WO2020125000A1 - 从钴、锰碳酸盐混合物中分离钴的方法 - Google Patents

从钴、锰碳酸盐混合物中分离钴的方法 Download PDF

Info

Publication number
WO2020125000A1
WO2020125000A1 PCT/CN2019/096005 CN2019096005W WO2020125000A1 WO 2020125000 A1 WO2020125000 A1 WO 2020125000A1 CN 2019096005 W CN2019096005 W CN 2019096005W WO 2020125000 A1 WO2020125000 A1 WO 2020125000A1
Authority
WO
WIPO (PCT)
Prior art keywords
cobalt
filtrate
manganese
solution
acid
Prior art date
Application number
PCT/CN2019/096005
Other languages
English (en)
French (fr)
Inventor
王魁珽
韩连敬
孙宁磊
刘国
彭建华
张文
Original Assignee
中国恩菲工程技术有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国恩菲工程技术有限公司 filed Critical 中国恩菲工程技术有限公司
Publication of WO2020125000A1 publication Critical patent/WO2020125000A1/zh

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0407Leaching processes
    • C22B23/0415Leaching processes with acids or salt solutions except ammonium salts solutions
    • C22B23/043Sulfurated acids or salts thereof
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B23/00Obtaining nickel or cobalt
    • C22B23/04Obtaining nickel or cobalt by wet processes
    • C22B23/0453Treatment or purification of solutions, e.g. obtained by leaching
    • C22B23/0461Treatment or purification of solutions, e.g. obtained by leaching by chemical methods
    • C22B23/0469Treatment or purification of solutions, e.g. obtained by leaching by chemical methods by chemical substitution, e.g. by cementation
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling

Definitions

  • the invention relates to the technical field of metal purification, in particular, to a method for separating cobalt from a mixture of cobalt and manganese carbonate.
  • Cobalt is a very important strategic material for national defense construction. It is widely used in high-tech fields such as aerospace, aviation, electronics, batteries, and magnetic metal materials. The content of cobalt in the earth's crust is only 0.0012%, which is a relatively rare metal, and in nature, cobalt mostly coexists with metal elements such as manganese and nickel. Due to the similar chemical properties, it brings great difficulties to separation and purification.
  • Oxidation precipitation method Manganese is precipitated in the form of MnO 2 by an oxidant, thereby separating it from cobalt; usually reacts with ozone, chloric acid, SO 2 /O 2 mixture as an oxidant, but because Co 3+ becomes Co
  • the standard potential of 2+ is 1.8V
  • the standard potential of Mn 4+ to Mn 2+ is 1.23V.
  • the potential difference between the two is large. Only by controlling the amount of oxidant and the appropriate pH value can Mn 2+ Preferential Co 2+ oxidation generates MnO 2 precipitation.
  • Solvent extraction method due to the poor separation effect of the above two types of methods, there are also process technologies that use the extractant for purification, but the cost is higher and it is difficult to achieve.
  • the hydroxide precipitation method mainly uses the difference of the hydroxide solubility products of cobalt and manganese for selective precipitation, Mn(OH) 2 : 19 ⁇ 10 -13 ; Co(OH) 2 :1.6 ⁇ 10 -15 Cobalt takes precedence over manganese salt precipitation.
  • cobalt and manganese cannot be completely separated by using hydroxide alone.
  • Co(OH) 2 obtained by precipitation reaction often contains more manganese.
  • manganese is precipitated in the form of manganese carbonate, and cobalt is left in solution due to the formation of ammonia complexes. Although this method can perform deep separation, the process is complicated and the cost is high, which is not conducive to production and application.
  • the invention aims to provide a method for separating cobalt from a mixture of cobalt and manganese carbonate to solve the technical problems of large energy consumption and low yield of cobalt separation in the prior art.
  • a method for separating cobalt from a mixture of cobalt and manganese carbonate includes the following steps: S1, using an inorganic acid to dissolve the cobalt and manganese carbonate mixture to obtain an acid-soluble solution; S2, adding alkali to the acid-soluble solution, adjusting the pH of the solution to 7.3-7.6, filtering, and the filter residue is Co(OH) 2 ; S3.
  • Manganese powder is added to the filtrate filtered in S2 to replace Co in the filtrate.
  • the pH of the obtained acid-soluble solution is 1.5 to 2.5.
  • the mixture of cobalt and manganese carbonate is dissolved with an inorganic acid under a temperature condition of 20 to 60°C, preferably 35 to 45°C.
  • the molar ratio of the amount of manganese powder added to the filtrate to the cobalt content in the solution is 1.5 to 3:1, preferably 2 to 2.5:1.
  • the filtrate is heated to 60 to 90°C, and then manganese powder is added.
  • the content of cobalt in the filtrate is 2 to 4 g/L.
  • the content of Co in the filtrate after replacement with manganese powder is ⁇ 0.2 g/L.
  • the inorganic acid is sulfuric acid.
  • the base is a solid or aqueous solution of sodium hydroxide, potassium hydroxide or sodium carbonate.
  • alkali is sodium hydroxide solution.
  • the slag also called a mixture of cobalt and manganese carbonate
  • the pH value is adjusted with alkali
  • Co(OH) 2 in the precipitate is obtained by filtration
  • the residual cobalt in the filtrate The replacement reaction with manganese powder makes the total recovery rate of Co reach 99%.
  • the process is short, simple and easy to implement, low cost, high yield, suitable for large-scale production applications, and environmentally friendly and economical.
  • a method for separating cobalt from a mixture of cobalt and manganese carbonate includes the following steps: S1, using an inorganic acid to dissolve the cobalt and manganese carbonate mixture to obtain an acid-soluble solution; S2, adding alkali to the acid-soluble solution, adjusting the pH of the solution to 7.3-7.6, filtering, and the filter residue is Co(OH) 2 ; S3, adding manganese powder to the filtrate filtered in S2 to replace Co in the filtrate.
  • the slag also called a mixture of cobalt and manganese carbonate
  • the pH value is adjusted with alkali
  • Co(OH) 2 in the precipitate is obtained by filtration
  • the residual cobalt in the filtrate The replacement reaction with manganese powder makes the total recovery rate of Co reach 99%.
  • the process is short, simple and easy to implement, low cost, high yield, suitable for large-scale production applications, and environmentally friendly and economical.
  • the alkali may be solid or aqueous solution of sodium hydroxide, potassium hydroxide or sodium carbonate, and sodium hydroxide is preferred from the viewpoint of the effect and cost of industrial production.
  • sodium hydroxide to adjust the pH value provides favorable conditions for precise cobalt precipitation. Strictly control the pH value of the solution in a more suitable range (pH value 7.3 ⁇ 7.6), which can obtain cobalt hydroxide with lower manganese content and higher Yield of cobalt.
  • the pH of the obtained acid-soluble solution is 1.5-2.5. Under this acidity condition, it can ensure the sufficient dissolution of cobalt without causing excessive excess acid in the system.
  • the mixture of cobalt and manganese carbonate is dissolved by an inorganic acid under the temperature condition of 20-60°C, preferably 35-45°C. Under this temperature condition, the cobalt can be dissolved more quickly, and it will not happen. Multiple side reactions, and can take into account the rationality of production efficiency and energy consumption.
  • the Mn/Co ratio determines the amount of manganese powder added and the replacement rate of cobalt.
  • the molar ratio of the amount of manganese powder added to the filtrate to the cobalt content in the solution is 1.5 to 3:1, preferably 2 to 2.5: 1.
  • the temperature during the replacement of manganese powder determines the replacement ratio.
  • the filtrate is heated to 60 to 90° C., and then manganese powder is added. Under this temperature condition, high-efficiency replacement of cobalt can be achieved.
  • the content of cobalt in the filtrate is 2 to 4 g/L; the content of Co in the filtrate after replacement with manganese powder is ⁇ 0.2 g/L.
  • the inorganic acid may be sulfuric acid, hydrochloric acid, nitric acid, etc.
  • the inorganic acid is preferably sulfuric acid.
  • Raw material Cobalt and manganese carbonate mixture Main components: Mn: 24.84%. Co: 13.20%, raw material moisture content: 20.0%
  • Raw material 125g, including dry material 100g.
  • the cobalt slag and cobalt slag are obtained.
  • Cobalt slag 25.18g, cobalt slag contains Co 43.8%, Mn 8.76%.
  • the original test liquid was 500ml of prepared cobalt-containing solution, containing Co 4.40g/L. Weigh 5.13g of manganese powder into the cobalt-containing solution, stir the reaction at 60 °C for 1h, and filter to obtain 500ml of filtrate (including a small amount of washing water).
  • the dosage coefficient of manganese powder is 2.50 (mol/mol), and the filtrate contains Co 0.2g/L.
  • the above two tests respectively represent the precipitation effect when the sodium hydroxide neutralization precipitation method and the manganese powder replacement method are used alone.
  • the former has a low precipitation rate and cheap chemicals, while the latter has a high precipitation rate, but the price of manganese powder is higher.
  • the combination of the two slags is the product of this process, which realizes the enrichment of cobalt and throws away most of the manganese.
  • the total precipitation rate of the two sections of cobalt is 97.74%.
  • Co/Mn in the cobalt-rich material (two precipitation mixtures, the same below) is 3.20 (g/g), and the removal rate of manganese is 85.06%.
  • the total precipitation rate of the two sections of cobalt is 98.49%, Co/Mn in the cobalt-rich material is 2.19 (g/g), and the removal rate of manganese is 80.07%.
  • the total precipitation rate of the two sections of cobalt is 99.12%.
  • Co/Mn in the cobalt-rich material 2.58 (g/g).

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Organic Chemistry (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Metallurgy (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • General Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Inorganic Compounds Of Heavy Metals (AREA)
  • Manufacture And Refinement Of Metals (AREA)

Abstract

一种从钴、锰碳酸盐混合物中分离钴的方法。该方法包括以下步骤:S1,采用无机酸将钴、锰碳酸盐混合物溶解,得到酸溶溶液;S2,向酸溶溶液中加入碱,调整溶液pH值到7.3~7.5,沉降过滤,滤渣即为Co(OH) 2;S3,向S2中过滤后的滤液中加入锰粉,置换出滤液中的Co。应用本发明的技术方案,先利用无机酸溶解矿渣(又称,钴、锰碳酸盐混合物),再用碱调节pH值,沉淀中的Co(OH) 2经过滤获得,滤液中的残余钴用锰粉进行置换反应,使Co的总回收率达到99%。该工艺流程短,简单易行,成本低,收率高,适合大规模生产应用,且环保经济。

Description

从钴、锰碳酸盐混合物中分离钴的方法 技术领域
本发明涉及金属提纯技术领域,具体而言,涉及一种从钴、锰碳酸盐混合物中分离钴的方法。
背景技术
钴,是一种相当重要的国防建设战略物资,其广泛应用在航天、航空、电子、电池、磁性金属材料等高科技领域。钴在地壳中的含量仅为0.0012%,属于比较稀少的金属,而且在自然界中,钴大多是和锰、镍等金属元素共存的。由于化学性能相似,给分离提纯带来极大地困难。
已有钴、锰分离技术主要有以下三种:1)氢氧化物沉淀法:在湿法冶金中钴锰分离通常是采用碳酸盐沉淀法进行粗分离,再进行萃取精制。该方法成本较高、工艺复杂,而且钴最终的回收率仅有92%~94%左右,大量钴资源被浪费。2)氧化沉淀法:通过氧化剂使锰以MnO 2的形式沉淀,从而将其与钴分开;通常以臭氧、氯酸、SO 2/O 2混合物为氧化剂进行反应,但是由于Co 3+变为Co 2+的标准电位是1.8V,而Mn 4+变为Mn 2+的标准电位为1.23V,二者的电位差较大,只有控制好氧化剂用量及适当的pH值,才可以使Mn 2+优先Co 2+氧化生成MnO 2沉淀。3)溶剂萃取法:由于上述两类方法分离效果较差,也有再利用萃取剂进行精制的工艺技术,但成本较高,实现起来有一定困难。
其中,氢氧化物沉淀法主要是利用了钴和锰的氢氧化物溶度积的差别进行选择沉淀,Mn(OH) 2:19×10 -13;Co(OH) 2:1.6×10 -15钴优先于锰盐沉淀。但由于二者溶度积相近,单一使用氢氧化物并不能彻底将钴锰分离,沉淀反应得到的Co(OH) 2中常含有较多的锰。而利用联合氨法,锰以碳酸锰的形式沉淀,钴则由于形成氨络合物留在溶液中,此法虽可进行深度分离,但工艺复杂,成本较高,不利于生产应用。
综上,在现有工艺技术中,钴的提纯能耗大、收率低,有些还存在环保问题,极大地影响了资源的充分利用,造成很多浪费。
发明内容
本发明旨在提供一种从钴、锰碳酸盐混合物中分离钴的方法,以解决现有技术中钴的分离能耗大、收率低的技术问题。
为了实现上述目的,根据本发明的一个方面,提供了一种从钴、锰碳酸盐混合物中分离钴的方法。该方法包括以下步骤:S1,采用无机酸将钴、锰碳酸盐混合物溶解,得到酸溶溶液;S2,向酸溶溶液中加入碱,调整溶液pH值到7.3~7.6,过滤,滤渣即为Co(OH) 2;S3, 向S2中过滤后的滤液中加入锰粉,置换出滤液中的Co。
进一步地,S1中,得到的酸溶溶液的pH为1.5~2.5。
进一步地,S1中,在20~60℃温度条件下采用无机酸将钴、锰碳酸盐混合物溶解,优选为35~45℃。
进一步地,S3中,向滤液中加入锰粉的量与溶液中钴含量的摩尔比为1.5~3:1,优选为2~2.5:1。
进一步地,S3中,将滤液升温到60~90℃,然后加入锰粉。
进一步地,滤液中钴的含量为2~4g/L。
进一步地,经过锰粉置换后的滤液中Co的含量≤0.2g/L。
进一步地,无机酸为硫酸。
进一步地,碱为氢氧化钠、氢氧化钾或碳酸钠固体或水溶液。
进一步地,碱为氢氧化钠溶液。
应用本发明的技术方案,先利用无机酸溶解矿渣(又称,钴、锰碳酸盐混合物),再用碱调节pH值,沉淀中的Co(OH) 2经过滤获得,滤液中的残余钴用锰粉进行置换反应,使Co的总回收率达到99%。该工艺流程短,简单易行,成本低,收率高,适合大规模生产应用,且环保经济。
具体实施方式
需要说明的是,在不冲突的情况下,本申请中的实施例及实施例中的特征可以相互组合。下面将结合实施例来详细说明本发明。
针对现有技术中,钴的分离能耗大、收率低的技术问题,本发明的发明人提出了下列技术方案。
根据本发明一种典型的实施方式,提供一种从钴、锰碳酸盐混合物中分离钴的方法。该方法包括以下步骤:S1,采用无机酸将钴、锰碳酸盐混合物溶解,得到酸溶溶液;S2,向酸溶溶液中加入碱,调整溶液pH值到7.3~7.6,过滤,滤渣即为Co(OH) 2;S3,向S2中过滤后的滤液中加入锰粉,置换出滤液中的Co。
应用本发明的技术方案,先利用无机酸溶解矿渣(又称,钴、锰碳酸盐混合物),再用碱调节pH值,沉淀中的Co(OH) 2经过滤获得,滤液中的残余钴用锰粉进行置换反应,使Co的总回收率达到99%。该工艺流程短,简单易行,成本低,收率高,适合大规模生产应用,且环保经济。
其中,碱可以为氢氧化钠、氢氧化钾或碳酸钠固体或水溶液,从工业生产的效果及成本考虑优选为氢氧化钠。利用氢氧化钠进行pH值调控,为精确沉钴提供了有利条件,严格控制溶液的pH值在较合适的范围(pH值7.3~7.6),可得到含锰较低的氢氧化钴和较高的钴收率。
优选的,S1中,得到的酸溶溶液的pH为1.5~2.5,在此酸度条件下,既能够保证钴的充分溶解,又不会使体系中存在过多过剩的酸。
优选的,S1中,在20~60℃,优选35~45℃温度条件下采用无机酸将钴、锰碳酸盐混合物溶解,在此温度条件能够使钴较快的溶解,又不会发生过多的副反应,并且能够兼顾生产效率与能耗的合理性。
Mn/Co比值决定加入锰粉数量和钴的置换率,优选的,S3中,向滤液中加入锰粉的量与溶液中钴含量的摩尔比为1.5~3:1,优选为2~2.5:1,在充分利用原料的基础上,做到钴的充分置换。
在锰粉置换时的温度决定置换率,优选的,S3中,将滤液升温到60~90℃,然后加入锰粉,在此温度条件下,能够实现钴的高效率置换。
根据本发明一种典型的实施方式,滤液中钴的含量为2~4g/L;经过锰粉置换后的滤液中Co的含量≤0.2g/L。
理论上,本发明中无机酸可以硫酸、盐酸或硝酸等,但从工业生产的成本、操作的便利性及对设备的腐蚀性等方面综合考虑,无机酸优选硫酸。
下面将结合实施例进一步说明本发明的有益效果,本发明中没有详细描述的步骤或物质可以通过本领域的常规技术手段实现或通过商购获得。
对比例1,
用氢氧化钠中和沉钴
原料:钴、锰碳酸盐混合物主要成分:Mn:24.84%.Co:13.20%,原料含水率:20.0%
原料:125g,含干料100g。加水调浆至400ml,加入硫酸42ml充分溶解,终点pH值控制2.5,加入氢氧化钠溶液调节pH值,沉钴终点pH为7.41。过滤洗涤得沉钴后液和钴渣。沉钴后液600ml,含钴3.39g/L。钴渣25.18g,钴渣含Co 43.8%,Mn 8.76%。
钴的沉淀率为:84.59%。
对比例2,
用锰粉置换沉钴
试验原液为配制的含钴溶液500ml,含Co 4.40g/L。称5.13g锰粉加入至含钴溶液中,在60℃下搅拌反应1h,过滤得滤液500ml(包含少量洗水)。锰粉用量系数为2.50(mol/mol),滤液 含Co 0.2g/L。
钴的沉淀率为:95.45%。
以上两个试验分别代表了氢氧化钠中和沉淀法和锰粉置换法单独使用时的沉淀效果。前者沉淀率低,药剂便宜,后者沉淀率高,但锰粉价格较高。将两种方法结合,先用氢氧化钠,后用锰粉,则既可以实现较高的回收率,又可以大幅度降低药剂费用。两种渣合并即为本工艺的产品,该工艺实现了钴的富集,并甩掉了大部分锰。
实施例1
一段氢氧化钠中和沉钴
称湿料125g,加水浆化至400ml,加硫酸42ml,相当于纯H 2SO 4 74.09g在40℃下充分溶解1h,终点PH为2.5。其后加氢氧化钠溶液中和残酸和沉钴,共加NaOH 16.3g,终点PH为7.34。反应2h后过滤,得滤液650ml,钴渣28.35g。滤液含Co 2.92g/L,钴渣含Co 41.82%,Mn 10.38%,渣中Co/Mn=4.03(g/g)。
钴的沉淀率为:85.62%。
二段锰粉置换沉钴
取沉钴后液600ml,加锰粉2.86g,锰粉用量系数为1.75(mol/mol)。在80℃下搅拌反应1h过滤,得滤液640ml,置换渣3.55g。滤液含Co 0.43g/L,置换渣含Co 39.26%,Mn 32.02%,渣中Co/Mn=1.23(g/g)。
钴的置换率为:84.29%。
两段钴的总沉淀率为97.74%,富钴物料(两种沉淀混合物,以下同)中的Co/Mn=3.20(g/g),锰的脱除率为:85.06%。
实施例2
一段氢氧化钠中和沉钴
称湿料125g,加水浆化至500ml,加硫酸45ml,相当于H 2SO 4 79.38g。在60℃下搅拌溶解0.5h,终点PH为1.93。加氢氧化钠溶液中和残酸和沉钴,共加NaOH 22.21g,终点PH为7.49。反应1h后过滤,得滤液714ml,钴渣29.11g。滤液含Co 2.45g/L,钴渣含Co39.20%,Mn9.26%,渣中Co/Mn=4.07(g/g)。
钴的沉淀率为:86.75%
二段锰粉置换沉钴
取沉钴后液600ml,加锰粉3.43g,锰粉用量系数为2.50(mol/mol)。在60℃下搅拌反应2h,过滤得滤液700ml,置换渣6.32g。滤液含Co 0.24g/L,置换渣含Co18.91%,Mn40.80%,渣 中Co/Mn=0.46(g/g)。
钴的置换率为:88.57%
两段钴的总沉淀率为98.49%,富钴物料中的Co/Mn=2.19(g/g),锰的脱除率为:80.07%。
实施例3
一段氢氧化钠沉钴
称湿料125g,加水浆化至400ml,加硫酸45ml,相当于纯H 2SO 4 79.38g在60℃下溶解1h,终点PH为2.0。其后加氢氧化钠溶液沉钴,共加NaOH 24.5g,终点PH7.60。反应2h后过滤。得滤液600ml,钴渣30.3g,滤液含Co1.95g/L,钴渣含Co39.40%,Mn10.20%,渣中Co/Mn=3.86(g/g)。
钴的沉淀率为:91.14%
取沉钴后液550ml,加锰粉2.5g,锰粉用量系数为2.50(mol/mol)。在80℃下搅拌反应1h,得滤液590ml,置换渣4.61g.滤液含Co0.18g/L。置换渣含Co21.01%Mn38.60%,渣中Co/Mn=0.54(g/g)。
钴置换率为:90.10%
两段钴的总沉淀率为:99.12%。富钴物料中的Co/Mn=2.58(g/g)。
锰的脱除率为:81.75%。
从以上的描述中,可以看出,本发明上述的实施例实现了如下技术效果:
1)以锰粉代替溶剂萃取,工艺简单,成本低廉;
2)锰粉加入体系中,不会引入其它性物质,是洁净体系,无环保问题;
3)Co的回收率由传统方法的95%左右提高到99%,经济效益明显;
4)所有操作步骤可以在同一设备中进行,无须增加新设备投资,较传统工艺优势明显。
以上所述仅为本发明的优选实施例而已,并不用于限制本发明,对于本领域的技术人员来说,本发明可以有各种更改和变化。凡在本发明的精神和原则之内,所作的任何修改、等同替换、改进等,均应包含在本发明的保护范围之内。

Claims (10)

  1. 一种从钴、锰碳酸盐混合物中分离钴的方法,其特征在于,包括以下步骤:
    S1,采用无机酸将钴、锰碳酸盐混合物溶解,得到酸溶溶液;
    S2,向所述酸溶溶液中加入碱,调整溶液pH值到7.3~7.6,过滤,滤渣即为Co(OH) 2
    S3,向所述S2中过滤后的滤液中加入锰粉,置换出所述滤液中的Co。
  2. 根据权利要求1所述的方法,其特征在于,所述S1中,得到的所述酸溶溶液的pH为1.5~2.5。
  3. 根据权利要求1所述的方法,其特征在于,所述S1中,在20~60℃温度条件下采用无机酸将钴、锰碳酸盐混合物溶解,优选为35~45℃。
  4. 根据权利要求1所述的方法,其特征在于,所述S3中,向所述滤液中加入锰粉的量与溶液中钴含量的摩尔比为1.5~3:1,优选为2~2.5:1。
  5. 根据权利要求3所述的方法,其特征在于,所述S3中,将所述滤液升温到60~90℃,然后加入锰粉。
  6. 根据权利要求1所述的方法,其特征在于,所述滤液中钴的含量为2~4g/L。
  7. 根据权利要求1所述的方法,其特征在于,经过锰粉置换后的滤液中Co的含量≤0.2g/L。
  8. 根据权利要求1所述的方法,其特征在于,所述无机酸为硫酸。
  9. 根据权利要求1所述的方法,其特征在于,所述碱为氢氧化钠、氢氧化钾或碳酸钠固体或水溶液。
  10. 根据权利要求9所述的方法,其特征在于,所述碱为氢氧化钠溶液。
PCT/CN2019/096005 2018-12-20 2019-07-15 从钴、锰碳酸盐混合物中分离钴的方法 WO2020125000A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811565084.8A CN109609785B (zh) 2018-12-20 2018-12-20 从钴、锰碳酸盐混合物中分离钴的方法
CN201811565084.8 2018-12-20

Publications (1)

Publication Number Publication Date
WO2020125000A1 true WO2020125000A1 (zh) 2020-06-25

Family

ID=66008902

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/096005 WO2020125000A1 (zh) 2018-12-20 2019-07-15 从钴、锰碳酸盐混合物中分离钴的方法

Country Status (2)

Country Link
CN (1) CN109609785B (zh)
WO (1) WO2020125000A1 (zh)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109609785B (zh) * 2018-12-20 2020-10-23 中国恩菲工程技术有限公司 从钴、锰碳酸盐混合物中分离钴的方法

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298759A (en) * 1980-12-19 1981-11-03 Standard Oil Company (Indiana) Separation of cobalt and manganese from trimellitic acid process residue by extraction, ion exchanger and magnet
WO2008137025A1 (en) * 2007-05-02 2008-11-13 Drinkard Metalox, Inc. Nickel-laterite process
CN102061386A (zh) * 2011-01-26 2011-05-18 广西银亿科技矿冶有限公司 一种红土镍矿浸出液中氧化除铁的方法
CN103627904A (zh) * 2013-11-29 2014-03-12 湖南邦普循环科技有限公司 一种从钴锰催化剂废料中回收钴锰的方法
CN104611565A (zh) * 2014-12-24 2015-05-13 金川集团股份有限公司 一种从钴铜锌锰生产废液中选择性回收钴铜的方法
CN105886763A (zh) * 2016-03-15 2016-08-24 中南大学 一种从含钴溶液中回收钴的方法
CN107012337A (zh) * 2017-04-01 2017-08-04 贵州大龙汇成新材料有限公司 从含锰废弃物中富集回收镍钴的方法
CN107674975A (zh) * 2015-11-27 2018-02-09 江苏理工学院 一种钴锰废料中钴和锰的分离回收方法
CN109609785A (zh) * 2018-12-20 2019-04-12 中国恩菲工程技术有限公司 从钴、锰碳酸盐混合物中分离钴的方法

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105274352B (zh) * 2015-09-30 2017-06-30 兰州金川新材料科技股份有限公司 一种从碳酸铜锰钴钙锌混合物中分离铜钴锰的方法
CN105803212B (zh) * 2016-03-15 2017-12-22 中南大学 一种从氧化沉钴渣中回收钴的方法
CN105907995A (zh) * 2016-07-06 2016-08-31 江苏理工学院 用硫化盐-氧化剂分离回收低钴高锰废料中钴和锰的方法

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4298759A (en) * 1980-12-19 1981-11-03 Standard Oil Company (Indiana) Separation of cobalt and manganese from trimellitic acid process residue by extraction, ion exchanger and magnet
WO2008137025A1 (en) * 2007-05-02 2008-11-13 Drinkard Metalox, Inc. Nickel-laterite process
CN102061386A (zh) * 2011-01-26 2011-05-18 广西银亿科技矿冶有限公司 一种红土镍矿浸出液中氧化除铁的方法
CN103627904A (zh) * 2013-11-29 2014-03-12 湖南邦普循环科技有限公司 一种从钴锰催化剂废料中回收钴锰的方法
CN104611565A (zh) * 2014-12-24 2015-05-13 金川集团股份有限公司 一种从钴铜锌锰生产废液中选择性回收钴铜的方法
CN107674975A (zh) * 2015-11-27 2018-02-09 江苏理工学院 一种钴锰废料中钴和锰的分离回收方法
CN105886763A (zh) * 2016-03-15 2016-08-24 中南大学 一种从含钴溶液中回收钴的方法
CN107012337A (zh) * 2017-04-01 2017-08-04 贵州大龙汇成新材料有限公司 从含锰废弃物中富集回收镍钴的方法
CN109609785A (zh) * 2018-12-20 2019-04-12 中国恩菲工程技术有限公司 从钴、锰碳酸盐混合物中分离钴的方法

Also Published As

Publication number Publication date
CN109609785A (zh) 2019-04-12
CN109609785B (zh) 2020-10-23

Similar Documents

Publication Publication Date Title
CN104911359B (zh) 一种从锰废渣中提取钴和镍的工艺方法
WO2020220559A1 (zh) 一种废旧镍钴锰三元锂电池中有价金属的回收方法
WO2016202271A1 (zh) 从含稀土的铝硅废料中回收稀土、铝和硅的方法
CN102244309B (zh) 一种从电动汽车锂系动力电池中回收锂的方法
CN103771526B (zh) 一种以工业硫酸锰为原料制备高纯硫酸锰的方法
WO2017181766A1 (zh) 从火法回收锂电池产生的炉渣中提取锂的方法
CN107058745A (zh) 一种钴冶金废料中提取有价金属的方法
CN102367515A (zh) 软锰矿粉的加压还原浸出方法
WO2022089203A1 (zh) 采用萃取法除三元电池材料浸出液中铝的方法
CN108866356B (zh) 一种从钒渣高酸浸出液中萃取提钒的方法
WO2018192441A1 (zh) 一种电池级氧化钒的生产方法
CN104294038A (zh) 一种从银锰矿中制取碳酸锰的工艺
CN113046574A (zh) 一种利用铜电解脱铜后液处理粗氢氧化钴制备高纯镍、钴产品的方法
WO2011120273A1 (zh) 一种制备一水合硫酸锰的方法
WO2020181745A1 (zh) 一种粗制钴/镍盐原料高效分离钴/镍镁锰的方法
WO2020125000A1 (zh) 从钴、锰碳酸盐混合物中分离钴的方法
CN114933291A (zh) 一种利用镍铁合金制备高纯磷酸铁锂的方法
CN103952568B (zh) 处理含钛高炉渣的方法
CN116598636B (zh) 废旧三元锂离子电池正极材料中有价金属分离回收的方法
CN111057846B (zh) 一种分离回收白合金中钴、铜、铁的方法
CN113582252B (zh) 一种镍钴锰三元前驱体材料的制备方法以及锂离子电池
CN103086440B (zh) 一种处理草酸钴废料的方法
CN105112693A (zh) 一种加压浸出富铼渣中铼的方法
CN109338112A (zh) 一种五氧化二钒提纯的方法
CN104674006A (zh) 一种利用碱性氧化从红土镍矿常压酸浸液中分离锰和镁的清洁生产方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19899937

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19899937

Country of ref document: EP

Kind code of ref document: A1