WO2020119741A1 - 多维城市快速路网 - Google Patents

多维城市快速路网 Download PDF

Info

Publication number
WO2020119741A1
WO2020119741A1 PCT/CN2019/124713 CN2019124713W WO2020119741A1 WO 2020119741 A1 WO2020119741 A1 WO 2020119741A1 CN 2019124713 W CN2019124713 W CN 2019124713W WO 2020119741 A1 WO2020119741 A1 WO 2020119741A1
Authority
WO
WIPO (PCT)
Prior art keywords
interchange
machine platform
commutation
road
ground
Prior art date
Application number
PCT/CN2019/124713
Other languages
English (en)
French (fr)
Inventor
彭高培
Original Assignee
彭高培
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 彭高培 filed Critical 彭高培
Publication of WO2020119741A1 publication Critical patent/WO2020119741A1/zh

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C1/00Design or layout of roads, e.g. for noise abatement, for gas absorption
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C1/00Design or layout of roads, e.g. for noise abatement, for gas absorption
    • E01C1/02Crossings, junctions or interconnections between roads on the same level
    • EFIXED CONSTRUCTIONS
    • E01CONSTRUCTION OF ROADS, RAILWAYS, OR BRIDGES
    • E01CCONSTRUCTION OF, OR SURFACES FOR, ROADS, SPORTS GROUNDS, OR THE LIKE; MACHINES OR AUXILIARY TOOLS FOR CONSTRUCTION OR REPAIR
    • E01C1/00Design or layout of roads, e.g. for noise abatement, for gas absorption
    • E01C1/04Road crossings on different levels; Interconnections between roads on different levels
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A30/00Adapting or protecting infrastructure or their operation
    • Y02A30/60Planning or developing urban green infrastructure

Definitions

  • the invention is in the field of urban road traffic, especially intelligent traffic and smart city construction.
  • urban transportation is composed of multiple transportation modes such as signal level crossing, subway, rail transit, elevated, bus rapid transit (BRT), and bus priority. Due to the uncoordinated transportation (car) and road structure (metro), investment and development are wasted seriously, and the traffic effect is extremely poor (congestion).
  • the characteristic of multi-channel food sharing is that even if enough subways are built, it can only maintain urban traffic without paralysis, and cannot solve urban traffic congestion.
  • the existing subway model is a product of the elimination of carriage traffic in cities. In the textbook traffic classification, there is no location of the subway. Because the subway is environmentally friendly, it is the only choice to replace fossil fuel vehicles.
  • the subway is the first urban modern transportation and has been used today.
  • the underground space can be laid with subway traffic or automobile traffic, both of which have the characteristics of large capacity, fast speed, and punctuality.
  • Several traffic structure indicators of automobile traffic are better than subway traffic, and its advantages are five: one, large traffic volume; two, fast speed; three, public transport has on-demand supply (quantity and grade), convenient transfer, and good accessibility; Four: Non-transit and public transport are highly interchangeable; Fifth, the project has good cost performance.
  • Road replacement is based on energy replacement. Without energy replacement, road replacement no longer exists. The actual situation before the road replacement is now described in this article.
  • Hardware replacement The replacement of hardware technology is to transform multiple and multi-modes such as subway transportation, rail transportation, and bus priority into automobile traffic intercommunication network.
  • the so-called automobile traffic interconnection network means that the nodes of the road network do not use signal level crossings, but use commutation interchanges and non-machine platforms to move the motorway and non-motorway independently, without interfering with each other.
  • Straight-through, non-motorway signals are level with non-machinery platforms.
  • Existing hardware technology existing model
  • the invention is a multi-dimensional urban fast road network (referred to as city fast or fast), which has four levels: one, node replacement; two, fast road network; three matching road network; four, road space.
  • city fast or fast multi-dimensional urban fast road network
  • node replacement There are two levels of node replacement: 1. node interchanges; 2. non-machine platform nodes.
  • the so-called nodal interchange refers to the replacement of an interchange from alfalfa interchange to a commutation interchange; the so-called non-machine platform node refers to the installation of an above-ground non-machine platform or an underground non-machine platform on the ground level of the commutation interchange, making both the motorway and the non-motorway
  • Each road goes its own way without interfering with each other.
  • the motorized road is directly connected.
  • the signal between the non-machine channel and the non-machine platform is leveled to realize the interconnection of the road network.
  • the public exchange generation is one of the cores of the multidimensional urban expressway network.
  • the new urban bus system completely overturns the existing urban bus system. It is the need of development and the needs of the times.
  • Match the road network There are three levels of matching road network: one, plane matching road network; two, length matching road network; three, vertical matching road network.
  • Road space The road space is composed of underground buildings, underground structures, dynamic traffic, static traffic, charging facilities, crossing corridors, crossing tunnels, pipe corridors, corridors, planned projects, etc.
  • the definition of wide road intercommunication and narrow road through One-way two channels can be used for wide channel intercommunication and narrow channel direct communication. No hard regulations are required.
  • the width can be wide, and the width can be narrow, depending on the width of the non-machine channel.
  • the width of the non-machine channel is set to communicate with each other, and the narrow of the non-machine channel is set to pass through the narrow channel.
  • wide road intercommunication and narrow road direct connection should ensure that the interchange and the road segment match are coordinated and coordinated, that is, the interchange is wide and the road is wide; the interchange is narrow and the road is narrow.
  • the nodes and road sections are: 1. Downhill commutation level crossing; 2. Underground non-machine platform cross-over commutation interchange; 3. Underground non-machine platform underneath commutation interchange; 4. Above ground non-machine Platform overpass commutation interchange; 5. Above ground non-machine platform underpass commutation interchange; 6. Underground non-machine platform overpass; 7. Underground non-machine platform underpass; 8. Overground non-machine platform overpass; 9 1. Underground non-machine platform underpass; 10. Non-machine platform T-reversal interchange; 11. Modified underground non-machine platform high-speed reversal interchange; 12. Modified underground non-machine platform elevated reversal interchange and multi-dimensional all-pass rapid Road Network.
  • the single-lane and double-lane roads of the downhill reversal leveling are set on the same floor, and the single-lane road passes under the double-lane road.
  • the reversing leveling is called downhill reversing leveling;
  • the downhill commutation leveling consists of a single-lane road, a double-lane road, a single-lane road-turning left turn, a double-lane road-turning left turn, a single-row right turn, and a double-row right turn;
  • the left turn of the one-way street turns from the one-way street separation point to the one-way street cut-in point;
  • the left turn of the two-way street turns from the separation point of the two-lane road to the cut-in point of the two-lane road;
  • the cross commuter interchange bus is set in the middle, and the non-transit bus is set on both sides.
  • the interchange is formed by adding an underground non-machine platform on the basis of the upper cross commuter interchange, that is, laying underground below the ground floor
  • Non-machine platform a non-machine road consisting of a bicycle lane and a pedestrian walkway, signals are intersected at an underground non-machine platform.
  • the result is that the maneuvering lanes across commutation interchanges on the underground non-machine platform are interchangeable; , The motorway and the non-motorway go their own way, without interfering with each other.
  • Underground non-machine platform underneath the commutation interchange bus is set in the middle, and non-bus is set on both sides.
  • the interchange is based on the underpass commutation interchange, and the underground non-machine platform is added, that is, the underground non-machine platform is laid under the ground floor ,
  • a non-motorway composed of a bicycle lane and a sidewalk, signals are leveled on an underground non-machine platform, the result is that the motorway that crosses the commutation interchange under the underground non-machine platform is intercommunication; the non-motorway is a signal level, motorway Both the non-airway and the non-airway go their own way without interfering with each other. There is no need to set up a signal level interchange for the underground non-aircraft platform underneath the commutation interchange.
  • the cross-reversal interchange bus is set in the middle, and the non-transit bus is set on both sides.
  • the interchange is based on the upper-span reversal interchange, and the ground non-machine platform is added, that is, the ground is laid on the ground layer.
  • Non-machine platform, the overpass line passes through the top layer of the non-machine platform on the ground, and the non-machine path composed of the bicycle lane and the pedestrian path is leveled on the non-machine platform on the ground, and the result is the maneuvering of the crossover interchange on the non-machine platform on the ground Roads are intercommunication, and non-airways are signal level crossings. Both the motorway and the non-airway run their own way without interfering with each other. There is no need to set up signal level crossings on non-machine platforms above ground. ;
  • the above-ground non-machine platform passes through the middle of the commuter interchange bus setting, and both sides of the non-transit bus are set up.
  • the above-ground non-machine platform is added, that is, the above-ground non-machine platform is laid on the ground floor.
  • the overpass line passes through the top floor of the non-machine platform on the ground, and the non-machine path composed of the bicycle lane and the pedestrian path is leveled on the non-machine platform on the ground.
  • the non-motorway is a signal level crossing.
  • the crossover bus is set in the middle, and the non-transit bus is set on both sides.
  • the interchange is based on the upper crossover and is added with an underground non-machine platform, that is, an underground non-machine platform is laid under the ground floor.
  • the non-motorway composed of bicycle lanes and footpaths is leveled on the underground non-machine platform. The result is that the motorway across the interchange on the underground non-machine platform is straight through; the non-motorway is the signal level, and the motorway and non-machine The two roads go their own way without interfering with each other. There is no need to set up signal level crossings on underground non-machine platforms, and their interchanges are regarded as "through";
  • the underground non-machine platform passes through the middle of the interchange bus setting, and the non-transit bus is set on both sides.
  • the interchange is formed by adding an underground non-machine platform on the basis of the underpass. That is, the underground non-machine platform is laid under the ground floor.
  • the non-motorway composed of a bicycle lane and a pedestrian walkway is signalized at the underground non-machine platform. The result is that the motorway passing through the interchange under the underground non-machine platform is straight-through; the non-motorway is the signal level, the motorway and the non-motorway The two will go their own way and do not interfere with each other. There is no need to set up a signal level crossing under the underground non-machine platform.
  • the interchange is regarded as "through";
  • the crossover bus is set in the middle, and the non-transit bus is set on both sides.
  • the overpass is formed on the basis of the upper crossover by adding an above-ground non-machine platform, that is, the above-ground non-machine platform is laid on the ground floor.
  • the overpass line passes through the top floor of the non-machine platform on the ground, and the non-machine path composed of the bicycle lane and the pedestrian path is leveled on the non-machine platform on the ground.
  • the result is that the motorway crossing the overpass on the non-machine platform on the ground is straight, non-machine
  • the road is a signal level crossing, and both the motorway and the non-motorway run their own way without interfering with each other. There is no need to set up a signal level crossing on the ground non-machine platform, and the interchange is regarded as "through";
  • the above-ground non-machine platform passes through the middle of the interchange bus setting, and the non-transit setting is on both sides.
  • the overpass is formed by adding an above-ground non-machine platform on the basis of the underpass. That is, the above-ground non-machine platform is laid on the ground floor.
  • the straight line passes through the top layer of the non-machine platform on the ground, and the non-machine path composed of the bicycle lane and the pedestrian path is leveled on the non-machine platform on the ground.
  • the result is that the motorway passing through the interchange under the non-machine platform on the ground is straight, non-machine path For signal level crossing, both the motorway and the non-motorway run their own way without interfering with each other. There is no need to set up a signal level crossing under the non-machine platform above the ground, and the interchange is regarded as "through";
  • T-shaped reversing interchanges on the non-machine platform: one, the upper-level reversing T-shaped reversing interchange on the non-machine platform above the ground, and the second, the lower-level reversing T-shaped reversing interchange on the underground non-machine platform;
  • the above-mentioned non-machine platform upper layer commutation T-shaped commutation interchange is based on the addition of the above-ground non-machine platform on the basis of the upper-layer commutation T-shaped commutation interchange;
  • the underground non-machine platform lower-level commutation T-shaped commutation interchange is based on the addition of an underground non-machine platform on the basis of the lower-level commutation T-shaped commutation interchange;
  • the upper layer commutation T-shaped commutation interchange is composed of straight lines, vertical lines, upper layer straight line commutation left turns, upper layer vertical line commutation left turns, straight line right turns and vertical line right turns;
  • the lower-layer commutation T-shaped commutation interchange is composed of straight lines, vertical lines, lower-layer straight line commutation left turns, lower-layer vertical line commutation left turns, straight line right turns and vertical line right turns;
  • the upper layer straight line reversing left turn is from the upper layer straight line separation point to the upper layer straight line cut-in point;
  • the left turn of the upper layer vertical line changes from the separation point of the upper layer vertical line to the cut-in point of the upper layer vertical line;
  • the left turn of the lower layer straight line turns from the separation point of the lower layer straight line to the cut-in point of the lower layer straight line;
  • the left turn of the lower layer vertical line is turned from the separation point of the lower layer vertical line to the cut-in point of the lower layer vertical line;
  • the above-mentioned non-machine platform upper level commutation T-shaped commutation interchange has three structures according to the vertical structure: one, the upper level straight line reversing the left turn and the upper level vertical line reversing the left turn, two, the ground non-machine platform top layer, three, the ground non-machine platform
  • the lower-level reversing T-shaped reversing interchange of the underground non-machine platform has two structures according to the vertical structure: 1. the lower-level reversing T-shaped reversing interchange, second, the lower-level straight line reversing the left turn, the lower-level vertical line reversing the left turn and the underground Machine platform
  • the underground non-machine platform lower-level commutation T-commutation interchange is fully interoperable. It is to lay an underground non-machine platform below the ground layer, and the non-machine channel is level with the underground non-machine platform signal.
  • the mobile channel is intercommunication.
  • the motorway and non-motorway on the lower level of the machine platform are interchangeable with each other, and they do not interfere with each other.
  • the lower level of the underground non-machine platform is a full interchange.
  • the above-mentioned non-machine platform upper-level commutation T-commutation interchange full intercommunication feature is to lay an above-ground non-machine platform on the ground layer, and the non-machine channel is level with the above-ground non-machine platform signal, and the motorized road is intercommunication. The result is the above-ground non-machine platform.
  • the motorway and the non-motorway on the upper level of the aircraft platform commutate the T-way interchange, and they do not interfere with each other.
  • the upper-level non-machine platform upper-level commutation T-way interchange is a full interchange.
  • the modified underground non-machine platform high-speed reversing interchange is to convert the high-speed non-reversing interchange to the underground non-machine platform high-speed reversing interchange;
  • the underground non-machine platform high-speed commutation interchange is composed of upper span high speed, ground high speed, upper span high speed commutation left turn, ground high speed commutation left turn, upper span high speed right turn, ground high speed right turn and underground non-machine platform;
  • the upper-span high-speed commutation left turn is composed of an upper-span high-speed separation point to an upper-span high-speed cut-in point;
  • the left turn of the ground high-speed commutation is composed of a ground high-speed separation point to a ground high-speed cut-in point;
  • the maneuvering lane of the underground non-machine platform high-speed commutation interchange does not require signal leveling to realize intercommunication.
  • the non-machinery channel intersects the signal on the underground non-machine platform.
  • the high-speed commutation interchange of the machine platform does not need to set up signal interchange, and the interchange is regarded as "intercommunication".
  • the modified underground non-machine platform elevated reversing interchange is to transform the non-reversing interchange elevated to an underground non-machine platform elevated reversing interchange;
  • the underground non-machine platform elevated reversing interchange consists of elevated through, ground through, elevated through reversing left turn, ground through reversing left turn, elevated through right turn, ground through right turn and underground non-machine platform;
  • the left turn of the elevated straight-through commutation is composed of an elevated straight-through separation point to an elevated straight-through cut-in point;
  • the left turn of the ground straight-through commutation is composed of the ground straight-through separation point to the ground straight-through cut-in point;
  • the maneuvering lane of the underground non-machine platform overhead commutation interchange does not require signal level crossing to realize intercommunication, and the non-machine lane intersects with the signal of the underground non-machine platform. Both the maneuvering lane and the non-machine lane run their own way without interfering with each other. There is no need to set up signal level interchange for the machine platform elevated commutation interchange, and the interchange is regarded as "full intercommunication".
  • the multi-dimensional all-pass fast road network has four levels: one, node replacement, two, public exchange generation, three, matching road network, and four, road space.
  • node replacement There are two levels of node replacement: one, node replacement, and two, setting up a non-machine platform;
  • the node replacement refers to the replacement of a node from an existing alfalfa interchange to a commutation interchange or a commutation interchange;
  • non-machine platform interchange There are two levels of the non-machine platform: one, the non-machine platform interchange, and the second, the non-machine platform commutation interchange;
  • the non-machine platform interchange means that the interchange is on the ground level, and the above-ground non-machine platform or underground non-machine platform is added to make the motorway and the non-machineway go their own way without interfering with each other.
  • the motorway does not have left and right turns Turns, the result is that the interchange is straight-through, and the signal between the non-motorway and the non-machine platform is level;
  • the non-machine platform commutation interchange means that the commutation interchange is on the ground level, and the above-ground non-machine platform or the underground non-machine platform is added to make the motorway and the non-machine channel go their own way without interfering with each other.
  • the result is a non-machine platform
  • the commutation interchange is intercommunication, and the non-airway signal is level with the non-machine platform.
  • buses There are four types of buses: one, wide roads, two-stop buses, two, wide roads, two-stop buses, three, narrow roads, straight-through dislocation, single-way, single-stop bus, and four, narrow roads, straight-through, dislocation, two-way, two-stop bus;
  • the level-crossing bus passes through the signal level-crossing area so that the level-crossing bus directly enters and exits thousands of households, and its bus accessibility is excellent.
  • the matching road network is designed according to the characteristics of urban traffic.
  • the characteristics of urban traffic are that there are more intermediate traffic and less surroundings, which form the peak shape of urban traffic. In other words, urban traffic must match the actual demand to ensure urban traffic.
  • the plane matching road network is formed by the distance between the road networks, that is, the road network is dense in the middle and sparse on both sides to form a plane matching road network.
  • Plane matching road network is also called plane mountain shape;
  • the length-matched road network is composed of a full-length road network with wide roads and an urban road network with wide roads.
  • the length matching road network is also called the length of the mountain peak shape;
  • the vertical matching road network is formed by spatially superimposing an urban road network and an urban road section.
  • Vertical matching road network is also called vertical mountain peak shape
  • the vertical matching road network There are two modes of the vertical matching road network: one, the vertical matching road network in the wide road urban area, and the second, the vertical matching road network in the narrow road urban area.
  • the vertical matching road network in the wide road urban area There are two levels of the vertical matching road network in the wide road urban area: one, the two parking vertical matching road networks in the wide road urban area, and the second, the vertical matching road network in the wide road urban areas;
  • the single-stop vertical matching road network in the narrow-channel urban area is a single-channel single-stop single-stop bus that is directly connected to the narrow channel;
  • the two-stop vertical matching road network in the narrow road urban area is a narrow road straight through two bus stops with two stops;
  • the matching road network has great economic significance to the road network.
  • the spatial pattern of the road section has two: one, the space of the wide road interpass section; the second, the space of the narrow road straight passage section.
  • Broad road There are two spatial modes of the wide road inter-passage section: one, the wide road intercommunication and the two-stop bus section space; the second, the wide road intercommunication and the stopped bus section space.
  • the space mode of the narrow road straight path section has two, one, narrow road straight through staggered single lane single parking bus section space; second, narrow road straight through staggered two lane two bus parking section space.
  • the wide road intercommunication two-stop bus section There are three spatial levels of the wide road intercommunication two-stop bus section: one, the ground wide road intercommunication two-stop bus, two, the underground wide road intercommunication two-stop bus, three, the underground wide road intercommunication infrastructure;
  • the wide road intercommunication and stop bus section There are three spatial dimensions of the wide road intercommunication and stop bus section: one, ground wide road intercommunication and stop bus, two, underground wide road intercommunication and stop bus, and three, underground wide road intercommunication infrastructure;
  • narrow road straight through dislocation single road single stop bus section There are three spatial aspects of the narrow road straight through dislocation single road single stop bus section: first, ground narrow road straight through dislocation single road single stop bus, second, underground narrow road straight through dislocation single road single stop bus, third, underground narrow road straight through infrastructure ;
  • the narrow road straight through staggered two-way two-stop bus section There are three spatial aspects of the narrow road straight through staggered two-way two-stop bus section: one, the ground narrow road straight through the two-way two-stop bus, the second, the underground narrow road straight through the two-way two-stop bus, and the third, the underground narrow road straight-through infrastructure .
  • the rapidity of the omni-channel network and the accessibility of the signal level crossing area are seamlessly combined.
  • the design of the omni-channel network and the signal level crossing area varies depending on the city shape and traffic capacity, and is eclectic.
  • Overground non-machine platform underpass Nine, underground non-machine platform lower level commutation T-shaped commutation interchange; ten, above-ground non-machine platform upper level commutation T-shaped commutation interchange; eleven, underground non-machine platform high-speed commutation interchange; 12, underground non-machine platform elevated commutation Interchange
  • intercommunication node There are two types of interchanges: an intercommunication node and a through node, the former is a wide-channel intercommunication, and the latter is a narrow-channel intercommunication;
  • the omni-channel network is the only way to solve the world problem of urban "congestion", which cannot be shaken;
  • the omni-channel network is the premise and foundation of intelligent transportation and is indispensable;
  • the signal level crossing area is set in the middle of the full access network, and the signal level crossing area uses humanized flexible level crossing buses to make it extremely accessible to public and non-transit buses;
  • the intelligent transportation is built on the basis of the all-channel network, supplemented by the signal level crossing area, which constitutes intelligent transportation. It has become the only practical intelligent transportation design technical solution to this day. To put it bluntly, intelligent transportation has Benefit from hardware replacement.
  • Said public transportation vehicle meets actual demand, in other words, varies according to city size and time period.
  • the direct bus is the main body of city bus
  • the non-through bus is also called a point-to-point bus
  • the point-to-point bus refers to the setting of point-to-point buses among crowded places such as city bus stations, railway stations, airports, etc.
  • the point-to-point buses are realized by changing the left turn or the right turn;
  • the bus vehicles are all parked in the space of the road section, which is conducive to overall scheduling and has many characteristics such as convenience, speed, efficiency, and flexibility.
  • the smart city is only for urban transportation, and other aspects are still on the road. It needs to be improved over time, and it cannot be done overnight.
  • Figure 1 Plane plan of downhill commutation
  • Figure 2 Plan view of superimposed commutation level crossing: (1) Level crossing type downhill commutation level crossing (upper layer);
  • Figure 3 Plan view of superimposed commutation level crossing: (2) Level crossing type uphill commutation level crossing (lower layer);
  • Figure 4 The plan view of the crossover interchange on the underground non-machine platform: (1) the upper crossover line (above ground);
  • FIG. 1 The plan view of the cross commutation interchange on the underground non-machine platform: (2) Through line (ground floor);
  • Figure 6 The plan view of the cross commutation interchange on the underground non-machine platform: (3) Underground non-machine platform;
  • FIG. 7 The plan view of the underground non-machine platform under the commutation interchange: (1) Through line (ground floor);
  • Figure 8 The plan view of the underground non-machine platform under the commutation interchange: (2) the underground non-machine platform;
  • Figure 9 The plan view of the underground non-machine platform underneath the commutation interchange: (3) Underpass (underground);
  • Figure 10 the plan view of the crossover interchange on the non-machine platform on the ground: (1) the upper crossover line (first floor on the ground);
  • Figure 11 The plan view of the cross commutation interchange on the ground non-machine platform: (2) Straight line (top layer of the ground non-machine platform);
  • Figure 12 The plan view of the cross commutation interchange on the above-ground non-machine platform: (3) Above-ground non-machine platform (ground floor);
  • Figure 13 The plan view of the non-machine platform above the ground passing through the commutation interchange: (1) Straight line (top layer of the non-machine platform above the ground);
  • Figure 14 The plan view of the above-ground non-machine platform passing through the commutation interchange: (2) The above-ground non-machine platform (ground floor);
  • Figure 15 The plan view of the non-machine platform above the ground passing through the commutation interchange: (3) Under the thread (underground);
  • Figure 16 The plan view of the crossover on the underground non-machine platform: (1) the upper crossover line (first floor above ground);
  • Figure 17 The plan view of the crossover on the underground non-machine platform: (2) Through line (ground floor);
  • Figure 18 Plane view of crossover on underground non-machine platform: (3) Underground non-machine platform;
  • FIG. 1 Plan view of an underground non-machine platform underpass: (1) Through line (ground floor);
  • Figure 20 Plan view of an underground non-machine platform underpass: (2) Underground non-machine platform;
  • FIG. 1 the plan view of the underground non-machine platform underpass: (3) Underpass (first basement);
  • Figure 22 the plan view of the crossover on the non-machine platform above the ground: (1) the upper crossover line (first floor on the ground);
  • Figure 23 the plan view of the crossover on the ground non-machine platform: (2) straight line (top layer of the ground non-machine platform);
  • Figure 24 The plan view of the crossover on the ground non-machine platform: (3) The ground non-machine platform (ground floor);
  • Figure 25 Plan view of a non-machine platform above ground passing through an interchange: (1) Straight line (top layer of non-machine platform above ground);
  • Figure 26 Plan view of an over-ground non-machine platform underpass: (2) Above-ground non-machine platform (ground floor);
  • Figure 27 Plan view of a non-machine platform above the ground passing through the interchange: (3) Under the thread (first floor underground);
  • Figure 28 Plan view of the high-speed commutation interchange of the modified underground non-machine platform: (1) Upper high speed (above ground);
  • Figure 29 Plan view of a high-speed commutation interchange of a modified underground non-machine platform: (2) Lower high-speed (ground floor);
  • Figure 30 Plan view of a high-speed commutation interchange of a modified underground non-machine platform: (3) Underground non-machine platform;
  • FIG. 31 Plan view of the elevated underground non-machine platform elevated commutation interchange: (1) Viaduct (above ground);
  • Figure 32 Plan view of the elevated underground non-machine platform elevated commutation interchange: (2) Ground through (ground floor);
  • Figure 33 Plan view of elevated underground non-machine platform elevated commutation interchange: (3) underground non-machine platform;
  • Figure 34 The plan view of the upper layer commutation T-shaped commutation interchange on the non-machine platform above the ground: (1) the left-handed layer with straight line commutation and the left-handed layer with vertical line commutation (the upper layer)
  • Figure 35 Plan view of the upper-level commutation T-shaped commutation interchange of the non-machine platform above the ground: (2) the top layer of the non-machine platform above the ground;
  • Figure 36 Plan view of the upper level commutation T-shaped commutation interchange of the non-machine platform above the ground: (3) the non-machine platform above the ground;
  • FIG. 37 The plan view of the T-shaped commutation interchange at the lower level of the underground non-machine platform: (1) T-shaped commutation interchange (ground level);
  • FIG 38 The plan view of the T-shaped commutation interchange at the lower level of the underground non-machine platform: (2) The above-ground non-machine platform and the lower level are linearly switched to the left turn, and the lower vertical line is switched to the left turn (underground level);
  • FIG 39 Multi-dimensional all-pass express road network plan: (1) Transportation road network (ground floor);
  • Figure 40 Plan view of multi-dimensional all-pass fast road network: (2) Matching road network (ground layer);
  • Figure 43 Spatial plan of the two-stop public traffic section with wide roads: (1) Two-stop public traffic with wide roads on the ground;
  • Figure 44 Spatial plan of the two-way bus stop with wide roads: (2) Two-way bus with underground wide roads;
  • Figure 45 Spatial plan of the two-stop public traffic section with wide road intercommunication: (3) Underground wide road intercommunication infrastructure;
  • Figure 46 Spatial plan of the wide road intercommunication and parking bus section: (1) Ground wide road intercommunication and parking bus;
  • Figure 48 Spatial plan of the wide road intercommunication bus section: (3) Underground wide road intercommunication infrastructure;
  • Figure 49 Space plan view of narrow road straight through dislocation single road single stop bus section: (1) Ground narrow road straight through dislocation single road single stop bus;
  • Figure 50 Space plan view of narrow road straight through dislocation single road single stop bus section: (2) Underground narrow road straight through dislocation single road single bus stop;
  • Figure 51 Spatial plan of the narrow road straight through dislocation single road single stop bus section: (3) underground narrow road straight through infrastructure;
  • Figure 52 Spatial plan of the narrow road straight through staggered two-way two-stop bus section: (1) Ground narrow road straight through staggered two-way two-stop bus;
  • Figure 53 Spatial plan view of the narrow road straight through the two staggered two-stop bus sections: (2) The underground narrow road through the two staggered two-stop bus;
  • Figure 54 Spatial plan of two-way two-stop bus sections with narrow straight through and dislocation: (3) Underground narrow straight through infrastructure.
  • Figure 1 is a plan view of downhill commutation level crossing
  • Downhill commutation leveling is a new type of commutation leveling, but downhill commutation leveling should not be used alone.
  • Figure 2- Figure 3 is a superimposed commutation plan view
  • the superimposed commutation leveling 38 is composed of an uphill commutation leveling 74 and a downhill commutation leveling 75.
  • Figure 4-15 is a plan view of the non-machine platform commutation interchange
  • the nodes realize intercommunication.
  • Figures 16-27 are plan views of non-machine platform interchanges
  • the nodes are directly connected.
  • Figure 28-30 is a plan view of a modified underground non-machine platform high-speed commutation interchange
  • the high-speed node reconstruction plan is the same as the elevated one.
  • Figures 31-33 are plan views of the elevated underground non-machine platform elevated commutation interchange
  • Figure 34- Figure 38 is a plan view of a non-machine platform T-shaped commutation interchange
  • the nodes realize intercommunication and direct connection.
  • Figure 39- Figure 42 is a multi-dimensional all-pass fast road network plan
  • Figure 43- Figure 54 is the road network space plan
  • Multi-dimensional urban expressway network (Express) is an innovative technology 2.0, which is a disruptive replacement of urban transportation. Nodes are set up with non-machine platforms to separate the motorway from the non-machineway. There are two types of interchanges: intercommunication and through.
  • the road network ensures smooth nodes and intelligent transportation can be achieved, solving the world problem of urban traffic "congestion”. Intelligent transportation is of great significance to smart cities and information technology. The former achieves seamless evolution while the latter improves traffic capacity.
  • Approximately 20% of the underground space resources are developed into various urban facilities in the mode of "one-time planning and reverse construction". The result is extremely fast accessibility, convenient transfers, and avoids the separate development and construction of zippered pipe corridors.
  • the purpose of the present invention is clear: the use of multidisciplinary integration and innovation to create a fast, environmentally friendly, convenient new generation of urban transportation, and benefit the human society.
  • the most urgent task is to carry out subversive changes to urban traffic (the subway is replaced by fast), and who wants to do the same.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Traffic Control Systems (AREA)
  • Road Paving Structures (AREA)

Abstract

多维城市快速路网,由节点换代、公交换代、匹配路网和路段空间构成,属于城市交通颠覆性换代。节点设置非机平台,使其机动道与非机道分离,立交有互通和直通两种模式。路网畅通建立智能交通,解决城市交通"拥堵"这一世界难题,另有换乘方便,可达性优等特性。对约为20%的地下空间资源采用"一次统筹逆作施工",开发为各类城市设施,其工程投资费用极少。智能交通对智慧城市和信息技术具有颠覆性意义,前者为无缝嬗变,避免损失;后者为网约交通,提高效能。利用多学科融合创新,创造快速、环保、方便新一代城市交通。

Description

多维城市快速路网 技术领域
本发明为城市道路交通领域,特别是智能交通和智慧城市建设。
背景技术
目前,城市交通由信号平交、地铁、轨道交通、高架、快速公交(BRT)、公交优先等多种交通模式构成。由于交通工具(汽车)与道路结构(地铁)不协调,造成投资开发浪费严重,交通效果极差(拥堵)。以地铁为轴心的交通模式将城市多维(地上、地下)空间撕成一条条、一块块,真可谓多道分食。多道分食的特点是即便修建足够多的地铁,也只能维持城市交通不瘫痪,不能解决城市交通拥堵。现有地铁模式是城市淘汰马车交通的产物。在教科书交通分类中,没有地铁的位置,由于地铁具有环保,是取代化石燃料汽车唯一选择,地铁为首例城市现代交通,一直沿用至今。
据研究资料,地下空间既可敷设地铁交通,亦可敷设汽车交通,两者均具大容量、快速、准点等特点。汽车交通多项交通结构指标优于地铁交通,其优点有五:一、通行量大;二、速度快;三、公交具有按需供给(数量和档次)、换乘方便、可达性好;四:非公交与公交置换性强;五、工程性价比好。
今天,四次工业革命以非线性速度迅猛发展,对各个科技领域产生巨大影响。以能源交通为例,能源换代、汽车换代和道路换代三者相辅相成,缺一不可,开创全球城市可持续发展新纪元。能源换代、汽车换代均获得人类社会的肯定,关键是道路换代能否实现。
道路换代是建立在能源换代的基础上,没有能源换代道路换代不复存在。现将道路换代前实况叙述于次。
一、把握机遇。能源换代为汽车地下化提供了天赐良机,汽车地下化为建立城市一元汽车交通创造了条件。城市一元汽车交通使“车路统一”,全球城市汽车交通的通行量、车速和工程造价出现“奇迹”。换言之,应把握机遇重塑城市交通模式,实现交通模式颠覆性换代乃当务之急。
二、硬件换代。硬件技术换代是将地铁交通、轨道交通、公交优先等多元多模式嬗变为汽车交通互通路网。所谓汽车交通互通路网是指路网的节点不采用信号平交,而采用换向立交和非机平台,将机动道与非机道两者各行其道,互不干扰,机动道实现互通和直通,非机道于非机平台信号平交。现有硬件技术(现有模式)于早、晚高峰时,车速最多为12km/h。
三、天渊之别。硬件技术换代使城市交通通行量提升多倍。硬件不换代,即使采用信息技术,其交通通行量仅提高15%。硬件换代与硬件不换代两者通行量有天渊之别。
四、智能交通。现今,由于城市交通节点为信号平交,交通拥堵。如果节点改用互通节点和直通节点,建立智能交通,城市交通拥堵迎刃而解。智能交通是道路换代的要求。
五、信息技术。城市交通建立智能交通的前提下,今天的信息技术(5G)对城市交通(智能交通)的通行量和通行速度有显著的提升,毋庸置疑。
一句话,智能交通建立和信息技术应用均需要发明创新。
发明内容
本发明为多维城市快速路网(简称城市快速或快速),其层面有四:一、节点换代;二、快速路网;三匹配路网;四、路段空间。
一、节点换代。节点换代层面有二:一、节点立交更迭;二、非机平台节点。所谓节点立交更迭是指立交从苜蓿立交更替为换向立交;所谓非机平台节点是指换向立交的地面层设置地上非机平台或地下非机平台,使其机动道与非机道两者各行其道,互不干扰,机动道直通,非机道于非机平台信号平交,实现路网互通。
二、公交换代。公交换代是多维城市快速路网的核心之一。公交换代层面有二:一、公交种类;二、公交模式。公交种类有二:一、宽道公交;二、窄道公交。公交模式有三:一、节点公交;二、路段公交;三、平交公交,三者构成一个崭新的网约高速、便捷城市公交体系。(简称城市公交新体系)城市公交新体系彻底颠覆现有城市公交体系。是发展的需要,时代的需要。
三、匹配路网。匹配路网层面有三:一、平面匹配路网;二、长度匹配路网;三、竖向匹配路网。
四、路段空间。路段空间由地下建筑、地下构筑物、动态交通、静态交通、充电设施、过街过道、过街隧道、管廊、过道、拟建项目等等组成。采用“一次统筹逆作施工”,避免施工“拉链”,有益于城市环保。能开发利用约20%的城市地下空间资源,获得巨大的经济效益。
宽道互通和窄道直通界定。单向两道均可用于宽道互通和窄道直通,不做硬性规定,能宽则宽,能窄则窄,视非机道宽窄而异。非机道宽设置宽道互通,非机道窄设置窄道直通。另外,宽道互通与窄道直通应确保立交与路段匹配协同一致,即立交宽道,路段宽道;立交窄道,路段窄道。
多维城市快速路网设计应以工程安全、交通畅通、实际需求、综合效益等全方位权衡利弊。俗话说,两害相权取其轻,两利相权取其重。法无定法,不拘一格。解决城市交通“拥堵”就是“大法”。
地下空间开发利用(土木工程、交通工程、岩土工程)的设计、施工规范完善。对创新技术而言有二个标准:一是社会效益;二是经济效益。本发明专利技术能解决各类城市“拥堵”,开发费用很少或无需费用。
今天是创新世界,只有创新才能使各行各业出现颠覆性换代。多维城市快速路网的社会价值能解决城市“拥堵”这一世界难题;经济价值其开发费用极少或无需费用。本发明专利技术领导全球城市快速(快速)开发建设,福祉人类社会。
1、进一步的,所述节点、路段有:1、下坡式换向平交;2、地下非机平台上跨换向立交;3、地下非机平台下穿换向立交;4、地上非机平台上跨换向立交;5、地上非机平台下穿换向立交;6、地下非机平台上跨立交;7、地下非机平台下穿立交;8、地上非机平台上跨立交;9、地上非机平台下穿立交;10、非机平台丁字换向立交;11、改造型地下非机平台高速换向立交;12、改造型地下非机平台高架换向立交,以及多维全通快速路网。
2、所述下坡式换向平交的单行道和双行道均设置同层,单行道从双行道下面通过,其换向平交称为下坡式换向平交;
所述下坡式换向平交由单行道、双行道、单行道换向左匝、双行道换向左匝、单行右匝和双行右匝组成;
所述单行道换向左匝由单行道分离点至单行道切入点;
所述双行道换向左匝由双行道分离点至双行道切入点;
所述的下坡式换向平交单独应用不能发挥换向平交功能,只有下坡式换向平交和上坡式换向平交叠加组合应用,才名至实归。三
3、所述地下非机平台上跨换向立交公交设置中间,非公交设置两边,其立交是在上跨换向立交的基础上,增设地下非机平台而成,即在地面层下面敷设地下非机平台,由自行车道和行人道组成的非机道,于地下非机平台信号平交,其结果是地下非机平台上跨换向立交的机动道为互通;非机道为信号平交,机动道与非机道两者各行其道,互不干扰,地下非机平台上跨换向立交无需设置信号平交,其立交视为“互通”;
4、地下非机平台下穿换向立交公交设置中间,非公交设置两边,其立交是在下穿换向立交的基础上,增设地下非机平台而成,即在地面层下面敷设地下非机平台,由自行车道和行人道组成的非机道,于地下非机平台信号平交,其结果是地下非机平台下穿换向立交的机动道为互通;非机道为信号平交,机动道与非机道两者各行其道,互不干扰,地下非机平台下穿换向立交无需设置信号平交,其立交视为“互通”;
5、所述地上非机平台上跨换向立交公交设置中间,非公交设置两边,其立交是在上跨换向立交的基础上,增设地上非机平台而成,即在地面层上面敷设地上非机平台,立交直通线从地上非机平台顶层通过,由自行车道和行人道组成的非机道,于地上非机平台信号平交,其结果是地上非机平台上跨换向立交的机动道为互通,非机道为信号平交,机动道与非机道两者各行其道,互不干扰,地上非机平台上跨换向立交无需设置信号平交,其立交视为“互通”;
6、地上非机平台下穿换向立交公交设置中间,非公交设置两边,其立交是在下穿换向立交的基础上,增设地上非机平台而成,即在地面层上面敷设地上非机平台,立交直通线从地上非机平台顶层通过,由自行车道和行人道组成的非机道,于地上非机平台信号平交,其结果是地上非机平台下穿换向立交的机动道为互通,非机道为信号平交,机动道与非机道两者各行其道,互不干扰,地上非机平台下穿换向立交无需设置信号平交,其立交视为“互通”;
7、所述地下非机平台上跨立交公交设置中间,非公交设置两边,其立交是在上跨立交的基础上,增设地下非机平台而成,即在地面层下面敷设地下非机平台,由自行车道和行人道组成的非机道,于地下非机平台信号平交,其结果是地下非机平台上跨立交的机动道为直通;非机道为信号平交,机动道与非机道两者各行其道,互不干扰,地下非机平台上跨立交无需设置信号平交,其立交视为“直通”;
8、所述地下非机平台下穿立交公交设置中间,非公交设置两边,其立交是在下穿立交的基础上,增设地下非机平台而成,即在地面层下面敷设地下非机平台,由自行车道和行人道组成的非机道,于地下非机平台信号平交,其结果是地下非机平台下穿立交的机动道为直通;非机道为信号平交,机动道与非机道两者各行其道,互不干扰,地下非机平台下穿立交无需设置信号平交,其立交 视为“直通”;
9、所述地上非机平台上跨立交公交设置中间,非公交设置两边,其立交是在上跨立交的基础上,增设地上非机平台而成,即在地面层上面敷设地上非机平台,立交直通线从地上非机平台顶层通过,由自行车道和行人道组成的非机道,于地上非机平台信号平交,其结果是地上非机平台上跨立交的机动道为直通,非机道为信号平交,机动道与非机道两者各行其道,互不干扰,地上非机平台上跨立交无需设置信号平交,其立交视为“直通”;
10、所述地上非机平台下穿立交公交设置中间,非公交设置两边,其立交是在下穿立交的基础上,增设地上非机平台而成,即在地面层上面敷设地上非机平台,立交直通线从地上非机平台顶层通过,由自行车道和行人道组成的非机道,于地上非机平台信号平交,其结果是地上非机平台下穿立交的机动道为直通,非机道为信号平交,机动道与非机道两者各行其道,互不干扰,地上非机平台下穿立交无需设置信号平交,其立交视为“直通”;
11、所述非机平台丁字换向立交有二:一、地上非机平台上层换向丁字换向立交,二、地下非机平台下层换向丁字换向立交;
所述地上非机平台上层换向丁字换向立交是在上层换向丁字换向立交的基础上,增加地上非机平台而成;
所述地下非机平台下层换向丁字换向立交是在下层换向丁字换向立交的基础上,增加地下非机平台而成;
所述上层换向丁字换向立交由直线、垂线、上层直线换向左匝、上层垂线换向左匝、直线右匝和垂线右匝组成;
所述下层换向丁字换向立交由直线、垂线、下层直线换向左匝、下层垂线换向左匝、直线右匝和垂线右匝组成;
所述上层直线换向左匝由上层直线分离点至上层直线切入点;
所述上层垂线换向左匝由上层垂线分离点至上层垂线切入点;
所述下层直线换向左匝由下层直线分离点至下层直线切入点;
所述下层垂线换向左匝由下层垂线分离点至下层垂线切入点;
所述地上非机平台上层换向丁字换向立交,按竖向结构有三:一、上层直线换向左匝和上层垂线换向左匝,二、地上非机平台顶层,三、地上非机平台
所述地下非机平台下层换向丁字换向立交,按竖向结构有二:一、下层换向丁字换向立交,二、下层直线换向左匝、下层垂线换向左匝和地下非机平台
所述地下非机平台下层换向丁字换向立交全互通特性,是在地面层下面敷设地下非机平台,非机道于地下非机平台信号平交,机动道为互通,其结果是地下非机平台下层换向丁字换向立交的机动道与非机道两者各行其道,互不干扰,地下非机平台下层换向丁字换向立交为全互通立交;
所述地上非机平台上层换向丁字换向立交全互通特性,是在地面层上面敷设地上非机平台,非机道于地上非机平台信号平交,机动道为互通,其结果是地上非机平台上层换向丁字换向立交的机动道与非机道两者各行其道,互不干扰,地上非机平台上层换向丁字换向立交为全互通立交。
12、所述改造型地下非机平台高速换向立交,是将非换向立交的高速,改造为地下非机平台高速换向立交;
所述地下非机平台高速换向立交由上跨高速、地面高速、上跨高速换向左匝、地面高速换向左匝、上跨高速右匝、地面高速右匝和地下非机平台组成;
所述上跨高速换向左匝由上跨高速分离点至上跨高速切入点组成;
所述地面高速换向左匝由地面高速分离点至地面高速切入点组成;
所述地下非机平台高速换向立交的机动道无需信号平交实现互通,非机道于地下非机平台信号平交,机动道与非机道两者各行其道,互不干扰,地下非机平台高速换向立交无需设置信号平交,其立交视为“互通”。
13、所述改造型地下非机平台高架换向立交,是将非换向立交的高架,改造为地下非机平台高架换向立交;
所述地下非机平台高架换向立交由高架直通、地面直通、高架直通换向左匝、地面直通换向左匝、高架直通右匝、地面直通右匝和地下非机平台组成;
所述高架直通换向左匝由高架直通分离点至高架直通切入点组成;
所述地面直通换向左匝由地面直通分离点至地面直通切入点组成;
所述地下非机平台高架换向立交的机动道无需信号平交实现互通,非机道于地下非机平台信号平交,机动道与非机道两者各行其道,互不干扰,地下非机平台高架换向立交无需设置信号平交,其立交视为“全互通”;。
14、所述多维全通快速路网层面有四:一、节点换代,二、公交换代,三、匹配路网,四、路段空间。
15、所述节点换代层面有二:一、节点换代,二、设置非机平台;
所述节点换代是指节点从现有的苜蓿立交更替为换向立交、换向平交;
所述非机平台层面有二:一、非机平台立交,二、非机平台换向立交;
所述非机平台立交是指立交于地面层,增设地上非机平台或地下非机平台,使其机动道与非机道两者各行其道,互不干扰,机动道不设左匝和右匝,结果是立交为直通,非机道于非机平台信号平交;
所述非机平台换向立交是指换向立交于地面层,增设地上非机平台或地下非机平台,使其机动道与非机道两者各行其道,互不干扰,结果是非机平台换向立交为互通,非机道于非机平台信号平交。
16、所述公交换代层面有二:一、公交种类,二、公交模式;
所述公交种类有四:一、宽道互通两停公交,二、宽道互通对停公交,三、窄道直通错位单道单停公交,四、窄道直通错位两道两停公交;
所述公交模式有三:一、节点公交,二、路段公交,三、平交公交;
所述平交公交是通过信号平交区,使其平交公交直接进、出千家万户,其公交可达性极优。
17、所述匹配路网是根据城市交通特点设计,城市交通特点具有中间通行量多,周边少,形成 城市交通山峰形,换言之,城市交通通行量要与实际需求量相匹配,才能确保城市交通畅通,其模式有三:一、平面匹配路网,二、长度匹配路网,三、竖向匹配路网;
所述平面匹配路网由路网间距形成,即路网中间密,两边稀,构成平面匹配路网。平面匹配路网亦称平面山峰形;
所述长度匹配路网。长度匹配路网由宽道互通全长路网和宽道互通市区路网构成。长度匹配路网亦称长度山峰形;
所述竖向匹配路网由市区路网与市区路段空间叠加构成。竖向匹配路网亦称竖向山峰形
所述竖向匹配路网其模式有二:一、宽道市区竖向匹配路网,二、窄道市区竖向匹配路网
所述宽道市区竖向匹配路网层面有二:一、宽道市区两停竖向匹配路网,二、宽道市区对停竖向匹配路网;
所述窄道市区竖向匹配路网层面有二:一、窄道市区单停竖向匹配路网,二、窄道市区两停竖向匹配路网;
所述窄道市区单停竖向匹配路网就是窄道直通错位单道单停公交;
所述窄道市区两停竖向匹配路网就是窄道直通错位两道两停公交;
所述匹配路网对路网具有重大的经济意义。
18、所述路段空间模式有二:一、宽道互通路段空间;二、窄道直通路段空间。
宽道。所述宽道互通路段空间模式有二:一、宽道互通两停公交路段空间;二、宽道互通对停公交路段空间。
窄道。所述窄道直通路段空间模式有二、一、窄道直通错位单道单停公交路段空间;二、窄道直通错位两道两停公交路段空间。
宽。所述宽道互通两停公交路段空间层面有三:一、地面宽道互通两停公交,二、地下宽道互通两停公交,三、地下宽道互通基础设施;
宽。所述宽道互通对停公交路段空间层面有三:一、地面宽道互通对停公交,二、地下宽道互通对停公交,三、地下宽道互通基础设施;
窄。所述窄道直通错位单道单停公交路段空间层面有三:一、地面窄道直通错位单道单停公交,二、地下窄道直通错位单道单停公交,三、地下窄道直通基础设施;
窄。所述窄道直通错位两道两停公交路段空间层面有三:一、地面窄道直通错位两道两停公交,二、地下窄道直通错位两道两停公交,三、地下窄道直通基础设施。
19、所述城市快速层面有二:一、全通路网;二、信号平交区,两者特性各一,但相辅相成,缺一不可;
所述全通路网的快速和信号平交区的可达性,两者结合天衣无缝。
所述全通路网和信号平交区的设计因城市形态和交通能行量而异,不拘一格。
20、所述全通路网的全部节点:十字节点和丁字节点均具有互通和直通,实现路网全通;
所述全通路网的立交共计十二种:一、地下非机平台上跨换向立交;二、地下非机平台下穿换向立交;三、地上非机平台上跨换向立交;四、地上非机平台下穿换向立交;五、地下非机平台上 跨立交;六、地下非机平台下穿立交;七、地上非机平台上跨立交;八、地上非机平台下穿立交;九、地下非机平台下层换向丁字换向立交;十、地上非机平台上层换向丁字换向立交;十一、地下非机平台高速换向立交;十二、地下非机平台高架换向立交;
所述种立交有互通节点和直通节点两种,前者为宽道互通,后者为窄道直通;
所述全通路网是解决城市“拥堵”这一世界难题唯一途径,不可撼动;
所述全通路网是智能交通的前提和基础,不可或缺;
21、所述信号平交区设置于全通路网中间,信号平交区采用人性化灵活式平交公交,使其公交和非公交可达性极优;
22、所述智能交通是建立在全通路网的基础上,辅以信号平交区,构成智能交通,成为时至今日唯一具有实际意义的智能交通设计技术方案,直白的说,智能交通得益于硬件换代。
23、公交种类有四:一、高档车一人一座,二、普通车座站混合,三、大型摆渡车,四、小型座站混合公交;
所述公交车辆以满足实际需求为度,换言之,因城市规模和时段而异。
24、所述公交模式有二:一、直通公交,二、非直通公交;
所述直通公交是城市公交的主体;
所述非直通公交又称点对点公交;
所述点对点公交是指城市公交车站、铁路车站、机场等人群密集场所相互间设置点对点公交,点对点公交是通过换向左匝或者右匝实现;
所述公交车辆一律分散停放于路段空间,有利于统筹调度,具有方便、快速、高效、灵活诸多特点。
25、所述网约交通层面有二:一、网约公交,二、网约非公交;
所述网约公交和网约非公交统一调度,但应确保网约公交优先的原则。
26、所述智能交通无缝嬗变为智慧城市得益于智能交通创新研发,明确地说,得益于全通路网的研发成功;
所述智慧城市仅为城市交通方面,其它方面还在路上,有待时日完善,不能一踌而就。
附图说明
图1、下坡式换向平交平面图;
图2、叠加换向平交平面图:(1)平交型下坡式换向平交(上层);
图3、叠加换向平交平面图:(2)平交型上坡式换向平交(下层);
图4、地下非机平台上跨换向立交平面图:(1)上跨线(地上层);
图5、地下非机平台上跨换向立交平面图:(2)直通线(地面层);
图6、地下非机平台上跨换向立交平面图:(3)地下非机平台;
图7、地下非机平台下穿换向立交平面图:(1)直通线(地面层);
图8、地下非机平台下穿换向立交平面图:(2)地下非机平台;
图9、地下非机平台下穿换向立交平面图:(3)下穿线(地下层);
图10、地上非机平台上跨换向立交平面图:(1)上跨线(地上一层);
图11、地上非机平台上跨换向立交平面图:(2)直通线(地上非机平台顶层);
图12、地上非机平台上跨换向立交平面图:(3)地上非机平台(地面层);
图13、地上非机平台下穿换向立交平面图:(1)直通线(地上非机平台顶层);
图14、地上非机平台下穿换向立交平面图:(2)地上非机平台(地面层);
图15、地上非机平台下穿换向立交平面图:(3)下穿线(地下层);
图16、地下非机平台上跨立交平面图:(1)上跨线(地上一层);
图17、地下非机平台上跨立交平面图:(2)直通线(地面层);
图18、地下非机平台上跨立交平面图:(3)地下非机平台;
图19、地下非机平台下穿立交平面图:(1)直通线(地面层);
图20、地下非机平台下穿立交平面图:(2)地下非机平台;
图21、地下非机平台下穿立交平面图:(3)下穿线(地下一层);
图22、地上非机平台上跨立交平面图:(1)上跨线(地上一层);
图23、地上非机平台上跨立交平面图:(2)直通线(地上非机平台顶层);
图24、地上非机平台上跨立交平面图:(3)地上非机平台(地面层);
图25、地上非机平台下穿立交平面图:(1)直通线(地上非机平台顶层);
图26、地上非机平台下穿立交平面图:(2)地上非机平台(地面层);
图27、地上非机平台下穿立交平面图:(3)下穿线(地下一层);
图28、改造型地下非机平台高速换向立交平面图:(1)上层高速(地上层);
图29、改造型地下非机平台高速换向立交平面图:(2)下层高速(地面层);
图30、改造型地下非机平台高速换向立交平面图:(3)地下非机平台;
图31、改造型地下非机平台高架换向立交平面图:(1)高架直通(地上层);
图32、改造型地下非机平台高架换向立交平面图:(2)地面直通(地面层);
图33、改造型地下非机平台高架换向立交平面图:(3)地下非机平台;
图34、地上非机平台上层换向丁字换向立交平面图:(1)直线换向左匝、垂线换向左匝层(地上一层);
图35、地上非机平台上层换向丁字换向立交平面图:(2)地上非机平台顶层;
图36、地上非机平台上层换向丁字换向立交平面图:(3)地上非机平台;
图37、地下非机平台下层换向丁字换向立交平面图:(1)丁字换向立交(地面层);
图38、地下非机平台下层换向丁字换向立交平面图:(2)地上非机平台和下层直线换向左匝、下层垂线换向左匝(地下一层);
图39、多维全通快速路网平面图:(1)交通路网(地面层);
图40、多维全通快速路网平面图:(2)匹配路网(地面层);
图41、多维全通快速路网平面图:(3)公交换代(地面层)
图42、多维全通快速路网平面图:(4)路段空间(地下一层);
图43、宽道互通两停公交路段空间平面图:(1)地面宽道互通两停公交;
图44、宽道互通两停公交路段空间平面图:(2)地下宽道互通两停公交;
图45、宽道互通两停公交路段空间平面图:(3)地下宽道互通基础设施;
图46、宽道互通对停公交路段空间平面图:(1)地面宽道互通对停公交;
图47、宽道互通对停公交路段空间平面图:(2)地下宽道互通对停公交;
图48、宽道互通对停公交路段空间平面图:(3)地下宽道互通基础设施;
图49、窄道直通错位单道单停公交路段空间平面图:(1)地面窄道直通错位单道单停公交;
图50、窄道直通错位单道单停公交路段空间平面图:(2)地下窄道直通错位单道单停公交;
图51、窄道直通错位单道单停公交路段空间平面图:(3)地下窄道直通基础设施;
图52、窄道直通错位两道两停公交路段空间平面图:(1)地面窄道直通错位两道两停公交;
图53、窄道直通错位两道两停公交路段空间平面图:(2)地下窄道直通错位两道两停公交;
图54、窄道直通错位两道两停公交路段空间平面图:(3)地下窄道直通基础设施。
其中:2节点换代 6公交停靠 7公交直通 9公交 10非公交 11地下非机平台上跨换向立交 12地下非机平台下穿换向立交 13地上非机平台上跨换向立交 14地上非机平台下穿换向立交 15换向立交 16直通线 17下穿线 18直通分离点 19直通切入点 20直通换向左匝 21下穿分离点 22下穿切入点 23下穿换向左匝 24直通右匝 25下穿右匝 26变坡点 27坡道 30换乘竖梯 31水平段 33上跨线 34上跨右匝 35上跨分离点 36上跨切入点 37上跨换向左匝 38叠加换向平交 40地面层 41地上一层 42地下一层 43地下二层 45地上非机平台顶层 47信号平交 49自行车道 50行人道 52上跨立交 53下穿立交 54非机平台节点 55非机平台立交 56非机平台换向立交 57周边段 58中间段 62非机平台 63机动道 64非机道 65地下非机平台高速换向立交 66地下非机平台高架换向立交 67地上非机平台 68地下非机平台 69单坡换向 70双坡换向 71宽道地面下穿换向回头 72宽道地下下穿换向回头 73立交公交站 74上坡式换向平交 75下坡式换向平交 76窄道地下下穿换向回头 79换向平交 80单行道 81双行道 82单行右匝 83双行右匝 84单行竖梯 85双行竖梯 86单行公交站 87双行公交站 88单行道分离点 89单行道切入点 90单行道换向左匝 91双行道分离点 92双行道切入点 93双行道换向左匝 94斑马线 95平交型上坡式换向平交 96平交型下坡式换向平交 99单行道公交站 100上跨高速 101地面高速 102上跨高速分离点 103上跨高速切入点 104上跨高速换向左匝 105地面高速分离点 106地面高速切入点 107地面高速换向左匝 108高架直通分离点 109高架直通切入点 110高架直通换向左匝 111高架地面直通分离点 112高架地面直通切入点 113高架地面直通换向左匝 114上跨高速右匝 115地面高速右匝 116高架直通右匝 117高架地面直通右匝 118高架直通 119高架地面直通 120苜蓿立交 121上跨立交 122下穿立交 123上跨换向立交 124下穿换向立交 125路段双向回头 126换向回头 127平面换向回头 128平面双向换向回头 129平面单向换向回头 133宽道互通全长路网 134宽道互通市区路网 135窄道直通市区路网 138城市快速 139多维全通城市快速 140多维平回城市快速 146直线 147垂线 148平面山峰形 149长度山峰形 150竖向山峰形 154直线右 匝 155垂线右匝 156直线公交站 157垂线公交站 161地下非机平台上跨立交 162地下非机平台下穿立交 163地上非机平台上跨立交 164地上非机平台下穿立交 165宽窄路网 166长短路网 167停靠路网 168公交换代 169节点公交 170路段公交 171平交公交 172信号平交区 173路段进匝 174路段出匝 175公交种类 176公交模式 178过街过道 179过街隧道 180智能交通 181智慧城市 185宽道互通路网 186窄道直通路网 187宽道互通两停公交 188宽道互通对停公交 189窄道直通错位单道单停公交 190窄道直通错位两道两停公交 191窄道直通市区错位单道单停路网 192窄道直通市区错位两道两停路网 193地上节点 194地下节点 201匹配 202匹配路网 203平面匹配路网 204长度匹配路网 205竖向匹配路网206宽道市区竖向匹配路网 207宽道市区两停竖向匹配路网 208宽道市区对停竖向匹配路网209窄道市区竖向匹配路网 210窄道市区单停竖向匹配路网 211窄道市区两停竖向匹配路网213单向单道 214单向两道 215互通节点 216直通节点 217改造型地下非机平台高速换向立交 218改造型地下非机平台高架换向立交 223单向三道 224点对点公交 227右匝 228左匝 235节点 236路段 237路网 238快速公交 239慢速公交 251十字节点 252丁字节点 253全通路网 254宽道互通路段空间 255窄道直通路段空间 257地上宽道互通两停公交站 258地上宽道互通对停公交站 259地上窄道直通错位单道单停公交站 260地上窄道直通两道两停公交站 261公交竖梯 262进出竖梯 263下层直线换向左匝 264上层直线换向左匝 265换向左匝共道层 266上层垂线换向左匝 267地上非机平台上层换向丁字换向立交 268地下非机平台下层换向丁字换向立交 273上层直线分离点 274上层直线切入点 275上层直线换向左匝 276上层垂线分离点 277上层垂线切入点 278上层垂线换向左匝 279下层直线分离点 280下层直线切入点 281下层直线换向左匝 282下层垂线分离点 283下层垂线切入点 284下层垂线换向左匝 285上层换向丁字换向立交 286下层换向丁字换向立交 295宽道互通 296窄道直通 300网约交通 301网约公交 302网约非公交 307地下宽道互通两停公交站 308地下宽道互通对停公交站 309地下窄道直通错位单道单停公交站 310地下窄道直通两道两停公交站 312中间公交 313公交与非公交混道 315公交站位 318城市设施 320两边停靠 321对称停靠 324宽道互通路段空间 325窄道直通路段空间 326路段空间 327市区路网 328市区路段空间 329宽道互通全长路段空间 330宽道互通市区路段空间 331窄道直通市区路段空间 340宽道互通两停公交路段空间 341地面宽道互通两停公交 342地下宽道互通两停公交 343地下宽道互通基础设施 344宽道互通对停公交路段空间 345地面宽道互通对停公交 346地下宽道互通对停公交 348窄道直通错位单道单停公交路段空间 349地面窄道直通错位单道单停公交 350地下窄道直通错位单道单停公交 351地下窄道直通基础设施 352窄道直通错位两道两停公交路段空间 353地面窄道直通错位两道两停公交 354地下窄道直通错位两道两停公交
具体实施方式
结合附图,进一步说明本发明具体实施方案。
图1为下坡式换向平交平面图;
下坡式换向交平为新型换向平交,但下坡式换向平交不宜单独应用。
图2-图3为叠加换向平交平面图
叠加换向平交38由上坡式换向平交74与下坡式换向平交75组成。
图4-图15为非机平台换向立交平面图
节点实现互通。
图16-图27为非机平台立交平面图
节点实现直通。
图28-图30为改造型地下非机平台高速换向立交平面图
高速节点改造方案同高架。
图31-图33为改造型地下非机平台高架换向立交平面图
高架节点改造方案有二:一、增设非机平台使高架具有直通;二、增设非机平台和换向左匝使高架具体互通,选择因工程而异。
图34-图38为非机平台丁字换向立交平面图
节点实现互通和直通。
图39-图42为多维全通快速路网平面图
多维全通快速路网层面有四:一、交通路网;二、匹配路网;三、公交模式;四、路段空间,前三者同层,设置于地面,后者设置于地下一层。
图43-图54为路网空间平面图
路段空间层面有四:一、宽道互通两停公交路段空间;二、宽道互通对停公交路段空间;三、窄道直通错位单道单停公交路段空间;四、窄道直通错位两道两停公交路段空间。
结语
多维城市快速路网(快速),为创新技术2.0,属于城市交通颠覆性换代。节点设置非机平台,使其机动道与非机道分离,立交有互通和直通两种。路网确保节点畅通,智能交通得以实现,解决城市交通“拥堵”这一世界难题。智能交通对智慧城市和信息技术意义重大,前者实现无缝嬗变,后者提高通行能力。对约为20%的地下空间资源以“一次统筹逆作施工”模式开发为各类城市设施。其结果是快速可达性极优,公交换乘方便,避免管廊单独开发和施工拉链。本发明主旨明确:利用多学科融合创新,创造快速、环保、方便新一代城市交通,福祉人类社会。当务之急是对城市交通进行颠覆性换代(地铁更替为快速),谁愿忤行其道。

Claims (26)

  1. 一种多维城市快速路网,所述节点(235)、路段(236)有:1、下坡式换向平交(75);2、地下非机平台上跨换向立交(11);3、地下非机平台下穿换向立交(12);4、地上非机平台上跨换向立交(13);5、地上非机平台下穿换向立交(14);6、地下非机平台上跨立交(161);7、地下非机平台下穿立交(162);8、地上非机平台上跨立交(163);9、地上非机平台下穿立交(164);10、非机平台丁字换向立交(271);11、改造型地下非机平台高速换向立交(217);12、改造型地下非机平台高架换向立交(218),以及多维全通快速路网(139)。
  2. 根据权利要求1所述多维城市快速路网,其特征在于:所述下坡式换向平交(75)的单行道(80)和双行道(81)均设置同层,单行道(80)从双行道(81)下面通过,其换向平交(79)称为下坡式换向平交(75);
    1所述下坡式换向平交(75)由单行道(80)、双行道(81)、单行道换向左匝(90)、双行道换向左匝(93)、单行右匝(82)和双行右匝(83)组成;
    2所述单行道换向左匝(90)由单行道分离点(88)至单行道切入点(89);
    3所述双行道换向左匝(93)由双行道分离点(91)至双行道切入点(92);
    4所述的下坡式换向平交(75)单独应用不能发挥换向平交(79)功能,只有下坡式换向平交(75)和上坡式换向平交(74)叠加组合应用,才名至实归。三
  3. 根据权利要求1所述多维城市快速路网,其特征在于:所述地下非机平台上跨换向立交(11)公交(9)设置中间,非公交(10)设置两边,其立交是在上跨换向立交(123)的基础上,增设地下非机平台(68)而成,即在地面层(40)下面敷设地下非机平台(68),由自行车道(49)和行人道(50)组成的非机道(64),于地下非机平台(68)信号平交(47),其结果是地下非机平台上跨换向立交(11)的机动道(63)为互通;非机道(64)为信号平交(47),机动道(63)与非机道(64)两者各行其道,互不干扰,地下非机平台上跨换向立交(11)无需设置信号平交(47),其立交视为“互通”;
  4. 根据权利要求1所述多维城市快速路网,其特征在于:所述地下非机平台下穿换向立交(12)公交(9)设置中间,非公交(10)设置两边,其立交是在下穿换向立交(124)的基础上,增设地下非机平台(68)而成,即在地面层(40)下面敷设地下非机平台(68),由自行车道(49)和行人道(50)组成的非机道(64),于地下非机平台(68)信号平交(47),其结果是地下非机平台下穿换向立交(12)的机动道(63)为互通;非机道(64)为信号平交(47),机动道(63)与非机道(64)两者各行其道,互不干扰,地下非机平台下穿换向立交(12)无需设置信号平交(47),其立交视为“互通”;
  5. 根据权利要求1所述多维城市快速路网,其特征在于:所述地上非机平台上跨换向立交(13)公交(9)设置中间,非公交(10)设置两边,其立交是在上跨换向立交(123)的基础上,增设地上非机平台(67)而成,即在地面层(40)上面敷设地上非机平台(67),立交直通线(16)从地上非机平台顶层(45)通过,由自行车道(49)和行人道(50)组成的非机道(64),于地上非机平台(67)信号平交(47),其结果是地上非机平台上跨换向立交(13)的机动道(63)为互通,非机道(64)为信号平交(47),机动道(63)与非机道(64)两者各行其道,互不干扰,地上非机 平台上跨换向立交(13)无需设置信号平交(47),其立交视为“互通”;
  6. 根据权利要求1所述多维城市快速路网,其特征在于:所述地上非机平台下穿换向立交(14)公交(9)设置中间,非公交(10)设置两边,其立交是在下穿换向立交(124)的基础上,增设地上非机平台(67)而成,即在地面层(40)上面敷设地上非机平台(67),立交直通线(16)从地上非机平台顶层(45)通过,由自行车道(49)和行人道(50)组成的非机道(64),于地上非机平台(67)信号平交(47),其结果是地上非机平台下穿换向立交(14)的机动道(63)为互通,非机道(64)为信号平交(47),机动道(63)与非机道(64)两者各行其道,互不干扰,地上非机平台下穿换向立交(14)无需设置信号平交(47),其立交视为“互通”;
  7. 根据权利要求1所述多维城市快速路网,其特征在于:所述地下非机平台上跨立交(161)公交(9)设置中间,非公交(10)设置两边,其立交是在上跨立交(121)的基础上,增设地下非机平台(68)而成,即在地面层(40)下面敷设地下非机平台(68),由自行车道(49)和行人道(50)组成的非机道(64),于地下非机平台(68)信号平交(47),其结果是地下非机平台上跨立交(161)的机动道(63)为直通;非机道(64)为信号平交(47),机动道(63)与非机道(64)两者各行其道,互不干扰,地下非机平台上跨立交(161)无需设置信号平交(47),其立交视为“直通”;
  8. 根据权利要求1所述多维城市快速路网,其特征在于:所述地下非机平台下穿立交(162)公交(9)设置中间,非公交(10)设置两边,其立交是在下穿立交(122)的基础上,增设地下非机平台(68)而成,即在地面层(40)下面敷设地下非机平台(68),由自行车道(49)和行人道(50)组成的非机道(64),于地下非机平台(68)信号平交(47),其结果是地下非机平台下穿立交(162)的机动道(63)为直通;非机道(64)为信号平交(47),机动道(63)与非机道(64)两者各行其道,互不干扰,地下非机平台下穿立交(162)无需设置信号平交(47),其立交视为“直通”;
  9. 根据权利要求1所述多维城市快速路网,其特征在于:所述地上非机平台上跨立交(163)公交(9)设置中间,非公交(10)设置两边,其立交是在上跨立交(121)的基础上,增设地上非机平台(67)而成,即在地面层(40)上面敷设地上非机平台(67),立交直通线(16)从地上非机平台顶层(45)通过,由自行车道(49)和行人道(50)组成的非机道(64),于地上非机平台(67)信号平交(47),其结果是地上非机平台上跨立交(163)的机动道(63)为直通,非机道(64)为信号平交(47),机动道(63)与非机道(64)两者各行其道,互不干扰,地上非机平台上跨立交(163)无需设置信号平交(47),其立交视为“直通”;
  10. 根据权利要求1所述多维城市快速路网,其特征在于:所述地上非机平台下穿立交(164)公交(9)设置中间,非公交(10)设置两边,其立(226)交是在下穿立交(122)的基础上,增设地上非机平台(67)而成,即在地面层(40)上面敷设地上非机平台(67),立交直通线(16)从地上非机平台顶层(45)通过,由自行车道(49)和行人道(50)组成的非机道(64),于地上非机平台(67)信号平交(47),其结果是地上非机平台下穿立交(164)的机动道(63)为直通,非机道(64)为信号平交(47),机动道(63)与非机道(64)两者各行其道,互不干扰,地上非机平台下 穿立交(164)无需设置信号平交(47),其立交视为“直通”;
  11. 根据权利要求1所述多维城市快速路网,其特征在于:所述非机平台丁字换向立交(271)有二:一、地上非机平台上层换向丁字换向立交(267),二、地下非机平台下层换向丁字换向立交(268);
    1所述地上非机平台上层换向丁字换向立交(267)是在上层换向丁字换向立交(285)的基础上,增加地上非机平台(67)而成;
    2所述地下非机平台下层换向丁字换向立交(268)是在下层换向丁字换向立交(286)的基础上,增加地下非机平台(68)而成;
    3所述上层换向丁字换向立交(285)由直线(146)、垂线(147)、上层直线换向左匝(275)、上层垂线换向左匝(278)、直线右匝(154)和垂线右匝(155)组成;
    4所述下层换向丁字换向立交(286)由直线(146)、垂线(147)、下层直线换向左匝(281)、下层垂线换向左匝(284)、直线右匝(154)和垂线右匝(155)组成;
    5所述上层直线换向左匝(275)由上层直线分离点(273)至上层直线切入点(274);
    6所述上层垂线换向左匝(278)由上层垂线分离点(276)至上层垂线切入点(277);
    7所述下层直线换向左匝(281)由下层直线分离点(279)至下层直线切入点(280);
    8所述下层垂线换向左匝(284)由下层垂线分离点(282)至下层垂线切入点(283);
    9所述地上非机平台上层换向丁字换向立交(267),按竖向结构有三:一、上层直线换向左匝(275)和上层垂线换向左匝(278),二、地上非机平台顶层(45),三、地上非机平台(67)
    10所述地下非机平台下层换向丁字换向立交(268),按竖向结构有二:一、下层换向丁字换向立交(286),二、下层直线换向左匝(281)、下层垂线换向左匝(284)和地下非机平台(68)
    11所述地下非机平台下层换向丁字换向立交(268)全互通特性,是在地面层(40)下面敷设地下非机平台(68),非机道(64)于地下非机平台(68)信号平交(47),机动道(63)为互通,其结果是地下非机平台下层换向丁字换向立交(268)的机动道(63)与非机道(64)两者各行其道,互不干扰,地下非机平台下层换向丁字换向立交(268)为全互通立交;
    12所述地上非机平台上层换向丁字换向立交(267)全互通特性,是在地面层(40)上面敷设地上非机平台(67),非机道(64)于地上非机平台(67)信号平交(47),机动道(63)为互通,其结果是地上非机平台上层换向丁字换向立交(267)的机动道(63)与非机道(64)两者各行其道,互不干扰,地上非机平台上层换向丁字换向立交(267)为全互通立交。
  12. 根据权利要求1所述多维城市快速路网,其特征在于:所述改造型地下非机平台高速换向立交(123),是将非换向立交(15)的高速,改造为地下非机平台高速换向立交(65);
    1所述地下非机平台高速换向立交(65)由上跨高速(100)、地面高速(101)、上跨高速换向左匝(104)、地面高速换向左匝(107)、上跨高速右匝(114)、地面高速右匝(115)和地下非机平台(68)组成;
    2所述上跨高速换向左匝(104)由上跨高速分离点(102)至上跨高速切入点(103)组成;
    3所述地面高速换向左匝(107)由地面高速分离点(105)至地面高速切入点(106)组成;
    4所述地下非机平台高速换向立交(65)的机动道(63)无需信号平交(47)实现互通,非机道(64)于地下非机平台(68)信号平交(47),机动道(63)与非机道(64)两者各行其道,互不干扰,地下非机平台高速换向立交(65)无需设置信号平交(47),其立交视为“互通”。
  13. 根据权利要求1所述多维城市快速路网,其特征在于:所述改造型地下非机平台高架换向立交(124),是将非换向立交(15)的高架,改造为地下非机平台高架换向立交(66);
    1所述地下非机平台高架换向立交(66)由高架直通(118)、地面直通(119)、高架直通换向左匝(110)、地面直通换向左匝(113)、高架直通右匝(116)、地面直通右匝(117)和地下非机平台(68)组成;
    2所述高架直通换向左匝(110)由高架直通分离点(108)至高架直通切入点(109)组成;
    3所述地面直通换向左匝(113)由地面直通分离点(111)至地面直通切入点(112)组成;
    4所述地下非机平台高架换向立交(66)的机动道(63)无需信号平交(47)实现互通,非机道(64)于地下非机平台(68)信号平交(47),机动道(63)与非机道(64)两者各行其道,互不干扰,地下非机平台高架换向立交(66)无需设置信号平交(47),其立交视为“全互通”;。
  14. 根据权利要求1所述多维城市快速路网,其特征在于:所述多维全通快速路网(139)层面有四:一、节点换代(272),二、公交换代(168),三、匹配路网(202),四、路段空间(247)。
  15. 根据权利要求1或14所述多维城市快速路网,其特征在于:所述节点换代(272)层面有二:一、节点换代(2),二、设置非机平台(62);
    1所述节点换代(2)是指节点(235)从现有的苜蓿立交(120)更替为换向立交(15)、换向平交(79);
    2所述非机平台(62)层面有二:一、非机平台立交(55),二、非机平台换向立交(56);
    3所述非机平台立交(55)是指立交于地面层(40),增设地上非机平台(67)或地下非机平台(68),使其机动道(63)与非机道(64)两者各行其道,互不干扰,机动道(63)不设左匝(228)和右匝(227),结果是立交为直通,非机道(64)于非机平台(62)信号平交(47);
    4所述非机平台换向立交(56)是指换向立交(15)于地面层(40),增设地上非机平台(67)或地下非机平台(68),使其机动道(63)与非机道(64)两者各行其道,互不干扰,结果是非机平台换向立交(56)为互通,非机道(64)于非机平台(62)信号平交(47)。
  16. 根据权利要求1或14所述多维城市快速路网,其特征在于:所述公交换代(168)层面有二:一、公交种类(175),二、公交模式(176);
    1所述公交种类(175)有四:一、宽道互通两停公交(187),二、宽道互通对停公交(188),三、窄道直通错位单道单停公交(189),四、窄道直通错位两道两停公交(190);
    2所述公交模式有三:一、节点公交(169),二、路段公交(170),三、平交公交(171);
    3所述平交公交(171)是通过信号平交区(172),使其平交公交(171)直接进、出千家万户,其公交(9)可达性极优。
  17. 根据权利要求1或14所述多维城市快速路网,其特征在于:所述匹配路网(202)是根据城市交通特点设计,城市交通特点具有中间通行量多,周边少,形成城市交通山峰形,换言之,城 市交通通行量要与实际需求量相匹配,才能确保城市交通畅通,其模式有三:一、平面匹配路网(203),二、长度匹配路网(204),三、竖向匹配路网(205);
    1所述平面匹配路网(203)由路网间距形成,即路网中间密,两边稀,构成平面匹配路网(203)。平面匹配路网(203)亦称平面山峰形(148);
    2所述长度匹配路网(204)。长度匹配路网(204)由宽道互通全长路网(133)和宽道互通市区路网(134)构成。长度匹配路网(204)亦称长度山峰形(149);
    3所述竖向匹配路网(205)由市区路网(327)与市区路段空间(328)叠加构成。竖向匹配路网(205)亦称竖向山峰形(150)
    4所述竖向匹配路网(205)其模式有二:一、宽道市区竖向匹配路网(206),二、窄道市区竖向匹配路网(209)
    5所述宽道市区竖向匹配路网(206)层面有二:一、宽道市区两停竖向匹配路网(207),二、宽道市区对停竖向匹配路网(208);
    6所述窄道市区竖向匹配路网(209)层面有二:一、窄道市区单停竖向匹配路网(210),二、窄道市区两停竖向匹配路网(211);
    7所述窄道市区单停竖向匹配路网(210)就是窄道直通错位单道单停公交(189);
    8所述窄道市区两停竖向匹配路网(211)就是窄道直通错位两道两停公交(190);
    9所述匹配路网(202)对路网(237)具有重大的经济意义。
  18. 根据权利要求1或14所述多维城市快速路网,其特征在于:所述路段空间(326)模式有二:一、宽道互通路段空间(324);二、窄道直通路段空间(325)。
    宽道。1所述宽道互通路段空间(324)模式有二:一、宽道互通两停公交路段空间(340);二、宽道互通对停公交路段空间(344)。
    窄道。2所述窄道直通路段空间(325)模式有二、一、窄道直通错位单道单停公交路段空间(348);二、窄道直通错位两道两停公交路段空间(352)。
    宽1。所述宽道互通两停公交路段空间(340)层面有三:一、地面宽道互通两停公交(341),二、地下宽道互通两停公交(342),三、地下宽道互通基础设施(343);
    宽2。所述宽道互通对停公交路段空间(344)层面有三:一、地面宽道互通对停公交(345),二、地下宽道互通对停公交(346),三、地下宽道互通基础设施(343);
    窄1。所述窄道直通错位单道单停公交路段空间(348)层面有三:一、地面窄道直通错位单道单停公交(349),二、地下窄道直通错位单道单停公交(350),三、地下窄道直通基础设施(351);
    窄2。所述窄道直通错位两道两停公交路段空间(352)层面有三:一、地面窄道直通错位两道两停公交(353),二、地下窄道直通错位两道两停公交(354),三、地下窄道直通基础设施(351)。
  19. 根据权利要求1或14所述多维城市快速路网,其特征在于:所述城市快速(138)层面有二:一、全通路网(253);二、信号平交区(172),两者特性各一,但相辅相成,缺一不可;
    1所述全通路网(253)的快速和信号平交区(172)的可达性,两者结合天衣无缝。
    2所述全通路网(253)和信号平交区(172)的设计因城市形态和交通能行量而异,不拘一格。
  20. 根据权利要求1或14或19所述多维城市快速路网,其特征在于:所述全通路网(253)的全部节点(235):十字节点(251)和丁字节点(252)均具有互通和直通,实现路网全通;
    1所述全通路网(253)的立交共计十二种:一、地下非机平台上跨换向立交(11);二、地下非机平台下穿换向立交(12);三、地上非机平台上跨换向立交(13);四、地上非机平台下穿换向立交(14);五、地下非机平台上跨立交(161);六、地下非机平台下穿立交(162);七、地上非机平台上跨立交(163);八、地上非机平台下穿立交(164);九、地下非机平台下层换向丁字换向立交(268);十、地上非机平台上层换向丁字换向立交(267);十一、地下非机平台高速换向立交(65);十二、地下非机平台高架换向立交(66);
    2所述12种立交有互通节点(215)和直通节点(216)两种,前者为宽道互通(295),后者为窄道直通(296);
    3所述全通路网(253)是解决城市“拥堵”这一世界难题唯一途径,不可撼动;
    4所述全通路网(253)是智能交通(180)的前提和基础,不可或缺;
  21. 根据权利要求1或14或19所述多维城市快速路网,其特征在于:所述信号平交区(172)设置于全通路网(253)中间,信号平交区(172)采用人性化灵活式平交公交(171),使其公交(9)和非公交(10)可达性极优;
  22. 根据权利要求1或14或19所述多维城市快速路网,其特征在于:所述智能交通(180)是建立在全通路网(253)的基础上,辅以信号平交区(172),构成智能交通(180),成为时至今日唯一具有实际意义的智能交通(180)设计技术方案,直白的说,智能交通(180)得益于硬件换代。
  23. 根据权利要求1或14或19或22或23所述多维城市快速路网,其特征在于:公交种类(175)有四:一、高档车一人一座(230),二、普通车座站混合(231),三、大型摆渡车(232),四、小型座站混合公交(233);
    1所述公交(9)车辆以满足实际需求为度,换言之,因城市规模和时段而异。
  24. 根据权利要求1或14或19所述多维城市快速路网,其特征在于:所述公交模式(176)有二:一、直通公交(219),二、非直通公交(220);
    1所述直通公交(219)是城市公交(9)的主体;
    2所述非直通公交(220)又称点对点公交(221);
    3所述点对点公交(221)是指城市公交车站、铁路车站、机场等人群密集场所相互间设置点对点公交(221),点对点公交(221)是通过换向左匝(222)或者右匝(227)实现;
    4所述公交(9)车辆一律分散停放于路段空间(247),有利于统筹调度,具有方便、快速、高效、灵活诸多特点。
  25. 根据权利要求1或14或19或22所述多维城市快速路网,其特征在于:所述网约交通(300)层面有二:一、网约公交(301),二、网约非公交(302);
    1所述网约公交(301)和网约非公交(302)统一调度,但应确保网约公交(301)优先的原 则。
  26. 根据权利要求1或14或19或22或23所述多维城市快速路网,其特征在于:所述智能交通(180)无缝嬗变为智慧城市(181)得益于智能交通(180)创新研发,明确地说,得益于全通路网(253)的研发成功;
    所述智慧城市(181)仅为城市交通方面,其它方面还在路上,有待时日完善,不能一踌而就。
PCT/CN2019/124713 2018-12-11 2019-12-12 多维城市快速路网 WO2020119741A1 (zh)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
CN201811509247 2018-12-11
CN201811509247.0 2018-12-11

Publications (1)

Publication Number Publication Date
WO2020119741A1 true WO2020119741A1 (zh) 2020-06-18

Family

ID=70091811

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2019/124713 WO2020119741A1 (zh) 2018-12-11 2019-12-12 多维城市快速路网

Country Status (2)

Country Link
CN (1) CN110983885A (zh)
WO (1) WO2020119741A1 (zh)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040184879A1 (en) * 2003-03-17 2004-09-23 Winkler Gary E. Roadway system interchange
US7234891B2 (en) * 2005-10-14 2007-06-26 Tsukinada Kensetsu Kabushiki Kaisha Multi-level road intersection
CN106012729A (zh) * 2015-11-16 2016-10-12 彭高培 优化公交匹配多维交通路网
CN106844977A (zh) * 2017-01-23 2017-06-13 重庆市勘测院 一种市政道路bim设计模型与gis数据集成方法
CN107476153A (zh) * 2017-06-26 2017-12-15 彭高培 匹配多维路网

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104790273B (zh) * 2014-04-28 2016-08-03 彭高培 一站换乘直通公交式多维交通路网
CN105862529B (zh) * 2015-04-16 2017-08-29 彭高培 优化开发多维交通路网
CN106758611A (zh) * 2016-11-28 2017-05-31 彭高培 一站优化多维交通路网

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US20040184879A1 (en) * 2003-03-17 2004-09-23 Winkler Gary E. Roadway system interchange
US7234891B2 (en) * 2005-10-14 2007-06-26 Tsukinada Kensetsu Kabushiki Kaisha Multi-level road intersection
CN106012729A (zh) * 2015-11-16 2016-10-12 彭高培 优化公交匹配多维交通路网
CN106844977A (zh) * 2017-01-23 2017-06-13 重庆市勘测院 一种市政道路bim设计模型与gis数据集成方法
CN107476153A (zh) * 2017-06-26 2017-12-15 彭高培 匹配多维路网

Also Published As

Publication number Publication date
CN110983885A (zh) 2020-04-10

Similar Documents

Publication Publication Date Title
CN102425090B (zh) 可集约利用土地并能避免交通堵塞的城市立体道路
CN100425768C (zh) 一种公交车零换乘站点结构及零换乘快速公交系统
CN1249302C (zh) 一种全立体化城市道路系统及采用该系统的交通方法
CN102817295B (zh) 立体十字路口驻停多交直通连锁枢纽式钟摆立交桥
CN2921085Y (zh) 双x形左转弯立交桥
WO2017084544A1 (zh) 优化公交多维交通路网
WO2012152219A1 (zh) 一种可持续循环轨道线网
CN102733279A (zh) 应用在十字路口的综合交通枢纽
CN101134464A (zh) A/b/c组合路线网与轨道交通
CN202671992U (zh) 一种市中心立交桥
WO2016165637A1 (zh) 优化开发多维交通路网
CN103643607B (zh) 全封闭全立交快速公交道路系统
CN100351468C (zh) 全立体化城市道路系统及采用该系统的交通方法
WO2020119741A1 (zh) 多维城市快速路网
Pan Urban mobility in China
CN103046445A (zh) 十字路口无障碍交通通道设计
CN202055131U (zh) 一种市中心立交桥
CN203639771U (zh) 全封闭全立交快速公交道路系统
Rawal et al. Integrated multimodal transportation in India
CN101487214A (zh) 城市十字路口人性化多功能立交桥
CN102191733A (zh) 无交通指挥信号灯城市交通系统
CN201024362Y (zh) 一种无冲突点城市机动车道路系统
CN103898820A (zh) 准轨道交通道路系统
CN104032633B (zh) 地铁站综合体交通组织与运行系统
CN203938945U (zh) 地铁站综合体交通组织与运行系统

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 19894927

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 19894927

Country of ref document: EP

Kind code of ref document: A1