WO2020118698A1 - 一种微波合成磷酸铁锂材料的方法 - Google Patents

一种微波合成磷酸铁锂材料的方法 Download PDF

Info

Publication number
WO2020118698A1
WO2020118698A1 PCT/CN2018/121254 CN2018121254W WO2020118698A1 WO 2020118698 A1 WO2020118698 A1 WO 2020118698A1 CN 2018121254 W CN2018121254 W CN 2018121254W WO 2020118698 A1 WO2020118698 A1 WO 2020118698A1
Authority
WO
WIPO (PCT)
Prior art keywords
lithium
iron phosphate
source
lithium iron
ball milling
Prior art date
Application number
PCT/CN2018/121254
Other languages
English (en)
French (fr)
Inventor
张哲鸣
吴正斌
Original Assignee
中国科学院深圳先进技术研究院
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 中国科学院深圳先进技术研究院 filed Critical 中国科学院深圳先进技术研究院
Priority to PCT/CN2018/121254 priority Critical patent/WO2020118698A1/zh
Publication of WO2020118698A1 publication Critical patent/WO2020118698A1/zh

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/54Reclaiming serviceable parts of waste accumulators
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/84Recycling of batteries or fuel cells

Definitions

  • the invention relates to the field of electrochemistry, in particular to a method for synthesizing lithium iron phosphate by using a microwave method to treat waste batteries.
  • lithium-ion batteries Since the commercialization of lithium-ion batteries, they have been widely used in portable electronic devices such as mobile phones, notebook computers, cameras, and electric vehicles due to their advantages of high working voltage, high energy density, long cycle life, convenient portability, and good safety performance. Application, a large number of lithium-ion batteries will be produced every year, and a large number of scrapped batteries will be produced every year.
  • waste lithium battery recycling technology adopted by individual enterprises is relatively backward, low in efficiency, and easy to produce secondary pollution.
  • the recycling object is single, and the comprehensive utilization rate of the residual value of the battery is low.
  • the recycling technology also mostly stays in the laboratory stage, which has the problems of lagging industrialization or poor practicability.
  • the recovery and regeneration process of lithium iron phosphate mainly adopts the fire method and the wet method.
  • the current technology of the fire method synthesis process is not very mature, and it will generate a large amount of toxic gases.
  • the main purpose of the wet method is through acid-soluble alkaline leaching
  • the valuable metals in the battery are finally recovered, and a large amount of acid-base reagents are required in the process of the process.
  • the environment is seriously polluted and the reaction time is long, and the reaction equipment is highly corrosive. Therefore, the search for an efficient and environmentally friendly treatment process for the recycling of waste lithium iron phosphate batteries is the development direction of waste lithium battery resource technology, and it is also the need to build a resource-saving and environment-friendly society.
  • a method of synthesizing lithium iron phosphate material using waste batteries in microwave is to provide simple process operation, easy process control, low energy consumption, environmental friendliness, and no secondary pollution At the same time, the repaired lithium iron phosphate material can be used again to produce lithium ion batteries.
  • the method for synthesizing lithium iron phosphate material by using microwaves of waste batteries is as follows:
  • step (1) The positive electrode sheet obtained in step (1) is calcined at 300-500°C for 1-10 hours. After the temperature is lowered to room temperature, the positive electrode sheet is mechanically vibrated to make lithium iron phosphate fall off from the aluminum foil of the current collector to obtain lithium iron phosphate powder;
  • the number of times of repeating the ball milling and microwave treatment steps in step (3) is more than one, preferably 1, 2, 3, 4, 5 times.
  • step (3) is to mix lithium iron phosphate powder, lithium source, iron source, phosphorus source, and carbon source for the first ball mill, and then put it into a microwave device to control the microwave power to 400W-1000W, continuous heating time is 10-100S, then stop 10-60S, stir after taking out, and perform the second ball mill again, after ball milling, then microwave heating 10-100S, take out natural cooling, to obtain lithium iron phosphate material.
  • the lithium source in step (3) is selected from one or more of lithium hydroxide, lithium carbonate, lithium sulfate, lithium oxide, and lithium acetate.
  • the iron source in step (3) is one or more of iron chloride, iron sulfate, iron powder, and iron oxide.
  • the phosphorus source in step (3) is one or more of diammonium hydrogen phosphate, ammonium dihydrogen phosphate, iron phosphate, and lithium phosphate.
  • the carbon source in step (3) is selected from one or more of sucrose, glucose, starch, phenolic resin, and tetraethylene glycol.
  • the mass ratio of the lithium iron phosphate powder and the lithium source iron source phosphorus source mixed powder in step (3) is 1:1 to 30:1, preferably 1:1 to 1:5, More preferably, it is 1:1-1:3.
  • the mass ratio of the lithium source, the iron source, and the phosphorus source in step (3) is 1:1:1-1:0.5:0.5.
  • the first ball milling time in step (3) is 0.5 to 3 hours
  • the rotation speed is 200 to 400 r/min
  • the second ball milling time in step (3) is 0.5 to 2 hours, the rotation speed is 100 to 500 r/min, and after ball milling, it is passed through a 300 to 600 mesh screen.
  • the size of the synthesized lithium iron phosphate particles is 6-20 ⁇ m, preferably 8-12 ⁇ m.
  • the lithium iron phosphate material obtained by the present invention was subjected to XRD detection, and it was found that the repaired lithium iron phosphate crystal structure was intact, and an inductively coupled plasma emission spectroscopy (ICP-AES) elemental analysis was performed. The content of iron and phosphorus increased significantly, and after charging and discharging tests, it was found that the electrochemical performance of lithium iron phosphate was significantly improved.
  • ICP-AES inductively coupled plasma emission spectroscopy
  • the beneficial effect of the present invention is that: the microwave method is used to repair the lithium iron phosphate material in the waste battery, which can significantly increase the content of lithium ions in the structure of the failed lithium iron phosphate, improve the electrochemical performance of the lithium iron phosphate, and the phosphoric acid after repair
  • the iron-lithium material can be directly used as the cathode material for the production of lithium-ion batteries.
  • the invention can effectively recycle waste lithium iron phosphate batteries, and obtain good environmental benefits and considerable economic benefits. .
  • Example 1 Microwave synthesis of lithium iron phosphate material using waste batteries
  • step (2) Put the positive electrode sheet obtained in step (1) in a muffle furnace, calcinate at 450°C for 1 hour, take out the temperature to room temperature and take out, mechanically vibrate the positive electrode sheet to make lithium iron phosphate fall off from the aluminum foil of the current collector to obtain Black lithium iron phosphate powder;
  • step (2) Put the positive electrode sheet obtained in step (1) in a muffle furnace, calcinate at 450°C for 1 hour, take out the temperature to room temperature and take out, mechanically vibrate the positive electrode sheet to make lithium iron phosphate fall off from the aluminum foil of the current collector to obtain Black lithium iron phosphate powder;
  • step (2) Put the positive electrode sheet obtained in step (1) in a muffle furnace, calcinate at 450°C for 1 hour, take out the temperature to room temperature and take out, mechanically vibrate the positive electrode sheet to make lithium iron phosphate fall off from the aluminum foil of the current collector to obtain Black lithium iron phosphate powder;
  • the experimental scheme is the same as the example, except that in step (3), the continuous microwave heating is performed only once, the continuous heating time is 10 minutes, and the microwave power is 750W.
  • the size of the synthesized lithium iron phosphate particles is relatively stable at about 50 ⁇ m.
  • the lithium iron phosphate of Example 1 was subjected to an electrochemical experiment.
  • the specific discharge capacity at 0.1C could reach 140.5mAh/g for the first time, and the discharge cycle was 100 times at 1C.
  • the lithium iron phosphate of Example 2 was subjected to an electrochemical experiment.
  • the specific discharge capacity at 0.1C was up to 139.8mAh/g for the first time.
  • the discharge cycle was 100 times at 1C.
  • the discharge capacity reached 98.7% of the initial capacity. It has good high-rate charge-discharge cycle performance. .
  • the lithium iron phosphate of Example 3 was subjected to an electrochemical experiment.
  • the specific discharge capacity at the first discharge of 0.1C was up to 140.1 mAh/g, the discharge cycle was 100 times at 1 C, and the discharge capacity reached 99.2% of the initial capacity. It has good high-rate charge-discharge cycle performance .
  • the lithium iron phosphate of Example 4 was subjected to an electrochemical experiment.
  • the specific discharge capacity at the first discharge of 0.1C was up to 131.5 mAh/g, and the discharge cycle was 100 times at 1 C, and the discharge capacity reached 92.1% of the initial capacity. It has good high-rate charge-discharge cycle performance .
  • the intermittent effect of microwaves can help the crystal growth of lithium iron phosphate.
  • the lithium iron phosphate material has a higher crystallinity and is better than the effect of continuous microwave action, which may be due to the binder in the early stage. It has been removed during the pretreatment and did not participate in the re-synthesis of lithium iron phosphate. Therefore, the prepared LiFePO4 is pure olivine type, and the electrochemical performance has been significantly restored.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

本发明涉及一种微波合成磷酸铁锂材料,具体公开了一种利用废旧电池微波合成磷酸铁锂材料的方法,具体步骤如下:(1)选取废旧的磷酸铁锂电池,对其进行放电处理后拆解得到正极片;(2)将步骤(1)所得正极片在300-500℃下煅烧1-10小时,待温度降至室温取出,机械振动正极片,使磷酸铁锂从集流体铝箔上脱落,得到磷酸铁锂粉末;(3)将磷酸铁锂粉末、锂源、铁源、磷源、碳源混合后,进行球磨后进行进行10-100秒的微波处理,并重复球磨和微波处理步骤直至得到磷酸铁锂颗粒。本发明的工艺操作简单,过程容易控制,能耗较低,对环境友好,不产生二次污染物,同时修复后的磷酸铁锂材料可重新用来生产锂离子电池。

Description

一种微波合成磷酸铁锂材料的方法 技术领域
本发明涉及电化学领域,具体涉及一种微波方法处理废旧电池合成磷酸铁锂的方法。
背景技术
锂离子电池实现商业化以来,因其具有工作电压高、能量密度高、循环寿命长、携带方便、安全性能好等优点,在移动电话、笔记本电脑、照相机等便携式电子设备和电动汽车领域得到广泛的应用,因此每年会生产出大量锂离子电池,相应的每年就会产生大量报废电池。
虽然已有一些企业开始关注废锂电池的资源化利用,但我国还尚未建立全国性的废旧电池回收处理体系。个别企业所采用的废锂电池回收技术相对落后、效率低、易产生二次污染,回收对象单一,电池残值综合利用率低下。在废锂电池资源化的研究中,资源化技术也多停留在实验室阶段,存在产业化滞后或可实践性较差的问题。
目前,对磷酸铁锂的回收再生工艺主要采用火法和湿法工艺,火法合成工艺目前技术不是很成熟,同时会产生大量有毒气体,而湿法工艺主要目的是通过酸溶碱浸的方式最终回收到电池中的有价金属,该工艺处理过程中需要大量酸碱试剂,环境污染严重且反应时间长,对反应设备腐蚀性强。因此寻找高效且环境友好的处理工艺对废磷酸铁锂电池回收利用,是废锂电池资源化技术发展的方向,更是建设资源节约型环境友好社会的需求。
为了克服上述现有技术的不足,本发明一种利用废旧电池微波合成磷酸铁锂材料的方法的目的在于提供工艺操作简单,过程容易控制,能耗较低,对环境友好,不产生二次污染物,同时修复后的磷酸铁锂材料可重新用来生产锂离子电池。
发明内容
本发明提出的一种利用废旧电池微波合成磷酸铁锂材料的方法,具体步骤如下:
(1)选取废旧的磷酸铁锂电池,对其进行放电处理后拆解得到正极片;
(2)将步骤(1)所得正极片在300-500℃下煅烧1-10小时,待温度降至室温取出,机械振动正极片,使磷酸铁锂从集流体铝箔上脱落,得到磷酸铁锂粉末;
(3)将磷酸铁锂粉末、锂源、铁源、磷源、碳源混合后,进行球磨后进行进行10-100S的微波处理,并重复球磨和微波处理步骤直至得到磷酸铁锂颗粒。
在本发明的技术方案中,步骤(3)中重复球磨和微波处理步骤的次数为1次以上,优选为1次,2次,3次,4次,5次。
在本发明的技术方案中,步骤(3)为将磷酸铁锂粉末、锂源、铁源、磷源、碳源混合后,进行第一次球磨,然后放入微波装置中,控制微波功率为400W-1000W,持续加热时间为10-100S,然后停止10-60S,取出后进行搅拌,再次进行第二次球磨,球磨后再微波加热10-100S,取出自然冷却,得到磷酸铁锂材料。
在本发明的技术方案中,步骤(3)所述锂源选自氢氧化锂、碳酸锂、硫酸锂、氧化锂、乙酸锂中的一种或几种。
在本发明的技术方案中,步骤(3)所述铁源为氯化铁、硫酸铁、铁粉、氧化铁中的一种或几种。
在本发明的技术方案中,步骤(3)所述磷源为磷酸氢二铵、磷酸二氢铵,磷酸铁、磷酸锂中的一种或几种。
在本发明的技术方案中,步骤(3)所述碳源选自蔗糖、葡萄糖、淀粉、酚醛树脂、四甘醇中的一种或几种。
在本发明的技术方案中,步骤(3)中所述磷酸铁锂粉末和锂源铁源磷源混合粉末的质量比为1:1~30:1,优选为1:1~1:5,更优选为1:1-1:3。
在本发明的技术方案中,步骤(3)中锂源铁源磷源的质量比为1:1:1-1:0.5:0.5。
在本发明的技术方案中,步骤(3)中所述第一次球磨时间为0.5~3小时,转速为200~400r/min,球磨后再过200~600目筛。
在本发明的技术方案中,步骤(3)中所述第二次球磨时间为0.5~2小时,转速为100~500r/min,球磨后再过300~600目筛。
在本发明的技术方案中,合成得到的磷酸铁锂颗粒的尺寸为6-20μm,优选为8-12μm。
本发明获得的磷酸铁锂材料进行XRD检测,发现修复后的磷酸铁锂晶型结 构完整,并进行了电感耦合等离子体发射光谱(ICP-AES)元素分析,修复后磷酸铁锂材料中锂、铁、磷的含量明显提高,经充放电测试,发现磷酸铁锂的电化学性能得到明显提高。
本发明的有益效果在于:采用微波的方法对废旧电池中的磷酸铁锂材料进行修复,可明显增加失效磷酸铁锂结构中锂离子的含量,提高磷酸铁锂的电化学性能,修复后的磷酸铁锂材料可直接作为生产锂离子电池的正极材料。本发明能有效地回收利用废旧的磷酸铁锂电池,并获得良好的环境效益和可观的经济效益。.
具体实施方式
实施例1:利用废旧电池微波合成磷酸铁锂材料
(1)选取废旧的磷酸铁锂电池,对其进行放电处理后拆解得到正极片;
(2)将步骤(1)所得正极片放入马弗炉中,在450℃下煅烧1小时,待温度降至室温取出,机械振动正极片,使磷酸铁锂从集流体铝箔上脱落,得到黑色磷酸铁锂粉末;
(3)将30g磷酸铁锂粉末和3.3g碳酸锂,3.3g氯化铁,3.3g磷酸氢二铵,以及3.5g蔗糖,混合后进行第一次球磨0.5小时,转速为400r/min,球磨后再过200目筛;然后放入微波装置中,控制微波功率为750W,持续加热时间为90S,然后停止30S,取出后进行搅拌,再次进行第二次球磨2小时,转速为500r/min,球磨后再过300目筛;球磨后再微波加热90S,取出自然冷却,得到磷酸铁锂材料。合成的磷酸铁锂颗粒的尺寸较为稳定在10μm左右。
实施例2利用废旧电池微波合成磷酸铁锂材料
(1)选取废旧的磷酸铁锂电池,对其进行放电处理后拆解得到正极片;
(2)将步骤(1)所得正极片放入马弗炉中,在450℃下煅烧1小时,待温度降至室温取出,机械振动正极片,使磷酸铁锂从集流体铝箔上脱落,得到黑色磷酸铁锂粉末;
(3)将30g磷酸铁锂粉末和3.3g乙酸锂,3.3g铁粉,3.3g磷酸锂以及3.8g蔗糖,混合后进行第一次球磨0.5小时,转速为400r/min,球磨后再过200目筛;然后放入微波装置中,控制微波功率为750W,持续加热时间为90S,然后停止30S,取出后进行搅拌,再次进行第二次球磨2小时,转速为500r/min,球磨后再过300目筛;球磨后再微波加热90S,取出自然冷却,得到磷酸铁锂 材料。合成的磷酸铁锂颗粒的尺寸较为稳定在10μm左右。
实施例3利用废旧电池微波合成磷酸铁锂材料
(1)选取废旧的磷酸铁锂电池,对其进行放电处理后拆解得到正极片;
(2)将步骤(1)所得正极片放入马弗炉中,在450℃下煅烧1小时,待温度降至室温取出,机械振动正极片,使磷酸铁锂从集流体铝箔上脱落,得到黑色磷酸铁锂粉末;
(3)将30g磷酸铁锂粉末和1g乙酸锂,3.3g铁粉,3.3g磷酸锂以及3.8g葡萄糖,混合后进行第一次球磨0.5小时,转速为400r/min,球磨后再过200目筛;然后放入微波装置中,控制微波功率为750W,持续加热时间为90S,然后停止30S,取出后进行搅拌,再次进行第二次球磨2小时,转速为500r/min,球磨后再过300目筛;球磨后再微波加热90S,取出自然冷却,得到磷酸铁锂材料。合成的磷酸铁锂颗粒的尺寸较为稳定在10μm左右。
实施例4利用废旧电池长时间微波合成磷酸铁锂材料
实验方案与实施例相同,除了步骤(3)中仅进行一次微波持续加热,持续加热的时间为10分钟,微波功率为750W。合成的磷酸铁锂颗粒的尺寸较为稳定在50μm左右。
实施例5电化学实验验证
实施例1的磷酸铁锂进行电化学实验,0.1C首次放电比容量可达140.5mAh/g,1C下放电循环100次,放电容量达到初始容量的98.5%,具有良好的高倍率充放电循环性能。
实施例2的磷酸铁锂进行电化学实验,0.1C首次放电比容量可达139.8mAh/g,1C下放电循环100次,放电容量达到初始容量的98.7%,具有良好的高倍率充放电循环性能。
实施例3的磷酸铁锂进行电化学实验,0.1C首次放电比容量可达140.1mAh/g,1C下放电循环100次,放电容量达到初始容量的99.2%,具有良好的高倍率充放电循环性能。
实施例4的磷酸铁锂进行电化学实验,0.1C首次放电比容量可达131.5mAh/g,1C下放电循环100次,放电容量达到初始容量的92.1%,具有良好的高倍率充放电循环性能。
实施例6XRD实验
通过XRD实验结果,可以验证微波的间歇作用有助于磷酸铁锂的晶体生长,磷酸铁锂材料具有较高的结晶度,比持续微波作用效果更好,可能是由于粘结剂等在前期的预处理过程中已经被去除,没有参与到重新合成磷酸铁锂中,因此制备得到的LiFePO4为纯相橄榄石型,电化学性能得到明显恢复。

Claims (10)

  1. 一种利用废旧电池微波合成磷酸铁锂材料的方法,具体步骤如下:
    (1)选取废旧的磷酸铁锂电池,对其进行放电处理后拆解得到正极片;
    (2)将步骤(1)所得正极片在300-500℃下煅烧1-10小时,待温度降至室温取出,机械振动正极片,使磷酸铁锂从集流体铝箔上脱落,得到磷酸铁锂粉末;
    (3)将磷酸铁锂粉末、锂源、铁源、磷源、碳源混合后,进行球磨后进行进行10-100秒的微波处理,然后停止20-60秒,并重复球磨和微波处理步骤直至得到磷酸铁锂颗粒。
  2. 根据权利要求1的方法,其中,步骤(3)中重复球磨和微波处理步骤的次数为1次以上,优选为1次,2次,3次,4次,5次。
  3. 根据权利要求1的方法,其中,步骤(3)所述锂源选自氢氧化锂、碳酸锂、硫酸锂、氧化锂、乙酸锂中的一种或几种。
  4. 根据权利要求1的方法,其中,步骤(3)所述铁源为氯化铁、硫酸铁、铁粉、氧化铁中的一种或几种。
  5. 根据权利要求1的方法,其中,步骤(3)所述磷源为磷酸氢二铵、磷酸二氢铵,磷酸铁、磷酸锂中的一种或几种。
  6. 根据权利要求1的方法,其中,步骤(3)所述碳源选自蔗糖、葡萄糖、淀粉、酚醛树脂、四甘醇中的一种或几种。
  7. 根据权利要求1的方法,其中,步骤(3)中所述磷酸铁锂粉末和锂源铁源磷源混合粉末的质量比为1:1~30:1,优选为1:1~1:5,更优选为1:1-1:3。
  8. 根据权利要求1的方法,其中,步骤(3)中锂源铁源磷源的质量比为1:1:1-1:0.5:0.5。
  9. 根据权利要求1的方法,其中,步骤(3)为将磷酸铁锂粉末、锂源、铁源、磷源、碳源混合后,进行第一次球磨,然后放入微波装置中,控制微波功 率为400W-1000W,持续加热时间为10-100秒,然后停止10-60秒,取出后进行搅拌,再次进行第二次球磨,球磨后再微波加热10-100秒,取出自然冷却,得到磷酸铁锂材料。
  10. 根据权利要求9的方法,其中,步骤(3)中所述第一次球磨时间为0.5~3小时,转速为200~400r/min,球磨后再过200~600目筛;步骤(3)中所述第二次球磨时间为0.5~2小时,转速为100~500r/min,球磨后再过300~600目筛。
PCT/CN2018/121254 2018-12-14 2018-12-14 一种微波合成磷酸铁锂材料的方法 WO2020118698A1 (zh)

Priority Applications (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/121254 WO2020118698A1 (zh) 2018-12-14 2018-12-14 一种微波合成磷酸铁锂材料的方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/CN2018/121254 WO2020118698A1 (zh) 2018-12-14 2018-12-14 一种微波合成磷酸铁锂材料的方法

Publications (1)

Publication Number Publication Date
WO2020118698A1 true WO2020118698A1 (zh) 2020-06-18

Family

ID=71075548

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/CN2018/121254 WO2020118698A1 (zh) 2018-12-14 2018-12-14 一种微波合成磷酸铁锂材料的方法

Country Status (1)

Country Link
WO (1) WO2020118698A1 (zh)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280673A (zh) * 2010-11-23 2011-12-14 横店集团东磁股份有限公司 一种锂离子电池正极材料磷酸铁锂废料的再生方法
CN102751548A (zh) * 2012-06-18 2012-10-24 浙江大学 一种从磷酸铁锂废旧电池中回收制备磷酸铁锂的方法
CN106058307A (zh) * 2016-08-17 2016-10-26 刘新保 一种利用磷酸铁锂废料制备锂离子电池正极材料磷酸铁锂的方法
KR101708149B1 (ko) * 2016-05-20 2017-02-20 (주)이엠티 습식 분쇄법을 이용하여 폐 리튬전지 양극물질로부터 리튬화합물을 회수하는 방법
CN108258350A (zh) * 2016-12-29 2018-07-06 中国科学院深圳先进技术研究院 废旧磷酸铁锂电池的材料回收利用方法
US20180261894A1 (en) * 2012-04-04 2018-09-13 Worcester Polytechnic Institute Method and apparatus for recycling lithium iron phosphate batteries

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102280673A (zh) * 2010-11-23 2011-12-14 横店集团东磁股份有限公司 一种锂离子电池正极材料磷酸铁锂废料的再生方法
US20180261894A1 (en) * 2012-04-04 2018-09-13 Worcester Polytechnic Institute Method and apparatus for recycling lithium iron phosphate batteries
CN102751548A (zh) * 2012-06-18 2012-10-24 浙江大学 一种从磷酸铁锂废旧电池中回收制备磷酸铁锂的方法
KR101708149B1 (ko) * 2016-05-20 2017-02-20 (주)이엠티 습식 분쇄법을 이용하여 폐 리튬전지 양극물질로부터 리튬화합물을 회수하는 방법
CN106058307A (zh) * 2016-08-17 2016-10-26 刘新保 一种利用磷酸铁锂废料制备锂离子电池正极材料磷酸铁锂的方法
CN108258350A (zh) * 2016-12-29 2018-07-06 中国科学院深圳先进技术研究院 废旧磷酸铁锂电池的材料回收利用方法

Similar Documents

Publication Publication Date Title
Wang et al. Direct and green repairing of degraded LiCoO2 for reuse in lithium-ion batteries
Zhou et al. Pyrometallurgical technology in the recycling of a spent lithium ion battery: evolution and the challenge
Wang et al. Recycling of lithium iron phosphate batteries: Status, technologies, challenges, and prospects
CN111370800B (zh) 一种废旧磷酸铁锂正极材料的回收方法
CN102751548B (zh) 一种从磷酸铁锂废旧电池中回收制备磷酸铁锂的方法
CN110643816A (zh) 一种从废旧三元锂电池中回收锂的方法
CN104362408B (zh) 一种磷酸铁锂电池制造环节磷酸铁锂废料的回收再利用方法
CN102738539A (zh) 从废旧磷酸亚铁锂电池正极片回收磷酸亚铁锂材料的方法和装置
CN104953200A (zh) 磷酸铁锂电池中回收电池级磷酸铁及利用废旧磷酸铁锂电池制备磷酸铁锂正极材料的方法
Zhao et al. Recycling technology and principle of spent lithium-ion battery
WO2014154154A1 (zh) 锰酸锂电池正极材料回收方法
CN104466292A (zh) 从钴酸锂正极材料的废锂离子电池中回收钴锂金属的方法
CN111573662A (zh) 一种利用回收石墨制备高容量负极材料的方法
Zhao et al. Ultrasonic renovating and coating modifying spent lithium cobalt oxide from the cathode for the recovery and sustainable utilization of lithium-ion battery
CN111320157A (zh) 一种基于水热反应修复磷酸铁锂材料的方法
CN104485493A (zh) 废锂离子电池中钴酸锂正极活性材料的修复再生方法
Yin et al. Rapid, direct regeneration of spent LiCoO2 cathodes for Li-ion batteries
CN114094219A (zh) 一种废旧锂电池正极材料热处理修复再生方法
CN112707447A (zh) 一种从废旧钴酸锂电池中回收再生正极材料的方法
Lu et al. Improvement of leaching efficiency of cathode material of spent LiNi_xCo_yMn_zO_2 lithium-ion battery by the in-situ thermal reduction
CN111326814A (zh) 一种超声水热修复废旧三元电池正极材料的方法
Qin et al. Recovery and reuse of spent LiFePO4 batteries
CN114540640A (zh) 一种锂电池回收方法
CN108987839B (zh) 一种对锂电池正极失效钴酸锂结构重整修复的方法
WO2020118695A1 (zh) 一种微波合成钴酸锂材料的方法

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 18943337

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

32PN Ep: public notification in the ep bulletin as address of the adressee cannot be established

Free format text: NOTING OF LOSS OF RIGHTS PURSUANT TO RULE 112(1) EPC (EPO FORM 1205A DATED 02-11-2021)

122 Ep: pct application non-entry in european phase

Ref document number: 18943337

Country of ref document: EP

Kind code of ref document: A1