WO2017181766A1 - 从火法回收锂电池产生的炉渣中提取锂的方法 - Google Patents

从火法回收锂电池产生的炉渣中提取锂的方法 Download PDF

Info

Publication number
WO2017181766A1
WO2017181766A1 PCT/CN2017/074133 CN2017074133W WO2017181766A1 WO 2017181766 A1 WO2017181766 A1 WO 2017181766A1 CN 2017074133 W CN2017074133 W CN 2017074133W WO 2017181766 A1 WO2017181766 A1 WO 2017181766A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
slag
extracting
lithium battery
slag produced
Prior art date
Application number
PCT/CN2017/074133
Other languages
English (en)
French (fr)
Inventor
曹乃珍
邓红云
严星星
徐川
高洁
党春霞
Original Assignee
天齐锂业股份有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 天齐锂业股份有限公司 filed Critical 天齐锂业股份有限公司
Publication of WO2017181766A1 publication Critical patent/WO2017181766A1/zh

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/006Wet processes
    • C22B7/007Wet processes by acid leaching
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B26/00Obtaining alkali, alkaline earth metals or magnesium
    • C22B26/10Obtaining alkali metals
    • C22B26/12Obtaining lithium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22BPRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
    • C22B7/00Working up raw materials other than ores, e.g. scrap, to produce non-ferrous metals and compounds thereof; Methods of a general interest or applied to the winning of more than two metals
    • C22B7/04Working-up slag
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P10/00Technologies related to metal processing
    • Y02P10/20Recycling
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention relates to a method for extracting lithium from slag generated by a fire recovery lithium battery, and belongs to the technical field of energy materials.
  • lithium-ion batteries In recent years, the three major fields of consumer electronics, electric vehicles and power storage have been rapidly developed, which has greatly promoted the development of lithium-ion batteries. With the increasing number of lithium-ion batteries in the market and the gradual completion of the life cycle of lithium-ion batteries in the market, the number of used lithium-ion batteries will increase, and the recycling of used lithium-ion batteries is imperative. The recycling of used lithium-ion batteries not only avoids pollution to the environment, but also alleviates the contradiction between resource demand and supply, and alleviates concerns about lithium resources.
  • Lithium-ion battery recycling technology can be divided into wet recovery and fire recovery.
  • the wet method is obtained by leaching the valuable components in the used battery with a mineral acid solution, and then recovering by a complex exchange method, an alkali boiling-acid solution method, an acid solution-extraction-precipitation method, or the like.
  • the fire method mainly removes the organic matter which is bound by high temperature incineration to realize the separation between the constituent materials of the lithium battery, and at the same time, the metal and its compound in the battery are oxidized, reduced and decomposed, and after being volatilized in the form of vapor, the fire method is used. Collect it by condensation and other methods.
  • the battery and the flux (calcium oxide, silicon oxide) are melted together at a high temperature, in which cobalt and nickel are recovered, and the metal foil and the flux are loaded to generate new and unstable substances.
  • Phase-aluminosilicates mainly including calcium aluminosilicate and lithium lithium aluminosilicate, which are also the main components of the slag.
  • the extraction value of cobalt and nickel in lithium batteries is higher and is preferentially extracted.
  • the extraction process of lithium is complicated and the cost is high. Therefore, the lithium-containing slag after extracting cobalt nickel is used as a building material, usually the slag is sold as waste to the building. Industrial production of cement leads to a waste of valuable lithium resources.
  • Patent WO2011141297A1 discloses a method for applying slag generated by battery fire method to building materials, and the main steps are as follows: reducing the smelting temperature of the lithium-containing alloy, obtaining the metal phase and the lithium-rich slag, separating, cooling, solidifying the slag, atomizing and pulverizing the slag ⁇ 1mm, powder slag is added as a building material additive to the pre-concrete production process.
  • the method utilizes the lithium property of the slag to reduce the reaction of the alkali metal in the concrete, and solves the problem of utilizing the slag generated in the battery fire recovery, but does not extract the lithium element therein, and does not maximize the economic value of the slag.
  • Patent CN103219561A mentions a method for extracting lithium from smelting slag of lithium manganate battery, the main steps The procedure is as follows: the positive electrode sheet of the lithium manganate battery is heated at 300 to 600 ° C for 1 to 4 hours, and then the aluminum foil is separated to obtain a mixture of a lithium manganate cathode material, a conductive agent and a binder.
  • the mixture is calcined at 1000-1200 ° C for 1 to 3 h, and then pelletized; the mixture after the pelletization is mixed with the carbonaceous reducing agent, silica, and lime at a weight ratio of 100:18 to 22:13 to 17:14 to 18, and then the electric furnace Smelting for 1 to 3 hours, obtaining manganese silicon alloy and slag; slag acid leaching to obtain a lithium-containing solution, and then adding sodium carbonate solution to precipitate, and filtering to obtain lithium carbonate.
  • the method is complicated in process, and the aluminum foil has been separated in the pre-experiment step, so the aluminum content in the smelting furnace slag is low, and the method provided by the patent is not applicable to the slag having a high aluminum content.
  • the waste slag component of the waste lithium ion battery fire recovery process is complex, but contains high-grade lithium resources and has high economic added value. If we can find a way to extract lithium from the slag, it not only solves the problem of solid waste disposal, but also adds an important lithium extraction resource and creates huge economic benefits.
  • the technical problem solved by the present invention is to provide a method for extracting lithium from slag produced by a fire recovery lithium battery, thereby maximizing the value of the slag.
  • the method for extracting lithium from the slag produced by the fire recovery lithium battery of the invention comprises the following steps:
  • the mixed acid is subjected to an incubation reaction at a temperature of 50 to 100 ° C, and the reaction time is 2 to 4 hours to obtain an acid leaching material;
  • the neutralized slurry is solid-liquid separated, and the obtained liquid is a lithium solution.
  • the method for extracting lithium from the slag produced by the fire recovery lithium battery of the present invention further comprises the step e, wherein the step e is: preparing a lithium salt from the lithium solution.
  • the step e is preferably: concentrating the lithium solution to a Li 2 O content of 40 to 70 g/L to obtain a concentrated liquid, and preparing the concentrated liquid to obtain lithium carbonate or lithium hydroxide.
  • the lithium battery of the present invention is a lithium-containing battery, preferably a lithium ion battery or a lithium battery using lithium metal or a lithium alloy as a negative electrode.
  • the solid-liquid ratio of the mixed acid material is 1:15-25.
  • a base is added to adjust the pH of the acid leaching material, and the base is at least one of calcium carbonate, calcium hydroxide, sodium carbonate, and sodium hydroxide, preferably calcium hydroxide.
  • step d after solid-liquid separation, washing, washing water is returned to step a, and the obtained filter residue is used as Sales of construction materials.
  • the slag according to the step a it preferably comprises the following components by weight: Li 2 O: 2 to 20%, Co: 0.1 to 0.3%, Ni: 0.02 to 0.06%, and Mn: 1 to 2%.
  • Ca 1 to 25%
  • Mg 2 to 4%
  • Fe 0.5 to 2.5%
  • Si 10 to 20%
  • Al 1 to 20%.
  • the method for extracting lithium from the slag produced by the fire recovery lithium battery can extract lithium element from the slag after the battery is recovered by the fire method with high aluminum content and high calcium content.
  • the present invention has the following beneficial effects:
  • the process conditions are general chemical process conditions, and the operability is strong and easy to implement.
  • the slag contains a certain amount of valuable metal elements such as Co and Ni, which can be further recycled.
  • FIG. 1 is a flow chart of a process for extracting lithium from a slag produced by a fire recovery lithium battery according to the present invention.
  • the method for extracting lithium from the slag produced by the fire recovery lithium battery of the invention comprises the following steps:
  • the mixed acid is subjected to an incubation reaction at a temperature of 50 to 100 ° C, and the reaction time is 2 to 4 hours to obtain an acid leaching material;
  • the neutralized slurry is solid-liquid separated, and the obtained liquid is a lithium solution.
  • the method for extracting lithium from the slag produced by the fire recovery lithium battery of the present invention further comprises the step e, wherein the step e is: preparing a lithium salt from the lithium solution.
  • the step e is: preparing a lithium salt from the lithium solution.
  • the step e is preferably: concentrating the lithium solution to a Li 2 O content of 40 to 70 g/L to obtain a concentrated liquid, and preparing the concentrated liquid to obtain lithium carbonate or lithium hydroxide.
  • Methods for preparing lithium carbonate or lithium hydroxide from a lithium solution commonly used in the art are suitable for use in the present invention.
  • the lithium battery of the present invention is a lithium battery including various lithium ion batteries and lithium metal batteries and alloys as negative electrodes.
  • the acidification in step a may first add water to the slag, then add concentrated sulfuric acid, or firstly mix the concentrated sulfuric acid with water, and then mix with the slag, or directly mix the slag with dilute sulfuric acid, only need to ensure the final income.
  • the mass ratio of slag: water: concentrated sulfuric acid is 1:15 to 25: 0.5 to 1.25.
  • the concentration of concentrated sulfuric acid is greater than 95% by weight.
  • step a the mixed acid has a solid to liquid ratio of 1:20.
  • the b step may be stirred during the heat preservation reaction.
  • a base is added to adjust the pH of the acid leaching agent, and the base is one or more of calcium carbonate, calcium hydroxide, sodium carbonate, and sodium hydroxide, preferably calcium hydroxide.
  • the obtained filter residue Li 2 O content is ⁇ 0.30% by weight, which can be sold as a building material.
  • the slag produced by the fire recovery lithium battery of the invention has the following characteristics: the system is complex, the unstable aluminosilicate is the main body, the metal impurities are various, the separation difficulty coefficient is large; some metal impurities, especially calcium and aluminum The content is high, making it more difficult to handle.
  • the slag according to step a contains the following components by weight: Li 2 O: 2 to 20%, Co: 0.1 to 0.3%, Ni: 0.02 to 0.06%, Mn: 1-2%, Ca: 1 to 25%, Mg: 2 to 4%, Fe: 0.5 to 2.5%, Si: 10 to 20%, and Al: 1 to 20%.
  • the present invention can be implemented by the following specific steps:
  • the mixed acid obtained in the step (2) is kept at a temperature of 50 to 100 ° C, and the reaction time is 2 to 4 hours to obtain an acid leaching material;
  • the alkali may be one or more of calcium carbonate, calcium hydroxide, sodium carbonate and sodium hydroxide. , preferably calcium carbonate;
  • the filtrate obtained in the step (5) is concentrated to a Li 2 O content of 40 to 70 g/L to obtain a concentrated liquid, which is transferred to a basic lithium salt workshop to prepare lithium carbonate or lithium hydroxide.
  • the filtrate obtained was a lithium solution, and its composition is shown in Table 1.
  • the obtained filter residue is leaching slag, and the Li 2 O content in the slag is ⁇ 0.30%.
  • the composition thereof is shown in Table 2.
  • the leaching slag enters the slag field and is sold as building materials; the washing water returns to step (1) for extracting water.
  • the lithium solution can be concentrated to a Li 2 O content of 40 g/L, and filtered to obtain a concentrated liquid.
  • This concentrate can enter the lithium salt production workshop for the preparation of lithium carbonate, lithium hydroxide and other products. The specific process is shown in Figure 1.
  • the filtrate obtained was a lithium solution, and its composition is shown in Table 3.
  • the obtained filter residue is leaching slag, and the Li 2 O content in the slag is ⁇ 0.30%.
  • the composition thereof is shown in Table 4.
  • the leaching slag enters the slag field as a building material; the washing water returns to step (1) for extracting water.
  • the lithium solution was concentrated to a Li 2 O content of 70 g/L, and filtered to obtain a concentrated liquid.
  • This concentrate can enter the lithium salt production workshop for the preparation of lithium carbonate, lithium hydroxide and other products. The specific process is shown in Figure 1.
  • the filtrate obtained was a lithium solution, and its composition is shown in Table 5.
  • the obtained filter residue is leaching slag, and the Li 2 O content in the slag is ⁇ 0.30%.
  • the composition thereof is shown in Table 6.
  • the leaching slag enters the slag field as a building material; the washing water returns to step (1) for extracting water.
  • the lithium solution can be concentrated to a Li 2 O content of 40 g/L, and filtered to obtain a concentrated liquid.
  • This concentrate can enter the lithium salt production workshop for the preparation of lithium carbonate, lithium hydroxide and other products. The specific process is shown in Figure 1.
  • the filtrate obtained was a lithium solution, and its composition is shown in Table 7.
  • the obtained filter residue is leaching slag, and the Li 2 O content in the slag is ⁇ 0.30%.
  • the composition thereof is shown in Table 8.
  • the leaching slag enters the slag field and is sold as building materials; the washing water returns to step (1) for extracting water.
  • the lithium solution can be concentrated to a Li 2 O content of 40 g/L, and filtered to obtain a concentrated liquid.
  • This concentrate can enter the lithium salt production workshop for the preparation of lithium carbonate, lithium hydroxide and other products. The specific process is shown in Figure 1.
  • the filtrate obtained was a lithium solution, and its composition is shown in Table 9.
  • the obtained filter residue is leaching slag, and the Li 2 O content in the slag is ⁇ 0.30%, and the composition thereof is shown in Table 10.
  • the leaching slag enters the slag field as a building material; the washing water returns to step (1) for extracting water.
  • the filtrate obtained in the step (5) was concentrated to a Li 2 O content of 55 g/L, and filtered to obtain a concentrated liquid.
  • the concentrated solution was heated to 90 ° C, adjusted to pH 11-13 with NaOH, and added with a molar ratio of 1.2 times sodium carbonate according to the contents of Ca 2+ and Mg 2+ . After 30 min of incubation, the mixture was filtered to obtain a net liquid.
  • the composition of the liquid is shown in Table 11.
  • the obtained filter residue is an alkalized slag containing a certain amount of valuable metal elements such as Co and Ni, and the alkalized slag composition is shown in Table 12.
  • the slag can be sold as a building material in the slag yard, and further as a raw material for extracting Co and Ni.
  • the net completion liquid obtained in the step (6) is slowly added dropwise to an equimolar amount of a sodium carbonate solution (270 g/L) at a temperature of 95 ° C to carry out a lithium deposition reaction, and after thorough reaction, it is filtered and washed to obtain a solid lithium carbonate.
  • the obtained lithium carbonate meets the requirements of the "YS/T582-2013 battery grade lithium carbonate" standard, and the composition of the obtained battery grade lithium carbonate product is shown in Table 13.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Manufacturing & Machinery (AREA)
  • Mechanical Engineering (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geology (AREA)
  • Environmental & Geological Engineering (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Metallurgy (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Processing Of Solid Wastes (AREA)
  • Manufacture And Refinement Of Metals (AREA)
  • Secondary Cells (AREA)

Abstract

一种从火法回收电池材料产生的炉渣中提取锂的方法,包括如下步骤:a、将炉渣酸化,得混酸料,按质量比,混酸料中的炉渣:H 2O:H 2SO 4=1:15~25:0.5~1.25;b、将混酸料进行保温反应,温度为50~100℃,反应时间为2~4小时,得酸浸料;c、调节酸浸料的pH为4.0~6.5,得中和浆料;d、将中和浆料过滤,所得滤液即为锂溶液。该方法解决了炉渣中金属杂质组分多、含量高的问题,从铝、钙含量较高的炉渣中提取锂元素,使炉渣经济价值最大化,且工艺条件简单,可操作性强,易于实现。

Description

从火法回收锂电池产生的炉渣中提取锂的方法 技术领域
本发明涉及从火法回收锂电池产生的炉渣中提取锂的方法,属于能源材料技术领域。
背景技术
近年来,消费类电子产品、电动车和电网储能三大领域得到迅猛发展,对锂离子电池的发展起了巨大推动作用。随着锂离子电池在市场投放数量越来越多和市场上锂离子电池逐步完成生命周期,废旧锂离子电池数量将会愈来愈多,废旧锂离子电池的回收处理势在必行。废旧锂离子电池的回收不仅可以避免对环境造成污染,也可以缓解资源需求和供应之间的矛盾,减缓对锂资源的担忧。
锂离子电池回收技术可分为湿法回收和火法回收。湿法是以无机酸溶液将废旧电池中的各有价成分浸出后,再以络合交换法、碱煮-酸溶法、酸溶-萃取-沉淀法等加以回收。火法主要是通过高温焚烧分解去除起黏结作用的有机物,以实现锂电池组成材料间的分离,同时可使电池中的金属及其化合物氧化、还原并分解,在其以蒸气形式挥发后,用冷凝等方法将其收集。在火法处理废旧锂离子电池过程中,电池和助熔剂(氧化钙、氧化硅)一起高温熔融,其中的钴和镍被回收,负载金属铝箔和助熔剂则生成了新的、不稳定的物相—硅铝酸盐,主要包括硅铝酸钠钙和硅铝酸锂钾,这也是炉渣的主要成分。锂电池中的钴和镍的提取价值较高而被优先提取;锂的提取工艺复杂,成本较高,因此提取钴镍后的含锂炉渣作为建筑材料使用,通常是将炉渣作为废料销往建筑工业制作水泥,导致其中宝贵的锂资源浪费。
目前,国内外对炉渣的技术处理仅有少量的相关报道。
专利WO2011141297A1公开了一种将电池火法产生的炉渣运用于建筑材料的方法,主要步骤如下:降低含锂合金冶炼温度,得到金属相与富锂炉渣,分离、冷却、凝固炉渣,雾化粉碎炉渣≤1mm,将粉末炉渣作为建筑材料添加剂添加至混凝土生产前工序。该方法利用炉渣带锂特性减少混泥土中碱金属的反应,解决了电池火法回收中产生炉渣的利用问题,但没有将其中的锂元素提炼出来,没有使炉渣经济价值最大化。
专利CN103219561A提到了从锰酸锂电池冶炼炉渣中提取锂的一种方法,主要步 骤如下:将锰酸锂电池正极片于300~600℃加热1~4h,然后分离铝箔,得到锰酸锂正极材料、导电剂和粘结剂的混合物。混合物于1000~1200℃煅烧1~3h,然后造球;造球后的混合物与碳质还原剂、硅石、石灰按重量比100:18~22:13~17:14~18混匀,然后电炉冶炼1~3h,得到锰硅合金和炉渣;炉渣酸浸得到含锂溶液,再加入碳酸钠溶液沉淀,过滤,得到碳酸锂。该方法工艺较为复杂,且在实验前步骤中已经分离铝箔,因此冶炼炉渣中铝含量低,该专利所提供的方法不适用于含铝量较高的炉渣。
废旧锂离子电池火法回收工艺产生的炉渣成分复杂,但含有较高品位的锂资源,经济附加值较高。如果能够寻找一种方法提取出炉渣中的锂,不仅解决了固体废料的处理问题,又增加了一项重要的提锂资源,创造巨大经济效益。
发明内容
本发明解决的技术问题是提供一种从火法回收锂电池产生的炉渣中提取锂的方法,使炉渣的价值最大化。
本发明从火法回收锂电池产生的炉渣中提取锂的方法,包括如下步骤:
a、将炉渣酸化,得混酸料,按质量比,混酸料中的炉渣:H2O:H2SO4=1:15~25:0.5~1.25;
b、将混酸料进行保温反应,温度为50~100℃,反应时间为2~4小时,得酸浸料;
c、调节酸浸料的pH为4.0~6.5,得中和浆料;
d、将中和浆料固液分离,所得液体即为锂溶液。
本发明从火法回收锂电池产生的炉渣中提取锂的方法,还包括步骤e,所述步骤e为:从锂溶液中制备得到锂盐。
进一步的,所述步骤e优选为:将锂溶液浓缩至Li2O含量为40~70g/L,得浓缩液,将此浓缩液制备得到碳酸锂或氢氧化锂。
本发明所述锂电池为含锂电池,优选锂离子电池或者以金属锂或锂合金作负极的锂电池。
其中,a步骤中,所述混酸料的固液比为1:15~25。
进一步的,c步骤中,加入碱来调节酸浸料的pH值,所述碱为碳酸钙、氢氧化钙、碳酸钠、氢氧化钠中的至少一种,优选为氢氧化钙。
进一步的,d步骤中,固液分离后,洗涤,洗水返回a步骤使用,所得滤渣作为 建筑材料销售。
进一步的,a步骤所述的炉渣中,优选包含以下重量百分比的组分:Li2O:2~20%,Co:0.1~0.3%,Ni:0.02~0.06%,Mn:1~2%,Ca:1~25%,Mg:2~4%,Fe:0.5~2.5%,Si:10~20%,Al:1~20%。
本发明从火法回收锂电池产生的炉渣中提取锂的方法,可以从铝、钙含量较高的火法回收电池后的炉渣中提取锂元素。与现有技术相比,本发明具有以下有益效果:
1、回收炉渣中的锂元素,生成氢氧化锂、碳酸锂等高附加值产品,使炉渣经济价值最大化。
2、该工艺条件为一般化学工艺条件,可操作性强,易于实现。
3、在调节pH过程中,一步解决金属杂质组分多、含量高等问题。
4、炉渣中含有一定量的Co、Ni等有价金属元素,可进一步进行回收利用。
附图说明
图1为本发明从火法回收锂电池产生的炉渣中提取锂的工艺流程图。
具体实施方式
本发明从火法回收锂电池产生的炉渣中提取锂的方法,包括如下步骤:
a、将炉渣酸化,得混酸料,按质量比,混酸料中的炉渣:H2O:H2SO4=1:15~25:0.5~1.25;
b、将混酸料进行保温反应,温度为50~100℃,反应时间为2~4小时,得酸浸料;
c、调节酸浸料的pH为4.0~6.5,得中和浆料;
d、将中和浆料固液分离,所得液体即为锂溶液。
本发明从火法回收锂电池产生的炉渣中提取锂的方法,还包括步骤e,所述步骤e为:从锂溶液中制备得到锂盐。本领域常用的从锂溶液中制备得到锂盐的方法均适用于本发明。
进一步的,所述步骤e优选为:将锂溶液浓缩至Li2O含量为40~70g/L,得浓缩液,将此浓缩液制备得到碳酸锂或氢氧化锂。本领域常用的从锂溶液制备得到碳酸锂或氢氧化锂的方法均适用于本发明。
本发明所述锂电池为各种含锂电池,包括各种锂离子电池和金属锂及合金作负极的锂电池。
其中,a步骤中的酸化可以先将炉渣加水后,再加入浓硫酸,也可以先将浓硫酸与水混合后,再与炉渣混合,还可以直接将炉渣与稀硫酸混合,只需要保证最后所得的混酸料中,炉渣:水:浓硫酸的质量比为1:15~25:0.5~1.25即可。所述浓硫酸的浓度大于95wt%。
a步骤中,所述混酸料的固液比为1:20。
进一步的,b步骤保温反应时可以进行搅拌。
c步骤中,加入碱来调节酸浸料的pH值,所述碱为碳酸钙、氢氧化钙、碳酸钠、氢氧化钠中的一种或几种,优选为氢氧化钙。
d步骤中,固液分离后,洗涤,洗水返回a步骤使用,所得滤渣Li2O含量<0.30wt%,可作为建筑材料销售。
本发明针对的火法回收锂电池产生的炉渣具有以下几个特点:体系复杂,以不稳定的硅铝酸盐为主体,金属杂质种类多,分离难度系数大;部分金属杂质尤其是钙、铝含量高,更加大了处理的难度。
进一步的,a步骤所述的炉渣中包含以下重量百分比的组分:Li2O:2~20%,Co:0.1~0.3%,Ni:0.02~0.06%,Mn:1~2%,Ca:1~25%,Mg:2~4%,Fe:0.5~2.5%,Si:10~20%,Al:1~20%。
具体的,本发明可采用如下具体步骤来实现:
(1)将炉渣与提取水按重量比1:15~25混匀得混合浆料;
(2)在步骤(1)所得混合浆料中缓慢加入浓硫酸(>95%),浓硫酸与炉渣质量比为1:0.8~2;
(3)将步骤(2)所得混酸料保温反应,温度为50~100℃,反应时间为2~4小时,得酸浸料;
(4)将步骤(3)所得酸浸料加入碱调节pH为4.0~6.5,得中和浆料;碱可以是碳酸钙、氢氧化钙、碳酸钠、氢氧化钠中的一种或几种,优选为碳酸钙;
(5)抽滤,洗涤;所得滤液进入下一步工序,洗水返回步骤(1)做提取水使用;所得滤渣Li2O含量<0.30%,作为建筑材料销售;
(6)将步骤(5)所得滤液浓缩至Li2O含量为40~70g/L,得浓缩液,将此浓缩液转入基础锂盐车间制备碳酸锂或氢氧化锂。
下面结合实施例对本发明的具体实施方式做进一步的描述,并不因此将本发明限 制在所述的实施例范围之中。在实施例中如无特别说明,百分数均为质量百分数。
实施例1
按照如下步骤从火法回收锂电池产生的炉渣中提取锂:
(1)将称取炉渣30g,加水450mL,搅拌均匀。
(2)缓慢加入浓硫酸37.5g,搅拌,得酸浸料。
(3)保持温度为85℃,反应时间为4小时。
(4)反应完后加入碳酸钙调节pH=5.5,得中和浆料。
(5)抽滤,洗涤。所得滤液即为锂溶液,其组成见表1。所得滤渣为浸出渣,渣中Li2O含量<0.30%,其组成见表2,该浸出渣进入渣场作为建筑材料销售;洗水返回步骤(1)做提取水用。
锂溶液可浓缩至Li2O含量为40g/L,过滤,得浓缩液。此浓缩液可进入锂盐生产车间,用于制备碳酸锂、氢氧化锂等产品。具体流程详见图1。
表1 锂溶液组成(单位:g/L)
Li2O Ca Al Fe Mg Co Ni Mn
3.5 0.57 0.0084 0.18 0.61 0.055 0.0089 0.48
表2 浸出渣组成(单位:%)
Li2O Ca Al
0.22 23.18 11.85
实施例2
按照如下步骤从火法回收锂电池产生的炉渣中提取锂:
(1)将称取炉渣30g,加水750mL,搅拌均匀。
(2)缓慢加入浓硫酸15g,搅拌,得酸浸料。
(3)保持温度为100℃,反应时间为2小时。
(4)反应完后加入氢氧化钙调节pH=6.5,得中和浆料。
(5)抽滤,洗涤。所得滤液即为锂溶液,其组成见表3。所得滤渣为浸出渣,渣中Li2O含量<0.30%,其组成见表4,该浸出渣进入渣场作为建筑材料销售;洗水返回步骤(1)做提取水用。
该锂溶液可浓缩至Li2O含量为70g/L,过滤,得浓缩液。此浓缩液可进入锂盐生产车间,用于制备碳酸锂、氢氧化锂等产品。具体流程详见图1。
表3 锂溶液组成(单位:g/L)
Li2O Ca Al Fe Mg Co Ni Mn
2.2 0.60 0.0007 0.011 0.90 0.055 0.011 0.56
表4 浸出渣组成(单位:%)
Li2O Ca Al
0.18 21.66 12.81
实施例3
按照如下步骤从火法回收锂电池产生的炉渣中提取锂:
(1)将称取炉渣30g,加水450mL,搅拌均匀。
(2)缓慢加入浓硫酸37.5g,搅拌,得酸浸料。
(3)保持温度为50℃,反应时间为4小时。
(4)反应完后加入氢氧化钠调节pH=4.0,得中和浆料。
(5)抽滤,洗涤。所得滤液即为锂溶液,其组成见表5。所得滤渣为浸出渣,渣中Li2O含量<0.30%,其组成见表6,该浸出渣进入渣场作为建筑材料销售;洗水返回步骤(1)做提取水用。
锂溶液可浓缩至Li2O含量为40g/L,过滤,得浓缩液。此浓缩液可进入锂盐生产车间,用于制备碳酸锂、氢氧化锂等产品。具体流程详见图1。
表5 锂溶液组成(单位:g/L)
Li2O Ca Al Fe Mg Co Ni Mn
3.45 0.63 0.15 0.33 1.18 0.18 0.035 0.81
表6 浸出渣组成(单位:%)
Li2O Ca Al
0.19 20.81 11.86
实施例4
按照如下步骤从火法回收锂电池产生的炉渣中提取锂:
(1)将称取炉渣30g,加水450mL,搅拌均匀。
(2)缓慢加入浓硫酸37.5g,搅拌,得酸浸料。
(3)保持温度为100℃,反应时间为2小时。
(4)反应完后加入碳酸钠调节pH=5.0,得中和浆料。
(5)抽滤,洗涤。所得滤液即为锂溶液,其组成见表7。所得滤渣为浸出渣,渣中Li2O含量<0.30%,其组成见表8,该浸出渣进入渣场作为建筑材料销售;洗水返回步骤(1)做提取水用。
锂溶液可浓缩至Li2O含量为40g/L,过滤,得浓缩液。此浓缩液可进入锂盐生产车间,用于制备碳酸锂、氢氧化锂等产品。具体流程详见图1。
表7 锂溶液组成(单位:g/L)
Li2O Ca Al Fe Mg Co Ni Mn
3.49 0.57 0.0087 0.027 0.81 0.14 0.045 0.73
表8 浸出渣组成(单位:%)
Li2O Ca Al
0.25 22.11 10.93
实施例5
按照如下步骤从火法回收锂电池产生的炉渣中提取锂:
(1)将称取炉渣3000g,加水60L,搅拌均匀,。
(2)缓慢加入浓硫酸3000g,搅拌,得酸浸料。
(3)保持温度为90℃,反应时间为3小时。
(4)反应完后加入碳酸钙调节pH=6.0,得中和浆料。
(5)抽滤,洗涤。所得滤液即为锂溶液,其组成见表9。所得滤渣为浸出渣,渣中Li2O含量<0.30%,其组成见表10,该浸出渣进入渣场作为建筑材料销售;洗水返回步骤(1)做提取水用。
(6)将步骤(5)所得滤液浓缩至Li2O含量为55g/L,过滤,得浓缩液。将此浓缩液升温至90℃,用NaOH调pH为11~13,并按Ca2+、Mg2+的含量加入摩尔比为 1.2倍的碳酸钠,保温30min后过滤,得到净完液,净完液组成见表11。所得滤渣为碱化渣,含有一定量的Co、Ni等有价金属元素,碱化渣组成见表12。该渣可进入渣场作为建筑材料销售,进一步的,也可以作为提取Co、Ni的原材料。
(7)将步骤(6)所得净完液缓慢滴加到等摩尔量的温度为95℃的碳酸钠溶液(270g/L)中进行沉锂反应,充分反应后过滤并洗涤得到固体碳酸锂,所得碳酸锂符合《YS/T582-2013电池级碳酸锂》标准要求,所得电池级碳酸锂产品组成见表13。
该沉锂反应的方程式是:Na2CO3+Li2SO4=Li2CO3↓+Na2SO4
表9 锂溶液组成(单位:g/L)
Li2O Ca Al Fe Mg Co Ni Mn
2.8 0.62 0.0019 0.0098 0.90 0.055 0.011 0.56
表10 浸出渣组成(单位:%)
Li2O Ca Al
0.21 22.57 12.09
表11 净完液组成(单位:g/L)
Li2O Ca Al Fe Mg Co Ni Mn
56.5 0.0005 ND ND 0.00005 ND ND ND
表12 碱化渣数据(洗涤后)
Li2O Ca Al Fe Mg Co Ni Mn
0.21 7.84 0.19 2.49 17.77 2.19 0.46 9.05
表13 碳酸锂产品组成(单位%)
Li2CO3 Na K Ca Mg Si Fe Al
99.77 0.017 0.0005 0.0016 0.00005 0.0003 0.0001 0.00005
Zn Cu Pb Ni Co Mn Cl- SO4 2-
ND ND ND ND ND ND 0.0006 0.051
(说明:ND表示未检出,即Not Detected)

Claims (10)

  1. 从火法回收锂电池产生的炉渣中提取锂的方法,其特征在于,包括如下步骤:
    a、将炉渣酸化,得混酸料,按质量比,混酸料中的炉渣:H2O:H2SO4=1:15~25:0.5~1.25;
    b、将混酸料进行保温反应,温度为50~100℃,反应时间为2~4小时,得酸浸料;
    c、调节酸浸料的pH为4.0~6.5,得中和浆料;
    d、将中和浆料固液分离,所得液体即为锂溶液。
  2. 根据权利要求1所述的从火法回收锂电池产生的炉渣中提取锂的方法,其特征在于:所述锂电池为含锂电池。
  3. 根据权利要求2所述的从火法回收锂电池产生的炉渣中提取锂的方法,其特征在于:所述锂电池为锂离子电池,或者以金属锂或锂合金作负极的锂电池。
  4. 根据权利要求2所述的从火法回收锂电池产生的炉渣中提取锂的方法,其特征在于:所述的炉渣包含以下重量百分比的组分:Li2O:2~20%,Co:0.1~0.3%,Ni:0.02~0.06%,Mn:1~2%,Ca:1~25%,Mg:2~4%,Fe:0.5~2.5%,Si:10~20%,Al:1~20%。
  5. 根据权利要求1所述的从火法回收锂电池产生的炉渣中提取锂的方法,其特征在于:还包括步骤e,所述步骤e为:从锂溶液中制备得到锂盐。
  6. 根据权利要求5所述的从火法回收锂电池产生的炉渣中提取锂的方法,其特征在于:所述步骤e为:将锂溶液浓缩至Li2O含量为40~70g/L,得浓缩液,将此浓缩液制备得到碳酸锂或氢氧化锂。
  7. 根据权利要求1~6任一项所述的从火法回收锂电池产生的炉渣中提取锂的方法,其特征在于:a步骤中,所述混酸料的固液比为1:15~25。
  8. 根据权利要求1~7任一项所述的从火法回收锂电池产生的炉渣中提取锂的方法,其特征在于:c步骤中,加入碱来调节酸浸料的pH值,所述碱为碳酸钙、氢氧化钙、碳酸钠、氢氧化钠中的至少一种。
  9. 根据权利要求8所述的从火法回收锂电池产生的炉渣中提取锂的方法,其特征在于:c步骤中,所述碱为氢氧化钙。
  10. 根据权利要求1~9任一项所述的从火法回收锂电池产生的炉渣中提取锂的方 法,其特征在于:d步骤中,固液分离后,洗涤,洗水返回a步骤使用,所得滤渣作为建筑材料销售。
PCT/CN2017/074133 2016-04-20 2017-02-20 从火法回收锂电池产生的炉渣中提取锂的方法 WO2017181766A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201610248214.X 2016-04-20
CN201610248214.XA CN105907983A (zh) 2016-04-20 2016-04-20 从火法回收锂电池产生的炉渣中提取锂的方法

Publications (1)

Publication Number Publication Date
WO2017181766A1 true WO2017181766A1 (zh) 2017-10-26

Family

ID=56747604

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2017/074133 WO2017181766A1 (zh) 2016-04-20 2017-02-20 从火法回收锂电池产生的炉渣中提取锂的方法

Country Status (2)

Country Link
CN (1) CN105907983A (zh)
WO (1) WO2017181766A1 (zh)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981107A (zh) * 2021-02-07 2021-06-18 余姚市鑫和电池材料有限公司 一种废旧三元锂电池正极材料回收碳酸锂的方法
CN114031090A (zh) * 2021-11-18 2022-02-11 中山市清融嘉创能源科技有限责任公司 一种高镁锂比卤水制备β-锂辉石的方法

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105907983A (zh) * 2016-04-20 2016-08-31 天齐锂业股份有限公司 从火法回收锂电池产生的炉渣中提取锂的方法
CN108070725B (zh) 2016-11-07 2021-06-25 尤米科尔公司 回收锂的方法
TWI746818B (zh) * 2017-04-07 2021-11-21 比利時商烏明克公司 回收鋰之程序
CN108384955A (zh) * 2018-03-20 2018-08-10 中国科学院过程工程研究所 一种从含锂电池废料中选择性提锂的方法
CN110152438A (zh) * 2019-02-21 2019-08-23 邬佩希 一种工业废气和废旧电池的综合处理方法
US20220223933A1 (en) * 2019-04-19 2022-07-14 Umicore Process for the preparation of battery precursors
CN113149039B (zh) * 2021-04-30 2023-03-03 四川万邦胜辉新能源科技有限公司 一种锂辉石热还原制氢氧化锂的方法
CN115072746A (zh) * 2022-05-24 2022-09-20 广东邦普循环科技有限公司 一种mvr系统渣样回收锂及硅的方法

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311110A (zh) * 2011-10-20 2012-01-11 四川天齐锂业股份有限公司 一种以锂矿为锂源生产磷酸亚铁锂的成套循环制备方法
CN102417995A (zh) * 2011-11-14 2012-04-18 山东瑞福锂业有限公司 锂辉石精矿氟化学提锂工艺
WO2013140039A1 (en) * 2012-03-19 2013-09-26 Outotec Oyj Method for recovering lithium carbonate
CN103950956A (zh) * 2014-05-22 2014-07-30 甘孜州泸兴锂业有限公司 一种锂辉石精矿硫酸法生产碳酸锂工艺
US20150152523A1 (en) * 2012-08-13 2015-06-04 Yatendra Sharma Processing of lithium containing material
CN105907983A (zh) * 2016-04-20 2016-08-31 天齐锂业股份有限公司 从火法回收锂电池产生的炉渣中提取锂的方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4492222B2 (ja) * 2004-06-21 2010-06-30 トヨタ自動車株式会社 リチウム電池処理方法
TWI520410B (zh) * 2009-09-25 2016-02-01 烏明克公司 自鋰離子電池回收再用(valorization)金屬的方法
CN101942569B (zh) * 2010-10-28 2013-03-13 湖南邦普循环科技有限公司 一种从废旧锂离子电池及废旧极片中回收锂的方法
CN103219561B (zh) * 2013-03-28 2015-08-19 四川天齐锂业股份有限公司 锰酸锂电池正极材料回收方法

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102311110A (zh) * 2011-10-20 2012-01-11 四川天齐锂业股份有限公司 一种以锂矿为锂源生产磷酸亚铁锂的成套循环制备方法
CN102417995A (zh) * 2011-11-14 2012-04-18 山东瑞福锂业有限公司 锂辉石精矿氟化学提锂工艺
WO2013140039A1 (en) * 2012-03-19 2013-09-26 Outotec Oyj Method for recovering lithium carbonate
US20150152523A1 (en) * 2012-08-13 2015-06-04 Yatendra Sharma Processing of lithium containing material
CN103950956A (zh) * 2014-05-22 2014-07-30 甘孜州泸兴锂业有限公司 一种锂辉石精矿硫酸法生产碳酸锂工艺
CN105907983A (zh) * 2016-04-20 2016-08-31 天齐锂业股份有限公司 从火法回收锂电池产生的炉渣中提取锂的方法

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN112981107A (zh) * 2021-02-07 2021-06-18 余姚市鑫和电池材料有限公司 一种废旧三元锂电池正极材料回收碳酸锂的方法
CN112981107B (zh) * 2021-02-07 2022-09-23 余姚市鑫和电池材料有限公司 一种废旧三元锂电池正极材料回收碳酸锂的方法
CN114031090A (zh) * 2021-11-18 2022-02-11 中山市清融嘉创能源科技有限责任公司 一种高镁锂比卤水制备β-锂辉石的方法
CN114031090B (zh) * 2021-11-18 2023-07-18 中山市清融嘉创能源科技有限责任公司 一种高镁锂比卤水制备β-锂辉石的方法

Also Published As

Publication number Publication date
CN105907983A (zh) 2016-08-31

Similar Documents

Publication Publication Date Title
WO2017181766A1 (zh) 从火法回收锂电池产生的炉渣中提取锂的方法
CN109449523B (zh) 一种废旧锂离子电池综合回收方法
CN111646447B (zh) 一种从磷酸铁锂电池提锂后的铁磷渣中回收磷酸铁的方法
EP2450991B1 (en) Plant and process for the treatment of exhausted accumulators and batteries
CN104659438B (zh) 一种利用废电池制备三元正极材料前驱体的方法
CN109095481B (zh) 一种磷酸铁锂废粉的综合回收方法
CN104466295B (zh) 镍钴锰酸锂废锂离子电池中正极活性材料的再生方法
CN108642304B (zh) 一种磷酸铁锂废料的综合回收方法
WO2022041845A1 (zh) 一种镍钴锰溶液中除氟的回收方法
CN105742744B (zh) 一种从废旧锂离子电池回收过程产生的含锂废液中提取锂的方法
CN104466294B (zh) 从镍钴锰酸锂废电池中回收金属的方法
CN108767353B (zh) 从废旧锂离子电池正极活性材料生产富锂净液的方法
KR20170061206A (ko) 폐 리튬 이온 전지를 이용한 전구체 원료의 회수 방법
CN102891345A (zh) 从磷酸亚铁锂废料中回收氯化锂的方法
CN111471864A (zh) 一种废旧锂离子电池浸出液中回收铜、铝、铁的方法
CN103911514A (zh) 废旧硬质合金磨削料的回收处理方法
CN105024072A (zh) 一种利用含铁萃余液制备锂离子电池用正磷酸铁的方法
CN114132909A (zh) 一种从退役磷酸锰铁锂电池废料中回收纯金属盐的方法
KR101997983B1 (ko) 리튬이차전지 폐 양극재를 재생하여 칼슘 농도가 낮은 니켈-코발트-망간 복합 황산염 용액을 제조하는 방법
CN113292057A (zh) 一种废旧磷酸铁锂电池的回收方法
CN109609761A (zh) 一种废旧锂离子电池的回收方法
CN108063295B (zh) 从火法回收锂电池产生的炉渣中提取锂的方法
CN111924816A (zh) 一种废旧锂离子电池电解液的回收方法
CN102881960A (zh) 从磷酸亚铁锂废料中回收氢氧化锂的方法
CN113955753A (zh) 一种废旧磷酸铁锂电池粉的回收方法

Legal Events

Date Code Title Description
NENP Non-entry into the national phase

Ref country code: DE

121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 17785252

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 17785252

Country of ref document: EP

Kind code of ref document: A1