass of cyclohexane
- the proportions of the tricarboxylic acid anhydride are 5.0 to 49.9 parts by mass and the solvent is 50 to 95.0 parts by mass.
- the temperature (reaction temperature) after the temperature rises to a steady state is preferably 80 to 150° C., more preferably 90 to 140° C., Particularly preferably, it is 95 to 130°C. Further, it is preferable to stir during the dehydration of cyclohexanetricarboxylic acid.
- the reaction time after reaching the steady state is preferably 10 minutes to 4 hours, more preferably 1 to 3 hours.
- a catalyst may or may not be used in the dehydration. When using a catalyst, a molecular sieve is illustrated.
- the dehydration rate of cyclohexanetricarboxylic acid is preferably 90% by mass or more, and more preferably 93% by mass or more.
- the dehydration rate is measured by the method described in Examples below.
- cyclohexanetricarboxylic anhydride is a solvent containing 0 to 100% by mass of a monocarboxylic acid that is liquid at 20° C. and 100 to 0% by mass of an anhydride of the monocarboxylic acid that is liquid at 20° C.
- the total of the monocarboxylic acid and the monocarboxylic acid anhydride does not exceed 100% by mass).
- the crystallization system includes a component derived from a mother liquor after crystallization of cyclohexanetricarboxylic anhydride at the start of crystallization, and at the start of crystallization of the crystallization system (hereinafter, may be referred to as “initial state”).
- the crystallization system is cooled and crystallized. Usually, the reaction liquid after the above dehydration step is cooled as it is. With such a structure, the liquid content of the Wet crystal can be lowered.
- the crystallization system in the present invention contains a component derived from a mother liquor, a compound represented by the formula (1), cyclohexanetricarboxylic acid anhydride and a solvent.
- a part of the compound represented by the formula (1), the cyclohexanetricarboxylic acid anhydride and the solvent may be a component derived from the mother liquor.
- each component may be added at the start of crystallization so that each component has the above ratio.
- the reaction system in the present invention may contain other components such as a catalyst.
- n is an integer of 0-4.
- n is preferably an integer of 1 to 4, more preferably an integer of 1 to 3, further preferably 1 or 2, and 1 Is more preferable.
- the cyclohexanetricarboxylic acid anhydride is preferably cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride. These cyclohexanetricarboxylic acid anhydrides may be in the cis form, the trans form, or a mixture. In the present invention, it is preferable to contain at least a cis isomer.
- the proportion of the cis isomer in cyclohexanetricarboxylic anhydride is preferably 90% by mass or more, more preferably 95% by mass or more, and further preferably 97% by mass or more. As the upper limit, the proportion of cis isomer is preferably 99.9% by mass or less. The higher the cis ratio, the more the yield tends to improve, which is preferable.
- the solvent contains 0 to 100% by mass of a monocarboxylic acid which is liquid at 20° C. and 100 to 0% by mass of an anhydride of a monocarboxylic acid which is liquid at 20° C.
- the solvent preferably contains 50 to 100% by mass of monocarboxylic acid and 0 to 50% by mass of an anhydride of monocarboxylic acid which is liquid at 20°C, and 60 to 90% by mass of monocarboxylic acid and is liquid at 20°C. It is more preferable to contain 10 to 40% by mass of an anhydride of monocarboxylic acid.
- Examples of the monocarboxylic acid that is liquid at 20° C. include acetic acid and propionic acid, and acetic acid is preferable.
- the monocarboxylic acid anhydride that is liquid at 20° C. the above monocarboxylic acid anhydride (anhydromonocarboxylic acid) is preferable.
- the monocarboxylic acid anhydride is preferably a monocarboxylic acid anhydride to be used in combination.
- Examples of the monocarboxylic acid anhydride that is liquid at 20° C. include acetic anhydride and propionic anhydride, and acetic anhydride is preferable.
- a solvent other than the monocarboxylic acid and the monocarboxylic acid anhydride may or may not be contained.
- a hydrocarbon solvent having a boiling point of 50° C. or higher, a halogenated hydrocarbon solvent, an ester solvent, a ketone solvent, an ether solvent, and a fatty acid solvent are exemplified.
- other solvent is contained, its content is preferably 1 to 100% by mass of the solvent.
- substantially free from means that the amount of the other solvent is less than 1% by mass of the solvent, preferably 0.1% by mass or less, and more preferably 0.05% by mass or less.
- 90% by mass or more of the solvent used in the step of obtaining cyclohexanetricarboxylic anhydride and the solvent used in the crystallization step are preferably common, more preferably 95% by mass or more are common, and 99% by mass or more. Is more preferable. With such a configuration, production efficiency can be further improved.
- a component other than the compound represented by formula (1), cyclohexanetricarboxylic acid anhydride, and solvent may be used in the crystallization system.
- Specific examples include cyclohexanetricarboxylic acid, dicarboxylic acid, dicarboxylic acid anhydride and the like.
- the amount of the compound represented by the formula (1) contained in the crystallization system in the initial state (state before crystallization) is more than 0.20 mass% and not more than 1.00 mass %. preferable.
- the amount of the compound represented by the formula (1) contained in the crystallization system in the initial state (state before crystallization) is preferably 0.25 mass% or more, more preferably 0.30 mass% or more, further It is preferably 0.34 mass% or more, preferably 0.80 mass% or less, and more preferably 0.60 mass% or less.
- the amount of the compound represented by the formula (1) in the components excluding the solvent contained in the crystallization system in the initial state (state before crystallization) is 0.87% by mass or more. It is preferable that it is 0.90 mass% or more, and it is more preferable.
- the upper limit is, for example, preferably 3.0% by mass or less, more preferably 2.5% by mass or less, and further preferably 2.0% by mass or less.
- the amount of the compound represented by the above formula (1) is a total amount including those derived from the mother liquor and those derived from impurities contained in cyclohexanetricarboxylic acid. Further, a compound represented by the formula (1) may be newly added to the crystallization system.
- the compound represented by the formula (1) is contained in the crystallization system without newly adding it.
- the amount of the compound represented by formula (1) may be 0.20 to 1.00% by mass.
- the amount of the cyclohexanetricarboxylic anhydride contained in the crystallization system in the initial state is 10 parts by mass with respect to more than 0.20 parts by mass and 1.00 parts by mass or less of the compound represented by the formula (1). It is preferably not less than 15 parts by mass, more preferably not less than 15 parts by mass, further preferably not less than 20 parts by mass, preferably not more than 50 parts by mass, more preferably not more than 40 parts by mass. It is more preferably 30 parts by mass or less.
- the amount of the solvent contained in the crystallization system in the initial state is 40 parts by mass or more with respect to more than 0.20 parts by mass and 1.00 parts by mass or less of the compound represented by the formula (1).
- the solvent means the total amount of the solvent including 0 to 100% by mass of monocarboxylic acid which is liquid at 20° C. and 100 to 0% by mass of anhydride of monocarboxylic acid which is liquid at 20° C.
- the total amount of the compound represented by the formula (1), cyclohexanetricarboxylic acid anhydride and the solvent is preferably 85% by mass or more, and 90% by mass or more.
- the content is more preferably 95% by mass or more, further preferably 98% by mass or more, and further preferably 99% by mass or more.
- cyclohexanetricarboxylic acid may be present in the crystallization system in the initial state.
- the cyclohexanetricarboxylic acid anhydride, the solvent, and the other components only one kind may be used, or two or more kinds may be used. When two or more kinds are used, the total amount is preferably within the above range.
- the temperature at the time of crystallization is not particularly limited, but the temperature at the end of the dehydration step is preferably 80 to 150°C, more preferably 90 to 140°C, and 95 to 130°C. It is particularly preferable that
- the cooling temperature (end temperature of crystallization) is not particularly limited, but from the viewpoint of improving yield and operating efficiency, it is preferably ⁇ 10 to 50° C., more preferably 0 to 40° C., and 10 to 30° C. is particularly preferred.
- the cooling rate is preferably 5 to 30° C./hour, more preferably 7 to 25° C./hour, further preferably 7 to 20° C./hour, and particularly preferably 10 to 20° C./hour, from the viewpoint of improving purity and time efficiency.
- the aging time is preferably, for example, 10 minutes to 2 hours.
- the difference between the temperature during crystallization (the temperature at the end of the dehydration step) and the temperature during aging is preferably 50°C or higher, more preferably 60°C or higher, and more preferably 70°C or higher. preferable.
- the upper limit of the temperature difference is not particularly limited, but may be 90° C. or less, for example. Crystallization is preferably performed with stirring.
- the reaction liquid after crystallization can be separated into a solid component crystal (Wet crystal) and a liquid component (mother liquor) by filtration.
- the filtration temperature is not particularly limited, but is preferably ⁇ 15 to 50° C., more preferably ⁇ 10 to 40° C., particularly preferably 0 to 35° C.
- the solid-liquid separation step can be performed by, for example, using a centrifuge and rotating at room temperature (for example, 20 to 40° C.) at a centrifugal acceleration of 450 G until there is no filtrate.
- the separated mother liquor can be preferably used as a mother liquor to be blended in the dehydration step of the present invention. That is, the component derived from the mother liquor contained in the crystallization system in the initial state in the present invention is derived from the mother liquor after separating the crystals of cyclohexanetricarboxylic acid anhydride.
- the mother liquor may be entirely recycled as it is, or a part of the mother liquor may be discharged and then recycled.
- the mother liquor is preferably recycled 60% by mass or more, more preferably 65% by mass or more, and even more preferably 70% by mass or more.
- the upper limit of the recycling amount may be 100% by mass, but for example, 90% by mass or less, and further 80% by mass or less is a sufficiently significant aspect.
- the mother liquor after separating the crystals of cyclohexanetricarboxylic anhydride is newly mixed with cyclohexanetricarboxylic acid, a solvent and the like, and adjusted so as to have the above ratio, and a step of crystallizing after the dehydration step is performed. It is preferable to include once or twice or more. In the present invention, the above steps are preferably repeated 1 to 100 times. By repeating the recycling a plurality of times, the amount of the compound represented by the formula (1) in the crystallization system becomes stable, and the liquid content of the Wet crystals can be lowered more stably.
- ⁇ Dry> In the production method of the present invention, it is preferable to further dry the separated crystals of cyclohexanetricarboxylic anhydride.
- the solvent can be completely removed by drying.
- the drying temperature is preferably 50° C. or higher, more preferably 60° C. or higher.
- the upper limit of the drying temperature is preferably 140°C or lower, more preferably 135°C or lower, and further preferably 130°C.
- the drying time depends on the drying temperature and the crystal size, but is preferably 0.5 to 15 hours. Moreover, you may implement drying under reduced pressure. Further, nitrogen or the like can be supplied during the drying.
- the dryer is not particularly limited, and a stationary (shelf type) dryer, a rotary dryer, or the like can be used, but a rotary dryer is preferred because of high drying efficiency and a short drying time. It is preferable to use.
- the rotary dryer include a conical dryer and an evaporator. The drying can be performed by heating to 60 to 100° C. under a pressure of 5 to 100 mmHg, for example.
- the yield can be 60 mol% or more, and can be 68 mol% or more.
- the upper limit of the yield is ideally 100 mol%, but 80 mol% or less is a sufficiently practical level.
- the crystal of the present invention is a crystal containing cyclohexanetricarboxylic anhydride as a main component and containing 0.025 to 0.1 mass% of the compound represented by the formula (1). Such crystals are obtained by the method for producing crystals of the present invention. Needless to say, the crystal of the present invention is included in the scope of the present invention even if the crystal is obtained by a method other than the method for producing the crystal of the present invention.
- the crystal of the present invention contains cyclohexanetricarboxylic acid anhydride as a main component.
- the main component here means that the ratio of cyclohexanetricarboxylic anhydride is 80.0% by mass or more, preferably 90.0% by mass or more, and 95.0% by mass or more. More preferably, it is more preferably 97 parts by mass or more, further preferably 98.0% by mass or more, and further preferably 98.5% by mass or more.
- the cyclohexanetricarboxylic acid anhydride may be in a cis form, a trans form, or a mixture.
- the proportion of the cis isomer in the cyclohexanetricarboxylic anhydride is, for example, 90.00 mass% or more, 95.00 mass% or more, 98.00 mass%. As described above, the content can be 99.00 mass% or more. As an upper limit, the proportion of cis isomer is 100% by mass or less, and may be 99.99% by mass or less. That is, a mode in which a small amount (for example, an amount of more than 0 mass% and 0.05 mass% or less) of cyclohexanetricarboxylic acid anhydride other than the cis isomer is included is also exemplified.
- the crystal may contain only one type of cyclohexanetricarboxylic acid anhydride, or may contain two or more types thereof. When two or more kinds are contained, the total amount is preferably within the above range.
- the crystal of the present invention preferably contains 0.030 mass% or more of the compound represented by the formula (1), more preferably 0.035 mass% or more, and may contain 0.045 mass% or more. ..
- the crystal of the present invention preferably contains the compound represented by the formula (1) in an amount of 0.1000 mass% or less, more preferably 0.095 mass% or less, and 0.090 mass% or less. More preferable.
- the crystal of the present invention may contain only one kind of the compound represented by the formula (1), or may contain two or more kinds thereof.
- the crystal content of the crystal of the present invention is preferably 8.5% by mass or less at 20° C., more preferably 8.3% by mass or less, and further preferably 8.0% by mass or less. , 7.5 mass% or less is more preferable, and 7.0 mass% or less is still more preferable.
- the lower limit of the liquid content is ideally 0% by mass, but 1.0% by mass or more is at a practical level. The liquid content is measured according to the method described in Examples below.
- the crystal of the present invention is, in particular, obtained by the production method of the present invention, which is a crystal of cyclohexanetricarboxylic acid anhydride separated from the reaction solution, and which includes a crystal (Wet crystal) before drying described later. It is preferable that the liquid rate satisfies the above range. In the Wet crystal, a liquid is usually present on the surface thereof, but this liquid is usually the mother liquor after crystallization.
- the preferable range of the structure of the compound represented by the formula (1) is the same as that described in the method for producing the crystal, and the preferable range is also the same.
- the crystal of the present invention preferably has a volume-based average particle diameter of 20 ⁇ m or more, and more preferably a volume-based average particle diameter of 50 ⁇ m or more. With such a size, the liquid content of the crystals can be lowered more effectively.
- the upper limit is not particularly limited, but is practically 500 ⁇ m or less, for example.
- the crystal of the cyclohexanetricarboxylic acid anhydride of the present invention can be used as a curing agent for thermosetting resins such as epoxy resins. Specifically, the description in paragraphs 0024 to 0029 in JP-A No. 2013-112634 can be referred to, and the contents thereof are incorporated in the present specification. Further, the crystal of cyclohexanetricarboxylic acid anhydride of the present invention is preferably used as an acid modifier of a solder resist material. Specifically, it can be preferably used as a modifier for imparting an acid group to a solder resist material such as epoxy acrylate.
- the solder resist material is not particularly limited as long as it is a solder resist material normally used for printed wiring boards and circuit boards for semiconductor packages. Examples include a thermosetting/photocurable resist material made of acrylic-epoxy resin or the like. For details of the solder resist material, the description in JP-A-2014-052599 can be referred to, and the contents thereof are incorporated in the present specification. Further, the crystals of the cyclohexanetricarboxylic acid anhydride of the present invention are, in addition to the above, paints, adhesives, molded products, resins for semiconductor encapsulants, polyimide resins, polyamideimide resins, polyamide resins, polyester resins, alkyd resins, etc. It is also useful as a raw material, a modifier or a modifier, a plasticizer, a lubricating oil raw material, a pharmaceutical/agrochemical intermediate, a coating resin raw material, a toner resin, and the like.
- MeHHPA is 4-methyl-1,2-cyclohexanedicarboxylic acid anhydride
- H-TMA is cyclohexanetricarboxylic acid
- H-TMAn is cyclohexanetricarboxylic acid anhydride
- H-TMAn(cis) body
- Body indicates the cis form of cyclohexanetricarboxylic acid anhydride
- H-TMAn (others) indicates other than the cis form of cyclohexanetricarboxylic acid anhydride.
- H-TMA 255.7 g
- acetic anhydride 170.5 g
- acetic acid 852.4 g
- H-TMAn-S the obtained cyclohexanetricarboxylic acid anhydride (containing both H-TMAn (cis form) and H-TMAn (others))
- the yield was 65.67% and the dehydration rate was 99.65 mass %.
- the amounts of the above reaction liquid were measured by GC (gas chromatography) analysis and LC (liquid chromatography) described later, and were as shown in Table 1. Specifically, in the analysis, a Wet crystal and a component (liquid) other than the Wet crystal were separated according to a solid-liquid separation method described below. The Wet crystal and the liquid were analyzed as follows, respectively. Then, the amounts of each component contained in the Wet crystal and the liquid were added together to calculate the amount of each component. In the analysis of the Wet crystal and the liquid, as shown in FIG. 2, the total amount of H-TMA and H-TMAn in the sample and MeHHPA were measured by GC analysis.
- H-TMA in H-TMA and H-TMAn was measured by LC analysis, and the amount of H-TMAn-S (total amount of acid anhydride) was calculated.
- the dry crystals were also measured by GC (gas chromatography) analysis and LC (liquid chromatography) described below, and were as shown in Table 1.
- the mixture was cooled to room temperature, and 15 mL of chloroform was added to and dissolved in the test tube, the whole amount was transferred to a separating funnel, and 100 mL of pure water was added.
- the liquid separating funnel was shaken for 10 minutes and then allowed to stand for about 5 minutes to separate the liquid into two layers.
- the upper layer (aqueous phase) was sucked and discharged with a dropper, and 100 mL of pure water was added again.
- the liquid separating funnel was shaken for 10 minutes and then allowed to stand for about 5 minutes to separate the liquid into two layers.
- the lower chloroform phase was collected through a filter paper (5B) and subjected to GC analysis.
- Gas chromatography analysis conditions are as follows. Equipment used: Gas chromatography Agilent HP-6890 Column: DB-1 (length 30m, inner diameter 0.53mm, film thickness 1.5 ⁇ m) Detector: FID (H 2 30 mL/min, Air 300 mL/min) Carrier gas: He (constant flow; average linear velocity 38 cm/sec) Split ratio: 11 Inlet temperature: 300°C Detector temperature: 290°C Injection volume: 1.0 ⁇ L OVEN (oven) temperature: held at 160° C. for 20 minutes, heated at 10° C./minute, reached 280° C., and then held for 15 minutes.
- Equipment used Gas chromatography Agilent HP-6890 Column: DB-1 (length 30m, inner diameter 0.53mm, film thickness 1.5 ⁇ m) Detector: FID (H 2 30 mL/min, Air 300 mL/min) Carrier gas: He (constant flow; average linear velocity 38 cm/sec) Split ratio: 11 Inlet temperature: 300°C Detector temperature:
- Pretreatment conditions for liquid chromatography 2 g of the sample was precisely weighed, 100 mL of dehydrated methanol was added, and the mixture was heated and refluxed for 1 hour to carry out a methyl esterification reaction to prepare a sample for liquid chromatography.
- 1,2,4-cyclohexanetricarboxylic acid which is the reaction raw material in the sample, is not esterified.
- the analysis time is 0 to 15 minutes, and the solution A: solution B is 10:90 (volume ratio), and the solution A: solution B is 10:90 (volume ratio) to 50:50 (volume ratio) in 15 to 20 minutes.
- cyclohexanetricarboxylic acid is measured, and by absolute calibration method, the amount of cyclohexanetricarboxylic acid in the sample is quantified, and the mass ratio of cyclohexanetricarboxylic acid in the sample is determined. It was subtracted from 100 to obtain the dehydration rate. That is, when 100 g of the sample contains 2 g of unreacted cyclohexanetricarboxylic acid, the dehydration rate is 98%.
- H-TMAn-S The purity of H-TMAn-S was calculated by multiplying the GC purity by the dehydration rate.
- H-TMAn-S (mass %) GC purity of H-TMAn-S (mass %) ⁇ anhydrous ratio (mass %) ⁇ 100
- Liquid content (%) [(mass of Wet crystals ⁇ mass of Dry crystals)/(mass of Wet crystals)] ⁇ 100
- the mass of the Wet crystal means a Wet crystal that has been rotated using a centrifugal separator at a centrifugal acceleration of 450 G until the filtrate does not come out.
- Example 1 To 76% by mass of the mother liquor obtained in Comparative Example 1, H-TMA (255.7 g), acetic acid (136.8 g) and acetic anhydride (129.9 g) were added and the reaction was carried out. Each component of the reaction solution was calculated by the above-mentioned GC analysis. Crystallization was performed under the same conditions as in Comparative Example 1. The yield of cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride was 70.24 mol %. In the same manner as in Comparative Example 1, the solid liquid was separated and the liquid content of the Wet crystals was measured. The liquid content in the obtained crystals was 8.09% by mass. The amount of MeHHPA in the obtained Dry crystals was 0.045% by mass. Each component in the dry crystals was calculated by the above-mentioned GC analysis.
- Example 2 Using the crystallization mother liquor obtained in Comparative Example 1, the same operation as in Example 1 was performed and the results are shown in Table 1 (Examples 2 to 6. In Example 2, the crystallization mother liquor of Example 1 was used. ).
- FIG. 3 is a graph showing the relationship between the amount of MeHHPA in the initial state of the crystallization system and the liquid content in cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride crystals (Wet crystals). .. Specifically, the horizontal axis represents the amount of MeHHPA in the initial stage (before the crystallization reaction) of the crystallization system (unit: mass %), and the vertical axis represents the liquid content (mass %) in the obtained Wet crystals. ) Is shown.
- FIG. 3 is a graph showing the relationship between the amount of MeHHPA in the initial state of the crystallization system and the liquid content in cyclohexane-1,2,4-tricarboxylic acid-1,2-anhydride crystals (Wet crystals). .. Specifically, the horizontal axis represents the amount of MeHHPA in the initial stage (before the crystallization reaction) of the crystallization system (unit: mass %), and the vertical axis represents the liquid
- the horizontal axis represents the amount of MeHHPA in dry crystals (unit: mass %)
- the vertical axis represents the liquid content (mass %) in the obtained Wet crystals.
Landscapes
- Chemical & Material Sciences (AREA)
- Organic Chemistry (AREA)
- Furan Compounds (AREA)
- Heterocyclic Carbon Compounds Containing A Hetero Ring Having Oxygen Or Sulfur (AREA)
- Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
Abstract
表面の液体量が少ない結晶が得られる、シクロヘキサントリカルボン酸無水物の結晶の製造方法、結晶の提供。シクロヘキサントリカルボン酸無水物をモノカルボン酸0~100質量%とモノカルボン酸の無水物100~0質量%を含む溶媒が存在する晶析系で晶析させることを含むシクロヘキサントリカルボン酸無水物の結晶の製造方法であって、晶析系は、晶析開始時において、シクロヘキサントリカルボン酸無水物の晶析後の母液由来の成分を含み、晶析系の晶析開始時の組成が下記式(1)で表される化合物0.20質量部超1.00質量部以下に対し、シクロヘキサントリカルボン酸無水物5.0~49.9質量部および溶媒50~95.0質量部の割合となるように各成分を添加することを含み、晶析系を冷却して晶析させることを含む、シクロヘキサントリカルボン酸無水物の結晶の製造方法;式(1)中、nは0~4の整数である。
Description
本発明は、シクロヘキサントリカルボン酸無水物の結晶の製造方法および結晶に関する。
シクロヘキサントリカルボン酸無水物は、塗料、接着剤、成形品、半導体の封止剤用樹脂、熱硬化性樹脂組成物の硬化剤、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエステル樹脂、アルキッド樹脂等の原料や改質剤あるいは変性剤、可塑剤や潤滑油原料、医農薬中間体、塗料用樹脂原料、トナー用樹脂等として有用であることが知られている。
シクロヘキサントリカルボン酸無水物の結晶としては、特許文献1に記載がある。具体的には、水を用いた晶析によりcis,cis-1,2,4-シクロヘキサントリカルボン酸とtrans,trans-1,2,4-シクロヘキサントリカルボン酸の混合物から、trans,trans-1,2,4-シクロヘキサントリカルボン酸を分離することを特徴とするtrans,trans-1,2,4-シクロヘキサントリカルボン酸-1,2-無水物の製造方法が開示されている。
ここで、シクロヘキサントリカルボン酸無水物の結晶を製造する場合、原料となる溶解状態のシクロヘキサントリカルボン酸無水物を、モノカルボン酸の存在下で、冷却して、晶析させることが考えられる。そして、通常は、晶析した後、固体と液体を分離し、得られた結晶(Wet晶)を乾燥させて結晶(Dry晶)を得る。しかしながら、Wet晶は、結晶の表面に液体が残存しており、特に、シクロヘキサントリカルボン酸無水物の結晶を大量生産する場合には、Wet晶の表面の液体が多いと以下の問題点がある。
すなわち、Wet晶を加熱して乾燥させる際、表面に溶媒が多く付着していると、乾燥中に溶媒への基質の溶解が進行してしまう。そうすると、Wet晶の粉体が大きな塊となってしまう。そして、Wet晶の表面積減少に伴い乾燥効率が著しく低下し、さらに、得られる、Dry晶(乾燥品)が大きな塊状となるため取り扱い性も低下してしまう。
上記のような不具合を回避する方法として低温での乾燥が考えられるが、低温での乾燥では乾燥速度が低下するため生産性が低下してしまう。
よって、上記の問題を軽減するためにWet晶の含液率を低下させることは非常に重要な項目となる。
本発明は、かかる課題を解決することを目的とするものであって、Wet晶の状態のときに、表面の液体量が少ない結晶が得られる、シクロヘキサントリカルボン酸無水物の結晶の製造方法、ならびに、シクロヘキサントリカルボン酸無水物の結晶を提供することを目的とする。
すなわち、Wet晶を加熱して乾燥させる際、表面に溶媒が多く付着していると、乾燥中に溶媒への基質の溶解が進行してしまう。そうすると、Wet晶の粉体が大きな塊となってしまう。そして、Wet晶の表面積減少に伴い乾燥効率が著しく低下し、さらに、得られる、Dry晶(乾燥品)が大きな塊状となるため取り扱い性も低下してしまう。
上記のような不具合を回避する方法として低温での乾燥が考えられるが、低温での乾燥では乾燥速度が低下するため生産性が低下してしまう。
よって、上記の問題を軽減するためにWet晶の含液率を低下させることは非常に重要な項目となる。
本発明は、かかる課題を解決することを目的とするものであって、Wet晶の状態のときに、表面の液体量が少ない結晶が得られる、シクロヘキサントリカルボン酸無水物の結晶の製造方法、ならびに、シクロヘキサントリカルボン酸無水物の結晶を提供することを目的とする。
かかる状況の下、本発明者が検討を行った結果、下記手段により、上記課題は解決された。
<1>シクロヘキサントリカルボン酸無水物を、20℃で液体であるモノカルボン酸0~100質量%と前記20℃で液体であるモノカルボン酸の無水物100~0質量%を含む溶媒(但し、前記モノカルボン酸とモノカルボン酸無水物の合計が100質量%を超えることは無い)が存在する晶析系で晶析させることを含むシクロヘキサントリカルボン酸無水物の結晶の製造方法であって、前記晶析系は、晶析開始時において、シクロヘキサントリカルボン酸無水物の晶析後の母液由来の成分を含み、前記晶析系の晶析開始時の組成が下記式(1)で表される化合物0.20質量部超1.00質量部以下に対し、前記シクロヘキサントリカルボン酸無水物5.0~49.9質量部および前記溶媒50~95.0質量部の割合となるように各成分を添加することを含み、前記晶析系を冷却して晶析させることを含む、シクロヘキサントリカルボン酸無水物の結晶の製造方法;
式(1)
式(1)中、nは0~4の整数である。
<2>前記シクロヘキサントリカルボン酸無水物が、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物である、<1>に記載の結晶の製造方法。
<3>前記式(1)で表される化合物において、nが1~3の整数である、<1>または<2>に記載の結晶の製造方法。
<4>前記式(1)で表される化合物が、4-メチル-1,2-シクロヘキサンジカルボン酸無水物である、<1>~<3>のいずれか1つに記載の結晶の製造方法。
<5>前記溶媒が、20℃で液体であるモノカルボン酸50~100質量%と20℃で液体であるモノカルボン酸の無水物0~50質量%を含む、<1>~<4>のいずれか1つに記載の結晶の製造方法。
<6>前記モノカルボン酸が酢酸である、<1>~<5>のいずれか1つに記載の結晶の製造方法。
<7>前記晶析前に、シクロヘキサントリカルボン酸を、20℃で液体であるモノカルボン酸0~100質量%と20℃で液体であるモノカルボン酸の無水物100~0質量%を含む溶媒(但し、前記モノカルボン酸とモノカルボン酸無水物の合計が100質量%を超えることは無い)に添加して前記シクロヘキサントリカルボン酸無水物を得ることを含む、<1>~<6>のいずれか1つに記載の結晶の製造方法。
<8>前記晶析後、母液と、シクロヘキサントリカルボン酸無水物の結晶を分離することを含む、<1>~<7>のいずれか1つに記載の結晶の製造方法。
<9>前記分離したシクロヘキサントリカルボン酸無水物の結晶を乾燥することを含む、<8>に記載の結晶の製造方法。
<10>前記分離したシクロヘキサントリカルボン酸無水物の結晶であって、乾燥前の結晶の下記式で表される含液率が8.5質量%以下である、<9>に記載の結晶の製造方法:
含液率(%)=[(乾燥前の結晶の質量-乾燥後の結晶の質量)/乾燥前の結晶の質量]×100
上記乾燥は、130℃で12時間加熱したことをいう。
<11>前記結晶が、式(1)で表される化合物を0.025~0.1質量%含む、<1>~<10>のいずれか1つに記載の結晶の製造方法。
<12>シクロヘキサントリカルボン酸無水物を主成分とし、下記式(1)で表される化合物を0.025~0.1質量%含む、結晶;
式(1)
式(1)中、nは0~4の整数である。
<13>前記結晶の下記式で表される含液率が9.4質量%以下である、<12>に記載の結晶;
含液率(%)=[(乾燥前の結晶の質量-乾燥後の結晶の質量)/乾燥前の結晶の質量]×100
上記乾燥は、130℃で12時間加熱したことをいう。
<14><1>~<11>のいずれか1つに記載の製造方法で得られた結晶である、<12>または<13>に記載の結晶。
<1>シクロヘキサントリカルボン酸無水物を、20℃で液体であるモノカルボン酸0~100質量%と前記20℃で液体であるモノカルボン酸の無水物100~0質量%を含む溶媒(但し、前記モノカルボン酸とモノカルボン酸無水物の合計が100質量%を超えることは無い)が存在する晶析系で晶析させることを含むシクロヘキサントリカルボン酸無水物の結晶の製造方法であって、前記晶析系は、晶析開始時において、シクロヘキサントリカルボン酸無水物の晶析後の母液由来の成分を含み、前記晶析系の晶析開始時の組成が下記式(1)で表される化合物0.20質量部超1.00質量部以下に対し、前記シクロヘキサントリカルボン酸無水物5.0~49.9質量部および前記溶媒50~95.0質量部の割合となるように各成分を添加することを含み、前記晶析系を冷却して晶析させることを含む、シクロヘキサントリカルボン酸無水物の結晶の製造方法;
式(1)
<2>前記シクロヘキサントリカルボン酸無水物が、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物である、<1>に記載の結晶の製造方法。
<3>前記式(1)で表される化合物において、nが1~3の整数である、<1>または<2>に記載の結晶の製造方法。
<4>前記式(1)で表される化合物が、4-メチル-1,2-シクロヘキサンジカルボン酸無水物である、<1>~<3>のいずれか1つに記載の結晶の製造方法。
<5>前記溶媒が、20℃で液体であるモノカルボン酸50~100質量%と20℃で液体であるモノカルボン酸の無水物0~50質量%を含む、<1>~<4>のいずれか1つに記載の結晶の製造方法。
<6>前記モノカルボン酸が酢酸である、<1>~<5>のいずれか1つに記載の結晶の製造方法。
<7>前記晶析前に、シクロヘキサントリカルボン酸を、20℃で液体であるモノカルボン酸0~100質量%と20℃で液体であるモノカルボン酸の無水物100~0質量%を含む溶媒(但し、前記モノカルボン酸とモノカルボン酸無水物の合計が100質量%を超えることは無い)に添加して前記シクロヘキサントリカルボン酸無水物を得ることを含む、<1>~<6>のいずれか1つに記載の結晶の製造方法。
<8>前記晶析後、母液と、シクロヘキサントリカルボン酸無水物の結晶を分離することを含む、<1>~<7>のいずれか1つに記載の結晶の製造方法。
<9>前記分離したシクロヘキサントリカルボン酸無水物の結晶を乾燥することを含む、<8>に記載の結晶の製造方法。
<10>前記分離したシクロヘキサントリカルボン酸無水物の結晶であって、乾燥前の結晶の下記式で表される含液率が8.5質量%以下である、<9>に記載の結晶の製造方法:
含液率(%)=[(乾燥前の結晶の質量-乾燥後の結晶の質量)/乾燥前の結晶の質量]×100
上記乾燥は、130℃で12時間加熱したことをいう。
<11>前記結晶が、式(1)で表される化合物を0.025~0.1質量%含む、<1>~<10>のいずれか1つに記載の結晶の製造方法。
<12>シクロヘキサントリカルボン酸無水物を主成分とし、下記式(1)で表される化合物を0.025~0.1質量%含む、結晶;
式(1)
<13>前記結晶の下記式で表される含液率が9.4質量%以下である、<12>に記載の結晶;
含液率(%)=[(乾燥前の結晶の質量-乾燥後の結晶の質量)/乾燥前の結晶の質量]×100
上記乾燥は、130℃で12時間加熱したことをいう。
<14><1>~<11>のいずれか1つに記載の製造方法で得られた結晶である、<12>または<13>に記載の結晶。
本発明により、Wet晶の状態のときに、表面の液体量が少ない結晶が得られる、シクロヘキサントリカルボン酸無水物の結晶の製造方法、ならびに、シクロヘキサントリカルボン酸無水物の結晶を提供可能になった。
以下において、本発明の内容について詳細に説明する。なお、本明細書において「~」とはその前後に記載される数値を下限値および上限値として含む意味で使用される。
本発明のシクロヘキサントリカルボン酸無水物の結晶の製造方法は、シクロヘキサントリカルボン酸無水物を、20℃で液体であるモノカルボン酸0~100質量%と前記20℃で液体であるモノカルボン酸の無水物100~0質量%を含む溶媒(但し、前記モノカルボン酸とモノカルボン酸無水物の合計が100質量%を超えることは無い)が存在する晶析系で晶析させることを含むシクロヘキサントリカルボン酸無水物の結晶の製造方法であって、前記晶析系は、晶析開始時において、シクロヘキサントリカルボン酸無水物の晶析後の母液由来の成分を含み、前記晶析系の晶析開始時の組成が、下記式(1)で表される化合物0.20質量部超1.00質量部以下に対し、前記シクロヘキサントリカルボン酸無水物5.0~49.9質量部および前記溶媒50~95.0質量部の割合となるように各成分を添加することを含み、前記晶析系を冷却して晶析させることを含むことを特徴とする。
式(1)
式(1)中、nは0~4の整数である。
本発明のシクロヘキサントリカルボン酸無水物の結晶の製造方法は、シクロヘキサントリカルボン酸無水物を、20℃で液体であるモノカルボン酸0~100質量%と前記20℃で液体であるモノカルボン酸の無水物100~0質量%を含む溶媒(但し、前記モノカルボン酸とモノカルボン酸無水物の合計が100質量%を超えることは無い)が存在する晶析系で晶析させることを含むシクロヘキサントリカルボン酸無水物の結晶の製造方法であって、前記晶析系は、晶析開始時において、シクロヘキサントリカルボン酸無水物の晶析後の母液由来の成分を含み、前記晶析系の晶析開始時の組成が、下記式(1)で表される化合物0.20質量部超1.00質量部以下に対し、前記シクロヘキサントリカルボン酸無水物5.0~49.9質量部および前記溶媒50~95.0質量部の割合となるように各成分を添加することを含み、前記晶析系を冷却して晶析させることを含むことを特徴とする。
式(1)
このような構成とすることにより、得られるWet晶中の含液率を低くすることができる。
ここで、Wet晶とは、晶析し、母液と分離した後、乾燥前の結晶をいい、乾燥後の結晶であるDry晶と区別される。また、本発明における結晶は、特に述べない限り、Wet晶とDry晶の両方を含む趣旨である。
本発明の結晶の製造方法で得られる結晶は、Wet晶の状態で含液率が低い。そのため、上述した問題点を回避できる。また、得られる結晶には、一定量のMeHHPAが含まれる点で、従来とは多少異なるものとなる。
以下、図1に示すスキームに従って、本発明の結晶の製造方法について説明する。尚、以下の工程のすべてが本発明の製造方法において、必須でないことは言うまでもない。
ここで、Wet晶とは、晶析し、母液と分離した後、乾燥前の結晶をいい、乾燥後の結晶であるDry晶と区別される。また、本発明における結晶は、特に述べない限り、Wet晶とDry晶の両方を含む趣旨である。
本発明の結晶の製造方法で得られる結晶は、Wet晶の状態で含液率が低い。そのため、上述した問題点を回避できる。また、得られる結晶には、一定量のMeHHPAが含まれる点で、従来とは多少異なるものとなる。
以下、図1に示すスキームに従って、本発明の結晶の製造方法について説明する。尚、以下の工程のすべてが本発明の製造方法において、必須でないことは言うまでもない。
<シクロヘキサントリカルボン酸無水物を得る工程(無水化工程)>
晶析前のシクロヘキサントリカルボン酸無水物を得る方法は公知の方法を採用できる。好ましい一実施形態として、図1に示すように、シクロヘキサントリカルボン酸(H-TMA)を、20℃で液体であるモノカルボン酸(例えば、酢酸)0~100質量%と20℃で液体であるモノカルボン酸の無水物(例えば、無水酢酸)100~0質量%を含む溶媒(但し、モノカルボン酸とモノカルボン酸無水物の合計が100質量%を超えることは無い)に添加してシクロヘキサントリカルボン酸無水物を得る形態が挙げられる。
晶析前のシクロヘキサントリカルボン酸無水物を得る方法は公知の方法を採用できる。好ましい一実施形態として、図1に示すように、シクロヘキサントリカルボン酸(H-TMA)を、20℃で液体であるモノカルボン酸(例えば、酢酸)0~100質量%と20℃で液体であるモノカルボン酸の無水物(例えば、無水酢酸)100~0質量%を含む溶媒(但し、モノカルボン酸とモノカルボン酸無水物の合計が100質量%を超えることは無い)に添加してシクロヘキサントリカルボン酸無水物を得る形態が挙げられる。
シクロヘキサントリカルボン酸は、シクロヘキサン-1,2,4-トリカルボン酸が好ましい。
これらのシクロヘキサントリカルボン酸は、シス体でも、トランス体でも、混合物であってもよい。本発明では、少なくともシス体を含むことが好ましく、シクロヘキサントリカルボン酸の90質量%以上がシス体であることが好ましい。
これらのシクロヘキサントリカルボン酸は、シス体でも、トランス体でも、混合物であってもよい。本発明では、少なくともシス体を含むことが好ましく、シクロヘキサントリカルボン酸の90質量%以上がシス体であることが好ましい。
溶媒は、上述の通り、20℃で液体であるモノカルボン酸0~100質量%と20℃で液体であるモノカルボン酸の無水物100~0質量%を含むことが好ましい。溶媒は、モノカルボン酸50~100質量%と20℃で液体であるモノカルボン酸の無水物0~50質量%を含むことが好ましく、モノカルボン酸60~90質量%と20℃で液体であるモノカルボン酸の無水物10~40質量%を含むことがより好ましい。
20℃で液体であるモノカルボン酸としては、酢酸、プロピオン酸が例示され、酢酸が好ましい。
20℃で液体であるモノカルボン酸の無水物としては、上記モノカルボン酸の無水物(無水モノカルボン酸)が好ましい。特に、モノカルボン酸とモノカルボン酸の無水物を組み合わせる場合、モノカルボン酸の無水物は、併用するモノカルボン酸の無水物であることが好ましい。
モノカルボン酸の無水物としては、無水酢酸、無水プロピオン酸が例示され、無水酢酸が好ましい。
20℃で液体であるモノカルボン酸としては、酢酸、プロピオン酸が例示され、酢酸が好ましい。
20℃で液体であるモノカルボン酸の無水物としては、上記モノカルボン酸の無水物(無水モノカルボン酸)が好ましい。特に、モノカルボン酸とモノカルボン酸の無水物を組み合わせる場合、モノカルボン酸の無水物は、併用するモノカルボン酸の無水物であることが好ましい。
モノカルボン酸の無水物としては、無水酢酸、無水プロピオン酸が例示され、無水酢酸が好ましい。
本発明では、シクロヘキサントリカルボン酸の無水化に際し、モノカルボン酸およびモノカルボン酸無水物以外の他の溶媒を含んでいてもよいし、含んでいなくてもよい。他の溶媒を含む場合、沸点50℃以上の炭化水素系溶媒、ハロゲン化炭化水素系溶媒、エステル系溶媒、ケトン系溶媒、エーテル系溶媒、脂肪酸系溶媒が例示される。他の溶媒を含む場合、その含有量は、モノカルボン酸およびモノカルボン酸無水物の合計に対し、1~100質量%であることが好ましい。また、本発明では、モノカルボン酸およびモノカルボン酸無水物以外の他の溶媒を実質的に含まない構成とすることもできる。実質的に含まないとは、他の溶媒が溶媒全量の1質量%未満であることをいい、0.1質量%以下であることが好ましく、0.05質量%以下であることがより好ましい。
シクロヘキサントリカルボン酸の無水化には、シクロヘキサントリカルボン酸100質量部に対し、前記溶媒が合計で200~800質量部であることが好ましく、300~700質量部であることがより好ましい。このような範囲とすることにより、晶析操作により得られる製品の純度と収率を共に高くすることができる。
本発明では、シクロヘキサントリカルボン酸、モノカルボン酸、モノカルボン酸の無水物、他の溶媒について、それぞれ1種のみ用いてもよいし、2種以上用いてもよい。2種以上用いる場合、合計量が上記範囲となることが好ましい。
本発明では、シクロヘキサントリカルボン酸、モノカルボン酸、モノカルボン酸の無水物、他の溶媒について、それぞれ1種のみ用いてもよいし、2種以上用いてもよい。2種以上用いる場合、合計量が上記範囲となることが好ましい。
シクロヘキサントリカルボン酸の無水化に際し、母液を添加した状態で無水化反応を進行させることが好ましい。母液の量は、後述する晶析工程の開始時において、晶析系中に含まれる量が、式(1)で表される化合物0.20質量部超1.00質量部以下に対し、シクロヘキサントリカルボン酸無水物5.0~49.9質量部および前記溶媒50~95.0質量部の割合となるように調整する限り、特に定めるものではない。
シクロヘキサントリカルボン酸の無水化に際し、温度は、昇温して定常状態になった後の温度(反応温度)が、80~150℃であることが好ましく、90~140℃であることがより好ましく、95~130℃であることが特に好ましい。また、シクロヘキサントリカルボン酸の無水化に際し、撹拌することが好ましい。また、定常状態になってからの反応時間が10分~4時間が好ましく、1~3時間がより好ましい。
無水化に際し、触媒を用いてもよいし、触媒を用いなくてもよい。触媒を用いる場合、モレキュラーシーブが例示される。
無水化に際し、触媒を用いてもよいし、触媒を用いなくてもよい。触媒を用いる場合、モレキュラーシーブが例示される。
シクロヘキサントリカルボン酸の無水化率は、90質量%以上であることが好ましく、93質量%以上であることがより好ましい。無水化率は、後述する実施例に記載の方法で測定される。
<晶析工程>
本発明では、シクロヘキサントリカルボン酸無水物を、20℃で液体であるモノカルボン酸0~100質量%と前記20℃で液体であるモノカルボン酸の無水物100~0質量%を含む溶媒(但し、前記モノカルボン酸とモノカルボン酸無水物の合計が100質量%を超えることは無い)が存在する晶析系で晶析させることを含む。
前記晶析系は、晶析開始時において、シクロヘキサントリカルボン酸無水物の晶析後の母液由来の成分を含み、前記晶析系の晶析開始時(以下、「初期状態」ということがある)の組成が、下記式(1)で表される化合物0.20質量部超1.00質量部以下に対し、前記シクロヘキサントリカルボン酸無水物5.0~49.9質量部および前記溶媒50~95.0質量部の割合となるように各成分を添加することを含む。そして、前記晶析系を冷却して晶析させる。通常は、上記無水化工程後の反応液をそのまま冷却する。このような構成とすることにより、Wet結晶の含液率を低くすることができる。
本発明における晶析系は、初期状態では、母液由来の成分、式(1)で表される化合物、シクロヘキサントリカルボン酸無水物、溶媒が含まれる。ただし、式(1)で表される化合物、シクロヘキサントリカルボン酸無水物および溶媒の一部は、母液由来の成分であってもよい。本発明では、晶析開始時に、各成分が上述の割合となるように各成分が添加されていればよい。また、本発明における反応系は、触媒等の他の成分を含んでいてもよい。
本発明では、シクロヘキサントリカルボン酸無水物を、20℃で液体であるモノカルボン酸0~100質量%と前記20℃で液体であるモノカルボン酸の無水物100~0質量%を含む溶媒(但し、前記モノカルボン酸とモノカルボン酸無水物の合計が100質量%を超えることは無い)が存在する晶析系で晶析させることを含む。
前記晶析系は、晶析開始時において、シクロヘキサントリカルボン酸無水物の晶析後の母液由来の成分を含み、前記晶析系の晶析開始時(以下、「初期状態」ということがある)の組成が、下記式(1)で表される化合物0.20質量部超1.00質量部以下に対し、前記シクロヘキサントリカルボン酸無水物5.0~49.9質量部および前記溶媒50~95.0質量部の割合となるように各成分を添加することを含む。そして、前記晶析系を冷却して晶析させる。通常は、上記無水化工程後の反応液をそのまま冷却する。このような構成とすることにより、Wet結晶の含液率を低くすることができる。
本発明における晶析系は、初期状態では、母液由来の成分、式(1)で表される化合物、シクロヘキサントリカルボン酸無水物、溶媒が含まれる。ただし、式(1)で表される化合物、シクロヘキサントリカルボン酸無水物および溶媒の一部は、母液由来の成分であってもよい。本発明では、晶析開始時に、各成分が上述の割合となるように各成分が添加されていればよい。また、本発明における反応系は、触媒等の他の成分を含んでいてもよい。
<<式(1)で表される化合物>>
本発明では、晶析系に式(1)で表される化合物が存在する。前記化合物が存在することにより、結晶化を促進すると推測される。さらに、式(1)で表される化合物は、構造を制御していると推測される。結果として、得られるWet晶の含液率が低下すると考えられる。
式(1)
式(1)中、nは0~4の整数である。
式(1)で表される化合物において、nが1~4の整数であることが好ましく、1~3の整数であることがより好ましく、1または2であることがさらに好ましく、1であることが一層好ましい。
本発明では、晶析系に式(1)で表される化合物が存在する。前記化合物が存在することにより、結晶化を促進すると推測される。さらに、式(1)で表される化合物は、構造を制御していると推測される。結果として、得られるWet晶の含液率が低下すると考えられる。
式(1)
式(1)で表される化合物において、nが1~4の整数であることが好ましく、1~3の整数であることがより好ましく、1または2であることがさらに好ましく、1であることが一層好ましい。
式(1)で表される化合物としては、4-メチル-1,2-シクロヘキサンジカルボン酸無水物が好ましい。
<<シクロヘキサントリカルボン酸無水物>>
シクロヘキサントリカルボン酸無水物は、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物が好ましい。
これらのシクロヘキサントリカルボン酸無水物は、シス体でも、トランス体でも、混合物であってもよい。本発明では、少なくともシス体を含むことが好ましい。シクロヘキサントリカルボン酸無水物におけるシス体の割合は、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、97質量%以上であることがさらに好ましい。上限としては、シス体の割合が99.9質量%以下であることが好ましい。シス体比率が高い方が、収率が向上する傾向にあり好ましい。
シクロヘキサントリカルボン酸無水物は、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物が好ましい。
これらのシクロヘキサントリカルボン酸無水物は、シス体でも、トランス体でも、混合物であってもよい。本発明では、少なくともシス体を含むことが好ましい。シクロヘキサントリカルボン酸無水物におけるシス体の割合は、90質量%以上であることが好ましく、95質量%以上であることがより好ましく、97質量%以上であることがさらに好ましい。上限としては、シス体の割合が99.9質量%以下であることが好ましい。シス体比率が高い方が、収率が向上する傾向にあり好ましい。
<<溶媒>>
溶媒は、20℃で液体であるモノカルボン酸0~100質量%と20℃で液体であるモノカルボン酸の無水物100~0質量%を含む。溶媒は、モノカルボン酸50~100質量%と20℃で液体であるモノカルボン酸の無水物0~50質量%を含むことが好ましく、モノカルボン酸60~90質量%と20℃で液体であるモノカルボン酸の無水物10~40質量%を含むことがより好ましい。このようにモノカルボン酸とモノカルボン酸の無水物を併用することにより、母液のリサイクル使用をより安定して行うことが可能になる。
20℃で液体であるモノカルボン酸としては、酢酸、プロピオン酸が例示され、酢酸が好ましい。
20℃で液体であるモノカルボン酸の無水物としては、上記モノカルボン酸の無水物(無水モノカルボン酸)が好ましい。特に、モノカルボン酸とモノカルボン酸の無水物を組み合わせる場合、モノカルボン酸の無水物は、併用するモノカルボン酸の無水物であることが好ましい。
20℃で液体であるモノカルボン酸の無水物としては、無水酢酸、無水プロピオン酸が例示され、無水酢酸が好ましい。
溶媒は、20℃で液体であるモノカルボン酸0~100質量%と20℃で液体であるモノカルボン酸の無水物100~0質量%を含む。溶媒は、モノカルボン酸50~100質量%と20℃で液体であるモノカルボン酸の無水物0~50質量%を含むことが好ましく、モノカルボン酸60~90質量%と20℃で液体であるモノカルボン酸の無水物10~40質量%を含むことがより好ましい。このようにモノカルボン酸とモノカルボン酸の無水物を併用することにより、母液のリサイクル使用をより安定して行うことが可能になる。
20℃で液体であるモノカルボン酸としては、酢酸、プロピオン酸が例示され、酢酸が好ましい。
20℃で液体であるモノカルボン酸の無水物としては、上記モノカルボン酸の無水物(無水モノカルボン酸)が好ましい。特に、モノカルボン酸とモノカルボン酸の無水物を組み合わせる場合、モノカルボン酸の無水物は、併用するモノカルボン酸の無水物であることが好ましい。
20℃で液体であるモノカルボン酸の無水物としては、無水酢酸、無水プロピオン酸が例示され、無水酢酸が好ましい。
本発明では、シクロヘキサントリカルボン酸無水物の晶析に際し、モノカルボン酸およびモノカルボン酸無水物以外の他の溶媒を含んでいてもよいし、含んでいなくてもよい。他の溶媒を含む場合、沸点50℃以上の炭化水素系溶媒、ハロゲン化炭化水素系溶媒、エステル系溶媒、ケトン系溶媒、エーテル系溶媒、脂肪酸系溶媒が例示される。他の溶媒を含む場合、その含有量は、溶媒の1~100質量%であることが好ましい。また、本発明では、モノカルボン酸およびモノカルボン酸無水物以外の他の溶媒を実質的に含まない構成とすることもできる。実質的に含まないとは、他の溶媒が溶媒の1質量%未満であることをいい、0.1質量%以下であることが好ましく、0.05質量%以下であることがより好ましい。
本発明では、シクロヘキサントリカルボン酸無水物を得る工程で用いる溶媒と晶析工程で用いる溶媒の90質量%以上が共通することが好ましく、95質量%以上が共通することがより好ましく、99質量%以上が共通することがさらに好ましい。このような構成とすることにより、生産効率をより向上させることができる。
本発明では、シクロヘキサントリカルボン酸無水物を得る工程で用いる溶媒と晶析工程で用いる溶媒の90質量%以上が共通することが好ましく、95質量%以上が共通することがより好ましく、99質量%以上が共通することがさらに好ましい。このような構成とすることにより、生産効率をより向上させることができる。
<<他の成分>>
本発明の製造方法は、晶析系に、式(1)で表される化合物、シクロヘキサントリカルボン酸無水物、溶媒以外の成分を用いてもよい。具体的には、シクロヘキサントリカルボン酸、ジカルボン酸、ジカルボン酸無水物等が例示される。
本発明の製造方法は、晶析系に、式(1)で表される化合物、シクロヘキサントリカルボン酸無水物、溶媒以外の成分を用いてもよい。具体的には、シクロヘキサントリカルボン酸、ジカルボン酸、ジカルボン酸無水物等が例示される。
<<式(1)で表される化合物、シクロヘキサントリカルボン酸無水物、溶媒の比率>>
本発明では、初期状態(晶析前の状態)で晶析系中に含まれる式(1)で表される化合物の量が、0.20質量%超1.00質量%以下であることが好ましい。初期状態(晶析前の状態)で晶析系中に含まれる式(1)で表される化合物の量は、好ましくは0.25質量%以上、より好ましくは0.30質量%以上、さらに好ましくは0.34質量%以上、また、好ましくは0.80質量%以下、より好ましくは0.60質量%以下である。また、本発明では、初期状態(晶析前の状態)で晶析系中に含まれる溶媒を除く成分中の式(1)で表される化合物の量は、0.87質量%以上であることが好ましく、0.90質量%以上であることがより好ましい。上限値としては、例えば、3.0質量%以下であることが好ましく、2.5質量%以下であることがより好ましく、2.0質量%以下であることがさらに好ましい。上記式(1)で表される化合物の量とは、母液由来のものやシクロヘキサントリカルボン酸に含まれる不純物由来のものなども含めた合計量である。また、晶析系に新たに式(1)で表される化合物を追加してもよい。本発明では、晶析前の無水化工程に際し、母液を用いることが好ましく、このような形態とすると、式(1)で表される化合物を新たに添加せずとも、晶析系中に含まれる式(1)で表される化合物の量が0.20~1.00質量%となる場合もあろう。
本発明では、初期状態(晶析前の状態)で晶析系中に含まれる式(1)で表される化合物の量が、0.20質量%超1.00質量%以下であることが好ましい。初期状態(晶析前の状態)で晶析系中に含まれる式(1)で表される化合物の量は、好ましくは0.25質量%以上、より好ましくは0.30質量%以上、さらに好ましくは0.34質量%以上、また、好ましくは0.80質量%以下、より好ましくは0.60質量%以下である。また、本発明では、初期状態(晶析前の状態)で晶析系中に含まれる溶媒を除く成分中の式(1)で表される化合物の量は、0.87質量%以上であることが好ましく、0.90質量%以上であることがより好ましい。上限値としては、例えば、3.0質量%以下であることが好ましく、2.5質量%以下であることがより好ましく、2.0質量%以下であることがさらに好ましい。上記式(1)で表される化合物の量とは、母液由来のものやシクロヘキサントリカルボン酸に含まれる不純物由来のものなども含めた合計量である。また、晶析系に新たに式(1)で表される化合物を追加してもよい。本発明では、晶析前の無水化工程に際し、母液を用いることが好ましく、このような形態とすると、式(1)で表される化合物を新たに添加せずとも、晶析系中に含まれる式(1)で表される化合物の量が0.20~1.00質量%となる場合もあろう。
本発明では、初期状態で晶析系中に含まれるシクロヘキサントリカルボン酸無水物の量が、式(1)で表される化合物0.20質量部超1.00質量部以下に対し、10質量部以上であることが好ましく、15質量部以上であることがより好ましく、20質量部以上であることがさらに好ましく、また、50質量部以下であることが好ましく、40質量部以下であることがより好ましく、30質量部以下であることがさらに好ましい。このような範囲とすることにより、系内のシクロヘキサントリカルボン酸無水物量が低すぎることによる釜効率の低下を効果的に防止し、シクロヘキサントリカルボン酸無水物量が高すぎることによる結晶性状の変化に伴う含液率の悪化を効果的に防止することができる。
本発明では、また、初期状態で晶析系中に含まれる溶媒の量が、式(1)で表される化合物0.20質量部超1.00質量部以下に対し、40質量部以上であることが好ましく、50質量部以上であることがより好ましく、60質量部以上であることがさらに好ましく、また、90質量部以下であることが好ましく、85質量部以下であることがより好ましく、80質量部以下であることがさらに好ましい。このような範囲とすることにより、Wet晶の含液率をより低下させることができる。前記溶媒は、上述のとおり、20℃で液体であるモノカルボン酸0~100質量%と20℃で液体であるモノカルボン酸の無水物100~0質量%を含む溶媒全量を意味している。
本発明では、また、初期状態で晶析系中に含まれる溶媒の量が、式(1)で表される化合物0.20質量部超1.00質量部以下に対し、40質量部以上であることが好ましく、50質量部以上であることがより好ましく、60質量部以上であることがさらに好ましく、また、90質量部以下であることが好ましく、85質量部以下であることがより好ましく、80質量部以下であることがさらに好ましい。このような範囲とすることにより、Wet晶の含液率をより低下させることができる。前記溶媒は、上述のとおり、20℃で液体であるモノカルボン酸0~100質量%と20℃で液体であるモノカルボン酸の無水物100~0質量%を含む溶媒全量を意味している。
なお、初期状態の晶析系中において、式(1)で表される化合物、シクロヘキサントリカルボン酸無水物および溶媒の合計は、85質量%以上であることが好ましく、90質量%以上であることがより好ましく、95質量%以上であることがさらに好ましく、98質量%以上であることが一層好ましく、99質量%以上であることがより一層好ましい。
また、本発明では、初期状態の晶析系中において、シクロヘキサントリカルボン酸が存在していてもよい。
また、本発明では、初期状態の晶析系中において、シクロヘキサントリカルボン酸が存在していてもよい。
式(1)で表される化合物、シクロヘキサントリカルボン酸無水物、溶媒、その他の成分について、それぞれ1種のみ用いてもよいし、2種以上用いてもよい。2種以上用いる場合は、合計量が上記範囲となることが好ましい。
<<晶析の反応条件>>
晶析の際の温度は、特に限定されないが、上記無水化工程の終了時の温度が、80~150℃であることが好ましく、90~140℃であることがより好ましく、95~130℃であることが特に好ましい。また、冷却温度(晶析終点温度)としては、特に限定されるものではないが、収率向上および操作効率の観点より、-10~50℃が好ましく、0~40℃がより好ましく、10~30℃が特に好ましい。冷却速度は、純度向上および時間効率の観点より、5~30℃/時間が好ましく、7~25℃/時間がより好ましく、7~20℃/時間がさらに好ましく、10~20℃/時間が特に好ましい。
さらに、晶析終点温度において、熟成を行うことが好ましい。熟成時間は、例えば、10分~2時間であることが好ましい。
晶析の際の温度(無水化工程の終了時の温度)と熟成の温度の差は、50℃以上であることが好ましく、60℃以上であることが好ましく、70℃以上であることがより好ましい。前記温度の差の上限は、特に定めるものではないが、例えば、90℃以下とすることができる。
晶析は撹拌しながら行うことが好ましい。
晶析の際の温度は、特に限定されないが、上記無水化工程の終了時の温度が、80~150℃であることが好ましく、90~140℃であることがより好ましく、95~130℃であることが特に好ましい。また、冷却温度(晶析終点温度)としては、特に限定されるものではないが、収率向上および操作効率の観点より、-10~50℃が好ましく、0~40℃がより好ましく、10~30℃が特に好ましい。冷却速度は、純度向上および時間効率の観点より、5~30℃/時間が好ましく、7~25℃/時間がより好ましく、7~20℃/時間がさらに好ましく、10~20℃/時間が特に好ましい。
さらに、晶析終点温度において、熟成を行うことが好ましい。熟成時間は、例えば、10分~2時間であることが好ましい。
晶析の際の温度(無水化工程の終了時の温度)と熟成の温度の差は、50℃以上であることが好ましく、60℃以上であることが好ましく、70℃以上であることがより好ましい。前記温度の差の上限は、特に定めるものではないが、例えば、90℃以下とすることができる。
晶析は撹拌しながら行うことが好ましい。
<固液分離工程>
本発明の製造方法は、晶析後、母液と、シクロヘキサントリカルボン酸無水物の結晶を分離することが好ましい。
例えば、晶析後の反応液をろ過によって、固体成分である結晶(Wet晶)と、液体成分(母液)に分離することができる。ろ過温度は特に限定されるものではないが、-15~50℃が好ましく、-10~40℃がより好ましく、0~35℃が特に好ましい。
固液分離工程は、例えば、遠心分離機を用い、室温(例えば、20~40℃)で、遠心加速度450Gでろ液が無くなるまで回転することにより、分離できる。また、スラリー供給時は、回転速度を落とすこともできる。その後、固体(Wet結晶)の洗浄を実施することもできる。
分離した母液は、本発明の無水化工程において、配合する母液として好ましく用いることができる。すなわち、本発明で初期状態の晶析系に含まれる母液由来の成分は、シクロヘキサントリカルボン酸無水物の結晶を分離した後の母液に由来する。このように母液をリサイクルすることによって、得られるWet晶の含液率を低くできると共に、原料の節約も可能になる。
母液は、そのまま全量をリサイクルしてもよいし、母液の一部を排出してからリサイクルしてもよい。母液の一部を排出することにより、系内の不純物濃度や式(1)で表される化合物の濃度を調整することができる。
母液は、その60質量%以上をリサイクルすることが好ましく、65質量%以上をリサイクルすることがより好ましく、70質量%以上をリサイクルすることが一層好ましい。前記リサイクル量の上限は、100質量%であってもよいが、例えば90質量%以下、さらには80質量%以下でも十分に意義ある態様となる。
本発明では、母液をリサイクルしつつ、新たな原料の投入を行って連続的にシクロヘキサントリカルボン酸の無水化工程および晶析工程を行うことが好ましい。すなわち、シクロヘキサントリカルボン酸無水物の結晶を分離した後の母液に、新たに、シクロヘキサントリカルボン酸および溶媒等を配合して、上述の割合となるように調整し、無水化工程後に晶析させる工程を、1回または2回以上含むことが好ましい。本発明では、前記工程を1~100回繰り返すことが好ましい。複数回のリサイクルを繰り返すことにより、晶析系中の式(1)で表される化合物の量が安定し、Wet晶の含液率をより安定的に低くすることが可能になる。
本発明の製造方法は、晶析後、母液と、シクロヘキサントリカルボン酸無水物の結晶を分離することが好ましい。
例えば、晶析後の反応液をろ過によって、固体成分である結晶(Wet晶)と、液体成分(母液)に分離することができる。ろ過温度は特に限定されるものではないが、-15~50℃が好ましく、-10~40℃がより好ましく、0~35℃が特に好ましい。
固液分離工程は、例えば、遠心分離機を用い、室温(例えば、20~40℃)で、遠心加速度450Gでろ液が無くなるまで回転することにより、分離できる。また、スラリー供給時は、回転速度を落とすこともできる。その後、固体(Wet結晶)の洗浄を実施することもできる。
分離した母液は、本発明の無水化工程において、配合する母液として好ましく用いることができる。すなわち、本発明で初期状態の晶析系に含まれる母液由来の成分は、シクロヘキサントリカルボン酸無水物の結晶を分離した後の母液に由来する。このように母液をリサイクルすることによって、得られるWet晶の含液率を低くできると共に、原料の節約も可能になる。
母液は、そのまま全量をリサイクルしてもよいし、母液の一部を排出してからリサイクルしてもよい。母液の一部を排出することにより、系内の不純物濃度や式(1)で表される化合物の濃度を調整することができる。
母液は、その60質量%以上をリサイクルすることが好ましく、65質量%以上をリサイクルすることがより好ましく、70質量%以上をリサイクルすることが一層好ましい。前記リサイクル量の上限は、100質量%であってもよいが、例えば90質量%以下、さらには80質量%以下でも十分に意義ある態様となる。
本発明では、母液をリサイクルしつつ、新たな原料の投入を行って連続的にシクロヘキサントリカルボン酸の無水化工程および晶析工程を行うことが好ましい。すなわち、シクロヘキサントリカルボン酸無水物の結晶を分離した後の母液に、新たに、シクロヘキサントリカルボン酸および溶媒等を配合して、上述の割合となるように調整し、無水化工程後に晶析させる工程を、1回または2回以上含むことが好ましい。本発明では、前記工程を1~100回繰り返すことが好ましい。複数回のリサイクルを繰り返すことにより、晶析系中の式(1)で表される化合物の量が安定し、Wet晶の含液率をより安定的に低くすることが可能になる。
<乾燥>
本発明の製造方法は、さらに、分離したシクロヘキサントリカルボン酸無水物の結晶を乾燥することが好ましい。乾燥することにより、溶媒を完全に除去することができる。
乾燥温度は、50℃以上であることが好ましく、60℃以上であることがより好ましい。また、乾燥温度の上限は、140℃以下であることが好ましく、135℃以下であることがより好ましく、130℃であることがさらに好ましい。
乾燥時間は、乾燥温度や結晶のサイズにもよるが、0.5~15時間であることがより好ましい。
また減圧下で乾燥を実施してもよい。さらに、乾燥中に窒素等を供給することもできる。
乾燥機としては、特に制限はなく、静置式(棚式)乾燥機、回転式乾燥機などを用いることができるが、乾燥効率が高く、乾燥時間も短くできるという点から、回転式乾燥機を用いることが好ましい。回転式乾燥機としては、コニカルドライヤー、エバポレーターを挙げることができる。
乾燥は、例えば、5~100mmHgの圧力下、60~100℃に加熱して乾燥させることができる。
本発明の製造方法は、さらに、分離したシクロヘキサントリカルボン酸無水物の結晶を乾燥することが好ましい。乾燥することにより、溶媒を完全に除去することができる。
乾燥温度は、50℃以上であることが好ましく、60℃以上であることがより好ましい。また、乾燥温度の上限は、140℃以下であることが好ましく、135℃以下であることがより好ましく、130℃であることがさらに好ましい。
乾燥時間は、乾燥温度や結晶のサイズにもよるが、0.5~15時間であることがより好ましい。
また減圧下で乾燥を実施してもよい。さらに、乾燥中に窒素等を供給することもできる。
乾燥機としては、特に制限はなく、静置式(棚式)乾燥機、回転式乾燥機などを用いることができるが、乾燥効率が高く、乾燥時間も短くできるという点から、回転式乾燥機を用いることが好ましい。回転式乾燥機としては、コニカルドライヤー、エバポレーターを挙げることができる。
乾燥は、例えば、5~100mmHgの圧力下、60~100℃に加熱して乾燥させることができる。
<収率>
本発明の結晶の製造方法では、収率を60mol%以上とすることができ、68mol%以上とすることもできる。収率の上限は100mol%が理想であるが、80mol%以下でも十分に実用レベルである。
本発明の結晶の製造方法では、収率を60mol%以上とすることができ、68mol%以上とすることもできる。収率の上限は100mol%が理想であるが、80mol%以下でも十分に実用レベルである。
<結晶>
本発明の結晶は、シクロヘキサントリカルボン酸無水物を主成分とし、式(1)で表される化合物を0.025~0.1質量%含む結晶である。
このような結晶は、本発明の結晶の製造方法によって、得られる。また、本発明の結晶は、本発明の結晶の製造方法以外の方法で得られた結晶であっても、本発明の範囲に含まれることは言うまでもない。
本発明の結晶は、シクロヘキサントリカルボン酸無水物を主成分とする。ここでの主成分とは、例えば、シクロヘキサントリカルボン酸無水物の割合が80.0質量%以上であることをいい、90.0質量%以上であることが好ましく、95.0質量%以上であることがより好ましく、97質量部以上であることがさらに好ましく、98.0質量%以上であることが一層好ましく、98.5質量%以上であることがより一層好ましい。前記シクロヘキサントリカルボン酸無水物は、シス体でも、トランス体でも、混合物であってもよい。本発明では、少なくともシス体を含んでいてもよく、この場合、シクロヘキサントリカルボン酸無水物におけるシス体の割合は、例えば、90.00質量%以上、95.00質量%以上、98.00質量%以上、99.00質量%以上とすることができる。上限としては、シス体の割合が100質量%以下であり、99.99質量%以下であってもよい。すなわち、シス体以外のシクロヘキサントリカルボン酸無水物を少量(例えば、0質量%超0.05質量%以下の量)含んでいる態様も例示される。結晶は、シクロヘキサントリカルボン酸無水物を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
本発明の結晶は、式(1)で表される化合物を0.030質量%以上含むことが好ましく、0.035質量%以上含むことがより好ましく、0.045質量%以上含んでいてもよい。また、本発明の結晶は、式(1)で表される化合物を0.1000質量%以下含むことが好ましく、0.095質量%以下含むことがより好ましく、0.090質量%以下含むことがさらに好ましい。本発明の結晶は、式(1)で表される化合物を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
本発明の結晶は、20℃における含液率が8.5質量%以下であることが好ましく、8.3質量%以下であることがより好ましく、8.0質量%以下であることがさらに好ましく、7.5質量%以下であることが一層好ましく、7.0質量%以下であることがより一層好ましい。また、含液率の下限は、0質量%が理想であるが、1.0質量%以上であっても実用レベルである。含液率は後述する実施例に記載の方法に従って測定される。本発明の結晶は、特に、本発明の製造方法で得られたものであって、反応液から分離したシクロヘキサントリカルボン酸無水物の結晶であって、後述する乾燥前の結晶(Wet結晶)の含液率が上記範囲を満たすことが好ましい。Wet晶では、通常その表面に液体が存在しているが、この液は、通常、晶析後の母液である。
式(1)で表される化合物の構造の好ましい範囲は、上記結晶の製造方法のところで述べた事項と同義であり、好ましい範囲も同様である。
本発明の結晶のサイズは、体積基準平均粒子径で20μm以上であることが好ましく、体積基準平均粒子径で50μm以上であることがより好ましい。このようなサイズとすると、結晶の含液率をより効果的に低くすることができる。上限値については、特に定めるものではないが、例えば、500μm以下が実際的である。
本発明の結晶は、シクロヘキサントリカルボン酸無水物を主成分とし、式(1)で表される化合物を0.025~0.1質量%含む結晶である。
このような結晶は、本発明の結晶の製造方法によって、得られる。また、本発明の結晶は、本発明の結晶の製造方法以外の方法で得られた結晶であっても、本発明の範囲に含まれることは言うまでもない。
本発明の結晶は、シクロヘキサントリカルボン酸無水物を主成分とする。ここでの主成分とは、例えば、シクロヘキサントリカルボン酸無水物の割合が80.0質量%以上であることをいい、90.0質量%以上であることが好ましく、95.0質量%以上であることがより好ましく、97質量部以上であることがさらに好ましく、98.0質量%以上であることが一層好ましく、98.5質量%以上であることがより一層好ましい。前記シクロヘキサントリカルボン酸無水物は、シス体でも、トランス体でも、混合物であってもよい。本発明では、少なくともシス体を含んでいてもよく、この場合、シクロヘキサントリカルボン酸無水物におけるシス体の割合は、例えば、90.00質量%以上、95.00質量%以上、98.00質量%以上、99.00質量%以上とすることができる。上限としては、シス体の割合が100質量%以下であり、99.99質量%以下であってもよい。すなわち、シス体以外のシクロヘキサントリカルボン酸無水物を少量(例えば、0質量%超0.05質量%以下の量)含んでいる態様も例示される。結晶は、シクロヘキサントリカルボン酸無水物を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
本発明の結晶は、式(1)で表される化合物を0.030質量%以上含むことが好ましく、0.035質量%以上含むことがより好ましく、0.045質量%以上含んでいてもよい。また、本発明の結晶は、式(1)で表される化合物を0.1000質量%以下含むことが好ましく、0.095質量%以下含むことがより好ましく、0.090質量%以下含むことがさらに好ましい。本発明の結晶は、式(1)で表される化合物を1種のみ含んでいてもよいし、2種以上含んでいてもよい。2種以上含む場合、合計量が上記範囲となることが好ましい。
本発明の結晶は、20℃における含液率が8.5質量%以下であることが好ましく、8.3質量%以下であることがより好ましく、8.0質量%以下であることがさらに好ましく、7.5質量%以下であることが一層好ましく、7.0質量%以下であることがより一層好ましい。また、含液率の下限は、0質量%が理想であるが、1.0質量%以上であっても実用レベルである。含液率は後述する実施例に記載の方法に従って測定される。本発明の結晶は、特に、本発明の製造方法で得られたものであって、反応液から分離したシクロヘキサントリカルボン酸無水物の結晶であって、後述する乾燥前の結晶(Wet結晶)の含液率が上記範囲を満たすことが好ましい。Wet晶では、通常その表面に液体が存在しているが、この液は、通常、晶析後の母液である。
式(1)で表される化合物の構造の好ましい範囲は、上記結晶の製造方法のところで述べた事項と同義であり、好ましい範囲も同様である。
本発明の結晶のサイズは、体積基準平均粒子径で20μm以上であることが好ましく、体積基準平均粒子径で50μm以上であることがより好ましい。このようなサイズとすると、結晶の含液率をより効果的に低くすることができる。上限値については、特に定めるものではないが、例えば、500μm以下が実際的である。
<用途>
本発明のシクロヘキサントリカルボン酸無水物の結晶は、エポキシ樹脂等の熱硬化性樹脂の硬化剤として用いることができる。具体的には、特開2013-112643号公報の段落0024~0029の記載を参酌でき、これらの内容は本明細書に組み込まれる。
また、本発明のシクロヘキサントリカルボン酸無水物の結晶は、ソルダーレジスト材料の酸変性剤として好ましく用いられる。具体的には、エポキシアクリレートなどのソルダーレジスト材料に酸基を付与するための変性剤として好ましく用いることができる。ソルダーレジスト材料は、プリント配線板や半導体パッケージ用回路基板に通常使用されるソルダーレジスト材料であればよく、限定されるものではない。例としては、アクリル-エポキシ樹脂等からなる熱硬化性・光硬化性レジスト材料等が挙げられる。ソルダーレジスト材料の詳細は、特開2014-052599号公報の記載を参酌でき、これらの内容は本明細書に組み込まれる。
また、本発明のシクロヘキサントリカルボン酸無水物の結晶は、上記の他、塗料、接着剤、成形品、半導体の封止剤用樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエステル樹脂、アルキッド樹脂等の原料や改質剤あるいは変性剤、可塑剤や潤滑油原料、医農薬中間体、塗料用樹脂原料、トナー用樹脂等の用途にも有用である。
本発明のシクロヘキサントリカルボン酸無水物の結晶は、エポキシ樹脂等の熱硬化性樹脂の硬化剤として用いることができる。具体的には、特開2013-112643号公報の段落0024~0029の記載を参酌でき、これらの内容は本明細書に組み込まれる。
また、本発明のシクロヘキサントリカルボン酸無水物の結晶は、ソルダーレジスト材料の酸変性剤として好ましく用いられる。具体的には、エポキシアクリレートなどのソルダーレジスト材料に酸基を付与するための変性剤として好ましく用いることができる。ソルダーレジスト材料は、プリント配線板や半導体パッケージ用回路基板に通常使用されるソルダーレジスト材料であればよく、限定されるものではない。例としては、アクリル-エポキシ樹脂等からなる熱硬化性・光硬化性レジスト材料等が挙げられる。ソルダーレジスト材料の詳細は、特開2014-052599号公報の記載を参酌でき、これらの内容は本明細書に組み込まれる。
また、本発明のシクロヘキサントリカルボン酸無水物の結晶は、上記の他、塗料、接着剤、成形品、半導体の封止剤用樹脂、ポリイミド樹脂、ポリアミドイミド樹脂、ポリアミド樹脂、ポリエステル樹脂、アルキッド樹脂等の原料や改質剤あるいは変性剤、可塑剤や潤滑油原料、医農薬中間体、塗料用樹脂原料、トナー用樹脂等の用途にも有用である。
以下に実施例を挙げて本発明をさらに具体的に説明する。以下の実施例に示す材料、使用量、割合、処理内容、処理手順等は、本発明の趣旨を逸脱しない限り、適宜、変更することができる。従って、本発明の範囲は以下に示す具体例に限定されるものではない。
本実施例において、MeHHPAは、4-メチル-1,2-シクロヘキサンジカルボン酸無水物を、H-TMAは、シクロヘキサントリカルボン酸を、H-TMAnは、シクロヘキサントリカルボン酸無水物を、H-TMAn(cis体)は、シクロヘキサントリカルボン酸無水物のシス体を、H-TMAn(その他)は、シクロヘキサントリカルボン酸無水物のシス体以外を示している。
本実施例において、MeHHPAは、4-メチル-1,2-シクロヘキサンジカルボン酸無水物を、H-TMAは、シクロヘキサントリカルボン酸を、H-TMAnは、シクロヘキサントリカルボン酸無水物を、H-TMAn(cis体)は、シクロヘキサントリカルボン酸無水物のシス体を、H-TMAn(その他)は、シクロヘキサントリカルボン酸無水物のシス体以外を示している。
<比較例1(母液の製造)>
<<シクロヘキサントリカルボン酸無水物の製造(無水化工程)>>
シクロヘキサントリカルボン酸(三菱ガス化学社製、製品名:H-TMA)に、酢酸(JNC社製、99%工業用酢酸)、無水酢酸(富士フイルム和光純薬社製、品番011-00271)を配合し、加熱無水化を行い、シクロヘキサントリカルボン酸無水物を得た。
具体的には、4Lのステンレス製晶析槽へ、H-TMA(255.7g)、無水酢酸(170.5g)および酢酸(852.4g)を仕込み、撹拌を行いながら液温が100℃となるまで加熱した。液温が100℃となった時点(定常状態になった時点)を反応開始とし1時間100℃で、反応を継続した。以下、得られたシクロヘキサントリカルボン酸無水物(H-TMAn(cis体)とH-TMAn(その他)の両方を含むもの)を、H-TMAn-Sと呼ぶ。収率は、65.67%、無水化率は99.65質量%であった。
<<シクロヘキサントリカルボン酸無水物の製造(無水化工程)>>
シクロヘキサントリカルボン酸(三菱ガス化学社製、製品名:H-TMA)に、酢酸(JNC社製、99%工業用酢酸)、無水酢酸(富士フイルム和光純薬社製、品番011-00271)を配合し、加熱無水化を行い、シクロヘキサントリカルボン酸無水物を得た。
具体的には、4Lのステンレス製晶析槽へ、H-TMA(255.7g)、無水酢酸(170.5g)および酢酸(852.4g)を仕込み、撹拌を行いながら液温が100℃となるまで加熱した。液温が100℃となった時点(定常状態になった時点)を反応開始とし1時間100℃で、反応を継続した。以下、得られたシクロヘキサントリカルボン酸無水物(H-TMAn(cis体)とH-TMAn(その他)の両方を含むもの)を、H-TMAn-Sと呼ぶ。収率は、65.67%、無水化率は99.65質量%であった。
<<晶析工程および固液分離工程>>
上記反応液の温度を100℃から10℃/時間の速度で低下させ、20℃に到達してから1時間熟成を行って晶析させた。
上記晶析した反応液を、遠心分離機を用い、遠心加速度450Gでろ液が出なくなるまで回転し、固体(Wet晶)と液体に分離した。
得られた固体をシクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物の結晶(Wet晶)と認定した。結晶の収率は、65.67mol%であった。
得られたWet結晶について、後述するとおり含液率を測定した。分離した液(母液)については、後述する実施例で用いた。
含液率を測定したWet晶について、(130℃×12時間)の条件で乾燥して、Dry晶を得た。
上記反応液の温度を100℃から10℃/時間の速度で低下させ、20℃に到達してから1時間熟成を行って晶析させた。
上記晶析した反応液を、遠心分離機を用い、遠心加速度450Gでろ液が出なくなるまで回転し、固体(Wet晶)と液体に分離した。
得られた固体をシクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物の結晶(Wet晶)と認定した。結晶の収率は、65.67mol%であった。
得られたWet結晶について、後述するとおり含液率を測定した。分離した液(母液)については、後述する実施例で用いた。
含液率を測定したWet晶について、(130℃×12時間)の条件で乾燥して、Dry晶を得た。
上記反応液、すなわち晶析系の初期の各成分の量は、後述するGC(ガスクロマトグラフィー)分析およびLC(液体クロマトグラフィー)によって測定したところ、表1に示す通りであった。具体的には、分析に際し、後述の固体液体分離の方法に従って、Wet晶とWet晶以外の成分(液体)に分離した。Wet晶および液体について、それぞれ、以下の通り、分析を行った。その後、Wet晶と液体に含まれる各成分の量を合算し、各成分の量を算出した。
Wet晶および液体の分析に際しては、図2に示すように、GC分析によって、試料中のH-TMAおよびH-TMAnの合計量、およびMeHHPAを測定した。さらに、LC分析によって、H-TMAおよびH-TMAn中のH-TMAの量を測定し、H-TMAn-S(酸無水物の合計量)の量を算出した。
また、Dry晶についても、後述するGC(ガスクロマトグラフィー)分析およびLC(液体クロマトグラフィー)によって測定したところ、表1に示す通りであった。
Wet晶および液体の分析に際しては、図2に示すように、GC分析によって、試料中のH-TMAおよびH-TMAnの合計量、およびMeHHPAを測定した。さらに、LC分析によって、H-TMAおよびH-TMAn中のH-TMAの量を測定し、H-TMAn-S(酸無水物の合計量)の量を算出した。
また、Dry晶についても、後述するGC(ガスクロマトグラフィー)分析およびLC(液体クロマトグラフィー)によって測定したところ、表1に示す通りであった。
<<GC分析方法・・試料中のH-TMAおよびH-TMAnの合計純度の定量>>
シクロへキサントリカルボン酸(H-TMA(cis体、その他)、H-TMAn-S)の合計量の純度(質量%)は、下記の条件で前処理した試料をガスクロマトグラフィー(GC)により分析を行い、以下の式に従って算出した。
GC純度(質量%)=[(H-TMAのピーク面積)÷(全ピーク(溶媒除く)の面積合計)]×100
上記面積%を質量%として表記した。
<<<ガスクロマトグラフィー用の前処理条件>>>
(エステル化条件(リン酸トリメチル法))
下記の実施例および比較例で得られた試料(反応液に含まれるWet晶、反応液に含まれるWet晶以外の成分、または、Dry晶)0.1gを精秤し、そこへ沸騰石、トリエチルアンモニウムクロライド(和光1級)3g、リン酸トリメチル(キシダ化学1級)10mLを加え、その後、ヒーティングブロック(180℃)内で、90分間加熱、エステル化した。
反応後、室温まで冷却し試験管にクロロホルム15mLを加えて溶解させ、全量を分液ロートに移し、純水100mLを加えた。分液ロートを10分間振とう後、約5分間静置して液を二層分離させた。上層(水相)をスポイト等で吸引排出し、再び純水100mLを加えた。分液ロートを10分間振とう後、約5分間静置して液を二層分離させた。下層のクロロホルム相を、濾紙(5B)を通して採取し、GC分析に供した。
シクロへキサントリカルボン酸(H-TMA(cis体、その他)、H-TMAn-S)の合計量の純度(質量%)は、下記の条件で前処理した試料をガスクロマトグラフィー(GC)により分析を行い、以下の式に従って算出した。
GC純度(質量%)=[(H-TMAのピーク面積)÷(全ピーク(溶媒除く)の面積合計)]×100
上記面積%を質量%として表記した。
<<<ガスクロマトグラフィー用の前処理条件>>>
(エステル化条件(リン酸トリメチル法))
下記の実施例および比較例で得られた試料(反応液に含まれるWet晶、反応液に含まれるWet晶以外の成分、または、Dry晶)0.1gを精秤し、そこへ沸騰石、トリエチルアンモニウムクロライド(和光1級)3g、リン酸トリメチル(キシダ化学1級)10mLを加え、その後、ヒーティングブロック(180℃)内で、90分間加熱、エステル化した。
反応後、室温まで冷却し試験管にクロロホルム15mLを加えて溶解させ、全量を分液ロートに移し、純水100mLを加えた。分液ロートを10分間振とう後、約5分間静置して液を二層分離させた。上層(水相)をスポイト等で吸引排出し、再び純水100mLを加えた。分液ロートを10分間振とう後、約5分間静置して液を二層分離させた。下層のクロロホルム相を、濾紙(5B)を通して採取し、GC分析に供した。
(エステル化条件(BF3・MeOH法)・・H-TMAのcis/trans比率の定量)
1,2,4-シクロヘキサントリカルボン酸を含有する原料水溶液を試験管に0.60g採取し、三フッ化ホウ素メタノール溶媒(東京化成工業社製)を10mL加え、150℃のブロックヒーターで6分間加熱し、エステル化処理を行った。反応終了後、クロロホルムを3mL加え、水、0.5規定炭酸ナトリウム水溶液、水の順で分液処理を行い、得られたクロロホルム溶液をガスクロマトグラフィーにて分析に供した。(cis-H-TMA+cis-H-TMAn):(trans-H-TMA+cis-H-TMAn)については、面積百分率(単面法)で算出した。なお、GC分析では、H-TMAとH-TMAnが同一ピークで検出される。このため、試料中のH-TMAとH-TMAnの選択性(質量比)については、後述するLC分析で定量した。
1,2,4-シクロヘキサントリカルボン酸を含有する原料水溶液を試験管に0.60g採取し、三フッ化ホウ素メタノール溶媒(東京化成工業社製)を10mL加え、150℃のブロックヒーターで6分間加熱し、エステル化処理を行った。反応終了後、クロロホルムを3mL加え、水、0.5規定炭酸ナトリウム水溶液、水の順で分液処理を行い、得られたクロロホルム溶液をガスクロマトグラフィーにて分析に供した。(cis-H-TMA+cis-H-TMAn):(trans-H-TMA+cis-H-TMAn)については、面積百分率(単面法)で算出した。なお、GC分析では、H-TMAとH-TMAnが同一ピークで検出される。このため、試料中のH-TMAとH-TMAnの選択性(質量比)については、後述するLC分析で定量した。
<<<ガスクロマトグラフィー分析条件>>>
ガスクロマトグラフィー分析条件は、以下の通りである。
使用機器:ガスクロマトグラフィー Agilent HP-6890
カラム:DB-1 (長さ30m、内径0.53mm、膜厚1.5μm)
検出器:FID(H2 30mL/分、Air 300mL/分)
キャリアガス:He(コンスタントフロー;平均線速38cm/秒)
スプリット比:11
注入口温度:300℃
検出器温度:290℃
注入量:1.0μL
OVEN(オーブン)温度:160℃で20分間保持した後、10℃/分で昇温して、280℃に到達してから、15分間保持した。
ガスクロマトグラフィー分析条件は、以下の通りである。
使用機器:ガスクロマトグラフィー Agilent HP-6890
カラム:DB-1 (長さ30m、内径0.53mm、膜厚1.5μm)
検出器:FID(H2 30mL/分、Air 300mL/分)
キャリアガス:He(コンスタントフロー;平均線速38cm/秒)
スプリット比:11
注入口温度:300℃
検出器温度:290℃
注入量:1.0μL
OVEN(オーブン)温度:160℃で20分間保持した後、10℃/分で昇温して、280℃に到達してから、15分間保持した。
<<無水化率の測定>>
シクロへキサントリカルボン酸(H-TMA)の無水化率は、試料を液体クロマトグラフィー(LC)により分析を行い、原料の1,2,4-シクロヘキサントリカルボン酸を定量し、さらに以下のとおり、無水化率(質量%)を算出した。
無水化率(質量%)=100-試料中のシクロヘキサントリカルボン酸(H-TMA)の量(質量%)
シクロへキサントリカルボン酸(H-TMA)の無水化率は、試料を液体クロマトグラフィー(LC)により分析を行い、原料の1,2,4-シクロヘキサントリカルボン酸を定量し、さらに以下のとおり、無水化率(質量%)を算出した。
無水化率(質量%)=100-試料中のシクロヘキサントリカルボン酸(H-TMA)の量(質量%)
(液体クロマトグラフィー用の前処理条件)
試料2gを精秤し、脱水メタノール100mLを加えて加熱し、1時間還流させてメチルエステル化反応を行い、液体クロマトグラフィー用試料として調製した。
なお、この前処理では、試料中の反応原料である1,2,4-シクロヘキサントリカルボン酸はエステル化されない。
試料2gを精秤し、脱水メタノール100mLを加えて加熱し、1時間還流させてメチルエステル化反応を行い、液体クロマトグラフィー用試料として調製した。
なお、この前処理では、試料中の反応原料である1,2,4-シクロヘキサントリカルボン酸はエステル化されない。
(液体クロマトグラフィー分析条件)
液体クロマトグラフィー分析条件は、以下の通りである。
液体クロマトグラフィー分析装置:LC-6AD(送液ユニット)、CTO-10A(恒温槽)、SCL-10A(UV)、SPD-10AV(UV-VIS検出器)、SPD-M20A(PDA検出器)
カラム:Shodex RSpak DE-413L
検出器:UV(210nm)
溶離液組成:A液=アセトニトリル、B液=0.5%リン酸水溶液
モード:Binary gradient
流速:1.0mL/分
恒温槽温度:35℃
溶離液の条件は、以下の通りである。分析時間0~15分は、A液:B液=10:90(体積比)とし、15~20分で、A液:B液=10:90(体積比)~50:50(体積比)にグラジエントをかけた。さらに、分析時間20~25分で、A液:B液=50:50(体積比)~80:20(体積比)にグラジエントをかけた。そのまま、A液:B液=80:20(体積比)で40分まで保持した後、分析時間40分~50分で、A液:B液=80:20(体積比)~10:90(体積比)にグラジエントをかけ、A液:B液=10:90にて、70分まで保持した。
液体クロマトグラフィー分析条件は、以下の通りである。
液体クロマトグラフィー分析装置:LC-6AD(送液ユニット)、CTO-10A(恒温槽)、SCL-10A(UV)、SPD-10AV(UV-VIS検出器)、SPD-M20A(PDA検出器)
カラム:Shodex RSpak DE-413L
検出器:UV(210nm)
溶離液組成:A液=アセトニトリル、B液=0.5%リン酸水溶液
モード:Binary gradient
流速:1.0mL/分
恒温槽温度:35℃
溶離液の条件は、以下の通りである。分析時間0~15分は、A液:B液=10:90(体積比)とし、15~20分で、A液:B液=10:90(体積比)~50:50(体積比)にグラジエントをかけた。さらに、分析時間20~25分で、A液:B液=50:50(体積比)~80:20(体積比)にグラジエントをかけた。そのまま、A液:B液=80:20(体積比)で40分まで保持した後、分析時間40分~50分で、A液:B液=80:20(体積比)~10:90(体積比)にグラジエントをかけ、A液:B液=10:90にて、70分まで保持した。
なお、上記液体クロマトグラフィーでは、シクロヘキサントリカルボン酸を測定しており、絶対検量法により、試料中のシクロヘキサントリカルボン酸の量を定量し、シクロへキサントリカルボン酸の試料中の質量割合を求め、これを100から差し引き、無水化率とした。
すなわち、試料100gに未反応のシクロヘキサントリカルボン酸が2g含有されている場合には、無水化率は98%である。
すなわち、試料100gに未反応のシクロヘキサントリカルボン酸が2g含有されている場合には、無水化率は98%である。
H-TMAn-Sの純度はGC純度へ無水化率を乗じることで算出した。
H-TMAn-S(質量%)=H-TMAn-SのGC純度(質量%)×無水化率(質量%)÷100
H-TMAn-S(質量%)=H-TMAn-SのGC純度(質量%)×無水化率(質量%)÷100
<<含液率の測定>>
上述の乾燥操作による質量減少から含液率を求めた。
含液率(%)=[(Wet晶の質量-Dry晶の質量)/(Wet晶の質量)]×100
ここでのWet晶の質量とは、遠心分離機を用い、遠心加速度450Gでろ液が出なくなるまで回転した後のWet晶をいう。
上述の乾燥操作による質量減少から含液率を求めた。
含液率(%)=[(Wet晶の質量-Dry晶の質量)/(Wet晶の質量)]×100
ここでのWet晶の質量とは、遠心分離機を用い、遠心加速度450Gでろ液が出なくなるまで回転した後のWet晶をいう。
<実施例1>
上記比較例1で得られた母液のうち76質量%分に、H-TMA(255.7g)、酢酸(136.8g)、無水酢酸(129.9g)を追加し反応を実施した。反応液の各成分は、上述のGC分析によって算出した。
比較例1と同様の条件で晶析させた。シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物の収率は、70.24mol%であった。
比較例1と同様に、固体液体分離し、Wet晶の含液率を測定した。得られた結晶中の含液率は、8.09質量%であった。また、得られたDry晶中のMeHHPAの量は、0.045質量%であった。Dry晶中の各成分は、上述のGC分析によって算出した。
上記比較例1で得られた母液のうち76質量%分に、H-TMA(255.7g)、酢酸(136.8g)、無水酢酸(129.9g)を追加し反応を実施した。反応液の各成分は、上述のGC分析によって算出した。
比較例1と同様の条件で晶析させた。シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物の収率は、70.24mol%であった。
比較例1と同様に、固体液体分離し、Wet晶の含液率を測定した。得られた結晶中の含液率は、8.09質量%であった。また、得られたDry晶中のMeHHPAの量は、0.045質量%であった。Dry晶中の各成分は、上述のGC分析によって算出した。
<実施例2~6>
比較例1にて得られた晶析母液を用いて、実施例1と同様の操作を行った結果を、表1(実施例2~6。実施例2では実施例1の晶析母液を使用した。)に示す。
比較例1にて得られた晶析母液を用いて、実施例1と同様の操作を行った結果を、表1(実施例2~6。実施例2では実施例1の晶析母液を使用した。)に示す。
実施例1~6および比較例1のデータに基づき、図3および図4のグラフを作成した。図3は、晶析系の初期状態のMeHHPAの量とシクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物の結晶(Wet晶)中の含液率の関係を示すグラフである。具体的には、横軸が、晶析系の初期(晶析反応前)のMeHHPAの量(単位:質量%)であり、縦軸が、得られたWet晶中の含液率(質量%)を示している。図4は、Dry晶中のMeHHPAの量とWet晶中の含液率の関係を示すグラフである。具体的には、横軸が、Dry晶中のMeHHPAの量(単位:質量%)であり、縦軸が、得られたWet晶中の含液率(質量%)を示している。
図3および図4から明らかなとおり、実施例1~6の場合、得られたシクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物の結晶(Wet晶)中の含液率が低かった。また、得られたシクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物の結晶(Dry晶)中には、0.025~0.1質量%の4-メチル-1,2-シクロヘキサンジカルボン酸無水物が含まれていた。
これに対し、比較例1の場合、得られたシクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物の結晶(Wet晶)中の含液率が高かった。また、得られたシクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物の結晶(Dry晶)中には、4-メチル-1,2-シクロヘキサンジカルボン酸無水物はほとんど含まれていなかった。
これに対し、比較例1の場合、得られたシクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物の結晶(Wet晶)中の含液率が高かった。また、得られたシクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物の結晶(Dry晶)中には、4-メチル-1,2-シクロヘキサンジカルボン酸無水物はほとんど含まれていなかった。
Claims (14)
- シクロヘキサントリカルボン酸無水物を、20℃で液体であるモノカルボン酸0~100質量%と前記20℃で液体であるモノカルボン酸の無水物100~0質量%を含む溶媒(但し、前記モノカルボン酸とモノカルボン酸無水物の合計が100質量%を超えることは無い)が存在する晶析系で晶析させることを含むシクロヘキサントリカルボン酸無水物の結晶の製造方法であって、
前記晶析系は、晶析開始時において、シクロヘキサントリカルボン酸無水物の晶析後の母液由来の成分を含み、
前記晶析系の晶析開始時の組成が下記式(1)で表される化合物0.20質量部超1.00質量部以下に対し、前記シクロヘキサントリカルボン酸無水物5.0~49.9質量部および前記溶媒50~95.0質量部の割合となるように各成分を添加することを含み、
前記晶析系を冷却して晶析させることを含む、シクロヘキサントリカルボン酸無水物の結晶の製造方法;
式(1)
- 前記シクロヘキサントリカルボン酸無水物が、シクロヘキサン-1,2,4-トリカルボン酸-1,2-無水物である、請求項1に記載の結晶の製造方法。
- 前記式(1)で表される化合物において、nが1~3の整数である、請求項1または2に記載の結晶の製造方法。
- 前記式(1)で表される化合物が、4-メチル-1,2-シクロヘキサンジカルボン酸無水物である、請求項1~3のいずれか1項に記載の結晶の製造方法。
- 前記溶媒が、20℃で液体であるモノカルボン酸50~100質量%と20℃で液体であるモノカルボン酸の無水物0~50質量%を含む、請求項1~4のいずれか1項に記載の結晶の製造方法。
- 前記モノカルボン酸が酢酸である、請求項1~5のいずれか1項に記載の結晶の製造方法。
- 前記晶析前に、シクロヘキサントリカルボン酸を、20℃で液体であるモノカルボン酸0~100質量%と20℃で液体であるモノカルボン酸の無水物100~0質量%を含む溶媒(但し、前記モノカルボン酸とモノカルボン酸無水物の合計が100質量%を超えることは無い)に添加して前記シクロヘキサントリカルボン酸無水物を得ることを含む、請求項1~6のいずれか1項に記載の結晶の製造方法。
- 前記晶析後、母液と、シクロヘキサントリカルボン酸無水物の結晶を分離することを含む、請求項1~7のいずれか1項に記載の結晶の製造方法。
- 前記分離したシクロヘキサントリカルボン酸無水物の結晶を乾燥することを含む、請求項8に記載の結晶の製造方法。
- 前記分離したシクロヘキサントリカルボン酸無水物の結晶であって、乾燥前の結晶の下記式で表される含液率が8.5質量%以下である、請求項9に記載の結晶の製造方法:
含液率(%)=[(乾燥前の結晶の質量-乾燥後の結晶の質量)/乾燥前の結晶の質量]×100
上記乾燥は、130℃で12時間加熱したことをいう。 - 前記結晶が、式(1)で表される化合物を0.025~0.1質量%含む、請求項1~10のいずれか1項に記載の結晶の製造方法。
- 前記結晶の下記式で表される含液率が9.4質量%以下である、請求項12に記載の結晶;
含液率(%)=[(乾燥前の結晶の質量-乾燥後の結晶の質量)/乾燥前の結晶の質量]×100
上記乾燥は、130℃で12時間加熱したことをいう。 - 請求項1~11のいずれか1項に記載の製造方法で得られた結晶である、請求項12または13に記載の結晶。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CN201980083313.9A CN113227064B (zh) | 2018-12-21 | 2019-11-12 | 环己烷三羧酸酐的晶体的制造方法和晶体 |
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-239655 | 2018-12-21 | ||
JP2018239655A JP2022042025A (ja) | 2018-12-21 | 2018-12-21 | シクロヘキサントリカルボン酸無水物の結晶の製造方法および結晶 |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020129466A1 true WO2020129466A1 (ja) | 2020-06-25 |
Family
ID=71101224
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/044241 WO2020129466A1 (ja) | 2018-12-21 | 2019-11-12 | シクロヘキサントリカルボン酸無水物の結晶の製造方法および結晶 |
Country Status (4)
Country | Link |
---|---|
JP (1) | JP2022042025A (ja) |
CN (1) | CN113227064B (ja) |
TW (1) | TWI835944B (ja) |
WO (1) | WO2020129466A1 (ja) |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5412108A (en) * | 1994-01-05 | 1995-05-02 | Amoco Corporation | Method for preparing 1,2,4-cyclohexanetricarboxylic acid and anhydride |
JP2003286222A (ja) * | 2001-12-28 | 2003-10-10 | Mitsubishi Gas Chem Co Inc | 水素化芳香族ポリカルボン酸の製造方法及び水素化芳香族ポリカルボン酸無水物の製造方法 |
CN101891721A (zh) * | 2010-07-28 | 2010-11-24 | 常州市阳光药业有限公司 | 电子级氢化偏苯三酸酐的制备方法 |
JP2013056856A (ja) * | 2011-09-08 | 2013-03-28 | Mitsubishi Gas Chemical Co Inc | シクロヘキサントリカルボン酸無水物のトランス体製造法 |
WO2018180696A1 (ja) * | 2017-03-29 | 2018-10-04 | 三菱瓦斯化学株式会社 | cis,cis-1,2,4-シクロヘキサントリカルボン酸結晶の製造方法 |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2005049597A1 (ja) * | 2003-11-20 | 2005-06-02 | Mitsubishi Gas Chemical Company, Inc. | 液状シクロヘキサントリカルボン酸無水物 |
-
2018
- 2018-12-21 JP JP2018239655A patent/JP2022042025A/ja active Pending
-
2019
- 2019-11-12 CN CN201980083313.9A patent/CN113227064B/zh active Active
- 2019-11-12 WO PCT/JP2019/044241 patent/WO2020129466A1/ja active Application Filing
- 2019-12-06 TW TW108144643A patent/TWI835944B/zh active
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5412108A (en) * | 1994-01-05 | 1995-05-02 | Amoco Corporation | Method for preparing 1,2,4-cyclohexanetricarboxylic acid and anhydride |
JP2003286222A (ja) * | 2001-12-28 | 2003-10-10 | Mitsubishi Gas Chem Co Inc | 水素化芳香族ポリカルボン酸の製造方法及び水素化芳香族ポリカルボン酸無水物の製造方法 |
CN101891721A (zh) * | 2010-07-28 | 2010-11-24 | 常州市阳光药业有限公司 | 电子级氢化偏苯三酸酐的制备方法 |
JP2013056856A (ja) * | 2011-09-08 | 2013-03-28 | Mitsubishi Gas Chemical Co Inc | シクロヘキサントリカルボン酸無水物のトランス体製造法 |
WO2018180696A1 (ja) * | 2017-03-29 | 2018-10-04 | 三菱瓦斯化学株式会社 | cis,cis-1,2,4-シクロヘキサントリカルボン酸結晶の製造方法 |
Also Published As
Publication number | Publication date |
---|---|
CN113227064B (zh) | 2024-07-19 |
TWI835944B (zh) | 2024-03-21 |
CN113227064A (zh) | 2021-08-06 |
JP2022042025A (ja) | 2022-03-14 |
TW202028161A (zh) | 2020-08-01 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2000514077A (ja) | アクリル酸及びメタクリル酸の精製法 | |
KR101470114B1 (ko) | 테레프탈산의 정제 방법 | |
JPH10504563A (ja) | ラクチドの製造方法 | |
ZA200507566B (en) | Method for the separation of monomers from a composition containing a monomer | |
WO2020129466A1 (ja) | シクロヘキサントリカルボン酸無水物の結晶の製造方法および結晶 | |
WO2018180854A1 (ja) | 1,2,4,5-シクロヘキサンテトラカルボン酸二無水物の製造方法 | |
US7417108B2 (en) | Process for production of 2,3,3′,4′-biphenyltetracarboxylic dianhydride | |
JP4977989B2 (ja) | 2,3,3’,4’−ビフェニルテトラカルボン酸二無水物の製造方法 | |
JP4171570B2 (ja) | 高純度アルキルアダマンチルエステルの製造方法 | |
CN113292433A (zh) | 一种反式1,2-环己烷二羧酸单甲酯的合成方法 | |
JPWO2018180696A1 (ja) | cis,cis−1,2,4−シクロヘキサントリカルボン酸結晶の製造方法 | |
US20240343702A1 (en) | Isolation method for lactide racemate | |
CN106660914B (zh) | 烷撑二醇单烷基醚的分离回收方法、抗蚀剂组合物处理废液的再利用方法和抗蚀剂组合物处理液的循环使用方法 | |
RU2151146C1 (ru) | Способ исчерпывающей дистилляции кубового остатка производства фталевого ангидрида | |
US1459852A (en) | Manufacture of ethyl acetate | |
KR102112235B1 (ko) | (메트)아크릴산 노르보르닐 에스테르의 제조 방법 | |
KR101970883B1 (ko) | 글리시딜 에스테르의 제조방법 | |
KR20220088848A (ko) | 2,6-나프탈렌디올-비스(트리멜리테이트 무수물)의 분체 및 그의 제조방법 | |
EP3986855A1 (en) | Method for preparation of decolorized acetoacetylated ethylene glycol | |
JPH02134376A (ja) | トリメリット酸エステル無水物の製造方法 | |
US4937389A (en) | Separation of 3,3'4,4'- and 2,3,3',4'-tetramethyldiphenyl ether | |
JP2000086581A (ja) | アシルオキシ安息香酸の連続的製造法 | |
EP4021888A1 (en) | A process for producing 4,4'-dichlorodiphenyl sulfone | |
CN116254156A (zh) | 一种用于富集多不饱和脂肪酸的改进的尿素包合法 | |
CN112694397A (zh) | 2,6-萘二甲酸的提纯方法 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19900818 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19900818 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |