WO2020121437A1 - 空調制御装置及び空調制御方法 - Google Patents
空調制御装置及び空調制御方法 Download PDFInfo
- Publication number
- WO2020121437A1 WO2020121437A1 PCT/JP2018/045683 JP2018045683W WO2020121437A1 WO 2020121437 A1 WO2020121437 A1 WO 2020121437A1 JP 2018045683 W JP2018045683 W JP 2018045683W WO 2020121437 A1 WO2020121437 A1 WO 2020121437A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- air conditioning
- data
- unit
- time
- air
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0265—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/30—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring
- F24F11/48—Control or safety arrangements for purposes related to the operation of the system, e.g. for safety or monitoring prior to normal operation, e.g. pre-heating or pre-cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F11/00—Control or safety arrangements
- F24F11/62—Control or safety arrangements characterised by the type of control or by internal processing, e.g. using fuzzy logic, adaptive control or estimation of values
- F24F11/63—Electronic processing
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/0265—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion
- G05B13/027—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric the criterion being a learning criterion using neural networks only
-
- G—PHYSICS
- G05—CONTROLLING; REGULATING
- G05B—CONTROL OR REGULATING SYSTEMS IN GENERAL; FUNCTIONAL ELEMENTS OF SUCH SYSTEMS; MONITORING OR TESTING ARRANGEMENTS FOR SUCH SYSTEMS OR ELEMENTS
- G05B13/00—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion
- G05B13/02—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric
- G05B13/04—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators
- G05B13/048—Adaptive control systems, i.e. systems automatically adjusting themselves to have a performance which is optimum according to some preassigned criterion electric involving the use of models or simulators using a predictor
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F24—HEATING; RANGES; VENTILATING
- F24F—AIR-CONDITIONING; AIR-HUMIDIFICATION; VENTILATION; USE OF AIR CURRENTS FOR SCREENING
- F24F2110/00—Control inputs relating to air properties
- F24F2110/10—Temperature
Definitions
- the present invention relates to an air conditioning control device that controls an air conditioner based on a machine learning model.
- the air conditioning control device associates the room temperature history information indicating the history of room temperature changes with the operation history information of the air conditioner, and based on these information, sets the room temperature when the air conditioner does not adjust the temperature as the off-time predicted room temperature. Prediction is performed, and a control parameter for causing the room temperature to reach the target temperature at the target time is determined based on the off-time predicted room temperature.
- the air conditioning control device described in Patent Document 1 uses machine learning, and the air conditioner does not adjust the temperature based on the room temperature history information and the operation history information.
- an off-time room temperature prediction model for predicting the future room temperature of the living room is created, and the off-time room temperature prediction model is used to predict the off-time room temperature prediction model.
- the present invention has been made to solve the above-mentioned problems, and in an air conditioning control device that controls an air conditioner based on a machine learning model, it is a time-based method for collecting data used for machine learning. It is an object of the present invention to provide a technology capable of reducing costs.
- An air conditioning control device includes an air conditioner data acquired by an air conditioner, an acquisition unit that inputs the air conditioner data into a machine learning model, and acquires a predicted start time of the air conditioner, and an air conditioner acquired by the acquisition unit.
- An extension unit that refers to the data and the start time to generate extension data
- an update unit that refers to the air conditioning data and the start time acquired by the acquisition unit and the extension data generated by the extension unit to update the machine learning model.
- an air conditioning control device that controls an air conditioner based on machine learning, it is possible to reduce the time cost of collecting data used for machine learning.
- FIG. 3 is a block diagram showing the configuration of the air conditioning control system according to the first embodiment.
- FIG. 3 is a block diagram showing a configuration of an air conditioning control device according to the first embodiment.
- 5 is a flowchart showing a required time prediction method in the air conditioning control method according to the first embodiment.
- 5 is a flowchart showing an extended data generating method and a machine learning model updating method in the air conditioning control method according to the first embodiment.
- 5 is a graph for explaining a first specific example of the extended data generating method in the air conditioning control method according to the first embodiment.
- 5 is a graph for explaining in more detail the first specific example of the extended data generation method in the air conditioning control method according to the first embodiment.
- FIG. 5 is a graph for explaining a second specific example of the extended data generating method in the air conditioning control method in the air conditioning control method according to the first embodiment.
- 7 is a graph for explaining in more detail a second specific example of the extended data generation method in the air conditioning control method in the air conditioning control method according to the first embodiment.
- 5 is a graph for explaining a result of air conditioning control by the air conditioning control device according to the first embodiment.
- FIG. 7 is a block diagram showing a configuration of an air conditioning control device according to a second embodiment. 7 is a flowchart showing an extended data generating method and a machine learning model updating method in the air conditioning control method according to the second embodiment.
- FIG. 9 is a diagram for explaining a specific example of an extended data replacement method in the air conditioning control method according to the second embodiment.
- FIG. 9 is a flowchart showing a start time prediction method in the air conditioning control method according to the third embodiment.
- 9 is a flowchart showing an extended data generating method and a machine learning model updating method in the air conditioning control method according to the third embodiment. It is a figure for demonstrating the specific example which the air conditioning control apparatus which concerns on Embodiment 3 estimates a required time using a neural network model.
- 10 is a flowchart showing a start time prediction method in the air conditioning control method according to the fourth embodiment.
- 9 is a flowchart showing an extended data generating method and a machine learning model updating method in the air conditioning control method according to the fourth embodiment.
- FIG. 18A is a block diagram showing a hardware configuration for realizing the functions of the air conditioning control device according to the first to fourth embodiments.
- FIG. 18B is a block diagram showing a hardware configuration that executes software that realizes the functions of the air conditioning control devices according to the first to fourth embodiments.
- FIG. 1 is a block diagram showing the configuration of the air conditioning control system 1 according to the first embodiment.
- the air conditioning control system 1 includes an air conditioning control device 2, an air conditioning controller 3, a plurality of outdoor units 5, and a plurality of indoor units 6.
- the configuration illustrated in FIG. 1 is an example, and the number of devices in the air conditioning control system 1 according to the present embodiment is not limited to the number of devices in this example.
- each of the outdoor units 5 constitutes an air conditioner 4 for air conditioning the room together with the indoor unit 6. .
- Each outdoor unit 5 is equipped with a sensor that acquires environmental information outside the room in which the outdoor unit 5 is installed.
- Each outdoor unit 5 outputs the acquired environmental information to the air conditioning controller 3 as air conditioning data. Note that, as an example of the environmental information, the outdoor temperature and the outdoor humidity for each hour can be cited.
- Each indoor unit 6 is equipped with a sensor that acquires environmental information in the room in which the indoor unit 6 is installed.
- each indoor unit 6 includes a reception unit that receives setting information from the user.
- Each indoor unit 6 outputs the acquired environment information, the received setting information, and the operation information indicating the operation state of the air conditioner 4 to the air conditioning controller 3 as the air conditioning data via the outdoor unit 5.
- the environmental information include room temperature and room humidity for each hour.
- the setting information includes at least a target time at which the environmental value of the room in which the indoor unit 6 is installed reaches the target value, and examples of other setting information include a target temperature and a target humidity set by the user.
- Examples of the operation information include information on start and stop of the air conditioner 4, and operation modes of the air conditioner 4 in a cooling mode, a heating mode, and a dehumidifying mode.
- the air conditioning controller 3 is a controller that centrally controls the plurality of outdoor units 5 and the plurality of indoor units 6.
- the air conditioning controller 3 acquires air conditioning data from the outdoor unit 5 and the indoor unit 6.
- the air conditioning controller 3 transmits to the air conditioning control device 2 air conditioning data obtained by aggregating the air conditioning data acquired from the plurality of outdoor units 5 and the plurality of indoor units 6.
- FIG. 2 is a block diagram showing the configuration of the air conditioning control device 2 in more detail than FIG.
- the air conditioning control device 2 includes a control unit 10, a transmission/reception unit 11, and a storage unit 12.
- the control unit 10 includes a prediction unit 13 and a machine learning unit 17.
- the machine learning unit 17 includes an expansion unit 14, an updating unit 15, and an acquisition unit 16.
- the transmitting/receiving unit 11 receives air conditioning data from the air conditioning controller 3.
- the transmission/reception unit 11 outputs the received air conditioning data to the prediction unit 13.
- Prediction unit 13 acquires air conditioning data via transmission/reception unit 11.
- the prediction unit 13 also reads from the storage unit 12 a machine learning model stored in advance in the storage unit 12.
- the prediction unit 13 inputs the acquired air conditioning data into the machine learning model, and starts the air conditioner 4 and then the time required until the environmental value of the room reaches the target value at the target time (hereinafter, simply “ Also called “required time”).
- the environmental value of the room may be the room temperature, the room humidity, etc. described above.
- the target value may be the target temperature, the target humidity, etc. described above.
- the prediction unit 13 outputs the predicted required time to the air conditioning controller 3 via the transmission/reception unit 11.
- the air conditioning controller 3 determines the start time of the air conditioner 4 suitable for the environmental value of the room to reach the target value from the required time and the target time described above, and starts the air conditioner 4 at the start time. Control to let. Further, the prediction unit 13 stores the start time based on the predicted required time and the used air conditioning data in the storage unit 12 in association with each other.
- the air conditioning control device 2 determines the start time of the air conditioner 4 suitable for the environmental value of the room to reach the target value from the required time and the target time, and starts the air conditioner 4 at the start time. It further includes an activation unit for controlling the activation.
- the start time of the air conditioner 4 is a numerical value simply obtained from the required time and the target time described above, predicting the required time predicts the start time of the air conditioner 4. Is substantially synonymous with that. That is, the expression "prediction of start time” includes prediction of required time.
- the acquisition unit 16 acquires the air conditioning data acquired by the air conditioner 4 and the predicted start time of the air conditioner 4 by inputting the air conditioning data into the machine learning model.
- the acquisition unit 16 reads from the storage unit 12 the air-conditioning data and the start time stored in advance in the storage unit 12.
- the expansion unit 14 refers to the air conditioning data and the activation time acquired by the acquisition unit 16 to generate the expansion data.
- the extension unit 14 outputs the generated extension data to the update unit 15.
- the extension unit 14 also stores the generated extension data in the storage unit 12 via the acquisition unit 16. A specific example of a method of generating extension data by the extension unit 14 will be described later.
- the update unit 15 updates the machine learning model with reference to the air conditioning data and the start time acquired by the acquisition unit 16 and the extension data generated by the extension unit 14.
- the update unit 15 saves the updated machine learning model in the storage unit 12.
- FIG. 3 is a flowchart showing a start time prediction method in the air conditioning control method by the air conditioning control device 2 according to the first embodiment.
- FIG. 4 is a flowchart showing an extended data generating method and a machine learning model updating method in the air conditioning control method according to the first embodiment.
- the prediction unit 13 acquires air conditioning data via the transmission/reception unit 11 (step ST1).
- the prediction unit 13 reads the previously stored machine learning model from the storage unit 12.
- the prediction unit 13 acquires the indoor temperature, the outdoor temperature, and the target temperature as the air conditioning data via the transmission/reception unit 11.
- the prediction unit 13 calculates the “difference between the indoor temperature and the target temperature” and the “difference between the indoor temperature and the outdoor temperature”.
- the prediction unit 13 inputs the acquired air conditioning data into the read machine learning model and predicts the required time (step ST2).
- the air conditioning data that the prediction unit 13 inputs to the machine learning model in order to predict the required time may be the acquired air conditioning data itself or may be data obtained by processing the air conditioning data.
- the prediction unit 13 inputs the calculated “difference between indoor temperature and target temperature” and “difference between indoor temperature and outdoor temperature” into the read machine learning model, and predicts the required time. .. That is, the "air conditioning data" input to the machine learning model includes the air conditioning data itself or data obtained by processing the air conditioning data.
- the prediction unit 13 outputs the predicted required time to the air conditioning controller 3 via the transmission/reception unit 11 (step ST3).
- the air conditioning controller 3 starts the air conditioner 4 suitable for the environmental value of the room to reach the target value from the required time predicted by the prediction unit 13 and the target time indicated by the air conditioning data.
- the time is determined, and the air conditioner 4 is controlled to start at the start time.
- the air conditioning controller 3 determines the start time of the air conditioner 4 suitable for the temperature of the room to reach the target temperature from the required time and the target time, and starts the air conditioner 4 at the start time. Control.
- the prediction unit 13 stores the start time determined by the air conditioning controller 3 and the air conditioning data in the storage unit 12 in association with each other (step ST4).
- the air conditioning data stored in the storage unit 12 by the prediction unit 13 includes air conditioning for a period from the time when the air conditioning data input to the machine learning model is acquired to the time when the target temperature or the target humidity is reached after the start time. Contains data.
- the air-conditioning data of the period stored in the storage unit 12 is data actually acquired by the sensor of the indoor unit 6 and the sensor of the outdoor unit 5.
- the data actually acquired by the sensor of the indoor unit 6 and the sensor of the outdoor unit 5 will be referred to as “actual data”.
- the prediction unit 13 stores the start time and the indoor temperature and the outdoor temperature in the above period in the storage unit 12 in association with each other.
- the prediction unit 13 may acquire the activation time and the air conditioning data for the above period from the air conditioning controller 3 via the transmission/reception unit 11.
- the acquisition unit 16 reads the air conditioning data and the activation time saved in the storage unit 12 by the prediction unit 13 in step ST4 described above (step ST10).
- the acquisition unit 16 reads the start time and the indoor temperature and the outdoor temperature associated with the start time, which are stored in the storage unit 12.
- the extension unit 14 generates extension data by referring to the air conditioning data and the activation time acquired by the acquisition unit 16 (step ST11).
- the extension unit 14 outputs the generated extension data to the update unit 15.
- the expansion unit 14 expands the number of pieces of air conditioning data and start time data acquired by the acquisition unit 16 by the number required for machine learning.
- the expansion unit 14 expands the number of data by adding a constant numerical value to the numerical value of the air conditioning data and the numerical value of the activation time.
- the updating unit 15 reads the machine learning model stored in the storage unit 12 in advance, refers to the air conditioning data and the start time acquired by the acquisition unit 16, and the extension data generated by the extension unit 14,
- the machine learning model is updated (step ST12).
- the updating unit 15 updates the machine learning model with reference to the indoor temperature, the outdoor temperature, the activation time acquired by the acquiring unit 16 and the extended data of these.
- the updating unit 15 stores the updated machine learning model in the storage unit 12 (step ST13).
- FIGS. 5 and 6 are graphs for explaining a first specific example of the extended data generating method in the air conditioning control method by the air conditioning control device 2 according to the first embodiment.
- the vertical axis represents the room temperature and the horizontal axis represents the time.
- FIG. 5 is a temperature change graph of the indoor temperature acquired by the sensor of the indoor unit 6, and each data on the graph is obtained by the air conditioning control device 2 monitoring the indoor temperature at regular time intervals. Is. It should be noted that, for each of the indoor temperatures at a certain time interval indicated by a plurality of points on the graph in FIG. 5, there is an outdoor temperature as a sensor value at a corresponding time. In step ST4 described above, the prediction unit 13 saves the indoor temperature and the outdoor temperature at the time at a certain time interval in the storage unit 12 as one record of air conditioning data.
- the air conditioning control device 2 stops the air conditioner 4 via the air conditioning controller 3.
- data there is a series of air-conditioning data composed of a plurality of records from when the air conditioner 4 is activated to when the target temperature is reached.
- the data set there is only one data set as a data set corresponding to one start time and the air conditioning data input to the machine learning model for predicting the required time used for determining the one start time.
- the data set alone is insufficient as the data used by the update unit 15 to update the machine learning model in step ST12 described above. Therefore, in step ST11 described above, the expansion unit 14 generates the expansion data by referring to the air conditioning data and the activation time read by the acquisition unit 16 from the storage unit 12.
- FIG. 6 is a graph for explaining the extended data generation method more specifically.
- the leftmost point corresponding to the actual startup time on the horizontal axis and the indoor temperature at startup on the vertical axis in FIG. 6 indicates the data stored in the storage unit 12 by the prediction unit 13 in step ST4.
- the extension unit 14 calculates the time required from the virtual start time to the target temperature arrival time based on the difference between the actual start time and the virtual start time.
- Extended data is generated by calculating the required time up to 15. That is, the expanded data set is as follows. Actual data: Data set of actual start time 7:00, air conditioning data at the actual start time, and time required for 15 minutes from the actual start time to the target temperature arrival time. First extension data: virtual Data set of start time 7:05, air conditioning data at the virtual start time, and time required for 10 minutes from the virtual start time to the target temperature arrival time. Second extended data: virtual start time 7:10. , The data set of the air conditioning data at the virtual start time and the required time of 5 minutes from the virtual start time to the time when the target temperature is reached. Can be expanded to three.
- the number of learning data can be expanded by generating the expanded data in consideration of the knowledge of the indoor temperature change due to the air conditioning, compared to the case where only the actual data is used as the learning data. Cost can be suppressed.
- the extension unit 14 refers to the air conditioning data, regards an arbitrary time as a virtual start time, and sets the air conditioning data at the arbitrary time to the virtual start time.
- the number of learning data was expanded by considering it as the air conditioning data in. However, even in such a specific example, the number of data that can be expanded is limited. Therefore, in the specific example described below, the number of learning data is expanded by expanding the indoor temperature change graph as shown in FIG.
- FIG. 7 is a graph for explaining a second specific example of the extended data generating method in the air conditioning control method according to the first embodiment.
- the graph of FIG. 7 is a three-dimensional graph, and the first axis shows the indoor temperature, the second axis shows the time, and the third axis shows the outdoor temperature.
- the graph A in FIG. 7 is a temperature change graph of the indoor temperature actually acquired by the sensor of the indoor unit 6 and the outdoor temperature acquired by the sensor of the outdoor unit 5, and each data on the graph is obtained by the air conditioning control device 2.
- the room temperature and the outdoor temperature are monitored at regular time intervals.
- 8 is a temperature change graph of the indoor temperature actually acquired by the sensor of the indoor unit 6 and the outdoor temperature acquired by the sensor of the outdoor unit 5, similarly to the graph A shown in FIG. 7.
- the time-temperature change graph of the room air-conditioned by the air conditioner 4 when the difference between the indoor temperature and the outdoor temperature is different, the slope of the graph is different, and the graph of the difference between the indoor temperature and the outdoor temperature is shown in FIG.
- the inclination is decided. Taking the graph in FIG. 8 as an example, the outdoor temperature rises with time, and the indoor temperature falls with time because the operation mode of the air conditioner 4 is the cooling mode. As a result, the difference between the indoor temperature and the outdoor temperature increases with time. The larger the difference, the less effective the cooling becomes, and the slope of the temperature change graph in the room becomes gentler with time.
- the expansion unit 14 refers to a series of air conditioning data from when the air conditioner 4 is actually activated until the indoor temperature reaches the target temperature, and refers to the "indoor temperature and outdoor temperature” for each hour.
- the "difference with temperature” and the “inclination of the temperature change graph of the room temperature” at that time are calculated and associated with each other.
- the expansion unit 14 corresponds to the calculated “difference between the indoor temperature and the outdoor temperature” and the “inclination of the temperature change graph of the indoor temperature” to the virtual “difference between the indoor temperature and the outdoor temperature”.
- the linear model of the gradient is generated by regarding it as the “gradient of the temperature change graph of the indoor temperature”.
- the expansion unit 14 determines that the difference between the outdoor temperature of 30° C. and the indoor temperature of 25° C. on the graph A, which is actual data, and the difference when the indoor temperature is 25° C.
- the inclination of the graph A is calculated and these are associated with each other.
- the expansion unit 14 regards the inclination as the “inclination of the temperature change graph of the indoor temperature” corresponding to the virtual “difference between the outdoor temperature and the indoor temperature” 5° C., and generates the linear model B.
- the linear model B has an outdoor temperature of 33° C. and an indoor temperature of 28° C.
- the linear model B has a linear slope and has a slope corresponding to a virtual “difference between the outdoor temperature and the indoor temperature” 5° C.
- the extension data generation method of the second specific example may be executed in combination with the extension data generation method of the first specific example.
- the number of pieces of learning data can be significantly expanded as compared with the case where only actual data is used as learning data, and the time cost of learning data collection can be suppressed.
- the prediction unit 13 acquires the indoor temperature, the outdoor temperature, and the target temperature of the room as air conditioning data.
- the prediction unit 13 calculates the “difference between the indoor temperature and the target temperature” and the “difference between the indoor temperature and the outdoor temperature” based on the acquired air conditioning data, The required time is predicted by inputting the air conditioning data into the machine learning model.
- the prediction unit 13 outputs the predicted required time to the air conditioning controller 3 via the transmission/reception unit 11.
- the air conditioning controller 3 determines the start time of the air conditioner 4 suitable for the indoor temperature of the room to reach the target temperature to be 7:30, from the required time predicted by the prediction unit 13 and the target time indicated by the air conditioning data.
- the air conditioner 4 is controlled to start at the start time.
- the air-conditioning control device 2 executes the above-mentioned steps for another room as well, and sets the start time of the air-conditioner 4 installed in the second room to 7:45 and the air-conditioning installed in the third room.
- the start time of the machine 4 is set to 8:00 and the air conditioner 4 in each room is controlled.
- the air conditioning control device 2 stops each air conditioner 4.
- the bar graph of FIG. 9 shows the amount of electric power consumed by the three air conditioners 4. As shown by the bar graph in FIG. 9, the power consumption gradually increases according to the start time of each indoor unit.
- the reason why such power consumption increases in stages is that the number of operating indoor units 6 increases with time due to different start times of the plurality of indoor units 6.
- the reason why the start times of the plurality of indoor units 6 are different is to refer to a machine learning model based on air conditioning data that reflects the respective environments in which the indoor units 6 are installed, for example, differences in the size of the room, This is because the air conditioning control device 2 predicts the start time of each air conditioner 4.
- the air conditioning control device 2 can reduce the peak power by distributing the power consumption in this way.
- the air conditioning control device 2 acquires the air conditioning data acquired by the air conditioner 4 and the predicted start time of the air conditioner 4 by inputting the air conditioning data into the machine learning model.
- An updating unit 15 that updates the machine learning model with reference to the extended data.
- the number of learning data is expanded by generating the expansion data based on the air conditioning data, instead of using the actual air conditioning data acquired for machine learning only for the learning as it is.
- the machine learning model is updated by further using the extended data. As a result, the time cost for collecting the data used for machine learning can be suppressed.
- the acquisition unit 16 acquires at least the room temperature of the room in which the indoor unit 6 of the air conditioner 4 is installed as the air conditioning data, and as the start time, The start time predicted as the start time suitable for the room temperature to reach the target temperature at the target time may be acquired.
- the extended data of the activation time and the room temperature is generated, and the extended data is further used to update the machine learning model. As a result, it is possible to suppress the time cost for collecting the start time and room temperature data used for machine learning.
- the air conditioning control device 2 further includes the prediction unit 13 that inputs the air conditioning data into the machine learning model and predicts the start time of the air conditioner 4, and the start time predicted by the prediction unit 13 is included.
- the air conditioner 4 may be activated.
- the start time can be predicted from the machine learning model further based on the extended data, and the air conditioner can be started at the start time.
- Embodiment 2 In the above-described first embodiment, it has been described that the extension unit 14 refers to the air conditioning data and the activation time to generate the extension data. However, the extended data is less reliable than the actual data of the air conditioning data. Therefore, the use of extended data, which can be noisy, should be minimized.
- the main purpose of the second embodiment is to solve such a problem.
- FIG. 10 is a block diagram showing the configuration of the air conditioning control device 20 according to the second embodiment.
- the machine learning unit 23 of the control unit 21 further includes a replacement unit 22.
- the replacement unit 22 acquires the air conditioning data of the actual data used by the expansion unit 14 to generate the expansion data and the expansion data generated by the expansion unit 14 from the expansion unit 14 or the storage unit 12, and the air conditioning data and the expansion The data is compared, and the extension data is replaced with the air conditioning data based on the comparison result. More specifically, the replacement unit 22 compares the air conditioning data with the extension data and replaces the extension data similar to the air conditioning data with the air conditioning data. The replacing unit 22 outputs the air-conditioning data including the replaced air-conditioning data and the expansion data that has not been replaced to the updating unit 15.
- the boot time prediction method according to the second embodiment is the same as steps ST1 to ST4 of the boot time prediction method according to the first embodiment. Therefore, description of the boot time prediction method according to the second embodiment will be omitted.
- FIG. 11 is a flowchart showing an extended data generating method and a machine learning model updating method in the air conditioning control method according to the second embodiment. Note that steps ST20, ST21, and ST24 of the air conditioning control method of the air conditioning control device 20 according to Embodiment 2 are the same as steps ST10, ST11, and ST13 of the air conditioning control method described with reference to FIG. 4, respectively. is there. Therefore, the description of steps ST20, ST21, and ST24 is omitted.
- step ST22 the replacement unit 22 compares the air conditioning data, which is the actual data, with the extension data generated by the extension unit 14, and based on the comparison result, converts the extension data into the air conditioning data. replace.
- step ST23 the updating unit 15 updates the machine learning model with reference to the air conditioning data and the expansion data that have been subjected to step ST22 by the replacing unit 22.
- the replacement unit 22 compares the air conditioning data used by the expansion unit 14 to generate the expansion data with the expansion data generated by the expansion unit 14, and air-conditions the expansion data based on the comparison result. It may be replaced with data. Further, in step ST22, the replacing unit 22 may temporarily store the expanded data that has not been replaced in the storage unit 12. In that case, as soon as the predicting unit 13 newly obtains the air conditioning data, the replacing unit 22 compares the air conditioning data with the extension data stored in the storage unit 12, and based on the comparison result, the extension data. May be replaced with air conditioning data. Thereby, the data collection period can be shortened.
- FIG. 12 is a diagram for explaining a specific example of the extended data replacement method in the air conditioning control method by the air conditioning control device 20 according to the second embodiment.
- the arrows attached to the four grids shown in FIG. 12 indicate the order in which the replacement unit 22 executed the process of step ST22.
- the vertical axis of these grids represents the “difference between the indoor temperature and the target temperature”, and the horizontal axis represents the “difference between the indoor temperature and the outdoor temperature”.
- the “difference between the indoor temperature and the target temperature” and the “difference between the indoor temperature and the outdoor temperature” form one record of the air conditioning data or the extended data.
- “ ⁇ ” on these grids indicates the air conditioning data that is the actual data, and “ ⁇ ” indicates the extended data.
- the replacement unit 22 sets the air conditioning data of the actual data acquired from the expansion unit 14 on the grid defining the data on the vertical axis and the data on the horizontal axis. And plot the extended data.
- one record of the air-conditioning data or expansion data used by the replacing unit 22 is data including “difference between indoor temperature and target temperature” and “difference between indoor temperature and outdoor temperature”.
- the data is not limited to this, and may be a numerical value based on an environmental value or a target value.
- the extension unit 14 has these two data on the vertical axis and the horizontal axis.
- the number of dimensions of the air conditioning data and the extension data used by the replacement unit 22 is not limited to two.
- the dimensionality may be three-dimensional, in which case the grid may be a triaxial cubic grid.
- the replacing unit 22 may expand the number of dimensions of the grid in accordance with the number of dimensions of the air conditioning data and the extension data input by the updating unit 15 for updating the machine learning model.
- the replacement unit 22 may change the axis scale, which is the grid interval, according to the types of the air conditioning data and the extension data.
- the replacement unit 22 plots the air conditioning data on the grid as soon as the prediction unit 13 newly acquires the air conditioning data.
- the replacing unit 22 compares the newly plotted air conditioning data with the extension data, and when the extension data already exists in the frame containing the air conditioning data. Replace the extended data with the air conditioning data. Note that the replacement unit 22 may repeat the steps shown in (3) and (4) of FIG. 12 as soon as new air conditioning data is acquired.
- the air conditioning control device 20 further includes the replacement unit that compares the air conditioning data and the extension data and replaces the extension data with the air conditioning data based on the comparison result.
- the extended data is replaced with the air conditioning data that is the actual data, and the machine learning model is updated based on the actual data.
- the start-up time of the air conditioner can be predicted with higher accuracy from the early stage of machine learning, based on a highly reliable machine learning model, as compared with the case where replacement of extended data with actual data is not performed.
- Embodiment 3 In the first and second embodiments, it has been described that the machine learning model is updated with reference to the air conditioning data, the extended data, and the predicted required time.
- a neural network model is used as the machine learning model, and the neural network model is updated by further referring to the time required until the time when the room environment value actually reaches the target value.
- Embodiment 3 will be described below with reference to the drawings.
- the air conditioning control device 2 of FIG. 2 described in the first embodiment or the air conditioning control device 20 of FIG. 10 described in the second embodiment can be used. Therefore, the description of the configuration described in the first or second embodiment is omitted. In the description of the air conditioning control method according to the third embodiment, detailed description of steps similar to those of the air conditioning control method described in the first and second embodiments will be appropriately omitted.
- FIG. 13 is a flowchart showing a start time prediction method in the air conditioning control method according to the third embodiment.
- FIG. 14 is a flowchart showing an extended data generating method and a machine learning model updating method in the air conditioning control method according to the third embodiment.
- the prediction unit 13 acquires the air conditioning data including the indoor temperature and the outdoor temperature via the transmission/reception unit 11.
- the prediction unit 13 reads the machine learning model including the neural network model from the storage unit 12.
- step ST31 the prediction unit 13 inputs the air conditioning data into the machine learning model including the read neural network model and predicts the required time.
- the required time predicted by the prediction unit 13 is also referred to as “predicted required time”.
- FIG. 15 is a diagram for explaining a specific example in which the prediction unit 13 predicts the required time using the neural network model in the above step ST31.
- the prediction unit 13 inputs the “difference between the indoor temperature and the target temperature” and the “difference between the indoor temperature and the outdoor temperature” into the input layer of the neural network model, and outputs the required time to the output layer. Is output.
- the prediction unit 13 outputs the predicted required time to the air conditioning controller 3 via the transmission/reception unit 11.
- the air conditioning controller 3 determines the start time of the air conditioner 4 suitable for the room temperature of the room to reach the target temperature from the estimated required time and the target time indicated by the above-mentioned air conditioning information.
- the air conditioner 4 is determined and controlled to start the air conditioner 4 at the start time.
- the sensor of the indoor unit 6 acquires the indoor temperature that changes due to the air conditioning controller 3 activating the air conditioner 4, and the prediction unit 13 monitors the indoor temperature via the transmission/reception unit 11. Then, the time required from the start time of the air conditioner 4 to the time when the indoor temperature actually reaches the target temperature (hereinafter referred to as “measurement required time”) is measured.
- the prediction unit 13 starts from the time when the estimated required time, the required measurement time, and the air conditioning data input to the machine learning model are acquired until the time when the target temperature is reached after the startup time.
- the air-conditioning data including the indoor temperature and the outdoor temperature during the period is stored in the storage unit 12 in association with each other.
- the acquisition unit 16 reads the estimated required time, the required measurement time, and the air conditioning data associated with these from the storage unit 12 (step ST40).
- the extension unit 14 refers to the estimated required time, the required measurement time, and the air conditioning data acquired by the acquisition unit 16 to generate the expanded data (step ST41).
- the updating unit 15 reads the machine learning model including the neural network model stored in the storage unit 12 in advance, and refers to the estimated required time, the required measurement time, the air conditioning data, and the extension data generated by the extension unit 14.
- the machine learning model including the neural network model is updated (step ST42).
- the updating unit 15 stores the machine learning model including the updated neural network model in the storage unit 12 (step ST43).
- the predicting unit 13 and the updating unit 15 respectively update the neural network model by repeating the above-mentioned steps. As a result, the accuracy of the required time predicted by the prediction unit 13 can be gradually improved.
- the air-conditioning control device 2 or the air-conditioning control device 20 also applies the air-conditioning data acquired by the sensor of another indoor unit 6 installed in the same room as the indoor unit 6 in which the air-conditioning control is performed by the above-described air-conditioning control method, The above-mentioned steps ST30 to ST34 and steps ST40 and ST41 are performed.
- the updating unit 15 updates the machine learning model including the neural network model by further referring to the additional air conditioning data acquired by the sensor of the other indoor unit 6 and its extension data. Good.
- the machine learning model is a machine learning model including a neural network model
- the updating unit 15 sets the environmental value of the room in which the air conditioner is installed to the start time. Further, the machine learning model including the neural network model is updated by further referring to the time required from when the target value is actually reached.
- the machine learning model including the neural network model is updated using the air conditioning data and the extended data, and the activation time of the air conditioner is predicted based on the machine learning model including the neural network model.
- the acquisition unit 16 further acquires additional air conditioning data from another air conditioner 4 that is further installed in the room where the indoor unit 6 of the air conditioner 4 is installed.
- the updating unit 15 may update the machine learning model by further referring to the additional air conditioning data. According to the above configuration, even when a plurality of indoor units are installed in one room, the start time of the air conditioner can be predicted with higher accuracy than when the influence of another air conditioner is not considered. ..
- the change in the indoor temperature change graph is larger than when the air conditioning mode is executed, so the time required for the air conditioner to execute the heating mode and the air conditioner It is difficult to predict the required time for executing the cooling mode with the same learning model.
- the main purpose of the fourth embodiment is to solve such a problem.
- Embodiment 4 will be described below with reference to the drawings.
- the air conditioning control device 2 of FIG. 2 described in the first embodiment or the air conditioning control device 20 of FIG. 10 described in the second embodiment can be used. Therefore, description of the same configuration as the configuration described in the first or second embodiment will be omitted.
- the prediction unit 13 in the fourth embodiment predicts the start time by referring to the cooling machine learning model as the machine learning model.
- the prediction unit 13 predicts the activation time by referring to the machine learning model for heating.
- the updating unit 15 in the fourth embodiment updates the cooling machine learning model with reference to the cooling air conditioning data and the expansion data and the activation time.
- the updating unit 15 also updates the heating machine learning model with reference to the heating air conditioning data and the extended data and the start time.
- FIG. 16 is a flowchart showing a start time prediction method in the air conditioning control method according to the fourth embodiment.
- FIG. 17 is a flowchart showing an extended data generating method and a machine learning model updating method in the air conditioning control method according to the fourth embodiment.
- the prediction unit 13 acquires air conditioning data via the transmission/reception unit 11 (step ST50).
- the prediction unit 13 refers to the acquired air conditioning data and determines whether the operation mode of the air conditioner 4 is the cooling mode (step ST51).
- the prediction unit 13 determines that the operation mode of the air conditioner 4 is the cooling mode
- the prediction unit 13 proceeds to step ST52.
- the prediction unit 13 determines that the operation mode of the air conditioner 4 is not the cooling mode
- the prediction unit 13 proceeds to step ST53.
- step ST52 the prediction unit 13 generates a cooling learning model read flag that instructs the prediction unit 13 to read the cooling learning model.
- the prediction unit 13 generates a heating learning model read flag that instructs the prediction unit 13 to read the heating learning model.
- the prediction unit 13 reads the machine learning model for the operation mode indicated by the generated flag from the storage unit 12, inputs the air conditioning data into the machine learning model, and predicts the required time. (Step ST54). Next, the prediction unit 13 outputs the predicted required time to the air conditioning controller 3 via the transmission/reception unit 11.
- the prediction unit 13 outputs the predicted required time to the air conditioning controller 3 via the transmission/reception unit 11 (step ST55).
- the air conditioning controller 3 starts the air conditioner 4 suitable for the environmental value of the room to reach the target value from the required time predicted by the prediction unit 13 and the target time indicated by the air conditioning data. The time is determined, and the air conditioner 4 is controlled to start at the start time.
- the prediction unit 13 performs the air conditioning in the period from the start time determined by the air conditioning controller 3 and the time when the air conditioning data input to the machine learning model is acquired to the time when the target temperature is reached after the start time.
- the data and the heating learning model read flag generated in step ST52 or the cooling learning model read flag generated in ST53 are stored in the storage unit 12 in association with each other (step ST56).
- the acquisition unit 16 reads the air conditioning data, the activation time, and the heating learning model reading flag or the cooling learning model reading flag stored in the storage unit 12 by the prediction unit 13 in step ST56 described above (step ST60).
- the expansion unit 14 refers to the air conditioning data, the start time, and the heating learning model read flag or the cooling learning model read flag acquired by the acquisition unit 16, and generates the expanded data for the operation mode indicated by the flag. Yes (step ST61).
- the extension unit 14 outputs the generated extension data to the update unit 15.
- the updating unit 15 reads the machine learning model for the operation mode indicated by the flag, and refers to the air conditioning data and the start time, which are the actual data acquired by the acquiring unit 16, and the expanded data generated by the expanding unit 14. Then, the machine learning model is updated (step ST62). Next, the updating unit 15 stores the updated machine learning model for heating or the machine learning model for cooling in the storage unit 12 (step ST63).
- the updating unit 15 in the air conditioning control device updates the cooling machine learning model with reference to the cooling air conditioning data and the expansion data and the start time, or
- the machine learning model for heating is updated with reference to the air conditioning data and extended data for heating and the start time.
- the required time is higher than in the case where the heating machine learning model or the cooling machine learning model is not used even in a situation where the temperature changes are completely different, such as during cooling and heating. It can be predicted with accuracy.
- Embodiment 5 The functions of the prediction unit 13, the expansion unit 14, the update unit 15, and the acquisition unit 16 of the control unit 10 in the air conditioning control device 2 are realized by processing circuits. That is, the air conditioning control device 2 performs the processing from step ST1 to step ST4 shown in FIG. 3, the processing from step ST10 to step ST13 shown in FIG. 4, the processing from step ST30 to step ST34 shown in FIG. A processing circuit for executing the processing from step ST40 to step ST43 shown in FIG. 14, the processing from step ST50 to step ST56 shown in FIG. 16, or the processing from step ST60 to step ST63 shown in FIG.
- each function of the prediction unit 13, the expansion unit 14, the update unit 15, the acquisition unit 16, and the replacement unit 22 of the control unit 21 in the air conditioning control device 20 is realized by a processing circuit. That is, the air conditioning control device 20 includes a processing circuit for executing the processing from step ST20 to step ST24 shown in FIG. These processing circuits may be dedicated hardware, or may be a CPU (Central Processing Unit) that executes a program stored in the memory.
- CPU Central Processing Unit
- FIG. 18A is a block diagram showing a hardware configuration for realizing the functions of the air conditioning control device 2 or the air conditioning control device 20.
- FIG. 18B is a block diagram showing a hardware configuration that executes software that implements the functions of the air conditioning control device 2 or the air conditioning control device 20.
- the storage device 101 illustrated in FIGS. 18A and 18B functions as the storage unit 12.
- the storage device 101 may be a constituent element included in the air conditioning control device 2 or the air conditioning control device 20, but may be included in a device independent of the air conditioning control device.
- the storage device 101 may be a device on a communication network that can be accessed by the air conditioning control device 2 or the air conditioning control device 20.
- the processing circuit 100 may be, for example, a single circuit, a composite circuit, a programmed processor, a parallel programmed processor, or an ASIC (Application Specific Integrated). Circuit), FPGA (Field-Programmable Gate Array), or a combination thereof.
- ASIC Application Specific Integrated
- FPGA Field-Programmable Gate Array
- the functions of the prediction unit 13, the expansion unit 14, the update unit 15, and the acquisition unit 16 in the air conditioning control device 2 may be implemented by separate processing circuits, or these functions may be implemented by a single processing circuit. You may.
- the functions of the prediction unit 13, the expansion unit 14, the update unit 15, the acquisition unit 16, and the replacement unit 22 in the air conditioning control device 20 may be realized by separate processing circuits, or these functions may be combined into one. It may be realized by a processing circuit.
- the functions of the prediction unit 13, the expansion unit 14, the update unit 15, and the acquisition unit 16 in the air conditioning control device 2 are software, firmware, or software and firmware. It is realized by combination.
- the functions of the prediction unit 13, the expansion unit 14, the update unit 15, the acquisition unit 16, and the replacement unit 22 in the air conditioning control device 20 are also realized by software, firmware, or a combination of software and firmware.
- Software or firmware is described as a program and stored in the memory 103.
- the processor 102 realizes the respective functions of the prediction unit 13, the expansion unit 14, the update unit 15, and the acquisition unit 16 in the air conditioning control device 2 by reading and executing the program stored in the memory 103. That is, when the air conditioning control device 2 is executed by the processor 102, the processes of steps ST1 to ST4 shown in FIG. 3, the processes of steps ST10 to ST13 shown in FIG. 4, and the processes shown in FIG. The process from step ST30 to step ST34, the process from step ST40 to step ST43 shown in FIG. 14, the process from step ST50 to step ST56 shown in FIG. 16, or the process from step ST60 to step ST63 shown in FIG.
- a memory 103 is provided for storing a program in which processing is executed as a result.
- the memory 103 may be a computer-readable storage medium that stores a program that causes the computer to function as the prediction unit 13, the expansion unit 14, the update unit 15, and the acquisition unit 16. The same applies to the air conditioning control device 20.
- the memory 103 includes, for example, a nonvolatile memory such as a RAM (Random Access Memory), a ROM (Read Only Memory), a flash memory, an EPROM (Erasable Programmable Read Only Memory), an EEPROM (Electrically-EPROM), or the like. This includes magnetic disks, flexible disks, optical disks, compact disks, mini disks, DVDs, etc.
- Part of the functions of the prediction unit 13, the expansion unit 14, the update unit 15, and the acquisition unit 16 may be realized by dedicated hardware, and a part thereof may be realized by software or firmware.
- the prediction unit 13 realizes the function with a processing circuit as dedicated hardware.
- the functions of the expansion unit 14 and the updating unit 15 may be realized by the processor 102 reading and executing a program stored in the memory 103.
- the processing circuit can realize each of the above functions by hardware, software, firmware, or a combination thereof.
- the air conditioning control device can reduce the time cost of collecting data used for machine learning, it can be used for an air conditioning control device that controls an air conditioner based on machine learning.
- 1 air conditioning control system 1 air conditioning control system, 2 air conditioning control device, 3 air conditioning controller, 4 air conditioner, 5 outdoor unit, 6 indoor unit, 10 control unit, 11 transmission/reception unit, 12 storage unit, 13 prediction unit, 14 expansion unit, 15 update unit, 16 acquisition unit, 17 machine learning unit, 20 air conditioning control device, 21 control unit, 22 replacement unit, 23 machine learning unit, 100 processing circuit, 101 storage device, 102 processor, 103 memory.
Landscapes
- Engineering & Computer Science (AREA)
- Artificial Intelligence (AREA)
- Physics & Mathematics (AREA)
- Evolutionary Computation (AREA)
- General Engineering & Computer Science (AREA)
- Signal Processing (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- Chemical & Material Sciences (AREA)
- Software Systems (AREA)
- Health & Medical Sciences (AREA)
- Computer Vision & Pattern Recognition (AREA)
- Medical Informatics (AREA)
- General Physics & Mathematics (AREA)
- Automation & Control Theory (AREA)
- Fuzzy Systems (AREA)
- Mathematical Physics (AREA)
- Air Conditioning Control Device (AREA)
Abstract
空調制御装置(2)は、空調機が取得した空調データ、及び当該空調データを機械学習モデルに入力して予測された空調機の起動時刻を取得する取得部(16)と、取得部が取得した空調データ及び起動時刻を参照して拡張データを生成する拡張部(14)と、取得部が取得した空調データ及び起動時刻、並びに、拡張部が生成した拡張データを参照して機械学習モデルを更新する更新部(15)と、を備えている。
Description
本発明は、機械学習モデルに基づいて空調機を制御する空調制御装置に関する。
消費電力を抑えつつ、ユーザにとって快適な空調を実行するように空調機を制御する技術の例として、例えば、特許文献1に記載の空調制御装置の技術が挙げられる。当該空調制御装置は、室温変化の履歴を示す室温履歴情報を、空調機の動作履歴情報に対応付け、これらの情報に基づいて、空調機が温度を調節しない場合の室温をオフ時予測室温として予測し、当該オフ時予測室温に基づいて、目標時刻において室温を目標温度に到達させるための制御パラメータを決定する。
上記のオフ時予測室温の予測について、より詳細には、特許文献1に記載の空調制御装置は、機械学習を用い、室温履歴情報と動作履歴情報とに基づいて、空調機が温度を調節しない場合の居室の将来の室温を予測するためのオフ時室温予測モデルを作成し、当該オフ時室温予測モデルを用いて、オフ時予測室温を予測する。
しかし、特許文献1に記載の空調制御装置におけるオフ時室温予測モデルの作成は、十分に蓄えられた室温履歴情報及び動作履歴情報のデータが存在することを前提としている。一般に、機械学習に必要なデータ量は膨大であり、空調制御装置が機械学習を行う上で必ずしも必要なデータ量を事前に保持しているとは限らない。また、空調制御装置が必要なデータを一から収集しようとすると時間を要するという問題がある。
この発明は、上記のような問題点を解決するためになされたものであり、機械学習モデルに基づいて空調機を制御する空調制御装置において、機械学習に用いられるデータを収集するための時間的コストを削減することができる技術を提供することを目的とする。
この発明に係る空調制御装置は、空調機が取得した空調データ、及び当該空調データを機械学習モデルに入力して予測された空調機の起動時刻を取得する取得部と、取得部が取得した空調データ及び起動時刻を参照して拡張データを生成する拡張部と、取得部が取得した空調データ及び起動時刻、並びに、拡張部が生成した拡張データを参照して機械学習モデルを更新する更新部と、を備えている。
この発明によれば、機械学習に基づいて空調機を制御する空調制御装置において、機械学習に用いられるデータを収集する時間的コストを削減することができる。
以下、この発明をより詳細に説明するため、この発明を実施するための形態について、添付の図面に従って説明する。
実施の形態1.
図1は、実施の形態1に係る空調制御システム1の構成を示すブロック図である。図1が示すように、空調制御システム1は、空調制御装置2、空調コントローラ3、複数の室外機5、及び複数の室内機6を備えている。なお、図1が示す構成は一例であり、本実施形態に係る空調制御システム1の各機器の台数などは、この例の各機器の台数に限定されない。
実施の形態1.
図1は、実施の形態1に係る空調制御システム1の構成を示すブロック図である。図1が示すように、空調制御システム1は、空調制御装置2、空調コントローラ3、複数の室外機5、及び複数の室内機6を備えている。なお、図1が示す構成は一例であり、本実施形態に係る空調制御システム1の各機器の台数などは、この例の各機器の台数に限定されない。
室外機5は、それぞれ1台の室外機5に対して複数の室内機6が接続されており、個々の室外機5は、室内機6とともに室内の空調を行う空調機4を構成している。各室外機5は、当該室外機5が設置された室外における環境情報を取得するセンサを備えている。各室外機5は、取得した環境情報を空調データとして空調コントローラ3に出力する。なお、環境情報の例として、時間毎の室外温度及び室外湿度が挙げられる。
各室内機6は、当該室内機6が設置された室内における環境情報を取得するセンサを備えている。また、各室内機6は、ユーザから設定情報を受け付ける受付部を備えている。各室内機6は、取得した環境情報、受け付けた設定情報、及び空調機4の運転状態を示す運転情報を、空調データとして室外機5を介して空調コントローラ3に出力する。なお、環境情報の例として、時間毎の室内温度及び室内湿度が挙げられる。設定情報は、少なくとも、室内機6が設置された部屋の環境値を目標値に到達させる目標時刻を含み、他の設定情報の例として、ユーザによって設定された目標温度、目標湿度が挙げられる。運転情報の例として、空調機4の起動及び停止に関する情報、並びに、空調機4の冷房モード、暖房モード及び除湿モードの運転モードが挙げられる。
空調コントローラ3は、複数の室外機5と複数の室内機6とを集中コントロールするコントローラである。空調コントローラ3は、室外機5及び室内機6から空調データを取得する。空調コントローラ3は、複数の室外機5及び複数の室内機6から取得した空調データを集約した空調データを、空調制御装置2に送信する。
図2は、空調制御装置2の構成を図1よりも詳細に示したブロック図である。図2が示すように、空調制御装置2は、制御部10、送受信部11、及び記憶部12を備えている。制御部10は、予測部13及び機械学習部17を備えている。機械学習部17は、拡張部14、更新部15、及び取得部16を備えている。
送受信部11は、空調コントローラ3から空調データを受信する。送受信部11は、受信した空調データを、予測部13に出力する。
予測部13は、送受信部11を介して空調データを取得する。また、予測部13は、記憶部12から、当該記憶部12に予め保存された機械学習モデルを読み込む。予測部13は、当該機械学習モデルに、取得した空調データを入力し、空調機4を起動させてから目標時刻に部屋の環境値が目標値に到達するまでに要する所要時間(以下、単に「所要時間」ともいう。)を予測する。なお、部屋の環境値は、上述の室内温度、室内湿度等であり得る。目標値は、上述の目標温度、目標湿度等であり得る。予測部13は、予測した所要時間を、送受信部11を介して空調コントローラ3に出力する。空調コントローラ3は、当該所要時間と、上述の目標時刻とから、部屋の環境値が目標値に到達するのに適した空調機4の起動時刻を決定し、当該起動時刻に空調機4を起動させるように制御する。また、予測部13は、予測した所要時間に基づく起動時刻と、用いた空調データとを対応付けて記憶部12に保存する。
なお、本実施形態では、空調コントローラ3が起動時刻を決定し、当該起動時刻に空調機4を起動させるように制御する構成について説明するが、これらの機能を空調制御装置2が備えている構成も本実施形態に含まれる。その場合、空調制御装置2は、所要時間と目標時刻とから、部屋の環境値が目標値に到達するのに適した空調機4の起動時刻を決定し、当該起動時刻に空調機4を起動させるように制御する起動部をさらに備えている。本実施形態において、上述の空調機4の起動時刻は、上述の所要時間と目標時刻とから単純に求まる数値であることから、所要時間を予測することは、空調機4の起動時刻を予測することと、実質的に同義である。すなわち、「起動時刻の予測」との表現には、所要時間の予測も含まれることとする。
取得部16は、空調機4が取得した空調データ、及び当該空調データを機械学習モデルに入力して予測された空調機4の起動時刻を取得するものである。取得部16は、記憶部12から、当該記憶部12に予め保存された空調データ及び起動時刻を読み込む。
拡張部14は、取得部16が取得した空調データ及び起動時刻を参照して拡張データを生成する。拡張部14は、生成した拡張データを更新部15に出力する。また、拡張部14は、生成した拡張データを、取得部16を介して記憶部12に保存する。拡張部14による拡張データの生成方法の具体例については後述する。
拡張部14は、取得部16が取得した空調データ及び起動時刻を参照して拡張データを生成する。拡張部14は、生成した拡張データを更新部15に出力する。また、拡張部14は、生成した拡張データを、取得部16を介して記憶部12に保存する。拡張部14による拡張データの生成方法の具体例については後述する。
更新部15は、取得部16が取得した空調データ及び起動時刻、並びに、拡張部14が生成した拡張データを参照して機械学習モデルを更新する。更新部15は、更新した機械学習モデルを記憶部12に保存する。
次に空調制御装置2の動作について図面を参照して説明する。
図3は、実施の形態1に係る空調制御装置2による空調制御方法における起動時刻予測方法を示すフローチャートである。図4は、実施の形態1に係る空調制御方法における拡張データ生成方法及び機械学習モデル更新方法を示すフローチャートである。
図3は、実施の形態1に係る空調制御装置2による空調制御方法における起動時刻予測方法を示すフローチャートである。図4は、実施の形態1に係る空調制御方法における拡張データ生成方法及び機械学習モデル更新方法を示すフローチャートである。
まず、図3のフローチャートについて説明する。予測部13は、送受信部11を介して空調データを取得する(ステップST1)。また、予測部13は、記憶部12から、予め保存された機械学習モデルを読み込む。例えば、ステップST1において、予測部13は、送受信部11を介して、空調データとして室内温度、室外温度、及び目標温度を取得する。次に、予測部13は、「室内温度と目標温度との差」及び「室内温度と室外温度との差」を計算する。
次に、予測部13は、読み込んだ機械学習モデルに、取得した空調データを入力し、所要時間を予測する(ステップST2)。予測部13が所要時間を予測するために機械学習モデルに入力する空調データは、取得した空調データ自体であってもよいし、当該空調データを加工して得られるデータであってもよい。例えば、ステップST2において、予測部13は、読み込んだ機械学習モデルに、計算した「室内温度と目標温度との差」及び「室内温度と室外温度との差」を入力し、所要時間を予測する。すなわち、機械学習モデルに入力される「空調データ」には、空調データ自体、又は、空調データを加工して得られるデータが含まれる。
次に、予測部13は、予測した所要時間を、送受信部11を介して空調コントローラ3に出力する(ステップST3)。当該所要時間を取得した後に、空調コントローラ3は、予測部13が予測した所要時間と空調データが示す目標時刻とから、部屋の環境値が目標値に到達するのに適した空調機4の起動時刻を決定し、当該起動時刻に空調機4を起動させるように制御する。例えば、空調コントローラ3は、所要時間と目標時刻とから、部屋の温度が目標温度に到達するのに適した空調機4の起動時刻を決定し、当該起動時刻に空調機4を起動させるように制御する。
次に、予測部13は、空調コントローラ3が決定した起動時刻と、空調データとを対応付けて記憶部12に保存する(ステップST4)。予測部13が記憶部12に保存する空調データには、機械学習モデルに入力された空調データが取得された時刻から、起動時刻を経て、目標温度又は目標湿度に達した時刻までの期間の空調データが含まれる。記憶部12に保存される当該期間の空調データは、実際に室内機6のセンサ及び室外機5のセンサが取得したデータである。以下、実際に室内機6のセンサ及び室外機5のセンサが取得したデータを「実データ」という。例えば、ステップST4において、予測部13は、起動時刻と、上記の期間の室内温度及び室外温度とを対応付けて記憶部12に保存する。予測部13は、起動時刻と、上記期間の空調データとを、送受信部11を介して、空調コントローラ3から取得すればよい。
次に、図4のフローチャートについて説明する。
取得部16は、上述のステップST4において予測部13が記憶部12に保存した空調データ及び起動時刻を読み込む(ステップST10)。例えば、ステップST10において、取得部16は、記憶部12に保存された、起動時刻とこれに対応付けられた室内温度及び室外温度とを読み込む。
取得部16は、上述のステップST4において予測部13が記憶部12に保存した空調データ及び起動時刻を読み込む(ステップST10)。例えば、ステップST10において、取得部16は、記憶部12に保存された、起動時刻とこれに対応付けられた室内温度及び室外温度とを読み込む。
次に、拡張部14は、取得部16が取得した空調データ及び起動時刻を参照して拡張データを生成する(ステップST11)。拡張部14は、生成した拡張データを更新部15に出力する。例えば、ステップST11において、拡張部14は、取得部16が取得した空調データ及び起動時刻のデータ数を機械学習に必要な数だけ拡張する。拡張方法の例としては、例えば、拡張部14は、空調データの数値及び起動時刻の数値に対して一定数値ずつ加算することでデータ数を拡張する。
次に、更新部15は、予め記憶部12に保存された機械学習モデルを読み込み、取得部16が取得した空調データ及び起動時刻、並びに、拡張部14が生成した拡張データを参照して、当該機械学習モデルを更新する(ステップST12)。例えば、ステップST12において、更新部15は、取得部16が取得した室内温度及び室外温度並びに起動時刻と、これらの拡張データとを参照して、機械学習モデルを更新する。
次に、更新部15は、更新した機械学習モデルを記憶部12に保存する(ステップST13)。
次に、更新部15は、更新した機械学習モデルを記憶部12に保存する(ステップST13)。
次に、上記のステップST11における拡張データ生成方法の具体例について図面を参照して説明する。
図5及び図6は、実施の形態1に係る空調制御装置2による空調制御方法における拡張データ生成方法の第1の具体例を説明するためのグラフである。図5及び図6のグラフにおける縦軸は、室内温度を示し、横軸は、時間を示している。
図5及び図6は、実施の形態1に係る空調制御装置2による空調制御方法における拡張データ生成方法の第1の具体例を説明するためのグラフである。図5及び図6のグラフにおける縦軸は、室内温度を示し、横軸は、時間を示している。
より詳細には、図5は、室内機6のセンサが取得した室内温度の温度変化グラフであり、グラフ上の各データは、空調制御装置2が一定間隔の時刻毎に室内温度をモニターしたものである。なお、図5におけるグラフ上の複数の点が示す一定間隔の時刻毎の室内温度のそれぞれに対して、対応する時刻のセンサ値としての室外温度が存在する。予測部13は、上述のステップST4において、一定間隔の時刻毎に、当該時刻における室内温度と室外温度とを1レコードの空調データとして記憶部12に保存する。
空調機4が冷房モードに設定されている場合、図5が示すように、空調機4を起動時刻に起動させてから、室内温度は低下し続ける。室内温度が目標温度に到達したら、空調制御装置2は、空調コントローラ3を介して空調機4を停止させる。このような動作に対し、データとしては、空調機4を起動させてから目標温度に到達するまでの複数レコードからなる一連の空調データが存在する。しかし、1つの起動時刻と、当該1つの起動時刻の決定に使用された所要時間を予測するために機械学習モデルに入力された空調データとに対応するデータセットとしては、1つのデータセットしか存在せず、当該データセットのみでは、更新部15が上述のステップST12において機械学習モデルを更新するために用いるデータとしては不十分である。そこで、上述のステップST11において、拡張部14は、取得部16が記憶部12から読み込んだ空調データ及び起動時刻を参照して拡張データを生成する。
図6は、拡張データ生成方法をより具体的に説明するためのグラフである。図6の横軸における実際の起動時刻と縦軸における起動時の室内温度とに対応する左端の点は、予測部13がステップST4において記憶部12に保存したデータを示している。
拡張部14は、ステップST11において、起動時刻とは別の時刻における空調データを、仮想的な起動時刻における空調データとみなすことにより、拡張データを生成する。より詳細には、拡張部14は、ステップST11において、実際に空調機4が起動してから室内温度が目標温度に到達するまでの一連の空調データを参照して、任意の時刻を仮想の起動時刻としてみなし、当該任意の時刻における空調データを、仮想の起動時刻における空調データとしてみなす。次に、拡張部14は、起動時刻が何れの時刻であっても室内温度が図5に示すようなグラフに沿った温度変化をすると仮定して、仮想の起動時刻に空調機4が起動した場合、実際の起動時刻に空調機4が起動した場合と同様に、室内温度が実際の目標温度到達時刻と同じ時刻に目標温度に到達するとみなすことにより、拡張データを生成する。より詳細には、拡張部14は、実際の起動時刻と仮想の起動時刻との差に基づいて、仮想の起動時刻から目標温度到達時刻までの所要時間を算出する。
図6を参照して説明すると、実際に上述のステップST3において空調コントローラ3が空調機4を起動した起動時刻における空調データは、7:00の起動時刻における空調データである。しかし、拡張部14は、グラフ上の7:05における空調データ、及び7:10における空調データをそれぞれ仮想の起動時刻における空調データとみなし、かつ、これら3つの起動時刻に空調機4を起動したと仮定した場合の各室内温度が7:15に目標温度に到達したものとみなして、拡張データを生成する。より詳細には、拡張部14は、実際の起動時刻7:00と仮想の起動時刻7:05又は7:10との差に基づいて、仮想の起動時刻7:05又は7:10から7:15までの所要時間を算出することにより、拡張データを生成する。つまり、拡張後のデータセットは、以下のようになる。
実データ:実際の起動時刻7:00と、当該実際の起動時刻における空調データと、当該実際の起動時刻から目標温度到達時刻までの所要時間15分とのデータセット
第1の拡張データ:仮想の起動時刻7:05と、当該仮想の起動時刻における空調データと、仮想の起動時刻から目標温度到達時刻までの所要時間10分とのデータセット
第2の拡張データ:仮想の起動時刻7:10と、当該仮想の起動時刻における空調データと、仮想の起動時刻から目標温度到達時刻までの所要時間5分とのデータセット
上記の例では本来1つしかない空調機起動時の空調データと所要時間とのデータセットを3つに拡張することができる。このように、第1の具体例では、空調による室内温度変化の知見を考慮した拡張データの生成により、実データのみを学習データとする場合に比べ学習データ数を拡張でき、学習データ収集の時間的コストを抑えることができる。
実データ:実際の起動時刻7:00と、当該実際の起動時刻における空調データと、当該実際の起動時刻から目標温度到達時刻までの所要時間15分とのデータセット
第1の拡張データ:仮想の起動時刻7:05と、当該仮想の起動時刻における空調データと、仮想の起動時刻から目標温度到達時刻までの所要時間10分とのデータセット
第2の拡張データ:仮想の起動時刻7:10と、当該仮想の起動時刻における空調データと、仮想の起動時刻から目標温度到達時刻までの所要時間5分とのデータセット
上記の例では本来1つしかない空調機起動時の空調データと所要時間とのデータセットを3つに拡張することができる。このように、第1の具体例では、空調による室内温度変化の知見を考慮した拡張データの生成により、実データのみを学習データとする場合に比べ学習データ数を拡張でき、学習データ収集の時間的コストを抑えることができる。
次に、上述のステップST11における拡張データ生成方法の第2の具体例について図面を参照して説明する。
上記の拡張データ生成方法の第1の具体例では、拡張部14は、空調データを参照して、任意の時刻を仮想の起動時刻とみなし、当該任意の時刻における空調データを、仮想の起動時刻における空調データとみなすことにより学習データ数の拡張を行った。しかし、このような具体例においても、拡張できるデータ数には限界がある。そこで、以下で説明する具体例では、図5に示したような室内温度変化グラフを拡張することで学習データ数を拡張する。
上記の拡張データ生成方法の第1の具体例では、拡張部14は、空調データを参照して、任意の時刻を仮想の起動時刻とみなし、当該任意の時刻における空調データを、仮想の起動時刻における空調データとみなすことにより学習データ数の拡張を行った。しかし、このような具体例においても、拡張できるデータ数には限界がある。そこで、以下で説明する具体例では、図5に示したような室内温度変化グラフを拡張することで学習データ数を拡張する。
図7は、実施の形態1に係る空調制御方法における拡張データ生成方法の第2の具体例を説明するためのグラフである。図7のグラフは、3次元グラフであり、1つ目の軸は、室内温度を示し、2つ目の軸は、時間を示し、3つ目の軸は、室外温度を示している。図7におけるグラフAは、実際に室内機6のセンサが取得した室内温度と室外機5のセンサが取得した室外温度との温度変化グラフであり、グラフ上の各データは、空調制御装置2が一定間隔の時刻毎に室内温度及び室外温度をモニターしたものである。図8は、図7が示すグラフAと同様に、実際に室内機6のセンサが取得した室内温度と室外機5のセンサが取得した室外温度との温度変化グラフである。
一般的に、空調機4によって空調が行われた室内の時間温度変化グラフは、室内温度と室外温度との差が異なる場合、グラフの傾きが異なり、室内温度と室外温度との差からグラフの傾きが決まる。図8のグラフを例にとって説明すると、室外温度は、時間とともに上昇しており、室内温度は、空調機4の運転モードが冷房モードであることによって時間とともに低下している。これにより、室内温度と室外温度との差は、時間と共に大きくなる。当該差が大きくなればなるほど冷房が効きづらくなり、室内の温度変化グラフの傾きは時間と共に緩やかになる。
本実施形態に係る拡張データ生成方法の第2の具体例は、上記のような空調の知見を考慮したものである。まず、拡張部14は、上述のステップST11において、実際に空調機4が起動してから室内温度が目標温度に到達するまでの一連の空調データを参照して、時間毎の「室内温度と室外温度との差」とその時の「室内温度の温度変化グラフの傾き」とを算出し、これらを対応付ける。次に、拡張部14は、算出した「室内温度と室外温度との差」に対応する「室内温度の温度変化グラフの傾き」を、仮想の「室内温度と室外温度との差」に対応する「室内温度の温度変化グラフの傾き」とみなすことにより、当該傾きの線形モデルを生成する。
より具体的には、図7のグラフを例にとって説明すると、拡張部14は、実データであるグラフA上の室外温度30℃及び室内温度25℃の差と、室内温度25℃の時の当該グラフAの傾きとを算出し、これらを対応付ける。次に、拡張部14は、当該傾きを、仮想の「室外温度と室内温度との差」5℃に対応する「室内温度の温度変化グラフの傾き」とみなして、線形モデルBを生成する。線形モデルBは、起動時刻において、室外温度が33℃、室内温度が28℃であり、「室外温度と室内温度との差」が仮想の「室外温度と室内温度との差」5℃と同じ値である。線形モデルBは、傾きが仮想の「室外温度と室内温度との差」5℃に対応する傾きであり、線形性を有する。
また、拡張部14は、実データであるグラフA上の室外温度30℃及び室内温度23℃の差と、室内温度23℃の時の当該グラフAの傾きとを算出し、これらを対応付ける。次に、拡張部14は、当該傾きを、仮想の「室外温度と室内温度との差」7℃に対応する「室内温度の温度変化グラフの傾き」とみなして、線形モデルCを生成する。線形モデルCは、起動時刻において、室外温度が35℃、室内温度が28℃であり、「室外温度と室内温度との差」が仮想の「室外温度と室内温度との差」7℃と同じ値である。線形モデルCは、傾きが仮想の「室外温度と室内温度との差」7℃に対応する傾きであり、線形性を有する。
なお、上記の第2の具体例の拡張データ生成方法は、第1の具体例の拡張データ生成方法と組み合わせて実行されてもよい。これにより、実データのみを学習データとする場合に比べ大幅に学習データ数を拡張でき、学習データ収集の時間的コストを抑えることができる。
次に、実施の形態1に係る空調制御装置2による空調制御の結果の具体例について図面を参照して説明する。
図9は、実施の形態1に係る空調制御装置2による空調制御の結果を説明するためのグラフである。図9のグラフにおける縦軸は、室内温度を示し、横軸は、時間を示す。3つの実線は、室内機6が1台ずつ設置された各部屋の温度変化グラフを表している。なお、当該具体例では、複数の室内機6がそれぞれ室外機5ともに空調機4を構成しているものとする。
図9は、実施の形態1に係る空調制御装置2による空調制御の結果を説明するためのグラフである。図9のグラフにおける縦軸は、室内温度を示し、横軸は、時間を示す。3つの実線は、室内機6が1台ずつ設置された各部屋の温度変化グラフを表している。なお、当該具体例では、複数の室内機6がそれぞれ室外機5ともに空調機4を構成しているものとする。
まず、1つ目の部屋では、上述のステップST1において、予測部13は、当該部屋の室内温度、室外温度及び目標温度を空調データとして取得する。次に、ステップST2において、予測部13は、取得した空調データをもとに、「室内温度と目標温度との差」及び「室内温度と室外温度との差」を計算し、計算結果としての空調データを機械学習モデルに入力することにより、所要時間を予測する。次に、ステップST3において、予測部13は、予測した所要時間を、送受信部11を介して空調コントローラ3に出力する。空調コントローラ3は、予測部13が予測した所要時間と空調データが示す目標時刻とから、部屋の室内温度が目標温度に到達するのに適した空調機4の起動時刻を7:30と決定し、当該起動時刻に空調機4を起動させるように制御する。
空調制御装置2は、上記の各工程を、別の部屋についても実行し、2つ目の部屋に設置された空調機4の起動時刻を7:45、3つ目の部屋に設置された空調機4の起動時刻を8:00として、各部屋の空調機4を制御する。次に、図9が示すように、各部屋の室内温度が8:30に目標温度に到達したら、空調制御装置2は、各空調機4を停止させる。図9の棒グラフは、3台の空調機4によって消費された電力量を示す。図9の棒グラフが示すように、各室内機の起動時刻に応じて、消費電力量が段階的に増加している。このような消費電力量が段階的に増加する理由としては、複数の室内機6の各起動時刻が異なることにより、稼働する室内機6の数が時間とともに増加するためである。複数の室内機6の各起動時刻が異なる理由としては、室内機6が設置されたそれぞれの環境、例えば部屋の大きさの違いなどが反映された空調データに基づく機械学習モデルを参照して、空調制御装置2が各空調機4の起動時刻を予測するためである。空調制御装置2は、このように消費電力量を分散させることで、ピーク電力を削減することができる。
以上のように、実施の形態1に係る空調制御装置2は、空調機4が取得した空調データ、及び当該空調データを機械学習モデルに入力して予測された空調機4の起動時刻を取得する取得部16と、取得部16が取得した空調データ及び起動時刻を参照して拡張データを生成する拡張部14と、取得部16が取得した空調データ及び起動時刻、並びに、拡張部14が生成した拡張データを参照して機械学習モデルを更新する更新部15と、を備えている。
上記の構成によれば、機械学習に用いるために取得した実データのみの空調データをそのまま学習に用いるのではなく、当該空調データに基づいて拡張データを生成することにより学習データ数を拡張することができ、当該拡張データをさらに用いて機械学習モデルを更新する。これにより、機械学習に用いられるデータを収集するための時間的コストを抑えることができる。
上記の構成によれば、機械学習に用いるために取得した実データのみの空調データをそのまま学習に用いるのではなく、当該空調データに基づいて拡張データを生成することにより学習データ数を拡張することができ、当該拡張データをさらに用いて機械学習モデルを更新する。これにより、機械学習に用いられるデータを収集するための時間的コストを抑えることができる。
実施の形態1の一態様によれば、空調制御装置2は、取得部16が、空調データとして、空調機4の室内機6が設置された部屋の室内温度を少なくとも取得し、起動時刻として、室内温度が目標時刻に目標温度に到達するのに適する起動時刻として予測された起動時刻を取得してもよい。
上記の構成によれば、起動時刻及び室内温度の拡張データを生成し、当該拡張データをさらに用いて機械学習モデルを更新する。これにより、機械学習に用いられる起動時刻及び室内温度のデータを収集するための時間的コストを抑えることができる。
上記の構成によれば、起動時刻及び室内温度の拡張データを生成し、当該拡張データをさらに用いて機械学習モデルを更新する。これにより、機械学習に用いられる起動時刻及び室内温度のデータを収集するための時間的コストを抑えることができる。
実施の形態1の一態様によれば、空調制御装置2は、拡張部14は、空調機4が設置された部屋の環境値が起動時刻から目標値に到達する時刻までの空調データを参照して、任意の時刻を仮想の起動時刻としてみなし、当該任意の時刻における空調データを当該仮想の起動時刻における空調データとしてみなすことにより、起動時刻に対応する空調データの拡張データを生成してもよい。
上記の構成によれば、起動時刻に対応する空調データを拡張することができ、当該データを収集するための時間的コストを抑えることができる。
上記の構成によれば、起動時刻に対応する空調データを拡張することができ、当該データを収集するための時間的コストを抑えることができる。
実施の形態1の一態様によれば、空調制御装置2は、取得部16は、空調データとして、空調機4の室内機6が設置された部屋の室内環境値、及び空調機4の室外機5が設置された室外の室外環境値を取得し、拡張部14は、起動時刻から室内環境値が目標値に到達する時刻までの期間の室内環境値及び室外環境値を参照して、当該期間内におけるある時刻の、室内環境値及び室外環境値の差と、室内環境値変化グラフの傾きとを算出し、当該差に対応付けられた当該傾きの線形モデルを、室内環境値変化グラフの拡張データとして生成してもよい。
上記の構成によれば、室内環境値及び室外環境値の差に対応付けられた、室内環境値変化グラフを拡張することができ、当該グラフのデータを収集するための時間的コストを抑えることができる。
上記の構成によれば、室内環境値及び室外環境値の差に対応付けられた、室内環境値変化グラフを拡張することができ、当該グラフのデータを収集するための時間的コストを抑えることができる。
実施の形態の一態様によれば、空調制御装置2は、機械学習モデルに空調データを入力し、空調機4の起動時刻を予測する予測部13をさらに備え、予測部13が予測した起動時刻に空調機4を起動させてもよい。
上記の構成によれば、拡張データにさらに基づく機械学習モデルから起動時刻を予測し、当該起動時刻に空調機を起動させることができる。
上記の構成によれば、拡張データにさらに基づく機械学習モデルから起動時刻を予測し、当該起動時刻に空調機を起動させることができる。
実施の形態2.
上述の実施の形態1では、拡張部14が空調データ及び起動時間を参照して拡張データを生成することを説明した。しかし、拡張データは、実データである空調データと比較して信頼性が低い。従って、ノイズになる可能性がある拡張データの使用は最低限にする必要がある。実施の形態2の主な目的は、このような課題を解決することである。
上述の実施の形態1では、拡張部14が空調データ及び起動時間を参照して拡張データを生成することを説明した。しかし、拡張データは、実データである空調データと比較して信頼性が低い。従って、ノイズになる可能性がある拡張データの使用は最低限にする必要がある。実施の形態2の主な目的は、このような課題を解決することである。
以下で、実施の形態2について図面を参照して説明する。なお、実施の形態1で説明した構成と同様の機能を有する構成については同一の符号を付し、その説明を省略する。
図10は、実施の形態2に係る空調制御装置20の構成を示すブロック図である。図10が示すように、空調制御装置20は、実施の形態1に係る空調制御装置2の構成に加えて、制御部21の機械学習部23が置換部22をさらに備えている。
置換部22は、拡張部14が拡張データの生成に用いた実データの空調データと、拡張部14が生成した拡張データとを拡張部14又は記憶部12から取得し、当該空調データと当該拡張データとを比較して、当該比較結果に基づいて、拡張データを空調データに置き換える。より詳細には、置換部22は、空調データと拡張データとを比較して、空調データに類似した拡張データを当該空調データに置き換える。置換部22は、置き換えた空調データを含めた空調データと置き換えなかった拡張データとを更新部15に出力する。
図10は、実施の形態2に係る空調制御装置20の構成を示すブロック図である。図10が示すように、空調制御装置20は、実施の形態1に係る空調制御装置2の構成に加えて、制御部21の機械学習部23が置換部22をさらに備えている。
置換部22は、拡張部14が拡張データの生成に用いた実データの空調データと、拡張部14が生成した拡張データとを拡張部14又は記憶部12から取得し、当該空調データと当該拡張データとを比較して、当該比較結果に基づいて、拡張データを空調データに置き換える。より詳細には、置換部22は、空調データと拡張データとを比較して、空調データに類似した拡張データを当該空調データに置き換える。置換部22は、置き換えた空調データを含めた空調データと置き換えなかった拡張データとを更新部15に出力する。
次に、実施の形態2に係る空調制御装置20の動作について図面を参照して説明する。なお、実施の形態2に係る起動時刻予測方法は、実施の形態1に係る起動時刻予測方法のステップST1からステップST4と同様である。そのため、実施の形態2に係る起動時刻予測方法についての説明を省略する。
図11は、実施の形態2に係る空調制御方法における拡張データ生成方法及び機械学習モデル更新方法を示すフローチャートである。なお、実施の形態2に係る空調制御装置20の空調制御方法のステップST20、ST21、及びST24は、それぞれ、図4を参照して説明した空調制御方法のステップST10、ST11、及びST13と同様である。そのため、ステップST20、ST21、及びST24については、説明を省略する。
図11が示すように、ステップST22において、置換部22は、実データである空調データと、拡張部14が生成した拡張データとを比較し、当該比較結果に基づいて、拡張データを空調データに置き換える。次に、ステップST23において、更新部15は、置換部22によるステップST22を経た空調データ及び拡張データを参照して機械学習モデルを更新する。
例えば、ステップST22において、置換部22は、拡張部14が拡張データの生成に用いた空調データと、拡張部14が生成した拡張データとを比較し、当該比較結果に基づいて、拡張データを空調データに置き換えてもよい。また、ステップST22において、置換部22は、置換していない拡張データを一時的に記憶部12に保存してもよい。その場合、後に、予測部13が新たに空調データを取得し次第、置換部22は、当該空調データと、記憶部12に保存した拡張データとを比較し、当該比較結果に基づいて、拡張データを空調データに置き換えてもよい。これにより、データ収集期間を短縮できる。
次に、上記のステップST22の拡張データ置換方法の具体例について説明する。
図12は、実施の形態2に係る空調制御装置20による空調制御方法における拡張データ置換方法の具体例を説明するための図である。図12が示す4つのグリッドに付随した矢印は、それぞれ、置換部22がステップST22の工程を実行した順序を示す。これらのグリッドの縦軸は、「室内温度と目標温度との差」、横軸は、「室内温度と室外温度との差」を示す。当該例では、「室内温度と目標温度との差」及び「室内温度と室外温度との差」が1レコードの空調データ又は拡張データを構成する。これらのグリッド上の「●」は、実データである空調データを示し、「○」は、拡張データを示す。
図12は、実施の形態2に係る空調制御装置20による空調制御方法における拡張データ置換方法の具体例を説明するための図である。図12が示す4つのグリッドに付随した矢印は、それぞれ、置換部22がステップST22の工程を実行した順序を示す。これらのグリッドの縦軸は、「室内温度と目標温度との差」、横軸は、「室内温度と室外温度との差」を示す。当該例では、「室内温度と目標温度との差」及び「室内温度と室外温度との差」が1レコードの空調データ又は拡張データを構成する。これらのグリッド上の「●」は、実データである空調データを示し、「○」は、拡張データを示す。
まず、ステップST22において、図12の(1)が示すように、置換部22は、縦軸のデータと横軸のデータとを定義したグリッド上に、拡張部14から取得した実データの空調データと拡張データとをプロットする。なお、当該具体例では、置換部22が用いる1レコードの空調データ又は拡張データを、「室内温度と目標温度との差」及び「室内温度と室外温度との差」から構成されるデータとしたが、これに限定されず、当該データは、環境値又は目標値に基づいた数値であればよい。また、当該具体例のように、1レコードのデータが、環境値又は目標値にそれぞれ基づいた2つのデータから構成される場合、拡張部14は、これら2つのデータを縦軸及び横軸に持つ格子状グリッドを定義する。なお、置換部22が用いる空調データ及び拡張データの次元数は、2次元に限定されない。当該次元数は、3次元であってもよく、その場合、グリッドは、3軸の立方体状グリッドであり得る。置換部22は、更新部15が機械学習モデルの更新のために入力する空調データ及び拡張データの次元数に合わせて、グリッドの次元数を拡張してもよい。置換部22は、グリッドの間隔である軸目盛を、空調データ及び拡張データの種類に応じて変更してもよい。
次に、図12の(2)が示すように、置換部22は、グリッド上の空調データと拡張データとを比較し、空調データと同一の枠内にある拡張データを、当該空調データの類似データであるとみなし、拡張データを空調データで置き換える。置換部22は、図12の(1)及び(2)の各工程を、拡張部14が拡張データを生成し次第、繰り返し行ってもよい。
次に、図12の(3)が示すように、置換部22は、予測部13が新たに空調データを取得し次第、当該空調データをグリッド上にプロットする。
次に、図12の(4)が示すように、置換部22は、新たにプロットした空調データと、拡張データとを比較し、当該空調データが入った枠内に拡張データが既に存在する場合、拡張データを空調データに置き換える。
なお、置換部22は、図12の(3)及び(4)が示す各工程を、新たな空調データを取得し次第、繰り返し行ってもよい。
次に、図12の(4)が示すように、置換部22は、新たにプロットした空調データと、拡張データとを比較し、当該空調データが入った枠内に拡張データが既に存在する場合、拡張データを空調データに置き換える。
なお、置換部22は、図12の(3)及び(4)が示す各工程を、新たな空調データを取得し次第、繰り返し行ってもよい。
以上のように、実施の形態2に係る空調制御装置20は、空調データと拡張データとを比較し、当該比較結果に基づいて、拡張データを空調データに置き換える置換部をさらに備えている。
上記の構成によれば、拡張データを、実データである空調データに置き換え、当該実データに基づいて機械学習モデルを更新する。これにより、拡張データから実データへの置き換えを行わない場合よりも、機械学習の早期から、信頼性の高い機械学習モデルに基づき、空調機の起動時間をより高い精度で予測することができる。機械学習が進むにつれて、予測した起動時間と、室内温度が目標時間に目標温度に到達するのに最適な起動時間との時間のずれをさらに小さくすることができる。
上記の構成によれば、拡張データを、実データである空調データに置き換え、当該実データに基づいて機械学習モデルを更新する。これにより、拡張データから実データへの置き換えを行わない場合よりも、機械学習の早期から、信頼性の高い機械学習モデルに基づき、空調機の起動時間をより高い精度で予測することができる。機械学習が進むにつれて、予測した起動時間と、室内温度が目標時間に目標温度に到達するのに最適な起動時間との時間のずれをさらに小さくすることができる。
実施の形態3.
実施の形態1、2では、空調データ及び拡張データと、予測した所要時間とを参照して、機械学習モデルを更新することを説明した。実施の形態3では、機械学習モデルとして、ニューラルネットワークモデルを用い、実際に部屋の環境値が目標値に到達した時刻までの所要時間をさらに参照して、ニューラルネットワークモデルを更新する。
以下で、実施の形態3について図面を参照して説明する。なお、実施の形態3では、実施の形態1において説明した図2の空調制御装置2、又は実施の形態2において説明した図10の空調制御装置20を用いることができる。そのため、実施の形態1又は実施の形態2で説明した構成については、その説明を省略する。実施の形態3に係る空調制御方法の説明において、実施の形態1、2で説明した空調制御方法の工程と同様の工程については、その詳細な説明を適宜省略する。
実施の形態1、2では、空調データ及び拡張データと、予測した所要時間とを参照して、機械学習モデルを更新することを説明した。実施の形態3では、機械学習モデルとして、ニューラルネットワークモデルを用い、実際に部屋の環境値が目標値に到達した時刻までの所要時間をさらに参照して、ニューラルネットワークモデルを更新する。
以下で、実施の形態3について図面を参照して説明する。なお、実施の形態3では、実施の形態1において説明した図2の空調制御装置2、又は実施の形態2において説明した図10の空調制御装置20を用いることができる。そのため、実施の形態1又は実施の形態2で説明した構成については、その説明を省略する。実施の形態3に係る空調制御方法の説明において、実施の形態1、2で説明した空調制御方法の工程と同様の工程については、その詳細な説明を適宜省略する。
図13は、実施の形態3に係る空調制御方法における起動時刻予測方法を示すフローチャートである。図14は、実施の形態3に係る空調制御方法における拡張データ生成方法及び機械学習モデル更新方法を示すフローチャートである。
図13が示すように、予測部13は、ステップST30において、送受信部11を介して室内温度及び室外温度を含む空調データを取得する。また、予測部13は、記憶部12から、ニューラルネットワークモデルを含む機械学習モデルを読み込む。
次に、ステップST31において、予測部13は、読み込んだニューラルネットワークモデルを含む機械学習モデルに、空調データを入力し、所要時間を予測する。以下、予測部13が予測した所要時間を「予測所要時間」ともいう。
図13が示すように、予測部13は、ステップST30において、送受信部11を介して室内温度及び室外温度を含む空調データを取得する。また、予測部13は、記憶部12から、ニューラルネットワークモデルを含む機械学習モデルを読み込む。
次に、ステップST31において、予測部13は、読み込んだニューラルネットワークモデルを含む機械学習モデルに、空調データを入力し、所要時間を予測する。以下、予測部13が予測した所要時間を「予測所要時間」ともいう。
図15は、上記のステップST31において予測部13がニューラルネットワークモデルを用いて所要時間を予測する具体例を説明するための図である。図15が示すように、予測部13は、ニューラルネットワークモデルの入力層に、「室内温度と目標温度との差」及び「室内温度と室外温度との差」を入力し、出力層に所要時間を出力させる。
次に、ステップST32において、予測部13は、予測所要時間を、送受信部11を介して空調コントローラ3に出力する。当該予測所要時間を取得した後に、空調コントローラ3は、予測所要時間と上述の空調情報が示す目標時刻とから、部屋の室内温度が目標温度に到達するのに適した空調機4の起動時刻を決定し、当該起動時刻に空調機4を起動させるように制御する。
次に、ステップST33において、空調コントローラ3が空調機4を起動させたことによって変化する室内温度を室内機6のセンサが取得し、予測部13は、送受信部11を介して当該室内温度をモニターし、空調機4の起動時刻から実際に室内温度が目標温度に到達した時刻までの所要時間(以下「計測所要時間」という。)を計測する。
次に、ステップST34において、予測部13は、予測所要時間と、計測所要時間と、機械学習モデルに入力された空調データが取得された時刻から、起動時刻を経て、目標温度に達した時刻までの期間の室内温度及び室外温度を含む空調データとを対応付けて記憶部12に保存する。
次に、ステップST32において、予測部13は、予測所要時間を、送受信部11を介して空調コントローラ3に出力する。当該予測所要時間を取得した後に、空調コントローラ3は、予測所要時間と上述の空調情報が示す目標時刻とから、部屋の室内温度が目標温度に到達するのに適した空調機4の起動時刻を決定し、当該起動時刻に空調機4を起動させるように制御する。
次に、ステップST33において、空調コントローラ3が空調機4を起動させたことによって変化する室内温度を室内機6のセンサが取得し、予測部13は、送受信部11を介して当該室内温度をモニターし、空調機4の起動時刻から実際に室内温度が目標温度に到達した時刻までの所要時間(以下「計測所要時間」という。)を計測する。
次に、ステップST34において、予測部13は、予測所要時間と、計測所要時間と、機械学習モデルに入力された空調データが取得された時刻から、起動時刻を経て、目標温度に達した時刻までの期間の室内温度及び室外温度を含む空調データとを対応付けて記憶部12に保存する。
次に、図14のフローチャートについて説明する。
取得部16は、予測所要時間と、計測所要時間と、これらに対応付けられた空調データとを記憶部12から読み込む(ステップST40)。
次に、拡張部14は、取得部16が取得した予測所要時間、計測所要時間及び空調データを参照して拡張データを生成する(ステップST41)。
次に、更新部15は、予め記憶部12に保存されたニューラルネットワークモデルを含む機械学習モデルを読み込み、予測所要時間、計測所要時間、空調データ、及び、拡張部14が生成した拡張データを参照して、当該ニューラルネットワークモデルを含む機械学習モデルを更新する(ステップST42)。
次に、更新部15は、更新したニューラルネットワークモデルを含む機械学習モデルを記憶部12に保存する(ステップST43)。
予測部13及び更新部15は、それぞれ、上記の各工程を繰り返し行うことにより、ニューラルネットワークモデルをアップデートする。これにより、予測部13が予測する所要時間の精度を徐々に向上させることができる。
取得部16は、予測所要時間と、計測所要時間と、これらに対応付けられた空調データとを記憶部12から読み込む(ステップST40)。
次に、拡張部14は、取得部16が取得した予測所要時間、計測所要時間及び空調データを参照して拡張データを生成する(ステップST41)。
次に、更新部15は、予め記憶部12に保存されたニューラルネットワークモデルを含む機械学習モデルを読み込み、予測所要時間、計測所要時間、空調データ、及び、拡張部14が生成した拡張データを参照して、当該ニューラルネットワークモデルを含む機械学習モデルを更新する(ステップST42)。
次に、更新部15は、更新したニューラルネットワークモデルを含む機械学習モデルを記憶部12に保存する(ステップST43)。
予測部13及び更新部15は、それぞれ、上記の各工程を繰り返し行うことにより、ニューラルネットワークモデルをアップデートする。これにより、予測部13が予測する所要時間の精度を徐々に向上させることができる。
次に、実施の形態3の変形例について説明する。
上記の本実施形態と実施の形態1、2とでは、1つの部屋に室内機が1台しか設置されていない状況を想定していた。しかし、オフィスビルディング内における空調などでは、1つの部屋に複数の室内機が設置され得る。その場合、室内温度は、各室内機によって影響を受け、各室内機の空調制御に用いられる機械学習モデルも影響を受ける。そこで、空調制御装置2又は空調制御装置20は、上述の空調制御方法によって空調制御が行われた室内機6と同じ部屋に設置された別の室内機6のセンサが取得した空調データについても、上述のST30からST34の工程とST40及びST41の工程を行う。次に、上述のステップST42において、更新部15は、当該別の室内機6のセンサが取得した追加空調データとその拡張データをさらに参照して、ニューラルネットワークモデルを含む機械学習モデルを更新してもよい。
上記の本実施形態と実施の形態1、2とでは、1つの部屋に室内機が1台しか設置されていない状況を想定していた。しかし、オフィスビルディング内における空調などでは、1つの部屋に複数の室内機が設置され得る。その場合、室内温度は、各室内機によって影響を受け、各室内機の空調制御に用いられる機械学習モデルも影響を受ける。そこで、空調制御装置2又は空調制御装置20は、上述の空調制御方法によって空調制御が行われた室内機6と同じ部屋に設置された別の室内機6のセンサが取得した空調データについても、上述のST30からST34の工程とST40及びST41の工程を行う。次に、上述のステップST42において、更新部15は、当該別の室内機6のセンサが取得した追加空調データとその拡張データをさらに参照して、ニューラルネットワークモデルを含む機械学習モデルを更新してもよい。
これにより、それぞれ同一の部屋に設置された2つの室内機による影響を考慮した、空調機の起動時間の予測が可能になり、オフィスビルディングなどにおいて1つの部屋に複数の室内機が設置されている場合でも、室内温度が目標時刻に目標温度に到達するのに適した空調機の起動時刻を、別の空調機による影響を考慮しない場合よりも高い精度で予測することができる。
以上のように、実施の形態3に係る空調制御装置では、機械学習モデルは、ニューラルネットワークモデルを含む機械学習モデルであり、更新部15は、空調機が設置された部屋の環境値が起動時刻から実際に目標値に到達した時刻までの所要時間をさらに参照して、ニューラルネットワークモデルを含む機械学習モデルを更新する。
上記の構成によれば、空調データ及び拡張データを用いてニューラルネットワークモデルを含む機械学習モデルを更新し、当該ニューラルネットワークモデルを含む機械学習モデルに基づき空調機の起動時間を予測する。ニューラルネットワークモデルを含む機械学習モデルの更新を繰り返し行うことにより、空調機の起動時間を予測する精度を徐々に向上させることができる。
上記の構成によれば、空調データ及び拡張データを用いてニューラルネットワークモデルを含む機械学習モデルを更新し、当該ニューラルネットワークモデルを含む機械学習モデルに基づき空調機の起動時間を予測する。ニューラルネットワークモデルを含む機械学習モデルの更新を繰り返し行うことにより、空調機の起動時間を予測する精度を徐々に向上させることができる。
実施の形態3の一態様に係る空調制御装置では、取得部16は、空調機4の室内機6が設置された部屋にさらに設置された別の空調機4から、追加空調データをさらに取得し、更新部15は、追加空調データをさらに参照して機械学習モデルを更新してもよい。
上記の構成によれば、1つの部屋に複数の室内機が設置されている場合でも、空調機の起動時刻を、別の空調機による影響を考慮しない場合よりも高い精度で予測することができる。
上記の構成によれば、1つの部屋に複数の室内機が設置されている場合でも、空調機の起動時刻を、別の空調機による影響を考慮しない場合よりも高い精度で予測することができる。
実施の形態4.
空調機が暖房モードを実行した場合、冷房モードを実行した場合と比較して、室内温度の温度変化グラフの変化が大きいため、空調機が暖房モードを実行する場合における所要時間と、空調機が冷房モードを実行する場合における所要時間とを、同一の学習モデルで予測することは難しい。実施の形態4の主な目的は、このような課題を解決することである。
空調機が暖房モードを実行した場合、冷房モードを実行した場合と比較して、室内温度の温度変化グラフの変化が大きいため、空調機が暖房モードを実行する場合における所要時間と、空調機が冷房モードを実行する場合における所要時間とを、同一の学習モデルで予測することは難しい。実施の形態4の主な目的は、このような課題を解決することである。
以下で、実施の形態4について図面を参照して説明する。なお、実施の形態4では、実施の形態1において説明した図2の空調制御装置2、又は実施の形態2において説明した図10の空調制御装置20を用いることができる。そのため、実施の形態1又は実施の形態2で説明した構成と同様の構成については、その説明を省略する。
実施の形態4における予測部13は、空調機4の運転モードが冷房モードである場合、機械学習モデルとして、冷房用の機械学習モデルを参照して起動時刻を予測する。また、予測部13は、空調機4の運転モードが暖房モードである場合、暖房用の機械学習モデルを参照して起動時刻を予測する。
実施の形態4における更新部15は、冷房用の空調データ及び拡張データと、起動時刻とを参照して、冷房用の機械学習モデルを更新する。また、更新部15は、暖房用の空調データ及び拡張データと、起動時刻とを参照して、暖房用の機械学習モデルを更新する。
実施の形態4における予測部13は、空調機4の運転モードが冷房モードである場合、機械学習モデルとして、冷房用の機械学習モデルを参照して起動時刻を予測する。また、予測部13は、空調機4の運転モードが暖房モードである場合、暖房用の機械学習モデルを参照して起動時刻を予測する。
実施の形態4における更新部15は、冷房用の空調データ及び拡張データと、起動時刻とを参照して、冷房用の機械学習モデルを更新する。また、更新部15は、暖房用の空調データ及び拡張データと、起動時刻とを参照して、暖房用の機械学習モデルを更新する。
次に、実施の形態4に係る空調制御方法について図面を参照して説明する。なお、実施の形態4に係る空調制御方法の説明において、実施の形態1、2で説明した空調制御方法の工程と同様の工程については、その詳細な説明を適宜省略する。
図16は、実施の形態4に係る空調制御方法における起動時刻予測方法を示すフローチャートである。図17は、実施の形態4に係る空調制御方法における拡張データ生成方法及び機械学習モデル更新方法を示すフローチャートである。
図16は、実施の形態4に係る空調制御方法における起動時刻予測方法を示すフローチャートである。図17は、実施の形態4に係る空調制御方法における拡張データ生成方法及び機械学習モデル更新方法を示すフローチャートである。
図16が示すように、予測部13は、送受信部11を介して空調データを取得する(ステップST50)。次に、予測部13は、取得した空調データを参照して、空調機4の運転モードが冷房モードであるか否かを判定する(ステップST51)。予測部13は、空調機4の運転モードが冷房モードであると判定した場合、ステップST52に進む。予測部13は、空調機4の運転モードが冷房モードではないと判定した場合、ステップST53に進む。
ステップST52において、予測部13は、冷房用学習モデルを読み込むように予測部13に指示する冷房用学習モデル読み込みフラグを生成する。ステップST53において、予測部13は、暖房用学習モデルを読み込むように予測部13に指示する暖房用学習モデル読み込みフラグを生成する。
ステップST52において、予測部13は、冷房用学習モデルを読み込むように予測部13に指示する冷房用学習モデル読み込みフラグを生成する。ステップST53において、予測部13は、暖房用学習モデルを読み込むように予測部13に指示する暖房用学習モデル読み込みフラグを生成する。
ステップST52又はステップST53の次の工程として、予測部13は、生成したフラグが示す運転モード用の機械学習モデルを記憶部12から読み込み、当該機械学習モデルに空調データを入力し、所要時間を予測する(ステップST54)。次に、予測部13は、予測した所要時間を、送受信部11を介して空調コントローラ3に出力する。
次に、予測部13は、予測した所要時間を、送受信部11を介して空調コントローラ3に出力する(ステップST55)。当該所要時間を取得した後に、空調コントローラ3は、予測部13が予測した所要時間と空調データが示す目標時刻とから、部屋の環境値が目標値に到達するのに適した空調機4の起動時刻を決定し、当該起動時刻に空調機4を起動させるように制御する。
次に、予測部13は、空調コントローラ3が決定した起動時刻と、機械学習モデルに入力された空調データが取得された時刻から、起動時刻を経て、目標温度に達した時刻までの期間の空調データと、ステップST52で生成した暖房用学習モデル読み込みフラグ又はST53で生成した冷房用学習モデル読み込みフラグと、を対応付けて記憶部12に保存する(ステップST56)。
次に、図17のフローチャートについて説明する。
取得部16は、上述のステップST56において予測部13が記憶部12に保存した空調データ、起動時刻、及び暖房用学習モデル読み込みフラグ又は冷房用学習モデル読み込みフラグを読み込む(ステップST60)。
次に、拡張部14は、取得部16が取得した空調データ、起動時刻、及び暖房用学習モデル読み込みフラグ又は冷房用学習モデル読み込みフラグを参照して、フラグが示す運転モード用の拡張データを生成する(ステップST61)。次に、拡張部14は、生成した拡張データを更新部15に出力する。
次に、更新部15は、フラグが示す運転モード用の機械学習モデルを読み込み、取得部16が取得した実データである空調データ及び起動時刻、並びに、拡張部14が生成した拡張データを参照して、当該機械学習モデルを更新する(ステップST62)。
次に、更新部15は、更新した暖房用機械学習モデル又は冷房用機械学習モデルを記憶部12に保存する(ステップST63)。
取得部16は、上述のステップST56において予測部13が記憶部12に保存した空調データ、起動時刻、及び暖房用学習モデル読み込みフラグ又は冷房用学習モデル読み込みフラグを読み込む(ステップST60)。
次に、拡張部14は、取得部16が取得した空調データ、起動時刻、及び暖房用学習モデル読み込みフラグ又は冷房用学習モデル読み込みフラグを参照して、フラグが示す運転モード用の拡張データを生成する(ステップST61)。次に、拡張部14は、生成した拡張データを更新部15に出力する。
次に、更新部15は、フラグが示す運転モード用の機械学習モデルを読み込み、取得部16が取得した実データである空調データ及び起動時刻、並びに、拡張部14が生成した拡張データを参照して、当該機械学習モデルを更新する(ステップST62)。
次に、更新部15は、更新した暖房用機械学習モデル又は冷房用機械学習モデルを記憶部12に保存する(ステップST63)。
以上のように、実施の形態4に係る空調制御装置における更新部15は、冷房用の空調データ及び拡張データと、起動時刻とを参照して冷房用の機械学習モデルを更新するか、又は、暖房用の空調データ及び拡張データと、起動時刻とを参照して暖房用の機械学習モデルを更新する。
上記の構成によれば、冷房時と暖房時のような、全く異なる温度変化をする状況であっても、所要時間を、暖房用機械学習モデル又は冷房用機械学習モデルを用いない場合よりも高い精度で予測することができる。
上記の構成によれば、冷房時と暖房時のような、全く異なる温度変化をする状況であっても、所要時間を、暖房用機械学習モデル又は冷房用機械学習モデルを用いない場合よりも高い精度で予測することができる。
実施の形態5.
空調制御装置2における、制御部10の予測部13、拡張部14、更新部15及び取得部16のそれぞれの機能は、処理回路により実現される。すなわち、空調制御装置2は、図3に示したステップST1からステップST4までの処理、図4に示したステップST10からステップST13までの処理、図13に示したステップST30からステップST34までの処理、図14に示したステップST40からステップST43までの処理、図16に示したステップST50からステップST56までの処理、又は図17に示したステップST60からステップST63までの処理を実行するための処理回路を備える。同様に、空調制御装置20における、制御部21の予測部13、拡張部14、更新部15、取得部16及び置換部22のそれぞれの機能は、処理回路により実現される。すなわち、空調制御装置20は、図11に示したステップST20からステップST24までの処理を実行するための処理回路を備える。これらの処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPU(Central Processing Unit)であってもよい。
空調制御装置2における、制御部10の予測部13、拡張部14、更新部15及び取得部16のそれぞれの機能は、処理回路により実現される。すなわち、空調制御装置2は、図3に示したステップST1からステップST4までの処理、図4に示したステップST10からステップST13までの処理、図13に示したステップST30からステップST34までの処理、図14に示したステップST40からステップST43までの処理、図16に示したステップST50からステップST56までの処理、又は図17に示したステップST60からステップST63までの処理を実行するための処理回路を備える。同様に、空調制御装置20における、制御部21の予測部13、拡張部14、更新部15、取得部16及び置換部22のそれぞれの機能は、処理回路により実現される。すなわち、空調制御装置20は、図11に示したステップST20からステップST24までの処理を実行するための処理回路を備える。これらの処理回路は、専用のハードウェアであってもよいが、メモリに記憶されたプログラムを実行するCPU(Central Processing Unit)であってもよい。
図18Aは、空調制御装置2または空調制御装置20の機能を実現するハードウェア構成を示すブロック図である。図18Bは、空調制御装置2または空調制御装置20の機能を実現するソフトウェアを実行するハードウェア構成を示すブロック図である。図18Aおよび図18Bに示す記憶装置101は、記憶部12として機能する。なお、記憶装置101は、空調制御装置2または空調制御装置20が備える構成要素であってもよいが、空調制御装置とは独立した装置が備えてもよい。例えば、記憶装置101は、空調制御装置2または空調制御装置20から通信アクセスが可能な通信ネットワーク上の装置であってもよい。
上記処理回路が図18Aに示す専用のハードウェアの処理回路100である場合、処理回路100は、例えば、単一回路、複合回路、プログラム化したプロセッサ、並列プログラム化したプロセッサ、ASIC(Application Specific Integrated Circuit)、FPGA(Field-Programmable Gate Array)またはこれらを組み合わせたものが該当する。
空調制御装置2における、予測部13、拡張部14、更新部15及び取得部16のそれぞれの機能を別々の処理回路で実現してもよいし、これらの機能をまとめて1つの処理回路で実現してもよい。空調制御装置20における、予測部13、拡張部14、更新部15、取得部16及び置換部22のそれぞれの機能を別々の処理回路で実現してもよいし、これらの機能をまとめて1つの処理回路で実現してもよい。
上記処理回路が図10Bに示すプロセッサ102である場合、空調制御装置2における、予測部13、拡張部14、更新部15及び取得部16のそれぞれの機能は、ソフトウェア、ファームウェアまたはソフトウェアとファームウェアとの組み合わせによって実現される。
また、空調制御装置20における、予測部13、拡張部14、更新部15、取得部16及び置換部22のそれぞれの機能についても、ソフトウェア、ファームウェアまたはソフトウェアとファームウェアとの組み合わせによって実現される。なお、ソフトウェアまたはファームウェアは、プログラムとして記述されてメモリ103に記憶される。
また、空調制御装置20における、予測部13、拡張部14、更新部15、取得部16及び置換部22のそれぞれの機能についても、ソフトウェア、ファームウェアまたはソフトウェアとファームウェアとの組み合わせによって実現される。なお、ソフトウェアまたはファームウェアは、プログラムとして記述されてメモリ103に記憶される。
プロセッサ102は、メモリ103に記憶されたプログラムを読み出して実行することにより、空調制御装置2における、予測部13、拡張部14、更新部15及び取得部16のそれぞれの機能を実現する。すなわち、空調制御装置2は、プロセッサ102によって実行されるときに、図3に示したステップST1からステップST4までの処理、図4に示したステップST10からステップST13までの処理、図13に示したステップST30からステップST34までの処理、図14に示したステップST40からステップST43までの処理、図16に示したステップST50からステップST56までの処理、又は図17に示したステップST60からステップST63までの処理が結果的に実行されるプログラムを記憶するためのメモリ103を備える。
これらのプログラムは、予測部13、拡張部14、更新部15及び取得部16の手順または方法をコンピュータに実行させる。メモリ103は、コンピュータを、予測部13、拡張部14、更新部15及び取得部16として機能させるためのプログラムが記憶されたコンピュータ可読記憶媒体であってもよい。これは、空調制御装置20においても同様である。
メモリ103には、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically-EPROM)などの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVDなどが該当する。
メモリ103には、例えば、RAM(Random Access Memory)、ROM(Read Only Memory)、フラッシュメモリ、EPROM(Erasable Programmable Read Only Memory)、EEPROM(Electrically-EPROM)などの不揮発性または揮発性の半導体メモリ、磁気ディスク、フレキシブルディスク、光ディスク、コンパクトディスク、ミニディスク、DVDなどが該当する。
予測部13、拡張部14、更新部15及び取得部16のそれぞれの機能について一部を専用のハードウェアで実現し、一部をソフトウェアまたはファームウェアで実現してもよい。
例えば、予測部13は、専用のハードウェアとしての処理回路で機能を実現する。拡張部14及び更新部15については、プロセッサ102がメモリ103に記憶されたプログラムを読み出して実行することにより機能を実現してもよい。
例えば、予測部13は、専用のハードウェアとしての処理回路で機能を実現する。拡張部14及び更新部15については、プロセッサ102がメモリ103に記憶されたプログラムを読み出して実行することにより機能を実現してもよい。
これは、空調制御装置20における、予測部13、拡張部14、更新部15、取得部16及び置換部22においても同様である。
このように、処理回路は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせにより上記機能のそれぞれを実現することができる。
このように、処理回路は、ハードウェア、ソフトウェア、ファームウェアまたはこれらの組み合わせにより上記機能のそれぞれを実現することができる。
なお、本願発明はその発明の範囲内において、各実施の形態の自由な組み合わせ、あるいは各実施の形態の任意の構成要素の変形、もしくは各実施の形態において任意の構成要素の省略が可能である。
この発明に係る空調制御装置は、機械学習に用いられるデータを収集する時間的コストを削減することができるので、機械学習に基づいて空調機を制御する空調制御装置に利用可能である。
1 空調制御システム、2 空調制御装置、3 空調コントローラ、4 空調機、5 室外機、6 室内機、10 制御部、11 送受信部、12 記憶部、13 予測部、14 拡張部、15 更新部、16 取得部、17 機械学習部、20 空調制御装置、21 制御部、22 置換部、23 機械学習部、100 処理回路、101 記憶装置、102 プロセッサ、103 メモリ。
Claims (10)
- 空調機が取得した空調データ、及び当該空調データを機械学習モデルに入力して予測された前記空調機の起動時刻を取得する取得部と、
前記取得部が取得した前記空調データ及び前記起動時刻を参照して拡張データを生成する拡張部と、
前記取得部が取得した前記空調データ及び前記起動時刻、並びに、前記拡張部が生成した前記拡張データを参照して前記機械学習モデルを更新する更新部と、を備えていることを特徴とする、空調制御装置。 - 前記取得部は、前記空調データとして、前記空調機の室内機が設置された部屋の室内温度を少なくとも取得し、前記起動時刻として、前記室内温度が目標時刻に目標温度に到達するのに適する起動時刻として予測された起動時刻を取得することを特徴とする、請求項1に記載の空調制御装置。
- 前記空調データと前記拡張データとを比較し、当該比較結果に基づいて、前記拡張データを前記空調データに置き換える置換部をさらに備えていることを特徴とする、請求項1又は請求項2に記載の空調制御装置。
- 前記機械学習モデルは、ニューラルネットワークモデルを含む機械学習モデルであり、
前記更新部は、前記空調機が設置された部屋の環境値が前記起動時刻から実際に目標値に到達した時刻までの所要時間をさらに参照して、前記ニューラルネットワークモデルを含む機械学習モデルを更新することを特徴とする、請求項1又は請求項2に記載の空調制御装置。 - 前記拡張部は、前記空調機が設置された部屋の環境値が前記起動時刻から目標値に到達する時刻までの空調データを参照して、任意の時刻を仮想の起動時刻としてみなし、当該任意の時刻における空調データを当該仮想の起動時刻における空調データとしてみなすことにより、起動時刻に対応する空調データの拡張データを生成することを特徴とする、請求項1又は請求項2に記載の空調制御装置。
- 前記取得部は、前記空調データとして、前記空調機の室内機が設置された部屋の室内環境値、及び前記空調機の室外機が設置された室外の室外環境値を取得し、
前記拡張部は、前記起動時刻から室内環境値が目標値に到達する時刻までの期間の前記室内環境値及び前記室外環境値を参照して、当該期間内におけるある時刻の、室内環境値及び室外環境値の差と、室内環境値変化グラフの傾きとを算出し、当該差に対応付けられた当該傾きの線形モデルを、室内環境値変化グラフの拡張データとして生成することを特徴とする、請求項1又は請求項2に記載の空調制御装置。 - 前記取得部は、前記空調機の室内機が設置された部屋にさらに設置された別の空調機から、追加空調データをさらに取得し、
前記更新部は、前記追加空調データをさらに参照して前記機械学習モデルを更新することを特徴とする、請求項1又は請求項2に記載の空調制御装置。 - 前記更新部は、冷房用の空調データ及び拡張データと、起動時刻とを参照して冷房用の機械学習モデルを更新するか、又は、暖房用の空調データ及び拡張データと、起動時刻とを参照して暖房用の機械学習モデルを更新することを特徴とする、請求項1又は請求項2に記載の空調制御装置。
- 前記機械学習モデルに前記空調データを入力し、前記空調機の起動時刻を予測する予測部をさらに備え、
前記予測部が予測した前記起動時刻に前記空調機を起動させることを特徴とする、請求項1又は請求項2に記載の空調制御装置。 - 空調機が取得した空調データ、及び当該空調データを機械学習モデルに入力して予測された前記空調機の起動時刻を取得する取得ステップと、
前記取得ステップで取得した前記空調データ及び前記起動時刻を参照して拡張データを生成する拡張ステップと、
前記取得ステップで取得した前記空調データ及び前記起動時刻、並びに、前記拡張ステップで生成した前記拡張データを参照して前記機械学習モデルを更新する更新ステップと、を含むことを特徴とする、空調制御方法。
Priority Applications (5)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2020559605A JP6833138B2 (ja) | 2018-12-12 | 2018-12-12 | 空調制御装置及び空調制御方法 |
CN201880099974.6A CN113167495B (zh) | 2018-12-12 | 2018-12-12 | 空调控制装置和空调控制方法 |
PCT/JP2018/045683 WO2020121437A1 (ja) | 2018-12-12 | 2018-12-12 | 空調制御装置及び空調制御方法 |
EP18942669.5A EP3885664B1 (en) | 2018-12-12 | 2018-12-12 | Air conditioning control device and air conditioning control method |
US17/307,559 US20210254851A1 (en) | 2018-12-12 | 2021-05-04 | Air conditioning control device and air conditioning control method |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
PCT/JP2018/045683 WO2020121437A1 (ja) | 2018-12-12 | 2018-12-12 | 空調制御装置及び空調制御方法 |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
US17/307,559 Continuation US20210254851A1 (en) | 2018-12-12 | 2021-05-04 | Air conditioning control device and air conditioning control method |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020121437A1 true WO2020121437A1 (ja) | 2020-06-18 |
Family
ID=71075973
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2018/045683 WO2020121437A1 (ja) | 2018-12-12 | 2018-12-12 | 空調制御装置及び空調制御方法 |
Country Status (5)
Country | Link |
---|---|
US (1) | US20210254851A1 (ja) |
EP (1) | EP3885664B1 (ja) |
JP (1) | JP6833138B2 (ja) |
CN (1) | CN113167495B (ja) |
WO (1) | WO2020121437A1 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023144979A1 (ja) * | 2022-01-28 | 2023-08-03 | 三菱電機株式会社 | 空調制御装置、空調制御方法、およびプログラム |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
KR102544265B1 (ko) * | 2019-01-09 | 2023-06-16 | 삼성전자주식회사 | 전자 장치 및 그 제어 방법 |
JP7188255B2 (ja) * | 2019-04-16 | 2022-12-13 | 富士通株式会社 | 学習方法、学習プログラムおよび学習装置 |
KR102644431B1 (ko) * | 2019-05-02 | 2024-03-06 | 현대자동차 주식회사 | 공조기 제어 시스템 및 그 방법 |
CN113739390B (zh) * | 2021-09-30 | 2023-01-24 | 上海美控智慧建筑有限公司 | 空调器控制方法、装置和电子设备 |
CN116085937B (zh) * | 2023-04-11 | 2023-07-11 | 湖南禾自能源科技有限公司 | 智能中央空调节能控制方法及系统 |
Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003141499A (ja) * | 2001-11-05 | 2003-05-16 | Denso Corp | ニューラルネットワーク学習方法 |
JP2003140708A (ja) * | 2001-11-05 | 2003-05-16 | Denso Corp | 学習制御空調装置の教師データ作成方法 |
JP2017067427A (ja) | 2015-10-01 | 2017-04-06 | パナソニックIpマネジメント株式会社 | 空調制御方法、空調制御装置及び空調制御プログラム |
JP2017172830A (ja) * | 2016-03-22 | 2017-09-28 | 三菱電機株式会社 | 空気調和装置 |
WO2019021675A1 (ja) * | 2017-07-25 | 2019-01-31 | 三菱重工サーマルシステムズ株式会社 | 空調制御装置、空調システム、空調制御方法、及びプログラム |
Family Cites Families (31)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPH04261089A (ja) * | 1990-12-25 | 1992-09-17 | Mitsubishi Electric Corp | 配線パターンの導線切断装置 |
EP1074797B1 (en) * | 1999-02-16 | 2005-12-28 | Matsushita Electric Industrial Co., Ltd. | Operation control method for air conditioning system and air conditioning system |
US7693608B2 (en) * | 2006-04-12 | 2010-04-06 | Edsa Micro Corporation | Systems and methods for alarm filtering and management within a real-time data acquisition and monitoring environment |
JP4972989B2 (ja) * | 2006-05-08 | 2012-07-11 | ブラザー工業株式会社 | 複合機 |
US8903553B1 (en) * | 2009-05-01 | 2014-12-02 | Comverge, Inc. | Method and system for controlling unitary air conditioners for reducing peak loads |
US8195339B2 (en) * | 2009-09-24 | 2012-06-05 | General Electric Company | System and method for scheduling startup of a combined cycle power generation system |
JP4980407B2 (ja) * | 2009-10-21 | 2012-07-18 | 三菱電機株式会社 | 空気調和機の制御装置、冷凍装置の制御装置 |
JP6009561B2 (ja) * | 2012-06-15 | 2016-10-19 | 三菱電機株式会社 | 空調管理装置、空調管理方法、および、プログラム |
JP5879220B2 (ja) * | 2012-07-06 | 2016-03-08 | 日立アプライアンス株式会社 | 空気調和機 |
KR101261199B1 (ko) * | 2013-01-10 | 2013-05-10 | 동국대학교 산학협력단 | 신경망 모델에 의한 지능형 제어 알고리즘을 이용한 건물의 예약냉각 제어방법 |
JP6150291B2 (ja) * | 2013-10-08 | 2017-06-21 | 国立研究開発法人情報通信研究機構 | 矛盾表現収集装置及びそのためのコンピュータプログラム |
JP6208552B2 (ja) * | 2013-11-14 | 2017-10-04 | 株式会社デンソーアイティーラボラトリ | 識別器、識別プログラム、及び識別方法 |
JP5899272B2 (ja) * | 2014-06-19 | 2016-04-06 | ヤフー株式会社 | 算出装置、算出方法及び算出プログラム |
JP2016044855A (ja) * | 2014-08-21 | 2016-04-04 | 株式会社東芝 | 空調制御装置、空調制御方法および空調制御プログラム |
WO2016040699A1 (en) * | 2014-09-10 | 2016-03-17 | Amazon Technologies, Inc. | Computing instance launch time |
CN104534626B (zh) * | 2014-12-31 | 2017-02-22 | 珠海格力电器股份有限公司 | 一种空调的自动控制方法、装置及系统 |
EP3726562B1 (en) * | 2015-03-06 | 2023-12-20 | Micromass UK Limited | Ambient ionization mass spectrometry imaging platform for direct mapping from bulk tissue |
CN204693737U (zh) * | 2015-03-27 | 2015-10-07 | 劲达技术(河源)有限公司 | 一种客车空调远程监控系统 |
KR102424689B1 (ko) * | 2015-05-15 | 2022-07-26 | 삼성전자 주식회사 | 공조 기기의 기동 제어 방법 및 장치 |
JP6593207B2 (ja) * | 2016-02-01 | 2019-10-23 | 株式会社バッファロー | 情報処理装置、情報処理装置におけるコンテンツファイル取込方法及びプログラム |
CN108826528A (zh) * | 2016-03-17 | 2018-11-16 | 漳州龙文区汇洋远软件开发有限公司 | 一种空气净化器的空气净化方法 |
CN106225172A (zh) * | 2016-08-17 | 2016-12-14 | 珠海格力电器股份有限公司 | 空调控制装置、方法及系统 |
US10969127B2 (en) * | 2016-08-18 | 2021-04-06 | Ademco Inc. | Residential energy efficiency rating system |
US11681943B2 (en) * | 2016-09-27 | 2023-06-20 | Clarifai, Inc. | Artificial intelligence development via user-selectable/connectable model representations |
WO2018182357A1 (en) * | 2017-03-30 | 2018-10-04 | Samsung Electronics Co., Ltd. | Data learning server and method for generating and using learning model thereof |
CN108629288B (zh) * | 2018-04-09 | 2020-05-19 | 华中科技大学 | 一种手势识别模型训练方法、手势识别方法及系统 |
KR102026020B1 (ko) * | 2018-04-10 | 2019-11-26 | 엘지전자 주식회사 | 인공지능을 이용한 파라미터 학습에 기반한 공기조화기, 클라우드 서버, 공기조화기의 구동 및 제어 방법 |
CN108805259A (zh) * | 2018-05-23 | 2018-11-13 | 北京达佳互联信息技术有限公司 | 神经网络模型训练方法、装置、存储介质及终端设备 |
CN108921817B (zh) * | 2018-05-24 | 2021-10-26 | 浙江工业大学 | 一种针对皮肤病图像的数据增强方法 |
WO2020022123A1 (ja) * | 2018-07-27 | 2020-01-30 | 日本電信電話株式会社 | 行動最適化装置、方法およびプログラム |
US11663515B2 (en) * | 2018-08-09 | 2023-05-30 | Servicenow, Inc. | Machine learning classification with model quality prediction |
-
2018
- 2018-12-12 WO PCT/JP2018/045683 patent/WO2020121437A1/ja unknown
- 2018-12-12 JP JP2020559605A patent/JP6833138B2/ja active Active
- 2018-12-12 CN CN201880099974.6A patent/CN113167495B/zh active Active
- 2018-12-12 EP EP18942669.5A patent/EP3885664B1/en active Active
-
2021
- 2021-05-04 US US17/307,559 patent/US20210254851A1/en active Pending
Patent Citations (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2003141499A (ja) * | 2001-11-05 | 2003-05-16 | Denso Corp | ニューラルネットワーク学習方法 |
JP2003140708A (ja) * | 2001-11-05 | 2003-05-16 | Denso Corp | 学習制御空調装置の教師データ作成方法 |
JP2017067427A (ja) | 2015-10-01 | 2017-04-06 | パナソニックIpマネジメント株式会社 | 空調制御方法、空調制御装置及び空調制御プログラム |
JP2017172830A (ja) * | 2016-03-22 | 2017-09-28 | 三菱電機株式会社 | 空気調和装置 |
WO2019021675A1 (ja) * | 2017-07-25 | 2019-01-31 | 三菱重工サーマルシステムズ株式会社 | 空調制御装置、空調システム、空調制御方法、及びプログラム |
Non-Patent Citations (1)
Title |
---|
See also references of EP3885664A4 |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2023144979A1 (ja) * | 2022-01-28 | 2023-08-03 | 三菱電機株式会社 | 空調制御装置、空調制御方法、およびプログラム |
Also Published As
Publication number | Publication date |
---|---|
CN113167495A (zh) | 2021-07-23 |
JPWO2020121437A1 (ja) | 2021-02-25 |
CN113167495B (zh) | 2022-11-15 |
JP6833138B2 (ja) | 2021-02-24 |
EP3885664A1 (en) | 2021-09-29 |
US20210254851A1 (en) | 2021-08-19 |
EP3885664B1 (en) | 2023-04-26 |
EP3885664A4 (en) | 2022-04-06 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
WO2020121437A1 (ja) | 空調制御装置及び空調制御方法 | |
US7395137B2 (en) | Method and system for synchronizing climate control devices | |
JP7170740B2 (ja) | 情報処理装置およびこれを備えた空調システム | |
JP5503410B2 (ja) | 設定値管理方法および装置 | |
CA3040117C (en) | Operating an hvac system based on predicted indoor air temperature | |
US9719690B2 (en) | Zone based heating, ventilation and air-conditioning (HVAC) control using extensive temperature monitoring | |
JP7521631B2 (ja) | 空気調和機及び空気調和システム | |
JP7451872B2 (ja) | 空気調和システム | |
KR20130127697A (ko) | 유전자 알고리즘 기반 에너지 제어 시스템 및, 그 제어 방법 | |
JP5936714B2 (ja) | システムコントローラ、設備管理システム、デマンド制御方法及びプログラム | |
EP3919828A1 (en) | Server device, adapter, and air conditioning system | |
WO2016158852A1 (ja) | 空調管理装置、空調管理方法、及び、プログラム | |
JPWO2019030896A1 (ja) | プログラム更新方法、室外機及び管理装置 | |
KR101779797B1 (ko) | 빅 데이터를 이용한 자기학습형 havc 에너지 관리 시스템 및 그 구동 방법 | |
JP5797212B2 (ja) | システムコントローラ、省エネ制御方法及びプログラム | |
JP2020139705A (ja) | 運転制御方法、運転制御プログラムおよび運転制御装置 | |
CN113310176A (zh) | 信息处理装置 | |
JP7558315B2 (ja) | 制御装置、熱源システム及び制御方法 | |
JP7415075B1 (ja) | 空調システム | |
JP7392704B2 (ja) | 空気調和機及び空気調和システム | |
JP2020115270A (ja) | サーバ装置および学習方法 | |
EP4443070A1 (en) | Air conditioner and air-conditioning system | |
JP7241524B2 (ja) | 空調システム、空調機器、管理サーバおよび空調制御アルゴリズム更新方法 | |
JP7147573B2 (ja) | サーバ装置および学習方法 | |
US20230341143A1 (en) | Air-Conditioning System |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 18942669 Country of ref document: EP Kind code of ref document: A1 |
|
ENP | Entry into the national phase |
Ref document number: 2020559605 Country of ref document: JP Kind code of ref document: A |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
ENP | Entry into the national phase |
Ref document number: 2018942669 Country of ref document: EP Effective date: 20210624 |