WO2020125058A1 - 一种量子点的提纯方法 - Google Patents

一种量子点的提纯方法 Download PDF

Info

Publication number
WO2020125058A1
WO2020125058A1 PCT/CN2019/103447 CN2019103447W WO2020125058A1 WO 2020125058 A1 WO2020125058 A1 WO 2020125058A1 CN 2019103447 W CN2019103447 W CN 2019103447W WO 2020125058 A1 WO2020125058 A1 WO 2020125058A1
Authority
WO
WIPO (PCT)
Prior art keywords
mesoporous material
quantum dots
magnetic
quantum dot
magnetic mesoporous
Prior art date
Application number
PCT/CN2019/103447
Other languages
English (en)
French (fr)
Inventor
聂志文
杨一行
Original Assignee
Tcl科技集团股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tcl科技集团股份有限公司 filed Critical Tcl科技集团股份有限公司
Publication of WO2020125058A1 publication Critical patent/WO2020125058A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements
    • C09K11/881Chalcogenides
    • C09K11/883Chalcogenides with zinc or cadmium
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/56Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing sulfur
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/70Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing phosphorus
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K11/00Luminescent, e.g. electroluminescent, chemiluminescent materials
    • C09K11/08Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials
    • C09K11/88Luminescent, e.g. electroluminescent, chemiluminescent materials containing inorganic luminescent materials containing selenium, tellurium or unspecified chalcogen elements

Definitions

  • the present disclosure relates to the field of quantum dots, and in particular to a method for purifying quantum dots.
  • Quantum dots also known as semiconductor nanocrystals, not only have a series of excellent optical properties such as the emission wavelength can change with their size and composition, high fluorescence efficiency, and high color purity.
  • quantum dots as a typical inorganic substance, have good stability, which greatly compensates for the aging and corrosion defects of organic substances in organic light-emitting diode devices, which greatly improves the service life. Therefore, the light-emitting display technology based on quantum dot light-emitting diodes is expected to become a new generation of display technology.
  • high-quality quantum dots are usually prepared by solution processing, which is very suitable for film formation by solution processing methods such as spin coating, printing, and printing.
  • solution processing methods such as spin coating, printing, and printing.
  • quantum dot light-emitting diode devices high-luminous efficiency, high-purity red, green and blue quantum dots are the prerequisites for the preparation of high-performance devices.
  • the reaction medium is relatively easy to remove during the purification process, and the excess (unreacted) raw materials are difficult to remove, so it is easy to co-precipitate with quantum dots.
  • the presence of trace impurities not only affects the luminescence performance of quantum dots, but also may cause the attenuation of the performance of quantum dot light-emitting diode devices, which seriously restricts the preparation of high-performance quantum dot light-emitting diode devices. Therefore, research and development of a simple, fast and effective quantum dot separation and purification technology is an important way to promote the scale and industrialization of quantum dots.
  • the purpose of the present disclosure is to provide a method for purifying quantum dots, which aims to solve the problem that it is difficult to remove unreacted impurities in the quantum dot stock solution in the process of purifying quantum dots in the prior art.
  • a method for purifying quantum dots including steps:
  • the quantum dot product solution contains quantum dots and unreacted precursor
  • the mesoporous material coated with quantum dots is dispersed in a solvent to precipitate the quantum dots from the pores of the mesoporous material, and the purified quantum dots are separated.
  • the mesoporous material solution is mixed with the quantum dot product solution containing unreacted precursors, and the quantum dots fall into the pores of the mesoporous material under high temperature conditions.
  • the unavoidable unreacted precursors will also fall.
  • the temperature is reduced to make the pore size of the mesoporous material appropriately smaller, so that the mesoporous material firmly wraps the quantum dots, so that the quantum dots are not easy to precipitate out in the subsequent centrifugation process, and the large centrifugal effect does not fall into the pores.
  • the reaction precursor will be separated into pores, and then the mesoporous material that encapsulates the quantum dots will be separated, and finally the mesoporous material that encapsulates the quantum dots will be dissolved in the solvent, and the pore size of the mesoporous material will become larger under high temperature conditions
  • the quantum dots are precipitated from the pores of the mesoporous material, and then through separation treatment, the purified quantum dots can be obtained.
  • This method can not only effectively remove unreacted precursors in the quantum dot product solution, but also obtain high-purity quantum dot powder after further purification, which greatly promotes the scale and industrial application of quantum dots, especially in the new Display applications in the field.
  • the purification process is simple, the operation is easy to repeat, and at the same time, it can effectively avoid its influence on the performance of the quantum dot itself.
  • FIG. 1 is a schematic flowchart of a method for purifying quantum dots according to an embodiment of the present disclosure.
  • FIG. 2 is another schematic flowchart of a method for purifying quantum dots according to an embodiment of the present disclosure.
  • FIG. 3 is another schematic flowchart of a method for purifying quantum dots according to an embodiment of the present disclosure.
  • the present disclosure provides a method for purifying quantum dots. To make the objectives, technical solutions, and effects of the present disclosure clearer and more specific, the present disclosure will be described in further detail below. It should be understood that the specific embodiments described herein are only used to explain the present disclosure and are not intended to limit the present disclosure.
  • FIG. 1 is a schematic flowchart of a method for purifying quantum dots according to an embodiment of the present disclosure. As shown in FIG. 1, it includes steps:
  • the mesoporous material solution and the quantum dot product solution containing unreacted precursors are mixed, and the quantum dots fall into the pores of the mesoporous material under high temperature conditions.
  • the unavoidable unreacted precursors will also fall into the pores. Therefore, the temperature drop makes the pore size of the mesoporous material appropriately smaller, so that the mesoporous material firmly wraps the quantum dots, so that the quantum dots are not easy to precipitate out in the subsequent centrifugation process, and the unreacted precursor that falls into the pores under a large centrifugal action
  • the body will be separated into pores, and then the mesoporous material that encapsulates the quantum dots will be obtained by separation.
  • the mesoporous material that encapsulates the quantum dots will be dissolved in the solvent, and the pore diameter of the mesoporous material will become larger under high temperature conditions.
  • the dots are precipitated from the pores of the mesoporous material, and then through the separation process, the purified quantum dots can be obtained.
  • This method can not only effectively remove unreacted precursors in the quantum dot product solution, but also obtain high-purity quantum dot powder after further purification, which greatly promotes the scale and industrial application of quantum dots, especially in the new Display applications in the field.
  • the purification method as shown in FIG. 2 includes the steps of:
  • the purification method includes steps:
  • the present disclosure mixes a solution of magnetic mesoporous material with a solution of a quantum dot product containing an unreacted precursor, so that the quantum dot falls into the pores of the magnetic mesoporous material under high temperature conditions, and of course the inevitable unreacted precursor will also fall into In the pores, the temperature is reduced to make the diameter of the magnetic mesoporous material appropriately smaller, so that the magnetic mesoporous material firmly wraps the quantum dots, so that the quantum dots are not easy to precipitate out in the subsequent centrifugation process, and the large centrifugal effect falls into the pores. Unreacted precursors will be separated into holes, and then magnetic separation to obtain the magnetic mesoporous material that wraps the quantum dots.
  • the magnetic mesoporous material that wraps the quantum dots will be dissolved in the solvent to make the magnetic mesoporous under high temperature conditions.
  • the pore diameter of the material becomes larger, the quantum dots are precipitated from the pores of the magnetic mesoporous material, and then through magnetic separation treatment, the purified quantum dot solution can be obtained.
  • This method can not only effectively remove unreacted precursors in the quantum dot product solution, but also obtain high-purity quantum dot powder after further purification, which greatly promotes the scale and industrial application of quantum dots, especially in the new Display applications in the field.
  • the purification process is simple and the operation is easy to repeat. At the same time, it can effectively avoid its impact on the performance of the quantum dot itself, solve the shortcomings of the related applications of quantum dots in the prior art, and provide more possibilities for the preparation of efficient devices.
  • the quantum dot product solution may be an untreated quantum dot product solution obtained after another preparation process; or it may be formed by redispersing the quantum dot material obtained in another preparation process in a solvent Solution system.
  • the quantum dot product solution often contains residual or excess unreacted precursors.
  • the concentration of the quantum dots is controlled at 20-40 mg/mL.
  • the solvent used to disperse the quantum dots may be a non-polar organic solvent
  • the non-polar organic solvent may be selected from but not limited to toluene, n-octane, n-hexane, cyclohexane, isooctane, heptane
  • the applicable quantum dots are not limited, and can be selected from Group II-VI compounds, Group II-V compounds, Group III-V compounds, Group III-VI compounds, Group IV-VI compounds, I-II- One or more of Group VI compounds, Group II-IV-VI compounds, Group II-IV-V compounds, and the like.
  • Suitable unreacted precursors can be selected from cationic precursors and anionic precursors that generate quantum dots, or ligands on the surface of quantum dots.
  • the magnetic mesoporous material solution is prepared by dissolving the magnetic mesoporous material in a solvent.
  • concentration of the magnetic mesoporous material solution is 20-40 mg/mL.
  • the solvent used to disperse the magnetic mesoporous material may be a non-polar organic solvent, and the non-polar organic solvent may be selected from but not limited to toluene, n-octane, n-hexane, cyclohexane, isooctane , Heptane, n-pentane, isopentane, chloroform, dichlorotoluene, toluene, chlorobenzene and tetrachlorotoluene, etc.
  • the magnetic mesoporous material of the embodiment of the present disclosure has the dual advantages of mesoporous material and magnetic material. Its surface contains a large number of holes, and the size of the holes can be adjusted according to the temperature of the solution. As the temperature of the solution increases, the size of the magnetic mesoporous material becomes larger; conversely, as the temperature of the solution decreases, the size of the magnetic mesoporous material becomes smaller. Using this swelling behavior of the magnetic mesoporous material, the magnetic mesoporous material wraps and releases the quantum dots, and at the same time uses the magnetic separation function of the magnetic mesoporous material to achieve the purpose of deducting the quantum dots.
  • the quantum dot product solution and the magnetic mesoporous material solution are mixed according to a mass ratio of the quantum dots to the magnetic mesoporous material of 10:1-100:1.
  • the quantum dot product solution is mixed with the magnetic mesoporous material solution under stirring conditions. Make quantum dots fall into the holes of magnetic mesoporous materials.
  • the quantum dots are allowed to enter the pores of the magnetic mesoporous material at a first temperature of 60-120°C.
  • a first temperature of 60-120°C.
  • the size of the holes in the magnetic mesoporous material becomes larger, so that the quantum dots enter the holes of the magnetic mesoporous material.
  • the first temperature for 30 min-2 h, it is ensured that the quantum dots completely enter the holes of the magnetic mesoporous material.
  • the temperature is reduced to a second temperature of 10-25° C., and the quantum dots are wrapped in the holes of the magnetic mesoporous material.
  • the size of the holes in the magnetic mesoporous material becomes smaller, and the quantum dots are firmly wrapped by the magnetic mesoporous material.
  • the mesoporous material coated with quantum dots is separated. During the centrifugation process, the unreacted precursors that originally entered the holes will be released from the holes, thereby achieving the purpose of removing the unreacted precursors.
  • the first magnetic separation is performed to obtain the quantum dot-coated magnetic mesoporous material.
  • Magnetic separation technology includes magnetic solid phase extraction technology. Specifically, under the action of an external magnetic field, the magnetic mesoporous material coated with quantum dots will interact with the external magnetism, and then separated to obtain magnetic mesoporous coated quantum dots material.
  • quantum dots are precipitated from the pores of the magnetic mesoporous material; wherein the third temperature is 60-120°C.
  • the magnetic mesoporous material under the action of an external magnetic field, is magnetically separated a second time to obtain a quantum dot solution; finally, the quantum dot solution is added to a polar solvent for precipitation, and then separated, Dry to obtain quantum dots with high purity.
  • the polar solvent is selected from one or more of methanol, ethanol, acetone, acetonitrile, propanol, tetrahydrofuran, and the like.
  • the magnetic mesoporous material is selected from Fe 3 O 4 , Fe 2 O 3 , CoFe 2 O 4 , Co 3 O 4 , NiO, Gd 2 O 3 , Fe-containing MOFs (metal organic framework compounds ), one or more of MOFs containing Co and MOFs containing Gd.
  • the size of the magnetic mesoporous material is 50-300 nm.
  • the pore size of the holes in the magnetic mesoporous material is 6-25 nm.
  • step 3 Continue to add the non-polar solvent to step 2 and stir thoroughly. Then the temperature was raised to 80°C and refluxed. At high temperatures, the mesoporous material will swell and the pores will swell. After the quantum dots are completely dissolved in the non-polar solvent, continue to pour out the supernatant under the action of an external magnet to obtain a high-purity quantum dot solution.
  • step 4 Add polar solvent to the quantum dot solution in step 3, and then perform centrifugal precipitation. After drying, high purity quantum dot powder can be obtained.
  • step 3 Continue to add the non-polar solvent to step 2 and stir thoroughly. Then the temperature was raised to 80°C and refluxed. At high temperatures, the mesoporous material will swell and the pores will swell. After the quantum dots are completely dissolved in the non-polar solvent, continue to pour out the supernatant under the action of an external magnet to obtain a high-purity quantum dot solution.
  • step 4 Add polar solvent to the quantum dot solution in step 3, and then perform centrifugal precipitation. After drying, high purity quantum dot powder can be obtained.
  • step 3 Continue to add the non-polar solvent to step 2 and stir thoroughly. Then the temperature was raised to 80°C and refluxed. At high temperatures, the mesoporous material will swell and the pores will swell. After the quantum dots are completely dissolved in the non-polar solvent, continue to pour out the supernatant under the action of an external magnet to obtain a high-purity quantum dot solution.
  • step 4 Add polar solvent to the quantum dot solution in step 3, and then perform centrifugal precipitation. After drying, high purity quantum dot powder can be obtained.
  • step 3 Continue to add the non-polar solvent to step 2 and stir thoroughly. Then the temperature was raised to 80°C and refluxed. At high temperatures, the mesoporous material will swell and the pores will swell. After the quantum dots are completely dissolved in the non-polar solvent, continue to pour out the supernatant under the action of an external magnet to obtain a high-purity quantum dot solution.
  • step 4 Add polar solvent to the quantum dot solution in step 3, and then perform centrifugal precipitation. After drying, high purity quantum dot powder can be obtained.
  • step 3 Continue to add the non-polar solvent to step 2 and stir thoroughly. Then the temperature was raised to 80°C and refluxed. At high temperatures, the mesoporous material will swell and the pores will swell. After the quantum dots are completely dissolved in the non-polar solvent, continue to pour out the supernatant under the action of an external magnet to obtain a high-purity quantum dot solution.
  • step 4 Add polar solvent to the quantum dot solution in step 3, and then perform centrifugal precipitation. After drying, high purity quantum dot powder can be obtained.
  • step 3 Continue to add the non-polar solvent to step 2 and stir thoroughly. Then the temperature was raised to 80°C and refluxed. At high temperatures, the mesoporous material will swell and the pores will swell. After the quantum dots are completely dissolved in the non-polar solvent, continue to pour out the supernatant under the action of an external magnet to obtain a high-purity quantum dot solution.
  • step 4 Add polar solvent to the quantum dot solution in step 3, and then perform centrifugal precipitation. After drying, high purity quantum dot powder can be obtained.
  • the present disclosure provides a method for purifying quantum dots.
  • the present disclosure mixes a solution of magnetic mesoporous materials with a solution of quantum dot products containing unreacted precursors to make quantum dots fall into magnetic mesoporous under high temperature conditions
  • the inevitable unreacted precursors will also fall into the pores of the material, so cooling down makes the diameter of the magnetic mesoporous material appropriately smaller, so that the magnetic mesoporous material firmly wraps the quantum dots, so that the quantum dots will follow It is not easy to separate out during centrifugation, and unreacted precursors that fall into the pores during large centrifugation will be separated out of the pores, and then magnetically isolated to obtain the magnetic mesoporous material that wraps the quantum dots.
  • the pore size of the magnetic mesoporous material becomes larger under high temperature conditions, and quantum dots are precipitated from the pores of the magnetic mesoporous material, and then subjected to magnetic separation treatment to obtain a purified quantum dot solution.
  • This method can not only effectively remove unreacted precursors in the quantum dot product solution, but also obtain high-purity quantum dot powder after further purification, which greatly promotes the scale and industrial application of quantum dots, especially in the new Display applications in the field.
  • the purification process is simple and the operation is easy to repeat. At the same time, it can effectively avoid its impact on the performance of the quantum dot itself, solve the shortcomings of the related applications of quantum dots in the prior art, and provide more possibilities for the preparation of efficient devices.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Organic Chemistry (AREA)
  • Luminescent Compositions (AREA)
  • Hard Magnetic Materials (AREA)

Abstract

一种量子点的提纯方法,方法包括步骤:提供量子点产品溶液,所述量子点产品溶液中含有量子点和未反应前驱体;将所述量子点产品溶液与介孔材料溶液混合,使所述量子点进入所述介孔材料的孔洞中;将所述量子点包裹在所述介孔材料的孔洞中,分离得到包裹有量子点的介孔材料;将所述包裹有量子点的介孔材料分散到溶剂中,使量子点从所述介孔材料的孔洞内析出,分离得到提纯后的量子点。

Description

一种量子点的提纯方法 技术领域
本公开涉及量子点领域,尤其涉及一种量子点的提纯方法。
背景技术
量子点,又称半导体纳米晶体,不仅具有发光波长可随自身尺寸和成分变化、荧光效率高、色纯度高等一些列优异的光学性能。此外,量子点作为一种典型的无机物,具有良好的稳定性,这极大地弥补了有机发光二极管器件中由于有机物自身易老化、易腐蚀的缺陷,大大提高了使用寿命。因此,基于量子点发光二极管的发光显示技术有望成为新一代显示技术。
目前,高质量的量子点通常是采用溶液法加工制备而成,非常适合采用旋涂、印刷、打印等溶液加工法制备成膜。对于量子点发光二极管器件制备而言,高发光效率、高纯度的红绿蓝色量子点是制备高性能器件的前提条件。
发明内容
发明人发现,现有技术采用溶液法所制备的量子点同时存在量子点、反应介质、多余(未反应完全)的原料等。通常,反应介质在提纯过程中较容易去除,而多余(未反应完全)的原料很难除去,从而很容易与量子点共沉淀出来。微量杂质的存在不仅影响量子点的发光性能,同时有可能会引起量子点发光二极管器件性能的衰减,这严重制约了高性能量子点发光二极管器件的制备。因此,研究开发一种简单快捷、有效地量子点分离和纯化技术,是推动量子点规模化和产业化发展的重要途径。
鉴于上述现有技术的不足,本公开的目的在于提供一种量子点的提纯方法,旨在解决现有技术中在提纯量子点的过程中难以除去量子点原液中未反应完全的杂质的问题。
本公开的技术方案如下:
一种量子点的提纯方法,其中,包括步骤:
提供量子点产品溶液,所述量子点产品溶液中含有量子点和未反应前驱体;
将所述量子点产品溶液与介孔材料溶液混合,使所述量子点进入所述介孔材料的孔洞中;
将所述量子点包裹在所述介孔材料的孔洞中,分离得到包裹有量子点的介孔材料;
将所述包裹有量子点的介孔材料分散到溶剂中,使量子点从所述介孔材料的孔洞内析出,分离得到提纯后的量子点。
有益效果:本公开将介孔材料溶液与含有未反应前驱体的量子点产品溶液混合,在高温条件下使量子点落入介孔材料的孔洞里,当然不可避免的未反应前驱体也会落入孔洞里,因此降温使介孔材料的孔径适当变小,让介孔材料牢固地包裹住量子点,从而量子点在后续离心过程中不易析出,而在较大离心作用下落入孔洞中的未反应前驱体则会被分离出孔洞,然后通过分离得到包裹住量子点的介孔材料,最后将包裹住量子点的介孔材料溶解在溶剂中,在高温条件下使介孔材料的孔径变大,量子点从介孔材料孔洞内析出,再通过分离处理,即可得到提纯后的量子点。该方法不仅能够有效地去除量子点产品溶液中未反应前驱体,同时,进一步提纯后可得到高纯度量子点粉末,极大的推动了量子点的规模化和产业化的应用,尤其是在新型显示领域中的应用。该提纯过程简单、操作易重复,同时可以有效避免其对量子点自身性能的影响。
附图说明
图1为本公开实施例提供的一种量子点的提纯方法的流程示意图。
图2为本公开实施例提供的一种量子点的提纯方法的另一流程示意图。
图3为本公开实施例提供的一种量子点的提纯方法的又一流程示意图。
具体实施方式
本公开提供一种量子点的提纯方法,为使本公开的目的、技术方案及效果更加清楚、明确,以下对本公开进一步详细说明。应当理解,此处所描述的具体实施例仅仅用以解释本公开,并不用于限定本公开。
图1为本公开实施例提供的一种量子点的提纯方法的流程示意图,如图1所示,其包括步骤:
S11、提供量子点产品溶液,所述量子点产品溶液中含有量子点和未反应前驱体;
S12、将所述量子点产品溶液与介孔材料溶液混合,使所述量子点进入所述介孔材料的孔洞中;
S13、将所述量子点包裹在所述介孔材料的孔洞中,分离得到包裹有量子点的介孔材料;
S14、将所述包裹有量子点的介孔材料分散到溶剂中,使量子点从所述介孔材料的孔洞内析出,分离得到提纯后的量子点。
本实施例将介孔材料溶液与含有未反应前驱体的量子点产品溶液混合,在高温条件下使量子点落入介孔材料的孔洞里,当然不可避免的未反应前驱体也会落入孔洞里,因此降温使介孔材料的孔径适当变小,让介孔材料牢固地包裹住量子点,从而量子点在后续离心过程中不易析出,而在较大离心作用下落入孔洞中的未反应前驱体则会被分离出孔洞,然后通过分离得到包裹住量子点的介孔材料,最后将包裹住量子点的介孔材料溶解在溶剂中,在高温条件下使介孔材料的孔径变大,量子点从介孔材料孔洞内析出,再通过分离处理,即可得到提纯后的量子点。该方法不仅能够有效地去除量子点产品溶液中未反应前驱体,同时,进一步提纯后可得到高纯度量子点粉末,极大的推动了量子点的规模化和产业化的应用,尤其是在新型显示领域中的应用。
在一些实施方式中,所述的提纯方法,如图2所示,包括步骤:
S21、提供量子点产品溶液,所述量子点产品溶液中含有量子点和未反应前驱体;
S22、将所述量子点产品溶液与磁性介孔材料溶液混合,使所述量子点进入所述磁性介孔材料的孔洞中;
S23、将所述量子点包裹在所述磁性介孔材料的孔洞中,磁性分离得到包裹有量子点的磁性介孔材料;
S24、将所述包裹有量子点的磁性介孔材料分散到溶剂中,使量子点从所述磁性介孔材料的孔洞内析出,磁性分离得到提纯后的量子点。
进一步在一些实施方式中,所述的提纯方法,如图3所示,包括步骤:
S31、提供量子点产品溶液,所述量子点产品溶液中含有量子点和未反应前 驱体;
S32、在第一温度条件下,将所述量子点产品溶液与磁性介孔材料溶液混合,使所述量子点进入所述磁性介孔材料的孔洞中;
S33、降温至第二温度,将所述量子点包裹在所述磁性介孔材料的孔洞中,进行第一次磁性分离得到包裹有量子点的磁性介孔材料;
S34、将所述包裹有量子点的磁性介孔材料分散到溶剂中,升温至第三温度使量子点从所述磁性介孔材料的孔洞内析出,进行第二次磁性分离得到提纯后的量子点。
本公开将磁性介孔材料溶液与含有未反应前驱体的量子点产品溶液混合,在高温条件下使量子点落入磁性介孔材料的孔洞里,当然不可避免的未反应前驱体也会落入孔洞里,因此降温使磁性介孔材料的孔径适当变小,让磁性介孔材料牢固地包裹住量子点,从而量子点在后续离心过程中不易析出,而在较大离心作用下落入孔洞中的未反应前驱体则会被分离出孔洞,然后通过磁性分离得到包裹住量子点的磁性介孔材料,最后将包裹住量子点的磁性介孔材料溶解在溶剂中,在高温条件下使磁性介孔材料的孔径变大,量子点从磁性介孔材料孔洞内析出,再通过磁性分离处理,即可得到提纯后的量子点溶液。该方法不仅能够有效地去除量子点产品溶液中未反应前驱体,同时,进一步提纯后可得到高纯度量子点粉末,极大的推动了量子点的规模化和产业化的应用,尤其是在新型显示领域中的应用。该提纯过程简单、操作易重复,同时,可以有效避免其对量子点自身性能的影响,解决了现有技术中量子点相关应用的不足,为高效器件的制备提供了更多可能。
本实施例中,所述量子点产品溶液,可以是另一制备过程结束后得到的未经处理的量子点产品溶液;也可以将另一制备过程得到的量子点材料重新分散在溶剂中形成的溶液体系。所述量子点产品溶液中往往含有残留或过量的未反应前驱体。所述量子点产品溶液中,所述量子点的浓度控制在20-40mg/mL。
其中,用于分散量子点的所述溶剂可以为非极性有机溶剂,所述非极性有机溶剂可以选自但不限于甲苯、正辛烷、正己烷、环己烷、异辛烷、庚烷、正戊烷、异戊烷、氯仿、二氯甲苯、甲苯、氯苯和四氯甲苯等中的一种或多种。
本实施例中,所适用的量子点没有限制,可以选自Ⅱ-Ⅵ族化合物、II-V族化合物、Ⅲ-Ⅴ族化合物、Ⅲ-ⅤI族化合物、Ⅳ-Ⅵ族化合物、I-II-Ⅵ族化合物、II-IV-VI 族化合物和II-IV-V族化合物等中的一种或多种。所适用的未反应前驱体可以选自生成量子点的阳离子前驱体以及阴离子前驱体,或者是量子点表面的配体。
所述磁性介孔材料溶液通过磁性介孔材料溶于溶剂中配制得到的。所述磁性介孔材料溶液的浓度为20-40mg/mL。其中,用于分散磁性介孔材料的所述溶剂可以为非极性有机溶剂,所述非极性有机溶剂可以选自但不限于甲苯、正辛烷、正己烷、环己烷、异辛烷、庚烷、正戊烷、异戊烷、氯仿、二氯甲苯、甲苯、氯苯和四氯甲苯等中的一种或多种。
本公开实施例的磁性介孔材料兼具介孔材料和磁性材料的双重优势,它的表面含有大量的孔洞,并且孔洞的大小可以根据溶液的温度进行调控。随着溶液温度升高,磁性介孔材料的尺寸变大;反之随着溶液温度降低,磁性介孔材料的尺寸变小。利用磁性介孔材料的这种溶胀行为,磁性介孔材料对量子点进行包裹和释放,同时利用磁性介孔材料的磁分离功能,从而达到提成量子点的目的。
在一些实施方式中,按所述量子点与所述磁性介孔材料的质量比为10:1-100:1,将所述量子点产品溶液与磁性介孔材料溶液混合。
在一些实施方式中,在搅拌的条件下,将所述量子点产品溶液与磁性介孔材料溶液混合。使量子点充分落入磁性介孔材料孔洞中。
在一些实施方式中,在第一温度60-120℃条件下,使所述量子点进入所述磁性介孔材料的孔洞中。本实施例中,随着溶液的温度升高至60-120℃,磁性介孔材料中孔洞的尺寸变大,从而所述量子点进入所述磁性介孔材料的孔洞中。进一步在一些实施方式中,在所述第一温度下30min-2h,确保量子点完全进入所述磁性介孔材料的孔洞中。
在一些实施方式中,降温至第二温度10-25℃,将所述量子点包裹在所述磁性介孔材料的孔洞中。本实施例中,随着溶液温度降至10-25℃,磁性介孔材料中孔洞的尺寸变小,量子点被磁性介孔材料牢牢地包裹住。
在一些实施方式中,在转速为3000-10000rpm条件下离心后,分离得到包裹有量子点的介孔材料。在离心过程中,原本进入到孔洞中的未反应前驱体会从孔洞中释放出来,从而达到清除未反应前驱体的目的。
在一些实施方式中,在外加磁场的作用下,进行第一次磁性分离得到所述包裹有量子点的磁性介孔材料。磁性分离技术包括磁固相萃取技术,具体为在外加 磁场的作用下,包裹有量子点的磁性介孔材料会与外界磁性产生相互作用力,然后分离即可得到包裹有量子点的磁性介孔材料。
在一些实施方式中,在第三温度条件下,使量子点从所述磁性介孔材料的孔洞内析出;其中所述第三温度为60-120℃。
在一些实施方式中,在外加磁场的作用下,进行第二次磁性分离所述磁性介孔材料,得到量子点溶液;最后将所述量子点溶液加入极性溶剂中进行沉淀,然后进行分离、干燥,得到具有高纯度的量子点。进一步在一些实施方式中,所述极性溶剂选自甲醇、乙醇、丙酮、乙腈、丙醇和四氢呋喃等中的一种或多种。
在一些实施方式中,所述磁性介孔材料选自Fe 3O 4、Fe 2O 3、CoFe 2O 4、Co 3O 4、NiO、Gd 2O 3、含Fe的MOFs(金属有机骨架化合物)、含Co的MOFs和含Gd的MOFs等中一种或多种。
在一些实施方式中,所述磁性介孔材料的尺寸大小为50-300nm。
在一些实施方式中,所述磁性介孔材料中孔洞的孔径大小为6-25nm。
下面通过实施例对本公开进行详细说明。
实施例1
使用平均孔径大小为8nm的Fe 3O 4介孔材料对CdSe/CdS量子点反应原液进行提纯的流程如下:
1.取10ml CdSe/CdS量子点反应原液(100mg),向其中加入20ml正己烷和1g的Fe 3O 4介孔材料。然后,在氩气气氛、60℃下冷凝回流加热1h。
2.待量子点充分吸附到介孔孔道内后,降温至室温下,然后在转速为6000rpm下进行离心处理,由于低温下介孔材料会收缩,从而使得量子点在离心过程中被完全包覆在介孔孔道中,而在离心作用下落入孔洞中的未反应前驱体则会被分离出孔洞,再在外加磁铁的作用下,将上清液除去,即可得到负载有CdSe/CdS量子点的Fe 3O 4介孔材料。
3.继续向步骤2中加入非极性溶剂,进行充分搅拌后。然后升温至80℃下进行回流。由于高温下,介孔材料会发生溶胀作用,孔道会胀大。待量子点完全溶解在非极性溶剂中后,继续在外加磁铁的作用下,倒出上清液,即可得到高纯度的量子点溶液。
4.向步骤3中的量子点溶液中加入极性溶剂,然后进行离心沉淀。待干燥 后,即可得到高纯度量子点粉末。
实施例2
使用平均孔径大小为8nm的CoFe 2O 4介孔材料对CdSe/CdS量子点反应原液进行提纯的流程如下:
1.取10ml CdSe/CdS量子点反应原液(100mg),向其中加入20ml正己烷和1g的CoFe 2O 4介孔材料。然后,在氩气气氛、60℃下冷凝回流加热1h。
2.待量子点充分吸附到介孔孔道内后,降温至室温下,然后在转速为6000rpm下进行离心处理,由于低温下介孔材料会收缩,从而使得量子点在离心过程中被完全包覆在介孔孔道中,而在离心作用下落入孔洞中的未反应前驱体则会被分离出孔洞,再在外加磁铁的作用下,将上清液除去,即可得到负载有CdSe/CdS量子点的CoFe 2O 4介孔材料。
3.继续向步骤2中加入非极性溶剂,进行充分搅拌后。然后升温至80℃下进行回流。由于高温下,介孔材料会发生溶胀作用,孔道会胀大。待量子点完全溶解在非极性溶剂中后,继续在外加磁铁的作用下,倒出上清液,即可得到高纯度的量子点溶液。
4.向步骤3中的量子点溶液中加入极性溶剂,然后进行离心沉淀。待干燥后,即可得到高纯度量子点粉末。
实施例3
使用平均孔径大小为8nm的NiO介孔材料对CdSe/CdS量子点反应原液进行提纯的流程如下:
1.取10ml CdSe/CdS量子点反应原液(100mg),向其中加入20ml正己烷和1g的NiO介孔材料。然后,在氩气气氛、60℃下冷凝回流加热1h。
2.待量子点充分吸附到介孔孔道内后,降温至室温下,然后在转速为6000rpm下进行离心处理,由于低温下介孔材料会收缩,从而使得量子点在离心过程中被完全包覆在介孔孔道中,而在离心作用下落入孔洞中的未反应前驱体则会被分离出孔洞,再在外加磁铁的作用下,将上清液除去,即可得到负载有CdSe/CdS量子点的NiO介孔材料。
3.继续向步骤2中加入非极性溶剂,进行充分搅拌后。然后升温至80℃下进行回流。由于高温下,介孔材料会发生溶胀作用,孔道会胀大。待量子点完全 溶解在非极性溶剂中后,继续在外加磁铁的作用下,倒出上清液,即可得到高纯度的量子点溶液。
4.向步骤3中的量子点溶液中加入极性溶剂,然后进行离心沉淀。待干燥后,即可得到高纯度量子点粉末。
实施例4
使用平均孔径大小为8nm的Fe 3O 4介孔材料对InP/ZnSeS量子点反应原液进行提纯的流程如下:
1.取10ml InP/ZnSeS量子点反应原液(100mg),向其中加入20ml正己烷和1g的Fe 3O 4介孔材料。然后,在氩气气氛、60℃下冷凝回流加热1h。
2.待量子点充分吸附到介孔孔道内后,降温至室温下,然后在转速为6000rpm下进行离心处理,由于低温下介孔材料会收缩,从而使得量子点在离心过程中被完全包覆在介孔孔道中,而在离心作用下落入孔洞中的未反应前驱体则会被分离出孔洞,再在外加磁铁的作用下,将上清液除去,即可得到负载有InP/ZnSeS量子点的Fe 3O 4介孔材料。
3.继续向步骤2中加入非极性溶剂,进行充分搅拌后。然后升温至80℃下进行回流。由于高温下,介孔材料会发生溶胀作用,孔道会胀大。待量子点完全溶解在非极性溶剂中后,继续在外加磁铁的作用下,倒出上清液,即可得到高纯度的量子点溶液。
4.向步骤3中的量子点溶液中加入极性溶剂,然后进行离心沉淀。待干燥后,即可得到高纯度量子点粉末。
实施例5
使用平均孔径大小为8nm的CoFe 2O 4介孔材料对InP/ZnSe量子点反应原液进行提纯的流程如下:
1.取10ml InP/ZnSeS量子点反应原液(100mg),向其中加入20ml正己烷和1g的CoFe 2O 4介孔材料。然后,在氩气气氛、60℃下冷凝回流加热1h。
2.待量子点充分吸附到介孔孔道内后,降温至室温下,然后在转速为6000rpm下进行离心处理,由于低温下介孔材料会收缩,从而使得量子点在离心过程中不易析出,而在离心作用下落入孔洞中的未反应前驱体则会被分离出孔洞,再在外加磁铁的作用下,将上清液除去,即可得到负载有InP/ZnSeS量子点的 CoFe 2O 4介孔材料。
3.继续向步骤2中加入非极性溶剂,进行充分搅拌后。然后升温至80℃下进行回流。由于高温下,介孔材料会发生溶胀作用,孔道会胀大。待量子点完全溶解在非极性溶剂中后,继续在外加磁铁的作用下,倒出上清液,即可得到高纯度的量子点溶液。
4.向步骤3中的量子点溶液中加入极性溶剂,然后进行离心沉淀。待干燥后,即可得到高纯度量子点粉末。
实施例6
使用平均孔径大小为8nm的NiO介孔材料对InP/ZnSeS量子点反应原液进行提纯的流程如下:
1.取10ml InP/ZnSeS量子点反应原液(100mg),向其中加入20ml正己烷和1g的NiO介孔材料。然后,在氩气气氛、60℃下冷凝回流加热1h。
2.待量子点充分吸附到介孔孔道内后,降温至室温下,然后在转速为6000rpm下进行离心处理,由于低温下介孔材料会收缩,从而使得量子点在离心过程中不易析出,而在离心作用下落入孔洞中的未反应前驱体则会被分离出孔洞,再在外加磁铁的作用下,将上清液除去,即可得到负载有InP/ZnSeS量子点的NiO介孔材料。
3.继续向步骤2中加入非极性溶剂,进行充分搅拌后。然后升温至80℃下进行回流。由于高温下,介孔材料会发生溶胀作用,孔道会胀大。待量子点完全溶解在非极性溶剂中后,继续在外加磁铁的作用下,倒出上清液,即可得到高纯度的量子点溶液。
4.向步骤3中的量子点溶液中加入极性溶剂,然后进行离心沉淀。待干燥后,即可得到高纯度量子点粉末。
综上所述,本公开提供的一种量子点的提纯方法,本公开将磁性介孔材料溶液与含有未反应前驱体的量子点产品溶液混合,在高温条件下使量子点落入磁性介孔材料的孔洞里,当然不可避免的未反应前驱体也会落入孔洞里,因此降温使磁性介孔材料的孔径适当变小,让磁性介孔材料牢固地包裹住量子点,从而量子点在后续离心过程中不易析出,而在较大离心作用下落入孔洞中的未反应前驱体则会被分离出孔洞,然后通过磁性分离得到包裹住量子点的磁性介孔材料,最后 将包裹住量子点的磁性介孔材料溶解在溶剂中,在高温条件下使磁性介孔材料的孔径变大,量子点从磁性介孔材料孔洞内析出,再通过磁性分离处理,即可得到提纯后的量子点溶液。该方法不仅能够有效地去除量子点产品溶液中未反应前驱体,同时,进一步提纯后可得到高纯度量子点粉末,极大的推动了量子点的规模化和产业化的应用,尤其是在新型显示领域中的应用。该提纯过程简单、操作易重复,同时,可以有效避免其对量子点自身性能的影响,解决了现有技术中量子点相关应用的不足,为高效器件的制备提供了更多可能。
应当理解的是,本公开的应用不限于上述的举例,对本领域普通技术人员来说,可以根据上述说明加以改进或变换,所有这些改进和变换都应属于本公开所附权利要求的保护范围。

Claims (19)

  1. 一种量子点的提纯方法,其特征在于,包括步骤:
    提供量子点产品溶液,所述量子点产品溶液中含有量子点和未反应前驱体;
    将所述量子点产品溶液与介孔材料溶液混合,使所述量子点进入所述介孔材料的孔洞中;
    将所述量子点包裹在所述介孔材料的孔洞中,分离得到包裹有量子点的介孔材料;
    将所述包裹有量子点的介孔材料分散到溶剂中,使量子点从所述介孔材料的孔洞内析出,分离得到提纯后的量子点。
  2. 根据权利要求1所述的提纯方法,其特征在于,包括步骤:
    提供量子点产品溶液,所述量子点产品溶液中含有量子点和未反应前驱体;
    将所述量子点产品溶液与磁性介孔材料溶液混合,使所述量子点进入所述磁性介孔材料的孔洞中;
    将所述量子点包裹在所述磁性介孔材料的孔洞中,磁性分离得到包裹有量子点的磁性介孔材料;
    将所述包裹有量子点的磁性介孔材料分散到溶剂中,使量子点从所述磁性介孔材料的孔洞内析出,磁性分离得到提纯后的量子点。
  3. 根据权利要求2所述的提纯方法,其特征在于,包括步骤:
    提供量子点产品溶液,所述量子点产品溶液中含有量子点和未反应前驱体;
    在第一温度条件下,将所述量子点产品溶液与磁性介孔材料溶液混合,使所述量子点进入所述磁性介孔材料的孔洞中;
    降温至第二温度,将所述量子点包裹在所述磁性介孔材料的孔洞中,进行第一次磁性分离得到包裹有量子点的磁性介孔材料;
    将所述包裹有量子点的磁性介孔材料分散到溶剂中,升温至第三温度使量子点从所述磁性介孔材料的孔洞内析出,进行第二次磁性分离得到提纯后的量子点。
  4. 根据权利要求3所述的提纯方法,其特征在于,在第一温度60-120℃条件下,使所述量子点进入所述磁性介孔材料的孔洞中。
  5. 根据权利要求4所述的提纯方法,其特征在于,在所述第一温度下30min-2h,使所述量子点完全进入所述磁性介孔材料的孔洞中。
  6. 根据权利要求3所述的提纯方法,其特征在于,降温至第二温度10-25℃, 将所述量子点包裹在所述磁性介孔材料的孔洞中。
  7. 根据权利要求3所述的提纯方法,其特征在于,升温至第三温度60-120℃,使量子点从所述磁性介孔材料的孔洞内析出。
  8. 根据权利要求1所述的提纯方法,其特征在于,在转速为3000-10000rpm条件下离心后,分离得到包裹有量子点的介孔材料。
  9. 根据权利要求2所述的提纯方法,其特征在于,所述磁性介孔材料选自Fe 3O 4、Fe 2O 3、CoFe 2O 4、Co 3O 4、NiO、Gd 2O 3、含Fe的MOFs、含Co的MOFs和含Gd的MOFs中一种或多种。
  10. 根据权利要求2所述的提纯方法,其特征在于,所述磁性介孔材料中孔洞的孔径大小为6-25nm。
  11. 据权利要求2所述的提纯方法,其特征在于,按所述量子点与所述磁性介孔材料的质量比为10:1-100:1,将所述量子点产品溶液与磁性介孔材料溶液混合。
  12. 据权利要求2所述的提纯方法,其特征在于,在搅拌的条件下,将所述量子点产品溶液与磁性介孔材料溶液混合,使量子点进入所述磁性介孔材料的孔洞中。
  13. 据权利要求2所述的提纯方法,其特征在于,磁性介孔材料的尺寸大小为50-300nm。
  14. 据权利要求2所述的提纯方法,其特征在于,所述磁性介孔材料溶液的浓度为20-40mg/mL。
  15. 据权利要求2所述的提纯方法,其特征在于,用于分散磁性介孔材料的溶剂为非极性有机溶剂。
  16. 据权利要求15所述的提纯方法,其特征在于,所述非极性有机溶剂选自但不限于甲苯、正辛烷、正己烷、环己烷、异辛烷、庚烷、正戊烷、异戊烷、氯仿、二氯甲苯、甲苯、氯苯和四氯甲苯中的一种或多种。
  17. 据权利要求3所述的提纯方法,其特征在于,在外加磁场的作用下,进行第一次磁性分离得到所述包裹有量子点的磁性介孔材料。
  18. 据权利要求3所述的提纯方法,其特征在于,在外加磁场的作用下,进行第二次磁性分离所述磁性介孔材料,得到量子点溶液;将所述量子点溶液加入 极性溶剂中进行沉淀,然后进行分离、干燥,得到提纯后的量子点。
  19. 据权利要求18所述的提纯方法,其特征在于,所述极性溶剂选自甲醇、乙醇、丙酮、乙腈、丙醇和四氢呋喃中的一种或多种。
PCT/CN2019/103447 2018-12-20 2019-08-29 一种量子点的提纯方法 WO2020125058A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811565244.9 2018-12-20
CN201811565244.9A CN111349439B (zh) 2018-12-20 2018-12-20 一种量子点的提纯方法

Publications (1)

Publication Number Publication Date
WO2020125058A1 true WO2020125058A1 (zh) 2020-06-25

Family

ID=71102498

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/103447 WO2020125058A1 (zh) 2018-12-20 2019-08-29 一种量子点的提纯方法

Country Status (2)

Country Link
CN (1) CN111349439B (zh)
WO (1) WO2020125058A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN114410305A (zh) * 2022-01-13 2022-04-29 深圳市华星光电半导体显示技术有限公司 复合材料薄膜、其制备方法以及显示面板

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105754602A (zh) * 2015-05-19 2016-07-13 刘海鹏 一种保护量子点的提纯方法
CN106221699A (zh) * 2016-07-29 2016-12-14 Tcl集团股份有限公司 一种提纯量子点的方法
CN106381146A (zh) * 2016-09-05 2017-02-08 Tcl集团股份有限公司 一种量子点提纯方法
CN108219792A (zh) * 2018-02-09 2018-06-29 纳晶科技股份有限公司 量子点纯化方法及量子点、器件及量子点组合物
US20180291268A1 (en) * 2017-04-06 2018-10-11 Samsung Display Co., Ltd. Manufacturing method of quantum dot

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101870869B (zh) * 2010-06-29 2013-03-13 同济大学 多孔磁性荧光纳米球的制备方法
CN105086993A (zh) * 2015-09-11 2015-11-25 天津市中环量子科技有限公司 一种荧光量子点微纳米级封装的复合材料结构
US10259999B2 (en) * 2016-08-18 2019-04-16 AhuraTech LLC Method for storing and releasing nanoparticles
CN108083268B (zh) * 2018-01-23 2020-11-03 上海理工大学 利用分子筛分离、纯化石墨烯量子点的方法

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105754602A (zh) * 2015-05-19 2016-07-13 刘海鹏 一种保护量子点的提纯方法
CN106221699A (zh) * 2016-07-29 2016-12-14 Tcl集团股份有限公司 一种提纯量子点的方法
CN106381146A (zh) * 2016-09-05 2017-02-08 Tcl集团股份有限公司 一种量子点提纯方法
US20180291268A1 (en) * 2017-04-06 2018-10-11 Samsung Display Co., Ltd. Manufacturing method of quantum dot
CN108219792A (zh) * 2018-02-09 2018-06-29 纳晶科技股份有限公司 量子点纯化方法及量子点、器件及量子点组合物

Also Published As

Publication number Publication date
CN111349439B (zh) 2022-05-24
CN111349439A (zh) 2020-06-30

Similar Documents

Publication Publication Date Title
US9577127B1 (en) Composite material for fluorescent quantum dot micro-nano packaging
CN110157407B (zh) 一种InP量子点及其制备方法
Cai et al. A facile synthesis of water‐resistant CsPbBr3 perovskite quantum dots loaded poly (methyl methacrylate) composite microspheres based on in situ polymerization
CN109423275B (zh) 量子点组合物、量子点发光材料、其制备方法及含有其的发光器件
CN107500274B (zh) 一种三原色荧光的石墨烯量子点的制备方法
CN111081816A (zh) 碱金属离子钝化表面缺陷的钙钛矿纳米晶及其制备与应用
CN109135725B (zh) 一种钙钛矿量子点复合膜及其制备方法
US20100215851A1 (en) Method of producing core/shell composite nano-particles
WO2020125058A1 (zh) 一种量子点的提纯方法
Huang et al. Luminescence and stability enhancement of CsPbBr3 perovskite quantum dots through surface sacrificial coating
Akhil et al. Amine‐Free Synthesis of Colloidal Cesium Lead Halide Perovskite Nanocrystals
KR20200075371A (ko) 캡슐화된 양자점이 다공성 비드에 담지된 양자점 복합체 및 그 제조방법
CN113845898B (zh) 一种多功能性配体修饰的混合卤素钙钛矿量子点及其应用
CN110964506A (zh) 量子点的制备方法
WO2014120351A2 (en) Light emitting device with all-inorganic nanostructured films
CN113801654A (zh) 一种量子点的清洗方法及制备方法
EP3858948B1 (en) Quantum dot
CN111057542B (zh) 一种室温水乳液法制备CsPbX3钙钛矿量子点的方法
US20030019327A1 (en) Ultrafine particles and method and apparatus for producing the same
CN114591725A (zh) 一种钙钛矿量子点及其制备方法和应用
Fang et al. Wide range tuning of the size and emission color of CH3NH3PbBr3 quantum dots by surface ligands
KR20150118624A (ko) 탄소 비결합성 금속 나노입자가 함유된 잉크 기제 제조 방법 및 금속 나노입자가 분산된 잉크
CN107793310B (zh) 一种油溶性有机金属骨架纳米材料的制备方法
CN111849459A (zh) 一种防水氧量子点及其制备方法
Mishra et al. Stable fluorescent CdS: Cu QDs and their hybridization with carbon polymer dots for white light emission

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19898728

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19898728

Country of ref document: EP

Kind code of ref document: A1