WO2019154063A1 - 检测系统和环境管理系统及其应用 - Google Patents

检测系统和环境管理系统及其应用 Download PDF

Info

Publication number
WO2019154063A1
WO2019154063A1 PCT/CN2019/072637 CN2019072637W WO2019154063A1 WO 2019154063 A1 WO2019154063 A1 WO 2019154063A1 CN 2019072637 W CN2019072637 W CN 2019072637W WO 2019154063 A1 WO2019154063 A1 WO 2019154063A1
Authority
WO
WIPO (PCT)
Prior art keywords
detection
environment
detected object
strategy
state
Prior art date
Application number
PCT/CN2019/072637
Other languages
English (en)
French (fr)
Inventor
邹高迪
邹新
Original Assignee
深圳迈睿智能科技有限公司
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 深圳迈睿智能科技有限公司 filed Critical 深圳迈睿智能科技有限公司
Publication of WO2019154063A1 publication Critical patent/WO2019154063A1/zh

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S13/00Systems using the reflection or reradiation of radio waves, e.g. radar systems; Analogous systems using reflection or reradiation of waves whose nature or wavelength is irrelevant or unspecified
    • G01S13/88Radar or analogous systems specially adapted for specific applications
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B15/00Systems controlled by a computer
    • G05B15/02Systems controlled by a computer electric
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • G01S7/41Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00 using analysis of echo signal for target characterisation; Target signature; Target cross-section
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01SRADIO DIRECTION-FINDING; RADIO NAVIGATION; DETERMINING DISTANCE OR VELOCITY BY USE OF RADIO WAVES; LOCATING OR PRESENCE-DETECTING BY USE OF THE REFLECTION OR RERADIATION OF RADIO WAVES; ANALOGOUS ARRANGEMENTS USING OTHER WAVES
    • G01S7/00Details of systems according to groups G01S13/00, G01S15/00, G01S17/00
    • G01S7/02Details of systems according to groups G01S13/00, G01S15/00, G01S17/00 of systems according to group G01S13/00
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01VGEOPHYSICS; GRAVITATIONAL MEASUREMENTS; DETECTING MASSES OR OBJECTS; TAGS
    • G01V3/00Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation
    • G01V3/12Electric or magnetic prospecting or detecting; Measuring magnetic field characteristics of the earth, e.g. declination, deviation operating with electromagnetic waves
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B19/00Programme-control systems
    • G05B19/02Programme-control systems electric
    • G05B19/418Total factory control, i.e. centrally controlling a plurality of machines, e.g. direct or distributed numerical control [DNC], flexible manufacturing systems [FMS], integrated manufacturing systems [IMS] or computer integrated manufacturing [CIM]
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B47/00Circuit arrangements for operating light sources in general, i.e. where the type of light source is not relevant
    • H05B47/10Controlling the light source
    • H05B47/105Controlling the light source in response to determined parameters
    • H05B47/115Controlling the light source in response to determined parameters by determining the presence or movement of objects or living beings
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05BCONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
    • G05B2219/00Program-control systems
    • G05B2219/20Pc systems
    • G05B2219/26Pc applications
    • G05B2219/2642Domotique, domestic, home control, automation, smart house
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B20/00Energy efficient lighting technologies, e.g. halogen lamps or gas discharge lamps
    • Y02B20/40Control techniques providing energy savings, e.g. smart controller or presence detection

Definitions

  • the present invention relates to the field of detection, and in particular to a detection system and an environmental management system and applications thereof.
  • Radar is an electronic device that uses electromagnetic waves generated by an antenna to detect a target to determine the position, velocity, attitude, and the like of the target.
  • the working principle of the radar is to work by transmitting electromagnetic waves to the space and receiving the target echo signals.
  • the target will scatter electromagnetic waves in various directions, and some of the electromagnetic waves can be returned to the radar or the receiver to form an echo to be received by the radar or the receiver, and the subsequent echo received by the radar or the receiver can Detect the target.
  • the beam formed by the wave can be rotated automatically to achieve scanning and tracking of the target.
  • the intensity of radar waves can be increased by increasing the radar's transmit power and allowing the radar-generated radar waves to be emitted as parallel as possible to concentrate energy.
  • the energy of a radar wave reaching a target per unit area is inversely proportional to the distance between the target and the radar. Therefore, the efficiency of enhancing the intensity of the radar wave simply by increasing the radar transmission power is relatively low.
  • There is a problem with implementability which causes the radar to only increase the intensity of the radar wave by causing the radar wave to be emitted as parallel as possible to gather energy.
  • the conventional radar is a parabolic radar, which provides a parabolic reflector and mounts an antenna at the focal point of the paraboloid.
  • the electromagnetic waves generated by the antenna are generated after the parabolic reflection and radiate approximately parallel radar waves.
  • parabolic radar solves the problem of parallel transmission of radar waves, in practical applications, the radar wave emitted by the parabolic radar needs to point to the target at all times to achieve the tracking target, so the antenna of the parabolic radar must be installed to be driven by a driver such as a servo motor.
  • phased array radar which has multiple densely arranged point sources.
  • the principle of phased array radar is to draw the same radius at any point source. Semicircle to obtain the wavefront of each point source, the wavefront of the composite wave of the phased array radar is the envelope of the wavefront of each point source.
  • phased array radars are more limited than traditional parabolic radars, phased array radars are bulky, complex, and expensive. They cannot be miniaturized and cost-effective with current technology, leading to phase control. Array radars are not suitable for large-scale civilian use.
  • the parabolic radar uses a parabolic reflecting surface to control the direction and beam angle of the radar beam, and at the same time complete the reception of radar echoes on the directional plane, while the phased array radar utilizes the transmitting and receiving component units of the radar.
  • the detection system can obtain a state such as a position, a posture, a spatial distribution, an operation mode, or a movement action of the detected object in the environment.
  • the detection system can obtain real-time status of the detected object in real-time position, real-time posture, real-time spatial distribution, real-time action mode or real-time movement action of the environment.
  • the detection system is capable of actively transmitting at least one detection beam to the environment to form at least one in the environment by the detection beam
  • the detection area when the detected object is located in the detection area, the detected object can respond to the detection beam in a manner of reflecting the detection beam, and the detection system receives and analyzes the responded by receiving The manner of detecting the beam can obtain the state of the detected object.
  • the detection system can divide the environment into two or more layers according to heights, and separately detect each layer of the environment. In this way, the detection system can obtain the detected object at the location. State, posture, spatial distribution, motion mode, or movement behavior of the environment.
  • An object of the present invention is to provide a detection system and an environment management system and an application thereof, wherein when the detection system performs hierarchical detection on the environment, the state of each layer may be inconsistent, for example, the heights of two adjacent layers may be different. .
  • the detection system can obtain a state such as a position, an attitude, a spatial distribution, an operation mode, or a movement motion of the detected object in the environment.
  • the detection system can obtain a state such as a position, an attitude, a spatial distribution, an operation mode, or a movement motion of the detected object in the environment.
  • An object of the present invention is to provide a detection system and an environment management system and an application thereof, wherein the behavior of the detected object in the environment can be obtained according to the real-time state of the detected object, so that, according to the The behavior of the detected object manages the environment in which the detected object is located in a manner that adjusts the frequency of the environment. For example, sound waves and/or light waves of the environment can be adjusted.
  • An object of the present invention is to provide a detection system and an environment management system and an application thereof, wherein the detected object can be accurately obtained by performing layered detection, sub-area detection, and angle-angle detection on the environment.
  • the behavior of the environment so that, subsequently, the state of the environment in which the detected object is located can be adjusted according to the behavior of the detected object in the environment.
  • An object of the present invention is to provide a detection system and an environment management system and an application thereof, wherein the environment management system generates a management policy according to behavior of the detected object in the environment, and when the management policy is executed Adjusting a state of the environment in which the detected object is located, so that a state of the environment can be adapted to behavior of the detected object.
  • the manner of detecting the beam forms the detection area in the environment, thereby detecting the detected object in the detection area to obtain a real-time state of the detected object in the environment.
  • An object of the present invention is to provide a detection system and an environment management system and an application thereof, wherein a radiation direction of a microwave generated by the beam transmitter can be constrained, so that the detection system can perform layered detection and division on the environment. Area detection and angle detection.
  • the invention provides a detection method, wherein the detection method comprises the following steps:
  • the step (a) further comprises the step of:
  • At least one beam transmitter transmits the detection beam to the environment based on the detection strategy.
  • the beam transmitter is a microwave beam transmitter, such that in the step (a.2), the beam transmitter is in the manner of transmitting a microwave detection beam to the environment The environment forms the detection zone.
  • the state of the detected object in the environment includes: a position of the detected object in the environment, the detected object is in the The posture of the environment, the distribution of the object to be detected in the environment, and the mode of operation of the object to be detected in the environment.
  • the detection strategy is selected from the group consisting of: a layered detection strategy, a sub-region detection strategy and a segmentation detection strategy, an action mode detection strategy, a strategy group for determining a movement trajectory and a prediction strategy.
  • the method further comprises the step of determining the behavior of the detected object in the environment according to the state of the detected object in the environment.
  • the detection area is a dynamic detection area.
  • the present invention further provides an environment management method, wherein the environment management method comprises the following steps:
  • (C) managing the state of the environment in a manner that controls the operational state of at least one of the frequency generators when the management strategy is executed.
  • the method further comprises the steps of:
  • the method further comprises the steps of:
  • the detecting is formed in the environment by at least one beam transmitter based on a detection strategy to transmit the detection beam to the environment. region.
  • the detection strategy is selected from the group consisting of: a layered detection strategy, a sub-region detection strategy and a segmentation detection strategy, an action mode detection strategy, a strategy group for determining a movement trajectory and a prediction strategy.
  • the wave frequency generator is a speaker, so that in the step (C), the management of the audio frequency band generated by the wave frequency generator is performed when the management strategy is executed. State the state of the environment.
  • the wave frequency generator is a light fixture, so that in the step (C), when the management strategy is executed, the method of controlling whether the wave frequency generator generates light or not is managed. State the state of the environment.
  • the wave frequency generator is a light fixture, so in the step (C), when the management strategy is executed, the brightness, color, and light of the light generated by the wave frequency generator are controlled.
  • the state of color temperature and brightness changes manage the state of the environment.
  • the present invention further provides a detection system comprising:
  • At least one beam transmitter wherein the beam transmitter forms at least one detection area in the environment based on a detection strategy to transmit at least one detection beam to an environment;
  • At least one signal receiver wherein the signal receiver receives the detection beam in response to at least one detected object of the detection region;
  • a detecting unit wherein the detecting unit is communicably connected to the signal receiver, wherein the detecting unit detects a state of the detected object in the environment according to the detecting beam of the detected object response .
  • the detection system further comprises a processing unit, wherein the processing unit is communicably coupled to the detection unit, wherein the processing unit is detected according to the detection by the detection unit
  • the state of the object in the environment determines the behavior of the detected object in the environment.
  • the detection system further comprises an adjustment unit, wherein the beam transmitter is controllably connected to the adjustment unit to control the state of the beam transmitter by the adjustment unit
  • the manner of forming the detection area forms a dynamic detection area.
  • the detection strategy is selected from the group consisting of: a layered detection strategy, a sub-region detection strategy and a segmentation detection strategy, an action mode detection strategy, a strategy group for determining a movement trajectory and a prediction strategy.
  • the beam transmitter is a microwave beam transmitter such that the beam transmitter forms the detection region in the environment in a manner that transmits a microwave detection beam to the environment.
  • the state of the detected object in the environment includes: a position of the detected object in the environment, a posture of the detected object in the environment, the detected object The distribution of the environment and the mode of operation of the object to be detected in the environment.
  • the beam emitter comprises a reference plate and a radiation source
  • the reference plate further comprises a plate body and at least one side wing, each of the side wings being adjustably disposed at the
  • the plate body is disposed adjacent to the plate body and forms a radiation gap between the radiation source and the plate body.
  • the beam transmitter comprises a reference plate, a radiation source and a beam constraining element, the radiation source being disposed adjacent to the reference plate, and at the radiation source and the Forming a radiation gap between the reference plates, wherein the beam constraining element is disposed on the reference plate in a manner that the beam constraining element and the radiation source are adjacent, wherein the beam constraining element is configured to constrain the radiation The emission angle of the detection beam emitted by the source.
  • the beam constraining element is flared such that the beam constraining element forms a constrained space, wherein the radiation source is held in the constrained space.
  • the extending direction of the beam constraining element and the extending direction of the reference plate have an angle, and the beam constraining element is held on one side of the radiation source.
  • the extending direction of the beam constraining element and the extending direction of the reference plate are perpendicular to each other.
  • the beam emitter includes a shield, wherein the shield is disposed on the board body of the reference board, and the shield and the radiation source are respectively held at Both sides of the plate body of the plate body.
  • the beam emitter includes a shield, wherein the shield is disposed on the reference plate, and the shield and the radiation source are respectively held on the reference plate On both sides.
  • the present invention further provides an environment management system comprising:
  • processing unit obtains behavior of at least one detected object in an environment
  • a policy generation unit wherein the policy generation unit is communicably connected to the processing unit, wherein the policy generation unit generates a management policy according to the behavior of the detected object;
  • An execution unit wherein the execution unit is communicably coupled to the policy generation unit, wherein the execution unit manages the environment in a manner of controlling an operational state of at least one wave frequency generator when performing the management policy status.
  • FIG. 1 is a block diagram of an environmental management system in accordance with a preferred embodiment of the present invention.
  • FIGS. 2A through 2E are schematic diagrams of the environmental management system according to the above preferred embodiment of the present invention applied to a study environment.
  • FIG. 3 is a flow chart showing the environment management system according to the above preferred embodiment of the present invention when applied to the study environment.
  • FIGS. 4A through 4I are schematic views of the environmental management system in accordance with the above preferred embodiment of the present invention applied to a room environment.
  • FIG. 5 is a flow chart showing the environment management system according to the above preferred embodiment of the present invention when applied to the room environment.
  • 6A-6C are schematic diagrams of the environmental management system applied to a living room environment in accordance with the above-described preferred embodiment of the present invention.
  • FIG. 7 is a flow chart showing the environment management system according to the above preferred embodiment of the present invention when applied to the living room environment.
  • FIGS. 8A through 8C are schematic diagrams of the environment management system according to the above preferred embodiment of the present invention applied to a conference room environment.
  • FIG. 9 is a flow chart showing the environment management system according to the above preferred embodiment of the present invention when applied to the conference room environment.
  • FIG. 10 is a flow chart showing an environmental management method of the environmental management system according to the above preferred embodiment of the present invention.
  • FIG 11 is a flow chart showing the environment management system in accordance with the above preferred embodiment of the present invention.
  • FIGS. 12A through 12C are schematic diagrams of one embodiment of a beam transmitter of the environmental management system in accordance with the above-described preferred embodiment of the present invention.
  • Figure 13A is a diagram showing a state of the beam transmitter of the environmental management system in accordance with the above preferred embodiment of the present invention.
  • Figure 13B is a schematic illustration of another state of the beam transmitter of the environmental management system in accordance with the above-described preferred embodiment of the present invention.
  • Figure 13C is a schematic illustration of another state of the beam transmitter of the environmental management system in accordance with the above-described preferred embodiment of the present invention.
  • Figure 13D is a schematic illustration of another state of the beam transmitter of the environmental management system in accordance with the above-described preferred embodiment of the present invention.
  • FIGS 14A-14D are schematic diagrams of another embodiment of the beam transmitter of the environmental management system in accordance with the above-described preferred embodiment of the invention.
  • 15A-15C are schematic diagrams showing different states of the beam transmitter of the environmental management system in accordance with the above-described preferred embodiment of the present invention.
  • FIG 16 is a schematic illustration of another embodiment of the beam transmitter of the environmental management system in accordance with the above-described preferred embodiment of the present invention.
  • Figure 17 is a diagram showing a state of the beam transmitter of the environmental management system in accordance with the above preferred embodiment of the present invention.
  • FIG. 18 is a flow chart showing a method of detecting a detection system in accordance with a preferred embodiment of the present invention.
  • FIG 19 is a block diagram showing the detection system in accordance with the above preferred embodiment of the present invention.
  • 20A to 20C are diagrams showing a detection area formed when the detection system according to the above preferred embodiment of the present invention performs a detection strategy including a layered detection strategy.
  • 21 is a schematic diagram of a detection area formed when the detection system of the above-described preferred embodiment of the present invention performs a detection strategy including a sub-area detection strategy.
  • 22A and 22B are schematic diagrams of a detection area formed when the detection system of the above-described preferred embodiment of the present invention performs a detection strategy including a split angle detection strategy.
  • the term “a” is understood to mean “at least one” or “one or more”, that is, in one embodiment, the number of one element may be one, and in other embodiments, the element The number can be multiple, and the term “a” cannot be construed as limiting the quantity.
  • an environmental management system 100 in accordance with a preferred embodiment of the present invention is disclosed and illustrated in the following description, wherein the environmental management system 100 is capable of The policy manages an environment 200 to adapt the state of the environment 200 to the state of the user in the environment 200 by adjusting the state of the environment 200.
  • the environment management system 100 is capable of providing the management policy based on the behavior of a user in the environment 200, and adjusting the state of the environment 200 when the management policy is executed, such that the environment 200
  • the state is adapted to the behavior of the user in the environment 200.
  • the environment management system 100 can adjust the state of the environment 200 in a manner of adjusting the frequency of the environment 200 when the management policy is executed, so that the wave frequency of the environment 200 is in the environment 200.
  • the behavior of the user is adapted.
  • the environment management system 100 can adjust the environment in a manner of adjusting audio (sound band) of the environment 200 when executing the management policy.
  • the state of 200 is such that the audio of the environment 200 is adapted to the behavior of the user in the environment 200.
  • the environment management system 100 can adjust the optical frequency (light wave band) of the environment 200 when performing the management policy.
  • the state of the environment 200 is such that the optical frequency of the environment 200 is adapted to the behavior of the user in the environment 200.
  • the environment management system 100 can control an operating state of at least one luminaire disposed in the environment 200 to adjust the environment by adjusting brightness, color, color temperature, and brightness of light generated by the luminaire.
  • the optical frequency of 200 is such that the optical frequency of the environment 200 is adapted to the behavior of the user in the environment 200.
  • the environment management system 100 can control the brightness, color, color temperature, and brightness change of the light generated by the luminaire.
  • the state of the environment 200 is adjusted to help the user sleep.
  • the environment management system 100 is capable of providing the management policy based on real-time behavior of a user in the environment 200, and adjusting the state of the environment 200 in real time when the management policy is executed, so that The real-time status of the environment 200 is commensurate with the real-time behavior of the user in the environment 200.
  • the environment management system 100 can adjust the state of the environment 200 in a manner of adjusting the real-time wave frequency of the environment 200 when the management policy is executed, so that the real-time wave frequency of the environment 200 is in the The real-time behavior of the user of environment 200 is adapted.
  • the environment management system 100 adjusts the state of the environment 200 in a manner of adjusting the frequency of the environment 200 when the management policy is executed, so that the frequency and the environment of the environment 200 are
  • the behavior of the user of the environment 200 is merely an example for exposing and illustrating the content and features of the environmental management system 100 of the present invention, which should not be considered as the environmental management system 100 of the present invention.
  • the content and scope of the restrictions can also control the switching of the luminaires in the environment 200 according to the behavior of the user in the environment 200.
  • the environment management system 100 can predict the movement trajectory of the user in the environment 200 according to the behavior of the user in the environment 200, and after obtaining the movement trajectory of the user in the environment 200, the environment The management system 100 can advance the luminaire in the user's movement trajectory in advance for illuminating the user's movement trajectory. Or after obtaining the user's behavior, the environmental management system 100 can control whether the air conditioner and/or the humidifier in the environment 200 is switched, for example, when the user is about to go to the environment 200, the environment The management system 100 can pre-set the air conditioner and/or humidifier in the environment 200 to adjust the temperature and/or humidity of the environment 200.
  • the environment management system 100 can use the user in the environment 200 as a detected object 300, and obtain the real-time status of the detected object 300 by obtaining the real-time status of the detected object 300. Behavior, whereby, subsequently, the environmental management system 100 can provide the management policy based on the real-time behavior of the detected object 300, and adjust the real-time status of the environment 200 when the management policy is executed, such that The real-time state of the environment 200 is adapted to the real-time behavior of the detected object 300. For example, the environment management system 100 can obtain the real-time behavior of the detected object 300 by detecting a change in the motion of the detected object 300.
  • the environment management system 100 may predict the behavior of the detected object 300 by detecting a change in the action of the detected object 300, for example, the environment management system 100 may detect the action of the detected object 300.
  • the change in the prediction predicts the movement trajectory of the detected object 300.
  • the real-time state of the environment 200 such as the real-time wave frequency of the environment 200
  • the real-time wave frequency of the environment 200 is The real-time behavior of the detected object 300 is adapted.
  • the environment management system 100 includes at least one processor 101, at least one beam transmitter 102, at least one signal receiver 103, and at least one wave frequency generator 104, wherein the beam transmitter 102, the A signal receiver 103 and the wave frequency generator 104 are communicably coupled to the processor 101, respectively.
  • the beam transmitter 102, the signal receiver 103 and the wave frequency generator 104 are communicatively coupled to the processor 101 in a communication mode in the environment management system 100 of the present invention.
  • Unlimited For example, in some specific examples of the environment management system 100 of the present invention, the beam transmitter 102, the signal receiver 103, and the wave frequency generator 104 are communicably connected in a wired manner, respectively. Connected to the processor 101. In still another specific example of the environment management system 100 of the present invention, the beam transmitter 102, the signal receiver 103, and the wave frequency generator 104 are communicably communicably connected, respectively. Connected to the processor 101.
  • the beam transmitter 102, the signal receiver 103, and the wave frequency generator One of 104 may be communicably coupled to the processor 101 in a wired connection, and the beam transmitter 102, the signal receiver 103, and the wave generator 104 are additionally wirelessly connected. The manner is communicatively coupled to the processor 101.
  • the beam transmitter 102 and the signal receiver 103 may be of a split structure or a one-piece structure.
  • the content and features of the environmental management system 100 of the present invention continue to be disclosed and illustrated with the beam transmitter 102 and the signal receiver 103 implemented as a split structure as an example. Those skilled in the art should not use the split beam transmitter 102 and the signal receiver 103 as a limitation on the scope of the environment management system 100 of the present invention.
  • the environment management system 100 further includes at least one communication interface 105, wherein the processor 101, the beam transmitter 102, the signal receiver 103, and the wave frequency generator 104 are communicably Connected to the communication interface 105 such that the beam transmitter 102, the signal receiver 103, and the wave frequency generator 104 are communicably coupled to the processor 101, respectively.
  • the communication interface 105 can be, but is not limited to, a wireless communication interface.
  • the communication interface 105 can allow more of the beam transmitter 102, the signal receiver 103, and the wave frequency generator 104 to access.
  • the beam transmitter 102, the signal receiver 103, and the wave frequency generator 104 are respectively accessible to the communication interface 105, the beam transmitter 102, the signal receiver 103 and the wave frequency generator 104 can be communicably coupled to the processor 101, in such a manner that the user can select the beam transmitter 102 of the environmental management system 100, the signal reception The number and type of the device 103 and the wave frequency generator 104.
  • the type of the processor 101 is not limited in the environment management system 100 of the present invention.
  • the processor 101 may be, but not limited to, a central processing unit (CPU).
  • the type of the wave frequency generator 104 is also not limited in the environment management system 100 of the present invention, as long as the wave frequency generator 104 can generate a wave frequency, such as the light fixture capable of generating light waves.
  • the wave frequency generator 104 which can be implemented as the environmental management system 100 of the present invention, a speaker capable of generating sound waves can be implemented as the wave frequency generator 104 of the environmental management system 100 of the present invention.
  • the environment management system 100 of the present invention uses the luminaire and the speaker as an example to illustrate the content and features of the wave frequency generator 104, but it should be understood by those skilled in the art that It should not be seen as limiting the content and scope of the environmental management system 100 of the present invention.
  • the environmental management system 100 further includes a power source 106, wherein the processor 101, the beam transmitter 102, the signal receiver 103, the wave frequency generator 104, and the At least one of the communication interfaces 105 is electrically connected to the power source 106 to generate the wave frequency by the power source 106 for the processor 101, the beam transmitter 102, the signal receiver 103, The device 104 and the communication interface 105 are powered.
  • the communication interface 105 may not need to be electrically connected to the power source 106, such as The communication interface 105 can be implemented as a WiFi wireless interface that is powered by other power sources, such as by utility power, rather than by the power source 106 of the environmental management system 100 of the present invention.
  • the type of the power source 106 of the environment management system 100 is not limited in the present invention as long as it can provide power to make the processor 101, the beam transmitter 102, the signal The receiver 103 and the wave frequency generator 104 are in an active state.
  • the processor 101, the beam transmitter 102, the signal receiver 103, and the wave frequency may be The generators 104 are each coupled to the same WiFi network such that the beam transmitter 102, the signal receiver 103, and the wave frequency generator 104 are communicatively coupled to the processor 101, respectively.
  • the processor 101, the beam transmitter 102, the signal receiver 103, and the wave frequency generator 104 are respectively connected to the same WiFi network, for example, in the environment management system of the present invention.
  • the processor 101, the beam transmitter 102, the signal receiver 103, and the wave frequency generator 104 may also be respectively connected to, but not limited to, the same local area network, a metropolitan area network. Wait.
  • the beam transmitter 102 and the signal receiver 103 may also be implemented as a unitary structure.
  • FIGS. 2A through 3 illustrate a specific application example of the environment management system 100, wherein in this example, the environment management system 100 is disposed in a study 401 as an example to further illustrate the present invention.
  • the content and characteristics of the environmental management system 100 are not limited to the above example.
  • At least one of the beam transmitters 102 and at least one of the signal receivers 103 are in the beam transmitter 102 and
  • the signal receiver 103 is disposed adjacent to the ceiling 4011 of the study 401, and at least one of the wave frequency generators 104 may be disposed at a desk 4012 of the study 401, wherein the location of the processor 101
  • the processor 101 may be disposed at the wall 4013 of the study room 401.
  • the beam transmitter 102 and the signal receiver 103 may also be of a unitary structure.
  • the wave frequency generator 104 can be implemented as a speaker. It should be understood by those skilled in the art that in other specific application examples of the environmental management system 100 of the present invention, the wave frequency generator 104 may also be implemented as the ceiling 4011 disposed in the study room 401. Lamps.
  • the processor 101, the beam transmitter 102, the signal receiver 103 and the wave frequency generator 104 of the environment management system 100 of the present invention may also It is disposed at other locations of the study 401.
  • the position of the processor 101, the beam transmitter 102, the signal receiver 103, and the wave frequency generator 104 of the environmental management system 100 shown in FIGS. 2A to 2E is arranged.
  • the beam transmitter 102 is a miniaturized beam emitter capable of generating microwaves for forming the detection beam. That is, the beam transmitter 102 is capable of generating the detection beam in a manner that transmits microwaves. In another specific application example of the environmental management system 100 of the present invention, the beam transmitter 102 can also generate ultrasonic waves for forming the detection beam.
  • the beam transmitter 102 can be implemented as, but not limited to, a gain microwave antenna to enable accurate real-time behavior of the detected object 300 to be subsequently obtained. That is, in the following, when the detected object 300 generates an action in the study 401, the environment management system 100 can also obtain the action of the detected object 300. Preferably, when the detected object 300 generates an action in the study 401, the environment management system 100 can obtain the action of the detected object 300 in real time.
  • the beam transmitter 102 can transmit the detection beam to the environment 200 formed by the study room 401 to form at least one detection in the study room 401 by the detection beam. Area 1021.
  • the beam transmitter 102 can transmit the detection beam to a location where the desk 4012 of the study 401 is located to form the detection area 1021 at a location where the desk 4012 is located.
  • the beam transmitter 102 can directly transmit the detection beam to the location of the desk 4012 of the study room 401 at the desk 4012. The position forms the detection area 1021, with reference to Figure 2B.
  • the beam transmitter 102 is in the study room 401 by transmitting the detection beam to the study room 401.
  • the detection area 1021 formed is a dynamic detection area 1021.
  • the beam transmitter 102 may first transmit the detection beam to other positions of the study room 401 to form the detection area 1021, and then follow the beam.
  • the detection area 1021 is moved within the study 401 by a change in the angle of the detection beam emitted by the transmitter 102.
  • the detection area 1021 formed by the beam transmitter 102 can be moved to the desk 4012. Where is the location, refer to Figure 2D.
  • the detected object 300 can respond to the detection beam if the detected object 300 is in the detection area 1021.
  • the detected object 300 can respond to the detection beam in a manner of reflecting the detection beam.
  • the beam emitter 102 can be directed to the desk 4012 of the study 401 when the user is learning or working with the desk 4012 of the study 401.
  • the detection beam is formed at a position where the detection beam is emitted, and the detection area 1021 is formed at a position where the desk 4012 is located.
  • a user who is learning or working by using the desk 4012 forms the detected object 300, so that the The detected object 300 is in the detection area 1021.
  • the detected object 300 can respond to the detection beam in a manner of reflecting the detection beam. It can be understood that when the detection beam emitted by the beam transmitter 102 is radiated to the detected object 300, the detected object 300 responds to the detection beam in a manner of reflecting the detection beam in all directions. A part of the detection beam forms an echo.
  • the signal receiver 103 is capable of receiving the detection beam that is responded to by the detected object 300 in the detection area 1021, that is, when the detected object 300 responds to the detection in a manner of reflecting the detection beam An echo is formed when the beam is formed, and the signal receiver 103 can receive the detection beam that is responded to by the detected object 300 in the detection area 1021 in a manner of receiving an echo.
  • the processor 101 is capable of obtaining the position of the detected object 300 in the study room 401 according to the detection beam received by the signal receiver 103 and responded by the detected object 300 in the detection area 1021. And/or posture and/or action mode, and further obtaining behavior of the detected object 300 in the study 401 according to the position and/or posture and/or action mode of the detected object 300, for example, the process
  • the device 101 is capable of obtaining an action of learning or working with the desk 4012 of the study 401 according to the detection beam received by the signal receiver 103 and responded by the detected object 300 in the detection area 1021.
  • the processor 101 can generate the management policy according to the behavior of the detected object 300, and adjust the working state of the wave frequency generator 104 when the processor 101 executes the management policy, for example
  • the processor 101 can control the wave frequency generator 104 to be in an on state or an off state, and the processor 101 can further control the wave frequency generator 104 when the wave frequency generator 104 is in an on state.
  • the frequency of the generated wave frequency is adjusted by the wave frequency generator 104 to change the frequency band of the wave frequency of the environment 200 formed by the study room 401, thereby causing the study 401
  • the state is adapted to the state of the user. That is, the processor 101 is capable of controlling the wave frequency of the sound waves generated by the wave frequency generator 104 implemented as a speaker. Referring to FIG.
  • the environment management system 100 can control the wave frequency generator 104 to emit appropriate music.
  • the state of the environment 200 formed by the study room 401 is changed, and the state of the environment 200 is adapted to the behavior of the object to be detected 300, thereby facilitating the work efficiency of the user in the study room 401.
  • the processor 101 is configured to:
  • the management policy is executed to manage the environment 200 formed by the study 401 so that the state of the environment 200 is adapted to the state of the detected object 300.
  • the content of the management policy refers to: at what time and in what manner, the operating state of the wave frequency generator 104 is made. That is, in the environment management system 100 of the present invention, the management policy is generated in such a manner as to obtain the behavior of the detected object 300 in the environment 200, to subsequently control the location according to the management policy.
  • the operating state of the wave frequency generator 104 is described. In other words, the operational state of the wave frequency generator 104 in the environment 200 is related to the behavior of the detected object 300 in the environment 200.
  • the management policy of different content corresponds to different behaviors of the environment 200 and the different detected objects 300 and the detected object 300, that is, the environment management system 100 can adjust the environment.
  • the manner of 200 causes the state of the environment 200 to satisfy the personalized needs of the detected object 300.
  • the step of acquiring the behavior of the detected object 300 in the study room 401 includes the following steps:
  • the behavior of the detected object 300 in the study 401 is determined according to the position and/or posture and/or the action mode of the detected object 300 in the study room 401.
  • the method includes the steps of:
  • the operating state of the wave frequency generator 104 is controlled to adjust the state of the environment 200 such that the state of the environment 200 is adapted to the state of the detected object 300.
  • FIG. 4A through 5 illustrate another specific application example of the environment management system 100, wherein in this example, the environment management system 100 is disposed in a room 402 as an example to further illustrate the present invention.
  • the content and features of the environmental management system 100 are described.
  • the beam transmitters 102 and at least one of the signal receivers 103, the beam transmitter 102 and the signal The receiver 103 is disposed adjacent to a ceiling 4021 and a wall 4022 of the room 402, and at least one of the wave frequency generators 104 may be disposed in the ceiling 4021 of the room 402, wherein
  • the location of the processor 101 is not limited, for example the processor 101 can be arranged in the wall 4022 of the room 402.
  • the wave frequency generator 104 can be implemented as a speaker.
  • the processor 101, the beam transmitter 102, the signal receiver 103 and the wave frequency generator 104 of the environment management system 100 of the present invention may also It is arranged at other locations of the room 402.
  • the processor 101, the beam transmitter 102, the signal receiver 103, and the wave frequency generator 104 of the environmental management system 100 shown in FIG. 4A are arranged only at positions For example, it should not be considered as limiting the content and scope of the environmental management system 100 of the present invention.
  • the beam transmitter 102 is capable of transmitting the detection beam to the environment 200 formed by the room 402 to form the detection area 1021 within the room 402 by the detection beam.
  • the beam transmitter 102 disposed in the ceiling 4021 of the room 402 can transmit the detection beam to a location where the dresser 4024 of the room 402 is located for the dressing in the room 402.
  • the position at which the stage 4024 is located forms the detection area 1021, with reference to FIG. 4B; or the position where the beam transmitter 102 of the ceiling 4021 of the room 402 can be located to the bed 4025 of the room 402. Transmitting the detection beam to form the detection area 1021 at a location where the bed 4025 of the room 402 is located, with reference to FIG.
  • the transmitter 102 can simultaneously transmit the detection beam to the dressing table 4024 of the room 402 and the bed 4025 to respectively position the dresser 4024 and the bed 4025 of the room 402. Forming the detection area 1021, referring to FIG.
  • the beam emitter 102 disposed in the ceiling 4021 of the room 402 can transmit the detection wave to the dressing table 4024 of the room 402 Forming the detection area 1021 at a position where the dressing table 4024 of the room 402 is located, and an angle of the detection beam emitted by the beam transmitter 102 can be adjusted to be subsequent to the beam transmitter
  • the detection area 1021 formed by the detection beam emitted by 102 can be gradually moved from a position where the dressing table 4024 of the room 402 is located to a position where the bed body 4025 is located, so that the detection area 1021 is formed.
  • the dynamic detection area 1021 is referred to FIG. 4E.
  • the environmental management system 100 is capable of sub-area detection of the environment 200 formed by the room 402.
  • the beam transmitter of the environment management system 100 can form the detection area 1021 simultaneously or sequentially in each position of the room 402 to individually perform the respective positions of the room 402. Detection is performed to obtain a position and/or posture and/or an action pattern of the detected object 300 at various positions of the room 402.
  • the environment management system 100 transmits the detection beam to the bed 4025 of the room 402 with the beam transmitter 102 disposed in the ceiling 4021 of the room 402.
  • the beam transmitter 102 disposed in the wall 4022 of the room 402 can further move toward the location
  • the bed 4025 of the room 402 transmits the detection beam to perform layered detection of the environment 200 formed by the room 402, and subsequently, the processor 101 can be in accordance with being in the room 402.
  • the detection beam responding to the detected object 300 on the bed 4025 or in the vicinity of the bed 4025 obtains the behavior of the detected object 300. For example, in this particular example illustrated in FIG.
  • the beam transmitter 102 can transmit three layers of the detection beam into the environment 200 formed by the room 402 to form along the room 402.
  • a plurality of the detection areas 1021 arranged in the height direction respectively detect the different layers of the room 402.
  • the beam transmitter 102 can also transmit two or more layers of the detection beam into the environment 200 formed by the room 402. The situation of different layers is detected separately.
  • the environment management system 100 of the present invention does not need to capture the environment 200 and the detected object 300 when detecting the behavior of the detected object 300 in the environment 200.
  • the image is transmitted by transmitting the detection beam to the environment 200 and the detected object 300, thereby avoiding content leakage involving privacy of the detected object 300.
  • the detection area 1021 of each layer of the room 402 is defined as a first layer detection area 1022, a second layer detection area 1023, and a third layer detection area 1024 from bottom to top.
  • the detection beam forming the first layer detection region 1022 can be responsive to the detected object 300 lying on the bed 4025 to form the second layer detection region 1023 and the third layer
  • the detection beam of the detection area 1024 cannot be responded to by the detected object 300.
  • the signal receiver 103 only receives the formation of the first layer detection area 1022 that is responded by the detected object 300.
  • the processor 101 can obtain that the detected object 300 is in a lying state, thereby obtaining the behavior of the detected object 300 in the room 402.
  • the processor 101 can obtain that the detected object 300 is in a sitting state, so that the detected object 300 is in the subsequent The behavior within the detection area 1021 can be obtained; or if the signal receiver 103 receives the formation of the first layer detection area 1022, the second layer detection area 1023 and the described by the detected object 300 After the detection beam of the third layer detection area 1024, the processor 101 can obtain the state in which the detected object 300 is in the standing state.
  • the processor 101 is capable of obtaining the behavior of the detected object 300 of the room 402 according to the detection beam received by the signal receiver 103 and responded by the detected object 300 in the detection area 1021. For example, the processor 101 can obtain an action of lying on the bed 4025 according to the detection beam received by the signal receiver 103 in response to the detected object 300 in the detection area 1021.
  • the processor 101 can generate the management policy according to the behavior of the detected object 300, and adjust the state of the wave frequency generator 104 when the processor 101 executes the management policy to borrow
  • the state of the room 402 is adjusted by the wave frequency generator 104 in a manner that changes the frequency band of the frequency of the environment 200 in which the room 402 is formed, such that the state of the room 402 is related to the state of the user. adapt. For example, when the environment management system 100 obtains the behavior that the detected object 300 lies on the bed 4025, it can be determined that the detected object 300 is ready to sleep.
  • the environment management system 100 can The behavior of the detected object 300 generates the management policy, wherein the content of the management policy may be to control a frequency band generated by the wave frequency generator 104 to perform the management in the environment management system 100
  • the strategy causes the wave frequency band generated by the wave frequency generator 104 to match the brain wave of the detected object 300, and helps the detected object 300 to sleep.
  • the wave frequency generator 104 is implemented as the luminaire, wherein The environmental management system 100 adjusts the state of the environment 200 formed by the room 402 in a manner that controls the operational state of the luminaire. For example, when the environmental management system 100 detects that the detected object 300 ⁇ desires to sleep on the bed 4025, the environmental management system 100 can enable the wave frequency generator 104 implemented as the luminaire The brightness of the generated light is reduced, referring to FIG. 4G, or the environmental management system 100 is capable of changing the color temperature of the light generated by the wave frequency generator 104 implemented as the luminaire, with reference to FIG.
  • the environment management system 100 is capable of causing light rays generated by the wave frequency generator 104 implemented as the luminaire to have a change in light and dark, with reference to FIG. 4I, such that the state of the environment 200 formed by the room 402 is changed, thereby Help users sleep.
  • the processor 101 is configured to:
  • the management policy is executed to manage the environment 200 formed by the room 402 such that the state of the environment 200 is adapted to the state of the detected object 300.
  • FIGS. 6A to 7 show another specific application example of the environment management system 100, wherein in this example, the environment management system 100 is disposed in a living room 403 as an example to further illustrate the present invention. The content and features of the environmental management system 100 are described.
  • At least one of the beam transmitters 102 and at least one of the signal receivers 103 are in the beam transmitter 102 and the signal
  • the receiver 103 is disposed adjacent to a ceiling 4031 and a wall 4032 of the living room 403, and at least one of the wave frequency generators 104 may be disposed at the ceiling 4031 of the living room 403, wherein the The position of the processor 101 is not limited, for example, the processor 101 may be disposed at the wall 4032 of the living room 403.
  • the wave frequency generator 104 can be implemented as the luminaire.
  • the processor 101, the beam transmitter 102, the signal receiver 103 and the wave frequency generator 104 of the environment management system 100 of the present invention may also It is disposed at other locations of the living room 403.
  • the processor 101, the beam transmitter 102, the signal receiver 103, and the wave frequency generator 104 of the environmental management system 100 shown in FIG. 6A are arranged only at positions For example, it should not be considered as limiting the content and scope of the environmental management system 100 of the present invention.
  • the beam transmitter 102 is capable of transmitting the detection beam to the environment 200 formed by the living room 403 to form the detection area 1021 in the living room 403 by the detection beam.
  • the beam emitter 102 disposed in the ceiling 4031 of the living room 403 can transmit the detection beam to a position where the sofa 4033 of the living room 403 is located to the sofa 4033 in the living room 403.
  • the location where it is formed forms the detection area 1021, with reference to Figure 6B. If the detected object 300 is in the detection area 1021, referring to FIG. 6C, the beam emitter 102 disposed in the wall 4032 of the living room 403 can further move to the position of the sofa 4033.
  • the detection beam is transmitted to perform layered detection on the environment 200 formed by the living room 403, and in the following, the processor 101 can be according to the said being on the sofa 4033 of the living room 403
  • the detection beam responding to the detection object 300 obtains the behavior of the detected object 300.
  • the beam emitter 102 can emit three layers of the detection area 1021 into the environment 200 formed by the living room 403 to respectively respectively to the living room 403.
  • the behavior of the detected object 300 at the position where the sofa 4033 is located can be determined in the following manner. For example, it can be determined that the detected object 300 is located at the sofa 300. The position is standing or sitting.
  • the beam transmitter 102 can also transmit two or more layers of the detection beam to the environment 200 formed by the living room 403. The situation of different layers is detected separately.
  • the detection beam forming the first layer detection region 1022 and the detection beam forming the second layer detection region 1023 can be detected by sitting on the sofa 4033
  • the object 300 responds, and the detection beam forming the third layer detection area 1024 cannot be responded to by the detected object 300. If subsequently, the signal receiver 103 only receives the response by the detected object 300.
  • the detection beam forming the first layer detection area 1022 and the detection beam forming the second layer detection area 1023 subsequently, the processor 101 can obtain that the detected object 300 is sitting On the sofa 4033, thereby obtaining the behavior of the object 300 to be detected in the detection area 1021.
  • the processor 101 can be configured according to the detected object 300 of the detection area 1021 obtained by the signal receiver 103 and received by the detection beam of the detection object 300 of the detection area 1021. Behavior, for example, the processor 101 is capable of obtaining an action of sitting on the sofa 4033 based on the detection beam received by the signal receiver 103 in response to the detected object 300 in the detection area 1021. In the following, the processor 101 can generate the management policy according to the behavior of the detected object 300, and adjust the frequency band of the wave frequency of the wave frequency generator 104 when the processor 101 executes the management policy.
  • the manner of adjusting the living room 403 is such that the state of the living room 403 is adapted to the state of the user.
  • the environment management system 100 obtains the behavior that the detected object 300 sits on the sofa 4033, it can be determined that the detected object 300 is watching a television program. At this time, the environment management system 100 The management policy can be generated according to the behavior of the detected object 300, and the operating state of the wave frequency generator 104 can be controlled subsequently according to the content of the management policy.
  • the processor 101 is configured to:
  • the management policy is executed to manage the environment 200 formed by the living room 403 such that the state of the environment 200 is adapted to the state of the detected object 300.
  • FIGS. 8A to 9 show another specific application example of the environment management system 100, wherein in this specific application example, the environment management system 100 is arranged in a conference room 404 as an example to further illustrate the present example.
  • the content and features of the environmental management system 100 of the invention are not limited to the invention.
  • At least one of the beam transmitters 102 and at least one of the signal receivers 103 are in the beam transmitter 102 and the signal
  • the receiver 103 is disposed adjacent to a ceiling 4041 and a wall 4042 of the conference room 404, and at least one of the wave frequency generators 104 may be disposed at the ceiling 4041 of the conference room 404.
  • the location of the processor 101 is not limited, for example, the processor 101 may be disposed at the wall 4042 of the conference room 404.
  • the wave frequency generator 104 can be implemented as the luminaire.
  • the processor 101, the beam transmitter 102, the signal receiver 103 and the wave frequency generator 104 of the environment management system 100 of the present invention are also Other locations in the conference room 404 can be placed.
  • the processor 101, the beam transmitter 102, the signal receiver 103, and the wave frequency generator 104 of the environmental management system 100 shown in FIG. 8A are arranged only at positions The distance should not be construed as limiting the content and scope of the environmental management system 100 of the present invention.
  • the beam transmitter 102 is capable of transmitting the detection beam to the environment 200 formed by the conference room 404 to form the detection area 1021 in the conference room 404 by the detection beam.
  • the beam transmitter 102 disposed in the conference room 404 can transmit the detection beam to a location of a conference table 4043 of the conference room 404 for the conference table at the conference room 404.
  • the position where 4043 is located forms the detection area 1021, with reference to FIG. 8B. All of the detected objects 300 are in the detection area 1021.
  • the beam transmitter 102 disposed in the wall 4042 of the conference room 404 can further access the conference table 4043.
  • the detection beam is transmitted at a location to hierarchically detect the environment 200 formed by the conference room 404 according to a height, and subsequently, the processor 101 can be based on the conference in the conference room 404
  • the detection beam responding to the detected object 300 near the table 4043 obtains the behavior of the detected object 300.
  • the beam transmitter 102 can transmit three layers of the detection beam into the environment 200 formed by the conference room 404 to form the first layer detection.
  • the area 1022, the second layer detection area 1023, and the second layer detection area 1024 respectively detect the different height layers of the conference room 404.
  • the The behavior of the detection object 300 at the location of the conference table 4043 of the conference room 404 for example, when it is detected that all of the detected objects 300 in the conference room 404 are seated around the conference table 4043 At a time, it can be judged that all of the detected objects 300 are in a meeting or discussing a problem, when it is detected that some of the detected objects 300 in the conference room 404 are sitting, while others are standing, or When all of the detected objects 300 are away from the conference table 4043, it may be determined that the detected object 300 is not in a sitting state or is not in a state of discussion. That is, the environmental management system 100 can also obtain a spatial distribution of all of the detected objects 300 in the environment 200.
  • the management policy may be generated according to the behavior of the detected object 300 in the conference room 404, and when the processor 101 executes the management policy,
  • the band of the wave frequency of the wave frequency generator 104 is such that the state of the conference room 404 is adapted to the state of the object 300 to be detected.
  • the processor 101 is configured to:
  • the management policy is executed to manage the environment 200 formed by the conference room 404 such that the state of the environment 200 is adapted to the state of the detected object 300.
  • the present invention further provides an environment management method 1000, wherein the environment management method 1000 includes the following steps:
  • Step 1001 (A) obtaining the behavior of at least one detected object 300 in an environment 200;
  • Step 1002 (B) generating a management policy according to the behavior of the detected object 300;
  • the behavior of the user in the study 401 may be first obtained, and then according to the user in the study 401.
  • the behavior generates the management policy and adjusts the state of the study 401 when the management policy is executed to adapt the real-time status of the study 401 to the real-time behavior of the user.
  • the behavior of the user in the room 402 may be first obtained, and then the management policy may be generated according to the behavior of the user. And adjusting the state of the room 402 when executing the management policy to adapt the real-time status of the room 402 to the real-time behavior of the user.
  • the behavior of the user in the living room 403 may be first obtained, and then the management policy is generated according to the behavior of the user. And adjusting the state of the living room 403 when the management policy is executed, so that the real-time state of the living room 403 is adapted to the real-time behavior of the user.
  • the behavior of the user within the conference room 404 may be first obtained, and then the management policy may be generated according to the behavior of the user. And adjusting the state of the conference room 404 when the management policy is executed, so that the real-time state of the conference room 404 is adapted to the real-time behavior of the user.
  • the environment 200 is managed in a manner of adjusting the frequency of the environment 200 when the management policy is executed.
  • the processor 101 may generate the direction of the wave frequency of different frequency bands by the wave frequency generator 104 to the study room 401, the room 402, the living room 403, and the conference when performing the management policy.
  • the frequency band is transmitted in the room 404 to adjust the frequency band of the wave frequency of the environment 200 formed by the study room 401, the room 402, the living room 403, and the conference room 404, and the environment is adjusted in this manner.
  • the state of 200 and adapts the real-time state of the environment 200 to the real-time behavior of the user.
  • the method further comprises the steps of:
  • the processor 101 can detect that Detecting the position and/or posture and/or action mode of the detected object 300 of the region 1021, and once the position and/or posture and/or action mode of the detected object 300 in the detection region 1021 is acquired, Then, the behavior of the detected object 300 in the detection area 1021 can also be determined.
  • the method further comprises the steps of:
  • the detection strategy in the step (A.1.1) is selected from the group consisting of: a layered detection strategy, a sub-region detection strategy, a segmentation detection strategy, an action mode detection strategy, and a determination of a movement track.
  • the environment management system 100 of the present invention further includes a processing unit 10, a policy generation unit 20, and an execution unit 30, wherein the processing unit 10, the policy The generating unit 20 and the executing unit 30 are respectively communicably connected to each other, wherein the processing unit 10 is configured to obtain the behavior of at least one of the detected objects 300 in the environment 200, and the policy generating unit 20 according to the The behavior of the detected object 300 in the environment 200 obtained by the processing unit 10 generates the management policy, and the execution unit 30 manages the manner of adjusting the state of the environment 200 when executing the management policy. Environment 200.
  • the manner in which the execution unit 30 externally connects the wave frequency generator 104 when performing the management policy is performed by adjusting the wave frequency generation.
  • the frequency band of the wave frequency emitted by the device 104 changes the real-time state of the environment 200 to manage the environment 200. That is, the execution unit 30 is capable of controlling the operating state of the wave frequency generator 104.
  • the environmental management system 100 further includes a detection unit 40, wherein the detection unit 40 is communicably coupled to the processing unit 10, wherein the detection unit 40 detects that it is in the environment 200. a position and/or posture and/or an action mode of the detected object 300, so that the processing unit 10 can obtain the position of the detected object 300 in the environment 200 according to the detecting unit 40, and The behavior of the detected object 300 in the environment 200 is obtained in a manner of a gesture and/or an action mode.
  • the environment management system 100 further includes a receiving unit 50, wherein the detecting unit 40 is communicably connected to the receiving unit 50, and the receiving unit 50 is communicably connected to the signal receiving The device 103, wherein the receiving unit 50 is externally connected to the signal receiver 103, obtains, from the signal receiver 103, the signal received by the signal receiver 103 that is responded by the detected object 300 in the environment 200.
  • the detection beam and in the following, the detection unit 40 can receive the detection beam obtained by the receiving unit 50 from the receiving unit 50, and acquire the detected object 300 according to the detection beam.
  • the position and/or posture and/or mode of operation of environment 200 is described.
  • the environment management system 100 further includes an adjustment unit 60, wherein at least one of the beam transmitters 102 can be adjustably coupled to the adjustment unit 60 to cause the adjustment unit 60 to be used for adjustment
  • the angle of the detection beam sent by the beam transmitter 102 is such that the detection area 1021 formed by the detection beam from the beam transmitter 102 is the dynamic detection area 1021.
  • the adjustment unit 60 is capable of controlling the overall position of the beam transmitter 102 to be adjusted, for example, the adjustment unit 60 is capable of controlling the beam transmitter 102.
  • the angle relative to a mounting position e.g., the ceiling 4011 of the study 401 is adjusted.
  • the adjusting unit 60 can control a part of the structure of the beam transmitter 102 to be adjusted to change the detection beam emitted by the beam transmitter 102. Angle.
  • FIGS. 12A-13D illustrate one specific example of the beam transmitter 102, wherein the beam transmitter 102 forms the detection in the environment 200 in a manner to transmit microwaves to the environment 200.
  • the beam transmitter 102 includes a reference plate 11 and a radiation source 12, and the reference plate 11 further includes a plate body 111 and at least one side wing 112, wherein each of the side wings 112 is respectively disposed at the a plate body 111, and each of the side wings 112 has a predetermined angle with the plate body 111, and the radiation source 12 is disposed adjacent to the plate body 111 to be at the radiation source 12 and A radiation gap 120 is formed between the plate bodies 111.
  • the beam transmitter 102 can constrain the angle of emission of the detection beam generated by the radiation source 12 by providing each of the side wings 112, thereby controlling the beam direction of the detection beam.
  • the beam transmitter 102 includes two of the side flaps 112 as an example to expose and explain the present invention.
  • each of the side flaps 112 is adjustably disposed at a side of the board main body 111, wherein the board main body 111 and each of the side flaps 112 respectively have a reference surface 110, and the radiation source 12
  • the plate body 111 is disposed adjacent to the reference plate 11 and the extending direction of the radiation source 12 is parallel to a plane of the reference surface 110 of the plate body 111 of the reference plate 11
  • Adjusting the angle of each of the side flaps 112 and the board main body 111, the emission angle of the detection beam can be controlled, thereby controlling the beam direction of the detection beam and controlling the detection area formed in the environment 200.
  • the location of 1021 Preferably, in this particular example of the beam emitter 102 shown in FIG.
  • the number of the side flaps 112 is two, and the two of the side flaps 112 are symmetrical with each other by the two side flaps 112.
  • the manners are respectively adjustably disposed at the sides of the board body 111 such that the angles of the two side flaps 112 with respect to the board body 111 can be adjusted.
  • the side flaps 112 of the beam emitter 102 are controllably coupled to the adjustment unit 60, wherein the adjustment unit 60 is capable of adjusting an angle of the side flaps 112 relative to the panel body 111 to adjust
  • the angle of emission of the detection beam transmitted by the beam transmitter 102 enables angular angle detection, sub-area detection, and layered detection of the environment 200.
  • the angles of the two side flaps 112 of the beam emitter 102 with respect to the board body 111 can be adjusted, respectively. That is, when the angle of one of the side flaps 112 with respect to the panel body 111 is adjusted, the angle of the other of the side flaps 112 with respect to the panel body 111 may be constant. In another specific example of the beam transmitter 102 of the present invention, the angles of the two side flaps 112 of the beam transmitter 102 relative to the board body 111 can be adjusted synchronously and in the same amplitude. .
  • the manner in which the angle of the side flaps 112 of the beam transmitter 102 relative to the board body 111 is adjustable is not limited, such as the beam transmitter shown in Figures 12A to 12C.
  • the side flaps 112 are adjustably disposed in a side of the panel body 111 in a rotatable manner, and in further specific examples of the beam emitter 102, the The side flaps 112 are adjustably disposed at a side portion of the board main body 111 in a deformable manner of a portion of the board main body 111.
  • the linear distance parameter of the outermost side of the radiation source 12 to the connection position of the side flap 112 of the reference plate 11 and the board main body 111 is L, and the radiation source is provided.
  • the wavelength parameter of the detection beam emitted by 12 is ⁇ , wherein the parameter L has a value range of L ⁇ ⁇ /16.
  • the parameter of the connection position of the side wing 112 and the plate body 111 to the outermost side of the side wing 112 is 1, wherein the parameter l has a value range of l ⁇ ⁇ / 4.
  • the beam emitter 102 further includes a shield cover 13 wherein the shield cover 13 is disposed on a back side of the plate body 111 of the reference plate 11 to enable the A shield cover 13 and the radiation source 12 are respectively held on both sides of the plate main body 111 of the reference plate 11, wherein the shield cover 13 has a shielding function to enhance the light emitted by the beam emitter 102 The intensity of the beam is detected, so that the action of the detected object 300 is obtained more accurately later.
  • the shield case 13 also has a function of dustproof and moisture proof.
  • the height of the inner space of the shielding cover 13 is greater than 1/32 times the wavelength.
  • FIG. 13A shows an operational state of the beam transmitter 102, in which case the two of the side flaps 112 and the panel body 111 of the reference plate 11 of the beam transmitter 102 are in an unfolded state.
  • Figure 13B shows another operational state of the beam transmitter 102, at which point the angle of the side flaps 112 of the beam emitter 102 on the left side of the drawing relative to the panel body 111 is adjusted, Thereby the angle of the detection beam transmitted by the beam transmitter 102 can be adjusted such that the position of the detection region 1021 of the detection beam formation is also adjusted accordingly.
  • Figure 13C shows another operational state of the beam transmitter 102, at which point the angle of the side flaps 112 of the beam emitter 102 on the right side of the drawing relative to the panel body 111 is adjusted, Thereby the angle of the detection beam transmitted by the beam transmitter 102 can be adjusted such that the position of the detection region 1021 of the detection beam formation is also adjusted accordingly.
  • Figure 13D shows another operational state of the beam transmitter 102, in which case the angles of the two side flaps 112 of the beam emitter 102 relative to the panel body 111 are adjusted, thereby The angle of the detection beam transmitted by the beam transmitter 102 can be adjusted such that the position of the detection region 1021 of the detection beam formation is also adjusted accordingly.
  • the angle of the angle of the side flap 112 relative to the board main body 111 is adjusted, the position where the detection area 1021 moves and the size of the detection area 1021 can be control.
  • the reference plate 11 may include only one of the plate bodies 111, that is, the reference plate 11 is not adjustable, and the direction of extension of the radiation source 12 is The reference faces 110 of the plate main body 111 extend in a direction perpendicular to each other.
  • the beam transmitter 102 further includes a beam constraining element 14, wherein the beam constraining element 14 has a constraining space 140, wherein the radiation source 12 is maintained in the constraining space 140 of the beam constraining element 14.
  • the radiation source 12 and the plate body 111 cooperate with each other to generate microwaves in the constraining space 140 of the beam constraining element 14 from the opening of the constraining space 140 of the beam constraining element 14 External radiation, wherein the beam constraining element 14 constrains the emission angle of the detected beam, thereby limiting the position and shape of the detection region 1021 formed by the detection beam in the environment 200.
  • the beam constraining element 14 is flared.
  • Figures 15A-15C illustrate the type of detection beam produced by this embodiment of the beam transmitter 102 of Figures 14A-14D.
  • Figure 16 shows another variant embodiment of the beam transmitter 102, which differs from the beam transmitter 102 shown in Figures 14A through 14D in the beam transmission shown in Figure 16
  • the beam constraining element 14 is in the form of a plate, wherein the beam constraining element 14 is held on one side of the radiation source 12 for constraining the radiation source 12 and the plate
  • the main body 111 cooperates with each other to generate microwaves, thereby controlling the emission angle of the detection beam emitted by the beam transmitter 102.
  • the extending direction of the beam constraining element 14 and the extending direction of the board main body 111 are perpendicular to each other, or the extending direction of the beam constraining element 14 and the extending direction of the board main body 111 have an angle, and the clip The angle is an acute angle.
  • the beam constraining element 14 has a recess 141 for receiving the radiation source 12 and a gap between the radiation source 12 and the beam constraining element 14.
  • Figure 17 shows the type of detection beam produced by this embodiment of the beam transmitter 102 of Figure 16, wherein the beam transmitter 102 shown in Figure 16 is particularly suitable for use in The environment 200 performs sub-area detection, angle-of-angle detection, and layered detection.
  • the present invention further provides a detection method 1800, wherein the detection method 1800 includes the following steps:
  • Step 1801 (a) forming a detection area 1021 by the detection beam by at least one beam transmitter 102 emitting a detection beam based on a detection strategy;
  • Step 1802 (b) receiving the detection beam that is responded by at least one detected object 300 in the detection area 1021;
  • the method further comprises the steps of:
  • a radiation source 12 of the beam transmitter 102 emits the detection beam
  • a reference plane 110 of the beam transmitter 102 adjusts the angle of emission of the detection beam on one side of the radiation source 12.
  • the beam transmitter 102 adjusts the emission angle of the detection beam in such a manner that at least a portion of the reference surface 110 is adjusted relative to the position of the radiation source 12. .
  • the present invention further provides a detection system 400, wherein the detection system 400 includes at least one beam transmitter 102, at least one signal receiver 103, a receiving unit 50, and a detection.
  • the receiving unit 50 is communicably coupled to the signal receiver 103 and the detecting unit 40, respectively, wherein the beam transmitter 102 issues the detection beam for forming based on the detection strategy
  • the signal receiver 103 receives the detection beam that is responded to by the detected object 300 in the detection area 1021
  • the receiving unit 50 acquires the signal from the signal receiver 103.
  • the detection beam received by the receiver 103, the detection unit 40 detects the position and/or posture of the detected object 300 in the detection area 1021 according to the detection beam received by the receiving unit 50, and/or Action mode.
  • the detection system 400 includes a processing unit 10, wherein the processing unit 10 is communicably coupled to the detection unit 40, wherein the processing unit 10 is detected according to the detection by the detection unit 40.
  • the position and/or posture and/or action pattern of the object 300 obtains the behavior of the detected object 300.
  • the detection system 400 includes an adjustment unit 60, wherein the beam transmitter 102 is adjustably coupled to the adjustment unit 60, wherein the adjustment unit 60 is configured to adjust the emission from the beam transmitter 102.
  • the angle of the detection beam is such that the detection area 1021 formed by the detection beam is the dynamic detection area 102.
  • FIG. 20A-20C illustrate the state of the detection region 1021 formed by the detection beam by the beam transmitter 102 when the detection system 400 performs the detection strategy including a layered detection strategy.
  • the height dimensions of the detection areas 1021 of each layer are uniform.
  • the height dimension of the detection area 1021 of each layer is sequentially decreased from the upper portion to the lower portion of the environment 200.
  • the height dimension of each of the detection regions 1021 formed in the upper portion of the environment 200 is larger than that of each of the detection regions 1021 formed in the lower portion of the environment 200. Height size. It is worth mentioning that although the detection system 400 shown in FIGS.
  • the detection beam is formed by the beam transmitter 102.
  • the adjacent detection areas 1021 are parallel to the detection area 1021, and those skilled in the art should understand that the adjacent detection areas 1021 are parallel to the detection area 1021. It is merely an example and should not be considered as limiting the content and scope of the detection system 400 of the present invention.
  • the detection system 400 shown in FIG. 21 is in a state in which the detection beam formed by the beam transmitter 102 forms the detection region 1021 when the detection system 400 includes the detection strategy of the sub-region detection strategy.
  • the beam transmitter 102 can transmit the detection beam to different locations of the environment 200 simultaneously or sequentially in order to form the detection region 1021 within the environment 200 by the detection beam.
  • the detection area 1021 of the column of squares formed by the detection beam in the environment 200 shown in FIG. 21 is only an example for illustrating and exposing the detection of the present invention. The content and features of the system are not to be considered as limiting the content and scope of the detection system 400 of the present invention.
  • the detection region 1021 of the detection beamforming may be, but not limited to, a circular, elliptical detection region, and adjacent to the detection region 1021.
  • the size of the area can also be inconsistent.
  • the detection system 400 illustrated in FIGS. 22A and 22B illustrates the state of the detection region 1021 formed by the detection beam by the beam transmitter 102 when performing the detection strategy including the angle-angle detection strategy.
  • the beam transmitter 102 can transmit the detection beam to different angles of the environment 200 simultaneously or sequentially, to form the detection area 1021 within the environment 200 by the detection beam.
  • the size of the detection area 1021 formed by the beam transmitter 102 when the detection strategy including the angle detection strategy is executed to transmit the detection beam to the environment 200 may be different.

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Remote Sensing (AREA)
  • General Physics & Mathematics (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Computer Networks & Wireless Communication (AREA)
  • Electromagnetism (AREA)
  • Automation & Control Theory (AREA)
  • General Engineering & Computer Science (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Environmental & Geological Engineering (AREA)
  • Geology (AREA)
  • General Life Sciences & Earth Sciences (AREA)
  • Geophysics (AREA)
  • Manufacturing & Machinery (AREA)
  • Quality & Reliability (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Circuit Arrangement For Electric Light Sources In General (AREA)

Abstract

一种检测系统和环境管理系统及其应用,其中所述检测系统包括至少一波束发射器、至少一信号接收器以及被可通信地连接于所述信号接收器的一检测单元。所述波束发射器基于一检测策略以向一环境发射至少一检测波束的方式在所述环境形成至少一检测区域,所述信号接收器接收处于所述检测区域的至少一被检测对象响应的所述检测波束,其中所述检测单元根据所述被检测对象响应的所述检测波束检测所述被检测对象在所述环境的状态。

Description

检测系统和环境管理系统及其应用 技术领域
本发明涉及检测领域,特别涉及一检测系统和环境管理系统及其应用。
背景技术
雷达是一种利用天线产生的电磁波来探测目标以确定目标的位置、速度、姿态等特征的电子装置,其中雷达的工作原理是通过向空间发射电磁波和接收目标回波信号进行工作的,当雷达发射的电磁波遇到目标时,目标会向各个方向散射电磁波,其中一部分电磁波能够返回至雷达或者接收器而形成回波以被雷达或者接收器接收,在后续根据雷达或者接收器接收的回波能够对目标进行探测。为了提高雷达的精度和效率,需要把雷达的电磁波聚集在一个比较窄的波束上,保证其具有较大的能流密度,并且为了使雷达能够探测空间内的各个方向上的目标,就需要雷达波形成的波束能够自动地转动,以实现扫描和跟踪目标。理论上,通过增加雷达的发射功率和让雷达产生的雷达波尽可能平行地发射以聚集能量的方式能够增加雷达波的强度。然而,众所周知的是,达到目标的雷达波在单位面积上的能量与目标和雷达的距离呈反比,因此,单纯地通过增大雷达的发射功率来增强雷达波的强度的方式的效率比较低,可实施性存在问题,从而导致雷达只能够通过使雷达波尽可能平行地被发射以聚集能量的方式来增加雷达波的强度。为了实现这一目的,传统的雷达为抛物面雷达,其提供一个具有抛物面的反射体,并在抛物面的焦点处安装天线,天线产生的电磁波在经过抛物面的反射后产生并辐射近似平行的雷达波。虽然抛物面雷达解决了雷达波的平行发射的问题,但是在实际的应用中,抛物面雷达发射的雷达波需要时刻指向目标以实现跟踪目标,因此抛物面雷达的天线必须安装在被诸如伺服电机等驱动器驱动的可旋转支架上,但是当目标相对于雷达的角速度过大时,例如在抛物面雷达跟踪洲际导弹、卫星等高速目标时,因为抛物面雷达的反射体和天线需要分别进行高速转动,以至于天线的巨大惯性会导致很多工程上的难题。为了克服抛物面雷达的这一缺陷,最近技术的雷达为相控阵列雷达,其具有多个密集布置的点波源,其中相控 阵列雷达的工作原理是在任何一个点波源为圆心取相同的半径画半圆,以得到各个点波源的波前,相控阵列雷达的合成波的波前即为各个点波源的波前的包络线,因此,在单位面积上点波源的数量越大,则相控阵列雷达的合成波的波前越接近平面,这时,相控阵列雷达就越接近于天线的平面,即,产生越平行于天线的雷达波,此时,相控阵列雷达产生的雷达波相互平行,从而增加相控阵列雷达产生的雷达波的强度。尽管相控阵列雷达相对于传统的抛物面雷达具有更多的有限,但是相控阵列雷达的体积庞大、结构复杂、价格昂贵,以目前的技术手段无法将其小型化和低成本化,导致相控阵列雷达不适于被大规模地民用。
另外,抛物面雷达是利用抛物反射面,从而实现对雷达波束的方向与波束角度的控制,同时完成在方向面上的雷达回波的接收,而相控阵列雷达是利用雷达的发射和接收组件单元之间的雷达波相位干涉原理来完成雷达波束的功率合成,波束角度控制及波束偏转角度。
发明内容
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中所述检测系统能够检测至少一被检测对象在一环境的位置。
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中所述检测系统能够检测所述被检测对象在所述环境的姿态。
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中所述检测系统能够检测所述被检测对象在所述环境的空间分布。
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中所述检测系统能够检测所述被检测对象在所述环境的动作模式。
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中所述检测系统能够检测所述被检测对象在所述环境的移动动作。
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中所述检测系统能够在所述环境形成至少一检测区域,并对处于所述检测区域的所述被检测对象进行检测,以获得所述被检测对象在所述环境的状态。例如,所述检测系统能够获得所述被检测对象在所述环境的位置、姿态、空间分布、动作模式或者移动动作等状态。
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中所述 检测系统在所述环境形成的所述检测区域是动态检测区域,以提高所述检测系统的灵活性。
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中所述检测系统能够实时地对处于所述环境的所述被检测对象进行检测,以获得所述被检测对象的实时状态。例如,所述检测系统能够获得所述被检测对象在所述环境的实时位置、实时姿态、实时空间分布、实时动作模式或者实时移动动作等实时状态。
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中所述检测系统能够主动地向所述环境发射至少一检测波束,以藉由所述检测波束在所述环境形成至少一个所述检测区域,当所述被检测对象位于所述检测区域时,所述被检测对象能够以反射所述检测波束的方式响应所述检测波束,所述检测系统通过接收和分析被响应的所述检测波束的方式能够获得所述被检测对象的状态。
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中所述检测系统在执行一检测策略时能够对所述环境进行检测,以在后续获得处于所述环境的所述被检测对象的实时状态。
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中所述检测系统在执行所述检测策略时能够选择性地对所述环境进行分层检测和/或分区域检测和/或分角度检测,以在后续获得处于所述环境的所述被检测对象的实时状态。
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中所述检测系统能够对所述环境进行分层检测,以获得所述环境的不同层的状态。例如,所述检测系统能够将所述环境按照高度不同分为两层以上,并对所述环境的每层分别进行检测,通过这样的方式,所述检测系统能够获得所述被检测对象在所述环境的位置、姿态、空间分布、动作模式或者移动动作等状态。
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中所述检测系统在对所述环境进行分层检测时,每层的状态可以不一致,例如相邻两层的高度可以不同。
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中所述检测系统能够对所述环境进行分区域检测,以获得所述环境的不同区域的状态,通过这样的方式,所述检测系统能够获得所述被检测对象在所述环境的位置、姿 态、空间分布、动作模式或者移动动作等状态。
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中所述检测系统能够对所述环境进行分角度检测,以获得所述环境的不同角度的状态,通过这样的方式,所述检测系统能够获得所述被检测对象在所述环境的位置、姿态、空间分布、动作模式或者移动动作等状态。
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中根据所述被检测对象的实时状态可以获得所述被检测对象在所述环境的行为,以在后续,能够根据所述被检测对象的行为以调节所述环境的波频的方式管理所述被检测对象所处的所述环境。例如,所述环境的声波和/或光波能够被调节。
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中通过对所述环境进行分层检测、分区域检测和分角度检测的方式能够精确地获得所述被检测对象在所述环境的行为,从而在后续,能够根据所述被检测对象在所述环境的行为调节所述被检测对象所处的所述环境的状态。
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中所述环境管理系统根据所述被检测对象在所述环境的行为生成一管理策略,和在所述管理策略被执行时调整所述被检测对象所处的所述环境的状态,从而使所述环境的状态能够与所述被检测对象的行为相适应。
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中所述检测系统提供至少一波束发射器,其中所述检测系统以至少一个所述波束发射器向所述环境发射所述检测波束的方式在所述环境形成所述检测区域,从而对处于所述检测区域的所述被检测对象进行检测而获得所述被检测对象在所述环境的实时状态。
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中所述波束发射器以向所述环境发射微波的方式发射所述检测波束,从而在所述环境形成所述检测区域。
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中所述波束发射器产生的微波的辐射方向能够被约束,从而使所述检测区域形成动态检测区域。
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中所述波束发射器发射的所述检测波束的波束方向能够被调整,以使所述检测区域形成 动态检测区域。
本发明的一个目的在于提供一检测系统和环境管理系统及其应用,其中所述波束发射器产生的微波的辐射方向能够被约束,从而所述检测系统能够对所述环境进行分层检测、分区域检测和分角度检测。
依本发明的一个方面,本发明提供一检测方法,其中所述检测方法包括如下步骤:
(a)藉由至少一检测波束在一环境形成至少一检测区域;
(b)接收处于所述检测区域的至少一被检测对象响应的所述检测波束;以及
(c)根据所述被检测对象响应的所述检测波束检测处于所述环境的所述被检测对象的状态。
根据本发明的一个实施例,在所述步骤(a)中进一步包括步骤:
(a.1)提供一检测策略;和
(a.2)基于所述检测策略向所述环境发射所述检测波束,以藉由所述检测波束在所述环境形成所述检测区域。
根据本发明的一个实施例,在所述步骤(a.2)中,至少一波束发射器基于所述检测策略向所述环境发射所述检测波束。
根据本发明的一个实施例,所述波束发射器是微波波束发射器,从而在所述步骤(a.2)中,所述波束发射器以向所述环境发射微波检测波束的方式在所述环境形成所述检测区域。
根据本发明的一个实施例,在所述步骤(c)中,所述被检测对象在所述环境的状态包括:所述被检测对象在所述环境的位置、所述被检测对象在所述环境的姿态、所述被检测对象在所述环境的分布、所述被检测对象在所述环境的动作模式。
根据本发明的一个实施例,所述检测策略选自:分层检测策略、分区域检测策略和分角度检测策略以及动作模式检测策略、对移动轨迹进行判断与预测策略组成的策略组。
根据本发明的一个实施例,在所述步骤(c)之后,进一步包括步骤:根据所述被检测对象在所述环境的状态确定所述被检测对象在所述环境的行为。
根据本发明的一个实施例,所述检测区域是动态检测区域。
依本发明的另一个方面,本发明进一步提供一环境管理方法,其中所述环境管理方法包括如下步骤:
(A)获得至少一被检测对象在一环境的行为;
(B)根据所述被检测对象的行为生成一管理策略;以及
(C)在执行所述管理策略时以控制至少一波频发生器的工作状态的方式管理所述环境的状态。
根据本发明的一个实施例,在所述步骤(A)中,进一步包括步骤:
(A.1)检测所述被检测对象在所述环境的状态;和
(A.2)根据所述被检测对象在所述环境的状态确定所述被检测对象在所述环境的行为。
根据本发明的一个实施例,在所述步骤(A.1)中,进一步包括步骤:
(A.1.1)藉由至少一检测波束在所述环境形成至少一检测区域;
(A.1.2)接收处于所述检测区域的所述被检测对象响应的所述检测波束;以及
(A.1.3)根据所述被检测对象响应的所述检测波束检测处于所述环境的所述被检测对象的状态。
根据本发明的一个实施例,在所述步骤(A.1.1)中,藉由至少一波束发射器基于一检测策略以向所述环境发射所述检测波束的方式在所述环境形成所述检测区域。
根据本发明的一个实施例,所述检测策略选自:分层检测策略、分区域检测策略和分角度检测策略以及动作模式检测策略、对移动轨迹进行判断与预测策略组成的策略组。
根据本发明的一个实施例,所述波频发生器是扬声器,从而在所述步骤(C)中,在执行所述管理策略时以控制所述波频发生器产生的音频频段的方式管理所述环境的状态。
根据本发明的一个实施例,所述波频发生器是灯具,从而在所述步骤(C)中,在执行所述管理策略时以控制所述波频发生器产生光线与否的方式管理所述环境的状态。
根据本发明的一个实施例,所述波频发生器是灯具,从而在所述步骤(C)中,在执行所述管理策略时以控制所述波频发生器产生的光线的亮度、颜色、色 温和明暗变化的方式管理所述环境的状态。
依本发明的另一个方面,本发明进一步提供一检测系统,其包括:
至少一波束发射器,其中所述波束发射器基于一检测策略以向一环境发射至少一检测波束的方式在所述环境形成至少一检测区域;
至少一信号接收器,其中所述信号接收器接收处于所述检测区域的至少一被检测对象响应的所述检测波束;以及
一检测单元,其中所述检测单元被可通信地连接于所述信号接收器,其中所述检测单元根据所述被检测对象响应的所述检测波束检测所述被检测对象在所述环境的状态。
根据本发明的一个实施例,所述检测系统进一步包括一处理单元,其中所述处理单元被可通信地连接于所述检测单元,其中所述处理单元根据所述检测单元检测的所述被检测对象在所述环境的状态确定所述被检测对象在所述环境的行为。
根据本发明的一个实施例,所述检测系统进一步包括一调整单元,其中所述波束发射器被可控制地连接于所述调整单元,以藉由所述调整单元控制所述波束发射器的状态的方式使所述检测区域形成一动态检测区域。
根据本发明的一个实施例,所述检测策略选自:分层检测策略、分区域检测策略和分角度检测策略以及动作模式检测策略、对移动轨迹进行判断与预测策略组成的策略组。
根据本发明的一个实施例,所述波束发射器是微波波束发射器,从而所述波束发射器以向所述环境发射微波检测波束的方式在所述环境形成所述检测区域。
根据本发明的一个实施例,所述被检测对象在所述环境的状态包括:所述被检测对象在所述环境的位置、所述被检测对象在所述环境的姿态、所述被检测对象在所述环境的分布、所述被检测对象在所述环境的动作模式。
根据本发明的一个实施例,所述波束发射器包括一参考板和一辐射源,其中所述参考板进一步包括一板主体和至少一侧翼,每个所述侧翼分别被可调节地设置于所述板主体,所述辐射源被邻近地设置于所述板主体,并且在所述辐射源和所述板主体之间形成一辐射缝隙。
根据本发明的一个实施例,所述波束发射器包括一参考板、一辐射源以及一波束约束元件,所述辐射源被邻近地设置于所述参考板,并且在所述辐射源和所 述参考板之间形成一辐射缝隙,其中所述波束约束元件以所述波束约束元件和所述辐射源相邻的方式被设置于所述参考板,其中所述波束约束元件用于约束所述辐射源发射的所述检测波束的发射角度。
根据本发明的一个实施例,所述波束约束元件呈喇叭状,以使所述波束约束元件形成一约束空间,其中所述辐射源被保持在所述约束空间。
根据本发明的一个实施例,所述波束约束元件的延伸方向和所述参考板的延伸方向具有夹角,并且所述波束约束元件被保持在所述辐射源的一侧。
根据本发明的一个实施例,所述波束约束元件的延伸方向和所述参考板的延伸方向相互垂直。
根据本发明的一个实施例,所述波束发射器包括一屏蔽罩,其中所述屏蔽罩被设置于所述参考板的所述板主体,并且所述屏蔽罩和所述辐射源分别被保持在所述板主体的所述板主体的两侧。
根据本发明的一个实施例,所述波束发射器包括一屏蔽罩,其中所述屏蔽罩被设置于所述参考板,并且所述屏蔽罩和所述辐射源分别被保持在所述参考板的两侧。
依本发明的另一个方面,本发明进一步提供一环境管理系统,其包括:
一处理单元,其中所述处理单元获得至少一被检测对象在一环境的行为;
一策略生成单元,其中所述策略生成单元被可通信地连接于所述处理单元,其中所述策略生成单元根据所述被检测对象的行为生成一管理策略;以及
一执行单元,其中所述执行单元被可通信地连接于所述策略生成单元,其中所述执行单元在执行所述管理策略时以控制至少一波频发生器的工作状态的方式管理所述环境的状态。
附图说明
图1是依本发明的一较佳实施例的一环境管理系统的一个框图示意图。
图2A至图2E是依本发明的上述较佳实施例的所述环境管理系统在被应用于一书房环境的示意图。
图3是依本发明的上述较佳实施例的所述环境管理系统在被应用于所述书房环境时的流程示意图。
图4A至图4I是依本发明的上述较佳实施例的所述环境管理系统在被应用于 一房间环境的示意图。
图5是依本发明的上述较佳实施例的所述环境管理系统在被应用于所述房间环境时的流程示意图。
图6A至图6C是依本发明的上述较佳实施例的所述环境管理系统被应用于一客厅环境的示意图。
图7是依本发明的上述较佳实施例的所述环境管理系统在被应用于所述客厅环境时的流程示意图。
图8A至图8C是依本发明的上述较佳实施例的所述环境管理系统在被应用于一会议室环境的示意图。
图9是依本发明的上述较佳实施例的所述环境管理系统在被应用于所述会议室环境时的流程示意图。
图10是依本发明的上述较佳实施例的所述环境管理系统的环境管理方法的流程示意图。
图11是依本发明的上述较佳实施例的所述环境管理系统的流程示意图。
图12A至图12C是依本发明的上述较佳实施例的所述环境管理系统的一波束发射器的一个实施方式的示意图。
图13A是依本发明的上述较佳实施例的所述环境管理系统的所述波束发射器的一个状态的示意图。
图13B是依本发明的上述较佳实施例的所述环境管理系统的所述波束发射器的另一个状态的示意图。
图13C是依本发明的上述较佳实施例的所述环境管理系统的所述波束发射器的另一个状态的示意图。
图13D是依本发明的上述较佳实施例的所述环境管理系统的所述波束发射器的另一个状态的示意图。
图14A至图14D是依发明的上述较佳实施例的所述环境管理系统的所述波束发射器的另一个实施方式的示意图。
图15A至图15C是依本发明的上述较佳实施例的所述环境管理系统的所述波束发射器的不同状态的示意图。
图16是依本发明的上述较佳实施例的所述环境管理系统的所述波束发射器的另一个实施方式的示意图。
图17是依本发明的上述较佳实施例的所述环境管理系统的所述波束发射器的一个状态的示意图。
图18是依本发明的一较佳实施例的一检测系统的一检测方法的流程示意图。
图19是依本发明的上述较佳实施例的所述检测系统的框图示意图。
图20A至图20C是依本发明的上述较佳实施例的所述检测系统在执行包含分层检测策略的检测策略时形成的检测区域的示意图。
图21是依本发明的上述较佳实施例的所述检测系统在执行包含分区域检测策略的检测策略时形成的检测区域的示意图。
图22A和图22B是依本发明的上述较佳实施例的所述检测系统在执行包含分角度检测策略的检测策略时形成的检测区域的示意图。
具体实施方式
以下描述用于揭露本发明以使本领域技术人员能够实现本发明。以下描述中的优选实施例只作为举例,本领域技术人员可以想到其他显而易见的变型。在以下描述中界定的本发明的基本原理可以应用于其他实施方案、变形方案、改进方案、等同方案以及没有背离本发明的精神和范围的其他技术方案。
本领域技术人员应理解的是,在本发明的揭露中,术语“纵向”、“横向”、“上”、“下”、“前”、“后”、“左”、“右”、“竖直”、“水平”、“顶”、“底”“内”、“外”等指示的方位或位置关系是基于附图所示的方位或位置关系,其仅是为了便于描述本发明和简化描述,而不是指示或暗示所指的装置或元件必须具有特定的方位、以特定的方位构造和操作,因此上述术语不能理解为对本发明的限制。
可以理解的是,术语“一”应理解为“至少一”或“一个或多个”,即在一个实施例中,一个元件的数量可以为一个,而在另外的实施例中,该元件的数量可以为多个,术语“一”不能理解为对数量的限制。
参考本发明的说明书附图之附图1,依本发明的一较佳实施例的一环境管理系统100在接下来的描述中被揭露和被阐述,其中所述环境管理系统100能够根据一管理策略管理一环境200,以通过调整所述环境200的状态的方式使所述环境200的状态与处于所述环境200的使用者的状态相适应。
优选地,所述环境管理系统100能够基于处于所述环境200的使用者的行为 提供所述管理策略,和在执行所述管理策略时调整所述环境200的状态,以使所述环境200的状态与处于所述环境200的使用者的行为相适应。例如,所述环境管理系统100在执行所述管理策略时能够以调整所述环境200的波频的方式调整所述环境200的状态,以使所述环境200的波频与处于所述环境200的使用者的行为相适应。例如,在本发明的所述环境管理系统100的一个具体示例中,所述环境管理系统100在执行所述管理策略时能够以调整所述环境200的音频(音波频段)的方式调整所述环境200的状态,以使所述环境200的音频与处于所述环境200的使用者的行为相适应。而在本发明的所述环境管理系统100的另一个具体示例中,所述环境管理系统100在执行所述管理策略时能够以调整所述环境200的光频(光波频段)的方式调整所述环境200的状态,以使所述环境200的光频与处于所述环境200的使用者的行为相适应。具体地,所述环境管理系统100能够控制被设置于所述环境200的至少一个灯具的工作状态,以通过调整所述灯具产生的光线的亮度、颜色、色温、明暗变化的方式调整所述环境200的光频,从而使所述环境200的光频与处于所述环境200的使用者的行为相适应。更具体地,当所述环境管理系统100获得使用者在所述环境200期望睡眠的行为后,所述环境管理系统100可以控制所述灯具产生的光线的亮度、颜色、色温和明暗变化等方式调整所述环境200的状态,以有利于帮助使用者入眠。
更优选地,所述环境管理系统100能够基于处于所述环境200的使用者的实时行为提供所述管理策略,和在执行所述管理策略时实时地调整所述环境200的状态,以使所述环境200的实时状态与处于所述环境200的使用者的实时行为相适应。例如,所述环境管理系统100在执行所述管理策略时能够以调整所述环境200的实时波频的方式调整所述环境200的状态,以使所述环境200的实时波频与处于所述环境200的使用者的实时行为相适应。
值得一提的是,所述环境管理系统100在执行所述管理策略时以调整所述环境200的波频的方式调整所述环境200的状态,以使所述环境200的波频与处于所述环境200的使用者的行为相适应仅为示例,以用于揭露和阐述本发明的所述环境管理系统100的内容和特征,其并不应被视为对本发明的所述环境管理系统100的内容和范围的限制。例如,在本发明的所述环境管理系统100的其他可能的示例中,根据使用者在所述环境200的行为,所述环境管理系统100还可以控制处于所述环境200的灯具的开关与否,例如,所述环境管理系统100能够根据 使用者在所述环境200的行为预测使用者在所述环境200的移动轨迹,和在获得使用者在所述环境200的移动轨迹后,所述环境管理系统100可以提前使处于使用者的移动轨迹的灯具被打开,以用于照亮使用者的移动轨迹。或者在获得使用者的行为后,所述环境管理系统100能够控制处于所述环境200的空调和/或加湿器开关与否,例如,在获得使用者将要前往所述环境200时,所述环境管理系统100可以提前开启处于所述环境200的空调和/或加湿器,以调整所述环境200的温度和/或湿度。也就是说,所述环境管理系统100能够将处于所述环境200的使用者作为一被检测对象300,并通过获得所述被检测对象300的实时状态的方式获得所述被检测对象300的实时行为,从而在后续,所述环境管理系统100能够基于所述被检测对象300的实时行为提供所述管理策略,和在执行所述管理策略时调整所述环境200的实时状态,以使所述环境200的实时状态与所述被检测对象300的实时行为相适应。例如,所述环境管理系统100可以通过检测所述被检测对象300的动作的变化获得所述被检测对象300的实时行为。另外,所述环境管理系统100可以通过检测所述被检测对象300的动作的变化预测所述被检测对象300的行为,例如,所述环境管理系统100可以通过检测所述被检测对象300的动作的变化预测所述被检测对象300的移动轨迹。换言之,在所述被检测对象300的实时行为改变后,所述环境200的实时状态,例如所述环境200的实时波频也能够随之改变,并且所述环境200的实时波频与所述被检测对象300的实时行为相适应。
参考附图1,所述环境管理系统100包括至少一处理器101、至少一波束发射器102、至少一信号接收器103以及至少一波频发生器104,其中所述波束发射器102、所述信号接收器103和所述波频发生器104分别被可通信地连接于所述处理器101。
值得一提的是,所述波束发射器102、所述信号接收器103和所述波频发生器104被通信地连接于所述处理器101的通信方式在本发明的所述环境管理系统100中不受限制。例如,在本发明的所述环境管理系统100的一些具体的示例中,所述波束发射器102、所述信号接收器103和所述波频发生器104分别以有线连接的方式被可通信地连接于所述处理器101。而在本发明的所述环境管理系统100的另一些具体的示例中,所述波束发射器102、所述信号接收器103和所述波频发生器104分别以无线连接的方式被可通信地连接于所述处理器101。尽管 如此,本领域技术人员应当理解的是,在本发明的所述环境管理系统100的另外一些可能的示例中,所述波束发射器102、所述信号接收器103和所述波频发生器104中的一个可以以有线连接的方式被可通信地连接于所述处理器101,而所述波束发射器102、所述信号接收器103和所述波频发生器104中另外的以无线连接的方式被可通信地连接于所述处理器101。
还值得一提的是,所述波束发射器102和所述信号接收器103可以是分体式结构,也可以是一体式结构。尽管在接下来的描述中,以所述波束发射器102和所述信号接收器103被实施为分体式结构为例来继续揭露和阐述本发明的所述环境管理系统100的内容和特征,但本领域技术人员并不应当将分体式的所述波束发射器102和所述信号接收器103作为对本发明的所述环境管理系统100的范围的限制。
优选地,所述环境管理系统100进一步包括至少一通信接口105,其中所述处理器101、所述波束发射器102、所述信号接收器103和所述波频发生器104分别被可通信地连接于所述通信接口105,以使所述波束发射器102、所述信号接收器103和所述波频发生器104分别被可通信地连接于所述处理器101。值得一提的是,所述通信接口105可以是但不限于无线通信接口。所述通信接口105可以允许更多的所述波束发射器102、所述信号接收器103和所述波频发生器104接入。也就是说,当所述波束发射器102、所述信号接收器103和所述波频发生器104分别被可接入所述通信接口105时,所述波束发射器102、所述信号接收器103和所述波频发生器104就能够被可通信地连接于所述处理器101,通过这样的方式,使用者可以选择所述环境管理系统100的所述波束发射器102、所述信号接收器103和所述波频发生器104的数量和类型。
值得一提的是,所述处理器101的类型在本发明的所述环境管理系统100中不受限制,例如,所述处理器101可以是但不限于中央处理器(CPU)。另外,所述波频发生器104的类型在本发明的所述环境管理系统100中也不受限制,只要所述波频发生器104能够产生波频即可,例如能够产生光波的所述灯具可以被实施为本发明的所述环境管理系统100的所述波频发生器104,能够产生声波的扬声器可以被实施为本发明的所述环境管理系统100的所述波频发生器104。值得一提的是,本发明的所述环境管理系统100以所述灯具和所述扬声器为例来说明所述波频发生器104的内容和特征,但本领域技术人员应当理解的是,其并不 应被视为对本发明的所述环境管理系统100的内容和范围的限制。
另外,继续参考附图1,所述环境管理系统100还包括一电源106,其中所述处理器101、所述波束发射器102、所述信号接收器103、所述波频发生器104和所述通信接口105中的至少一个被电连接于所述电源106,以藉由所述电源106为所述处理器101、所述波束发射器102、所述信号接收器103、所述波频发生器104和所述通信接口105供电。尽管如此,本领域的技术人员应当理解的是,在本发明的所述环境管理系统100的一些具体的示例中,所述通信接口105也可以不需要被电连接于所述电源106,例如所述通信接口105可以被实施为一个WiFi无线接口,其被其他电源供电,例如被市电供电,而非被本发明的所述环境管理系统100的所述电源106供电。值得一提的是,所述环境管理系统100的所述电源106的类型在本发明中不受限制,其只要能够提供电源以使所述处理器101、所述波束发射器102、所述信号接收器103和所述波频发生器104处于工作状态即可。
借此需要说明的是,在本发明的所述环境管理系统100的一些可能的示例中,可以将所述处理器101、所述波束发射器102、所述信号接收器103和所述波频发生器104分别接入到同一个WiFi网络中,以使所述波束发射器102、所述信号接收器103和所述波频发生器104分别被可通信地连接于所述处理器101。当然,将所述处理器101、所述波束发射器102、所述信号接收器103和所述波频发生器104分别接入同一个WiFi网络仅为举例,在本发明的所述环境管理系统100的另外的示例中,也可以将所述处理器101、所述波束发射器102、所述信号接收器103和所述波频发生器104分别接入但不限于同一个局域网、城域网等。
另外,还值得一提的是,在本发明的所述环境管理系统100的一个具体的示例中,所述波束发射器102和所述信号接收器103也可以被实施为一体式结构。
附图2A至图3示出了所述环境管理系统100的一个具体应用示例,其中在这个示例中,以所述环境管理系统100被布置在一书房401为例来进一步阐述本发明的所述环境管理系统100的内容和特征。
参考附图2A至图2E,在本发明的所述环境管理系统100的这个具体应用示例中,至少一个所述波束发射器102和至少一个所述信号接收器103以所述波束发射器102和所述信号接收器103相邻的方式被布置在所述书房401的天花板 4011,至少一个所述波频发生器104可以被布置在所述书房401的书桌4012,其中所述处理器101的位置不受限制,例如所述处理器101可以被布置在所述书房401的墙壁4013。
值得一提的是,在本发明的所述环境管理系统100的另一个具体的应用示例中,所述波束发射器102和所述信号接收器103也可以是一体式结构。在本发明的所述环境管理系统100的这个具体应用示例中,所述波频发生器104可以被实施为扬声器。本领域技术人员应当理解的是,在本发明的所述环境管理系统100的其他具体应用示例中,所述波频发生器104也可以被实施为被设置在所述书房401的所述天花板4011的灯具。
当然,本领域技术人员应当理解的是,本发明的所述环境管理系统100的所述处理器101、所述波束发射器102、所述信号接收器103和所述波频发生器104也可以被布置在所述书房401的其他位置。换言之,在附图2A至图2E示出的所述环境管理系统100的所述处理器101、所述波束发射器102、所述信号接收器103和所述波频发生器104被布置的位置仅为举例,其并不应被视为对本发明的所述环境管理系统100的内容和范围的限制。
优选地,所述波束发射器102是小型化的波束发射器,其能够产生微波,以用于形成所述检测波束。也就是说,所述波束发射器102能够以发射微波的方式产生所述检测波束。在本发明的所述环境管理系统100的另一个具体的应用示例中,所述波束发射器102还可以产生超声波,以用于形成所述检测波束。优选地,所述波束发射器102可以被实施为但不限于增益微波天线,以在后续能够准确地获得所述被检测对象300的实时行为。也就是说,在后续,当所述被检测对象300在所述书房401内产生动作时,所述环境管理系统100也能够获得所述被检测对象300的动作。优选地,当所述被检测对象300在所述书房401内产生动作时,所述环境管理系统100能够实时地获得所述被检测对象300的动作。
具体地说,参考附图2B,所述波束发射器102能够向所述书房401形成的所述环境200发射所述检测波束,以藉由所述检测波束在所述书房401内形成至少一检测区域1021。例如,所述波束发射器102能够向所述书房401的所述书桌4012所在的位置发射所述检测波束,以在所述书桌4012所在的位置形成所述检测区域1021。在本发明的所述环境管理系统100的一个具体应用示例中,所述波束发射器102可以直接向所述书房401的所述书桌4012所在的位置发射所 述检测波束而在所述书桌4012所在的位置形成所述检测区域1021,参考附图2B。在本发明的所述环境管理系统100的另一个具体应用示例中,参考附图2C和图2D,所述波束发射器102通过向所述书房401发射所述检测波束的方式在所述书房401形成的所述检测区域1021是动态检测区域1021,例如,所述波束发射器102可以先向所述书房401的其他位置发射所述检测波束而形成所述检测区域1021,然后随着所述波束发射器102发射的所述检测波束的角度的改变而使所述检测区域1021在所述书房401内移动,例如,所述波束发射器102形成的所述检测区域1021可以移动到所述书桌4012所在的位置,参考附图2D。
若有所述被检测对象300处于所述检测区域1021则所述被检测对象300能够响应所述检测波束,例如所述被检测对象300能够以反射所述检测波束的方式响应所述检测波束。例如,在附图2B示出的这个应用示例中,在使用者利用所述书房401的所述书桌4012进行学习或者办公时,所述波束发射器102能够向所述书房401的所述书桌4012所在的位置发射所述检测波束而在所述书桌4012所在的位置形成所述检测区域1021,此时,利用所述书桌4012进行学习或者办公的使用者形成所述被检测对象300,从而所述被检测对象300处于所述检测区域1021。当所述波束发射器102产生的所述检测波束辐射至所述被检测对象300时,所述被检测对象300能够以反射所述检测波束的方式响应所述检测波束。可以理解的是,当所述波束发射器102发射的所述检测波束辐射至所述被检测对象300时,所述被检测对象300会以向四面八方反射所述检测波束的方式响应所述检测波束,其中一部分所述检测波束会形成回波。
所述信号接收器103能够接收被处于所述检测区域1021的所述被检测对象300响应的所述检测波束,即,当所述被检测对象300以反射所述检测波束的方式响应所述检测波束时会形成回波,所述信号接收器103能够以接收回波的方式接收被处于所述检测区域1021的所述被检测对象300响应的所述检测波束。
所述处理器101能够根据所述信号接收器103接收的被处于所述检测区域1021的所述被检测对象300响应的所述检测波束获得处于所述书房401的所述被检测对象300的位置和/或姿态和/或动作模式,并进一步根据所述被检测对象300的位置和/或姿态和/或动作模式获得所述被检测对象300在所述书房401的行为,例如,所述处理器101能够根据所述信号接收器103接收的被处于所述检测区域1021的所述被检测对象300响应的所述检测波束获得利用所述书房401 的所述书桌4012进行学习或者办公的行为。在后续,所述处理器101能够根据所述被检测对象300的行为生成所述管理策略,和在所述处理器101执行所述管理策略时调整所述波频发生器104的工作状态,例如所述处理器101能够控制所述波频发生器104处于开启状态或者关闭状态,以及在所述波频发生器104处于开启状态时,所述处理器101能够进一步控制所述波频发生器104产生的波频的频率,以藉由所述波频发生器104以改变所述书房401形成的所述环境200的波频的频段的方式调整所述书房401的状态,从而使所述书房401的状态与使用者的状态相适应。也就是说,所述处理器101能够控制被实施为扬声器的所述波频发生器104产生的声波的波频。参考附图2E,当所述环境管理系统100获得所述被检测对象300在所述书房401进行工作的行为后,所述环境管理系统100能够控制所述波频发生器104发出合适的音乐,改变所述书房401形成的所述环境200的状态,并使所述环境200的状态与所述被检测对象300的行为相适应,从而有利于提高使用者在所述书房401的工作效率。
换言之,所述处理器101被配置为:
获取处于所述书房401的所述被检测对象300的行为;
根据所述被检测对象300的行为生成所述管理策略;以及
执行所述管理策略,以管理所述书房401形成的所述环境200,从而使所述环境200的状态适应所述被检测对象300的状态。
可以理解的是,所述管理策略的内容是指:在什么时间和以什么样的方式使所述波频发生器104处于什么样的工作状态。也就是说,在本发明的所述环境管理系统100中,通过获得处于所述环境200的所述被检测对象300的行为的方式生成所述管理策略,以在后续根据所述管理策略控制所述波频发生器104的工作状态。换言之,所述波频发生器104在所述环境200中的工作状态和处于所述环境200的所述被检测对象300的行为相关。或者说,不同内容的所述管理策略对应不同的所述环境200和不同的所述被检测对象300以及所述被检测对象300的行为,即,所述环境管理系统100能够通过调整所述环境200的方式使所述环境200的状态满足所述被检测对象300的个性化的需求。
进一步地,在所述获取处于所述书房401的所述被检测对象300的行为的步骤中包括步骤:
向所述书房401发出所述检测波束,以藉由所述检测波束在所述被检测对象 300所在的位置形成所述检测区域1021;
接收被处于所述检测区域1021的所述被检测对象300响应的所述检测波束;
根据被接收的所述检测波束获得所述被检测对象300在所述书房401的位置和/或姿态和/或动作模式;以及
根据所述被检测对象300在所述书房401的位置和/或姿态和/或动作模式确定所述被检测对象300在所述书房401的行为。
进一步地,在所述执行所述管理策略以管理所述书房401形成的所述环境200的步骤中包括步骤:
控制所述波频发生器104的工作状态,以调整所述环境200的状态,从而使所述环境200的状态适应所述被检测对象300的状态。
附图4A至图5示出了所述环境管理系统100的另一个具体应用示例,其中在这个示例中,以所述环境管理系统100被布置在一房间402内为例进一步阐述本发明的所述环境管理系统100的内容和特征。
参考附图4A,在本发明的所述环境管理系统100的这个具体的示例中,至少一个所述波束发射器102和至少一个所述信号接收器103以所述波束发射器102和所述信号接收器103相邻的方式被布置在所述房间402的一天花板4021和一墙体4022,至少一个所述波频发生器104可以被布置在所述房间402的所述天花板4021,其中所述处理器101的位置不受限制,例如所述处理器101可以被布置在所述房间402的所述墙体4022。在本发明的所述环境管理系统100的这个具体应用示例中,所述波频发生器104可以被实施为扬声器。当然,本领域技术人员应当理解的是,本发明的所述环境管理系统100的所述处理器101、所述波束发射器102、所述信号接收器103和所述波频发生器104也可以被布置在所述房间402的其他位置。换言之,在附图4A中示出的所述环境管理系统100的所述处理器101、所述波束发射器102、所述信号接收器103和所述波频发生器104被布置的位置仅为举例,其并不应被视为对本发明的所述环境管理系统100的内容和范围的限制。
所述波束发射器102能够向所述房间402形成的所述环境200发射所述检测波束,以藉由所述检测波束在所述房间402内形成所述检测区域1021。例如,被布置在所述房间402的所述天花板4021的所述波束发射器102能够向所述房间402的梳妆台4024所在的位置发射所述检测波束,以在所述房间402的所述 梳妆台4024所在的位置形成所述检测区域1021,参考附图4B;或者被布置在所述房间402的所述天花板4021的所述波束发射器102能够向所述房间402的床体4025所在的位置发射所述检测波束,以在所述房间402的所述床体4025所在的位置形成所述检测区域1021,参考附图4C;或者被布置在所述房间402的所述天花板4021的所述波束发射器102能够向所述房间402的所述梳妆台4024和所述床体4025同时发射所述检测波束,以在所述房间402的所述梳妆台4024和所述床体4025所在的位置分别形成所述检测区域1021,参考附图4D;或者被布置在所述房间402的所述天花板4021的所述波束发射器102能够向所述房间402的所述梳妆台4024发射所述检测波束,以在所述房间402的所述梳妆台4024所在的位置形成所述检测区域1021,并且所述波束发射器102发射的所述检测波束的角度能够被调节,以在后续所述波束发射器102发射的所述检测波束形成的所述检测区域1021能够自所述房间402的所述梳妆台4024所在的位置逐渐地移动到所述床体4025所在的位置,从而使得所述检测区域1021形成动态检测区域1021,参考附图4E。换言之,所述环境管理系统100能够对所述房间402形成的所述环境200进行分区域检测。也就是说,所述环境管理系统100的所述波束发射器能够在所述房间402的各个位置分别同时或者按照先后顺序形成所述检测区域1021,以单独地对所述房间402的各个位置进行检测,以获得所述被检测对象300在所述房间402的各个位置的位置和/或姿态和/或动作模式。
参考附图4F,当所述环境管理系统100以被布置在所述房间402的所述天花板4021的所述波束发射器102向所述房间402的所述床体4025发射所述检测波束的方式检测到有所述被检测对象300在所述床体4025上或者在所述床体4025附近时,被布置在所述房间402的所述墙体4022的所述波束发射器102能够进一步向所述房间402的所述床体4025发射所述检测波束,以对所述房间402形成的所述环境200进行分层检测,并在后续,所述处理器101能够根据被处于所述房间402的所述床体4025上或者处于所述床体4025附近的所述被检测对象300响应的所述检测波束获得所述被检测对象300的行为。例如,在附图4F示出的这个具体的示例中,所述波束发射器102能够向所述房间402形成的所述环境200内发射三层所述检测波束而形成沿着所述房间402的高度方向布置的多个所述检测区域1021来分别对所述房间402的不同层的情况分别进行检测,通过这样的方式,在后续能够判断所述被检测对象300在所述床体4025上或者在所 述床体4025的行为,例如能够判断所述被检测对象300在所述床体4025的附近是站着、还是在所述床体4025上坐着或者躺着。当然,本领域技术人员应当理解的是,在其他的示例中,所述波束发射器102也能够向所述房间402形成的所述环境200内发射两层或者四层以上的所述检测波束来分别对不同层的情况进行检测。本领域技术人员应当理解的是,本发明的所述环境管理系统100在检测所述被检测对象300在所述环境200的行为时,不需要通过拍摄所述环境200和所述被检测对象300的图像,而是通过向所述环境200和所述被检测对象300发射所述检测波束的方式进行的,从而避免了涉及到所述被检测对象300的隐私的内容泄露。
继续参考附图4F,将所述房间402的每层所述检测区域1021自下而上依次定义为一第一层检测区域1022、一第二层检测区域1023以及一第三层检测区域1024,其中形成所述第一层检测区域1022的所述检测波束能够被躺在所述床体4025上的所述被检测对象300响应,而形成所述第二层检测区域1023和所述第三层检测区域1024的所述检测波束则无法被所述被检测对象300响应,若在后续,所述信号接收器103仅接收到了被所述被检测对象300响应的形成第一层检测区域1022的所述检测波束,则在后续,所述处理器101能够获得所述被检测对象300是处于躺着的状态,从而得到所述被检测对象300在所述房间402内的行为。
值得一提的是,在本发明的所述环境管理系统100的其他的示例中,若所述信号接收器103接收到了被所述被检测对象300响应的形成所述第一层检测区域1022和所述第二层检测区域1023的所述检测波束,则在后续,所述处理器101能够获得所述被检测对象300是处于坐着的状态,从而在后续所述被检测对象300在所述检测区域1021内的行为能够被获得;或者若所述信号接收器103接收到了被所述被检测对象300响应的形成所述第一层检测区域1022、所述第二层检测区域1023和所述第三层检测区域1024的所述检测波束,则在后续,所述处理器101能够获得所述被检测对象300是处于站着的状态。
所述处理器101能够根据所述信号接收器103接收的被处于所述检测区域1021的所述被检测对象300响应的所述检测波束获得所述房间402的所述被检测对象300的行为,例如,所述处理器101能够根据所述信号接收器103接收的被处于所述检测区域1021的所述被检测对象300响应的所述检测波束获得躺在 所述床体4025上的行为。在后续,所述处理器101能够根据所述被检测对象300的行为生成所述管理策略,和在所述处理器101执行所述管理策略时调整所述波频发生器104的状态,以藉由所述波频发生器104以改变所述房间402的形成的所述环境200的波频的频段的方式调整所述房间402的状态,从而使得所述房间402的状态与使用者的状态相适应。例如,当所述环境管理系统100获得所述被检测对象300躺在所述床体4025上的行为后,能够判断所述被检测对象300准备睡眠,此时,所述环境管理系统100能够根据所述被检测对象300的行为生成所述管理策略,其中所述管理策略的内容可以是控制所述波频发生器104产生的波频频段,以在所述环境管理系统100在执行所述管理策略时使所述波频发生器104产生的波频频段与所述被检测对象300的脑电波相匹配,并帮助所述被检测对象300入眠。
当然,本领域技术人员应当理解的是,在附图4G至图4I示出的所述环境管理系统100的这个具体的应用中,所述波频发生器104被实施为所述灯具,其中所述环境管理系统100以控制所述灯具的工作状态的方式调整所述房间402形成的所述环境200的状态。例如,当所述环境管理系统100检测所述被检测对象300趟在所述床体4025上期望睡眠时,所述环境管理系统100能够使被实施为所述灯具的所述波频发生器104产生的光线的亮度降低,参考附图4G,或者所述环境管理系统100能够使被实施为所述灯具的所述波频发生器104产生的光线的色温改变,参考附图4H,或者所述环境管理系统100能够使被实施为所述灯具的所述波频发生器104产生的光线具有明暗变化,参考附图4I,以使所述房间402形成的所述环境200的状态被改变,从而帮助使用者入眠。换言之,所述处理器101被配置为:
获取处于所述房间402的所述被检测对象300的行为;
根据所述被检测对象300的行为生成所述管理策略;以及
执行所述管理策略,以管理所述房间402形成的所述环境200,从而使所述环境200的状态适应所述被检测对象300的状态。
附图6A至图7示出了所述环境管理系统100的另一个具体应用示例,其中在这个示例中,以所述环境管理系统100被布置在一客厅403内为例进一步阐述本发明的所述环境管理系统100的内容和特征。
参考附图6A,在本发明的所述环境管理系统100的这个具体的示例中,至 少一个所述波束发射器102和至少一个所述信号接收器103以所述波束发射器102和所述信号接收器103相邻的方式被布置在所述客厅403的一天花板4031和一墙体4032,至少一个所述波频发生器104可以被布置在所述客厅403的所述天花板4031,其中所述处理器101的位置不受限制,例如所述处理器101可以被布置在所述客厅403的所述墙体4032。在这个实施例中,所述波频发生器104可以被实施为所述灯具。当然,本领域技术人员应当理解的是,本发明的所述环境管理系统100的所述处理器101、所述波束发射器102、所述信号接收器103和所述波频发生器104也可以被布置在所述客厅403的其他位置。换言之,在附图6A中示出的所述环境管理系统100的所述处理器101、所述波束发射器102、所述信号接收器103和所述波频发生器104被布置的位置仅为举例,其并不应被视为对本发明的所述环境管理系统100的内容和范围的限制。
所述波束发射器102能够向所述客厅403形成的所述环境200发射所述检测波束,以藉由所述检测波束在所述客厅403内形成所述检测区域1021。例如,被布置在所述客厅403的所述天花板4031的所述波束发射器102能够向所述客厅403的沙发4033所在的位置发射所述检测波束,以在所述客厅403的所述沙发4033所在的位置形成所述检测区域1021,参考附图6B。若有所述被检测对象300处于所述检测区域1021,参考附图6C,被布置在所述客厅403的所述墙体4032的所述波束发射器102能够进一步向所述沙发4033所在的位置发射所述检测波束,以对所述客厅403形成的所述环境200进行分层检测,并且在后续,所述处理器101能够根据被处于所述客厅403的所述沙发4033上的所述被检测对象300响应的所述检测波束获得所述被检测对象300的行为。例如,在附图6C示出的这个具体的示例中,所述波束发射器102能够向所述客厅403形成的所述环境200内发射三层所述检测区域1021来分别对所述客厅403的不同高度的情况分别进行检测,通过这样的方式,在后续能够判断所述被检测对象300在所述沙发4033所在的位置的行为,例如能够判断所述被检测对象300在所述沙发300所在的位置是站着还是坐着。当然,本领域技术人员应当理解的是,在其他的示例中,所述波束发射器102也能够向所述客厅403形成的所述环境200内发射两层或者四层以上的所述检测波束来分别对不同层的情况进行检测。
继续参考附图6C,其中形成所述第一层检测区域1022的所述检测波束和形成所述第二层检测区域1023的所述检测波束能够被坐在所述沙发4033上的所述 被检测对象300响应,而形成所述第三层检测区域1024的所述检测波束无法被所述被检测对象300响应,若在后续,所述信号接收器103仅接收到了被所述被检测对象300响应的形成所述第一层检测区域1022的所述检测波束和形成所述第二层检测区域1023的所述检测波束,则在后续,所述处理器101能够获得所述被检测对象300是坐在所述沙发4033上的,从而得到所述被检测对象300在所述检测区域1021内的行为。
所述处理器101能够根据所述信号接收器103接收的被处于所述检测区域1021的所述被检测对象300响应的所述检测波束获得的所述检测区域1021的所述被检测对象300的行为,例如,所述处理器101能够根据所述信号接收器103接收的被处于所述检测区域1021的所述被检测对象300响应的所述检测波束获得坐在所述沙发4033上的行为。在后续,所述处理器101能够根据所述被检测对象300的行为生成所述管理策略,和在所述处理器101执行所述管理策略时调整所述波频发生器104的波频的频段的方式调整所述客厅403的状态,从而使得所述被客厅403的状态与使用者的状态相适应。例如,当所述环境管理系统100获得所述被检测对象300坐在所述沙发4033上的行为后,能够判断所述被检测对象300是在观察电视节目,此时,所述环境管理系统100能够根据所述被检测对象300的行为生成所述管理策略,并在后续根据所述管理策略的内容控制所述波频发生器104的工作状态。
换言之,所述处理器101被配置为:
获得处于所述客厅403的所述检测区域1021的所述被检测对象300的行为;
根据所述被检测对象300的行为生成所述管理策略;以及
执行所述管理策略,以管理所述客厅403形成的所述环境200,从而使所述环境200的状态适应所述被检测对象300的状态。
附图8A至图9示出了所述环境管理系统100的另一个具体应用示例,其中在这个具体应用示例中,以所述环境管理系统100被布置在一会议室404内为例进一步阐述本发明的所述环境管理系统100的内容和特征。
参考附图8A,在本发明的所述环境管理系统100的这个具体的示例中,至少一个所述波束发射器102和至少一个所述信号接收器103以所述波束发射器102和所述信号接收器103相邻的方式被布置在所述会议室404的一天花板4041和一墙体4042,至少被一个所述波频发生器104可以被布置在所述会议室404 的所述天花板4041,其中所述处理器101的位置不受限制,例如,所述处理器101可以被布置在所述会议室404的所述墙体4042。在本发明的所述环境管理系统100的这个具体的应用示例中,所述波频发生器104可以被实施为所述灯具。当然,本领域的技术人员应当理解的是,本发明的所述环境管理系统100的所述处理器101、所述波束发射器102、所述信号接收器103和所述波频发生器104也可以被布置在所述会议室404的其他位置。换言之,在附图8A中示出的所述环境管理系统100的所述处理器101、所述波束发射器102、所述信号接收器103和所述波频发生器104被布置的位置仅为距离,其并不应被视为对本发明的所述环境管理系统100的内容和范围的限制。
所述波束发射器102能够向所述会议室404形成的所述环境200发射所述检测波束,以藉由所述检测波束在所述会议室404内形成所述检测区域1021。例如,被布置在所述会议室404的所述波束发射器102能够向所述会议室404的一会议桌4043所在的位置发射所述检测波束,以在所述会议室404的所述会议桌4043所在的位置形成所述检测区域1021,参考附图8B。所有的所述被检测对象300均处于所述检测区域1021,参考附图8C,被布置在所述会议室404的所述墙体4042的所述波束发射器102能够进一步向所述会议桌4043所在的位置发射所述检测波束,以对所述会议室404形成的所述环境200按照高度进行分层检测,并且在后续,所述处理器101能够根据处于所述会议室404的所述会议桌4043附近的所述被检测对象300响应的所述检测波束获得所述被检测对象300的行为。例如,在附图8C示出的这个具体的示例中,所述波束发射器102能够向所述会议室404形成的所述环境200内发射三层所述检测波束以形成所述第一层检测区域1022、所述第二层检测区域1023和所述第二层检测区域1024来分别对所述会议室404的不同高度层的情况分别进行检测,通过这样的方式,在后续能够判断所述被检测对象300在所述会议室404的所述会议桌4043所在的位置的行为,例如当检测到处于所述会议室404的所有的所述被检测对象300均围绕在所述会议桌4043而坐着时,可以判断所有的所述被检测对象300正在开会或者讨论问题,当检测到处于所述会议室404的所有的所述被检测对象300中的一些坐着,而另一些站着,或者所有的所述被检测对象300中的一部分远离所述会议桌4043时,可以判断所述被检测对象300没有处于开会状态或者没有处于讨论问题的状态。也就是说,所述环境管理系统100还可以获得所有的所述被检测对 象300在所述环境200的空间分布。
当所述处理器101得出上述判断结果后,可以根据所述被检测对象300在所述会议室404的行为生成所述管理策略,和在所述处理器101执行所述管理策略时调整所述波频发生器104的波频的波段,以这样的方式,使所述会议室404的状态与所述被检测对象300的状态相适应。
换言之,所述处理器101被配置为:
获得处于所述会议室404的所述检测区域1021的所述被检测对象300的行为;
根据所述被检测对象300的行为生成所述管理策略;以及
执行所述管理策略,以管理所述会议室404形成的所述环境200,从而使所述环境200的状态适应所述被检测对象300的状态。
依本发明的另一个方面,参考附图10,本发明进一步提供一环境管理方法1000,其中所述环境管理方法1000包括如下步骤:
步骤1001,(A)获得处于一环境200的至少一被检测对象300的行为;
步骤1002,(B)根据所述被检测对象300的行为生成一管理策略;以及
步骤1003,(C)执行所述管理策略,以管理所述环境200。
例如,在附图2A至图3示出的所述环境管理系统100的这个具体的应用示例中,可以首先获得使用者在所述书房401内的行为,然后根据使用者在所述书房401的行为生成所述管理策略,并且在执行所述管理策略时调整所述书房401的状态,以使所述书房401的实时状态与使用者的实时行为相适应。在附图4A至图5示出的所述环境管理系统100的这个具体的应用示例中,可以首先获得使用者在所述房间402内的行为,然后根据使用者的行为生成所述管理策略,并且在执行所述管理策略时调整所述房间402的状态,以使所述房间402的实时状态与使用者的实时行为相适应。在附图6A至图7示出的所述环境管理系统100的这个具体的应用示例中,可以首先获得使用者在所述客厅403内的行为,然后根据使用者的行为生成所述管理策略,并且在执行所述管理策略时调整所述客厅403的状态,以使所述客厅403的实时状态与使用者的实时行为相适应。在附图8A至图9示出的所述环境管理系统100的这个具体的示例中,可以首先获得使用者在所述会议室404内的行为,然后根据使用者的行为生成所述管理策略,并且在执行所述管理策略时调整所述会议室404的状态,以使所述会议室404的实 时状态与使用者的实时行为相适应。
优选地,在所述环境管理方法1000的所述步骤(C)中,在执行所述管理策略时以调整所述环境200的波频的方式管理所述环境200。例如,所述处理器101在执行所述管理策略时可以通过所述波频发生器104产生不同频段的波频的方向向所述书房401、所述房间402、所述客厅403和所述会议室404内发射波频,从而调整所述书房401、所述房间402、所述客厅403和所述会议室404形成的所述环境200的波频的频段,通过这样的方式,调整所述环境200的状态,并使所述环境200的实时状态与使用者的实时行为相适应。
进一步地,在所述步骤(A)中进一步包括步骤:
(A.1)检测处于所述环境200的所述被检测对象300的位置和/或姿态和/或动作模式;和
(A.2)根据所述被检测对象300在所述环境200的位置和/或姿态和/或动作模式确定所述被检测对象300在所述环境200的行为。
本领域技术人员可以理解的是,当所述波束发射器102发射的所述检测波束辐射至所述被检测对象300时,所述被检测对象300的不同部位响应所述检测波束的时间不同,并且在后续,所述信号接收器103接收到的被所述被检测对象300的不同部位响应的所述检测波束的时间也不相同,根据这样的原理,所述处理器101能够检测处于所述检测区域1021的所述被检测对象300的位置和/或姿态和/或动作模式,并且一旦所述被检测对象300在所述检测区域1021的位置和/或姿态和/或动作模式被获取,则所述被检测对象300在所述检测区域1021的行为也能够被确定。
更进一步地,在所述步骤(A.1)中进一步包括步骤:
(A.1.1)以至少一波束发射器102基于一检测策略向所述环境200发出一检测波束的方式藉由所述检测波束在所述环境200形成所述检测区域1021;
(A.1.2)接收被处于所述检测区域1021的所述被检测对象300响应的所述检测波束;以及
(A.1.3)根据被所述被检测对象300响应的所述检测波束检测处于所述检测区域121的所述被检测对象300的位置和/或姿态和/或动作模式。
值得一提的是,在所述步骤(A.1.1)中的所述检测策略选自:分层检测策略、分区域检测策略、分角度检测策略、动作模式检测策略、对移动轨迹进行判断与 预测策略组成的策略组。也就是说,在所述步骤(A.1.1)中,所述波束发射器102以何种方式向所述环境200发射所述检测波束。例如在一些实施例中,所述波束发射器102以分层检测的方式向所述环境200发射所述检测波束,在另一些实施例中,所述波束发射器102以分区域检测的方式向所述环境200发射所述检测波束,在另一些实施例中,所述波束发射器102以分角度检测的方式向所述环境200发射所述检测波束。
依本发明的另一个方面,参考附图11,本发明的所述环境管理系统100进一步包括一处理单元10、一策略生成单元20以及一执行单元30,其中所述处理单元10、所述策略生成单元20和所述执行单元30分别相互可通信地连接,其中所述处理单元10用于获得处于所述环境200的至少一个所述被检测对象300的行为,所述策略生成单元20根据所述处理单元10获得的处于所述环境200的所述被检测对象300的行为生成所述管理策略,所述执行单元30在执行所述管理策略时以调整所述环境200的状态的方式管理所述环境200。
优选地,在本发明的所述环境管理系统100的这个具体的示例中,所述执行单元30在执行所述管理策略时以外接所述波频发生器104的方式通过调整所述波频发生器104发出的波频的频段来改变所述环境200的实时状态,从而管理所述环境200。也就是说,所述执行单元30能够控制所述波频发生器104的工作状态。
进一步参考附图11,所述环境管理系统100进一步包括一检测单元40,其中所述检测单元40被可通信地连接于所述处理单元10,其中所述检测单元40检测处于所述环境200的所述被检测对象300的位置和/或姿态和/或动作模式,以在后续,所述处理单元10能够根据所述检测单元40获得的所述被检测对象300在所述环境200的位置和/或姿态和/或动作模式的方式获得所述被检测对象300在所述环境200的行为。
更进一步地,所述环境管理系统100进一步包括一接收单元50,其中所述检测单元40被可通信地连接于所述接收单元50,所述接收单元50被可通信地连接于所述信号接收器103,其中所述接收单元50以外接所述信号接收器103的方式从所述信号接收器103获得所述信号接收器103接收的被处于所述环境200的所述被检测对象300响应的所述检测波束,并且在后续,所述检测单元40能够从所述接收单元50接收到所述接收单元50获得的所述检测波束,并根据所述 检测波束获取所述被检测对象300在所述环境200的位置和/或姿态和/或动作模式。
更进一步地,所述环境管理系统100进一步包括一调整单元60,其中至少一个所述波束发射器102能够被可调节地连接于所述调整单元60,以使所述调整单元60用于调整所述波束发射器102发出的所述检测波束的角度,从而使所述波束发射器102发出的所述检测波束形成的所述检测区域1021为动态检测区域1021。
在本发明的所述环境管理系统100的一个示例中,所述调整单元60能够控制所述波束发射器102的整体的位置被调整,例如,所述调整单元60能够控制所述波束发射器102相对于一安装位置(例如所述书房401的所述天花板4011)的角度被调整。而在本发明的所述环境管理系统100的另一个示例中,所述调整单元60能够控制所述波束发射器102的一部分结构被调整,以改变所述波束发射器102发出的所述检测波束的角度。
具体地说,附图12A至图13D示出了所述波束发射器102的一个具体示例,其中所述波束发射器102以向所述环境200发射微波的方式在所述环境200形成所述检测区域1021,以供检测所述被检测对象300在所述环境200的位置和/或姿态和/或动作模式。具体地说,所述波束发射器102包括一参考板11和一辐射源12,所述参考板11进一步包括一板主体111和至少一侧翼112,其中每个所述侧翼112分别被设置于所述板主体111,并且每个所述侧翼112分别与所述板主体111具有预设夹角,所述辐射源12被邻近地设置于所述板主体111,以在所述辐射源12和所述板主体111之间形成一辐射缝隙120。所述波束发射器102通过提供每个所述侧翼112的方式能够约束所述辐射源12产生的所述检测波束的发出角度,进而控制所述检测波束的波束方向。
值得一提的是,尽管在附图12A至图13D示出的所述波束发射器102的这个具体的示例中以所述波束发射器102包括两个所述侧翼112为例来揭露和阐述本发明的所述波束发射器102的内容和特征,在本发明的所述波束发射器102的其他可能的示例中,所述波束发射器102的所述侧翼112的数量也可以一个或者三个以上。
优选地,每个所述侧翼112分别被可调节地设置于所述板主体111的侧部,其中所述板主体111和每个所述侧翼112分别具有一参考面110,所述辐射源12 被邻近地设置于所述参考板11的所述板主体111,并且所述辐射源12的延伸方向与所述参考板11的所述板主体111的所述参考面110所在的平面平行,通过调整每个所述侧翼112与所述板主体111的角度的方式,能够控制所述检测波束的发出角度,进而控制所述检测波束的波束方向和控制形成在所述环境200的所述检测区域1021的位置。优选地,在附图12A示出的所述波束发射器102的这个具体的示例中,所述侧翼112的数量是两个,并且两个所述侧翼112以两个所述侧翼112相互对称的方式分别被可调节地设置于所述板主体111的侧部,从而两个所述侧翼112相对于所述板主体111的角度均可以被调节。进一步地,所述波束发射器102的所述侧翼112被可控制地连接于所述调整单元60,其中所述调整单元60能够调整所述侧翼112相对于所述板主体111的角度,以调整所述波束发射器102发射的所述检测波束的发出角度,从而实现对所述环境200的分角度检测、分区域检测和分层检测。
值得一提的是,在本发明的所述波束发射器102的一个具体的示例中,所述波束发射器102的两个所述侧翼112相对于所述板主体111的角度可以分别被调节,即在调节一个所述侧翼112相对于所述板主体111的角度时,另一个所述侧翼112相对于所述板主体111的角度可以不变。而在本发明的所述波束发射器102的另一个具体的示例中,所述波束发射器102的两个所述侧翼112相对于所述板主体111的角度可以被同步地且同幅度地调节。
值得一提的是,所述波束发射器102的所述侧翼112相对于所述板主体111的角度可调节的方式不受限制,例如在附图12A至图12C示出的所述波束发射器102的具体示例中,所述侧翼112以被可转动的方式被可调节地设置于所述板主体111的侧部,而在所述波束发射器102的另外的一些具体的示例中,所述侧翼112以所述板主体111的一部分可变形的方式被可调节地设置于所述板主体111的侧部。进一步参考附图12A至图12C,设所述辐射源12的最外侧到所述参考板11的所述侧翼112和所述板主体111的连接位置的直线距离参数为L,设所述辐射源12发出的所述检测波束的波长参数为λ,其中参数L的取值范围为:L≤λ/16。设所述侧翼112与所述板主体111的连接位置到所述侧翼112的最外侧的参数为l,其中参数l的取值范围为:l≥λ/4。
继续参考附图12A至图12C,所述波束发射器102进一步包括一屏蔽罩13,其中所述屏蔽罩13被设置于所述参考板11的所述板主体111的背侧,以使所述 屏蔽罩13和所述辐射源12分别被保持在所述参考板11的所述板主体111的两侧,其中所述屏蔽罩13具有屏蔽作用,以增强所述波束发射器102发出的所述检测波束的强度,从而在后续更准确地获得所述被检测对象300的动作。另外,所述屏蔽罩13还具有防尘和防潮的作用。优选地,所述屏蔽罩13的内部空间的高度尺寸大于1/32倍的波长,通过这样的方式,所述波束发射器102能够避免自身产生的副波对主波产生干扰,进而保证所述波束发射器102的稳定性和可靠性。附图13A示出了所述波束发射器102的一个工作状态,此时,所述波束发射器102的所述参考板11的两个所述侧翼112和所述板主体111均呈展开状态。附图13B示出了所述波束发射器102的另一个工作状态,此时,所述波束发射器102的位于附图左侧的所述侧翼112相对于所述板主体111的角度被调节,从而所述波束发射器102发射的所述检测波束的角度能够被调节,从而使所述检测波束形成的所述检测区域1021的位置也随之被调节。附图13C示出了所述波束发射器102的另一个工作状态,此时,所述波束发射器102的位于附图右侧的所述侧翼112相对于所述板主体111的角度被调节,从而所述波束发射器102发射的所述检测波束的角度能够被调节,从而使所述检测波束形成的所述检测区域1021的位置也随之被调节。附图13D示出了所述波束发射器102的另一个工作状态,此时,所述波束发射器102的两个所述侧翼112相对于所述板主体111的角度均被调节,从而使所述波束发射器102发射的所述检测波束的角度能够被调节,从而使所述检测波束形成的所述检测区域1021的位置也随之被调节。当然,本领域技术人员应当理解的是,随着所述侧翼112相对于所述板主体111的角度的大小被调节,所述检测区域1021移动的位置和所述检测区域1021的尺寸均可以被控制。
附图14A至图14D示出了所述波束发射器102的一个变形实施方式,与附图12A至图12C示出的所述波束发射器102不同的是,在附图14A至图14D示出的所述波束发射器102的这个变形实施方式中,所述参考板11可以仅包括一个所述板主体111,即,所述参考板11不可调节,并且所述辐射源12的延伸方向与所述板主体111的所述参考面110的延伸方向相互垂直。另外,所述波束发射器102进一步包括一波束约束元件14,其中所述波束约束元件14具有一约束空间140,其中所述辐射源12被保持在所述波束约束元件14的所述约束空间140,从而所述辐射源12和所述板主体111相互配合而在所述波束约束元件14 的所述约束空间140产生的微波能够自所述波束约束元件14的所述约束空间140的开口被朝向外界辐射,其中所述波束约束元件14约束被辐射的所述检测波束的发射角度,进而限制所述检测波束在所述环境200形成的所述检测区域1021的位置和形状。优选地,所述波束约束元件14呈喇叭状。附图15A至图15C示出了附图14A至图14D的所述波束发射器102的这个实施方式产生的所述检测波束的类型。
附图16示出了所述波束发射器102的另一个变形实施方式,与附图14A至图14D示出的所述波束发射器102不同的是,在附图16示出的所述波束发射器102的这个具体的示例中,所述波束约束元件14呈板状,其中所述波束约束元件14被保持在所述辐射源12的一侧,以供约束所述辐射源12和所述板主体111相互配合而产生的微波,从而控制所述波束发射器102发射的所述检测波束的发射角度。优选地,所述波束约束元件14的延伸方向和所述板主体111的延伸方向相互垂直,或者所述波束约束元件14的延伸方向和所述板主体111的延伸方向具有夹角,且该夹角是锐角。进一步地,所述波束约束元件14具有一凹槽141,以供容纳所述辐射源12,并且所述辐射源12和所述波束约束元件14之间存在缝隙。附图17示出了附图16的所述波束发射器102的这个实施方式产生的所述检测波束的类型,其中附图16示出的所述波束发射器102特别适于被用于对所述环境200进行分区域检测、分角度检测和分层检测。
依本发明的另一个方面,参考附图18,本发明进一步提供一检测方法1800,其中所述检测方法1800包括如下步骤:
步骤1801,(a)以至少一波束发射器102基于一检测策略发出一检测波束的方式藉由所述检测波束形成一检测区域1021;
步骤1802,(b)接收被处于所述检测区域1021的至少一被检测对象300响应的所述检测波束;以及
步骤1803,(c)根据被所述被检测对象300响应的所述检测波束检测处于所述检测区域1021的所述被检测对象300的位置和/或姿态和/或动作模式。
进一步地,在所述步骤(a)中进一步包括步骤:
(a.1)所述波束发射器102的一辐射源12发出所述检测波束;和
(a.2)所述波束发射器102的一参考面110在所述辐射源12的一侧调整所述检测波束的发出角度。
优选地,在所述步骤(a.2)中,所述波束发射器102以所述参考面110的至少一部分相对于所述辐射源12的位置被调整的方式调整所述检测波束的发出角度。
依本发明的另一个方面,参考附图19,本发明进一步提供一检测系统400,其中所述检测系统400包括至少一波束发射器102、至少一信号接收器103、一接收单元50以及一检测单元40,其中所述接收单元50分别被可通信地连接于所述信号接收器103和所述检测单元40,其中所述波束发射器102基于所述检测策略发出所述检测波束以用于形成所述检测区域102,所述信号接收器103接收被处于所述检测区域1021的所述被检测对象300响应的所述检测波束,所述接收单元50从所述信号接收器103获取所述信号接收器103接收的所述检测波束,所述检测单元40根据所述接收单元50接收的所述检测波束检测处于所述检测区域1021的所述被检测对象300的位置和/或姿态和/或动作模式。
进一步地,所述检测系统400包括一处理单元10,其中所述处理单元10被可通信地连接于所述检测单元40,其中所述处理单元10根据所述检测单元40检测的所述被检测对象300的位置和/或姿态和/或动作模式获得所述被检测对象300的行为。
进一步地,所述检测系统400包括一调整单元60,其中所述波束发射器102被可调节地连接于所述调整单元60,其中所述调整单元60用于调整所述波束发射器102发出的所述检测波束的角度,以使所述检测波束形成的所述检测区域1021为动态检测区域102。
附图20A至图20C示出了所述检测系统400在执行包含分层检测策略的所述检测策略时,所述波束发射器102发出的所述检测波束形成的所述检测区域1021的状态。具体地说,在附图20A示出的这个具体的示例中,在所述环境200的高度方向,每层所述检测区域1021的高度尺寸一致。在附图20B示出的这个具体的示例中,每层所述检测区域1021的高度尺寸自所述环境200的上部向下部依次递减。在附图20C示出的这个具体的示例中,形成于所述环境200的上部的每层所述检测区域1021的高度尺寸大于形成于所述环境200的下部的每层所述检测区域1021的高度尺寸。值得一提的是,尽管在附图20A至图20C示出的所述检测系统400在执行包含分层检测策略的所述检测策略时,所述波束发射器102发出的所述检测波束形成的所述检测区域1021的这些事例中,相邻的所 述检测区域1021为平行的所述检测区域1021,本领域技术人员应当理解,相邻的所述检测区域1021为平行的所述检测区域1021仅为示例,其并不应被视为对本发明的所述检测系统400的内容和范围的限制。
附图21示出的所述检测系统400在执行包含分区域检测策略的所述检测策略时,所述波束发射器102发出的所述检测波束形成的所述检测区域1021的状态。具体地说,所述波束发射器102能够同时或者按照先后顺序向所述环境200的不同位置发射所述检测波束,以藉由所述检测波束在所述环境200内形成所述检测区域1021。值得一提的是,在附图21中示出的所述检测波束在所述环境200内形成的一列方形的所述检测区域1021仅为示例,以用于阐述和揭露本发明的所述检测系统的内容和特征,其并不应被视为对本发明的所述检测系统400的内容和范围的限制。例如,在本发明的所述检测系统400的其他示例中,所述检测波束形成的所述检测区域1021可以是但不限于圆形、椭圆形的检测区域,且相邻所述检测区域1021的面积大小也可以不一致。
附图22A和图22B示出的所述检测系统400在执行包含分角度检测策略的所述检测策略时,所述波束发射器102发出的所述检测波束形成的所述检测区域1021的状态。具体地说,所述波束发射器102能够同时或者按照先后顺序向所述环境200的不同角度发射所述检测波束,以藉由所述检测波束在所述环境200内形成所述检测区域1021。值得一提的是,所述波束发射器102在执行包含分角度检测策略的所述检测策略时向所述环境200发射所述检测波束而形成的所述检测区域1021的面积大小可以不同。
本领域的技术人员可以理解的是,以上实施例仅为举例,其中不同实施例的特征可以相互组合,以得到根据本发明揭露的内容很容易想到但是在附图中没有明确指出的实施方式。
本领域的技术人员应理解,上述描述及附图中所示的本发明的实施例只作为举例而并不限制本发明。本发明的目的已经完整并有效地实现。本发明的功能及结构原理已在实施例中展示和说明,在没有背离所述原理下,本发明的实施方式可以有任何变形或修改。

Claims (30)

  1. 一检测方法,其特征在于,所述检测方法包括如下步骤:
    (a)藉由至少一检测波束在一环境形成至少一检测区域;
    (b)接收处于所述检测区域的至少一被检测对象响应的所述检测波束;以及
    (c)根据所述被检测对象响应的所述检测波束检测处于所述环境的所述被检测对象的状态。
  2. 根据权利要求1所述的检测方法,其中在所述步骤(a)中进一步包括步骤:
    (a.1)提供一检测策略;和
    (a.2)基于所述检测策略向所述环境发射所述检测波束,以藉由所述检测波束在所述环境形成所述检测区域。
  3. 根据权利要求2所述的检测方法,其中在所述步骤(a.2)中,至少一波束发射器基于所述检测策略向所述环境发射所述检测波束。
  4. 根据权利要求3所述的检测方法,其中所述波束发射器是微波波束发射器,从而在所述步骤(a.2)中,所述波束发射器以向所述环境发射微波检测波束的方式在所述环境形成所述检测区域。
  5. 根据权利要求1所述的检测方法,其中在所述步骤(c)中,所述被检测对象在所述环境的状态包括:所述被检测对象在所述环境的位置、所述被检测对象在所述环境的姿态、所述被检测对象在所述环境的分布、所述被检测对象在所述环境的动作模式。
  6. 根据权利要求2至4中任一所述的检测方法,其中所述检测策略选自:分层检测策略、分区域检测策略和分角度检测策略以及动作模式检测策略、对移动轨迹进行判断与预测策略组成的策略组。
  7. 根据权利要求1至6中任一所述的检测方法,其中在所述步骤(c)之后,进一步包括步骤:根据所述被检测对象在所述环境的状态确定所述被检测对象在所述环境的行为。
  8. 根据权利要求1至7中任一所述的检测方法,其中所述检测区域是动态检测区域。
  9. 一环境管理方法,其特征在于,所述环境管理方法包括如下步骤:
    (A)获得至少一被检测对象在一环境的行为;
    (B)根据所述被检测对象的行为生成一管理策略;以及
    (C)在执行所述管理策略时以控制至少一波频发生器的工作状态的方式管理所述环境的状态。
  10. 根据权利要求9所述的环境管理方法,其中在所述步骤(A)中,进一步包括步骤:
    (A.1)检测所述被检测对象在所述环境的状态;和
    (A.2)根据所述被检测对象在所述环境的状态确定所述被检测对象在所述环境的行为。
  11. 根据权利要求10所述的环境管理方法,其中在所述步骤(A.1)中,进一步包括步骤:
    (A.1.1)藉由至少一检测波束在所述环境形成至少一检测区域;
    (A.1.2)接收处于所述检测区域的所述被检测对象响应的所述检测波束;以及
    (A.1.3)根据所述被检测对象响应的所述检测波束检测处于所述环境的所述被检测对象的状态。
  12. 根据权利要求11所述的环境管理方法,其中在所述步骤(A.1.1)中,藉由至少一波束发射器基于一检测策略以向所述环境发射所述检测波束的方式在所述环境形成所述检测区域。
  13. 根据权利要求12所述的环境管理方法,其中所述检测策略选自:分层检测策略、分区域检测策略和分角度检测策略以及动作模式检测策略、对移动轨迹进行判断与预测策略组成的策略组。
  14. 根据权利要求9至13中任一所述的环境管理方法,其中所述波频发生器是扬声器,从而在所述步骤(C)中,在执行所述管理策略时以控制所述波频发生器产生的音频频段的方式管理所述环境的状态。
  15. 根据权利要求9至13中任一所述的环境管理方法,其中所述波频发生器是灯具,从而在所述步骤(C)中,在执行所述管理策略时以控制所述波频发生器产生光线与否的方式管理所述环境的状态。
  16. 根据权利要求9至13中任一所述的环境管理方法,其中所述波频发生 器是灯具,从而在所述步骤(C)中,在执行所述管理策略时以控制所述波频发生器产生的光线的亮度、颜色、色温和明暗变化的方式管理所述环境的状态。
  17. 一检测系统,其特征在于,包括:
    至少一波束发射器,其中所述波束发射器基于一检测策略以向一环境发射至少一检测波束的方式在所述环境形成至少一检测区域;
    至少一信号接收器,其中所述信号接收器接收处于所述检测区域的至少一被检测对象响应的所述检测波束;以及
    一检测单元,其中所述检测单元被可通信地连接于所述信号接收器,其中所述检测单元根据所述被检测对象响应的所述检测波束检测所述被检测对象在所述环境的状态。
  18. 根据权利要求17所述的检测系统,进一步包括一处理单元,其中所述处理单元被可通信地连接于所述检测单元,其中所述处理单元根据所述检测单元检测的所述被检测对象在所述环境的状态确定所述被检测对象在所述环境的行为。
  19. 根据权利要求17所述的检测系统,进一步包括一调整单元,其中所述波束发射器被可控制地连接于所述调整单元,以藉由所述调整单元控制所述波束发射器的状态的方式使所述检测区域形成一动态检测区域。
  20. 根据权利要求17所述的检测系统,其中所述检测策略选自:分层检测策略、分区域检测策略和分角度检测策略以及动作模式检测策略、对移动轨迹进行判断与预测策略组成的策略组。
  21. 根据权利要求17所述的检测系统,其中所述波束发射器是微波波束发射器,从而所述波束发射器以向所述环境发射微波检测波束的方式在所述环境形成所述检测区域。
  22. 根据权利要求17所述的检测系统,其中所述被检测对象在所述环境的状态包括:所述被检测对象在所述环境的位置、所述被检测对象在所述环境的姿态、所述被检测对象在所述环境的分布、所述被检测对象在所述环境的动作模式。
  23. 根据权利要求17至22中任一所述的检测系统,其中所述波束发射器包括一参考板和一辐射源,其中所述参考板进一步包括一板主体和至少一侧翼,每个所述侧翼分别被可调节地设置于所述板主体,所述辐射源被邻近地设置于所述板主体,并且在所述辐射源和所述板主体之间形成一辐射缝隙。
  24. 根据权利要求17至22中任一所述的检测系统,其中所述波束发射器包括一参考板、一辐射源以及一波束约束元件,所述辐射源被邻近地设置于所述参考板,并且在所述辐射源和所述参考板之间形成一辐射缝隙,其中所述波束约束元件以所述波束约束元件和所述辐射源相邻的方式被设置于所述参考板,其中所述波束约束元件用于约束所述辐射源发射的所述检测波束的发射角度。
  25. 根据权利要求24所述的检测系统,其中所述波束约束元件呈喇叭状,以使所述波束约束元件形成一约束空间,其中所述辐射源被保持在所述约束空间。
  26. 根据权利要求24所述的检测系统,其中所述波束约束元件的延伸方向和所述参考板的延伸方向具有夹角,并且所述波束约束元件被保持在所述辐射源的一侧。
  27. 根据权利要求26所述的检测系统,其中所述波束约束元件的延伸方向和所述参考板的延伸方向相互垂直。
  28. 根据权利要求23所述的检测系统,其中所述波束发射器包括一屏蔽罩,其中所述屏蔽罩被设置于所述参考板的所述板主体,并且所述屏蔽罩和所述辐射源分别被保持在所述板主体的所述板主体的两侧。
  29. 根据权利要求24至27中任一所述的检测系统,其中所述波束发射器包括一屏蔽罩,其中所述屏蔽罩被设置于所述参考板,并且所述屏蔽罩和所述辐射源分别被保持在所述参考板的两侧。
  30. 一环境管理系统,其特征在于,包括:
    一处理单元,其中所述处理单元获得至少一被检测对象在一环境的行为;
    一策略生成单元,其中所述策略生成单元被可通信地连接于所述处理单元,其中所述策略生成单元根据所述被检测对象的行为生成一管理策略;以及
    一执行单元,其中所述执行单元被可通信地连接于所述策略生成单元,其中所述执行单元在执行所述管理策略时以控制至少一波频发生器的工作状态的方式管理所述环境的状态。
PCT/CN2019/072637 2018-02-08 2019-01-22 检测系统和环境管理系统及其应用 WO2019154063A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201810126974.2 2018-02-08
CN201810126974 2018-02-08

Publications (1)

Publication Number Publication Date
WO2019154063A1 true WO2019154063A1 (zh) 2019-08-15

Family

ID=63099431

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/072637 WO2019154063A1 (zh) 2018-02-08 2019-01-22 检测系统和环境管理系统及其应用

Country Status (2)

Country Link
CN (6) CN208314198U (zh)
WO (1) WO2019154063A1 (zh)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN208314198U (zh) * 2018-02-08 2019-01-01 深圳迈睿智能科技有限公司 波束发射器
CN109711282A (zh) * 2018-12-10 2019-05-03 北京小米移动软件有限公司 光线调节方法及装置
CN110032227B (zh) * 2019-04-08 2021-03-30 北京小米移动软件有限公司 加热控制方法及装置、加热设备、机器可读存储介质
CN110347089A (zh) * 2019-07-29 2019-10-18 深圳迈睿智能科技有限公司 供电插座以及用电设备的控制方法
CN110448303A (zh) * 2019-08-09 2019-11-15 深圳迈睿智能科技有限公司 监护系统和监护方法
CN116400610A (zh) * 2023-04-18 2023-07-07 深圳绿米联创科技有限公司 设备控制方法、装置、电子设备及存储介质

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105487725A (zh) * 2014-09-25 2016-04-13 联想(北京)有限公司 电子设备及其控制方法
CN106091806A (zh) * 2016-07-28 2016-11-09 广西鑫盾战神安防电子科技有限公司 一种多功能捕获装置
CN106091826A (zh) * 2016-07-28 2016-11-09 广西鑫盾战神安防电子科技有限公司 一种自动捕获装置
CN106225578A (zh) * 2016-07-28 2016-12-14 广西鑫盾战神安防电子科技有限公司 一种壁挂式自动捕获网
CN108872976A (zh) * 2018-02-08 2018-11-23 深圳迈睿智能科技有限公司 检测系统和环境管理系统及其应用

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7728316B2 (en) * 2005-09-30 2010-06-01 Apple Inc. Integrated proximity sensor and light sensor
CN101408754B (zh) * 2008-10-30 2010-12-29 中山大学 基于数据挖掘的智能家居优化系统
CN201393323Y (zh) * 2009-04-02 2010-01-27 柳延东 室内照明设备开关智能控制器
JP5589832B2 (ja) * 2010-12-27 2014-09-17 富士通株式会社 物体検出装置および物体の検出方法
CN202485753U (zh) * 2011-09-21 2012-10-10 李周利 一种智能微波开关
CN103723107A (zh) * 2014-01-08 2014-04-16 曹小兵 一种两轮车辆智能防撞系统及其控制方法
CN104035396B (zh) * 2014-04-18 2016-08-17 重庆大学 基于无线传感器网络的分布式行为识别方法
CN104052518A (zh) * 2014-05-22 2014-09-17 深圳奇沃智联科技有限公司 具有行踪及动作测定及管理功能的随身穿戴表件
CN105277991B (zh) * 2014-05-30 2018-11-02 南充鑫源通讯技术有限公司 存在检测方法及装置
CN104317389B (zh) * 2014-09-23 2017-12-26 广东小天才科技有限公司 一种通过动作识别人物角色的方法和装置
US20160091965A1 (en) * 2014-09-30 2016-03-31 Microsoft Corporation Natural motion-based control via wearable and mobile devices
CN104463174A (zh) * 2014-12-16 2015-03-25 广州南方电力集团科技发展有限公司 一种多角度动态人物识别及行为预测系统
CN205176267U (zh) * 2015-08-04 2016-04-20 深圳迈睿智能科技有限公司 一种可增加探测范围的微波感应器
CN105357842B (zh) * 2015-12-11 2018-10-02 北京毫米科技有限公司 主控智能灯
CN105785945A (zh) * 2016-03-21 2016-07-20 美的集团股份有限公司 基于用户行为的智能家居控制方法和装置
CN106324587B (zh) * 2016-08-19 2018-06-22 深圳迈睿智能科技有限公司 一种微动探测的实现方法
CN106383450A (zh) * 2016-11-10 2017-02-08 北京工商大学 一种基于大数据的智能家居用户行为分析系统及方法
CN106714423B (zh) * 2017-01-09 2018-12-07 深圳迈睿智能科技有限公司 一种实现可区分状态的微波感应装置的方法
CN106707244B (zh) * 2017-01-09 2019-03-29 深圳迈睿智能科技有限公司 一种分区域微波感应的检测方法及微波感应器
CN106842972A (zh) * 2017-03-14 2017-06-13 上海斐讯数据通信技术有限公司 一种智能家居设备的预测控制方法及系统
CN107067649B (zh) * 2017-05-23 2019-08-13 重庆邮电大学 一种基于无线可穿戴式感知平台的典型行为实时识别方法
CN107105563A (zh) * 2017-07-03 2017-08-29 刘胜泉 一种图像识别控制室内灯的方法
CN107479393A (zh) * 2017-08-17 2017-12-15 北京天平检验行有限公司 一种基于大数据的智能家居系统

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105487725A (zh) * 2014-09-25 2016-04-13 联想(北京)有限公司 电子设备及其控制方法
CN106091806A (zh) * 2016-07-28 2016-11-09 广西鑫盾战神安防电子科技有限公司 一种多功能捕获装置
CN106091826A (zh) * 2016-07-28 2016-11-09 广西鑫盾战神安防电子科技有限公司 一种自动捕获装置
CN106225578A (zh) * 2016-07-28 2016-12-14 广西鑫盾战神安防电子科技有限公司 一种壁挂式自动捕获网
CN108872976A (zh) * 2018-02-08 2018-11-23 深圳迈睿智能科技有限公司 检测系统和环境管理系统及其应用

Also Published As

Publication number Publication date
CN208314197U (zh) 2019-01-01
CN208314196U (zh) 2019-01-01
CN108398681A (zh) 2018-08-14
CN208314198U (zh) 2019-01-01
CN108897231A (zh) 2018-11-27
CN108872976A (zh) 2018-11-23
CN108398681B (zh) 2023-12-29

Similar Documents

Publication Publication Date Title
WO2019154063A1 (zh) 检测系统和环境管理系统及其应用
CN107086377B (zh) 一种紧缩场暗室内馈源镜像波束的吸波反射阵控制装置
WO2020124671A1 (zh) 多波束同频微波探测天线及其制造方法和检测方法
JP7309743B2 (ja) レーザレーダシステム及びその制御方法、走査角度の取得方法、車両
JP2018067880A (ja) 通信装置、車載システムおよび通信方法
WO2018066219A1 (ja) アンテナ、センサ及び車載システム
KR101880707B1 (ko) 지향성 안테나의 방향 제어 시스템 및 그것의 방향 제어 방법
US20200389057A1 (en) Adaptive roaming and articulating generating unit for wireless power transfer
JPWO2013150996A1 (ja) アンテナ
CN106685484A (zh) 一种近场模拟器
CN112816947A (zh) 错时微波探测装置和错时微波探测方法
CN116075984A (zh) 反射单元及无线传输系统
JP2018507664A (ja) 集束アンテナを備えた集積型トランシーバ
JP2003057281A (ja) 電波暗室、放射電磁波測定システムおよび放射電磁波の測定方法
US5616892A (en) Virtual imaging multiple transducer system
US5793001A (en) Synchronized multiple transducer system
CN214718131U (zh) 一种超声发射模块和超声发射组件
CN110416733B (zh) 一种非视距环境下的电磁能量聚焦方法及装置
JP2022191880A (ja) アンテナ装置、給電システム、給電装置、及び給電方法
JP2018511810A (ja) 赤外線測位ノード装置および赤外線測位ノードシステム
JP7445628B2 (ja) 位置情報導出システム
KR20200011313A (ko) 라이다 광학 장치
WO2023002900A1 (ja) 電波制御システム
JP2016017786A (ja) レーダシステム、およびレーダ装置
JP2002333459A (ja) 空間フェージング模擬装置

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19751424

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19751424

Country of ref document: EP

Kind code of ref document: A1