WO2020129404A1 - 修飾粒子、修飾粒子の製造方法、および検出装置 - Google Patents

修飾粒子、修飾粒子の製造方法、および検出装置 Download PDF

Info

Publication number
WO2020129404A1
WO2020129404A1 PCT/JP2019/041831 JP2019041831W WO2020129404A1 WO 2020129404 A1 WO2020129404 A1 WO 2020129404A1 JP 2019041831 W JP2019041831 W JP 2019041831W WO 2020129404 A1 WO2020129404 A1 WO 2020129404A1
Authority
WO
WIPO (PCT)
Prior art keywords
particles
particle
substance
modified
specific binding
Prior art date
Application number
PCT/JP2019/041831
Other languages
English (en)
French (fr)
Inventor
天 管野
Original Assignee
パナソニックIpマネジメント株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by パナソニックIpマネジメント株式会社 filed Critical パナソニックIpマネジメント株式会社
Priority to JP2020561186A priority Critical patent/JP7352885B2/ja
Priority to CN201980034931.4A priority patent/CN112166315A/zh
Publication of WO2020129404A1 publication Critical patent/WO2020129404A1/ja
Priority to US17/111,616 priority patent/US20210088510A1/en

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54313Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals the carrier being characterised by its particulate form
    • G01N33/54326Magnetic particles
    • G01N33/5434Magnetic particles using magnetic particle immunoreagent carriers which constitute new materials per se
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/53Immunoassay; Biospecific binding assay; Materials therefor
    • G01N33/543Immunoassay; Biospecific binding assay; Materials therefor with an insoluble carrier for immobilising immunochemicals
    • G01N33/54393Improving reaction conditions or stability, e.g. by coating or irradiation of surface, by reduction of non-specific binding, by promotion of specific binding
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/62Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light
    • G01N21/63Systems in which the material investigated is excited whereby it emits light or causes a change in wavelength of the incident light optically excited
    • G01N21/64Fluorescence; Phosphorescence
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/58Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving labelled substances
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N33/00Investigating or analysing materials by specific methods not covered by groups G01N1/00 - G01N31/00
    • G01N33/48Biological material, e.g. blood, urine; Haemocytometers
    • G01N33/50Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing
    • G01N33/84Chemical analysis of biological material, e.g. blood, urine; Testing involving biospecific ligand binding methods; Immunological testing involving inorganic compounds or pH

Definitions

  • the present disclosure relates to modified particles for detecting a substance to be detected in a sample, a method for producing the modified particles, and a detection device.
  • biosensors that use physiologically active substances such as antibodies (hereinafter, specific binding substances) have been used in the fields of medicine and biochemistry.
  • Patent Document 1 a specific binding substance for capturing a substance to be detected is absorbed or bound to a substrate, and a specific binding substance for detecting the presence or absence of the substance to be captured is arranged on the substrate.
  • An assay kit is disclosed which can be used each time by freeze-drying.
  • a method using a particulate base material there is a method using a particulate base material. This is because a particulate base material to which a specific binding substance has been bound in advance is bound to the substance to be detected, and the substance to be detected is detected by various detection methods depending on the characteristics of the particulate base material bound to the substance to be detected. The presence or absence and the amount of existence are detected. In the above method, it is necessary to detect minute changes such as the amount of the substance to be detected, and high sensitivity of detection is often required.
  • the present disclosure provides modified particles and the like that can realize high sensitivity of detection when detecting a substance to be detected.
  • a modified particle according to an aspect of the present disclosure has a property of specifically binding to a particle and a substance to be detected, and a specific binding substance immobilized on the surface of the particle, and an amide bond on the surface of the particle. And a fixed amino sugar molecule.
  • modified particles and the like that can realize high sensitivity of detection are provided.
  • FIG. 1 is a schematic diagram showing an example of the modified particles according to the embodiment.
  • FIG. 2 is a flowchart showing an example of the method for producing modified particles according to the embodiment.
  • FIG. 3 is a schematic configuration diagram showing an example of the detection device according to the embodiment.
  • FIG. 4 is a diagram illustrating modified particles when used in a detection device.
  • FIG. 5 is a diagram schematically illustrating an example of a two-dimensional image output from the detection device according to the embodiment.
  • FIG. 6 is a diagram illustrating a test method of a modified particle adsorption test according to an example.
  • FIG. 7 is a figure explaining the result of the adsorption test of the modified particle which concerns on an Example.
  • the specific binding substance is easily damaged by heat or drying. For example, a part of the structure of the specific binding substance is modified by heat or drying, and the function is lowered. This is often a problem when the specific binding substance is immobilized on the surface of the sensor substrate or particles. Since such a functional decline of the specific binding substance is directly linked to a decrease in detection sensitivity in the detection of the substance to be detected, it is desirable to suppress the functional decline as much as possible.
  • Patent Document 1 a specific binding substance for capturing a substance to be detected and a specific binding substance for detecting the presence or absence of the captured substance to be detected are arranged on a substrate and can be used each time by freeze-drying.
  • An assay kit constructed according to the above is disclosed. By freeze-drying, the specific binding substance can be stored for a long time to some extent, and can be immediately restored to a usable state by adding a solution at the time of use.
  • the above-mentioned conventional assay kit is manufactured using freeze-drying, depending on the type of the specific binding substance, there are also substances that are not compatible with freeze-drying, and it can be said that the above-mentioned effects can be generally enjoyed. Absent. Therefore, it cannot be said that the conventional test kit has a sufficient effect of protecting the specific binding substance from functional deterioration.
  • the specific binding substance due to structural and functional deterioration of the specific binding substance (hereinafter, deterioration of the specific binding substance), impurities in the sample are non-specifically adsorbed or bound to the deteriorated portion of the specific binding substance. Doing so (hereinafter, non-specific adsorption) may occur.
  • the present disclosure provides a modified particle in which deterioration of a specific binding substance immobilized on the surface of the particle is reduced, and a method for producing the modified particle.
  • the present disclosure also provides a detection device that can detect a substance to be detected by using the modified particles.
  • a modified particle according to an aspect of the present disclosure has a property of specifically binding to a particle and a substance to be detected, and a specific binding substance immobilized on the surface of the particle, and an amide bond on the surface of the particle. And a fixed amino sugar molecule.
  • the amino sugar molecule is stably fixed on the surface of the particle.
  • the amino sugar molecule stably fixed on the surface of the particle does not detach from the surface of the particle in the liquid. Since the hydroxy group (OH group) of the amino sugar molecule acts instead of the water molecule, the hydrophobic portion of the specific binding substance is not exposed and deterioration is reduced. Further, by reducing the degradation of the specific binding substance on the surface of the particles in this manner, the interaction between the modified particles, or the portion where the modified particles may come into contact in the detection and the modified particles are suppressed, Their non-specific adsorption is inhibited. Therefore, the detection of the substance to be detected can be made highly sensitive.
  • a modified particle according to an aspect of the present disclosure includes a base material and an organic film that covers at least a part of the surface of the base material, and the amino sugar molecule is immobilized on the organic film by the amide bond. It may have been done.
  • the modified particles according to one aspect of the present disclosure may include a blocking agent that covers at least a part of the organic film and inhibits interaction with a predetermined molecule in the organic film.
  • the organic film may be a self-assembled monolayer.
  • the specific binding substance and amino sugar molecule can easily bind to the self-assembled organic film. Therefore, the specific binding substance and the amino sugar molecule are easily and stably immobilized on the surface of the particle.
  • the base material may include a phosphor.
  • modified particles that have formed a specific bond with the substance to be detected can be detected by an optical method using fluorescence.
  • the base material may include a paramagnetic material or a dielectric material.
  • the modified particles that have formed a specific bond with the substance to be detected can be detected by a method such as moving by a magnetic field or an electric field.
  • the method for producing modified particles according to an aspect of the present disclosure, a preparatory step of preparing particles, a fixing step of fixing a specific binding substance that specifically binds to a substance to be detected on the surface of the particles, and an amino group.
  • the solution containing the specific binding substance and the amino sugar molecule is mixed with the particles to perform the immobilizing step and the immobilizing sugar. May be carried out.
  • a detection device in the accommodating section for accommodating the modified particles according to any of the above, a sample that may contain a substance to be detected to which the modified particles specifically bind to the accommodating section.
  • An introduction unit to be introduced and a detector that outputs a detection signal based on the amount of the substance to be detected bound to the modified particles are provided.
  • the detection device can realize a detection device that can detect the presence or amount of the substance to be detected in the sample by using the modified particles.
  • FIG. 1 is a schematic diagram showing an example of modified particles 100 according to the present embodiment.
  • FIG. 1 shows a cross section of the modified particle 100, and a part of the modified particle 100 on the lower side of the paper is omitted from the drawing.
  • the modified particle 100 includes a particle 10, a specific binding substance 20, and an amino sugar molecule 30.
  • the specific binding substance 20 has a property of specifically binding to the substance to be detected, and is immobilized on the surface of the particle 10.
  • the amino sugar molecule 30 is fixed to the surface of the particle 10 by an amide bond.
  • the size of the particle 10 is not particularly limited as long as the specific binding substance 20 and the amino sugar molecule 30 can be bound to the surface thereof.
  • the size of the particles 10 is, for example, 1 nm or more and 10 ⁇ m or less in diameter.
  • a carboxy group is introduced into the surface of the particle using a known surface treatment technique.
  • the particle 10 can have the amino sugar molecule 30 bound to its surface.
  • Particles having a carboxy group introduced There is also an advantage that the binding property with the specific binding substance 20 such as an antibody is higher than that of the particles having an amino group introduced therein.
  • the particles 10 also include a base material 11 and an organic film that covers at least a part of the surface of the base material 11. More specifically, the surface of the particle 10 has a specific binding substance 20 and a base material from the viewpoint of easiness of immobilization of the specific binding substance 20 and the reactivity of the specific binding substance 20 and the substance to be detected. It may be composed of a molecule (linker) capable of ensuring a proper distance from 11. Although this linker is composed of an organic film, it need not be an organic film. Molecules that can serve as such a linker are usually selected according to the charge characteristics of the surface to which the linker is attached.
  • the molecule that can serve as the linker in the present embodiment is composed of, for example, a molecule that forms a self-assembled monolayer (SAM12) such as alkanethiol, but is not limited thereto.
  • SAM12 self-assembled monolayer
  • a silane coupling agent a hydrophilic polymer containing a polyethylene glycol chain (PEG chain), and a polymer of MPC (2-methacryloyloxyethylphosphorylcholine) having a phospholipid polar group depending on the characteristics of the base material 11.
  • PEG chain polyethylene glycol chain
  • MPC 2-methacryloyloxyethylphosphorylcholine
  • metal material for example, at least one kind of metal such as gold, silver, aluminum, copper, platinum, or an alloy thereof can be used.
  • the metal material is not limited to these.
  • the material of the base material 11 includes, for example, inorganic materials such as quartz, glass, silica, and ceramics, resins such as polystyrene, polycarbonate, and cycloolefin polymer, and rubber materials such as hydrogel, agarose, cellulose, and isoprene.
  • inorganic materials such as quartz, glass, silica, and ceramics
  • resins such as polystyrene, polycarbonate, and cycloolefin polymer
  • rubber materials such as hydrogel, agarose, cellulose, and isoprene.
  • examples include natural materials and metallic materials such as iron, gold, alumina, and silver.
  • the base material 11 may be configured to include a phosphor.
  • a fluorophore is a substance that emits fluorescence having a wavelength different from that of excitation light when irradiated with excitation light, and includes, for example, organic dyes represented by fluorescein and its derivatives, and organisms such as green fluorescent protein. Fluorescent molecules can be used. Quantum dots capable of designing emission characteristics of emitted fluorescence may be used as the phosphor.
  • the base material 11 may be configured to include a paramagnetic material or a dielectric material.
  • a paramagnetic material for example, iron oxide or the like can be used as the paramagnetic substance, and polystyrene or the like can be used as the dielectric substance, but the paramagnetic substance is not limited thereto.
  • the organic film is composed of the SAM 12 that can serve as a linker.
  • the specific binding substance 20 is fixed to the surface of the particle 10 by being bound to the SAM 12.
  • the amino sugar molecule 30 is fixed to the SAM 12 by an amide bond.
  • the particles 10 include the SAM 12 on the base material 11, the specific binding substance 20 and the amino sugar molecule 30 are stably fixed on the surface of the particles 10.
  • the amino sugar molecule 30 stably fixed on the surface of the particle 10 does not separate from the surface even after a step of washing the modified particle 100 and the like.
  • the hydroxy group (OH group) of the amino sugar molecule 30 acts instead of the water molecule, even when the solution containing the modified particles 100 is dried, the deterioration of the specific binding substance due to drying is reduced, and the modification is achieved. In the detection of the substance to be detected by actually using the particles 100, high sensitivity of detection can be realized. In addition, since the stability of the specific binding substance 20 is increased in this way, the ease of handling the modified particles 100 is improved.
  • the organic film is composed of the linker molecule forming SAM12.
  • SAM12 As a single molecule forming SAM12, for example, carboxyalkanethiol having 4 or more and 20 or less carbon atoms, especially 10-carboxy-1-decanethiol may be used.
  • SAM12 formed using a carboxyalkanethiol having 4 or more and 20 or less carbon atoms has high transparency, a low refractive index, and a film thickness (that is, the distance from the surface of the base material 11 to the surface of the particle 10). Has properties such as being thin. Therefore, the detection using the modified particles 100 has little optical influence.
  • One end of the SAM 12 may be any functional group capable of binding to the surface of the base material 11.
  • the particle 10 is formed by binding to gold existing on the surface of the base material 11. ..
  • the other end of the SAM 12 may have a carboxy group capable of binding to the specific binding substance 20 and the amino sugar molecule 30.
  • SAM12 since SAM12 has a carboxy group at the terminal, the specific binding substance 20 and the amino sugar molecule 30 can easily form a bond with SAM12. Furthermore, the amino sugar molecule 30 is fixed by an amide bond. Thereby, the specific binding substance 20 and the amino sugar molecule 30 are stably fixed on the surface of the particle 10.
  • the specific binding substance 20 is a substance that specifically binds to the substance to be detected.
  • the substance to be detected is, for example, a protein, a lipid, a sugar, a nucleic acid or the like, and is a molecular species produced by or constituting a virus particle, a microorganism, a bacterium or the like to be detected.
  • Specific binding substances 20 include, for example, antibodies against antigens, substrates or enzymes against coenzymes, receptors for hormones, protein A or protein G for antibodies, avidins for biotin, calmodulin for calcium, lectins for sugars, and the like.
  • a nucleic acid complementary strand having a sequence that specifically binds to the nucleic acid may be used as the specific binding substance 20.
  • the specific binding substance 20 is a protein such as an antibody
  • some of the plurality of amino acids constituting the protein have a carboxy group, an amino group or a thiol group in their side chains.
  • the functional groups are chemically bonded to the particles 10, or the functional groups are modified with avidin, and the particles 10 are further modified with biotin, and then the specific binding substance 20 and the particles 10 are bonded by avidin-biotin bond. May be.
  • an amino group existing at the N-terminal and a carboxy group existing at the C-terminal may be used.
  • the functional group activation treatment may be performed using a substance that accelerates the binding reaction between the specific binding substance 20 and the particles 10.
  • a substance that accelerates the binding reaction between the specific binding substance 20 and the particles 10. for example, 1-ethyl-3-(-3-dimethylaminopropyl)carbodiimide hydrochloride (EDC) and N-hydroxysuccinimide (NHS) may be used.
  • EDC 1-ethyl-3-(-3-dimethylaminopropyl)carbodiimide hydrochloride
  • NHS N-hydroxysuccinimide
  • the activation treatment method may be, for example, a method of binding the amino group of SAM 12 and the amino group of the specific binding substance 20 by using a substance having a plurality of aldehyde groups such as glutaraldehyde. Good.
  • the amino sugar molecule 30 is a sugar having an amino group.
  • the amino sugar molecule 30 has an amino group in the molecule, so that it is fixed to the surface of the particle 10 by an amide bond.
  • the particles 10 have SAM 12 (organic film) on the surface and have carboxy groups. Therefore, the amide bond is formed by the reaction of the carboxy group and the amino group with the amino group of the amino sugar molecule 30 and the carboxy group of the SAM 12.
  • the amino sugar molecule 30 is fixed to the SAM 12 by a covalent bond that is an amide bond.
  • the covalent bond has a strong bonding force among chemical bonds. Therefore, the amino sugar molecule 30 is more stably fixed on the surface of the particle 10.
  • the water-holding property of the amino sugar molecule 30 thus stably fixed protects the surface of the modified particle 100 from being dried, and the structural and functional deterioration of the specific binding substance 20 is reduced.
  • the storage stability of can be improved.
  • the amino sugar molecule 30 may be not only a monosaccharide but also a disaccharide, or an oligosaccharide (so-called oligosaccharide) composed of three or more monosaccharides, or a polysaccharide (so-called glycan). Moreover, the amino sugar molecule 30 may have a functional group other than an amino group in one molecule such as sialic acid. The amino sugar molecule 30 may be a salt of the exemplified amino sugar molecule. The amino sugar molecule 30 is preferably a monosaccharide or a disaccharide.
  • the amino sugar molecule 30 is, for example, an amino sugar having an amino group such as glucosamine, mannosamine, galactosamine, sialic acid, aminouronic acid, or muramic acid, or a polysaccharide having an amino group such as chitosan. It may be present or may be a salt thereof. When the amino sugar molecule 30 has a D-type or L-type enantiomer, any of them may be used.
  • the amino sugar molecule 30 is preferably glucosamine.
  • the amino sugar molecule 30 is not particularly limited as long as it is an amino sugar molecule that can be immobilized on the surface of the particle 10 by an amide bond, and known sugars other than the above-mentioned sugars may be used.
  • the fact that the amino sugar molecule 30 is immobilized on the surface of the particle 10 by an amide bond means that an infrared absorption peak derived from the amino sugar molecule 30 is present in a decomposition product obtained by allowing a protease such as trypsin to act on the modified particle 100. Can be confirmed by the existence of.
  • the modified particles 100 may further include a blocking agent that covers at least a part of the surface of the particles 10 and inhibits the interaction of the modified particles 100 with other molecules in the SAM 12.
  • the blocking agent is a substance that inhibits an interaction (that is, non-specific adsorption) in which a contaminant or the like in a sample that may contain a substance to be detected is non-specifically adsorbed or bound to the surface of the particle 10.
  • the contaminants are, for example, predetermined molecules such as proteins, lipids, sugars, peptides, nucleic acids, etc. excluding the molecules constituting the modified particles.
  • the blocking agent is described as ethanolamine 40 in the present embodiment, but the blocking agent is not limited to this.
  • skim milk, fish gelatin, bovine serum albumin (BSA), surfactant, casein, protamine, polyethylene glycol (PEG) and the like may be used. It suffices that the blocking agent covers at least the region where the specific binding substance 20 and the amino sugar molecule 30 are not fixed on the surface of the particle 10 (that is, the gap region).
  • Such a blocking agent can inhibit non-specific adsorption on the surface of the particle 10 when detecting a substance to be detected. Therefore, noise generated by non-specific adsorption (that is, non-specific adsorption noise) is reduced, and detection can be performed with high sensitivity when detecting a substance to be detected.
  • the blocking process means a process for inhibiting non-specific adsorption as described above.
  • the blocking treatment can reduce the influence of nonspecific adsorption on the detection of the substance to be detected.
  • the specific binding substance 20 and the amino sugar molecule 30 may be fixed on the surface of the particle 10 and then the ethanolamine 40 may be fixed on the surface of the particle 10.
  • a solution containing ethanolamine 40 is added to fix the ethanolamine 40 in the solution on the surface of the particle 10.
  • the solution containing ethanolamine 40 is subjected to the reaction for a predetermined time (for example, a reaction time for sufficiently covering the gap area), and then the excess (unfixed) ethanolamine 40 is contained, so that the solution is removed by external liquid exchange or the like.
  • the blocking agent is sufficiently immobilized in the reaction, the blocking treatment may be performed simultaneously with the immobilization of the specific binding substance 20 and the amino sugar molecule 30.
  • FIG. 2 is a flowchart showing an example of a method for manufacturing modified particles 100 according to the present embodiment.
  • a preparation step of preparing particles 10 (S101) and [2] an activation step of activating a reactive functional group (S102).
  • the activation step is performed to increase the reaction efficiency of the fixation step and the sugar fixation step that follow the activation step. Therefore, the activation step may not be necessary, for example, when a reactive functional group having sufficient reactivity is introduced due to selection of the reactive functional group.
  • the method for producing the modified particle 100 includes: [3] a fixing step (S103) of fixing the specific binding substance 20 that specifically binds to the substance to be detected on the surface of the particle 10, and [4] the amino sugar molecule 30.
  • unreacted reactive functional groups may contribute to non-specific adsorption, so that in the method for producing modified particles 100, a blocking step (S105) of performing a blocking treatment is performed. Good.
  • the blocking step may not be performed.
  • the preparation step (S101) in the method for manufacturing the modified particles 100 includes, for example, the following three substeps.
  • the first substep is a step of preparing the base material 11.
  • the second substep is a step of forming the SAM 12 on the base material 11.
  • the base material 11 is formed by using a known synthesis technique such as polymerization. Even if the material of the base material 11 is a metal or a paramagnetic material, the base material 11 is formed by using a known synthesis technique.
  • the SAM 12 is formed on the surface of the base material 11 (for example, the surface on which the metal is formed).
  • the method for forming the SAM is not particularly limited, and a commonly used method may be used. For example, a method of immersing the base material 11 having a metal formed on its surface in an ethanol solution containing a carboxyalkanethiol having 4 or more and 20 or less carbon atoms (eg, 10-carboxy-1-decanethiol). And so on.
  • a thiol group of carboxyalkanethiol (hereinafter, a single molecule) is bound to a metal to fix the single molecule on the surface of a metal substrate, and the fixed single molecule is fixed on the surface of the metal. It self-assembles by interaction and forms a film. As described above, the particles 10 in which the SAM 12 is arranged on the surface of the base material 11 are obtained.
  • the reactive functional group for example, a carboxy group
  • the reactive functional group for example, an amino group
  • the reactive functional group for example, an amino group
  • this activation step for example, when a single molecule constituting SAM12 has a carboxy group, 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide (EDC) and N-hydroxysuccinimide (NHS) are used.
  • EDC 1-ethyl-3-(3-dimethylaminopropyl)carbodiimide
  • NHS N-hydroxysuccinimide
  • the reactive functional group is changed to a state of higher reactivity by using a modification such as the above, or a reaction such as elimination, although not illustrated.
  • the fixing step (S103) includes, for example, the following three substeps.
  • the fourth substep is a step of mixing the specific binding substance 20 with the particles 10.
  • the fifth substep is a step of immobilizing the specific binding substance 20 on the SAM 12 (that is, on the particles 10).
  • the sixth substep is a step of removing the specific binding substance 20 in a free state which is not fixed to the SAM 12.
  • the particles 10 having the SAM 12 with the reactive functional group activated in step S102 are mixed with the solution containing the specific binding substance 20.
  • the activated reactive functional group of the SAM 12 is reacted with the reactive functional group of the specific binding substance 20 to fix the specific binding substance 20 on the SAM 12.
  • the specific binding substance 20 is immobilized on the SAM 12 by an amide bond.
  • the free specific binding substance 20 not fixed on the SAM 12 is removed. More specifically, for example, a buffer solution such as phosphate buffered saline (PBS) is used to maintain an environment in which fixed reactive functional groups are not decomposed, and a free state is obtained by a method such as external solution exchange. Remove the molecules of. This makes it possible to obtain the modified particle 100 in which the specific binding substance 20 is immobilized on the surface of the particle 10.
  • PBS phosphate buffered saline
  • the sugar fixing step (S104) includes, for example, substeps according to the above fixing step. That is, it includes substeps corresponding to the fourth to sixth substeps of fixing the amino sugar molecule 30 in place of the specific binding substance 20.
  • the fixing step and the sugar fixing step may be performed in parallel. More specifically, in the activation step, after activating the reactive functional group, the activated particles 10 and the solution containing the specific binding substance 20 and the amino sugar molecule 30 are mixed. As a result, the fifth substep and the substeps corresponding to the fifth substep in the sugar fixing step are collectively performed as one step (S106).
  • the solution containing the specific binding substance 20 and the amino sugar molecule 30 is mixed with the particle 10 in which the reactive functional group is activated, and the SAM 12 formed on the surface of the particle 10 is specific.
  • the immobilizing step (S103) for immobilizing the binding substance 20 and the sugar immobilizing step (S104) for immobilizing the amino sugar molecule 30 can also be performed in parallel.
  • the method for producing the modified particles 100 may further include a [5] blocking step (S105).
  • a [5] blocking step S105
  • the blocking step as described above, the surface of the particle 10 is coated with ethanolamine 40 (blocking agent) that inhibits nonspecific adsorption of impurities in the sample that may contain the substance to be detected on the surface of the particle 10. Perform processing.
  • ethanolamine 40 is mixed with the specific binding substance 20 and the particle 10 to which the amino sugar molecule 30 is immobilized.
  • modified particles 100 containing ethanolamine 40 can be obtained, which can reduce non-specific adsorption of impurities and the like in the sample onto the surface of the particles 10.
  • a solution in which a blocking agent is added to a solution containing the specific binding substance 20 and the amino sugar molecule 30 may be prepared, and the particles 10 in which the reactive functional group is activated may be added to the solution and mixed.
  • the fixing step, the sugar fixing step, and the blocking step can be performed together as one step. Therefore, the number of steps in manufacturing the modified particles 100 can be reduced by further combining the manufacturing steps.
  • FIG. 3 is a schematic configuration diagram showing an example of the detection device 50 according to the present embodiment.
  • the detection device 50 includes a storage unit that stores the modified particles 100, an introduction unit that introduces into the storage unit a sample that may include a substance to be detected to which the modified particles 100 specifically bind, and the modified particles.
  • a detector that outputs a detection signal based on the amount of the substance to be detected bound to 100.
  • a cell 51 (an example of an accommodating section) that accommodates the modified particles 100, a light source 54, an attracting magnetic field applying section 56, a sweeping magnetic field applying section 57, and a two-dimensional image detecting section 58 (an example of a detector).
  • the cell 51 has a space defined by a detection plate 52 and a cover 53, and a prism 55 is joined to the surface opposite to the surface of the detection plate 52 facing the space.
  • the space of the cell 51 is configured to be accessible to the outside by, for example, opening and closing the cover 53. That is, in such an example, the cover 53 functions as an introduction part.
  • the cell 51 may have a configuration having a communication hole (not shown) through which a sample that may contain the substance to be detected can be introduced.
  • the communication hole functions as an introduction part. Therefore, the introduction unit may be included in any of the components of the detection device 50 as long as the sample that may contain the substance to be detected can be introduced.
  • the detection device 50 described in the present embodiment is an example of a device that detects a substance to be detected by a detection method called external force assisted near field illumination (EFA-NI).
  • EFA-NI external force assisted near field illumination
  • FIG. 4 is a diagram illustrating modified particles when used in the detection device 50.
  • the modified particle 100 of FIG. 4 is shown in a sectional view, a portion of which is omitted as in FIG. 1.
  • the base material 11a contains modified particles containing the phosphor F (that is, the first particles 100a), and the base material 11b contains the paramagnetic material M.
  • the modified particles that is, the second particles 100b
  • the first particles 100a bind to the substance to be detected 59 via the specific binding substance 20a.
  • the second particles 100b bind to the substance to be detected 59 via the specific binding substance 20b.
  • the specific binding substance 20a and the specific binding substance 20b bind to different parts of the substance 59 to be detected.
  • the specific binding substance 20a and the specific binding substance 20b may be bound to the same position in the molecule. More specifically, even if the specific binding substance 20a is bound to one binding site in the repeating structure, the specific binding substance 20b is bound simultaneously because a plurality of identical binding sites are present in the repeating structure. Is possible.
  • the specific binding substance 20a and the specific binding substance 20b are the same as those in the molecule of the substance 59 to be detected. It is necessary to join in different places with. Therefore, the specific binding substance 20a and the specific binding substance 20b are modified so that the binding sites for the target substance 59 have the same structure or different structures, depending on the type of the target substance 59 to be detected. Particles need to be designed.
  • the two types of modified particles (the first particle 100a and the second particle 100b) designed in consideration of the above form the particle complex 100c by binding to the substance 59 to be detected.
  • the first particles 100a, the second particles 100b, and the substance to be detected 59 are introduced into the space of the cell 51, and a part of them is forming the particle complex 100c. ..
  • the cell 51 is defined by the detection plate 52 which is a plate-shaped member as described above. Therefore, one main surface 52a of the detection plate 52 faces the space of the cell 51.
  • the other main surface 52b of the detection plate 52 faces the prism 55 and is joined to each other.
  • the detection plate 52 is irradiated with the excitation light 54L from the other main surface 52b side.
  • the excitation light 54L passes through the transparent prism 55 and is incident on the other main surface 52b of the detection plate 52.
  • the excitation light 54L incident on the other main surface 52b of the detection plate 52 passes through the inside of the detection plate 52 and is reflected by one main surface 52a of the detection plate 52.
  • the detection plate 52, the prism 55, and the light source 54 that irradiates the excitation light 54L are arranged under the condition that the excitation light 54L is totally reflected by the one main surface 52a of the detection plate 52, the refractive index, and The interface shape is designed.
  • the excitation light 54L is totally reflected by the one main surface 52a of the detection plate 52 as described above, but at that time, in the space of the cell 51, near the one main surface 52a of the detection plate 52, an evanescent field, an enhanced electric field, or the like.
  • the near field is formed only in the vicinity of the one main surface 52a and has a property of being rapidly attenuated as the distance from the one main surface 52a of the detection plate 52 increases. Only the space is illuminated.
  • the structure of the detection plate 52 is not particularly limited and may be appropriately selected depending on the purpose.
  • the detection plate 52 may be composed of a single layer or a laminated body for the purpose of enhancing the electric field.
  • the light source 54 is an example of a light irradiation unit that emits light having a predetermined wavelength to form a near field and irradiates the space of the cell 51, as described above.
  • a known technique can be used without particular limitation.
  • a laser such as a semiconductor laser or a gas laser can be used as the light source 54.
  • the light source 54 preferably irradiates excitation light (for example, 400 nm to 2000 nm) having a wavelength that has a small interaction with the substance contained in the substance 59 to be detected. Further, the wavelength of the excitation light is preferably 400 nm to 850 nm which can be used by the semiconductor laser.
  • the cover 53 is a translucent plate-like member that is provided so as to face the one main surface 52a of the detection plate 52, and is made of an arbitrary material such as resin.
  • the cover 53 is provided apart from the detection plate 52 by a predetermined distance, and the volume of the space of the cell 51 can be changed according to the distance. Therefore, the separation distance between the detection plate 52 and the cover 53 is appropriately set according to the application to which the detection device 50 is applied.
  • the two-dimensional image detection unit 58 is disposed apart from the cover 53 on the side of the surface of the cover 53 facing the space of the cell 51, which is opposite to the main surface of the cover 53.
  • the light generated therein is imaged and detected as a two-dimensional image.
  • the attracting magnetic field applying unit 56 causes the space of the cell 51 to generate a first magnetic field gradient 56M indicated by an arrow indicated by a two-dot chain line in the figure.
  • the attracting magnetic field applying unit 56 is composed of an electromagnet whose ON/OFF can be switched, but may be a structure in which a permanent magnet is moved closer.
  • the first magnetic field gradient 56M is applied to the space of the cell 51 by the attracting magnetic field application unit 56, and the paramagnetic substance existing in the space of the cell 51 is attracted toward the prism 55 side in the vertical direction of the detection plate 52. ..
  • the sweeping magnetic field applying unit 57 generates a second magnetic field gradient 57M indicated by an arrow indicated by an alternate long and two short dashes line in the drawing in the space of the cell 51.
  • the sweeping magnetic field applying unit 57 is composed of an electromagnet like the attracting magnetic field applying unit 56, but may be a structure in which a permanent magnet is moved closer.
  • the second magnetic field gradient 57M is applied to the space of the cell 51 by the sweeping magnetic field application unit 57, and the paramagnetic substance existing in the space of the cell 51 is attracted toward the light source 54 side in the direction parallel to the detection plate 52.
  • the sweep magnetic field applying unit 57 may be arranged at any position in the direction parallel to the detection plate 52, and the above arrangement will be described as an example below.
  • the attracting magnetic field applying unit 56 and the sweeping magnetic field applying unit 57 are examples of a magnetic field applying unit that applies a magnetic field to the space of the cell 51.
  • FIG. 5 is a figure explaining typically the two-dimensional image output from the detection apparatus 50 of this Embodiment.
  • the first particle 100a and the second particle 100b are previously stored in the space of the cell 51.
  • a sample that may contain the substance to be detected 59 is introduced here.
  • the substance 59 to be detected contained in the sample binds to the first particles 100a and the second particles 100b in the space of the cell 51 to form a particle complex 100c.
  • the first particle 100a and the second particle 100b are particles having the amino sugar molecule 30 immobilized on their respective surfaces.
  • the first particles 100a and the second particles 100b are suppressed from adsorbing to the detection plate 52, and the first particles 100a and the second particles 100b are suppressed from adhering to each other.
  • the first particles 100a are adsorbed on the detection plate 52, as will be described later, they are irradiated by the near field and the background light increases, so that the detection sensitivity decreases.
  • the first particles 100a and the second particles 100b are mutually adsorbed, the first particles 100a behave similarly to the particle complex 100c even though they are not bound to the substance 59 to be detected. Will cause an error in counting.
  • the particle composite body 100c contains the second particles 100b
  • the paramagnetic material M contained in the base material 11b is attracted by the applied magnetic field. Therefore, when the attraction magnetic field applying unit 56 applies the first magnetic field gradient 56M to the space of the cell 51, the particle complex 100c is attracted to the detection plate 52 so as to be substantially in contact therewith. Further, the second particles 100b that do not form the particle complex 100c existing in the space of the cell 51 are also attracted to the detection plate 52 in a state of being substantially in contact therewith. On the other hand, the first particles 100a that do not form the particle composite body 100c do not have the paramagnetic material M, and therefore cannot be attracted from the original state.
  • the particle complex 100c when the excitation light 54L is emitted from the light source 54, a near field is formed near the one main surface 52a of the detection plate 52 as described above. Since the particle complex 100c is bonded to the first particles 100a, it emits fluorescence when irradiated with light having a wavelength that excites the phosphor F contained in the base material 11a. That is, if the near field is light having the excitation wavelength of the phosphor F, the particle complex 100c emits fluorescence. The first particles 100a that do not form the particle complex 100c similarly emit fluorescence when irradiated by the near field.
  • the near field is formed only near one main surface 52a of the detection plate 52. That is, of the first particles 100a, the first particles 100a that are in contact with the detection plate 52 can emit fluorescence. Since the first particles 100a do not have the paramagnetic material M, the first particles 100a thus irradiated by the near field are only a part of the whole.
  • the particle complex 100c and a part of the first particle 100a emit fluorescence.
  • FIG. 5 shows the two-dimensional image 58R output by the two-dimensional image detection unit 58 in the above situation.
  • the output two-dimensional image 58R shows a light spot P100c derived from the fluorescence emitted by the particle complex 100c and a light spot P100a derived from the fluorescence emitted by the first particles 100a.
  • the sweep magnetic field applying unit 57 applies the second magnetic field gradient 57M to the space of the cell 51. At this time, if the two-dimensional images 58R as described above are continuously output, the change caused by the second magnetic field gradient 57M is obtained as a two-dimensional moving image.
  • the particle composite 100c has the paramagnetic material M, it is attracted by the second magnetic field gradient 57M, but the first particle 100a does not have the paramagnetic material M, so it stays in place. Therefore, in the obtained two-dimensional moving image, the movement of the light spot P100c is seen as shown by the arrow in FIG. On the other hand, such movement is not seen at the light spot P100a, and the difference allows the particle complex 100c and the first particle 100a to be distinguished and counted.
  • the two-dimensional image detection unit 58 moves the substance 59 to be detected (that is, the particle complex 100c) to which the first particles 100a and the second particles 100b are bound by the first magnetic field gradient 56M and the second magnetic field gradient 57M.
  • a two-dimensional image 58R capable of counting the substance 59 to be detected is output based on the fluorescence emitted from the phosphor F by the near field having a predetermined wavelength. That is, here, the two-dimensional image 58R is an example of a detection signal based on the amount of the substance 59 to be detected.
  • the counting of such light spots may be automatically performed by recognizing the two-dimensional image 58R output from the two-dimensional image detection unit 58.
  • an antibody having an influenza A virus nucleoprotein (NP: Nucleoprotein) as an antigen was used as a specific binding substance.
  • NP influenza A virus nucleoprotein
  • Glucosamine was used as the amino sugar.
  • the method shown in FIG. 2B was used as the method for producing the modified particles, and the specific binding substance and the sugar were bound in one step.
  • the modified particles according to the example were obtained by the above steps.
  • the modified particles according to the example include particles, an antibody, glucosamine, and ethanolamine.
  • Example 3 Among the steps of the method for producing modified particles according to the above-described example, the same procedure as in Example 1 was performed except that 1% trehalose was added in place of 1% glucosamine in the step (iii). As a result, modified particles according to Comparative Example 3 were obtained.
  • the modified particles according to Comparative Example 3 have particles, an antibody, and ethanolamine, and trehalose that does not form a bond is present around the modified particles. Therefore, it differs from the modified particles according to the example in that it does not have glucosamine and trehalose is present in the surroundings.
  • FIG. 6 is a diagram illustrating a test method of a modified particle adsorption test according to an example.
  • FIG. 6 is a schematic diagram showing a test method for evaluating nonspecific adsorption.
  • human serum albumin HSA61
  • HSA61 human serum albumin
  • test method The details of the test method were as follows. First, 50 ⁇ L of a phosphate buffered saline containing 3.2 ⁇ M HSA61 and 0.5% Tween (registered trademark) 20 was added to each well of the bottom surface 60 of a 96-well plate, and the mixture was reacted at 4° C. overnight. Then, HSA61 was immobilized. The phosphate buffered saline containing HSA61 and 0.5% Tween® 20 was then discarded. Here, modified particles containing a phosphor as the base material were used, and 50 ⁇ L of a modified particle solution having a final particle concentration of 7 ⁇ 10 9 particles/mL was added to each well. Then, the reaction was carried out at room temperature for 60 minutes, and the modified particle liquid was discarded.
  • Tween registered trademark
  • the modified particles indicated by reference numeral 100 m in (a) of FIG. 6 are any one of the modified particles according to the example and the modified particles according to the comparative examples 1 to 3.
  • the modified portion m indicated by the broken line rectangle in the modified particle 100 m is either the modified particle according to the example or the modified particles according to the comparative examples 1 to 3. , And different molecules are included.
  • the modified particle according to Comparative Example 1 has no molecule in the modified portion m and has only the antibody as described above.
  • ethanolamine is contained in the modified portion m as shown in 1 of FIG. 6(b). Although not shown in FIG. 6, the ethanolamine is fixed to the SAM.
  • the modified portion m contains trehalose and ethanolamine as shown in 2 of (b) of FIG.
  • ethanolamine is immobilized on the SAM as in Comparative Example 1, but trehalose is not immobilized and is present around the modified particles.
  • the modified portion m contains glucosamine and ethanolamine as shown in 3 of (b) of FIG.
  • both glucosamine and ethanolamine are fixed to the SAM.
  • FIG. 7 is a figure explaining the result of the adsorption test of the modified particle which concerns on an Example.
  • the vertical axis shows the relative fluorescence intensity
  • the horizontal axis shows the modified particles (Comparative Example 1, Comparative Example 2, Comparative Example 3, and Example).
  • the modified particles according to Comparative Example 1 having only the antibody had the highest fluorescence intensity, and the modified particles according to Comparative Example 2 had a lower fluorescence intensity than the modified particles according to Comparative Example 1. Is shown. That is, the effect of suppressing non-specific adsorption by introducing ethanolamine was confirmed. Further, comparing Comparative Example 2 with the Example, the modified particles according to the Example had significantly lower fluorescence intensity, and the effect of suppressing non-specific adsorption by fixing glucosamine was confirmed.
  • the modified particles according to Comparative Example 3 exhibited the same fluorescence intensity as that of Comparative Example 2, and it was found that only the effect of suppressing non-specific adsorption was obtained by introducing ethanolamine. It is considered that this is because trehalose was not bound and trehalose was removed by washing. It is considered that the reason for the large error in Comparative Example 3 was that there was trehalose molecules that remained without being removed even by washing due to the high viscosity of trehalose.
  • the modified particles, the method for producing the modified particles, and the detection device according to the present disclosure may be used in, for example, a detection system that detects a virus floating in the air.
  • the modified particle 100 has been described as having the SAM 12 as the organic film.
  • the SAM 12 does not need to be included as long as the substrate 11 is capable of binding the specific binding substance 20 and the amino sugar molecule 30.
  • a resin having a reactive functional group is used for the base material 11, or a base material 11 having a metal formed on its surface is used.
  • the configuration has been described in which at least a part of the organic film on the surface of the particle 10 is covered with the blocking agent exemplified by the ethanolamine 40, but the blocking agent may not be provided and a blocking agent other than the ethanolamine 40 may be used. ..
  • the base material 11 may or may not include the phosphor F and the paramagnetic material M.
  • the modified particles 100 may be configured by using the base material 11 that arbitrarily contains a substance having a property suitable for the detection method. Further, the modified particles 100 may contain a dye, and in this case, the modified particles 100 are also used as labeled particles in immunochromatography.
  • the modified particle 100 can be applied to the detection device 50 as shown in the embodiment, but the detection device of the substance to be detected 59 using the modified particle 100 is not limited to this.
  • a detection device may be used in which a dielectric material such as polystyrene is used as the base material of the modified particles 100, and only the modified particles that are bound to the substance to be detected 59 are separated and detected using the dielectrophoresis method.
  • the modified particles 100 may be allowed to flow through the detection flow path one by one using a laminar flow.
  • green fluorescent protein is divided, and substances that express fluorescence by associating each of the divided portions are bound to two modified particles, respectively, and the detected substance 59 has two modified particles. Construct a system that expresses fluorescence only when bound together.
  • the detection device may be configured by combining such a system with a spectrophotometer. Further, the detection device may be realized by using the above optical system as a detection array capable of high throughput processing.
  • the particle 10 is not a cell, but is not limited to this.
  • the particle may be used to form the modified particle 100. Biotechnology may be applied, and in this case, the particles 10 may be cells or the like.
  • the present disclosure has high storage stability in a liquid and is useful in that it can be applied to biosensors for research, medical treatment, environmental measurement, and the like. Further, the modified particles according to the present disclosure and the detection device using the modified particles are applicable not only to the non-competitive method (sandwich immunoassay method) but also to the competitive method and the gene detection method by hybridization.

Landscapes

  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Immunology (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Urology & Nephrology (AREA)
  • Hematology (AREA)
  • Biomedical Technology (AREA)
  • Molecular Biology (AREA)
  • Analytical Chemistry (AREA)
  • Physics & Mathematics (AREA)
  • Pathology (AREA)
  • General Physics & Mathematics (AREA)
  • General Health & Medical Sciences (AREA)
  • Biochemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Biotechnology (AREA)
  • Microbiology (AREA)
  • Food Science & Technology (AREA)
  • Cell Biology (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)
  • Apparatus Associated With Microorganisms And Enzymes (AREA)

Abstract

本開示は、粒子の表面に固定された特異的結合物質の劣化が低減される修飾粒子を提供する。本開示による修飾粒子(100)は、粒子(10)と、被検出物質と特異的に結合する性質を有し、粒子(10)の表面に固定された特異的結合物質(20)と、粒子(10)の表面にアミド結合による固定されているアミノ糖分子(30)と、を含む。

Description

修飾粒子、修飾粒子の製造方法、および検出装置
 本開示は、試料中の被検出物質を検出するための修飾粒子、修飾粒子の製造方法および検出装置に関する。
 近年、医療や生化学の分野では、抗体等の生理活性物質(以下、特異的結合物質)を利用したバイオセンサが使用されている。
 例えば特許文献1では、被検出物質を捕捉するための特異的結合物質を基質に吸収、または結合させ、捕捉された被検出物質の有無を検出するための特異的結合物質を基質上に配置して凍結乾燥により都度使用可能に構成された検定キットが開示されている。
特表平04-503404号公報
 ところで、特異的結合物質を利用した別の手法として、粒子状の基材を用いる手法もある。これは、特異的結合物質をあらかじめ結合させた粒子状の基材を被検出物質に結合させ、被検出物質に結合した粒子状の基材の特性に応じて様々な検出方法により被検出物質の存在の有無、および存在量を検出するものである。上記の手法においては、被検出物質の存在量などの微細な変化を検出する必要があり、検出の高感度化がしばしば求められる。
 そこで本開示は、被検出物質を検出する際の検出の高感度化を実現可能な修飾粒子等を提供する。
 本開示の一態様に係る修飾粒子は、粒子と、被検出物質と特異的に結合する性質を有し、前記粒子の表面に固定された特異的結合物質と、前記粒子の表面にアミド結合により固定されているアミノ糖分子と、を含む。
 本開示によれば、検出の高感度化を実現可能な修飾粒子等が提供される。
図1は、実施の形態に係る修飾粒子の一例を示す概略図である。 図2は、実施の形態に係る修飾粒子の製造方法の一例を示すフローチャートである。 図3は、実施の形態に係る検出装置の一例を示す概略構成図である。 図4は、検出装置に用いられる際の修飾粒子について説明する図である。 図5は、実施の形態に係る、検出装置から出力される2次元画像の一例について模式的に説明する図である。 図6は、実施例に係る修飾粒子の吸着試験の試験方法について説明する図である。 図7は、実施例に係る修飾粒子の吸着試験の結果について説明する図である。
 (開示の基礎となった知見)
 特異的結合物質は、熱、または乾燥によりダメージを受けやすい。例えば、熱、または乾燥により特異的結合物質の構造の一部が変性して、機能が低下する。これは、特異的結合物質をセンサ基板や粒子の表面に固定して用いる場合にしばしば問題となる。このような特異的結合物質の機能低下は、被検出物質の検出における検出感度の低下に直結するため、可能な限り機能低下を抑えることが望ましい。
 そこで、特許文献1では、被検出物質を捕捉するための特異的結合物質と、捕捉された被検出物質の有無を検出する特異的結合物質とを基質上に配置し、凍結乾燥により都度使用可能に構成された検定キットが開示されている。凍結乾燥により、特異的結合物質はある程度長期間の保存に耐え、使用時に溶液を添加することで即時に使用可能な状態へと復元することができる。
 しかしながら、上記従来の検定キットは、凍結乾燥を用いて製造されるが、特異的結合物質の種類によっては、凍結乾燥に適合しない種類の物質もあり、一概に上記の効果が享受できるとはいえない。そのため、従来の検査キットは、特異的結合物質を機能低下から保護する効果が十分とはいえない。特に、特異的結合物質の構造的および機能的な劣化(以下、特異的結合物質の劣化)により、試料中の夾雑物などが特異的結合物質の劣化した部分に非特異的に吸着、または結合すること(以下、非特異的吸着)が起こり得る。さらに、上記技術を、特異的結合物質を固定した粒子状の基材を用いる手法に適用した場合、粒子状の基材同士の非特異的吸着による凝集、および粒子状の基材が収容される空間を規定する構造体への非特異的吸着が増加するという問題がある。
 そこで、本開示は、粒子の表面に固定された特異的結合物質の劣化が低減される修飾粒子、および当該修飾粒子の製造方法を提供する。また、本開示は、当該修飾粒子を用いることにより、被検出物質を検出することができる検出装置を提供する。
 (開示の概要)
 本開示の一態様の概要は、以下のとおりである。
 本開示の一態様に係る修飾粒子は、粒子と、被検出物質と特異的に結合する性質を有し、前記粒子の表面に固定された特異的結合物質と、前記粒子の表面にアミド結合により固定されているアミノ糖分子と、を含む。
 これにより、アミノ糖分子は、粒子の表面に安定に固定される。粒子の表面に安定に固定されたアミノ糖分子は、液中で粒子の表面から脱離しない。そして、アミノ糖分子が有するヒドロキシ基(OH基)が水分子の代わりに作用するため、特異的結合物質の疎水部が露出することなく、劣化が低減される。また、このように粒子の表面において特異的結合物質の劣化が低減されることによって、修飾粒子同士、または検出における修飾粒子が接触する可能性のある箇所と修飾粒子との相互作用を抑制し、これらの非特異的吸着が阻害される。よって、被検出物質の検出を高感度化できる。
 例えば、本開示の一態様に係る修飾粒子は、基材と、前記基材の表面の少なくとも一部を覆う有機膜と、を含み、前記アミノ糖分子は、前記有機膜に前記アミド結合により固定されていてもよい。
 これにより、容易にアミノ糖分子とのアミド結合を形成できる有機膜を選択することにより、表面にアミノ糖分子が配置された修飾粒子を容易に構成することが可能である。
 例えば、本開示の一態様に係る修飾粒子は、前記有機膜の少なくとも一部を覆い、前記有機膜における所定の分子との相互作用を阻害するブロッキング剤を含んでもよい。
 これにより、被検出物質を検出する際に、粒子同士、および粒子の表面における夾雑物などの非特異的吸着を低減することができる。そのため、非特異的吸着により生じるノイズ(すなわち、非特異的吸着ノイズ)が低減され、被検出物質を精度良く検出することができる。
 例えば、本開示の一態様に係る修飾粒子では、前記有機膜は、自己組織化単分子膜であってもよい。
 これにより、特異的結合物質およびアミノ糖分子は、自己組織化した有機膜と容易に結合することができる。そのため、特異的結合物質およびアミノ糖分子は、粒子の表面に容易かつ安定に固定される。
 例えば、本開示の一態様に係る修飾粒子では、前記基材は蛍光体を含んでもよい。
 これにより、被検出物質と特異的な結合を形成した修飾粒子を、蛍光を用いた光学的手法によって検出できる。
 例えば、本開示の一態様に係る修飾粒子では、前記基材は常磁性体または誘電体を含んでもよい。
 これにより、被検出物質と特異的な結合を形成した修飾粒子を、磁場または電場により移動させるなどの手法によって検出できる。
 また、本開示の一態様に係る修飾粒子の製造方法は、粒子を準備する準備工程と、被検出物質と特異的に結合する特異的結合物質を前記粒子の表面に固定する固定工程と、アミノ糖分子をアミド結合により前記粒子の表面に固定する糖固定工程と、を含む。
 これにより、粒子が保存液中でも、特異的結合物質が劣化することを低減でき、検出等に用いた際に粒子同士、または検出における粒子が接触する可能性のある箇所と粒子との吸着を低減できる修飾粒子を得ることができる。
 例えば、本開示の一態様に係る修飾粒子の製造方法では、前記特異的結合物質と前記アミノ糖分子とを含む溶液と、前記粒子とを混合することにより、前記固定工程、および前記糖固定工程を実施してもよい。
 これにより、固定工程、および糖固定工程をワンステップで(まとめて)実施でき、製造工程における工数の削減ができる。
 また、本開示の一態様に係る検出装置は、上記のいずれかに記載の修飾粒子を収容する収容部と、前記修飾粒子が特異的に結合する被検出物質を含み得る試料を前記収容部に導入する導入部と、前記修飾粒子が結合した前記被検出物質の量に基づく検出信号を出力する検出器と、を備える。
 これにより、検出装置は、修飾粒子を用いて、試料中から被検出物質の存在、または存在量を検出可能な検出装置を実現できる。
 なお、これらの包括的、または具体的な態様は、システム、方法、集積回路、コンピュータプログラム、またはコンピュータにより読み取り可能なCD-ROMなどの記録媒体で実現されてもよく、システム、方法、集積回路、コンピュータプログラムおよび記録媒体の任意な組み合わせで実現されてもよい。
 以下、本開示の実施の形態に関して図面を参照しながら説明する。
 なお、以下で説明する実施の形態は、いずれも包括的または具体的な例を示すものである。以下の実施の形態で示される数値、形状、材料、構成要素、構成要素の配置位置、および接続形態、ステップ、ステップの順序などは、一例であり、請求の範囲を限定する主旨ではない。また、以下の実施の形態における構成要素のうち、最上位概念を示す独立請求項に記載されていない構成要素については、任意の構成要素として説明される。
 なお、各図は、必ずしも厳密に図示したものではない。各図において、実質的に同一の構成については同一の符号を付し、重複する説明は省略または簡略化する。
 また、本明細書において、平行などの要素間の関係性を示す用語、および、矩形などの要素の形状を示す用語、ならびに、数値、および、数値範囲は、厳格な意味のみを表す表現ではなく、実質的に同等な範囲、例えば数%程度の誤差等の差異も含むことを意味する表現である。
 (実施の形態)
 [修飾粒子の構成]
 図1は、本実施の形態に係る修飾粒子100の一例を示す概略図である。図1には、修飾粒子100の断面が示され、修飾粒子100のうち紙面下側の一部は図示を省略されている。
 図1に示すように、修飾粒子100は、粒子10と、特異的結合物質20と、アミノ糖分子30と、を含む。特異的結合物質20は、被検出物質と特異的に結合する性質を有し、粒子10の表面に固定されている。また、アミノ糖分子30は、粒子10の表面にアミド結合により固定されている。
 粒子10は、その表面に、特異的結合物質20、およびアミノ糖分子30を結合可能なものであれば、その大きさは特に限定されない。
 粒子10の大きさは、例えば直径が1nm以上10μm以下である。粒子には、公知の表面処理技術を用いて、その表面にカルボキシ基を導入する。これにより、粒子10は、その表面に、アミノ糖分子30を結合させることができる。カルボキシ基が導入された粒子は、
アミノ基が導入された粒子と比較して、抗体などの特異的結合物質20との結合性が高いという利点もある。
 また、粒子10は基材11と、基材11の表面の少なくとも一部を覆う有機膜と、を含む。より詳しくは、粒子10の表面は、特異的結合物質20の固定の容易性の観点、および、特異的結合物質20と被検出物質との反応性の観点から、特異的結合物質20と基材11との距離を適切に確保することが可能な分子(リンカー)によって構成されてもよい。このリンカーは有機膜によって構成されるが、有機膜でなくてもよい。このようなリンカーとなり得る分子は、通常、リンカーが結合される表面の荷電特性などに従って選択される。
 本実施の形態におけるリンカーとなり得る分子は、例えば、アルカンチオールなどの自己組織化単分子膜(SAM12)を形成するような分子によって構成されるが、これに限られない。例えば、基材11の特性に応じてシランカップリング剤、ポリエチレングリコール鎖(PEG鎖)を含む親水性ポリマー、および、リン脂質極性基を有するMPC(2-メタクリロイルオキシエチルホスホリルコリン)の重合体であるMPCポリマーなどが挙げられる。また、これらのリンカー分子は、基材11表面に結合される際に、基材11表面に形成された金属などを介して結合されてもよい。
 金属の材料としては、例えば、金、銀、アルミニウム、銅、白金等の金属のうち少なくとも一種類の金属、またはそれらの合金を用いることができる。なお、金属の材料は、これらに限定されない。
 基材11の材質は、例えば、石英、ガラス、シリカ、およびセラミックスなどの無機材料、ならびにポリスチレン、ポリカーボネートおよびシクロオレフィンポリマーなどの樹脂、ならびにハイドロゲル、アガロース、セルロース、およびイソプレンなどのゴム材料を含む天然材料、ならびに鉄、金、アルミナ、および銀などの金属材料などが挙げられる。
 また、基材11は蛍光体を含んで構成されてもよい。蛍光体とは、励起光が照射されることによって励起光とは異なる波長を有する蛍光を放射する物質であり、例えば、フルオレセイン、およびその誘導体に代表される有機色素、ならびに緑色蛍光タンパク質等の生物学的蛍光分子を用いることができる。また蛍光体として放射蛍光の発光特性を設計可能な量子ドットを用いてもよい。
 また、基材11は、常磁性体または誘電体を含んで構成されてもよい。常磁性体としては、例えば、酸化鉄等、誘電体としては、ポリスチレン等、を用いることができるが、これらに限定されない。
 前述したように、本実施の形態では、有機膜は、リンカーとなり得るSAM12から構成される。このとき、特異的結合物質20は、SAM12に結合されることにより、粒子10の表面に固定されている。また、アミノ糖分子30は、SAM12にアミド結合により固定されている。このように、粒子10が基材11上にSAM12を含むことにより、特異的結合物質20およびアミノ糖分子30は粒子10の表面に安定に固定される。粒子10の表面に安定に固定されたアミノ糖分子30は、修飾粒子100の洗浄等の工程を経ても、表面から離脱しない。そして、アミノ糖分子30が有するヒドロキシ基(OH基)が水分子の代わりに作用するため、修飾粒子100を含む溶液が乾燥された場合も、特異的結合物質の乾燥による劣化が低減され、修飾粒子100を実際に使用する、被検出物質の検出において、検出の高感度化が実現できる。またこのように、特異的結合物質20の安定性が増すため、修飾粒子100の取り扱いの容易性が向上する。
 また、本実施の形態では、前述したように有機膜は、SAM12を形成するリンカー分子によって構成される。SAM12を形成する単分子としては、例えば、炭素原子数4以上、かつ20以下程度のカルボキシアルカンチオール、中でも、10-カルボキシ-1-デカンチオールを用いてもよい。炭素原子数4以上、かつ20以下程度のカルボキシアルカンチオールを用いて形成されたSAM12は、透明性が高く、屈折率が低く、膜厚(つまり基材11表面から粒子10の表面までの距離)が薄いなどの性質を有している。このため、修飾粒子100を用いた検出において、光学的な影響が少ない。SAM12の一端は、基材11の表面と結合可能な官能基であればよく、例えばチオール基である場合、基材11の表面に存在する金に対して結合することで粒子10が形成される。また、SAM12の他端は、特異的結合物質20およびアミノ糖分子30と結合可能なカルボキシ基を有していればよい。このようにSAM12は末端にカルボキシ基を有するため、特異的結合物質20およびアミノ糖分子30は、SAM12と容易に結合を形成することができる。さらに、アミノ糖分子30はアミド結合により固定される。これにより、特異的結合物質20およびアミノ糖分子30は、粒子10の表面に安定に固定される。
 特異的結合物質20は、被検出物質と特異的に結合する物質である。被検出物質は、例えば、タンパク質、脂質、糖、核酸などであり、検出したい対象のウイルス粒子、微生物、細菌などの産生する、またはこれらを構成する分子種である。特異的結合物質20は、例えば、抗原に対する抗体、基質、または補酵素に対する酵素、ホルモンに対するレセプタ、抗体に対するプロテインA、またはプロテインG、ビオチンに対するアビジン類、カルシウムに対するカルモジュリン、糖に対するレクチン、等が挙げられる。また、被検出物質が核酸である場合、当該核酸と特異的に結合する配列を有する(相補鎖の)核酸が特異的結合物質20として使用されてもよい。
 例えば、特異的結合物質20が抗体等のタンパク質である場合、当該タンパク質を構成する複数のアミノ酸の中には、その側鎖にカルボキシ基やアミノ基、チオール基を有するものがある。それらの官能基と粒子10とを化学結合させる、または、それらの官能基をアビジン修飾し、さらに粒子10をビオチン修飾した後、アビジン-ビオチン結合により特異的結合物質20と粒子10とを結合させてもよい。なお、特異的結合物質20がタンパク質である場合、N末端に存在するアミノ基、およびC末端に存在するカルボキシ基を利用してもよい。
 また、特異的結合物質20と粒子10とをより効率よく結合させるために、特異的結合物質20と粒子10との結合反応を促進させる物質を用いて官能基の活性化処理を行ってもよい。当該活性化処理の方法としては、例えば、1-エチル-3-(-3-ジメチルアミノプロピル)カルボジイミド塩酸塩(EDC)、およびN-ヒドロキシコハク酸イミド(NHS)を用いてもよい。これは、SAM12および特異的結合物質20の一方の有するカルボキシ基を活性エステル化させ、当該活性エステル化されたカルボキシ基と、特異的結合物質20およびSAM12の他方の有するアミノ基とを結合させる方法である。また、当該活性化処理の方法は、例えば、グルタルアルデヒド等の複数のアルデヒド基をもつ物質を用いて、SAM12のアミノ基と、特異的結合物質20のアミノ基とを結合させる方法であってもよい。
 なお、特異的結合物質20を粒子10に固定する方法は、特異的結合物質20が失活しない(特異的結合能を失わない)固定方法であれば、他の公知の方法を用いてもよい。
 アミノ糖分子30は、アミノ基を有する糖である。アミノ糖分子30は、その分子中にアミノ基を有することにより、粒子10の表面にアミド結合により固定される。本実施の形態では、粒子10は、表面にSAM12(有機膜)を有し、カルボキシ基を有する。したがって、アミノ糖分子30の有する、アミノ基と、SAM12の有する、カルボキシ基とにより、アミド結合は、カルボキシ基、およびアミノ基の反応により形成される。これにより、アミノ糖分子30は、SAM12とアミド結合である共有結合により固定される。共有結合は、化学結合の中でも結合力が強い。そのため、アミノ糖分子30は、粒子10の表面に、より安定に固定される。このように安定に固定されたアミノ糖分子30の保水性により、修飾粒子100の表面を乾燥から保護し、特異的結合物質20の構造的および機能的な劣化が低減されるため、修飾粒子100の保存安定性を高めることができる。
 また、アミノ糖分子30は、単糖だけでなく、二糖類、または3個以上の単糖から構成される少糖類(いわゆるオリゴ糖)、もしくは多糖類(いわゆるグリカン)であってもよい。また、アミノ糖分子30は、シアル酸のように1つの分子中にアミノ基以外の官能基を有していてもよい。また、アミノ糖分子30は、例示したアミノ糖分子の塩であってもよい。アミノ糖分子30は、好ましくは、単糖または二糖類である。
 具体的には、アミノ糖分子30は、例えば、グルコサミン、マンノサミン、ガラクトサミン、シアル酸、アミノウロン酸、もしくはムラミン酸等のアミノ基を有するアミノ糖、または、キトサンなどのアミノ基を有する多糖類等であってもよく、これらの塩であってもよい。なお、上記のアミノ糖分子30にD型、またはL型の鏡像異性体が存在する場合、いずれを用いてもよい。アミノ糖分子30は、好ましくは、グルコサミンである。
 これらのアミノ糖分子30を粒子10の表面に固定する方法は、特異的結合物質20と同様の方法を用いてもよい。なお、アミノ糖分子30は、粒子10の表面にアミド結合により固定できるアミノ糖分子であれば特に限定されず、上述した糖以外の公知の糖を用いてもよい。
 アミノ糖分子30が、粒子10の表面にアミド結合により固定されていることは、修飾粒子100にトリプシンなどのプロテアーゼを作用させて得られた分解物に、アミノ糖分子30由来の赤外吸収ピークが存在することによって確認できる。
 また、本実施の形態に係る修飾粒子100は、さらに、粒子10の表面の少なくとも一部を覆い、修飾粒子100のSAM12における他の分子との相互作用を阻害するブロッキング剤を含んでもよい。ブロッキング剤は、被検出物質を含み得る試料中の夾雑物などが粒子10の表面に非特異的に吸着、または結合する相互作用(つまり、非特異的吸着)を阻害する物質である。夾雑物は、例えば、修飾粒子を構成する分子を除くタンパク質、脂質、糖、ペプチド、核酸などの所定の分子である。
 ブロッキング剤は、本実施の形態ではエタノールアミン40として説明されるが、これに限られない。例えば、スキムミルク、フィッシュゼラチン、ウシ血清アルブミン(BSA)、界面活性剤、カゼイン、プロタミン、ポリエチレングリコール(PEG)等であってもよい。ブロッキング剤は、少なくとも、粒子10の表面で特異的結合物質20およびアミノ糖分子30が固定されていない領域(つまり、隙間領域)を覆うものであればよい。
 このようなブロッキング剤により、被検出物質を検出する際に、粒子10の表面における非特異的吸着を阻害することができる。そのため、非特異的吸着により生じるノイズ(すなわち、非特異的吸着ノイズ)が低減され、被検出物質を検出する際に検出を高感度化することができる。
 なお、本開示内ではブロッキング処理とは、上述のように非特異的吸着を阻害するための処理をいう。ブロッキング処理により、非特異的吸着による被検出物質の検出への影響を低減することができる。ブロッキング処理では、特異的結合物質20およびアミノ糖分子30を粒子10の表面に固定した後に、エタノールアミン40を粒子10の表面に固定するとよい。
 より具体的には、特異的結合物質20、およびアミノ糖分子30を粒子10に固定した後、エタノールアミン40を含む溶液を添加することにより、溶液中のエタノールアミン40を粒子10の表面に固定させる。エタノールアミン40を含む溶液は、所定の時間(例えば十分に隙間領域を覆うための反応時間)反応に供した後、余剰の(固定されていない)エタノールアミン40を含むため外液交換等により除去される。なお、ブロッキング剤が反応において十分に固定される場合は、特異的結合物質20、およびアミノ糖分子30の固定と同時にブロッキング処理を行ってもよい。
 [修飾粒子の製造方法]
 図2は、本実施の形態に係る修飾粒子100の製造方法の一例を示すフローチャートである。
 図2の(a)に示すように、修飾粒子100の製造方法では、[1]粒子10を準備する準備工程(S101)と、[2]反応性官能基を活性化させる活性化工程(S102)とを実施する。なお、活性化工程は、当該活性化工程に続く固定工程、および糖固定工程の反応効率を上昇させるために実施する。したがって、反応性官能基の選択等により、十分な反応性を有する反応性官能基が導入されている場合等、活性化工程が不要な場合もある。
 また、修飾粒子100の製造方法は、[3]被検出物質と特異的に結合する特異的結合物質20を粒子10の表面に固定する固定工程(S103)と、[4]アミノ糖分子30をアミド結合により粒子10の表面に固定する糖固定工程(S104)と、を含む。
 さらに、[5]未反応の反応性官能基については、非特異的吸着に寄与することが考えられるため、修飾粒子100の製造方法では、ブロッキング処理を行うブロッキング工程(S105)を実施してもよい。なお、未反応の反応性官能基が形成されない(残存しない)固定工程、および糖固定工程の条件を設定できる場合は当該ブロッキング工程を実施しなくてもよい。
 以下、修飾粒子100の製造方法をより具体的に説明する。
 [1]修飾粒子100の製造方法における準備工程(S101)は、例えば、以下の3つのサブステップを含む。第1サブステップは、基材11を準備する工程である。第2サブステップは、当該基材11上にSAM12を形成する工程である。
 以下、それぞれのサブステップについて、より具体的に説明する。
 第1サブステップでは、例えば、基材11の材料が樹脂材料である場合、重合等の公知の合成技術を用いて基材11を形成する。また、基材11の材料が金属や常磁性体であっても、公知の合成技術を用いて基材11を形成する。
 続いて、第2サブステップでは、基材11の表面(例えば、金属が形成された表面)にSAM12を形成させる。SAMの形成方法は、特に限定されず、通常行われている方法を用いるとよい。例えば、金属がその表面に形成された基材11を、炭素原子数4以上、かつ20以下程度のカルボキシアルカンチオール(例えば、10-カルボキシ-1-デカンチオールなど)を含むエタノール溶液に浸漬する方法などが挙げられる。
 当該方法では、カルボキシアルカンチオール(以下、単分子)のチオール基が金属と結合することにより、単分子が金属基材の表面に固定され、それらの固定された単分子が、金属の表面上で相互作用により自己組織化し、膜形成する。以上により、基材11の表面にSAM12が配置された粒子10が得られる。
 [2]活性化工程(S102)は、SAM12が有する粒子10表面側に導入された反応性官能基(例えば、カルボキシ基)を、特異的結合物質20が有する反応性官能基(例えば、アミノ基)と反応しやすい形に活性化する工程である。本活性化工程では、例えば、SAM12を構成する単分子がカルボキシ基を有する場合は、1-エチル-3-(3-ジメチルアミノプロピル)カルボジイミド(EDC)と、N-ヒドロキシコハク酸イミド(NHS)とにより活性エステル化される。本活性化工程では、以上のような修飾、または例示しないが、脱離等の反応を用いて反応性官能基をより反応性の高い状態に変化させる。
 [3]固定工程(S103)は、例えば、以下の3つのサブステップを含む。第4サブステップは、特異的結合物質20を粒子10と混合する工程である。第5サブステップは、特異的結合物質20をSAM12に(つまり粒子10に)固定させる工程である。第6サブステップは、SAM12に固定されなかった遊離状態の特異的結合物質20を除去する工程である。
 以下、それぞれのサブステップについて、より具体的に説明する。
 第4サブステップでは、ステップS102で反応性官能基が活性化されたSAM12を有する粒子10を、特異的結合物質20を含む溶液と混合する。
 そして、第5サブステップでは、SAM12が有する活性化された反応性官能基と、特異的結合物質20が有する反応性官能基とを反応させて、SAM12上に特異的結合物質20を固定させる。特異的結合物質20は、アミド結合によりSAM12上に固定される。
 次いで、第6サブステップでは、SAM12上に固定されなかった遊離状態の特異的結合物質20を除去する。より具体的には、例えば、リン酸緩衝生理食塩液(PBS)などの緩衝液を用いて、固定された反応性官能基どうしが分解されない環境を維持し、外液交換等の方法により遊離状態の分子を除去する。これにより、特異的結合物質20が粒子10の表面に固定された修飾粒子100を得ることができる。
 [4]糖固定工程(S104)は、例えば、上記の固定工程に準じるサブステップを含む。つまり、特異的結合物質20に替えてアミノ糖分子30を固定する、第4サブステップ~第6サブステップに対応するサブステップを含む。
 ここで、図2の(b)に示すように、固定工程と糖固定工程とは、並行して行ってもよい。より具体的には、活性化工程において、反応性官能基を活性化させた後、活性化された粒子10、および特異的結合物質20とアミノ糖分子30とを含む溶液を混合する。これにより第5サブステップ、および糖固定工程における第5サブステップに対応するサブステップをまとめて、1つの工程(S106)として実施する。
 つまり本製造方法では、特異的結合物質20とアミノ糖分子30とを含む溶液と、反応性官能基が活性化された粒子10とを混合し、粒子10の表面に形成されたSAM12に特異的結合物質20を固定する固定工程(S103)、およびアミノ糖分子30を固定する糖固定工程(S104)を並行して実施することもできる。
 なお、修飾粒子100の製造方法は、さらに、[5]ブロッキング工程(S105)を含んでもよい。ブロッキング工程では、前述したように被検出物質を含み得る試料中の夾雑物などが粒子10の表面に非特異的吸着することを阻害するエタノールアミン40(ブロッキング剤)により粒子10の表面を被覆させる処理を行う。
 具体的には、ブロッキング工程では、エタノールアミン40と、特異的結合物質20、およびアミノ糖分子30が固定された粒子10とを混合する。これにより、試料中の夾雑物などが粒子10の表面に非特異的吸着することを低減できる、エタノールアミン40を含む修飾粒子100が得られる。
 さらに、特異的結合物質20とアミノ糖分子30とを含む溶液にブロッキング剤を添加した溶液を調製し、当該溶液に反応性官能基が活性化された粒子10を入れて混合してもよい。これにより、固定工程、糖固定工程、およびブロッキング工程を1つの工程として一緒に行うこともできる。したがって、さらに製造工程をまとめて、修飾粒子100の製造における工数を削減することもできる。
 [検出装置の構成]
 図3は、本実施の形態に係る検出装置50の一例を示す概略構成図である。
 図3に示すように、検出装置50は、修飾粒子100を収容する収容部と、修飾粒子100が特異的に結合する被検出物質を含み得る試料を収容部に導入する導入部と、修飾粒子100が結合した被検出物質の量に基づく検出信号を出力する検出器と、を備える。
 より詳しくは、修飾粒子100を収容するセル51(収容部の一例)と、光源54と、引き寄せ磁場印加部56と、掃引磁場印加部57と、2次元画像検出部58(検出器の一例)と、を備える。セル51は、検出板52と、カバー53とによって画成される空間を有し、当該空間に対向する検出板52の表面と反対側の表面にはプリズム55が接合されている。ここで、セル51の空間は、例えばカバー53が開閉すること等により外部とアクセス可能に構成される。つまりこのような例においては、カバー53が導入部として機能する。
 なお、セル51に被検出物質を含み得る試料を導入できる連通孔(図示しない)を有する構成であってもよく、このような例においては、当該連通孔が導入部として機能する。したがって、被検出物質を含み得る試料を導入できれば、導入部は、検出装置50のいずれの構成要素に備えられてもよい。
 以下ではさらに、検出装置50を構成する各構成要素について詳細に説明する。本実施の形態において説明する検出装置50は、外力支援型近接場照明(EFA-NI)と呼ばれる検出方法により被検出物質の検出を行う装置を一例として示している。
 ここで、検出装置50を用いた被検出物質の検出においては、少なくとも2種類の修飾粒子100を用いる。このような粒子について図4を用いて説明する。図4は、検出装置50に用いられる際の修飾粒子について説明する図である。図4の修飾粒子100は、図1と同様に一部が図示を省略された断面図で示されている。
 図4に示すように、検出装置50では被検出物質59を検出する際、基材11aが蛍光体Fを含む修飾粒子(つまり第1粒子100a)と、基材11bが常磁性体Mを含む修飾粒子(つまり第2粒子100b)とを用いる。第1粒子100aは、特異的結合物質20aを介して被検出物質59に結合する。また、第2粒子100bは同様に、特異的結合物質20bを介して被検出物質59に結合する。ここで、特異的結合物質20aと特異的結合物質20bとは、被検出物質59の異なる箇所に結合する。
 例えば、被検出物質59がウイルスの外郭タンパク質などの繰り返し構造を有する分子である場合、特異的結合物質20aと特異的結合物質20bとは分子内の同一箇所に結合してもよい。より詳しくは、繰り返し構造のうちの一つの結合箇所に特異的結合物質20aが結合しても、同一の結合箇所は繰り返し構造の中に複数存在するため、同時に特異的結合物質20bが結合することが可能である。
 一方、被検出物質59が単一のタンパク質等の、同一の結合箇所をもたない単一分子である場合、特異的結合物質20aと特異的結合物質20bとは、被検出物質59の分子内で異なる箇所に結合する必要がある。よって、特異的結合物質20aと特異的結合物質20bとは、対象とする被検出物質59の種類に応じて、特に被検出物質59に対する結合箇所が同一の構造、または異なる構造を有するように修飾粒子を設計する必要がある。
 以上に留意して設計された2種類の修飾粒子(第1粒子100a、および第2粒子100b)は、被検出物質59に結合することで粒子複合体100cを形成する。
 図3に戻り、第1粒子100a、第2粒子100b、および被検出物質59がセル51の空間内に導入され、このうち一部が粒子複合体100cを形成している様子が示されている。
 セル51は、前述したように板状の部材である検出板52によって画成される。したがって検出板52の一方の主面52aはセル51の空間に面する。また検出板52の他方の主面52bは、プリズム55に面し、互いに接合されている。ここで、検出板52には、他方の主面52b側から励起光54Lが照射される。励起光54Lは透光性のプリズム55内を透過し、さらに検出板52の他方の主面52bに入射される。検出板52の他方の主面52bに入射された励起光54Lは検出板52内を透過し、検出板52の一方の主面52aで反射される。このように、検出板52、プリズム55、および励起光54Lを照射する光源54は、検出板52の一方の主面52aで励起光54Lが全反射されるような条件で配置、屈折率、および界面形状等の設計がなされている。
 励起光54Lは、上記のように検出板52の一方の主面52aにおいて全反射されるが、その際セル51の空間における検出板52の一方の主面52a付近に、エバネッセント場や増強電場等の近接場を形成する。近接場は、一方の主面52a近傍のみに形成され、検出板52の一方の主面52aから遠ざかるにつれて急激に減衰する性質を有するので、検出板52の一方の主面52a近傍のセル51の空間のみを照射する。なお、検出板52の構成としては、特に制限はなく目的に応じて適宜選択することができ、単層で構成されてもよく、電場増強を目的とした積層体で構成されてもよい。
 光源54は、上記のように、所定の波長の光を出射し、近接場を形成させて、セル51の空間に照射する光照射部の一例である。光源54としては、公知の技術を特に限定することなく利用することができる。例えば、半導体レーザ、ガスレーザ等のレーザを光源54として利用することができる。なお、光源54は、被検出物質59に含まれる物質と相互作用が小さい波長の励起光(例えば、400nm~2000nm)を照射することが好ましい。さらには、励起光の波長は、半導体レーザが利用できる波長400nm~850nmであることが好ましい。
 カバー53は検出板52の一方の主面52aと対向して設けられた透光性の板状部材であり、樹脂等の任意の材料を用いて構成される。カバー53は検出板52から所定の距離だけ離間して設けられ、当該距離に応じてセル51の空間の容積を変化させることができる。よって、検出装置50を適用する用途に応じて、検出板52とカバー53の離間距離は、適宜設定される。
 2次元画像検出部58は、セル51の空間に面するカバー53の一方の主面と背向する面側に、カバー53から離間して配置され、励起光54Lの照射によりセル51の空間の中で発生した光を結像させて2次元画像として検出する。
 引き寄せ磁場印加部56は、セル51の空間に、図中に二点鎖線で示す矢印の第1磁場勾配56Mを発生させる。引き寄せ磁場印加部56は、ON/OFFが切り替え可能な電磁石によって構成されるが、永久磁石を遠近させる構成であってもよい。引き寄せ磁場印加部56によって、セル51の空間には、第1磁場勾配56Mが印加され、セル51の空間内に存在する常磁性体が検出板52の鉛直方向におけるプリズム55側に向けて引き寄せられる。
 掃引磁場印加部57は、セル51の空間に、図中に二点鎖線で示す矢印の第2磁場勾配57Mを発生させる。掃引磁場印加部57は、引き寄せ磁場印加部56と同様に電磁石によって構成されるが、永久磁石を遠近させる構成であってもよい。掃引磁場印加部57によってセル51の空間には第2磁場勾配57Mが印加され、セル51の空間内に存在する常磁性体が検出板52と平行方向における光源54側に向けて引き寄せられる。なお、掃引磁場印加部57は、検出板52と平行方向のいずれの箇所に配置されていてもよく、以下では、一例として上記の配置を用いて説明する。
 以上の引き寄せ磁場印加部56、および掃引磁場印加部57はつまり、セル51の空間に磁場を印加する磁場印加部の一例である。
 [被検出物質の検出方法]
 続いて、以上のように構成された本実施の形態に係る検出装置50を用いて被検出物質59を検出する方法について図5を用いて説明する。図5は、本実施の形態の検出装置50から出力された2次元画像模式的に説明する図である。
 セル51の空間は、第1粒子100a、および第2粒子100bをあらかじめ収容している。
 ここに被検出物質59を含み得る試料を導入する。試料に含まれる被検出物質59は、セル51の空間内において、第1粒子100a、および第2粒子100bと結合し、粒子複合体100cを形成する。
 ここで、第1粒子100a、および第2粒子100bは、アミノ糖分子30がそれぞれの表面に固定された粒子である。このような構成により、第1粒子100a、および第2粒子100bは検出板52に吸着すること、および第1粒子100aと第2粒子100bとが相互に吸着することが抑制される。例えば、第1粒子100aが検出板52に吸着した際には、後述するが、近接場によって照射されてしまい背景光が上昇するため検出感度が低下する。また例えば、第1粒子100aと第2粒子100bとが相互に吸着した際には、被検出物質59と結合していないにも関わらず、粒子複合体100cと同様に振る舞うため、被検出物質59の計数における誤差要因になる。
 したがって、第1粒子100a、および第2粒子100bにアミノ糖分子30が固定されていることにより、このような検出感度の低下、および誤差要因を低減することができる。
 粒子複合体100cは、第2粒子100bを含むため、基材11bに含まれた常磁性体Mは、印加された磁場によって引き寄せられる。このため、引き寄せ磁場印加部56によって第1磁場勾配56Mセル51の空間に印加された際、粒子複合体100cは、検出板52に略接する状態に引き寄せられる。また、セル51の空間内に存在する粒子複合体100cを形成していない第2粒子100bも同様に検出板52に略接する状態に引き寄せられる。一方、粒子複合体100cを形成していない第1粒子100aは、常磁性体Mを有さないため、元の状態から引き寄せられない。
 ここで、光源54から励起光54Lが出射されると、前述したように検出板52の一方の主面52a付近に近接場が形成される。粒子複合体100cは、第1粒子100aに結合しているため、基材11aに含まれた蛍光体Fを励起する波長の光が照射された際に蛍光を発する。つまり、近接場が蛍光体Fの励起波長を有する光であれば、粒子複合体100cは蛍光を発する。なお、粒子複合体100cを形成していない第1粒子100aも同様に近接場によって照射された際に蛍光を発する。
 ただし、近接場は検出板52の一方の主面52aの近傍にのみ形成される。つまり、第1粒子100aのうち、検出板52に略接する状態にある第1粒子100aが蛍光を発することができる。第1粒子100aは常磁性体Mをもたないため、このように近接場によって照射される第1粒子100aは全体のうちごく一部のみである。
 以上により、セル51の空間内では、粒子複合体100c、および第1粒子100aの一部が蛍光を発している。
 ここで図5は、上記の状況において2次元画像検出部58により出力された2次元画像58Rを示すものである。出力された2次元画像58Rには、粒子複合体100cの発した蛍光に由来する光点P100c、および第1粒子100aの発した蛍光に由来する光点P100aが示されている。
 ここでは光点P100cと光点P100aとを区別することはできない。そこで、掃引磁場印加部57によって第2磁場勾配57Mをセル51の空間に印加する。この際、上記のような2次元画像58Rを連続的に出力させると、第2磁場勾配57Mによって生じる変化が2次元動画像として得られる。
 前述したように、粒子複合体100cは常磁性体Mを有するため第2磁場勾配57Mによって引き寄せられるが、第1粒子100aは、常磁性体Mを有さないため、その場にとどまる。よって得られる2次元動画像には、図5中に矢印で示すような光点P100cの移動がみられる。一方でこのような移動は光点P100aには見られず、この差によって粒子複合体100cと第1粒子100aとを区別して計数することができる。
 よって2次元画像検出部58は、第1粒子100a、および第2粒子100bが結合した被検出物質59(つまり粒子複合体100c)を、第1磁場勾配56M、および第2磁場勾配57Mにより移動させた際に、所定の波長の近接場によって蛍光体Fから発せられた蛍光に基づき、被検出物質59を計数可能な2次元画像58Rを出力する。つまりここでは、2次元画像58Rは、被検出物質59の量に基づく検出信号の一例である。
 なお、このような光点の計数を、2次元画像検出部58から出力される2次元画像58Rを画像認識することによって自動で行う構成であってもよい。
 (実施例)
 以下、実施例にて本開示の修飾粒子を具体的に説明するが、本開示は以下の実施例のみに何ら限定されるものではない。
 [実施例]
 実施例では、特異的結合物質として、A型インフルエンザウイルスの核タンパク(NP:Nucleoprotein)を抗原とする抗体を用いた。また、アミノ糖は、グルコサミンを用いた。なお、本実施例では、修飾粒子の製造方法として図2の(b)に示す方法を用い、特異的結合物質、および糖を一工程で結合させる方法をとった。
 まず、(i)SAMを形成させた粒子を、遠心分離により25mMのMES(2-morpholinoethanesulfonicacid)緩衝生理食塩水中に粒子終濃度1mg/mLとなるよう外液交換を行った後、もう一度遠心分離により外液画分を廃棄した。
 (ii)各々50mg/mLのNHS(N-Hydroxysuccinimide)、およびEDC(1-(3-Dimethylaminopropyl)-3-ethylcarbodiimidehydrochloride)を含むMES緩衝生理食塩水を60μL添加し静置した。その後、遠心分離により外液画分を廃棄した。
 (iii)これに、0.5mg/mLの抗体と、1%グルコサミンを含む25mM酢酸緩衝液を100μL添加し、反応させた。これにより、SAM上に抗体、およびグルコサミンを固定した。その後、遠心分離により外液画分を廃棄した。
 (iv)0.1%のNP-40(Nonidet P-40)を含む、1Mエタノールアミン溶液を240μL添加し、反応させた。
 (v)さらに、遠心分離により外液画分を廃棄し、50mMの塩化カリウム、1mMのEDTA(Ethylenediaminetetraacetic acid)、および10%グリセリンを含む、10mMのHEPES(4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid)溶液を200μL添加した。これを遠心分離により外液画分を廃棄する操作を行った後、同溶液を100μL添加した。
 以上の工程により実施例に係る修飾粒子が得られた。実施例に係る修飾粒子は、粒子と、抗体と、グルコサミンと、エタノールアミンとを有する。
 また、以下では3つの比較例に係る修飾粒子を製造する方法を示す。
 [比較例1]
 上記実施例に係る修飾粒子の製造方法の各工程のうち、(iii)、および(iv)の工程を実施しないこと以外は、実施例と同様に行った。これにより、比較例1に係る修飾粒子が得られた。比較例1に係る修飾粒子は、粒子と、抗体とを有し、実施例に係る修飾粒子と比較してグルコサミン、およびエタノールアミンを有しない点で異なっている。
 [比較例2]
 上記実施例に係る修飾粒子の製造方法の各工程のうち、(iii)の工程において、1%グルコサミンを添加しないこと以外は、実施例と同様に行った。これにより、比較例2に係る修飾粒子が得られた。比較例2に係る修飾粒子は、粒子と、抗体と、エタノールアミンとを有し、実施例に係る修飾粒子と比較してグルコサミンを有しない点で異なっている。
 [比較例3]
 上記実施例に係る修飾粒子の製造方法の各工程のうち、(iii)の工程において、1%グルコサミンの代わりに、1%トレハロースを添加したこと以外は、実施例1と同様に行った。これにより、比較例3に係る修飾粒子が得られた。比較例3に係る修飾粒子は、粒子と、抗体と、エタノールアミンとを有し、さらに結合を形成しないトレハロースが修飾粒子の周囲に存在する。したがって、実施例に係る修飾粒子と比較してグルコサミンを有せず、トレハロースが周囲に存在する点で異なっている。
 [非特異的吸着の評価]
 次に図6を用いて、実施例における修飾粒子を用いた、非特異的吸着の評価について説明する。図6は、実施例に係る修飾粒子の吸着試験の試験方法について説明する図である。
 図6の(a)は、非特異的吸着を評価するための試験方法を示す模式図である。本試験方法では、96穴プレートの底面60に対してあらかじめヒト血清アルブミン(HSA61)を固定化し、固定化したHSA61に対して修飾粒子が吸着する量を検出することで非特異的吸着の度合いを、比較例に係る修飾粒子と比較する。
 なお、試験方法の詳細については以下のとおり実施した。まず、96穴プレートの底面60に対して、3.2μMのHSA61、および0.5%Tween(登録商標)20を含むリン酸緩衝生理食塩液をウェルごとに50μL添加し、4℃において終夜反応させ、HSA61を固定化させた。その後、HSA61、および0.5%Tween(登録商標)20を含むリン酸緩衝生理食塩液を廃棄した。ここで基材が蛍光体を含む修飾粒子を用い、粒子終濃度が7×10個/mLである修飾粒子液をウェルごとに50μL添加した。その後、室温において60分間反応させ、当該修飾粒子液を廃棄した。
 さらに、0.05%Tween(登録商標)20を含むリン酸緩衝生理食塩液をウェルごとに200μL添加して廃棄する処理を3回行い、各ウェルを洗浄した。HSA61に結合し、残留している修飾粒子を蛍光により(励起波長:532nm、および蛍光波長:568nmの条件で)測定し、実施例、および比較例1~3の蛍光強度を比較した。なお、実施例、および比較例1~3は、各々4ウェルについて試験を行った(n=4)。
 したがって、HSA61への吸着(非特異的吸着)が低減されるほど蛍光強度は低くなるため、本吸着試験では、蛍光強度が低いほど被検出物質に対する検出感度が高いことを示している。
 なお、図6の(a)中の符合100mで示す修飾粒子は、実施例に係る修飾粒子、および比較例1~3に係る修飾粒子のうち、いずれか1種を示している。
 ここで、修飾粒子100mのうち、破線の矩形で示す修飾箇所mには、図6の(b)に示すように、実施例に係る修飾粒子、および比較例1~3に係る修飾粒子のいずれであるかによって、異なる分子が含まれる。比較例1に係る修飾粒子は、修飾箇所mには、いずれの分子も入らず、前述したように抗体のみを有する。
 比較例2に係る修飾粒子は、修飾箇所mには、図6の(b)の1に示すようにエタノールアミンが含まれる。当該エタノールアミンは、図6では省略して示すが、SAMに固定されている。
 また、比較例3に係る修飾粒子は、修飾箇所mには、図6の(b)の2に示すようにトレハロース、およびエタノールアミンが含まれる。ここで、エタノールアミンは、比較例1と同様に、SAMに固定されているが、トレハロースは固定されておらず、修飾粒子の周囲に存在している。
 また、実施例に係る修飾粒子は、修飾箇所mには、図6の(b)の3に示すようにグルコサミン、およびエタノールアミンが含まれる。ここで、グルコサミン、およびエタノールアミンはいずれもSAMに固定されている。
 次に、図7を用いて、本吸着試験の試験結果を示す。図7は、実施例に係る修飾粒子の吸着試験の結果について説明する図である。
 図7では、縦軸に相対蛍光強度、横軸に各修飾粒子(比較例1、比較例2、比較例3、および実施例)を並べて示している。各棒グラフはn=4の平均値を示し、エラーバーにより各測定における誤差を併せて示している。
 図7に示すように、抗体のみを有する比較例1に係る修飾粒子が最も蛍光強度が高く、比較例1に係る修飾粒子よりも比較例2に係る修飾粒子の方が、蛍光強度が低くなることが示されている。つまりエタノールアミンを導入することによる非特異的吸着の抑制効果が確認された。さらに比較例2と実施例とを比較すると、実施例に係る修飾粒子の方が、大幅に蛍光強度が低く、グルコサミンを固定することによる非特異的吸着の抑制効果が確認された。
 一方で比較例3に係る修飾粒子は、比較例2と同等の蛍光強度を示し、エタノールアミンを導入することによる非特異的吸着の抑制効果しか得られていないことがわかった。これは、トレハロースが結合していない状態にあり、洗浄によってトレハロースが除去されたためと考えられる。なお、比較例3における誤差が大きかった原因として、トレハロースの粘度の高さにより、洗浄によっても除去されずに残留したトレハロース分子があったためと考えられる。
 以上により、アミド結合によってアミノ糖分子を結合させることにより、非特異的吸着の抑制効果が向上する結果が得られた。したがって、アミド糖分子のアミド結合により被検出物質の検出が高感度化できることが示された。
 以上、本開示に係る修飾粒子、修飾粒子の製造方法、および検出装置について、実施の形態および実施例に基づいて説明したが、本開示は、これらの実施の形態および実施例に限定されるものではない。本開示の主旨を逸脱しない限り、当業者が思いつく各種変形を実施の形態および実施例に施したものや、実施の形態および実施例における一部の構成要素を組み合わせて構築される別の形態も、本開示の範囲に含まれる。
 なお、本開示に係る修飾粒子、修飾粒子の製造方法、および検出装置は、例えば空気中に浮遊するウイルスを検出する検出システムに利用されてもよい。
 以下ではさらに、他の実施の形態について説明する。
 (他の実施の形態)
 実施の形態では、修飾粒子100は有機膜としてSAM12を有する構成を説明したが、特異的結合物質20、およびアミノ糖分子30が結合可能な基材11であればSAM12を備える必要はない。これは例えば基材11に反応性官能基を備える樹脂を用いる、または表面に金属を形成させた基材11を用いる等の方法がある。
 また、エタノールアミン40で例示したブロッキング剤により粒子10の表面の有機膜を少なくとも一部覆う構成を説明したが、ブロッキング剤を備えなくてもよく、エタノールアミン40ではないブロッキング剤を用いてもよい。
 また、有機膜としてSAM12を用いる構成を説明したが、SAM12ではない有機膜を用いてもよい。
 また、基材11は蛍光体F、および常磁性体Mを含んでもよく、含まなくてもよい。検出方法に適した性質を有する物質を任意に含有させた基材11を用いて修飾粒子100を構成してもよい。また、修飾粒子100は、色素を含んでいてもよく、この場合、イムノクロマトグラフィーにおける標識粒子としても用いられる。
 また、修飾粒子100は、実施の形態に示したような検出装置50に応用可能であるが、修飾粒子100を用いた被検出物質59の検出装置はこれに限られない。例えば、修飾粒子100の基材としてポリスチレン等の誘電体を用い、被検出物質59と結合した修飾粒子のみを誘電泳動法を用いて分離し、検出する検出装置であってもよい。
 例えば、層流を用いて修飾粒子100を一個ずつ検出流路に通流させるフローサイトメータに適用してもよい。また例えば、緑色蛍光タンパク質を分割し、分割された部分のそれぞれが会合することで蛍光性を発現する物質を、2つの修飾粒子にそれぞれ結合させ、被検出物質59にこれらの修飾粒子が2つともに結合した際にのみ蛍光性を発現する系を構築する。このような系を分光光度計と組み合わせることで検出装置を構成してもよい。また、上記の光学系をハイスループット処理可能な検出アレイとして検出装置を実現してもよい。
 また、上記実施の形態、および実施例において、粒子10は細胞ではなかったが、これに限定されない。技術の進歩または派生する別技術により、新たな粒子が登場すれば、当然、その粒子を用いて修飾粒子100を構成してもよい。バイオ技術の適用等が可能性としてありえ、この場合、粒子10は細胞等であってもよい。
 本開示は、液中での高い保存安定性を有し、研究用、医療用および環境測定用のバイオセンサ等に適用できる点で有用である。また、本開示に係る修飾粒子および当該修飾粒子を用いた検出装置は、非競合法(サンドイッチイムノアッセイ法)だけでなく、競合法、ハイブリダイゼーションによる遺伝子検出法にも適用可能である。
 10 粒子
 11、11a、11b 基材
 12 SAM
 20、20a、20b 特異的結合物質
 30 アミノ糖分子
 40 エタノールアミン
 50 検出装置
 51 セル
 52 検出板
 52a 一方の主面
 52b 他方の主面
 53 カバー
 54 光源
 54L 励起光
 55 プリズム
 56 引き寄せ磁場印加部
 56M 第1磁場勾配
 57 掃引磁場印加部
 57M 第2磁場勾配
 58 2次元画像検出部
 58R 2次元画像
 59 被検出物質
 60 96穴プレートの底面
 61 HSA
 100、100m 修飾粒子
 100a 第1粒子
 100b 第2粒子
 100c 粒子複合体
 F 蛍光体
 M 常磁性体
 m 修飾箇所
 P100a、P100c 光点

Claims (9)

  1.  粒子と、
     被検出物質と特異的に結合する性質を有し、前記粒子の表面に固定された特異的結合物質と、
     前記粒子の表面にアミド結合により固定されているアミノ糖分子と、を含む、
     修飾粒子。
  2.  前記粒子は、
     基材と、前記基材の表面の少なくとも一部を覆う有機膜と、を含み、
     前記アミノ糖分子は、前記有機膜に前記アミド結合により固定されている、
     請求項1に記載の修飾粒子。
  3.  さらに、前記有機膜の少なくとも一部を覆い、前記有機膜における所定の分子との相互作用を阻害するブロッキング剤を含む、
     請求項2に記載の修飾粒子。
  4.  前記有機膜は、自己組織化単分子膜である、
     請求項2、または請求項3に記載の修飾粒子。
  5. 前記基材は蛍光体を含む、
     請求項2から請求項4のいずれか一項に記載の修飾粒子。
  6.  前記基材は常磁性体または誘電体を含む、
     請求項2から請求項4のいずれか一項に記載の修飾粒子。
  7.  粒子を準備する準備工程と、
     被検出物質と特異的に結合する特異的結合物質を前記粒子の表面に固定する固定工程と、
     アミノ糖分子をアミド結合により前記粒子の表面に固定する糖固定工程と、を含む、
     修飾粒子の製造方法。
  8.  前記特異的結合物質と前記アミノ糖分子とを含む溶液と、前記粒子とを混合することにより、前記固定工程、および前記糖固定工程を実施する、
     請求項7に記載の修飾粒子の製造方法。
  9.  請求項1から請求項6のいずれか一項に記載の修飾粒子を収容する収容部と、
     前記修飾粒子が特異的に結合する被検出物質を含み得る試料を前記収容部に導入する導入部と、
     前記修飾粒子が結合した前記被検出物質の量に基づく検出信号を出力する検出器と、を備える、
     検出装置。
PCT/JP2019/041831 2018-12-17 2019-10-25 修飾粒子、修飾粒子の製造方法、および検出装置 WO2020129404A1 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2020561186A JP7352885B2 (ja) 2018-12-17 2019-10-25 修飾粒子の製造方法
CN201980034931.4A CN112166315A (zh) 2018-12-17 2019-10-25 修饰粒子、修饰粒子的制造方法及检测装置
US17/111,616 US20210088510A1 (en) 2018-12-17 2020-12-04 Modified particle, method for manufacturing modified particle, and detection apparatus

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2018235723 2018-12-17
JP2018-235723 2018-12-17

Related Child Applications (1)

Application Number Title Priority Date Filing Date
US17/111,616 Continuation US20210088510A1 (en) 2018-12-17 2020-12-04 Modified particle, method for manufacturing modified particle, and detection apparatus

Publications (1)

Publication Number Publication Date
WO2020129404A1 true WO2020129404A1 (ja) 2020-06-25

Family

ID=71101167

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2019/041831 WO2020129404A1 (ja) 2018-12-17 2019-10-25 修飾粒子、修飾粒子の製造方法、および検出装置

Country Status (4)

Country Link
US (1) US20210088510A1 (ja)
JP (1) JP7352885B2 (ja)
CN (1) CN112166315A (ja)
WO (1) WO2020129404A1 (ja)

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189300A (ja) * 1985-02-18 1986-08-22 Tokuyama Soda Co Ltd 親水性重合体粒子の製造方法
JPH0421637A (ja) * 1990-05-11 1992-01-24 Soken Kagaku Kk キチン誘導体又はキトサンを表面に修飾した高分子微粒子並びにその製造方法
JPH08502443A (ja) * 1992-10-15 1996-03-19 クールター コーポレイション ゼラチン−アミノデキストラン被膜を有する粒子およびその製造方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3438962B2 (ja) * 1994-10-12 2003-08-18 株式会社トクヤマ 免疫学的凝集反応試薬
US20090014682A1 (en) * 2005-05-20 2009-01-15 Jsr Corporation Carrier Polymer Particle, Process for Producing the Same, Magnetic Particle for Specific Trapping, and Process for Producing the Same
JP4873123B2 (ja) * 2005-11-28 2012-02-08 Jsr株式会社 担体ポリマー粒子の製造方法
JP4873576B2 (ja) * 2006-12-01 2012-02-08 国立大学法人島根大学 蛍光標識剤および蛍光標識方法
JP2009106797A (ja) * 2007-10-26 2009-05-21 Hitachi Maxell Ltd 粗面化処理が施された高密度機能性粒子、その製造方法およびそれを用いた標的物質の処理方法
JP5700336B2 (ja) * 2010-03-10 2015-04-15 国立大学法人 鹿児島大学 糖鎖固定化蛍光性ナノ粒子、およびその製造方法
US10551379B2 (en) * 2013-03-15 2020-02-04 President And Fellows Of Harvard College Methods and compositions for improving detection and/or capture of a target entity
WO2017009926A1 (ja) * 2015-07-13 2017-01-19 和光純薬工業株式会社 特異的結合物質の固定化方法

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61189300A (ja) * 1985-02-18 1986-08-22 Tokuyama Soda Co Ltd 親水性重合体粒子の製造方法
JPH0421637A (ja) * 1990-05-11 1992-01-24 Soken Kagaku Kk キチン誘導体又はキトサンを表面に修飾した高分子微粒子並びにその製造方法
JPH08502443A (ja) * 1992-10-15 1996-03-19 クールター コーポレイション ゼラチン−アミノデキストラン被膜を有する粒子およびその製造方法

Non-Patent Citations (4)

* Cited by examiner, † Cited by third party
Title
DEBNATH, K. ET AL.: "Phase transfer and surface functionalization of hydrophobic nanoparticle using amphiphilic poly (amino acid", LANGMUIR, vol. 32, no. 11, 2016, pages 2798 - 2807, XP055719599 *
KIM, E. M. ET AL.: "Facile synthesis of near-infrared CuInS2/ZnS quantum dots and glycol-chitosan coating for in vivo imaging", J NANOPART RES, vol. 19, no. 251, 2017, pages 1 - 12, XP036296901, DOI: 10.1007/s11051-017-3944-1 *
LIU NA, MA ZHANFANG: "Au-ionic liquid functionalized reduced graphene oxide immunosensing platform for simultaneous electrochemical detection of multiple analytes", BIOSENSORS AND BIOELECTRONICS, vol. 51, 2014, pages 184 - 190, XP055719594 *
ZHAO MIAO, CHEN YING, HAN RONGCHENG, LUO DAN, DU LIBO, ZHENG QIANG, WANG LIJUN, HONG YUANKAI, LIU YANG, SHA YINLIN: "A facile synthesis of biocompatible, glycol chitosan shelled CdSeS/ZnS QDs for live cell imaging", COLLOIDS AND SURFACES B: BIOINTERFACES, 2018, pages 752 - 759, XP055719596 *

Also Published As

Publication number Publication date
JPWO2020129404A1 (ja) 2021-11-04
CN112166315A (zh) 2021-01-01
US20210088510A1 (en) 2021-03-25
JP7352885B2 (ja) 2023-09-29

Similar Documents

Publication Publication Date Title
JP6260541B2 (ja) 夾雑物の影響を低減する免疫測定法
JP2013238541A (ja) 光導波路型測定システムおよび糖化ヘモグロビンの測定方法
WO2013161614A1 (ja) 酵素処理工程を含むレクチンを用いた抗原検出方法
WO2015129361A1 (ja) 表面プラズモン励起増強蛍光分光測定用センサーチップ
WO2008053822A1 (fr) Procédé de détection d'une réaction de liaison spécifique d'une molécule par fluorométrie monomoléculaire
WO2011096394A1 (ja) アナライト検出プローブおよびこれを用いたアナライトの検出方法
US8106368B2 (en) Fluorescence detecting method
JP5089511B2 (ja) 吸光物質含有コロイドシリカ粒子を用いた生体分子の検出ないしは定量方法
JP5006459B1 (ja) 標識用複合粒子
WO2020235607A1 (ja) 標的分子の検出方法
JP5991032B2 (ja) レクチンを用いたアナライトの検出方法
JP2010281595A (ja) リガンド分子の検出方法
TWI644800B (zh) 含有二硫化鉬之生物感測晶片以及應用該生物感測晶片之檢測裝置
WO2012132384A1 (ja) 局在プラズモン増強蛍光粒子、局在プラズモン増強蛍光検出用担体、局在プラズモン増強蛍光検出装置および蛍光検出方法
JP2009250960A (ja) 生体分子の検出方法、生体分子捕捉物質及び生体分子検出装置
WO2020129404A1 (ja) 修飾粒子、修飾粒子の製造方法、および検出装置
JP4879067B2 (ja) 免疫測定用検体前処理液、免疫測定用試薬キット及び免疫測定方法
JP2020506391A (ja) シグナル発生型デジタルアッセイにおけるノイズを低減する方法
JP2009288069A (ja) 標的物質の検出方法
JP2010091527A (ja) 表面プラズモンを利用したアッセイ法
JP2004144687A (ja) 物質の測定方法
JP2012047621A (ja) プラズモン励起センサチップおよびこれを用いたアッセイ法
JP2015025820A (ja) 光導波路型測定システムおよび糖化ヘモグロビンの測定方法
US11874274B2 (en) Sensor substrate, method for manufacturing same, and detection device
JP7493513B2 (ja) 微粒子上の1分子の直接検出

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19901073

Country of ref document: EP

Kind code of ref document: A1

ENP Entry into the national phase

Ref document number: 2020561186

Country of ref document: JP

Kind code of ref document: A

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19901073

Country of ref document: EP

Kind code of ref document: A1