WO2020124671A1 - 多波束同频微波探测天线及其制造方法和检测方法 - Google Patents

多波束同频微波探测天线及其制造方法和检测方法 Download PDF

Info

Publication number
WO2020124671A1
WO2020124671A1 PCT/CN2018/124539 CN2018124539W WO2020124671A1 WO 2020124671 A1 WO2020124671 A1 WO 2020124671A1 CN 2018124539 W CN2018124539 W CN 2018124539W WO 2020124671 A1 WO2020124671 A1 WO 2020124671A1
Authority
WO
WIPO (PCT)
Prior art keywords
substrate
reference ground
radiation
radiation source
microwave
Prior art date
Application number
PCT/CN2018/124539
Other languages
English (en)
French (fr)
Inventor
邹高迪
邹新
Original Assignee
深圳迈睿智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈睿智能科技有限公司 filed Critical 深圳迈睿智能科技有限公司
Publication of WO2020124671A1 publication Critical patent/WO2020124671A1/zh

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/22Supports; Mounting means by structural association with other equipment or articles
    • H01Q1/24Supports; Mounting means by structural association with other equipment or articles with receiving set
    • H01Q1/247Supports; Mounting means by structural association with other equipment or articles with receiving set with frequency mixer, e.g. for direct satellite reception or Doppler radar
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/061Two dimensional planar arrays
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/35Details of non-pulse systems
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R29/00Arrangements for measuring or indicating electric quantities not covered by groups G01R19/00 - G01R27/00
    • G01R29/08Measuring electromagnetic field characteristics
    • G01R29/0864Measuring electromagnetic field characteristics characterised by constructional or functional features
    • G01R29/0878Sensors; antennas; probes; detectors
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/02Systems using reflection of radio waves, e.g. primary radar systems; Analogous systems
    • G01S13/50Systems of measurement based on relative movement of target
    • G01S13/505Systems of measurement based on relative movement of target using Doppler effect for determining closest range to a target or corresponding time, e.g. miss-distance indicator
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/023Interference mitigation, e.g. reducing or avoiding non-intentional interference with other HF-transmitters, base station transmitters for mobile communication or other radar systems, e.g. using electro-magnetic interference [EMI] reduction techniques
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/36Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith
    • H01Q1/38Structural form of radiating elements, e.g. cone, spiral, umbrella; Particular materials used therewith formed by a conductive layer on an insulating support
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/145Reflecting surfaces; Equivalent structures comprising a plurality of reflecting particles, e.g. radar chaff
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q19/00Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic
    • H01Q19/10Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces
    • H01Q19/104Combinations of primary active antenna elements and units with secondary devices, e.g. with quasi-optical devices, for giving the antenna a desired directional characteristic using reflecting surfaces using a substantially flat reflector for deflecting the radiated beam, e.g. periscopic antennas
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/06Arrays of individually energised antenna units similarly polarised and spaced apart
    • H01Q21/20Arrays of individually energised antenna units similarly polarised and spaced apart the units being spaced along or adjacent to a curvilinear path
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q21/00Antenna arrays or systems
    • H01Q21/29Combinations of different interacting antenna units for giving a desired directional characteristic
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/02Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical movement of antenna or antenna system as a whole
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q3/00Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system
    • H01Q3/12Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems
    • H01Q3/16Arrangements for changing or varying the orientation or the shape of the directional pattern of the waves radiated from an antenna or antenna system using mechanical relative movement between primary active elements and secondary devices of antennas or antenna systems for varying relative position of primary active element and a reflecting device
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/526Electromagnetic shields

Definitions

  • the invention relates to the field of microwave antennas, in particular to a multi-beam co-frequency microwave detection antenna, a manufacturing method and a detection method thereof.
  • microwave detectors In recent years, with the development of microwave technology, more and more products using microwave technology have appeared on the market, for example, microwave detectors.
  • Common microwave detectors can emit microwaves and receive reflected microwave signals, and use the Doppler effect principle to detect whether there are moving objects in the target area.
  • Microwave detectors have a high sensitivity to the movement of objects that reflect microwaves, and the microwave signals generated by microwave detectors are not affected by factors such as ambient temperature and humidity. Compared with infrared detectors, they have a higher reliability. Therefore, microwave detectors are widely used in industrial production and our daily lives, for example, vehicle speed measurement, supermarket automatic doors, automatic lights, automatic toilets, etc.
  • Existing microwave detectors use an antenna to emit a microwave beam of a specific frequency to detect the motion state of objects in the target area in a target area.
  • the return received by the antenna The frequency of the microwave of the antenna does not change.
  • the frequency of the microwave received by the antenna changes, so that the motion state of the object can be calculated according to the change of frequency in the future, for example The specific position, speed and direction of the object.
  • the existing microwave detector still has many problems in the process of detecting the motion state of objects in the target area.
  • the area of microwave radiation generated by the microwave detector is fixed, that is, the detection area of the microwave detector is limited, and it is difficult to comprehensively detect the motion state of objects in the target area using only one antenna, which will affect The accuracy of the test results.
  • the detection area of the microwave detector can be expanded by using two or more microwave detectors, that is, by increasing the number of microwave detectors and distributing different microwave detectors at different positions
  • Expand the detection area such as covering multiple detection spaces with multiple microwave detectors in layers, partitions, and angles to achieve layered, partition, and angle detection of the detection space to obtain moving objects It is used to detect the position and distribution of space, and calculate the moving trajectory, moving direction and moving speed of moving objects according to this information, so as to realize the trajectory prediction, behavior purpose judgment and state judgment of moving objects.
  • the microwave detectors arranged in different areas have their own independent circuits, and the circuits of different microwave detectors are connected to external circuits through wires, and the changes are caused by changing electric fields.
  • the magnetic field, and the changing magnetic field produces a changing electric field.
  • the changing electric field and the changing magnetic field depend on each other and excite each other, and the changing electric field and the changing magnetic field are generated alternately, thereby generating microwaves, and the antenna is outward. Radiate microwave.
  • the microwave detectors due to differences in the parameters of electrical components in different circuits, it is difficult for the microwave detectors to radiate the frequency of microwaves to be consistent and synchronized.
  • each microwave detector detects the same target area
  • each microwave The microwaves emitted by the detectors will interfere with each other.
  • the frequency of the microwaves emitted by the microwave detectors in the overlapping area is difficult to be consistent, or even if the frequencies are consistent
  • the microwave radiated by one antenna is at the peak, and the microwave radiated by the other antenna is at a phase inconsistent with the trough.
  • a cumbersome algorithm needs to be used to solve the related parameters of the frequency of the received microwave. For example, it is necessary to calculate the parameters of the different frequency differences of the received microwaves.
  • microwave detectors that are distributed and installed to cover the same area will interfere with each other.
  • the microwave beams radiated by each microwave detector will generate mutual interference between the side lobes (such as side lobes and back lobes) other than the main lobe, so that the microwave detectors Can not work normally.
  • An object of the present invention is to provide a multi-beam co-frequency microwave detection antenna, a manufacturing method and a detection method thereof, wherein the multi-beam co-frequency microwave detection antenna includes at least two radiation sources, and the radiation sources are electrically connected to the same oscillation In the circuit unit, the different radiation sources can radiate microwave beams with the same frequency outwards, so that the multi-beam co-frequency microwave detection antenna simultaneously emits multiple beams with the same frequency and can independently detect or combine detections. Microwave beam.
  • Another object of the present invention is to provide a multi-beam co-frequency microwave detection antenna, a manufacturing method and a detection method thereof, wherein the multi-beam co-frequency microwave detection antenna utilizes a detection area formed by multiple microwave beams having the same frequency Covering a target area and detecting the target area to obtain the motion state of the target object in the target area.
  • Another object of the present invention is to provide a multi-beam co-frequency microwave detection antenna, a manufacturing method and a detection method thereof, wherein the multi-beam co-frequency microwave detection antenna can simultaneously emit multiple microwave beams with the same frequency outwards to It is avoided that the microwave beams interfere with each other during transmission and reception, so as to more reliably acquire the motion state of the target object in the target area.
  • Another object of the present invention is to provide a multi-beam co-frequency microwave detection antenna, a manufacturing method and a detection method thereof, wherein the multi-beam co-frequency microwave detection antenna utilizes multiple microwave beams having the same frequency to simultaneously detect a plurality of the targets The detection area, while expanding the detection range of the multi-beam co-frequency microwave detection antenna, improves the detection efficiency of the multi-beam co-frequency microwave detection antenna.
  • Another object of the present invention is to provide a multi-beam co-frequency microwave detection antenna, a manufacturing method and a detection method thereof, wherein the mutually independent microwave beams of the multi-beam co-frequency microwave detection antenna radiating outward have the same frequency,
  • the frequency parameters of the different microwave beams are unified, which is beneficial to simplifying related algorithms for acquiring the motion state of the target object.
  • Another object of the present invention is to provide a multi-beam co-frequency microwave detection antenna, a manufacturing method and a detection method thereof, wherein the detection area formed by the microwave beam can be dynamically adjusted, and then by changing the microwave beam formation The method of detecting the area more accurately determines the position and distribution of the target object in the target area.
  • Another object of the present invention is to provide a multi-beam co-frequency microwave detection antenna, a manufacturing method and a detection method thereof, wherein the detection area formed by each microwave beam of the same frequency can be dynamically adjusted to make the multi-beam co-frequency
  • the high-frequency microwave detection antenna can obtain the position and distribution of the target object in the target area, and accordingly calculate the motion state of the target object such as the moving trajectory, moving direction, and moving speed.
  • Another object of the present invention is to provide a multi-beam co-frequency microwave detection antenna, a manufacturing method and a detection method thereof, wherein the multi-beam co-frequency microwave detection antenna can obtain the motion state of the target object in the target area,
  • the motion purpose of the target object can be predicted according to the detected motion state of the target object, so as to realize analysis and judgment of human posture and prediction of behavior purpose when the target object is a human body.
  • Another object of the present invention is to provide a multi-beam co-frequency microwave detection antenna and its manufacturing method and detection method, wherein the radiation direction and radiation angle of the microwave beam can be changed, thereby enabling the detection of the microwave beam formation
  • the area is dynamically adjusted.
  • Another object of the present invention is to provide a multi-beam co-frequency microwave detection antenna, a manufacturing method and a detection method thereof, wherein the position of at least one of the radiation sources relative to other radiation sources can be adjusted, thereby changing the radiation source direction The radiation direction of the microwave beam radiated externally.
  • Another object of the present invention is to provide a multi-beam co-frequency microwave detection antenna, a manufacturing method and a detection method thereof, wherein the multi-beam co-frequency microwave detection antenna provides a reference ground, and the radiation sources are arranged at intervals in the The reference ground changes the direction of the radiation source by changing the extension direction of the reference ground, thereby changing the radiation direction of the microwave beam radiated outward by the radiation source.
  • Another object of the present invention is to provide a multi-beam co-frequency microwave detection antenna and its manufacturing method and detection method, wherein the multi-beam detection antenna provides a substrate, the reference ground is provided on the substrate, the substrate occurs While deforming, the extension direction of the reference ground is changed, thereby changing the radiation direction of the microwave beam generated by the radiation source held on one side of the reference ground.
  • Another object of the present invention is to provide a multi-beam co-frequency microwave detection antenna, a manufacturing method and a detection method thereof, wherein the reference ground includes at least two reference ground bodies corresponding to the number of the radiation sources, wherein the The reference ground body is provided on the substrate, and the extending direction of the reference ground body is changed by adjusting the extending direction of the substrate to change the orientation of the radiation source.
  • Another object of the present invention is to provide a multi-beam co-frequency microwave detection antenna, a manufacturing method and a detection method thereof, wherein the multi-beam co-frequency microwave detection antenna further includes a reflecting member, wherein the reflecting member is located at the radiation source The side of is movably held at the reference ground corresponding to the radiation source, and the direction of the radiation source is adjusted by changing the relative angle between a reflection surface of the reflector and the radiation source The radiation angle and radiation direction of the microwave beam radiated from outside.
  • Another object of the present invention is to provide a multi-beam co-frequency microwave detection antenna, a manufacturing method and a detection method thereof, wherein at least one of the radiation sources is changed relative to the other radiation sources by the reflector and the substrate To adjust the area covered by the microwave beam generated by the multi-beam co-frequency microwave detection antenna.
  • Another object of the present invention is to provide a multi-beam co-frequency microwave detection antenna, a manufacturing method and a detection method thereof, wherein the multi-beam co-frequency microwave detection antenna includes a mixing frequency detection circuit, and the mixing frequency detection circuits are respectively connected For the radiation source and the oscillating circuit unit, the mixing detection circuit receives electrical signals respectively generated by the corresponding microwave beam emitted by the radiation source and the received echo, and determines the The motion state of the object in the target area detected by the multi-beam co-frequency microwave detection antenna.
  • the present invention further provides a multi-beam co-frequency microwave detection antenna having an oscillating circuit unit, and the multi-beam co-frequency microwave detection antenna includes:
  • At least two radiation sources wherein the radiation source has a feeding point, the radiation sources are spaced apart at the reference ground, and a radiation is formed between each of the radiation sources and the reference ground A gap, and the feeding point of the radiation source is electrically connected to the oscillation circuit unit.
  • the multi-beam co-frequency microwave detection antenna further includes a substrate, wherein the reference ground is disposed on one side of the substrate, and the substrate can deform and change the reference ground Direction of extension.
  • the substrate is a flexible and deformable PCB board.
  • the reference ground includes a reference ground body corresponding to the number of the radiation sources, wherein the radiation sources are arranged at intervals on the reference ground body, and each of the radiation sources The radiation gaps are respectively formed between the corresponding reference ground main body, the reference ground main body is disposed on the substrate, and the extending direction of the reference ground main body is changed by deformation of the substrate.
  • the multi-beam co-frequency microwave detection antenna further includes a shielding cover corresponding to the number of the reference ground main bodies, and the shielding cover and the reference ground main body are respectively held on the substrate The opposite sides ensure that the part of the reference ground body corresponding to the radiation source is always kept in a plane and is always kept flat.
  • the shield case and the reference ground body are held on the same side of the substrate to ensure that the portion of the reference ground body corresponding to the radiation source is always kept on a plane, And always keep it flat.
  • the reference ground bodies are electrically connected to each other.
  • each of the reference ground bodies is integrally formed as an integral conductive metal layer.
  • the substrate includes a first substrate and a plurality of second substrates, the plurality of second substrates extend from the first substrate at intervals, and at least one of the reference ground bodies is provided For the first substrate, at least one of the reference ground bodies is provided on the second substrate, wherein the angle between the first substrate and each of the second substrates can be adjusted.
  • the multi-beam co-frequency microwave detection antenna further includes a substrate and a flexible connector
  • the substrate includes a first substrate and at least a second substrate
  • the reference ground includes A reference ground body corresponding to the number of the radiation sources
  • at least one of the reference ground bodies is disposed on the first substrate
  • at least one of the reference ground bodies is disposed on the second substrate
  • two of the flexible connectors Terminals are respectively connected to the first substrate and the second substrate
  • the flexible connector is electrically connected to the reference ground body corresponding to the first substrate and the corresponding to the second substrate, respectively
  • the first substrate is a PCB board
  • the second substrate is a flexible and deformable PCB board.
  • the first substrate and the second substrate are flexible and deformable PCB boards.
  • the multi-beam co-frequency microwave detection antenna further includes a reflecting member, wherein the reflecting member has a reflecting surface, the reflecting member is disposed at the reference ground, and the reflecting member An angle is formed between the reflection surface and the radiation source, and the reflection surface of the reflection member can change the radiation direction of the microwave beam generated by the radiation source.
  • the reflecting member is movably disposed on the reference ground.
  • the length of the reflector is greater than or equal to the length of the side length of the radiation source.
  • the width of the reflector is a parameter ⁇
  • the value range of the parameter ⁇ is: 1/16 ⁇ .
  • the reflector is made of metal.
  • the multi-beam co-frequency microwave detection antenna further includes at least one mixing detection circuit, wherein both ends of the mixing detection circuit are electrically connected to the oscillation circuit unit and the radiation source, respectively The feed point.
  • one end of each mixing detection circuit is electrically connected to the feeding point of one of the radiation sources, and the other end of the mixing detection circuit is electrically connected to the oscillation Circuit unit.
  • one end of each of the mixing detection circuits is electrically connected to the feeding points of at least two of the radiation sources, and the other end of the mixing detection circuit is electrically connected to all The oscillation circuit unit is described.
  • the radiation source of the multi-beam co-frequency microwave detection antenna is grounded.
  • the present invention further provides a method for manufacturing a multi-beam co-frequency microwave detection antenna.
  • the method includes the following steps:
  • the method further includes the step of setting the reference ground on a substrate, wherein when the substrate deforms, the extending direction of the reference ground is changed.
  • the method further includes the step of disposing the reflecting member at the reference ground with a reflecting surface of a reflecting member facing the radiation source.
  • the method further includes the step of movably disposing the reflecting member at the reference ground with a reflecting surface of a reflecting member facing the radiation source.
  • the method further includes the step of detachably installing at least one flexible connector on a first substrate of the substrate to connect at least a second substrate of the substrate to the first One substrate.
  • the present invention further provides a detection method for a multi-beam co-frequency microwave detection antenna, characterized in that the detection method includes step (I): by using a feed point of at least two radiation sources A microwave beam with the same frequency is radiated outward by accessing an oscillation circuit unit.
  • the detection method further includes step (II): dynamically changing the radiation direction of the microwave beam.
  • the first step in the step (II) includes the step (III): changing the position of at least one of the radiation sources relative to the other radiation sources in a manner that a substrate is deformed.
  • the first step in step (II) includes step (IV): changing the radiation angle and direction of the microwave beam by reflecting and constraining the microwave beam through a reflecting surface of a reflector .
  • the step (IV) further includes the step of changing the size of the angle formed between the reflecting surface of the reflecting member and the radiation source.
  • the first step in the step (II) includes the step of: adjusting the relative position between a first substrate and at least a second substrate in a manner that a flexible connector deforms, and then adjusting the corresponding position The radiation direction of the microwave beam radiated outward by the radiation source.
  • the method further includes the step (ii): receiving an echo formed by at least one microwave detection circuit generating at least one echo of a microwave beam generated by the radiation source signal.
  • each of the mixing detection circuits receives the electrical signal formed by an echo of a microwave beam generated by the radiation source.
  • each of the mixing detection circuits receives the electrical signal formed by echoes generated by corresponding two or more numbers of the radiation sources.
  • FIG. 1A is a three-dimensional schematic diagram of a multi-beam co-frequency microwave detection antenna according to a preferred embodiment of the present invention.
  • FIG. 1B is a schematic diagram of a top view of the multi-beam co-frequency microwave detection antenna according to the above preferred embodiment of the present invention.
  • FIG. 2A is a schematic cross-sectional view of the multi-beam co-frequency microwave detection antenna according to the above preferred embodiment of the present invention.
  • 2B is a schematic cross-sectional view of the multi-beam co-frequency microwave detection antenna according to the above preferred embodiment of the present invention.
  • 3A is a schematic cross-sectional view of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 3B is a schematic cross-sectional view of the multi-beam co-frequency microwave detection antenna according to the above preferred embodiment of the present invention.
  • FIG. 4A is a schematic perspective view of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 4B is a schematic diagram of a top view of a multi-beam co-frequency microwave detection antenna according to the above preferred embodiment of the present invention.
  • FIG. 5A is a schematic diagram of a stereo structure of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 5B is a schematic diagram of a top view of a multi-beam co-frequency microwave detection antenna according to the above preferred embodiment of the present invention.
  • 6A is a schematic perspective view of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 6B is a schematic diagram of a top view of a multi-beam co-frequency microwave detection antenna according to the above-mentioned preferred embodiment of the present invention.
  • FIG. 7A is a schematic diagram of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 7B is a schematic diagram of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 7C is a schematic diagram of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 7D is a schematic diagram of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • FIG 8A is a schematic perspective view of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • FIG 8B is a schematic perspective view of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 8C is a schematic perspective view of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 8D is a schematic perspective view of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 9A is a schematic perspective view of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 9B is a schematic perspective view of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 9C is a schematic perspective view of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 9D is a schematic perspective view of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • FIG. 10A is a schematic perspective view of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 10B is a three-dimensional schematic diagram of the multi-beam co-frequency microwave detection antenna according to the above preferred embodiment of the present invention.
  • FIG. 11A is a three-dimensional schematic diagram of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 11B is a schematic cross-sectional view of the multi-beam co-frequency microwave detection antenna according to the above preferred embodiment of the present invention.
  • FIG. 12A is a schematic diagram of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • FIG. 12B is a schematic diagram of the multi-beam co-frequency microwave detection antenna according to the above-mentioned preferred embodiment of the present invention.
  • FIG. 13A is a schematic diagram of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 13B is a schematic diagram of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 14A is a schematic diagram of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 14B is a schematic diagram of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 15A is a schematic diagram of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 15B is a schematic diagram of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 16A is a schematic circuit diagram of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 16B is a schematic circuit diagram of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 17A is a circuit schematic diagram of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • 17B is a schematic circuit diagram of the multi-beam co-frequency microwave detection antenna according to another preferred embodiment of the present invention.
  • the term “a” should be understood as “at least one” or “one or more”, that is, in one embodiment, the number of an element can be one, and in other embodiments, the The number can be more than one, and the term “one” cannot be understood as a limitation on the number.
  • a multi-beam co-frequency microwave detection antenna according to a preferred embodiment of the present invention will be explained in the following description, in which the antenna can be applied to detect a target area, And obtain the motion information of a target object in the target area. Further, the antenna can radiate at least two independent microwave beams of the same frequency outwards, the microwave beams form a detection area, and detect the area within the target area by covering the target area with the detection area The movement state of the target object.
  • the microwave beam radiated outward by the antenna has a specific frequency
  • the microwave beam reaches the target area
  • the antenna The returned microwave beam received still maintains the specific frequency
  • the frequency of the microwave beam received by the antenna changes to provide
  • the motion state of the target object in the target area is calculated according to the relevant data of the microwave beam change.
  • the antenna includes a reference ground 10 and at least two radiation sources 20, wherein each of the radiation sources 20 has a feed point 21, the radiation sources 20 are spaced at the reference Ground 10, and a radiation gap 40 is formed between each of the radiation sources 20 and the reference ground 10 respectively.
  • the antenna has an oscillation circuit unit 30, and the feeding point 21 of the radiation source 20 is electrically connected to the oscillation circuit unit 30, wherein the oscillation circuit unit 30 transmits a microwave beam excitation electrical signal
  • the feeding point 21 of the radiation source 20 can be connected to a microwave beam to excite electrical signals.
  • the antenna After the microwave beam excitation electrical signal is connected to the radiation source 20 from the feed point 21, the antenna generates the microwave beam to be radiated outward from the radiation source 20 by The microwave beam can detect the target area and obtain the motion state of the target object in the target area. It is worth mentioning that the feeding points 21 of different radiation sources 20 are electrically connected to the same oscillation circuit unit 30, so that the microwave beams radiated outward by different radiation sources 20 have The same frequency.
  • the mutual interference of the different radiation sources 20 when transmitting the microwave beam and receiving the corresponding echo is avoided; on the other hand, when the motion state of the target object is subsequently calculated, the different The frequency parameters of the microwave beam are unified, which is beneficial to simplify related algorithms for acquiring the motion state of the target object and improve the performance of the antenna in obtaining the motion state of the target object in the target area.
  • the feeding point 21 of the radiation source 20 deviates from the physical center of the radiation source 20 to reduce the excitation current of the radiation source 20 to the microwave beam excitation electrical signal generated by the oscillation circuit unit 30 Strength requirements, so that when the microwave beam excitation electrical signal generated by the oscillation circuit unit 30 is connected to the radiation source 20 from the feeding point 21 of the radiation source 20, the radiation source 20 is easier Generate and form the initial polarization direction.
  • each of the radiation sources 20 has different The working polarization direction, that is, the connection direction of the physical center of each radiation source 20 to the feeding point 21 is different, that is, in the description of the present invention, radiation sources having the same polarization direction, and by A plurality of or multiple groups of radiation sources distributed in an array to meet different radiation angles, radiation distances, and gain requirements are regarded as one of the radiation sources 20 in the description of the present invention, and the transmission and corresponding return of the microwave beam
  • the reception of waves can be achieved either by the same radiation source 20 or by two different radiation sources 20, that is, in some embodiments of the present invention, the radiation source 20 is configured to emit The microwave beam receives corresponding echoes.
  • the transmission of the microwave beam and the reception of corresponding echoes are realized by two different radiation sources 20 respectively. No restrictions.
  • the shape of the radiation source 20 of the antenna is not limited, and the shape of the radiation source 20 may be implemented as, but not limited to, one or more of polygonal, circular, or elliptical Kinds of combinations.
  • the extension direction of the radiation source 20 of the antenna is not limited, although the extension direction of the radiation source 20 shown in the drawings of the specification of the present invention is consistent with the extension direction of the reference ground, but In other embodiments of the present invention, the radiation source 20 may also be implemented such that the extension directions of the reference ground 10 are perpendicular to each other.
  • the specific implementation of the radiation source 20 of the antenna is only an example, and cannot be a limitation of the content and scope of the antenna of the present invention.
  • the antenna further includes a substrate 50, wherein the substrate 50 includes a first side 51 and a second side 52, the reference ground 10 is mounted on the circuit base 50
  • the oscillation circuit unit 30 is held on the substrate 50 by being held on the first side surface 51 of the substrate 50.
  • the oscillation circuit unit 30 is embedded between the first side 51 and the second side 52 of the substrate 50.
  • the oscillation circuit unit 30 is held on the second side 52 of the substrate 50.
  • the reference ground 10 has good conductivity, and the specific material of the reference ground 10 is not limited.
  • the reference ground 10 may be a metal layer made of a conductive material such as copper or copper alloy. It should be understood that the specific implementation of the reference site 10 is not limited.
  • the direction and angle of the microwave beam generated by the radiation source 20 of the antenna can be dynamically adjusted, thereby dynamically changing the detection area formed by the microwave beam.
  • the detection area of the antenna can be enlarged by dynamically adjusting the radiation direction of the microwave beam. For example, by changing the way of the microwave beam generated by one of the two radiation sources 20 of the antenna, the overlap of the microwave beams generated by the two radiation sources 20 can be reduced Area, and the detection area of the antenna can be enlarged.
  • the radiation direction of the microwave beam the accurate position and movement state of the target object in the target area are more accurately determined.
  • the microwave beams generated by the radiation source 20 of the antenna have the same frequency, thereby simplifying the time for obtaining the motion state of the target object by using the microwave beams generated by the radiation source 20, which is beneficial to The response time of the antenna is reduced to improve the efficiency and accuracy of acquiring the motion state of the target object.
  • the microwave beam radiated by the radiation source 20 with different polarization directions and the corresponding echo reflected can work independently of each other without interference, that is, each of the microwave beams can independently obtain its own According to the detection result, data such as the number of the target objects and the distribution position, moving direction, moving speed and the like of each target object are obtained.
  • the antenna can change the reference provided on the substrate 50 by deforming the substrate 50
  • the extension direction of the ground 10 further changes the orientation of the radiation source 20, and dynamically adjusts the radiation direction of the microwave beam generated by the radiation source 20.
  • the reference ground 10 includes at least two interconnected reference ground bodies 11 corresponding to the number of the radiation sources 20, and the radiation source 20 is connected between the radiation source 20 and the corresponding
  • the radiating slits 40 are formed between the reference ground bodies 11 at intervals between the reference ground bodies 11.
  • the reference ground body 11 is provided on the first side 51 of the substrate 50.
  • the adjacent reference ground bodies 11 are electrically connected respectively.
  • each of the reference ground bodies 11 is integrally formed as an integral conductive metal layer.
  • the substrate 50 can be deformed, and the reference ground body 11 provided on the substrate 50 can change the extending direction with the change of the substrate 50, thereby changing the reference ground body 11
  • the direction of the radiation source 20 to dynamically adjust the radiation direction of the microwave beam generated by the radiation source 20.
  • the substrate 50 has flexibility, and any part of the substrate 50 can be deformed flexibly, so that any one of the reference ground bodies 11 provided on the substrate 50 is deformed, thereby changing at least one of the The orientation of the radiation source 20 to dynamically adjust the relative position of at least one of the radiation sources 20 and the other radiation sources 20 to change the radiation direction of at least one microwave beam generated by the multi-beam detection antenna.
  • the radiation direction of the microwave beam formed by the antenna is dynamically adjusted by deforming the substrate 50, thereby adjusting the detection area of the multi-wave detection antenna.
  • the angle at which the reference ground body 11 moves downward relative to the other reference ground body 11 is a parameter ⁇ , and the parameter ⁇ is less than or equal to 90°, that is, the substrate 50 can be deformed to bend upward
  • the angle of is less than or equal to 90°, and the angle at which the substrate 50 can be deformed to bend downward is less than or equal to 90°.
  • the substrate 50 is implemented as a flexible and deformable PCB board, such as an FPC board, and the oscillation circuit unit 30 is embedded in the substrate 50.
  • the antenna includes a shielding cover 60 corresponding to the number of the reference ground main bodies 11, and adjacent shielding covers 60 are held at intervals from each other
  • the shielding cover 60 corresponds to the reference ground body 11 of the reference ground 10, that is, the reference ground body 11 and the shielding cover 60 are held separately Two sides corresponding to the same part of the substrate 50.
  • the shielding cover 60 can ensure that the portion of the reference ground body 11 corresponding to the radiation source 20 is always kept on a plane and is always kept flat.
  • the shielding case 60 when the substrate 50 is deformed, the shielding case 60 will not be deformed, and the shielding case 60 will not deform the position of the substrate 50 corresponding to the shielding case 60, and further, The position of the reference ground body 11 corresponding to the shielding cover 60 is not deformed and is always kept on the same plane, which is beneficial to avoid the interference of the change of the reference ground body 11 on the radiation source 20. That is, only the portion of the substrate 50 corresponding to the adjacent shielding case 60 can be deformed, thereby changing the extending direction of the reference ground body 11 and the radiation direction of the radiation source 20.
  • the shielding cover 60 may also be disposed on the same side of the substrate 50 as the corresponding reference ground body 11.
  • the shielding cover 60 is also disposed on the first side of the substrate 50 A side surface 51, and the radiation source 20 corresponding to the reference ground body 11 is maintained in the space corresponding to the second side surface 52 or the second side surface 52 of the substrate 50 and the reference ground body 11 are arranged at intervals, then the shielding cover 60 can also ensure that the part of the reference ground body 11 corresponding to the radiation source 20 is always kept on a plane and is always kept flat.
  • the shielding case 60 will not be deformed, and the shielding case 60 will not deform the position of the substrate 50 corresponding to the shielding case 60, so that the substrate 50 corresponds to that the portion between the adjacent shields 60 can be deformed, thereby changing the extension direction of the reference ground body 11 to change the radiation direction of the radiation source 20.
  • the shielding cover 60 can ensure that the portion of the reference ground body 11 corresponding to the radiation source 20 is always kept on a flat surface and is always flat, while also reducing the number of auxiliary parts corresponding to the radiation source 20 The lobes interfere with the corresponding microwave beams. Therefore, in some embodiments of the present invention, the shielding cover 60 can also be implemented as a hard plate to ensure that only the reference ground body 11 corresponds to the The portion of the radiation source 20 is always kept on a plane and is always flat, so that when the portion of the substrate 50 corresponding to the adjacent shielding case 60 is deformed, the radiation direction of the radiation source 20 is made Was changed.
  • the specific number of the radiation sources 20 of the antenna is two
  • the specific number of the reference ground body 11 is two
  • the two radiation sources 20 are arranged at intervals To the corresponding reference ground body 11.
  • the two reference ground bodies 11 are held side by side on the first side 51 of the substrate 50.
  • the extension directions of the two reference ground bodies 11 are the same, and are located in the same plane, when the base plate 50 is deformed corresponding to the portion between the adjacent shields 60 , The extension direction of at least one of the reference ground bodies 11 is changed.
  • one of the two reference ground bodies 11 can be turned upside down or downward relative to the other one of the two reference ground bodies 11 through the deformation of the substrate 50
  • the radiation direction of one of the two radiation sources 20 is changed, thereby changing the radiation direction of a microwave beam generated by the antenna to change the detection area of the antenna.
  • the two reference ground bodies 11 are simultaneously moved relatively, thereby changing the radiation direction of the two microwave beams generated by the antenna, so as to change the position of the antenna Describe the detection area.
  • the two reference ground bodies 11 are in the same plane, that is, there is a 180° between the two reference ground bodies, and the substrate 50 is deformed so that the clamp between the two reference ground bodies 11 The angle becomes smaller, and the two radiation sources 20 are closer to each other, so that the overlapping area covered by the microwave beam generated by the radiation source 20 is increased; when the angle between the reference ground body 11 increases, the two The radiation sources 20 are far away from each other, so that the overlapping area covered by the microwave beams generated by the radiation sources 20 is reduced.
  • the specific number of the radiation source 20 of the antenna is three, and the specific number of the reference ground body 11 is three, through the substrate 50
  • the manner of deformation is to change the extension direction of at least one of the reference ground body 12 and thereby change the relative position between the corresponding radiation source 20 and the other radiation sources 20, so as to adjust the effect of the radiation source 20.
  • the three radiation sources 20 held at the reference ground body 11 at intervals may be arranged side by side at intervals.
  • the three radiation sources 20 held at the reference ground 10 at intervals may be arranged side by side at intervals.
  • the three radiation sources 20 held at the reference ground 10 at intervals may be distributed in a triangle shape at intervals. It should be understood that the distribution manner of the radiation source 20 is only an example, and cannot be a limitation on the content and scope of the present invention.
  • the specific number of the radiation source 20 and the reference ground body 11 can also be implemented as four, five or more, at least one of which is relative to other radiation sources
  • the position of 20 can be changed, thereby changing the radiation direction of the microwave beam generated by the radiation source 20, refer to FIGS. 5A to 6B.
  • the manner in which the radiation source 20 is maintained on the side of the reference ground 10 as explained in the drawings and description of the specification is only an example, and cannot be a limitation on the content and scope of the antenna of the present invention.
  • the radiation source 20 may be implemented so as to surround each other on the side of the reference ground 10, or may be implemented as columns or rows arranged at intervals on the reference ground 10.
  • the antenna further includes at least one reflective member 70, the reflective member 70 has a reflective surface 71, wherein the reflective member 70 is disposed in The reference ground body 11 corresponding to the radiation source 20, and the reflector 70 is held on one side of the radiation source 20. Further, an angle between the reflective surface 71 and the radiation source 20 is formed, wherein a change in the angle between the reflective surface 71 and the radiation source 20 can form a corresponding angle generated by the radiation source 20 Variation of the radiation angle and radiation direction of the microwave beam.
  • the reflective member 70 is made of a metal material, and the reflective member 70 may be implemented as a metal plate made of copper, copper alloy, or other materials.
  • the reflective member 70 is movably disposed on the reference ground body 11 corresponding to the radiation source 20, and between the reflective surface 71 of the reflective member 70 and the reference ground body 11
  • the angle can be dynamically adjusted to constrain the corresponding microwave beam in one or more directions to change the radiation angle size and radiation direction of the microwave beam, that is, the reflector 70 can dynamically change the
  • the radiation angle and direction of the microwave beam generated by the radiation source 20 are used to dynamically change the detection area of the antenna.
  • the reflecting member 70 is pivotally disposed at the reference ground 10, and the rotation between the reflecting member 70 and the reflecting surface 71 of the reflecting member 70 and the radiation source 20 can be changed
  • the size of the angle changes the size and direction of the radiation angle of the microwave beam generated by the radiation source 20.
  • the reflective member 70 rotates with the reflective surface 71 facing the radiation source 20, the reflective surface 71 is close to the radiation source 20, and the reflective surface 71 and the radiation source 20 The angle between them decreases, which can increase the overlapping area formed by the microwave beams generated by the radiation source 20; when the reflecting member 70 rotates in such a way that the reflecting surface 71 is away from the radiation source 20, The reflection surface 71 and the radiation source 20 are far away from each other, and the angle between the reflection surface 71 and the radiation source 20 increases, which can reduce the overlapping area covered by the microwave beam generated by the radiation source 20, Furthermore, the detection area of the antenna is dynamically adjusted. It is worth mentioning that the manner of adjusting the angle between the reflecting surface 71 of the reflecting member 70 and the radiation source 20 is only an example, and cannot be a limitation on the content and scope of the antenna of the present invention.
  • the specific number of the reflecting member 70 is not limited, and the reflecting surface 71 of the reflecting member 70 may be implemented to reflect or restrict a microwave beam radiated outward by the radiation source 20, or may be implemented as The radiation angle and direction of the microwave beam radiated by at least two of the radiation sources 20 are changed.
  • the number of the reflecting member 70 is implemented as one, refer to FIGS. 7A to 7D.
  • the reflector 70 provided on the reference ground body 11 is provided on one of at least two of the radiation sources 20 with the reflection surface 71 facing the radiation source 20
  • the reflecting member 70 is located between at least two of the radiation sources 20, and the reflecting surface 71 of the reflecting member 70 is close to the radiation source 20, and the position of the reflecting member 70
  • An angle is formed between the reflective surface 71 and the corresponding radiation source 20.
  • the detection area of the antenna can be dynamically changed by dynamically adjusting the radiation direction and radiation angle of the microwave beam radiated outward by one radiation source 20.
  • the number of the reflective member 70 is implemented as one, and the reflective member 70 is disposed with the reflective surface 71 facing the radiation source 20
  • the reflective surface 71 can form an angle with at least one radiation source 20 to reflect the microwave beam generated by the radiation source 20, thereby changing the The detection area of the antenna.
  • the angle between the reflective surface 71 and the radiation source 20 can be dynamically adjusted, that is, the reflective surface 71 of the reflective member 70 can dynamically reflect at least one of the radiation source 20 The microwave beam, thereby changing the radiation angle size and radiation direction of the microwave beam to change the detection area of the antenna.
  • the number of the reflecting members 70 and the number of the radiation sources 20 are the same, refer to FIGS. 9A to 9D.
  • two of the reflecting members 70 are provided on the reference ground body 11 corresponding to the radiation source 20, and the two of the reflecting members 70 respectively use the reflecting surface 71 and the The radiation source 20 is held in a corresponding manner on both sides of the two radiation sources 20, and the reflecting surface 71 of the reflector 70 can form an angle with the corresponding radiation source 20, respectively .
  • the reflector 70 is held between the two radiation sources 20.
  • the two reflective members 70 are held on opposite sides of the reference ground 10. It is worth mentioning that the specific numbers of the reflective member 70 and the radiation source 20 are only examples, the number of the reflective member 70 is not limited, and the reflective member 70 may be implemented as three or four, Five or more.
  • the length of the reflector 70 is greater than or equal to the length of the long side of the radiation source 20, the width of the reflector 70 is a parameter ⁇ , and the value range of the parameter ⁇ is: 1/16 ⁇ ⁇ , where the parameter ⁇ is the wavelength of the microwave beam that the radiation source 20 can receive or generate.
  • the substrate 50 further includes a first substrate 501 and a plurality of second substrates 502, wherein the plurality of second substrates 502 are spaced apart from each other
  • the first substrate 501 extends, and a plurality of second substrates 502 surrounds the periphery of the first substrate 501.
  • At least one of the reference ground body 11 is disposed on the first substrate 501, the radiation source 20 is held at a side of the reference ground body 11 at intervals, and the reference ground body 11 and the radiation
  • the radiation gap 40 is formed between the sources 20.
  • At least one reference ground body 11 is disposed on the second substrate 502 and forms the radiation gap 40 between the reference ground body 11 and the radiation source 20.
  • each radiation source 20 is electrically connected to the same oscillation circuit unit 30 so that the microwave beams radiated outward by different radiation sources 20 have the same frequency. Further, the radiation direction and angle of the microwave beam radiated outward by the radiation source 20 can be adjusted, on the one hand, it is helpful to expand the detection area of the antenna, and on the other hand, it is beneficial to improve the detection of the antenna Efficiency and accuracy.
  • the number of the second substrate 502 is not limited, and in some embodiments of the present invention, the first substrate 501 may not be provided with the radiation source 20 and/or the reference ground body 11, or That is, the radiation source 20 of the first substrate 501 can be formed relative to the radiation source 20 of the second substrate 502 through the flexible connection between the first substrate 501 and the second substrate 502 And the relative position between the radiation sources 20 of the second substrate 502 is different, and the radiation source 20 and/or the When referring to the ground body 11, the relative position between the radiation sources 20 of the different second substrate 502 can be changed by the flexible connection between the first substrate 501 and the second substrate 502
  • the present invention is not limited to this.
  • the angle between any one of the second substrate 502 and the first substrate 501 can be adjusted.
  • the first substrate 501 and the second substrate 502 have flexibility, and the first substrate 501 and/or the second substrate 502 change the first substrate 501 and the second substrate in a deformed manner The relative angle between the two substrates 502.
  • the second substrate 502 can be flexibly deformed and folded upward or downward relative to the first substrate 501.
  • the extension direction of the corresponding reference ground body 11 changes, and the radiation source 20 corresponding to the reference ground body 11 is opposite The position of the other radiation source 20 changes, so that the radiation coverage area of the microwave beam generated by the antenna is changed.
  • the adjacent second substrates 502 are independent of each other to allow the user to individually adjust the extension direction of any second substrate 502 to change the radiation direction of the microwave beam generated by the corresponding radiation source 20 And keep the radiation direction of the microwave beam generated by the other radiation sources 20 unchanged, so as to adjust the detection area of the antenna by dynamically adjusting the second substrate 502.
  • the first substrate 501 and the second substrate 502 are flexible and deformable PCB boards, such as FPC boards, and at least a part of the first substrate 501 and the second substrate 502 can be bent.
  • the first substrate 501 is a PCB board, that is, the first substrate 501 is a rigid circuit board, the first substrate 501 cannot be deformed to change the extending direction, and surrounds all the
  • the second substrate 502 is a flexible and deformable PCB board. By adjusting the extending direction of the second substrate 502, the radiation direction of the microwave beam generated by the radiation source 20 is changed. It should be understood that, in other embodiments of the present invention, by providing a rigid fixing member on one side of the flexible first substrate 501, the first substrate 501 cannot be deformed to change the extending direction To allow the user to change the radiation direction of the microwave beam generated by the radiation source 20 only by adjusting the extension direction of the second substrate 502.
  • the first substrate 501 and the second second substrate 502 are PCB boards, and the adjacent second substrates 502 are connected to each other.
  • the reflective plate 70 is disposed on the reference ground body 11 corresponding to the radiation source 20, the reflective member 70 is held on the second substrate 502, and a plurality of the reflective members 70 surround the first A radiation source 20 corresponding to a substrate 501.
  • the reflecting surface 71 of at least one reflecting member 70 faces the radiation source 20 corresponding to the second substrate 502, that is, the reflecting surface 71 of the reflecting member 70 reflects or constrains the first The microwave beam generated by the radiation source 20 corresponding to the second substrate 502.
  • the reflective surface 71 of at least one reflective member 70 faces the radiation source 20 corresponding to the first substrate 501, that is, the reflective surface 71 of the reflective member 70 reflects or constrains the first The microwave beam generated by the radiation source 20 corresponding to a substrate 501.
  • the angle between the reflecting surface 71 of the reflecting member 70 and the reference ground body 11 can be dynamically adjusted, and thus the reflecting member 70 can dynamically change the radiation
  • the radiation angle and the radiation direction of the microwave beam generated by the source 20 are used to dynamically change the detection area of the antenna.
  • the reflecting member 70 is pivotally disposed at the reference ground 10, and the rotation between the reflecting member 70 and the reflecting surface 71 of the reflecting member 70 and the radiation source 20 can be changed
  • the size of the angle changes the size and direction of the radiation angle of the microwave beam generated by the radiation source 20.
  • the radiation direction and angle of the microwave beam generated by the antenna are adjusted by the first substrate 501 and/or the second substrate 502 and the reflector 70.
  • the first substrate 501 and the second substrate 502 are flexible and deformable PCB boards, and at least one of the reflective members 70 faces the first surface with the reflective surface 71
  • the manner of the radiation source 20 corresponding to the second substrate 502 is held on one side of the second substrate 502.
  • the first substrate 501 and the second substrate 502 can be deformed and bent to change the relative position of the corresponding radiation source 20 and other radiation sources 20, meanwhile, by
  • the reflector 70 reflects or restricts the radiation source 20 corresponding to the reflector 70 to generate a microwave beam, and then the reflector 70, the first substrate 501, and the second substrate 502 cooperate with each other to adjust the The radiation direction and angle of the microwave beam generated by the antenna.
  • the antenna further includes a flexible connector 80, and both ends of the flexible connector 80 are connected to the first substrate 501 and the A second substrate 502, and the flexible connector 80 is electrically connected to the reference ground body 11 corresponding to the first substrate 501 and the reference ground body 11 corresponding to the second substrate 502, respectively.
  • the flexible connector 80 has flexibility. When the flexible connector 80 undergoes a flexible deformation, the extending direction of the first substrate 501 and/or the second substrate 502 connected to one end of the flexible connector 80 is Change to change the relative angle between the first substrate 501 and the second substrate 502, thereby adjusting the radiation direction of the microwave beam generated by the corresponding radiation source 20.
  • the flexible connector 80 can be flexibly deformed so that the second substrate 502 is folded upward or downward relative to the first substrate 501, and the corresponding extension direction of the reference ground body 11 occurs Changes, the position of the radiation source 20 corresponding to the reference ground body 11 relative to the other radiation sources 20 changes, so that the coverage area of the microwave beam generated by the antenna is changed.
  • the first substrate 501 and the second substrate 502 are PCB boards.
  • the flexible connector 80 is detachably installed on the first substrate 501, so that the second substrate 502 is detachably installed on the first substrate 502, the user can increase Alternatively, the detection range of the antenna can be selected by reducing the number of the second substrate 502, thereby improving the flexibility of the antenna.
  • the radiation direction of the microwave beam generated by the antenna is adjusted by the flexible connecting member 80 and the reflecting member 70.
  • the first substrate 501 and the second substrate 502 are implemented as a PCB board, and the flexible connector connecting the first substrate 501 and the second substrate 502 80 is deformed to change the extending direction of the first substrate 501 and/or the second substrate 502, and at the same time, the radiation corresponding to the reflector 70 is reflected or restricted by the reflector 70
  • the source 20 generates a microwave beam, and the flexible connector 80 and the reflective member 70 cooperate with each other to adjust the radiation direction and angle of the microwave beam generated by the antenna.
  • the antenna receives an echo formed by the microwave beam radiated outward through the radiation source 20, and determines the target object in the target area according to the frequency change of the received echo Movement state.
  • the analog circuit 100 is shown in FIG. 16, wherein the analog circuit 100 is the function of each of the radiation source 20 and the reference ground 10 of the antenna on the microwave beam excitation signal. The equivalent electrical connection status under It should be understood that each of the radiation sources 20 corresponds to one of the analog circuits 100.
  • different radiation sources 20 of the antenna can radiate multiple microwave beams with the same frequency outward, so that the antenna uses multiple microwave beams to simultaneously detect different target areas, and then While expanding the detection range, the detection efficiency of the antenna is improved.
  • the antenna includes at least one mixing detection circuit 200, wherein both ends of the mixing detection circuit 200 are electrically connected to the oscillation circuit unit 30 and the feeding point 21 of the radiation source 20, respectively ,
  • the echo received by the antenna forms an electrical signal, and the electrical signal passes from the radiation source 20 through the mixing detection circuit 200 electrically connected to the radiation source 20, so that The electrical signal received by the mixing detection circuit 200 obtains the frequency change information of the echo, and then determines the motion state of the object in the target area detected by the antenna.
  • the specific number of the mixing detection circuit 200 is implemented as one, and the electric signal passing through one of the mixing detection circuit 200 determines that the at least two radiation sources 20 of the antenna generate The motion state of the object in the target area detected by the microwave beam.
  • one end of one mixing detection circuit 200 is electrically connected to the feeding points 21 of at least two of the radiation sources 20, and the other end of the mixing detection circuit 200 is electrically connected to all In the oscillation circuit unit 30, the mixing detection circuit 200 can receive the electrical signal generated by the echo formed by the microwave beam radiated outward from the radiation source 20 electrically connected thereto.
  • the antenna further includes a power divider 300 to allow a signal to be divided into two channels or multiple outputs or multiple channels of the signal can be combined into one output, it should be understood that The signal may be implemented as an electrical signal.
  • one end of the power splitter 300 is electrically connected to the mixing detection circuit 200, and the other end is electrically connected to the feeding points 21 of at least two of the radiation sources 20.
  • 17A and 17B one end of the power divider 300 is electrically connected to the frequency mixing detection circuit 200, and the other end is electrically connected to the oscillation circuit unit 30.
  • the number of the mixing detection circuit 200 is one
  • the number of the radiation source 20 of the antenna is implemented as three
  • one end of the mixing detection circuit 200 The feed points 21 of the three radiation sources 20 are electrically connected
  • the other end of the mixing detection circuit 300 is electrically connected to the oscillation circuit unit 30.
  • the three radiation sources 20 of the antenna can generate three microwave beams and detect the target area from three angles, that is, by arranging different radiation sources 20 at different positions or orientations The method will expand the detection range of the antenna to facilitate more accurate determination of the motion state of objects in the target area.
  • the three radiation sources 20 are all electrically connected to the oscillation circuit unit 30, so that the frequency of the microwave beam radiated outward by the radiation source 20 is consistent, when each of the three radiation sources 20 When the frequency of the echo formed by the microwave beam generated by the radiation source 20 is consistent with the frequency of the corresponding microwave beam generated by the radiation source 20, the electrical signal passing through the mixing detection circuit 200 It remains unchanged, that is, the mixing detection circuit 200 does not output a difference electrical signal of frequency difference or phase difference; when any one of the three radiation sources 20 forms the microwave beam generated by the radiation source 20 When the frequency of the echo changes, the electrical signal passing through the mixing detection circuit 200 also changes accordingly, so that the motion state of the object in the target area can be determined according to the change of the electrical signal.
  • the specific number of the mixing detection circuit 200 is implemented as two or more. Objects in the target area detected by microwave beams generated by at least two of the radiation sources 20 of the antenna are determined by the electrical signal changes passing through two or more and the number of the mixing detection circuits 200 State of motion. Preferably, both ends of each mixing detection circuit 200 are electrically connected to the feeding point 21 of one radiation source 20 and the oscillation circuit unit 30, respectively. In this way, the target area can be divided into multiple sub-areas, and by detecting each of the sub-areas, the range of motion positions of objects in the target area can be reduced, so that the target can be determined more accurately The motion state of objects in the area.
  • the frequency mixing detection circuit 200 is also implemented as three, three of the frequency mixing detection One end of the circuit 200 is electrically connected to the feeding point 21 of the radiation source 20 of the three analog circuits 100, and the other ends of the three mixing detection circuits 200 are electrically connected to the oscillation circuit unit 30.
  • the three radiation sources 20 of the antenna can generate three microwave beams and detect the target area from three angles, that is, by arranging different radiation sources 20 at different positions or orientations
  • the method can expand the detection range of the antenna and divide the target area into at least three sub-areas for detection.
  • the target area can be determined.
  • the motion state of the object and the area of the area where the object is locked, such as the differential electrical signal output by the three mixed detection circuits 200 according to the received electrical signal, the movement direction, movement speed and movement of the object in the target area The trajectory can be obtained.
  • the three radiation sources 20 are all electrically connected to the oscillation circuit 100, and the frequency of the microwave beam radiated from the radiation source 20 is the same.
  • the electrical signal passing through the mixing detection circuit 200 remains unchanged , That is, the frequency mixing detection circuit 200 does not output a difference electrical signal of frequency difference or phase difference; when the frequency of the echo formed by the microwave beam generated by any one of the radiation sources 20 changes, after passing through the radiation
  • the electrical signal of the mixing detection circuit 200 electrically connected to the source 20 also changes accordingly, and thus the motion state of the object in the target area can be determined.
  • the mixing detection circuit 200 and the radiation source One-to-one correspondence between 20, which can determine which object in the target area moves in the area detected by the microwave beam formed by the radiation source 20, and further lock the area where the moving object is located.
  • the electrical signal of the mixing detection circuit 200 changes, and it can be determined that the microwave beams generated by the object at the radiation source 20 electrically connected to the mixing detection circuit 200 Movement within the radiated area; once the electrical signal passing through two of the three mixing detection circuits 200 changes, it can be determined that the object is in contact with the two mixing detection circuits 200 moves in the overlapping area of the radiation areas formed by the microwave beams generated by the two radiation sources 20 electrically connected to each other. In this way, not only can the movement state of the objects in the target area be determined, but also the number and position distribution of the moving objects can be more accurately determined, and the movement trajectory of the moving objects can be determined according to the change in the position distribution of the moving objects.
  • the number and position distribution of moving objects is the number and distribution of human (living) bodies in the target area, and the breathing and/or heartbeat of the human (living) bodies in the target area can be monitored by the antenna.
  • the three microwave beams generated by the three radiation sources 20 of the antenna cover the layered radiation area in the vertical direction, such as independently covering the radiation area divided into three layers in the vertical direction, or overlapping the coverage into the vertical
  • the four-layer or five-layer radiation area in the direction can determine the posture of the detected human body through the detection results of the human body between different layers. If the presence of the human body is detected in the three-layer radiation area, the detected human body pose is determined It should be a standing posture. When the presence of the human body is detected only in the two-layer radiation area that is vertically down, it is determined that the detected human posture should be a sitting posture. When it is only vertically down If the presence of the human body is detected in the radiation layer at the bottom layer, the posture of the detected human body should be the lying posture.
  • each mixing detection circuit 200 when both ends of each mixing detection circuit 200 are respectively connected to the feeding point 21 of the radiation source 20 and the oscillation circuit unit 30, each of the The detection signals corresponding to the radiation source 20 are processed and defined differently to realize different functions and applications, so as to improve the applicability of the antenna.
  • the antenna is used to detect the activity state of a user in a room
  • the plurality of radiation sources 20 of the antenna can respectively detect the activity state of the user in different areas of the room in a manner of facing different positions respectively
  • the plurality of radiation sources 20 of the antenna can respectively detect the activity state of the user in different areas of the room in a manner of facing different positions respectively
  • the radiation source 20 detects whether the user is in a sleeping state or in an active state in another area by facing the position of the bed in the room, and further, through the mixing detection circuit electrically connected to the radiation source 20
  • the difference electrical signal output by 200 is amplified and filtered to detect the micro-motion of the user's breathing and/or heartbeat, so as to more accurately obtain whether the user exists in the room and the position and activity status in the target area ,
  • the aforementioned layered detection method on the basis of detecting that the user is in a lying posture, further determining whether the user is in a lying posture by
  • the microwave beam cannot be seen by the human eye, in order to improve the convenience and accuracy of the installation and debugging of the multi-beam co-frequency microwave detection antenna, it is also possible to use the radiation source 20 or the radiation source
  • the radiation direction of the microwave beam corresponding to the combination of 20 is configured with a corresponding photoelectric indicating device to determine different radiation sources by the photoelectric indicating device when the multi-beam co-frequency microwave detection antenna is installed and debugged 20 or the radiation direction and coverage area and range of the microwave beam corresponding to the combination of the radiation sources 20.
  • the application of the antenna of the present invention is exemplified, wherein different application modes and scenarios of the antenna can be combined with each other, for example, while detecting human posture , Can monitor the breathing and/or heartbeat of the human body in a sleeping position; for example, according to the number and position distribution of the detected human body, combined with the detection of the human body's posture, or further combined with the detection of the human body's breathing and/or heartbeat, can judge the person Group) activity attributes, such as dinner, entertainment, conference and other scenes.
  • different applications can be combined with each other to constitute the application of the antenna of the present invention, and the present invention does not list them one by one.
  • the number of the mixing detection circuit 200 may be implemented as two or more, and the specific number of the mixing detection circuit 200 and the radiation source 20 The number is not consistent, that is, the mixing detection circuit 200 and the radiation source 20 are not in one-to-one correspondence.
  • the number of the radiation sources 20 is four
  • the number of corresponding analog circuits 100 is four
  • the number of the mixing detection circuits 200 is two, one of which is Electrically connected to the two analog circuits 100
  • the other end of the mixing detection circuit 200 is electrically connected to the oscillation circuit unit 30, that is, one mixing detection circuit 200 corresponds to two of the radiation sources 20.
  • the electric signal received by the mixing detection circuit 200 corresponding to the echo of the microwave beam generated by the radiation source 20 can further determine the object formed by the microwave beam generated by the radiation source 20 by objects in the target area
  • the motion state in the radiation area can also expand the detection area of the antenna in this way, and improve the detection efficiency of the antenna.
  • the oscillation circuit unit 30 is implemented as a low-impedance oscillation circuit, correspondingly, the radiation source 20 of the antenna can be grounded, and Between a ground point where the radiation source 20 of the antenna is grounded and a feed point 21 of the radiation source 20 can have an inductance characteristic and a certain impedance, so that the impedance of the antenna is reduced, and then the antenna receives and When radiating microwaves, the frequency bandwidth becomes narrower, so as to reduce the interference of the microwave beams received and radiated by the antennas by the microwave beams in the adjacent wavebands.
  • the oscillation circuit unit 30 has a low impedance, and the oscillation circuit unit 30 can provide the antenna with an excitation current matching the low impedance of the antenna, so that the antenna can generate an initial pole Direction and radiate microwaves. Further, both ends of the mixing detection circuit 200 are electrically connected between the radiation source 20 and the oscillating circuit unit 30, respectively, and the oscillating circuit unit 30 is adapted by the mixing detection circuit 200 The low impedance output of the antenna and the low impedance of the antenna to the ground, thereby ensuring the working stability and reliability of the antenna.
  • the specific implementation of the oscillating circuit unit 30 is merely an example and cannot be a limitation on the content and scope of the antenna of the present invention.
  • the present invention further provides a manufacturing method of the multi-beam co-frequency microwave detection antenna, wherein the manufacturing method includes the following steps:
  • the method further includes (c): setting the reference ground 10 on the substrate 50.
  • the reference ground 10 may be held on one side of the substrate 50 by being attached to the first side surface 51 of the substrate 50.
  • the substrate 50 has flexibility, and the substrate 50 can be deformed to change the extending direction of the reference ground 10 held on the side of the substrate 50.
  • the substrate 50 is a flexible and deformable PCB board, and at least a part of the substrate 50 can be bent.
  • the method further includes step (d): disposing the oscillation circuit unit 30 on the substrate 50.
  • the oscillation circuit unit 30 is embedded in the substrate 50.
  • the oscillation circuit unit 30 is mounted on one side of the substrate 50.
  • a step (e) is further included: at least one reflective member 70 is disposed on the reference ground 10, and the reflective surface 71 of the reflective member 70 faces the radiation source 20.
  • An angle can be formed between the reflective surface 71 of the reflective member 70 and the radiation source 20, and the reflective surface 71 of the reflective member 70 can reflect or restrict the radiation of the radiation source 20 outward The microwave beam.
  • the reflective member 70 is movably disposed on the reference ground 10, and by dynamically adjusting the angle formed between the reflective surface 71 of the reflective member 70 and the radiation source 20, the The detection area covered by the microwave beam is dynamically changed.
  • the reflector 70 is made of copper, copper alloy or other metals.
  • the method further includes the steps of detachably installing a flexible connector 80 to a first substrate 501 of the substrate 50, and detachably installing the second substrate 502 to the flexible connector 80, so that the first substrate 502 is detachably extended from the first substrate 501.
  • the present invention further provides a detection method of the multi-beam co-frequency microwave detection antenna, wherein the detection method includes the following steps:
  • the method further includes the step (III): changing the extending direction of the reference ground 10 provided on the substrate 50 in a manner of changing the extending direction of a substrate 50, thereby changing at least The position of one radiation source 20 relative to the other radiation sources 20 causes the radiation direction of the microwave beam generated by the radiation source 20 to change.
  • the substrate 50 is deformed to change the extending direction of at least a portion of the substrate 50, and thus the corresponding extending direction of the reference ground body 11 is changed so as to be held on the side of the reference ground body 11
  • the position of the radiation source 20 relative to other radiation sources 20 is changed to dynamically adjust the detection area of the multi-beam co-frequency microwave detection antenna.
  • the method further includes the step (IV): reflecting or restricting the microwave beam by the reflecting surface 71 of the reflecting member 70.
  • the angle between the reflecting surface 71 of the reflecting member 70 and the radiation source 20 is dynamically adjusted, and the microwave beam generated by the radiation source 20 is reflected or reflected in one or more directions Constraints are made to form changes in the detection area.
  • the method further includes the step of: the reflecting member 70 and the substrate 50 cooperate with each other to change the radiation angle size and radiation direction of the microwave beam generated by the corresponding radiation source 20.
  • the step (II) further includes the step of changing the extending direction of a flexible connecting member 80 connecting a first substrate 501 and a second substrate 502 to change at least one radiation source 20 relative to other radiation
  • the relative position of the source 20 changes the radiation direction of the microwave beam generated by the radiation source 20 to adjust the detection area of the antenna.
  • the flexible connecting member 80 and the reflecting member 70 cooperate with each other to change the radiation direction and angle of the corresponding microwave beam generated by the radiation source 20.
  • the method further includes the step (ii): receiving at least one microwave beam generated by the corresponding at least one radiation source 20 through the at least one mixing detection circuit 200 The electrical signal formed by the echo.
  • each of the mixing detection circuits 200 receives an electrical signal formed by the echo of the microwave beam generated by the radiation source 20 by passing through one of the mixing detection circuits
  • the change of the electrical signal of 200 determines the motion state of the object in the target area corresponding to the microwave beam generated by the radiation source 20 corresponding to the multi-beam co-frequency microwave detection antenna.
  • each of the mixing detection circuits receives the electrical signal formed by the echoes generated by two or more numbers of the radiation sources 20 by passing through the mixing
  • the change of the electrical signal of the frequency detection circuit 200 determines the motion state of the object in the target area corresponding to the microwave beams generated by the corresponding at least two microwave sources of the radiation sources 20 of the multi-beam co-frequency microwave detection antenna.

Landscapes

  • Engineering & Computer Science (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Waveguide Aerials (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)

Abstract

本发明公开了一多波束同频微波探测天线及其制造方法和检测方法,其中所述多波束同频微波探测天线具有一振荡电路单元,且所述多波束同频微波探测天线包括一参考地以及至少两个辐射源,其中所述辐射源具有一馈电点,所述辐射源被间隔地设置于所述参考地,并在每个所述辐射源和所述参考地之间分别形成一辐射缝隙,且所述辐射源的所述馈电点被电连接于所述振荡电路单元。

Description

多波束同频微波探测天线及其制造方法和检测方法 技术领域
本发明涉及微波天线领域,特别涉及一多波束同频微波探测天线及其制造方法和检测方法。
背景技术
近年来,随着微波技术的发展,应用微波技术的产品也越来越多的出现在市场上,比如说,微波探测器。常见的微波探测器能够发射微波,并接收反射回来的微波信号,利用多普勒效应原理探测目标区域内是否有运动的物体。微波探测器对反射微波的物体的移动具有较高的敏感度,并且,微波探测器产生的微波信号不受环境温度和湿度等因素的影响,相较于红外线探测器而言,具有较高的可靠性。因此,微波探测器被广泛应用于工业生产和我们的日常生活中,比如说,车辆测速,超市自动门、自动灯、自动盥洗等。
现有的微波探测器利用一天线发射一特定频率的微波波束,以在一目标区域内检测所述目标区域内的物体的运动状态,当遇到静止的物体时,所述天线接收到的返回的微波的频率不变,当所述天线发出的微波遇到运动的物体时,所述天线接收到的微波的频率发生变化,以供在后续根据频率的变化计算出物体的运动状态,比如说物体的具体位置、移动速度、移动方向。但是,现有的微波探测器在被应用于检测目标区域内的物体的运动状态的过程中,仍然存在不少问题。
首先,所述微波探测器产生的微波辐射到的区域固定,即,微波探测器的检测区域有限,仅仅利用一个所述天线难以全面地检测所述目标区域内的物体的运动状态,进而会影响检测结果的准确性。
其次,尽管借助两个或以上数量的所述微波探测器能够扩大所述微波探测器的检测区域,即通过增加微波探测器数量,并将不同的所述微波探测器分布于不同的位置,来扩大检测区域,如通过多个微波探测器以分层、分区间、分角度的的方式覆盖不同的探测空间,以实现对探测空间的分层、分区间、分角度的探测,从而获取移动物体于探测空间的位置和分布,并依此计算移动物体的移动轨迹、移动方向和移动速度等信息,进而实现对移动物体的轨迹预测、行为目的判断和状态判断。然而,需要计算多个所述微波探测器发射的微波和接收的微波的频率 变化才能判断所述目标区域内的物体的运动状态,所述微波探测器的数量越多,必然需要复杂的信号传输与连接,计算的数据以及算法就越复杂,并且需要配置额外的信息处理中心,增加了成本的同时难以准确获得所述目标区域内的物体的运动状态。
另外,在现有技术中,被设置于不同区域内的所述微波探测器具有各自独立的电路,不同微波探测器的电路通过电线被接入到外部的电路中,通过变化的电场产生变化的磁场,而变化的磁场又产生变化的电场,这样,变化的电场和变化的磁场相互依赖,并且相互激发,而且变化的电场和变化的磁场交替产生,进而产生了微波,且所述天线向外辐射微波。但是由于不同电路中的电器元件的参数存在差异,所述微波探测器向外辐射的微波的频率难以实现一致和同步,当不同的微波探测器对同一个目标区域进行检测时,一方面各微波探测器所发射的微波会相互干扰,另一方面,不同微波探测器辐射的微波的检测区域出现重合时,在重合区域内,各微波探测器所发射的微波的频率难以一致,或即便频率一致也可能会出现一个天线辐射的微波处于波峰,另一个天线辐射的微波处于波谷类的相位不一致的状况,在后续的计算过程中,需要运用繁琐的算法来解决接收到的微波的频率的相关参数,比如说,要计算接收到的不同的所述微波的频率差的参数。这样,更加增大了获得所述目标区域内的物体的运动状态的难度。而且,在现阶段中,本领域技术人员难以得到准确的算法,同时复杂的计算逻辑会造成所述微波探测器的计算时间较长,造成获取所述目标区域内的物体的运动状态的时间被滞后,进而影响所述微波探测器在检测所述目标区域内的物体运动时的准确性。
因此,微波探测器的数量的增加必然会增加增加成本以及将多个微波探测器连接为一个系统的复杂性,同时,被分布安装以覆盖同一区域的微波探测器之间会产生相互干扰,而被集中安装的微波探测器在工作时,各微波探测器所辐射的微波波束除主波瓣以外的副波瓣(如旁波瓣、后波瓣)之间也会产生相互干扰以致微波探测器不能正常工作。
发明内容
本发明的一个目的在于提供一多波束同频微波探测天线及其制造方法和检测方法,其中所述多波束同频微波探测天线包括至少两个辐射源,所述辐射源被电连接于同一振荡电路单元中,进而不同的所述辐射源能够向外辐射具有相同频 率的微波波束,使得所述多波束同频微波探测天线同时向外发射多束具有相同频率且能各自独立探测或组合探测的微波波束。
本发明的另一个目的在于提供一多波束同频微波探测天线及其制造方法和检测方法,其中所述多波束同频微波探测天线利用具有相同频率的多束所述微波波束形成的一检测区域覆盖一目标区域,并对所述目标区域进行检测,以获得所述目标区域内的目标物体的运动状态。
本发明的另一个目的在于提供一多波束同频微波探测天线及其制造方法和检测方法,其中所述多波束同频微波探测天线能够同时向外发射多束具有相同频率的微波波束,以能够避免各微波波束在发射和接收时产生相互干扰,从而更可靠地获取所述目标区域内的所述目标物体的运动状态。
本发明的另一个目的在于提供一多波束同频微波探测天线及其制造方法和检测方法,其中所述多波束同频微波探测天线利用具有相同频率的多束微波波束同时检测多个所述目标检测区域,在扩大所述多波束同频微波探测天线的检测范围的同时,提高了所述多波束同频微波探测天线的检测效率。
本发明的另一个目的在于提供一多波束同频微波探测天线及其制造方法和检测方法,其中所述多波束同频微波探测天线向外辐射的相互独立的所述微波波束具有相同频率,以在计算所述目标物体的运动状态时,不同的所述微波波束的频率参数被统一,进而有利于简化获取所述目标物体的运动状态的相关算法。
本发明的另一个目的在于提供一多波束同频微波探测天线及其制造方法和检测方法,其中所述微波波束形成的所述检测区域能够被动态地调整,进而通过改变所述微波波束形成的所述检测区域的方式更准确地确定所述目标物体在所述目标区域内的位置和分布。
本发明的另一个目的在于提供一多波束同频微波探测天线及其制造方法和检测方法,其中同频的各微波波束形成的所述检测区域能够被动态地调整,以使得所述多波束同频微波探测天线能够获取所述目标区域的所述目标物体的位置和分布,并依此计算所述目标物体的移动轨迹、移动方向和移动速度等运动状态。
本发明的另一个目的在于提供一多波束同频微波探测天线及其制造方法和检测方法,其中所述多波束同频微波探测天线能够获取所述目标物体于所述目标区域的运动状态,以能够根据探测到的所述目标物体的运动状态预测所述目标物体的运动目的,从而在所述目标物体为人体时实现对人体姿态的分析与判断及行 为目的的预测。
本发明的另一个目的在于提供一多波束同频微波探测天线及其制造方法和检测方法,其中所述微波波束的辐射方向和辐射角度能够被改变,进而使得所述微波波束形成的所述检测区域被动态地调节。
本发明的另一个目的在于提供一多波束同频微波探测天线及其制造方法和检测方法,其中至少一个所述辐射源相对其他所述辐射源的位置能够被调整,进而改变所述辐射源向外辐射的所述微波波束的辐射方向。
本发明的另一个目的在于提供一多波束同频微波探测天线及其制造方法和检测方法,其中所述多波束同频微波探测天线提供一参考地,所述辐射源被间隔地设置于所述参考地,通过改变所述参考地的延伸方向的方式改变所述辐射源的朝向,进而改变所述辐射源向外辐射的所述微波波束的辐射方向。
本发明的另一个目的在于提供一多波束同频微波探测天线及其制造方法和检测方法,其中所述多波束探测天线提供一基板,所述参考地被设置于所述基板,所述基板发生形变的同时改变所述参考地的延伸方向,进而改变被保持于所述参考地的一侧的所述辐射源产生的所述微波波束的辐射方向。
本发明的另一个目的在于提供一多波束同频微波探测天线及其制造方法和检测方法,其中所述参考地包括与所述辐射源的数量相对应的至少两个参考地主体,其中所述参考地主体被设置于所述基板,通过调节所述基板的延伸方向的方式改变所述参考地主体的延伸方向,以改变所述辐射源的朝向。
本发明的另一个目的在于提供一多波束同频微波探测天线及其制造方法和检测方法,其中所述多波束同频微波探测天线进一步包括一反射件,其中所述反射件在所述辐射源的一侧被可活动地保持于与所述辐射源相对应的所述参考地,通过改变所述反射件的一反射面与所述辐射源之间的相对角度的方式调整所述辐射源向外辐射的所述微波波束的辐射角度大小和辐射方向。
本发明的另一个目的在于提供一多波束同频微波探测天线及其制造方法和检测方法,其中同时藉由所述反射件和所述基板改变至少一个所述辐射源相对于其他所述辐射源的位置,以调整所述多波束同频微波探测天线产生的微波波束所覆盖的区域。
本发明的另一个目的在于提供一多波束同频微波探测天线及其制造方法和检测方法,其中所述多波束同频微波探测天线包括一混频检波电路,所述混频检 波电路被分别连接于所述辐射源和所述振荡电路单元,所述混频检波电路接收对应的所述辐射源发射的微波波束和接收的回波分别产生的电信号,并通过所述电信号的变化确定所述多波束同频微波探测天线检测的所述目标区域内的物体的运动状态。
依本发明的一个方面,本发明进一步提供一多波束同频微波探测天线,所述多波束同频微波探测天线具有一振荡电路单元,且所述多波束同频微波探测天线包括:
一参考地;以及
至少两个辐射源,其中所述辐射源具有一馈电点,所述辐射源被间隔地设置于所述参考地,并在每个所述辐射源和所述参考地之间分别形成一辐射缝隙,且所述辐射源的所述馈电点被电连接于所述振荡电路单元。
根据本发明的一实施例,所述多波束同频微波探测天线进一步包括一基板,其中所述参考地被设置于所述基板的一侧,所述基板能够发生形变,并改变所述参考地的延伸方向。
根据本发明的一实施例,所述基板为柔性可变形的PCB板。
根据本发明的一实施例,所述参考地包括和所述辐射源数量对应的一参考地主体,其中所述辐射源被间隔地设置于所述参考地主体,并在每个所述辐射源和对应的所述参考地主体之间分别形成所述辐射缝隙,所述参考地主体被设置于所述基板,通过所述基板发生形变的方式改变所述参考地主体的延伸方向。
根据本发明的一实施例,所述多波束同频微波探测天线进一步包括与所述参考地主体数量相对应的一屏蔽罩,所述屏蔽罩和所述参考地主体分别被保持于所述基板相对的两侧,以保障所述参考地主体对应于所述辐射源的部分始终被保持于一平面,且始终保持平整。
根据本发明的一实施例,所述屏蔽罩和所述参考地主体被保持于所述基板的同一侧,以保障所述参考地主体对应于所述辐射源的部分始终被保持于一平面,且始终保持平整。
根据本发明的一实施例,各所述参考地主体相互电性连接。
根据本发明的一实施例,各所述参考地主体一体成型为一整体导电金属层。
根据本发明的一实施例,所述基板包括一第一基板和多个第二基板,多个所述第二基板相互间隔地延伸于所述第一基板,至少一个所述参考地主体被设置于 所述第一基板,至少一个所述参考地主体被设置于所述第二基板,其中所述第一基板和每个所述第二基板之间的角度能够被调节。
根据本发明的一实施例,所述的多波束同频微波探测天线进一步包括一基板和一柔性连接件,所述基板包括一第一基板和至少一第二基板,所述参考地包括和所述辐射源数量对应的一参考地主体,至少一个所述参考地主体被设置于所述第一基板,至少一个所述参考地主体被设置于所述第二基板,所述柔性连接件的两端分别被连接所述第一基板和所述第二基板,且所述柔性连接件分别被电连接对应于所述第一基板的所述参考地主体和对应于所述第二基板的所述参考地主体,所述柔性连接件发生变形时,被连接于所述柔性连接件的所述第一基板和/或所述第二基板的延伸方向被改变。
根据本发明的一实施例,所述第一基板为PCB板,所述第二基板为柔性可变形的PCB板。
根据本发明的一实施例,所述第一基板和所述第二基板为柔性可变形的PCB板。
根据本发明的一实施例,所述多波束同频微波探测天线进一步包括一反射件,其中所述反射件具有一反射面,所述反射件被设置于所述参考地,所述反射件的所述反射面和所述辐射源之间形成夹角,且所述反射件的所述反射面能够改变所述辐射源产生的微波波束的辐射方向。
根据本发明的一实施例,所述反射件被可活动地设置于所述参考地。
根据本发明的一实施例,所述反射件的长度大于等于所述辐射源的边长的长度。
根据本发明的一实施例,所述反射件的宽度为参数γ,所述参数γ的取值范围为:1/16λ≤γ≤λ。
根据本发明的一实施例,所述反射件由金属制成。
根据本发明的一实施例,所述多波束同频微波探测天线进一步包括至少一混频检波电路,其中所述混频检波电路的两端分别电连接于所述振荡电路单元和所述辐射源的所述馈电点。
根据本发明的一实施例,每一个所述混频检波电路的一端被电连接于一个所述辐射源的所述馈电点,所述混频检波电路的另一端被电连接于所述振荡电路单元。
根据本发明的一实施例,每一个所述混频检波电路的一端被电连接于至少两个所述辐射源的所述馈电点,所述混频检波电路的另一端被电连接于所述振荡电路单元。
根据本发明的一实施例,所述多波束同频微波探测天线的所述辐射源被接地。
依本发明的一个方面,本发明进一步提供一多波束同频微波探测天线的制造方法,所述制造方法包括如下步骤:
(a)以在至少两个辐射源和所述参考地之间分别形成一辐射缝隙的方式保持至少两个所述辐射源于一参考地;和
(b)电连接所述辐射源的一馈电点于一振荡电路单元。
根据本发明的一实施例,在上述方法中,进一步包括步骤:设置所述参考地于一基板,其中所述基板发生形变时,所述参考地的延伸方向被改变。
根据本发明的一实施例,在上述方法中,进一步包括步骤:以一反射件的一反射面朝向所述辐射源的方式设置所述反射件于所述参考地。
根据本发明的一实施例,在上述方法中,进一步包括步骤:以一反射件的一反射面朝向所述辐射源的方式可活动地设置所述反射件于所述参考地。
根据本发明的一实施例,在上述方法中,进一步包括步骤:可拆卸地安装至少一柔性连接件于所述基板的一第一基板以连接所述基板的至少一第二基板于所述第一基板。
依本发明的一个方面,本发明进一步提供一多波束同频微波探测天线的检测方法,其特征在于,所述检测方法包括步骤(Ⅰ):通过以至少两个辐射源的一馈电点被接入一振荡电路单元的方式向外辐射具有相同频率的微波波束。
根据本发明的一实施例,所述的检测方法进一步包括步骤(Ⅱ):动态地改变所述微波波束的辐射方向。
根据本发明的一实施例,所述步骤(Ⅱ)中进步一包括步骤(Ⅲ):以一基板发生形变的方式改变至少一个所述辐射源相对于其他所述辐射源的位置。
根据本发明的一实施例,所述步骤(Ⅱ)中进步一包括步骤(Ⅳ):藉由一反射件的一反射面反射与约束所述微波波束而改变所述微波波束的辐射角度和方向。
根据本发明的一实施例,所述步骤(Ⅳ)中进一步包括步骤:改变所述反射 件的所述反射面与所述辐射源之间形成的夹角大小。
根据本发明的一实施例,所述步骤(Ⅱ)中进步一包括步骤:以一柔性连接件发生形变的方式一第一基板和至少一第二基板之间的相对位置,进而调节对应的所述辐射源向外辐射的所述微波波束的辐射方向。
根据本发明的一实施例,在所述步骤(I)之后进一步包括步骤(ii):藉由至少一个混频检波电路接收至少一个所述辐射源产生的微波波束的回波所形成的一电信号。
根据本发明的一实施例,在所述步骤(ii)中,每一个所述混频检波电路接收一个所述辐射源产生的微波波束的回波所形成的所述电信号。
根据本发明的一实施例,在所述步骤(ii)中,每一个所述混频检波电路接收对应的两个及以上数量的所述辐射源产生的回波形成的所述电信号。
附图说明
图1A是根据本发明的一较佳实施例的一多波束同频微波探测天线的立体结构示意图。
图1B是根据本发明的上述较佳实施例的所述多波束同频微波探测天线的俯视图示意图。
图2A是根据本发明的上述较佳实施例的所述多波束同频微波探测天线的剖视图示意图。
图2B是根据本发明的上述较佳实施例的所述多波束同频微波探测天线的剖视图示意图。
图3A是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的剖视图示意图。
图3B是根据本发明的上述佳实施例的所述多波束同频微波探测天线的剖视图示意图。
图4A是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的立体结构示意图。
图4B是根据本发明的上述较佳实施例的一多波束同频微波探测天线的俯视图示意图。
图5A是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的立 体结构示意图。
图5B是根据本发明的上述较佳实施例的一多波束同频微波探测天线的俯视图示意图。
图6A是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的立体结构示意图。
图6B是根据本发明的上述较佳实施例的一多波束同频微波探测天线的俯视图示意图。
图7A是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的示意图。
[根据细则91更正 28.03.2019] 
图7B是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的示意图。
[根据细则91更正 28.03.2019] 
图7C是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的示意图。
[根据细则91更正 28.03.2019] 
图7D是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的示意图。
图8A是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的立体结构示意图。
图8B是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的立体结构示意图。
图8C是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的立体结构示意图。
图8D是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的立体结构示意图。
图9A是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的立体结构示意图。
图9B是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的立体结构示意图。
图9C是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的立体结构示意图。
图9D是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的立体结构示意图。
图10A是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的立体结构示意图。
[根据细则91更正 28.03.2019] 
图10B是根据本发明的上述较佳实施例的所述多波束同频微波探测天线的 立体结构示意图。
[根据细则91更正 28.03.2019] 
[根据细则91更正 28.03.2019] 
图11A是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的立体结构示意图。
图11B是根据本发明的上述较佳实施例的所述多波束同频微波探测天线的剖视示意图。
图12A是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的示意图。
图12B是根据本发明的上述较佳实施例的所述多波束同频微波探测天线的示意图。
图13A是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的示意图。
图13B是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的示意图。
图14A是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的示意图。
图14B是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的示意图。
图15A是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的示意图。
图15B是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的示意图。
图16A是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的电路示意图。
图16B是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的电路示意图。
图17A是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的 电路示意图。
图17B是根据本发明的另一较佳实施例的所述多波束同频微波探测天线的电路示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
参照说明书附图1A至图2B,根据本发明的一较佳实施例的一多波束同频微波探测天线将在接下来的描述中被阐述,其中所述天线能够被应用于检测一目标区域,并获得所述目标区域内的一目标物体的运动信息。进一步地,所述天线能够向外辐射频率相同的至少两束独立的微波波束,所述微波波束形成一检测区域,通过以所述检测区域覆盖所述目标区域的方式检测所述目标区域内的所述目标物体的运动状态。具体来说,所述天线向外辐射的所述微波波束具有一特定频率,所述微波波束达到所述目标区域内,当所述目标区域内的所述目标物体为静止状态时,所述天线接收到的返回的所述微波波束仍然保持所述特定频率,当所述目标区域内的所述目标物体处于运动状态时,所述天线接收到的所述微波波束的频率发生变化,以供在后续根据所述微波波束变化的相关数据计算得到所述目标区域内的所述目标物体的运动状态。
参考图1A至图2B,所述天线包括一参考地10和至少两个辐射源20,其中各所述辐射源20具有一馈电点21,所述辐射源20被间隔地设置于所述参考地10,并在每个所述辐射源20和所述参考地10之间分别形成一辐射缝隙40。更 进一步地,所述天线具有一振荡电路单元30,所述辐射源20的所述馈电点21被电连接于所述振荡电路单元30,其中所述振荡电路单元30传输微波波束激励电信号,进而所述辐射源20的所述馈电点21能够被接入微波波束激励电信号。进一步地,当所述微波波束激励电信号自所述馈电点21被接入所述辐射源20后,所述天线产生在所述辐射源20处向外辐射所述微波波束,藉由所述微波波束能够对所述目标区域进行检测,并获得所述目标区域内的所述目标物体的运动状态。值得一提的是,不同的所述辐射源20的所述馈电点21被电连接于同一个所述振荡电路单元30,使得不同的所述辐射源20向外辐射的所述微波波束具有相同的频率。这样,一方面避免了不同的所述辐射源20在发射所述微波波束和接收相应的回波时的相互干扰,另一方面,在后续计算所述目标物体的运动状态时,不同的所述微波波束的频率参数被统一,进而有利于简化获取所述目标物体的运动状态的相关算法,提高所述天线获得所述目标区域内的所述目标物体的运动状态的性能。
进一步地,所述辐射源20的所述馈电点21偏离所述辐射源20的物理中心,以降低所述辐射源20对所述振荡电路单元30产生的微波波束激励电信号的激励电流的强度要求,从而当所述振荡电路单元30产生的所述微波波束激励电信号自所述辐射源20的所述馈电点21被接入所述辐射源20时,所述辐射源20更容易产生与形成初始的极化方向。
本领域技术人员应当理解,为使得不同的所述辐射源20能够相互独立地发射具有相同频率的所述微波波束和/或接收相应的回波,优选地,各所述辐射源20具有不同的工作极化方向,即各所述辐射源20的物理中心至所述馈电点21的连线方向不同,也就是说,在本发明的描述中,具有相同极化方向的辐射源,以及由多个或多组呈阵列分布以满足不同的辐射角度、辐射距离以及增益要求的辐射源组合视为本发明的描述中的一个所述辐射源20,且所述微波波束的发射和相应的回波的接收既能够藉由同一所述辐射源20实现,也能够藉由不同的两所述辐射源20分别实现,即在本发明的一些实施例中,所述辐射源20被设置为能够发射所述微波波束并接收相应的回波,而在本发明的一些实施例中,所述微波波束的发射和相应的回波的接收藉由不同的两所述辐射源20分别实现,本发明对比不作限制。
值得一提的是,所述天线的所述辐射源20的形状不受限制,所述辐射源20 的形状可以被实施为但不限于多边形、圆形或是椭圆形中的一种或是多种的组合。另外,所述天线的所述辐射源20的延伸方向也不受限制,尽管在本发明的说明书附图中示出的所述辐射源20的延伸方向与所述参考地的延伸方向一致,但是在本发明其他的实施例中,所述辐射源20也可以被实施为所述参考地10的延伸方向相互垂直。本领域技术人员应该知晓的是,所述天线的所述辐射源20的具体实施方式仅仅作为示例,不能成为本发明所述天线的内容和范围的限制。
参考图1A至图2B,所述天线进一步包括一基板50,其中所述基板50包括一第一侧面51和一第二侧面52,所述参考地10以贴装于所述电路基本50的方式被保持于所述基板50的所述第一侧面51,所述振荡电路单元30被设置于所述基板50。优选地,所述振荡电路单元30被嵌入所述基板50的所述第一侧面51和第二侧面52之间。优选地,所述振荡电路单元30被保持于所述基板50的所述第二侧面52。所述参考地10具有良好的导电性,且所述参考地10的具体材质不受限制,所述参考地10可以由铜、铜合金等导电材质制成的金属层。应该理解的是,所述参考地10的具体实施方式不受限制。
进一步地,所述天线的所述辐射源20产生的所述微波波束的方向和角度能够被动态地调节,进而动态地改变所述微波波束形成的所述检测区域。一方面,通过动态地调整所述微波波束的辐射方向能够扩大所述天线的所述检测区域。比如说,通过改变所述天线的两个所述辐射源20中的一个所述辐射源20产生的所述微波波束的方式可以减小两个所述辐射源20产生的所述微波波束的重叠区域,进而能够扩大所述天线的所述检测区域。另一方面,通过调节所述微波波束的辐射方向更准确地确定所述目标物体在所述目标区域内的准确位置和运动状态。比如说,当确定所述目标物体位于两个辐射源20辐射的两个所述微波波束所形成的重叠区域内的时,改变所述天线的两个辐射源20中的一个所述辐射源20产生的所述微波波束的辐射方向减小两个所述微波波束的重叠区域,进而有利于更准确地确定所述目标物体在所述目标区域内的具体位置。并且,所述天线的所述辐射源20产生的所述微波波束具有相同的频率,进而简化了利用所述辐射源20产生的所述微波波束获取所述目标物体的运动状态的时间,有利于减少所述天线的响应时间,以提高获取所述目标物体的运动状态的效率和准确度。
值得一提的是,具有不同的极化方向的所述辐射源20辐射的所述微波波束及反射的对应回波能够相互独立工作而互不干扰,即各所述微波波束能够独立获 取各自的检测结果,进而得到所述目标物体的数量及各目标物体的分布位置、移动方向,移动速度等数据。
具体来说,在本发明的一些具体的实施例中,参照图1A至图6B所示,所述天线能够藉由所述基板50发生形变的方式改变被设置于所述基板50的所述参考地10的延伸方向,进而改变所述辐射源20的朝向,并动态地调整所述辐射源20产生的所述微波波束的辐射方向。具体来说,所述参考地10包括和所述辐射源20数量相对应的至少两个相互连接的所述参考地主体11,所述辐射源20以在所述辐射源20和对应的所述参考地主体11之间形成所述辐射缝隙40的方式被间隔地设置于所述参考地主体11。所述参考地主体11被设置于所述基板50的所述第一侧面51。优选地,相邻的所述参考地主体11分别电性相连。优选地,各个所述参考地主体11一体成型为一整体导电金属层。进一步地,所述基板50能够发生形变,且被设置于所述基板50的所述参考地主体11能够随所述基板50的变化而改变延伸方向,进而改变被设置于所述参考地主体11的所述辐射源20的朝向,以动态地调节所述辐射源20产生的所述微波波束的辐射方向。
优选地,所述基板50具有柔性,且所述基板50的任意部分能够发生柔性形变,以使得被设置于所述基板50的任意一个所述参考地主体11发生形变,进而改变至少一个所述辐射源20的朝向,从而动态地调整至少一个所述辐射源20与其他所述辐射源20的相对位置,以改变所述多波束探测天线产生的至少一束微波波束的辐射方向。比如说,当处于水平状态的所述基板50发生柔性形变,且所述基板50的一部分沿着一折线A向下弯折,与所述基板50向下弯折部分相对应的所述参考地主体11的延伸方向由水平状态变成倾斜向下延伸,进而对应于所述参考地主体11的所述辐射源20的朝向被改变。从而,通过使得所述基板50发生变形的方式动态地调整所述天线形成的所述微波波束的辐射方向,进而调整所述多波探测天线的检测区域。优选地,一个所述参考地主体11相对于另外一个所述参考地主体11向下活动的角度为参数α,所述参数α小于等于90°,即,所述基板50能够发生形变向上弯折的角度小于等于90°,且所述基板50能够发生形变向下弯折的角度小于等于90°。
优选地,所述基板50被实施为柔性可变形的PCB板,如FPC板,所述振荡电路单元30被嵌入所述基板50。
参照图3A和图3B,在本发明的一较佳实施例中,所述天线包括和所述参考 地主体11数量对应的一屏蔽罩60,相邻的所述屏蔽罩60被相互间隔地保持于所述基板50的所述第二侧面52,所述屏蔽罩60对应于所述参考地10的所述参考地主体11,即,所述参考地主体11和所述屏蔽罩60分别被保持于所述基板50同一部分相对应的两侧。所述屏蔽罩60能够保障所述参考地主体11对应于所述辐射源20的部分始终被保持于一平面,且始终保持平整。具体来说,当所述基板50发生形变时,所述屏蔽罩60不会发生形变,且所述屏蔽罩60使得所述基板50对应于所述屏蔽罩60的位置不会发生形变,进而,所述参考地主体11对应于所述屏蔽罩60的位置不会发生形变而被始终被保持于同一平面,有利于避免所述参考地主体11的变化对所述辐射源20的干扰。也就是说,仅所述基板50对应于相邻的所述屏蔽罩60之间的部分能够发生形变,进而改变所述参考地主体11的延伸方向以及所述辐射源20的辐射方向。
可以理解的是,所述屏蔽罩60还可以与对应的所述参考地主体11被设置于所述基板50的同一侧,如所述屏蔽罩60也被设置于所述基板50的所述第一侧面51,同时与该所述参考地主体11对应的所述辐射源20于所述基板50的所述第二侧面52或所述第二侧面52所对应的空间维持与所述参考地主体11相间隔地被设置,则所述屏蔽罩60同样能够保障所述参考地主体11对应于所述辐射源20的部分始终被保持于一平面,且始终保持平整。从而当所述基板50发生形变时,所述屏蔽罩60不会发生形变,且所述屏蔽罩60使得所述基板50对应于所述屏蔽罩60的位置不会发生形变,则使得所述基板50对应于相邻的所述屏蔽罩60之间的部分能够发生形变,进而改变所述参考地主体11的延伸方向以改变所述辐射源20的辐射方向。
特别地,所述屏蔽罩60在保障所述参考地主体11对应于所述辐射源20的部分始终被保持于一平面,且始终保持平整的同时,还能够降低对应所述辐射源20的副波瓣对相应的所述微波波束的干扰,因此,在本发明的一些实施例中,所述屏蔽罩60还能够被实施为硬质板材,以仅保障所述参考地主体11对应于所述辐射源20的部分始终被保持于一平面,且始终保持平整,从而在所述基板50对应于相邻的所述屏蔽罩60之间的部分发生形变时,使得所述辐射源20的辐射方向被改变。
参照说明书附图1A至图3B,所述天线的所述辐射源20的具体数量为两个,所述参考地主体11的具体数量为两个,两个所述辐射源20分别被间隔地设置于 对应的所述参考地主体11。两个所述参考地主体11并排地保持于所述基板50的所述第一侧面51。当所述基板50平行于水平面时,两个所述参考地主体11的延伸方向相同,且位于同一平面,当所述基板50对应于相邻的所述屏蔽罩60之间的部分发生形变时,至少一个所述参考地主体11的延伸方向被改变。
优选地,通过所述基板50发生形变的方式使得两个所述参考地主体11中一个所述参考地主体11能够相对于另外一个所述参考地主体11被向上翻转或是向下翻转,即,两个辐射源20中的一个所述辐射源20的辐射方向被改变,进而改变所述天线的产生的一束微波波束的辐射方向,以改变所述天线的所述检测区域。优选地,通过使得所述基板50发生形变的方式使得两个所述参考地主体11同时相对地运动,进而改变所述天线的产生的两束微波波束的辐射方向,以改变所述天线的所述检测区域。举例来说,两个所述参考地主体11处于同一平面,即,两个所述参考地主体之间呈180°,所述基板50发生形变使得两个所述参考地主体11之间的夹角变小,进而两个所述辐射源20相互靠近,使得所述辐射源20产生的微波波束覆盖的重叠区域被增大;当所述参考地主体11之间的夹角增大,使得两个所述辐射源20相互远离,进而所述辐射源20产生的所述微波波束覆盖的重叠区域被减小。
参照图4A和图4B,在本发明的其他实施例中,所述天线的所述辐射源20的具体数量为三个,所述参考地主体11的具体数量为三个,通过所述基板50发生形变的方式以改变至少一个所述参考地主体12的延伸方向,进而改变对应的所述辐射源20与其他所述辐射源20之间的相对位置,以调整所述辐射源20产生的所述微波波束的辐射方向。优选地,间隔地保持于所述参考地主体11的三个所述辐射源20可以相互间隔地并排设置。优选地,间隔地保持于所述参考地10的三个所述辐射源20可以相互间隔地并列设置。优选地,间隔地保持于所述参考地10的三个所述辐射源20可以相互间隔地呈三角形分布。应该理解的是,所述辐射源20的分布方式仅仅作为示例,不能成为对本发明所述的内容和范围的限制。
值得一提的是,所述辐射源20和所述参考地主体11的具体数量也可以被实施为四个、五个或是更多个,其中至少一个所述辐射源20相对于其他辐射源20的位置能够被改变,进而改变所述辐射源20产生的所述微波波束的辐射方向,参照图5A至图6B。并且,应该理解的是,说明书附图及描述中所阐述的所述辐 射源20被保持于所述参考地10一侧的方式仅仅作为示例,不能成为对本发明所述天线的内容及范围的限制,所述辐射源20可以被实施为相互环绕地保持于所述参考地10的一侧,也可以被实施为成列或是成行地间隔设置于所述参考地10。
参照图7A至图9D,在本发明的一些较佳实施例中,所述天线进一步包括至少一反射件70,所述反射件70具有一反射面71,其中所述反射件70被设置于与所述辐射源20相对应的所述参考地主体11,且所述反射件70被保持于所述辐射源20的一侧。进一步地所述反射面71与所述辐射源20之间形成夹角,其中所述反射面71与所述辐射源20之间的夹角的变化能够形成对应的所述辐射源20所产生的所述微波波束的辐射角度大小和辐射方向的变化。优选地,所述反射件70由金属材质制成,所述反射件70可以被实施为铜、铜合金等材质制得的金属板。
更进一步地,所述反射件70被可活动地设置于所述辐射源20相对应的所述参考地主体11,且所述反射件70的所述反射面71与参考地主体11之间的角度能够被动态地调整,以在某个或多个方向对相应的所述微波波束进行约束而改变所述微波波束的辐射角度大小和辐射方向,即所述反射件70能够动态地改变所述辐射源20产生的所述微波波束的辐射角度大小和辐射方向,以动态地改变所述天线的检测区域。
优选地,所述反射件70被枢轴地设置于所述参考地10,通过转动所述反射件70能够改变所述反射件70的所述反射面71与所述辐射源20之间形成的角度大小,进而改变所述辐射源20产生的所述微波波束的辐射角度大小和辐射方向。举例来说,当所述反射件70以所述反射面71朝向所述辐射源20的方式转动时,所述反射面71靠近所述辐射源20,所述反射面71与所述辐射源20之间的角度减小,能够增大所述辐射源20产生的所述微波波束形成的重叠区域;当所述反射件70以所述反射面71远离所述辐射源20的方式转动时,所述反射面71与所述辐射源20相互远离,所述反射面71与所述辐射源20之间的角度增大,能够减小所述辐射源20产生的所述微波波束覆盖的重叠区域,进而动态地调整所述天线的所述检测区域。值得一提的是,调整所述反射件70的所述反射面71与所述辐射源20之间的角度的方式仅仅作为示例,不能成为对本发明所述天线的内容和范围的限制。
所述反射件70的具体数量不受限制,所述反射件70的所述反射面71可以 被实施为反射或约束一个所述辐射源20向外辐射的所述微波波束,也可以被实施为改变至少两个所述辐射源20向外辐射的所述微波波束的辐射角度大小和辐射方向。
优选地,所述反射件70的数量被实施为一个,参照图7A至图7D。举例来说,被设置于所述参考地主体11的所述反射件70以所述反射面71朝向所述辐射源20的方式被设置于至少两个所述辐射源20中的一个所述辐射源20的一侧,所述反射件70位于至少两个位于所述辐射源20之间,且所述反射件70的所述反射面71靠近所述辐射源20,所述反射件70的所述反射面71和相对应的所述辐射源20之间形成夹角。通过动态地调整所述反射面71和所述辐射源20之间的角度大小能够改变所述辐射源20的产生的所述微波波束的辐射角度大小和辐射方向。进一步地,通过动态地调整一个辐射源20向外辐射的所述微波波束的辐射方向和辐射角度能够动态地改变所述天线的所述检测区域。
参照图8A至图8D,在本发明其他的实施例中,所述反射件70的数量被实施为一个,且所述反射件70以所述反射面71朝向所述辐射源20的方式被设置于所述参考地10的所述参考地主体11,所述反射面71能够和至少一个所述辐射源20之间形成夹角,以反射所述辐射源20产生的微波波束,进而改变所述天线的所述检测区域。进一步地,所述反射面71和所述辐射源20之间的夹角能够被动态地调整,即,所述反射件70的所述反射面71能够动态地反射至少一个所述辐射源20产生的所述微波波束,进而改变所述微波波束的辐射角度大小和辐射方向,以改变所述天线的所述检测区域。
优选地,所述反射件70的数量和所述辐射源20的数量相一致,参照图9A至图9D。比如说,参照图9A,两个所述反射件70被设置于与所述辐射源20相对应的所述参考地主体11,两个所述反射件70分别以所述反射面71与所述辐射源20相对应的方式被保持于两个所述辐射源20的两侧,且所述反射件70的所述反射面71能够分别地与相对应的所述辐射源20之间形成夹角。可选地,所述反射件70被保持于两个所述辐射源20之间。可选地,两个所述反射件70被保持于所述参考地10的相对的两侧。值得一提的是,所述反射件70和所述辐射源20的具体数量仅仅作为示例,所述反射件70的数量不受限制,所述反射件70可以被实施为三个,四个,五个甚至更多。
优选地,所述反射件70的长度大于等于所述辐射源20的长边的长度,所述 反射件70的宽度为参数γ,所述参数γ的取值范围为:1/16λ≤γ≤λ,其中参数λ为所述辐射源20能够接收或是产生的所述微波波束的波长。
根据本发明的一些较佳实施例,参照附图10A至图15B,其中所述基板50进一步包括一第一基板501和多个第二基板502,其中多个所述第二基板502相互间隔地延伸于所述第一基板501,且多个所述第二基板502环绕于所述第一基板501的周缘。至少一个所述参考地主体11被设置于所述第一基板501,所述辐射源20被间隔地保持于所述参考地主体11的一侧,并在所述参考地主体11和所述辐射源20之间形成所述辐射间隙40。至少一个所述参考地主体11被设置于所述第二基板502,并在所述参考地主体11和所述辐射源20之间形成所述辐射间隙40。每个所述辐射源20的所述馈电点21均被电连接于同一个所述振荡电路单元30,使得不同的所述辐射源20向外辐射的所述微波波束具有相同的频率。进一步地,所述辐射源20向外辐射的所述微波波束的辐射方向和角度能够被调节,一方面,有利于扩大所述天线的检测区域,另一方面,有利于提高所述天线的检测效率和准确性。
特别地,所述第二基板502的数量并不限制,且在本发明的一些实施例中,所述第一基板501可以不设置所述辐射源20和/或所述参考地主体11,也就是说,通过所述第一基板501和所述第二基板502之间的柔性连接能够形成所述第一基板501的所述辐射源20相对于所述第二基板502的所述辐射源20的位置的变化,以及不同的所述第二基板502的所述辐射源20之间的相对位置的变化,而在所述第一基板501并未被设置所述辐射源20和/或所述参考地主体11时,仍能够通过所述第一基板501和所述第二基板502之间的柔性连接,形成不同的所述第二基板502的所述辐射源20之间的相对位置的变化,本发明对此并不限制。
参照图10A和图10B,任意一个所述第二基板502和所述第一基板501之间的角度能够被调整。优选地,所述第一基板501和所述第二基板502具有柔性,所述第一基板501和/或所述第二基板502以产生形变的方式改变所述第一基板501和所述第二基板502之间的相对角度。比如说,所述第二基板502能够发生柔性形变而相对于所述第一基板501向上翻折或是向下翻折。当所述第一基板501和/或所述第二基板502发生柔性形变时,对应的所述参考地主体11的延伸方向发生变化,对应于所述参考地主体11的所述辐射源20相对于其他所述辐射 源20的位置发生变化,进而使得所述天线产生的所述微波波束的辐射覆盖区域被改变。进一步地,相邻的所述第二基板502相互独立,以允许使用者单独调节任意所述第二基板502的延伸方向,以改变对应的所述辐射源20产生的所述微波波束的辐射方向,且保持其他的所述辐射源20产生的所述微波波束的辐射方向不变,以利于通过动态地调节所述第二基板502来调节所述天线的检测区域。优选地,所述第一基板501和所述第二基板502为柔性可变形的PCB板,如FPC板,所述第一基板501和所述第二基板502的至少一部分能够被弯折。优选地,所述第一基板501为PCB板,即所述第一基板501为刚性电路板,所述第一基板501不能通过发生形变而改变延伸方向,环绕于所述第一基板501的所述第二基板502为柔性可变形的PCB板,通过调节所述第二基板502的延伸方向而改变所述辐射源20产生的所述微波波束的辐射方向。应该理解的是,在本发明的其他实施例中,通过在柔性的所述第一基板501的一侧设置一刚性固定件的方式,使得所述第一基板501不能通过发生形变而改变延伸方向,以允许使用者仅通过调节所述第二基板502的延伸方向而改变所述辐射源20产生的所述微波波束的辐射方向。
在本发明的一较佳实施例中,参照附图11A和11B,所述第一基板501和所述第二第二基板502为PCB板,相邻的所述第二基板502相互连接,所述反射板70被设置于所述辐射源20相对应的所述参考地主体11,所述反射件70被保持于所述第二基板502,多个所述反射件70相互环绕于所述第一基板501对应的所述辐射源20。优选地,至少一个所述反射件70的所述反射面71朝向所述第二基板502对应的所述辐射源20,即,所述反射件70的所述反射面71反射或约束所述第二基板502对应的所述辐射源20产生的所述微波波束。优选地,至少一个所述反射件70的所述反射面71朝向所述第一基板501对应的所述辐射源20,即,所述反射件70的所述反射面71反射或约束所述第一基板501对应的所述辐射源20产生的所述微波波束。更进一步地,参考图14A和图14B,所述反射件70的所述反射面71与参考地主体11之间的角度能够被动态地调整,进而所述反射件70能够动态地改变所述辐射源20产生的所述微波波束的辐射角度大小和辐射方向,以动态地改变所述天线的检测区域。优选地,所述反射件70被枢轴地设置于所述参考地10,通过转动所述反射件70能够改变所述反射件70的所述反射面71与所述辐射源20之间形成的角度大小,进而改变所述辐射源 20产生的所述微波波束的辐射角度大小和辐射方向。
在本发明的一些实施例中,藉由所述第一基板501和/或所述第二基板502以及所述反射件70调节所述天线产生的所述微波波束的辐射方向和角度。举例来说,参照图13A和图13B,所述第一基板501和所述第二基板502为柔性可变形的PCB板,且至少一所述反射件70以所述反射面71朝向所述第二基板502对应的所述辐射源20的方式被保持于所述第二基板502的一侧。也就是说,所述第一基板501和所述第二基板502的至少一部分能够发生形变而被弯折,以改变对应的所述辐射源20与其他辐射源20的相对位置,同时,藉由所述反射件70反射或约束所述反射件70对应的所述辐射源20产生微波波束,进而所述反射件70、所述第一基板501以及所述第二基板502相互配合以调节所述天线产生的所述微波波束的辐射方向和角度。
在本发明的一较佳实施例中,参照附图12A和12B,所述天线进一步包括一柔性连接件80,所述柔性连接件80的两端分别被连接所述第一基板501和所述第二基板502,且所述柔性连接件80分别被电连接对应于所述第一基板501的所述参考地主体11和对应于所述第二基板502的所述参考地主体11。所述柔性连接件80具有柔性,所述柔性连接件80发生柔性形变时,被连接于所述柔性连接件80一端的所述第一基板501和/或所述第二基板502的延伸方向被改变,以改变所述第一基板501和所述第二基板502之间的相对角度,进而调节对应的所述辐射源20产生的所述微波波束的辐射方向。比如说,所述柔性连接件80能够发生柔性形变使得所述第二基板502相对于所述第一基板501向上翻折或是向下翻折,对应的所述参考地主体11的延伸方向发生变化,对应于所述参考地主体11的所述辐射源20相对于其他所述辐射源20的位置发生变化,进而使得所述天线产生的所述微波波束的覆盖区域被改变。优选地,参照图12A和图12B,所述第一基板501和所述第二基板502为PCB板。优选地,所述柔性连接件80被可拆卸地安装于所述第一基板501,使得所述第二基板502被可拆卸地安装于所述第一基板502,使用者可以根据使用需求通过增加或是减少所述第二基板502的数量的方式选择所述天线的检测范围,进而提高了所述天线的灵活性。
在本发明的一些实施例中,藉由所述柔性连接件80以及所述反射件70调节所述天线产生的所述微波波束的辐射方向。举例来说,参照图15A和图15B,所述第一基板501和所述第二基板502被实施为PCB板,连接所述第一基板501和 所述第二基板502的所述柔性连接件80发生形变而改变所述第一基板501和/或所述第二基板502的延伸方向,同时,藉由所述藉由所述反射件70反射或约束所述反射件70对应的所述辐射源20产生微波波束,所述柔性连接件80和所述反射件70相互配合,以调节所述天线产生的所述微波波束的辐射方向和角度。
进一步地,所述天线接收经由所述辐射源20向外辐射的微波波束形成的一回波,并根据接收到的所述回波的频率变化来确定所述目标区域内的所述目标物体的运动状态。具体来说,附图16中示出了所述模拟电路100,其中所述模拟电路100为所述天线的每个所述辐射源20和所述参考地10于所述微波波束激励信号的作用下的等效电气连接状态。应该理解的是,每个所述辐射源20对应于一个所述模拟电路100。
值得一提的是,所述天线的不同的辐射源20可以向外辐射具有相同频率的多束所述微波波束,使得所述天线利用多束微波波束同时对不同的目标区域进行检测,进而在扩大检测范围的同时提高了所述天线的检测效率。
进一步地,所述天线包括至少一混频检波电路200,其中所述混频检波电路200的两端分别被电连接于所述振荡电路单元30和所述辐射源20的所述馈电点21,所述天线接收的所述回波形成一电信号,且所述电信号自所述辐射源20经过与所述辐射源20电连接的所述混频检波电路200,从而在后续,根据所述混频检波电路200接收的所述电信号获得所述回波的频率变化信息,进而确定所述天线检测的所述目标区域内的物体的运动状态。优选地,所述混频检波电路200的具体数量被实施为一个,藉由经过一个所述混频检波电路200的所述电信号变化确定所述天线的至少两个所述辐射源20产生的微波波束所检测的所述目标区域内的物体的运动状态。具体来说,一个所述混频检波电路200的一端被电连接于至少两个所述辐射源20的所述馈电点21,且所述混频检波电路200的另一端被电连接于所述振荡电路单元30,所述混频检波电路200能够接收与其电连接的所述辐射源20向外辐射的微波波束形成的回波所产生的所述电信号。
参照附图16A至图17B,所述天线进一步包括一功分器300,以允许一信号被分成两路或是多路输出或是能将多路所述信号合成一路输出,应该理解的是,所述信号可以被实施为电信号。参照图16A和图16B,所述功分器300的一端被电连接于所述混频检波电路200,另一端被电连接于至少两个所述辐射源20的所述馈电点21。参照图17A和图17B,所述功分器300的一端被电连接于所述混 频检波电路200,另一端被电连接于所述振荡电路单元30。
举例来说,参考图16A和图16B,所述混频检波电路200的数量为一个,所述天线的所述辐射源20的数量被实施为三个,一个所述混频检测电路200的一端被电连接于三个所述辐射源20的所述馈电点21,且所述混频检波电路300的另一端被电连接于所述振荡电路单元30。所述天线的三个所述辐射源20能够产生三束微波波束,并从三个角度对所述目标区域进行检测,即,通过将不同的所述辐射源20布置于不同的位置或是朝向的方式将能够扩大了所述天线的检测范围,以利于更准确地判断所述目标区域内的物体的运动状态。进一步地,三个所述辐射源20均被电连接于所述振荡电路单元30,使得所述辐射源20向外辐射的微波波束的频率一致,当三个所述辐射源20的中的每一个所述辐射源20产生的微波波束所形成的所述回波的频率与对应的所述辐射源20产生的微波波束的频率保持一致时,经过所述混频检波电路200的所述电信号保持不变,即所述混频检波电路200不输出频率差或相位差的差异电信号;当三个所述辐射源20中的任意一个所述辐射源20产生的微波波束所形成的所述回波的频率发生变化,经过所述混频检波电路200的电信号也随之变化,进而能够根据电信号的变化确定所述目标区域内的物体运动状态。
在本发明其他的实施例中,所述混频检波电路200的具体数量被实施为两个及以上数量。藉由经过两个及以上和数量的所述混频检波电路200的所述电信号变化确定所述天线的至少两个所述辐射源20产生的微波波束所检测的所述目标区域内的物体的运动状态。优选地,每一个所述混频检波电路200的两端分别被电连接于一个所述辐射源20的所述馈电点21和所述振荡电路单元30。通过这样的方式能够将所述目标区域划分成多个子区域,进而通过检测每个所述子区域的方式缩小所述目标区域内的物体的运动位置的范围,进而能够更准确地确定所述目标区域内的物体的运动状态。
举例来说,参照图17A和图17B,当所述天线的所述辐射源20的数量被实施为三个,所述混频检波电路200也被实施为三个,三个所述混频检波电路200的一端分别被电连接于三个模拟电路100所述辐射源20的所述馈电点21,且三个所述混频检波电路200的另一端均被电连接于所述振荡电路单元30。所述天线的三个所述辐射源20能够产生三束微波波束,并从三个角度对所述目标区域进行检测,即,通过将不同的所述辐射源20布置于不同的位置或是朝向的方式 能够将扩大所述天线的检测范围,并能够将所述目标区域划分成至少三个子区域进行检测,根据三个所述混频检波电路200接收的电信号能够确定所述目标区域内的物体的运动状态,以及锁定物体所在的区域范围,如根据三个所述混频检波电路200依接收的电信号输出的差异电信号,所述目标区域内的物体的移动方向、移动速度以及移动轨迹能够被获取。
具体地,三个所述辐射源20均被电连接于所述振荡电路100,所述辐射源20向外辐射的微波波束的频率一致,当三个所述辐射源20中的每个所述辐射源20产生的微波波束所形成的所述回波的频率与对应的所述辐射源20产生的微波波束的频率保持一致时,经过所述混频检波电路200的所述电信号保持不变,即所述混频检波电路200不输出频率差或相位差的差异电信号;当任意一个所述辐射源20产生的微波波束所形成的所述回波的频率发生变化,经过与所述辐射源20电连接的所述混频检波电路200的电信号也随之变化,进而能够确定所述目标区域内的物体的运动状态,进一步地,根据所述混频检波电路200与所述辐射源20一一对应,进而能够确定所述目标区域内的物体在哪一个所述辐射源20形成的微波波束所检测的区域内发生运动,进一步锁定运动的物体所在的区域范围。
更具体地说,当所述天线的三个辐射源20产生的三束微波波束形成了三个辐射区域,且三个辐射区域能够将所述目标区域划分成五个子区域时,一旦经过三个所述混频检波电路200中的一个所述混频检波电路200的所述电信号产生变化,能够确定物体在与所述混频检波电路200电连接的所述辐射源20产生的微波波束形成的辐射区域内运动;一旦经过三个所述混频检测电路200中的两个所述混频检测电路200的所述电信号产生变化时,能够确定物体在与两个所述混频检波电路200分别电连接的两个所述辐射源20产生的微波波束形成的辐射区域的重叠区域内运动。通过这样的方式,不仅能够确定所述目标区域内的物体的运动状态,而且能够更准确地判断运动物体的数量和位置分布,并根据运动物体的位置分布的变化判断运动物体的运动轨迹。
进一步地,当提取所述混频检波电路200输出的差异电信号中对应人体呼吸和/或心跳动作的波动信号,以依该波动信号将目标区域内的运动物体确定为人(活)体时,则运动物体的数量和位置分布即为目标区域内人(活)体的数量和分布,并且目标区域内人(活)体的呼吸和/或心跳能够被所述天线监测。
特别地,当所述天线的三个辐射源20产生的三束微波波束覆盖竖直方向的分层辐射区域时,如独立覆盖分成竖直方向的三层的辐射区域,或重叠覆盖分成竖直方向的四层或五层辐射区域,通过对不同层间的人体的探测结果,能够确定被探测人体的姿态,如当三层辐射区域均探测到人体的存在,则判断为被探测人体的姿态应当为站着的姿态,当仅在竖直方向居下的两层辐射区域探测到人体的存在时,则判断为被探测人体的姿态应当为坐着的姿态,当仅在竖直方向居下的最下一层辐射区域探测到人体的存在,则判断为被探测人体的姿态应当为躺着的姿态。
进一步地,当每个所述混频检波电路200的两端分别被连接一个所述辐射源20的所述馈电点21和所述振荡电路单元30时,可以依不同的检测需求对每个所述辐射源20对应的检测信号做不同的处理与定义而实现不同的功能与应用,以提高所述天线的适用性。比如说,所述天线被应用于检测一房间内的使用者的活动状态,所述天线的多个辐射源20可以分别朝向不同的位置的方式检测使用者在房间内的不同区域内的活动状态,并且可以进一步依使用者的活动状态与所在区域为使用者提供对应不同区域和活动状态的相应功能与服务,如按需照明,和按使用者状态和位置的空气调节等;其中一所述辐射源20通过朝向所述房间内床的位置的方式检测使用者是否处于睡眠状态还是处于其他区域内的活动状态,进一步地,通过对与所述辐射源20电连接的所述混频检波电路200输出的差异电信号进行放大和滤波处理,能够检测使用者呼吸和/或心跳的微动动作,以能够更准确地获得使用者是否存在于房间和在所述目标区域内的位置与活动状态,如依前述分层探测的方式,在检测到使用者处于躺着的姿态的基础上,进一步通过对处于躺着的姿态的该使用者的呼吸和/或心跳状态的检测判断该使用者是否已经进入睡眠,以能够智能地启用相应的情景模式所对应的功能与服务,从而提高了所述天线的适用性。
特别地,鉴于所述微波波束不能被人眼可视,为提高所述多波束同频微波探测天线安装调试时的便捷性与准确性,还能够于各所述辐射源20或所述辐射源20的组合所对应的所述微波波束的辐射方向配置相应的光电指示装置,以藉由所述光电指示装置在所述多波束同频微波探测天线被安装调试时,确定不同的所述辐射源20或所述辐射源20的组合所对应的所述微波波束的辐射方向与覆盖区域和范围。
本领域技术人员应当理解,为更好的理解和阐述本发明,本发明的所述天线的应用被举例说明,其中所述天线的不同应用方式和场景可以相互组合,如在探测人体姿态的同时,能够监测处于睡姿状态的人体的呼吸和/或心跳;如依探测到的人体的数量和位置分布,结合人体的姿态探测,或进一步结合人体的呼吸和/或心跳探测,能够判断人(群)体的活动属性,如聚餐,娱乐、会议等场景。其中不同的应用能够相互结合而构成本发明的所述天线的应用,本发明不一一例举。
应该理解的是,在本发明其他的实施例中,所述混频检波电路200的数量可以被实施为两个及以上数量,且所述混频检波电路200的具体数量和所述辐射源20的数量不一致,即,所述混频检波电路200和所述辐射源20不是一一对应的。比如说,所述辐射源20为四个,对应的所述模拟电路100的数量为四个,所述混频检波电路200的数量为两个,其中一个所述混频检波电路200的一端被电连接于两个所述模拟电路100,所述混频检波电路200的另一端被电连接于所述振荡电路单元30,即,一个所述混频检波电路200对应于两个所述辐射源20。所述混频检波电路200接收的对应所述辐射源20产生的微波波束的回波所形成的电信号,进而能够确定所述目标区域内的物体在所述辐射源20产生的微波波束形成的辐射区域内的运动状态,通过这样的方式也能够扩大所述天线的检测区域,提高所述天线的检测效率。
优选地,参照图17A和17B,在本发明的一些实施方式中,所述振荡电路单元30被实施为低阻抗振荡电路,对应地,所述天线的所述辐射源20能够被接地,且所述天线的所述辐射源20接地的一接地点和所述辐射源20的馈电点21之间能够呈电感特性而具有一定阻抗,以使得所述天线的阻抗降低,进而所述天线接收与辐射微波时的频宽变窄,以利于降低所述天线接收与辐射的微波波束受到相邻波段的微波波束的干扰。也就是说,所述振荡电路单元30具有低阻抗,且所述振荡电路单元30能够为所述天线提供与所述天线的低阻抗相匹配的激励电流,而使得所述天线能够产生初始的极化方向并辐射微波。进一步地,所述混频检波电路200的两端分别被电连接于所述辐射源20和所述振荡电路单元30之间,藉由所述混频检波电路200适配所述振荡电路单元30的低阻抗输出和所述天线的对地低阻抗,从而保障所述天线的工作稳定性和可靠性。本领域技术人员应该理解的是,所述振荡电路单元30的具体实施方式仅仅作为示例,不能成为 对本发明所述天线的内容及范围的限制。
依本发明的一个方面,本发明进一步提供所述多波束同频微波探测天线的制造方法,其中所述制造方法包括如下步骤:
(a)以在至少两个所述辐射源20和所述参考地10之间形成至少一个所述辐射缝隙40的方式保持至少两个所述辐射源20于所述参考地10的所述第一侧面101;和
(b)电连接所述辐射源20的所述馈电点21于所述振荡电路单元30。
在上述方法中,进一步包括(c):设置所述参考地10于所述基板50。具体来说,所述参考地10可以通过被贴装于所述基板50的所述第一侧面51的方式被保持于所述基板50的一侧。进一步,所述基板50具有柔性,所述基板50能够发生形变而改变被保持于所述基板50一侧的所述参考地10的延伸方向。优选地,所述基板50为柔性可变形的PCB板,所述基板50的至少一部分能够被弯折。
在上述方法中,进一步包括步骤(d):设置所述振荡电路单元30于所述基板50。优选地,所述振荡电路单元30被嵌入所述基板50。优选地,所述振荡电路单元30被贴装于所述基板50的一侧。
优选地,在所述步骤(b)之后进一步包括步骤(e):设置至少一个所述反射件70于所述参考地10,且所述反射件70的所述反射面71朝向所述辐射源20,所述反射件70的所述反射面71与所述辐射源20之间能够形成夹角,所述反射件70的所述反射面71能够反射或约束所述辐射源20向外辐射的所述微波波束。优选地,可活动地设置所述反射件70于所述参考地10,通过动态地调节所述反射件70的所述反射面71与所述辐射源20之间形成的夹角大小,进而能够动态地改变所述微波波束覆盖的所述检测区域。优选地,所述反射件70由铜、铜合金或是其他金属制成。
优选地,在上述方法中,进一步包括步骤:可拆卸地安装一柔性连接件80于所述基板50的一第一基板501,且可拆卸地安装所述第二基板502于所述柔性连接件80,使得所述第一基板502被可拆卸地延伸于所述第一基板501。
依本发明的另一个方面,本发明进一步提供所述多波束同频微波探测天线的检测方法,其中所述检测方法包括如下步骤:
(Ⅰ)通过将至少两个所述辐射源20的所述馈电点21接入所述振荡电路单元30的方式向外辐射具有相同频率的微波波束;和
(Ⅱ)动态地改变所述辐射源20辐射的所述微波波束的辐射方向和/或角度。
优选地,在所述步骤(Ⅱ)中,进一步包括步骤(Ⅲ):以改变一基板50的延伸方向的方式改变被设置于所述基板50的所述参考地10的延伸方向,进而改变至少一个辐射源20相对于其他辐射源20的位置,使得所述辐射源20产生的所述微波波束的辐射方向改变。具体来说,所述基板50发生形变而使得基板50的至少一部分的延伸方向改变,进而改变对应的所述参考地主体11的延伸方向,以使得被保持于所述参考地主体11的一侧的所述辐射源20相对于其他辐射源20的位置被改变,以实现动态地调整所述多波束同频微波探测天线的检测区域。
优选地,在所述步骤(Ⅱ)中,进一步包括步骤(Ⅳ):藉由所述反射件70的所述反射面71反射或约束所述微波波束。进一步地,动态地调整所述反射件70的所述反射面71与所述辐射源20之间的角度大小,并将所述辐射源20产生的所述微波波束反射或在一个或多个方向进行约束而形成所述检测区域的改变。
优选地,在所述步骤(Ⅱ)中,进一步包括步骤:所述反射件70和所述基板50相互配合以改变对应的所述辐射源20产生的微波波束的辐射角度大小和辐射方向。
优选地,在所述步骤(Ⅱ)中,进一步包括步骤:改变连接一第一基板501和一第二基板502的一柔性连接件80的延伸方向的方式改变至少一辐射源20相对于其他辐射源20的相对位置,进而改变所述辐射源20产生的微波波束的辐射方向,以调节所述天线的检测区域。优选地,所述柔性连接件80和所述反射件70相互配合以改变对应的所述辐射源20产生的微波波束的辐射方向和角度。
根据本发明的一较佳实施例,在所述步骤(I)之后进一步包括步骤(ii):藉由至少一个所述混频检波电路200接收对应的至少一个所述辐射源20产生的微波波束的回波所形成的所述电信号。
优选地,在所述步骤(ii)中,每一个所述混频检波电路200接收一个所述辐射源20产生的微波波束的回波形成的电信号,藉由经过一个所述混频检波电路200的电信号变化确定所述多波束同频微波探测天线的对应的一个所述辐射源20产生的微波波束对应的所述目标区域内的物体的运动状态。
优选地,在所述步骤(ii)中,每一个所述混频检波电路接收两个及以上数量的所述辐射源20产生的回波所形成的所述电信号,藉由经过所述混频检波电 路200的所述电信号变化确定所述多波束同频微波探测天线的对应的至少两个所述辐射源20产生的微波波束对应的所述目标区域内的物体的运动状态。
本领域的技术人员可以理解的是,以上实施例仅为举例,其中不同实施例的特征可以相互组合,以得到根据本发明揭露的内容很容易想到但是在附图中没有明确指出的实施方式。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (35)

  1. 一多波束同频微波探测天线,其特征在于,所述多波束同频微波探测天线具有一振荡电路单元,且所述多波束同频微波探测天线包括:
    一参考地;以及
    至少两个辐射源,其中所述辐射源具有一馈电点,所述辐射源被间隔地设置于所述参考地,并在每个所述辐射源和所述参考地之间分别形成一辐射缝隙,且所述辐射源的所述馈电点被电连接于所述振荡电路单元。
  2. 根据权利要求1所述的多波束同频微波探测天线,进一步包括一基板,其中所述参考地被设置于所述基板的一侧,所述基板能够发生形变,以改变所述参考地的延伸方向。
  3. 根据权利要求2所述的多波束同频微波探测天线,其中所述基板为柔性可变形的PCB板。
  4. 根据权利要求2所述的多波束同频微波探测天线,其中所述参考地包括和所述辐射源数量对应的一参考地主体,其中所述辐射源被间隔地设置于所述参考地主体,并在每个所述辐射源和对应的所述参考地主体之间分别形成所述辐射缝隙,所述参考地主体被设置于所述基板,通过所述基板发生形变的方式能够改变所述参考地主体的延伸方向。
  5. 根据权利要求4所述的多波束同频微波探测天线,进一步包括与所述参考地主体数量相对应的一屏蔽罩,所述屏蔽罩和所述参考地主体分别被保持于所述基板相对的两侧。
  6. 根据权利要求4所述的多波束同频微波探测天线,进一步包括与所述参考地主体数量相对应的一屏蔽罩,所述屏蔽罩和所述参考地主体分别被保持于所述基板的同一侧。
  7. 根据权利要求5或6所述的多波束同频微波探测天线,其中各所述参考地主体相互电性连接。
  8. 根据权利要求5或6所述的多波束同频微波探测天线,其中各所述参考地主体一体成型为一整体导电金属层。
  9. 根据权利要求4所述的多波束同频微波探测天线,其中所述基板包括一第一基板和多第二基板,多个所述第二基板相互间隔地延伸于所述第一基板,至少一个所述参考地主体被设置于所述第一基板,至少一个所述参考地主体被设置于所述第二基板,其中所述第一基板和每个所述第二基板之间的角度能够被调节。
  10. 根据权利要求1所述的多波束同频微波探测天线,进一步包括一基板和一柔性连接件,所述基板包括一第一基板和至少一第二基板,所述参考地包括和所述辐射源数量对应的一参考地主体,至少一个所述参考地主体被设置于所述第一基板,至少一个所述参考 地主体被设置于所述第二基板,所述柔性连接件的两端分别被连接所述第一基板和所述第二基板,且所述柔性连接件分别被电连接对应于所述第一基板的所述参考地主体和对应于所述第二基板的所述参考地主体,所述柔性连接件发生变形时,被连接于所述柔性连接件的所述第一基板和/或所述第二基板的延伸方向被改变。
  11. 根据权利要求9或10所述的多波束同频微波探测天线,其中所述第一基板为PCB板,所述第二基板为柔性可变形的PCB板。
  12. 根据权利要求9或10所述的多波束同频微波探测天线,其中所述第一基板和所述第二基板为柔性可变形的PCB板。
  13. 根据权利要求1至12任一所述的多波束同频微波探测天线,进一步包括一反射件,其中所述反射件具有一反射面,所述反射件被设置于所述参考地,所述反射件的所述反射面和所述辐射源之间形成夹角,且所述反射件的所述反射面能够改变所述辐射源产生的微波波束的辐射角度和方向。
  14. 根据权利要求13所述的多波束同频微波探测天线,其中所述反射件被可活动地设置于所述参考地。
  15. 根据权利要求13所述的多波束同频微波探测天线,其中所述反射件的长度大于等于所述辐射源的边长的长度。
  16. 根据权利要求15所述的多波束同频微波探测天线,其中所述反射件的宽度为参数γ,所述参数γ的取值范围为:1/16λ≤γ≤λ。
  17. 根据权利要求16所述的多波束同频微波探测天线,其中所述反射件由金属制成。
  18. 根据权利要求1至17任一所述的多波束同频微波探测天线,进一步包括至少一混频检波电路,其中所述混频检波电路的两端分别电连接于所述振荡电路单元和所述辐射源的所述馈电点。
  19. 根据权利要求18所述的多波束同频微波探测天线,其中每一个所述混频检波电路的一端被电连接于一个所述辐射源的所述馈电点,所述混频检波电路的另一端被电连接于所述振荡电路单元。
  20. 根据权利要求18所述的多波束同频微波探测天线,其中每一个所述混频检波电路的一端被电连接于至少两个所述辐射源的所述馈电点,所述混频检波电路的另一端被电连接于所述振荡电路单元。
  21. 根据权利要求18至20任一所述的多波束同频微波探测天线,其中所述多波束同频微波探测天线的所述辐射源被接地。
  22. 一多波束同频微波探测天线的制造方法,其特征在于,所述制造方法包括如下步骤:
    (a)以在至少两个辐射源和所述参考地之间分别形成一辐射缝隙的方式保持至少两个所述辐射源于一参考地;和
    (b)电连接所述辐射源的一馈电点于一振荡电路单元。
  23. 根据权利要求22所述的制造方法,在上述方法中,进一步包括步骤:设置所述参考地于一基板,其中在所述基板发生变形时,所述参考地的延伸方向被改变,以形成不同的所述辐射源之间相对位置的变化。
  24. 根据权利要求22或23所述的制造方法,在上述方法中,进一步包括步骤:以一反射件的一反射面朝向所述辐射源的方式设置所述反射件于所述参考地。
  25. 根据权利要求24所述的制造方法,在上述方法中,进一步包括步骤:以一反射件的一反射面朝向所述辐射源的方式可活动地设置所述反射件于所述参考地。
  26. 根据权利要求22所述的制造方法,在上述方法中,进一步包括步骤:可拆卸地安装至少一柔性连接件于所述基板的一第一基板以连接所述基板的至少一第二基板于所述第一基板。
  27. 一多波束同频微波探测天线的检测方法,其特征在于,所述检测方法包括步骤(Ⅰ):通过以至少两个辐射源的一馈电点被接入一振荡电路单元的方式向外辐射具有相同频率的至少两微波波束。
  28. 根据权利要求27所述的检测方法,进一步包括步骤(Ⅱ):动态地改变所述微波波束的辐射方向。
  29. 根据权利要求28所述的检测方法,其中所述步骤(Ⅱ)中进步一包括步骤(Ⅲ):以一基板发生形变的方式改变至少一个所述辐射源相对于其他所述辐射源的位置而改变对应的微波波束的辐射方向。
  30. 根据权利要求28或29所述的检测方法,其中所述步骤(Ⅱ)中进步一包括步骤(Ⅳ):藉由一反射件的一反射面改变所述微波波束的辐射角度和方向。
  31. 根据权利要求30所述的检测方法,其中所述步骤(Ⅳ)中进一步包括步骤:改变所述反射件的所述反射面与所述辐射源之间形成的夹角大小而改变对应该辐射源的所述微波波束的辐射角度和方向。
  32. 根据权利要求28至31所述的检测方法,其中所述步骤(Ⅱ)中进步一包括步骤:以一柔性连接件发生形变的方式一第一基板和至少一第二基板之间的相对位置,进而调节 对应的所述辐射源向外辐射的所述微波波束的辐射方向。
  33. 根据权利要求27至32任一所述的检测方法,其中在所述步骤(I)之后进一步包括步骤(ii):藉由至少一个混频检波电路接收至少一个所述辐射源产生的微波的回波所形成的一电信号。
  34. 根据权利要求33所述的检测方法,其中在所述步骤(ii)中,每一个所述混频检波电路接收一个所述辐射源产生的微波的回波所形成的所述电信号。
  35. 根据权利要求33所述的检测方法,其中在所述步骤(ii)中,每一个所述混频检波电路接收对应的两个及以上数量的所述辐射源产生的回波形成的所述电信号。
PCT/CN2018/124539 2018-12-21 2018-12-28 多波束同频微波探测天线及其制造方法和检测方法 WO2020124671A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811571105.7 2018-12-21
CN201811571105.7A CN109541551A (zh) 2018-12-21 2018-12-21 多波束同频微波探测天线及其制造方法和检测方法

Publications (1)

Publication Number Publication Date
WO2020124671A1 true WO2020124671A1 (zh) 2020-06-25

Family

ID=65856180

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/124539 WO2020124671A1 (zh) 2018-12-21 2018-12-28 多波束同频微波探测天线及其制造方法和检测方法

Country Status (6)

Country Link
US (1) US11239545B2 (zh)
EP (1) EP3671954A1 (zh)
CN (1) CN109541551A (zh)
AU (1) AU2019201091A1 (zh)
TW (1) TW202024664A (zh)
WO (1) WO2020124671A1 (zh)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109975881A (zh) * 2019-04-28 2019-07-05 深圳迈睿智能科技有限公司 微波探测器及其制造方法和杂散电磁波辐射抑制方法
CN110518345B (zh) * 2019-08-26 2023-09-08 深圳迈睿智能科技有限公司 具有接地点的微波探测器及其制造方法
CN111162382A (zh) * 2020-01-10 2020-05-15 深圳迈睿智能科技有限公司 微型化微波探测装置和其制造方法
CN111416208A (zh) * 2020-04-30 2020-07-14 深圳迈睿智能科技有限公司 低副瓣天线和其探测方法
CN111987443A (zh) * 2020-08-12 2020-11-24 浙江金乙昌科技股份有限公司 小型化拼接式通信天线
CN113131202B (zh) * 2021-04-27 2024-02-09 深圳迈睿智能科技有限公司 半波回折式定向微波探测天线
CN113506988B (zh) * 2021-06-29 2022-09-20 华南理工大学 基于单元波束异构的毫米波宽角扫描相控阵天线

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038437A (ja) * 2007-07-31 2009-02-19 Denki Kogyo Co Ltd パネル型扇形ビームアンテナユニット及び4面合成無指向性アンテナ装置
CN103531880A (zh) * 2012-07-05 2014-01-22 中国电信股份有限公司 用于多入多出系统的天线装置
CN105305032A (zh) * 2014-07-01 2016-02-03 航天恒星科技有限公司 单极子阵天线
CN205723905U (zh) * 2016-02-25 2016-11-23 绵阳北星通信科技有限公司 一种小尺寸高动态的北斗二代抗干扰天线
CN208060706U (zh) * 2018-02-07 2018-11-06 北京聚速微波技术有限公司 一种小型化机车测速雷达
CN208189771U (zh) * 2018-04-04 2018-12-04 深圳迈睿智能科技有限公司 一种柱状天线

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006339759A (ja) * 2005-05-31 2006-12-14 Toppan Printing Co Ltd アンテナ
JP2007104027A (ja) * 2005-09-30 2007-04-19 Toto Ltd マイクロストリップアンテナ及び高周波センサ
GB0620061D0 (en) * 2006-10-10 2006-11-22 Medical Device Innovations Ltd Oesophageal treatment apparatus and method
WO2009012361A1 (en) * 2007-07-19 2009-01-22 Rambus Inc. Radio beam forming antenna with electroactive polymer actuator
US8766875B2 (en) * 2012-05-21 2014-07-01 Raytheon Company Lightweight stiffener with integrated RF cavity-backed radiator for flexible RF emitters
CN203434265U (zh) * 2013-04-19 2014-02-12 深圳市海骏电子科技有限公司 一种平面天线微波模块及智能控制节能灯
EP3286576B1 (en) * 2015-04-20 2020-08-12 ResMed Sensor Technologies Limited Multi sensor radio frequency detection
JP6572924B2 (ja) * 2017-03-02 2019-09-11 Tdk株式会社 アンテナ装置
CN206637578U (zh) * 2017-03-28 2017-11-14 深圳市海兴科技有限公司 一种微波感应电路及智能控制灯
CN209514047U (zh) * 2018-12-21 2019-10-18 深圳迈睿智能科技有限公司 多波束同频微波探测天线

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009038437A (ja) * 2007-07-31 2009-02-19 Denki Kogyo Co Ltd パネル型扇形ビームアンテナユニット及び4面合成無指向性アンテナ装置
CN103531880A (zh) * 2012-07-05 2014-01-22 中国电信股份有限公司 用于多入多出系统的天线装置
CN105305032A (zh) * 2014-07-01 2016-02-03 航天恒星科技有限公司 单极子阵天线
CN205723905U (zh) * 2016-02-25 2016-11-23 绵阳北星通信科技有限公司 一种小尺寸高动态的北斗二代抗干扰天线
CN208060706U (zh) * 2018-02-07 2018-11-06 北京聚速微波技术有限公司 一种小型化机车测速雷达
CN208189771U (zh) * 2018-04-04 2018-12-04 深圳迈睿智能科技有限公司 一种柱状天线

Also Published As

Publication number Publication date
US20200203811A1 (en) 2020-06-25
TW202024664A (zh) 2020-07-01
CN109541551A (zh) 2019-03-29
US11239545B2 (en) 2022-02-01
EP3671954A1 (en) 2020-06-24
AU2019201091A1 (en) 2020-07-09

Similar Documents

Publication Publication Date Title
WO2020124671A1 (zh) 多波束同频微波探测天线及其制造方法和检测方法
CN109841945B (zh) 天线装置
US10985471B2 (en) Radar device
CN217239740U (zh) 定向微波探测天线
WO2019154063A1 (zh) 检测系统和环境管理系统及其应用
US20240039147A1 (en) Microwave-Doppler Detecting Module and Device Thereof
CN109839629B (zh) 雷达装置
US20190165483A1 (en) Radar device
CN111293414A (zh) 微波感应器
JP2020060484A (ja) レーダ装置
CN216563519U (zh) 空间交错式一体收发分离微波探测天线
CN211453981U (zh) 高增益微波多普勒探测模块
US11728570B2 (en) Electromagnetic bandgap isolation systems and methods
KR100240894B1 (ko) 여할제곱형 피아식별 안테나
JP4192781B2 (ja) アンテナ装置及び高周波センサ
JP7122649B2 (ja) レーダ装置
CN212257680U (zh) 窄波束角的微波探测模块
TWI577086B (zh) 連續彎折形式的天線裝置與其應用系統
CN220795467U (zh) 微波占位传感装置
CN213717067U (zh) 背向反射式圆极化微波探测天线
US20220342065A1 (en) Half-Wave Back-Folding Directional Microwave Detection Antenna
US20240088545A1 (en) Microwave-Doppler Detecting Module and Device Thereof
JP2020060485A (ja) レーダ装置
CN111668596A (zh) 窄波束角的微波探测模块
CN112332110A (zh) 背向反射式圆极化微波探测天线

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943749

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 18943749

Country of ref document: EP

Kind code of ref document: A1